Remove getinfo_super_n and do some other cleaning up.
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2  * mdadm - manage Linux "md" devices aka RAID arrays.
3  *
4  * Copyright (C) 2006-2007 Neil Brown <neilb@suse.de>
5  *
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; either version 2 of the License, or
10  *    (at your option) any later version.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *    GNU General Public License for more details.
16  *
17  *    You should have received a copy of the GNU General Public License
18  *    along with this program; if not, write to the Free Software
19  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  *
21  *    Author: Neil Brown
22  *    Email: <neil@brown.name>
23  *
24  * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25  * (July 28 2006).  Reused by permission of SNIA.
26  */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 static inline int ROUND_UP(int a, int base)
35 {
36         return ((a+base-1)/base)*base;
37 }
38
39 /* a non-official T10 name for creation GUIDs */
40 static char T10[] = "Linux-MD";
41
42 /* DDF timestamps are 1980 based, so we need to add
43  * second-in-decade-of-seventies to convert to linux timestamps.
44  * 10 years with 2 leap years.
45  */
46 #define DECADE (3600*24*(365*10+2))
47 unsigned long crc32(
48         unsigned long crc,
49         const unsigned char *buf,
50         unsigned len);
51
52 /* The DDF metadata handling.
53  * DDF metadata lives at the end of the device.
54  * The last 512 byte block provides an 'anchor' which is used to locate
55  * the rest of the metadata which usually lives immediately behind the anchor.
56  *
57  * Note:
58  *  - all multibyte numeric fields are bigendian.
59  *  - all strings are space padded.
60  *
61  */
62
63 /* Primary Raid Level (PRL) */
64 #define DDF_RAID0       0x00
65 #define DDF_RAID1       0x01
66 #define DDF_RAID3       0x03
67 #define DDF_RAID4       0x04
68 #define DDF_RAID5       0x05
69 #define DDF_RAID1E      0x11
70 #define DDF_JBOD        0x0f
71 #define DDF_CONCAT      0x1f
72 #define DDF_RAID5E      0x15
73 #define DDF_RAID5EE     0x25
74 #define DDF_RAID6       0x06
75
76 /* Raid Level Qualifier (RLQ) */
77 #define DDF_RAID0_SIMPLE        0x00
78 #define DDF_RAID1_SIMPLE        0x00 /* just 2 devices in this plex */
79 #define DDF_RAID1_MULTI         0x01 /* exactly 3 devices in this plex */
80 #define DDF_RAID3_0             0x00 /* parity in first extent */
81 #define DDF_RAID3_N             0x01 /* parity in last extent */
82 #define DDF_RAID4_0             0x00 /* parity in first extent */
83 #define DDF_RAID4_N             0x01 /* parity in last extent */
84 /* these apply to raid5e and raid5ee as well */
85 #define DDF_RAID5_0_RESTART     0x00 /* same as 'right asymmetric' - layout 1 */
86 #define DDF_RAID6_0_RESTART     0x01 /* raid6 different from raid5 here!!! */
87 #define DDF_RAID5_N_RESTART     0x02 /* same as 'left asymmetric' - layout 0 */
88 #define DDF_RAID5_N_CONTINUE    0x03 /* same as 'left symmetric' - layout 2 */
89
90 #define DDF_RAID1E_ADJACENT     0x00 /* raid10 nearcopies==2 */
91 #define DDF_RAID1E_OFFSET       0x01 /* raid10 offsetcopies==2 */
92
93 /* Secondary RAID Level (SRL) */
94 #define DDF_2STRIPED    0x00    /* This is weirder than RAID0 !! */
95 #define DDF_2MIRRORED   0x01
96 #define DDF_2CONCAT     0x02
97 #define DDF_2SPANNED    0x03    /* This is also weird - be careful */
98
99 /* Magic numbers */
100 #define DDF_HEADER_MAGIC        __cpu_to_be32(0xDE11DE11)
101 #define DDF_CONTROLLER_MAGIC    __cpu_to_be32(0xAD111111)
102 #define DDF_PHYS_RECORDS_MAGIC  __cpu_to_be32(0x22222222)
103 #define DDF_PHYS_DATA_MAGIC     __cpu_to_be32(0x33333333)
104 #define DDF_VIRT_RECORDS_MAGIC  __cpu_to_be32(0xDDDDDDDD)
105 #define DDF_VD_CONF_MAGIC       __cpu_to_be32(0xEEEEEEEE)
106 #define DDF_SPARE_ASSIGN_MAGIC  __cpu_to_be32(0x55555555)
107 #define DDF_VU_CONF_MAGIC       __cpu_to_be32(0x88888888)
108 #define DDF_VENDOR_LOG_MAGIC    __cpu_to_be32(0x01dBEEF0)
109 #define DDF_BBM_LOG_MAGIC       __cpu_to_be32(0xABADB10C)
110
111 #define DDF_GUID_LEN    24
112 #define DDF_REVISION_0  "01.00.00"
113 #define DDF_REVISION_2  "01.02.00"
114
115 struct ddf_header {
116         __u32   magic;          /* DDF_HEADER_MAGIC */
117         __u32   crc;
118         char    guid[DDF_GUID_LEN];
119         char    revision[8];    /* 01.02.00 */
120         __u32   seq;            /* starts at '1' */
121         __u32   timestamp;
122         __u8    openflag;
123         __u8    foreignflag;
124         __u8    enforcegroups;
125         __u8    pad0;           /* 0xff */
126         __u8    pad1[12];       /* 12 * 0xff */
127         /* 64 bytes so far */
128         __u8    header_ext[32]; /* reserved: fill with 0xff */
129         __u64   primary_lba;
130         __u64   secondary_lba;
131         __u8    type;
132         __u8    pad2[3];        /* 0xff */
133         __u32   workspace_len;  /* sectors for vendor space -
134                                  * at least 32768(sectors) */
135         __u64   workspace_lba;
136         __u16   max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
137         __u16   max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
138         __u16   max_partitions; /* i.e. max num of configuration
139                                    record entries per disk */
140         __u16   config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
141                                                  *12/512) */
142         __u16   max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
143         __u8    pad3[54];       /* 0xff */
144         /* 192 bytes so far */
145         __u32   controller_section_offset;
146         __u32   controller_section_length;
147         __u32   phys_section_offset;
148         __u32   phys_section_length;
149         __u32   virt_section_offset;
150         __u32   virt_section_length;
151         __u32   config_section_offset;
152         __u32   config_section_length;
153         __u32   data_section_offset;
154         __u32   data_section_length;
155         __u32   bbm_section_offset;
156         __u32   bbm_section_length;
157         __u32   diag_space_offset;
158         __u32   diag_space_length;
159         __u32   vendor_offset;
160         __u32   vendor_length;
161         /* 256 bytes so far */
162         __u8    pad4[256];      /* 0xff */
163 };
164
165 /* type field */
166 #define DDF_HEADER_ANCHOR       0x00
167 #define DDF_HEADER_PRIMARY      0x01
168 #define DDF_HEADER_SECONDARY    0x02
169
170 /* The content of the 'controller section' - global scope */
171 struct ddf_controller_data {
172         __u32   magic;                  /* DDF_CONTROLLER_MAGIC */
173         __u32   crc;
174         char    guid[DDF_GUID_LEN];
175         struct controller_type {
176                 __u16 vendor_id;
177                 __u16 device_id;
178                 __u16 sub_vendor_id;
179                 __u16 sub_device_id;
180         } type;
181         char    product_id[16];
182         __u8    pad[8]; /* 0xff */
183         __u8    vendor_data[448];
184 };
185
186 /* The content of phys_section - global scope */
187 struct phys_disk {
188         __u32   magic;          /* DDF_PHYS_RECORDS_MAGIC */
189         __u32   crc;
190         __u16   used_pdes;
191         __u16   max_pdes;
192         __u8    pad[52];
193         struct phys_disk_entry {
194                 char    guid[DDF_GUID_LEN];
195                 __u32   refnum;
196                 __u16   type;
197                 __u16   state;
198                 __u64   config_size; /* DDF structures must be after here */
199                 char    path[18];       /* another horrible structure really */
200                 __u8    pad[6];
201         } entries[0];
202 };
203
204 /* phys_disk_entry.type is a bitmap - bigendian remember */
205 #define DDF_Forced_PD_GUID              1
206 #define DDF_Active_in_VD                2
207 #define DDF_Global_Spare                4 /* VD_CONF records are ignored */
208 #define DDF_Spare                       8 /* overrides Global_spare */
209 #define DDF_Foreign                     16
210 #define DDF_Legacy                      32 /* no DDF on this device */
211
212 #define DDF_Interface_mask              0xf00
213 #define DDF_Interface_SCSI              0x100
214 #define DDF_Interface_SAS               0x200
215 #define DDF_Interface_SATA              0x300
216 #define DDF_Interface_FC                0x400
217
218 /* phys_disk_entry.state is a bigendian bitmap */
219 #define DDF_Online                      1
220 #define DDF_Failed                      2 /* overrides  1,4,8 */
221 #define DDF_Rebuilding                  4
222 #define DDF_Transition                  8
223 #define DDF_SMART                       16
224 #define DDF_ReadErrors                  32
225 #define DDF_Missing                     64
226
227 /* The content of the virt_section global scope */
228 struct virtual_disk {
229         __u32   magic;          /* DDF_VIRT_RECORDS_MAGIC */
230         __u32   crc;
231         __u16   populated_vdes;
232         __u16   max_vdes;
233         __u8    pad[52];
234         struct virtual_entry {
235                 char    guid[DDF_GUID_LEN];
236                 __u16   unit;
237                 __u16   pad0;   /* 0xffff */
238                 __u16   guid_crc;
239                 __u16   type;
240                 __u8    state;
241                 __u8    init_state;
242                 __u8    pad1[14];
243                 char    name[16];
244         } entries[0];
245 };
246
247 /* virtual_entry.type is a bitmap - bigendian */
248 #define DDF_Shared              1
249 #define DDF_Enforce_Groups      2
250 #define DDF_Unicode             4
251 #define DDF_Owner_Valid         8
252
253 /* virtual_entry.state is a bigendian bitmap */
254 #define DDF_state_mask          0x7
255 #define DDF_state_optimal       0x0
256 #define DDF_state_degraded      0x1
257 #define DDF_state_deleted       0x2
258 #define DDF_state_missing       0x3
259 #define DDF_state_failed        0x4
260 #define DDF_state_part_optimal  0x5
261
262 #define DDF_state_morphing      0x8
263 #define DDF_state_inconsistent  0x10
264
265 /* virtual_entry.init_state is a bigendian bitmap */
266 #define DDF_initstate_mask      0x03
267 #define DDF_init_not            0x00
268 #define DDF_init_quick          0x01 /* initialisation is progress.
269                                       * i.e. 'state_inconsistent' */
270 #define DDF_init_full           0x02
271
272 #define DDF_access_mask         0xc0
273 #define DDF_access_rw           0x00
274 #define DDF_access_ro           0x80
275 #define DDF_access_blocked      0xc0
276
277 /* The content of the config_section - local scope
278  * It has multiple records each config_record_len sectors
279  * They can be vd_config or spare_assign
280  */
281
282 struct vd_config {
283         __u32   magic;          /* DDF_VD_CONF_MAGIC */
284         __u32   crc;
285         char    guid[DDF_GUID_LEN];
286         __u32   timestamp;
287         __u32   seqnum;
288         __u8    pad0[24];
289         __u16   prim_elmnt_count;
290         __u8    chunk_shift;    /* 0 == 512, 1==1024 etc */
291         __u8    prl;
292         __u8    rlq;
293         __u8    sec_elmnt_count;
294         __u8    sec_elmnt_seq;
295         __u8    srl;
296         __u64   blocks;         /* blocks per component could be different
297                                  * on different component devices...(only
298                                  * for concat I hope) */
299         __u64   array_blocks;   /* blocks in array */
300         __u8    pad1[8];
301         __u32   spare_refs[8];
302         __u8    cache_pol[8];
303         __u8    bg_rate;
304         __u8    pad2[3];
305         __u8    pad3[52];
306         __u8    pad4[192];
307         __u8    v0[32]; /* reserved- 0xff */
308         __u8    v1[32]; /* reserved- 0xff */
309         __u8    v2[16]; /* reserved- 0xff */
310         __u8    v3[16]; /* reserved- 0xff */
311         __u8    vendor[32];
312         __u32   phys_refnum[0]; /* refnum of each disk in sequence */
313       /*__u64   lba_offset[0];  LBA offset in each phys.  Note extents in a
314                                 bvd are always the same size */
315 };
316
317 /* vd_config.cache_pol[7] is a bitmap */
318 #define DDF_cache_writeback     1       /* else writethrough */
319 #define DDF_cache_wadaptive     2       /* only applies if writeback */
320 #define DDF_cache_readahead     4
321 #define DDF_cache_radaptive     8       /* only if doing read-ahead */
322 #define DDF_cache_ifnobatt      16      /* even to write cache if battery is poor */
323 #define DDF_cache_wallowed      32      /* enable write caching */
324 #define DDF_cache_rallowed      64      /* enable read caching */
325
326 struct spare_assign {
327         __u32   magic;          /* DDF_SPARE_ASSIGN_MAGIC */
328         __u32   crc;
329         __u32   timestamp;
330         __u8    reserved[7];
331         __u8    type;
332         __u16   populated;      /* SAEs used */
333         __u16   max;            /* max SAEs */
334         __u8    pad[8];
335         struct spare_assign_entry {
336                 char    guid[DDF_GUID_LEN];
337                 __u16   secondary_element;
338                 __u8    pad[6];
339         } spare_ents[0];
340 };
341 /* spare_assign.type is a bitmap */
342 #define DDF_spare_dedicated     0x1     /* else global */
343 #define DDF_spare_revertible    0x2     /* else committable */
344 #define DDF_spare_active        0x4     /* else not active */
345 #define DDF_spare_affinity      0x8     /* enclosure affinity */
346
347 /* The data_section contents - local scope */
348 struct disk_data {
349         __u32   magic;          /* DDF_PHYS_DATA_MAGIC */
350         __u32   crc;
351         char    guid[DDF_GUID_LEN];
352         __u32   refnum;         /* crc of some magic drive data ... */
353         __u8    forced_ref;     /* set when above was not result of magic */
354         __u8    forced_guid;    /* set if guid was forced rather than magic */
355         __u8    vendor[32];
356         __u8    pad[442];
357 };
358
359 /* bbm_section content */
360 struct bad_block_log {
361         __u32   magic;
362         __u32   crc;
363         __u16   entry_count;
364         __u32   spare_count;
365         __u8    pad[10];
366         __u64   first_spare;
367         struct mapped_block {
368                 __u64   defective_start;
369                 __u32   replacement_start;
370                 __u16   remap_count;
371                 __u8    pad[2];
372         } entries[0];
373 };
374
375 /* Struct for internally holding ddf structures */
376 /* The DDF structure stored on each device is potentially
377  * quite different, as some data is global and some is local.
378  * The global data is:
379  *   - ddf header
380  *   - controller_data
381  *   - Physical disk records
382  *   - Virtual disk records
383  * The local data is:
384  *   - Configuration records
385  *   - Physical Disk data section
386  *  (  and Bad block and vendor which I don't care about yet).
387  *
388  * The local data is parsed into separate lists as it is read
389  * and reconstructed for writing.  This means that we only need
390  * to make config changes once and they are automatically
391  * propagated to all devices.
392  * Note that the ddf_super has space of the conf and disk data
393  * for this disk and also for a list of all such data.
394  * The list is only used for the superblock that is being
395  * built in Create or Assemble to describe the whole array.
396  */
397 struct ddf_super {
398         struct ddf_header anchor, primary, secondary, *active;
399         struct ddf_controller_data controller;
400         struct phys_disk        *phys;
401         struct virtual_disk     *virt;
402         int pdsize, vdsize;
403         int max_part, mppe, conf_rec_len;
404         int currentdev;
405         struct vcl {
406                 struct vcl      *next;
407                 __u64           *lba_offset; /* location in 'conf' of
408                                               * the lba table */
409                 int     vcnum; /* index into ->virt */
410                 __u64           *block_sizes; /* NULL if all the same */
411                 struct vd_config conf;
412         } *conflist, *currentconf;
413         struct dl {
414                 struct dl       *next;
415                 struct disk_data disk;
416                 int major, minor;
417                 char *devname;
418                 int fd;
419                 unsigned long long size; /* sectors */
420                 int pdnum;      /* index in ->phys */
421                 struct spare_assign *spare;
422                 struct vcl *vlist[0]; /* max_part in size */
423         } *dlist;
424 };
425
426 #ifndef offsetof
427 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
428 #endif
429
430 static struct superswitch super_ddf_container, super_ddf_bvd, super_ddf_svd;
431
432 static int calc_crc(void *buf, int len)
433 {
434         /* crcs are always at the same place as in the ddf_header */
435         struct ddf_header *ddf = buf;
436         __u32 oldcrc = ddf->crc;
437         __u32 newcrc;
438         ddf->crc = 0xffffffff;
439
440         newcrc = crc32(0, buf, len);
441         ddf->crc = oldcrc;
442         return newcrc;
443 }
444
445 static int load_ddf_header(int fd, unsigned long long lba,
446                            unsigned long long size,
447                            int type,
448                            struct ddf_header *hdr, struct ddf_header *anchor)
449 {
450         /* read a ddf header (primary or secondary) from fd/lba
451          * and check that it is consistent with anchor
452          * Need to check:
453          *   magic, crc, guid, rev, and LBA's header_type, and
454          *  everything after header_type must be the same
455          */
456         if (lba >= size-1)
457                 return 0;
458
459         if (lseek64(fd, lba<<9, 0) < 0)
460                 return 0;
461
462         if (read(fd, hdr, 512) != 512)
463                 return 0;
464
465         if (hdr->magic != DDF_HEADER_MAGIC)
466                 return 0;
467         if (calc_crc(hdr, 512) != hdr->crc)
468                 return 0;
469         if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
470             memcmp(anchor->revision, hdr->revision, 8) != 0 ||
471             anchor->primary_lba != hdr->primary_lba ||
472             anchor->secondary_lba != hdr->secondary_lba ||
473             hdr->type != type ||
474             memcmp(anchor->pad2, hdr->pad2, 512 -
475                    offsetof(struct ddf_header, pad2)) != 0)
476                 return 0;
477
478         /* Looks good enough to me... */
479         return 1;
480 }
481
482 static void *load_section(int fd, struct ddf_super *super, void *buf,
483                           __u32 offset_be, __u32 len_be, int check)
484 {
485         unsigned long long offset = __be32_to_cpu(offset_be);
486         unsigned long long len = __be32_to_cpu(len_be);
487         int dofree = (buf == NULL);
488
489         if (check)
490                 if (len != 2 && len != 8 && len != 32
491                     && len != 128 && len != 512)
492                         return NULL;
493
494         if (len > 1024)
495                 return NULL;
496         if (buf) {
497                 /* All pre-allocated sections are a single block */
498                 if (len != 1)
499                         return NULL;
500         } else
501                 buf = malloc(len<<9);
502         if (!buf)
503                 return NULL;
504
505         if (super->active->type == 1)
506                 offset += __be64_to_cpu(super->active->primary_lba);
507         else
508                 offset += __be64_to_cpu(super->active->secondary_lba);
509
510         if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
511                 if (dofree)
512                         free(buf);
513                 return NULL;
514         }
515         if (read(fd, buf, len<<9) != (len<<9)) {
516                 if (dofree)
517                         free(buf);
518                 return NULL;
519         }
520         return buf;
521 }
522
523 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
524 {
525         unsigned long long dsize;
526
527         get_dev_size(fd, NULL, &dsize);
528
529         if (lseek64(fd, dsize-512, 0) < 0) {
530                 if (devname)
531                         fprintf(stderr,
532                                 Name": Cannot seek to anchor block on %s: %s\n",
533                                 devname, strerror(errno));
534                 return 1;
535         }
536         if (read(fd, &super->anchor, 512) != 512) {
537                 if (devname)
538                         fprintf(stderr,
539                                 Name ": Cannot read anchor block on %s: %s\n",
540                                 devname, strerror(errno));
541                 return 1;
542         }
543         if (super->anchor.magic != DDF_HEADER_MAGIC) {
544                 if (devname)
545                         fprintf(stderr, Name ": no DDF anchor found on %s\n",
546                                 devname);
547                 return 2;
548         }
549         if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
550                 if (devname)
551                         fprintf(stderr, Name ": bad CRC on anchor on %s\n",
552                                 devname);
553                 return 2;
554         }
555         if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
556             memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
557                 if (devname)
558                         fprintf(stderr, Name ": can only support super revision"
559                                 " %.8s and earlier, not %.8s on %s\n",
560                                 DDF_REVISION_2, super->anchor.revision,devname);
561                 return 2;
562         }
563         if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
564                             dsize >> 9,  1,
565                             &super->primary, &super->anchor) == 0) {
566                 if (devname)
567                         fprintf(stderr,
568                                 Name ": Failed to load primary DDF header "
569                                 "on %s\n", devname);
570                 return 2;
571         }
572         super->active = &super->primary;
573         if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
574                             dsize >> 9,  2,
575                             &super->secondary, &super->anchor)) {
576                 if ((__be32_to_cpu(super->primary.seq)
577                      < __be32_to_cpu(super->secondary.seq) &&
578                      !super->secondary.openflag)
579                     || (__be32_to_cpu(super->primary.seq)
580                         == __be32_to_cpu(super->secondary.seq) &&
581                         super->primary.openflag && !super->secondary.openflag)
582                         )
583                         super->active = &super->secondary;
584         }
585         return 0;
586 }
587
588 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
589 {
590         void *ok;
591         ok = load_section(fd, super, &super->controller,
592                           super->active->controller_section_offset,
593                           super->active->controller_section_length,
594                           0);
595         super->phys = load_section(fd, super, NULL,
596                                    super->active->phys_section_offset,
597                                    super->active->phys_section_length,
598                                    1);
599         super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
600
601         super->virt = load_section(fd, super, NULL,
602                                    super->active->virt_section_offset,
603                                    super->active->virt_section_length,
604                                    1);
605         super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
606         if (!ok ||
607             !super->phys ||
608             !super->virt) {
609                 free(super->phys);
610                 free(super->virt);
611                 super->phys = NULL;
612                 super->virt = NULL;
613                 return 2;
614         }
615         super->conflist = NULL;
616         super->dlist = NULL;
617
618         super->max_part = __be16_to_cpu(super->active->max_partitions);
619         super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
620         super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
621         return 0;
622 }
623
624 static int load_ddf_local(int fd, struct ddf_super *super,
625                           char *devname, int keep)
626 {
627         struct dl *dl;
628         struct stat stb;
629         char *conf;
630         int i;
631         int vnum;
632         int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
633         unsigned long long dsize;
634
635         /* First the local disk info */
636         dl = malloc(sizeof(*dl) +
637                     (super->max_part) * sizeof(dl->vlist[0]));
638
639         load_section(fd, super, &dl->disk,
640                      super->active->data_section_offset,
641                      super->active->data_section_length,
642                      0);
643         dl->devname = devname ? strdup(devname) : NULL;
644
645         fstat(fd, &stb);
646         dl->major = major(stb.st_rdev);
647         dl->minor = minor(stb.st_rdev);
648         dl->next = super->dlist;
649         dl->fd = keep ? fd : -1;
650
651         dl->size = 0;
652         if (get_dev_size(fd, devname, &dsize))
653                 dl->size = dsize >> 9;
654         dl->spare = NULL;
655         for (i=0 ; i < super->max_part ; i++)
656                 dl->vlist[i] = NULL;
657         super->dlist = dl;
658         dl->pdnum = -1;
659         for (i=0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
660                 if (memcmp(super->phys->entries[i].guid,
661                            dl->disk.guid, DDF_GUID_LEN) == 0)
662                         dl->pdnum = i;
663
664         /* Now the config list. */
665         /* 'conf' is an array of config entries, some of which are
666          * probably invalid.  Those which are good need to be copied into
667          * the conflist
668          */
669
670         conf = load_section(fd, super, NULL,
671                             super->active->config_section_offset,
672                             super->active->config_section_length,
673                             0);
674
675         vnum = 0;
676         for (i = 0;
677              i < __be32_to_cpu(super->active->config_section_length);
678              i += super->conf_rec_len) {
679                 struct vd_config *vd =
680                         (struct vd_config *)((char*)conf + i*512);
681                 struct vcl *vcl;
682
683                 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
684                         if (dl->spare)
685                                 continue;
686                         dl->spare = malloc(super->conf_rec_len*512);
687                         memcpy(dl->spare, vd, super->conf_rec_len*512);
688                         continue;
689                 }
690                 if (vd->magic != DDF_VD_CONF_MAGIC)
691                         continue;
692                 for (vcl = super->conflist; vcl; vcl = vcl->next) {
693                         if (memcmp(vcl->conf.guid,
694                                    vd->guid, DDF_GUID_LEN) == 0)
695                                 break;
696                 }
697
698                 if (vcl) {
699                         dl->vlist[vnum++] = vcl;
700                         if (__be32_to_cpu(vd->seqnum) <=
701                             __be32_to_cpu(vcl->conf.seqnum))
702                                 continue;
703                 } else {
704                         vcl = malloc(super->conf_rec_len*512 +
705                                      offsetof(struct vcl, conf));
706                         vcl->next = super->conflist;
707                         vcl->block_sizes = NULL; /* FIXME not for CONCAT */
708                         super->conflist = vcl;
709                         dl->vlist[vnum++] = vcl;
710                 }
711                 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
712                 vcl->lba_offset = (__u64*)
713                         &vcl->conf.phys_refnum[super->mppe];
714
715                 for (i=0; i < max_virt_disks ; i++)
716                         if (memcmp(super->virt->entries[i].guid,
717                                    vcl->conf.guid, DDF_GUID_LEN)==0)
718                                 break;
719                 if (i < max_virt_disks)
720                         vcl->vcnum = i;
721         }
722         free(conf);
723
724         return 0;
725 }
726
727 #ifndef MDASSEMBLE
728 static int load_super_ddf_all(struct supertype *st, int fd,
729                               void **sbp, char *devname, int keep_fd);
730 #endif
731 static int load_super_ddf(struct supertype *st, int fd,
732                           char *devname)
733 {
734         unsigned long long dsize;
735         struct ddf_super *super;
736         int rv;
737
738 #ifndef MDASSEMBLE
739         /* if 'fd' is a container, load metadata from all the devices */
740         if (load_super_ddf_all(st, fd, &st->sb, devname, 1) == 0)
741                 return 0;
742 #endif
743         if (st->subarray[0])
744                 return 1; /* FIXME Is this correct */
745
746         if (get_dev_size(fd, devname, &dsize) == 0)
747                 return 1;
748
749         /* 32M is a lower bound */
750         if (dsize <= 32*1024*1024) {
751                 if (devname) {
752                         fprintf(stderr,
753                                 Name ": %s is too small for ddf: "
754                                 "size is %llu sectors.\n",
755                                 devname, dsize>>9);
756                         return 1;
757                 }
758         }
759         if (dsize & 511) {
760                 if (devname) {
761                         fprintf(stderr,
762                                 Name ": %s is an odd size for ddf: "
763                                 "size is %llu bytes.\n",
764                                 devname, dsize);
765                         return 1;
766                 }
767         }
768
769         super = malloc(sizeof(*super));
770         if (!super) {
771                 fprintf(stderr, Name ": malloc of %zu failed.\n",
772                         sizeof(*super));
773                 return 1;
774         }
775         memset(super, 0, sizeof(*super));
776
777         rv = load_ddf_headers(fd, super, devname);
778         if (rv) {
779                 free(super);
780                 return rv;
781         }
782
783         /* Have valid headers and have chosen the best. Let's read in the rest*/
784
785         rv = load_ddf_global(fd, super, devname);
786
787         if (rv) {
788                 if (devname)
789                         fprintf(stderr,
790                                 Name ": Failed to load all information "
791                                 "sections on %s\n", devname);
792                 free(super);
793                 return rv;
794         }
795
796         load_ddf_local(fd, super, devname, 0);
797
798         /* Should possibly check the sections .... */
799
800         st->sb = super;
801         if (st->ss == NULL) {
802                 st->ss = &super_ddf;
803                 st->minor_version = 0;
804                 st->max_devs = 512;
805         }
806         return 0;
807
808 }
809
810 static void free_super_ddf(struct supertype *st)
811 {
812         struct ddf_super *ddf = st->sb;
813         if (ddf == NULL)
814                 return;
815         free(ddf->phys);
816         free(ddf->virt);
817         while (ddf->conflist) {
818                 struct vcl *v = ddf->conflist;
819                 ddf->conflist = v->next;
820                 if (v->block_sizes)
821                         free(v->block_sizes);
822                 free(v);
823         }
824         while (ddf->dlist) {
825                 struct dl *d = ddf->dlist;
826                 ddf->dlist = d->next;
827                 if (d->fd >= 0)
828                         close(d->fd);
829                 if (d->spare)
830                         free(d->spare);
831                 free(d);
832         }
833         free(ddf);
834         st->sb = NULL;
835 }
836
837 static struct supertype *match_metadata_desc_ddf(char *arg)
838 {
839         /* 'ddf' only support containers */
840         struct supertype *st;
841         if (strcmp(arg, "ddf") != 0 &&
842             strcmp(arg, "default") != 0
843                 )
844                 return NULL;
845
846         st = malloc(sizeof(*st));
847         memset(st, 0, sizeof(*st));
848         st->ss = &super_ddf;
849         st->max_devs = 512;
850         st->minor_version = 0;
851         st->sb = NULL;
852         return st;
853 }
854
855 static struct supertype *match_metadata_desc_ddf_bvd(char *arg)
856 {
857         struct supertype *st;
858         if (strcmp(arg, "ddf/bvd") != 0 &&
859             strcmp(arg, "bvd") != 0 &&
860             strcmp(arg, "default") != 0
861                 )
862                 return NULL;
863
864         st = malloc(sizeof(*st));
865         memset(st, 0, sizeof(*st));
866         st->ss = &super_ddf_bvd;
867         st->max_devs = 512;
868         st->minor_version = 0;
869         st->sb = NULL;
870         return st;
871 }
872 static struct supertype *match_metadata_desc_ddf_svd(char *arg)
873 {
874         struct supertype *st;
875         if (strcmp(arg, "ddf/svd") != 0 &&
876             strcmp(arg, "svd") != 0 &&
877             strcmp(arg, "default") != 0
878                 )
879                 return NULL;
880
881         st = malloc(sizeof(*st));
882         memset(st, 0, sizeof(*st));
883         st->ss = &super_ddf_svd;
884         st->max_devs = 512;
885         st->minor_version = 0;
886         st->sb = NULL;
887         return st;
888 }
889
890 #ifndef MDASSEMBLE
891
892 static mapping_t ddf_state[] = {
893         { "Optimal", 0},
894         { "Degraded", 1},
895         { "Deleted", 2},
896         { "Missing", 3},
897         { "Failed", 4},
898         { "Partially Optimal", 5},
899         { "-reserved-", 6},
900         { "-reserved-", 7},
901         { NULL, 0}
902 };
903
904 static mapping_t ddf_init_state[] = {
905         { "Not Initialised", 0},
906         { "QuickInit in Progress", 1},
907         { "Fully Initialised", 2},
908         { "*UNKNOWN*", 3},
909         { NULL, 0}
910 };
911 static mapping_t ddf_access[] = {
912         { "Read/Write", 0},
913         { "Reserved", 1},
914         { "Read Only", 2},
915         { "Blocked (no access)", 3},
916         { NULL ,0}
917 };
918
919 static mapping_t ddf_level[] = {
920         { "RAID0", DDF_RAID0},
921         { "RAID1", DDF_RAID1},
922         { "RAID3", DDF_RAID3},
923         { "RAID4", DDF_RAID4},
924         { "RAID5", DDF_RAID5},
925         { "RAID1E",DDF_RAID1E},
926         { "JBOD",  DDF_JBOD},
927         { "CONCAT",DDF_CONCAT},
928         { "RAID5E",DDF_RAID5E},
929         { "RAID5EE",DDF_RAID5EE},
930         { "RAID6", DDF_RAID6},
931         { NULL, 0}
932 };
933 static mapping_t ddf_sec_level[] = {
934         { "Striped", DDF_2STRIPED},
935         { "Mirrored", DDF_2MIRRORED},
936         { "Concat", DDF_2CONCAT},
937         { "Spanned", DDF_2SPANNED},
938         { NULL, 0}
939 };
940 #endif
941
942 struct num_mapping {
943         int num1, num2;
944 };
945 static struct num_mapping ddf_level_num[] = {
946         { DDF_RAID0, 0 },
947         { DDF_RAID1, 1 },
948         { DDF_RAID3, LEVEL_UNSUPPORTED },
949         { DDF_RAID4, 4 },
950         { DDF_RAID5, 5 },
951         { DDF_RAID1E, LEVEL_UNSUPPORTED },
952         { DDF_JBOD, LEVEL_UNSUPPORTED },
953         { DDF_CONCAT, LEVEL_LINEAR },
954         { DDF_RAID5E, LEVEL_UNSUPPORTED },
955         { DDF_RAID5EE, LEVEL_UNSUPPORTED },
956         { DDF_RAID6, 6},
957         { MAXINT, MAXINT }
958 };
959
960 static int map_num1(struct num_mapping *map, int num)
961 {
962         int i;
963         for (i=0 ; map[i].num1 != MAXINT; i++)
964                 if (map[i].num1 == num)
965                         break;
966         return map[i].num2;
967 }
968
969 #ifndef MDASSEMBLE
970 static void print_guid(char *guid, int tstamp)
971 {
972         /* A GUIDs are part (or all) ASCII and part binary.
973          * They tend to be space padded.
974          * We print the GUID in HEX, then in parentheses add
975          * any initial ASCII sequence, and a possible
976          * time stamp from bytes 16-19
977          */
978         int l = DDF_GUID_LEN;
979         int i;
980
981         for (i=0 ; i<DDF_GUID_LEN ; i++) {
982                 if ((i&3)==0 && i != 0) printf(":");
983                 printf("%02X", guid[i]&255);
984         }
985
986         printf(" (");
987         while (l && guid[l-1] == ' ')
988                 l--;
989         for (i=0 ; i<l ; i++) {
990                 if (guid[i] >= 0x20 && guid[i] < 0x7f)
991                         fputc(guid[i], stdout);
992                 else
993                         break;
994         }
995         if (tstamp) {
996                 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
997                 char tbuf[100];
998                 struct tm *tm;
999                 tm = localtime(&then);
1000                 strftime(tbuf, 100, " %D %T",tm);
1001                 fputs(tbuf, stdout);
1002         }
1003         printf(")");
1004 }
1005
1006 static void examine_vd(int n, struct ddf_super *sb, char *guid)
1007 {
1008         int crl = sb->conf_rec_len;
1009         struct vcl *vcl;
1010
1011         for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1012                 struct vd_config *vc = &vcl->conf;
1013
1014                 if (calc_crc(vc, crl*512) != vc->crc)
1015                         continue;
1016                 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1017                         continue;
1018
1019                 /* Ok, we know about this VD, let's give more details */
1020                 printf(" Raid Devices[%d] : %d\n", n,
1021                        __be16_to_cpu(vc->prim_elmnt_count));
1022                 printf("   Chunk Size[%d] : %d sectors\n", n,
1023                        1 << vc->chunk_shift);
1024                 printf("   Raid Level[%d] : %s\n", n,
1025                        map_num(ddf_level, vc->prl)?:"-unknown-");
1026                 if (vc->sec_elmnt_count != 1) {
1027                         printf("  Secondary Position[%d] : %d of %d\n", n,
1028                                vc->sec_elmnt_seq, vc->sec_elmnt_count);
1029                         printf("  Secondary Level[%d] : %s\n", n,
1030                                map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1031                 }
1032                 printf("  Device Size[%d] : %llu\n", n,
1033                        __be64_to_cpu(vc->blocks)/2);
1034                 printf("   Array Size[%d] : %llu\n", n,
1035                        __be64_to_cpu(vc->array_blocks)/2);
1036         }
1037 }
1038
1039 static void examine_vds(struct ddf_super *sb)
1040 {
1041         int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1042         int i;
1043         printf("  Virtual Disks : %d\n", cnt);
1044
1045         for (i=0; i<cnt; i++) {
1046                 struct virtual_entry *ve = &sb->virt->entries[i];
1047                 printf("      VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1048                 printf("\n");
1049                 printf("         unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1050                 printf("        state[%d] : %s, %s%s\n", i,
1051                        map_num(ddf_state, ve->state & 7),
1052                        (ve->state & 8) ? "Morphing, ": "",
1053                        (ve->state & 16)? "Not Consistent" : "Consistent");
1054                 printf("   init state[%d] : %s\n", i,
1055                        map_num(ddf_init_state, ve->init_state&3));
1056                 printf("       access[%d] : %s\n", i,
1057                        map_num(ddf_access, (ve->init_state>>6) & 3));
1058                 printf("         Name[%d] : %.16s\n", i, ve->name);
1059                 examine_vd(i, sb, ve->guid);
1060         }
1061         if (cnt) printf("\n");
1062 }
1063
1064 static void examine_pds(struct ddf_super *sb)
1065 {
1066         int cnt = __be16_to_cpu(sb->phys->used_pdes);
1067         int i;
1068         struct dl *dl;
1069         printf(" Physical Disks : %d\n", cnt);
1070
1071         for (i=0 ; i<cnt ; i++) {
1072                 struct phys_disk_entry *pd = &sb->phys->entries[i];
1073                 int type = __be16_to_cpu(pd->type);
1074                 int state = __be16_to_cpu(pd->state);
1075
1076                 printf("      PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1077                 printf("\n");
1078                 printf("          ref[%d] : %08x\n", i,
1079                        __be32_to_cpu(pd->refnum));
1080                 printf("         mode[%d] : %s%s%s%s%s\n", i,
1081                        (type&2) ? "active":"",
1082                        (type&4) ? "Global Spare":"",
1083                        (type&8) ? "spare" : "",
1084                        (type&16)? ", foreign" : "",
1085                        (type&32)? "pass-through" : "");
1086                 printf("        state[%d] : %s%s%s%s%s%s%s\n", i,
1087                        (state&1)? "Online": "Offline",
1088                        (state&2)? ", Failed": "",
1089                        (state&4)? ", Rebuilding": "",
1090                        (state&8)? ", in-transition": "",
1091                        (state&16)? ", SMART errors": "",
1092                        (state&32)? ", Unrecovered Read Errors": "",
1093                        (state&64)? ", Missing" : "");
1094                 printf("   Avail Size[%d] : %llu K\n", i,
1095                        __be64_to_cpu(pd->config_size)>>1);
1096                 for (dl = sb->dlist; dl ; dl = dl->next) {
1097                         if (dl->disk.refnum == pd->refnum) {
1098                                 char *dv = map_dev(dl->major, dl->minor, 0);
1099                                 if (dv)
1100                                         printf("       Device[%d] : %s\n",
1101                                                i, dv);
1102                         }
1103                 }
1104                 printf("\n");
1105         }
1106 }
1107
1108 static void examine_super_ddf(struct supertype *st, char *homehost)
1109 {
1110         struct ddf_super *sb = st->sb;
1111
1112         printf("          Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1113         printf("        Version : %.8s\n", sb->anchor.revision);
1114         printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1115         printf("\n");
1116         printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1117         printf("\n");
1118         printf("            Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1119         printf("  Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1120                ?"yes" : "no");
1121         examine_vds(sb);
1122         examine_pds(sb);
1123 }
1124
1125 static void brief_examine_super_ddf(struct supertype *st)
1126 {
1127         /* We just write a generic DDF ARRAY entry
1128          * The uuid is all hex, 6 groups of 4 bytes
1129          */
1130         struct ddf_super *ddf = st->sb;
1131         int i;
1132         printf("ARRAY /dev/ddf metadata=ddf UUID=");
1133         for (i = 0; i < DDF_GUID_LEN; i++) {
1134                 if ((i&3) == 0 && i != 0)
1135                         printf(":");
1136                 printf("%02X", 255&ddf->anchor.guid[i]);
1137         }
1138         printf("\n");
1139 }
1140
1141 static void detail_super_ddf(struct supertype *st, char *homehost)
1142 {
1143         /* FIXME later
1144          * Could print DDF GUID
1145          * Need to find which array
1146          *  If whole, briefly list all arrays
1147          *  If one, give name
1148          */
1149 }
1150
1151 static void brief_detail_super_ddf(struct supertype *st)
1152 {
1153         /* FIXME I really need to know which array we are detailing.
1154          * Can that be stored in ddf_super??
1155          */
1156 //      struct ddf_super *ddf = st->sb;
1157 }
1158 #endif
1159
1160 static int match_home_ddf(struct supertype *st, char *homehost)
1161 {
1162         /* It matches 'this' host if the controller is a
1163          * Linux-MD controller with vendor_data matching
1164          * the hostname
1165          */
1166         struct ddf_super *ddf = st->sb;
1167         int len = strlen(homehost);
1168
1169         return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1170                 len < sizeof(ddf->controller.vendor_data) &&
1171                 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1172                 ddf->controller.vendor_data[len] == 0);
1173 }
1174
1175 static struct vd_config *find_vdcr(struct ddf_super *ddf, int inst)
1176 {
1177         struct vcl *v;
1178
1179         for (v = ddf->conflist; v; v = v->next)
1180                 if (inst == v->vcnum)
1181                         return &v->conf;
1182         return NULL;
1183 }
1184
1185 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1186 {
1187         /* Find the entry in phys_disk which has the given refnum
1188          * and return it's index
1189          */
1190         int i;
1191         for (i=0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1192                 if (ddf->phys->entries[i].refnum == phys_refnum)
1193                         return i;
1194         return -1;
1195 }
1196
1197 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1198 {
1199         /* The uuid returned here is used for:
1200          *  uuid to put into bitmap file (Create, Grow)
1201          *  uuid for backup header when saving critical section (Grow)
1202          *  comparing uuids when re-adding a device into an array
1203          * For each of these we can make do with a truncated
1204          * or hashed uuid rather than the original, as long as
1205          * everyone agrees.
1206          * In each case the uuid required is that of the data-array,
1207          * not the device-set.
1208          * In the case of SVD we assume the BVD is of interest,
1209          * though that might be the case if a bitmap were made for
1210          * a mirrored SVD - worry about that later.
1211          * So we need to find the VD configuration record for the
1212          * relevant BVD and extract the GUID and Secondary_Element_Seq.
1213          * The first 16 bytes of the sha1 of these is used.
1214          */
1215         struct ddf_super *ddf = st->sb;
1216         struct vcl *vcl = ddf->currentconf;
1217
1218         if (!vcl)
1219                 memset(uuid, 0, sizeof (uuid));
1220         else {
1221                 char buf[20];
1222                 struct sha1_ctx ctx;
1223                 sha1_init_ctx(&ctx);
1224                 sha1_process_bytes(&vcl->conf.guid, DDF_GUID_LEN, &ctx);
1225                 if (vcl->conf.sec_elmnt_count > 1)
1226                         sha1_process_bytes(&vcl->conf.sec_elmnt_seq, 1, &ctx);
1227                 sha1_finish_ctx(&ctx, buf);
1228                 memcpy(uuid, buf, sizeof(uuid));
1229         }
1230 }
1231
1232 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1233 {
1234         struct ddf_super *ddf = st->sb;
1235
1236         info->array.raid_disks    = __be16_to_cpu(ddf->phys->used_pdes);
1237         info->array.level         = LEVEL_CONTAINER;
1238         info->array.layout        = 0;
1239         info->array.md_minor      = -1;
1240         info->array.ctime         = DECADE + __be32_to_cpu(*(__u32*)
1241                                                          (ddf->anchor.guid+16));
1242         info->array.utime         = 0;
1243         info->array.chunk_size    = 0;
1244
1245
1246         info->disk.major = 0;
1247         info->disk.minor = 0;
1248         if (ddf->dlist) {
1249                 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1250                 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1251
1252                 info->data_offset = __be64_to_cpu(ddf->phys->
1253                                           entries[info->disk.raid_disk].
1254                                           config_size);
1255                 info->component_size = ddf->dlist->size - info->data_offset;
1256         } else {
1257                 info->disk.number = -1;
1258 //              info->disk.raid_disk = find refnum in the table and use index;
1259         }
1260         info->disk.state = (1 << MD_DISK_SYNC);
1261
1262
1263         info->reshape_active = 0;
1264
1265         strcpy(info->text_version, "ddf");
1266
1267 //      uuid_from_super_ddf(info->uuid, sbv);
1268
1269 //      info->name[] ?? ;
1270 }
1271
1272 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1273
1274 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1275 {
1276         struct ddf_super *ddf = st->sb;
1277         struct vcl *vc = ddf->currentconf;
1278         int cd = ddf->currentdev;
1279
1280         /* FIXME this returns BVD info - what if we want SVD ?? */
1281
1282         info->array.raid_disks    = __be16_to_cpu(vc->conf.prim_elmnt_count);
1283         info->array.level         = map_num1(ddf_level_num, vc->conf.prl);
1284         info->array.layout        = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1285                                                   info->array.raid_disks);
1286         info->array.md_minor      = -1;
1287         info->array.ctime         = DECADE +
1288                 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
1289         info->array.utime         = DECADE + __be32_to_cpu(vc->conf.timestamp);
1290         info->array.chunk_size    = 512 << vc->conf.chunk_shift;
1291
1292         if (cd >= 0 && cd < ddf->mppe) {
1293                 info->data_offset         = __be64_to_cpu(vc->lba_offset[cd]);
1294                 if (vc->block_sizes)
1295                         info->component_size = vc->block_sizes[cd];
1296                 else
1297                         info->component_size = __be64_to_cpu(vc->conf.blocks);
1298         }
1299
1300         info->disk.major = 0;
1301         info->disk.minor = 0;
1302 //      info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1303 //      info->disk.raid_disk = find refnum in the table and use index;
1304 //      info->disk.state = ???;
1305
1306         info->resync_start = 0;
1307         if (!(ddf->virt->entries[info->container_member].state
1308               & DDF_state_inconsistent)  &&
1309             (ddf->virt->entries[info->container_member].init_state
1310              & DDF_initstate_mask)
1311             == DDF_init_full)
1312                 info->resync_start = ~0ULL;
1313
1314         uuid_from_super_ddf(st, info->uuid);
1315
1316         sprintf(info->text_version, "/%s/%d",
1317                 devnum2devname(st->container_dev),
1318                 info->container_member);
1319
1320 //      info->name[] ?? ;
1321 }
1322
1323
1324 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1325                             char *update,
1326                             char *devname, int verbose,
1327                             int uuid_set, char *homehost)
1328 {
1329         /* For 'assemble' and 'force' we need to return non-zero if any
1330          * change was made.  For others, the return value is ignored.
1331          * Update options are:
1332          *  force-one : This device looks a bit old but needs to be included,
1333          *        update age info appropriately.
1334          *  assemble: clear any 'faulty' flag to allow this device to
1335          *              be assembled.
1336          *  force-array: Array is degraded but being forced, mark it clean
1337          *         if that will be needed to assemble it.
1338          *
1339          *  newdev:  not used ????
1340          *  grow:  Array has gained a new device - this is currently for
1341          *              linear only
1342          *  resync: mark as dirty so a resync will happen.
1343          *  uuid:  Change the uuid of the array to match what is given
1344          *  homehost:  update the recorded homehost
1345          *  name:  update the name - preserving the homehost
1346          *  _reshape_progress: record new reshape_progress position.
1347          *
1348          * Following are not relevant for this version:
1349          *  sparc2.2 : update from old dodgey metadata
1350          *  super-minor: change the preferred_minor number
1351          *  summaries:  update redundant counters.
1352          */
1353         int rv = 0;
1354 //      struct ddf_super *ddf = st->sb;
1355 //      struct vd_config *vd = find_vdcr(ddf, info->container_member);
1356 //      struct virtual_entry *ve = find_ve(ddf);
1357
1358         /* we don't need to handle "force-*" or "assemble" as
1359          * there is no need to 'trick' the kernel.  We the metadata is
1360          * first updated to activate the array, all the implied modifications
1361          * will just happen.
1362          */
1363
1364         if (strcmp(update, "grow") == 0) {
1365                 /* FIXME */
1366         }
1367         if (strcmp(update, "resync") == 0) {
1368 //              info->resync_checkpoint = 0;
1369         }
1370         /* We ignore UUID updates as they make even less sense
1371          * with DDF
1372          */
1373         if (strcmp(update, "homehost") == 0) {
1374                 /* homehost is stored in controller->vendor_data,
1375                  * or it is when we are the vendor
1376                  */
1377 //              if (info->vendor_is_local)
1378 //                      strcpy(ddf->controller.vendor_data, homehost);
1379         }
1380         if (strcmp(update, "name") == 0) {
1381                 /* name is stored in virtual_entry->name */
1382 //              memset(ve->name, ' ', 16);
1383 //              strncpy(ve->name, info->name, 16);
1384         }
1385         if (strcmp(update, "_reshape_progress") == 0) {
1386                 /* We don't support reshape yet */
1387         }
1388
1389 //      update_all_csum(ddf);
1390
1391         return rv;
1392 }
1393
1394 static void make_header_guid(char *guid)
1395 {
1396         __u32 stamp;
1397         int rfd;
1398         /* Create a DDF Header of Virtual Disk GUID */
1399
1400         /* 24 bytes of fiction required.
1401          * first 8 are a 'vendor-id'  - "Linux-MD"
1402          * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1403          * Remaining 8 random number plus timestamp
1404          */
1405         memcpy(guid, T10, sizeof(T10));
1406         stamp = __cpu_to_be32(0xdeadbeef);
1407         memcpy(guid+8, &stamp, 4);
1408         stamp = __cpu_to_be32(0);
1409         memcpy(guid+12, &stamp, 4);
1410         stamp = __cpu_to_be32(time(0) - DECADE);
1411         memcpy(guid+16, &stamp, 4);
1412         rfd = open("/dev/urandom", O_RDONLY);
1413         if (rfd < 0 || read(rfd, &stamp, 4) != 4)
1414                 stamp = random();
1415         memcpy(guid+20, &stamp, 4);
1416         if (rfd >= 0) close(rfd);
1417 }
1418
1419 static int init_super_ddf(struct supertype *st,
1420                           mdu_array_info_t *info,
1421                           unsigned long long size, char *name, char *homehost,
1422                           int *uuid)
1423 {
1424         /* This is primarily called by Create when creating a new array.
1425          * We will then get add_to_super called for each component, and then
1426          * write_init_super called to write it out to each device.
1427          * For DDF, Create can create on fresh devices or on a pre-existing
1428          * array.
1429          * To create on a pre-existing array a different method will be called.
1430          * This one is just for fresh drives.
1431          *
1432          * We need to create the entire 'ddf' structure which includes:
1433          *  DDF headers - these are easy.
1434          *  Controller data - a Sector describing this controller .. not that
1435          *                  this is a controller exactly.
1436          *  Physical Disk Record - one entry per device, so
1437          *                      leave plenty of space.
1438          *  Virtual Disk Records - again, just leave plenty of space.
1439          *                   This just lists VDs, doesn't give details
1440          *  Config records - describes the VDs that use this disk
1441          *  DiskData  - describes 'this' device.
1442          *  BadBlockManagement - empty
1443          *  Diag Space - empty
1444          *  Vendor Logs - Could we put bitmaps here?
1445          *
1446          */
1447         struct ddf_super *ddf;
1448         char hostname[17];
1449         int hostlen;
1450         int max_phys_disks, max_virt_disks;
1451         unsigned long long sector;
1452         int clen;
1453         int i;
1454         int pdsize, vdsize;
1455         struct phys_disk *pd;
1456         struct virtual_disk *vd;
1457
1458         ddf = malloc(sizeof(*ddf));
1459         memset(ddf, 0, sizeof(*ddf));
1460         ddf->dlist = NULL; /* no physical disks yet */
1461         ddf->conflist = NULL; /* No virtual disks yet */
1462
1463         /* At least 32MB *must* be reserved for the ddf.  So let's just
1464          * start 32MB from the end, and put the primary header there.
1465          * Don't do secondary for now.
1466          * We don't know exactly where that will be yet as it could be
1467          * different on each device.  To just set up the lengths.
1468          *
1469          */
1470
1471         ddf->anchor.magic = DDF_HEADER_MAGIC;
1472         make_header_guid(ddf->anchor.guid);
1473
1474         memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1475         ddf->anchor.seq = __cpu_to_be32(1);
1476         ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1477         ddf->anchor.openflag = 0xFF;
1478         ddf->anchor.foreignflag = 0;
1479         ddf->anchor.enforcegroups = 0; /* Is this best?? */
1480         ddf->anchor.pad0 = 0xff;
1481         memset(ddf->anchor.pad1, 0xff, 12);
1482         memset(ddf->anchor.header_ext, 0xff, 32);
1483         ddf->anchor.primary_lba = ~(__u64)0;
1484         ddf->anchor.secondary_lba = ~(__u64)0;
1485         ddf->anchor.type = DDF_HEADER_ANCHOR;
1486         memset(ddf->anchor.pad2, 0xff, 3);
1487         ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1488         ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1489                                                   of 32M reserved.. */
1490         max_phys_disks = 1023;   /* Should be enough */
1491         ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1492         max_virt_disks = 255;
1493         ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1494         ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1495         ddf->max_part = 64;
1496         ddf->mppe = 256;
1497         ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1498         ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1499         ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1500         memset(ddf->anchor.pad3, 0xff, 54);
1501         /* controller sections is one sector long immediately
1502          * after the ddf header */
1503         sector = 1;
1504         ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1505         ddf->anchor.controller_section_length = __cpu_to_be32(1);
1506         sector += 1;
1507
1508         /* phys is 8 sectors after that */
1509         pdsize = ROUND_UP(sizeof(struct phys_disk) +
1510                           sizeof(struct phys_disk_entry)*max_phys_disks,
1511                           512);
1512         switch(pdsize/512) {
1513         case 2: case 8: case 32: case 128: case 512: break;
1514         default: abort();
1515         }
1516         ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1517         ddf->anchor.phys_section_length =
1518                 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1519         sector += pdsize/512;
1520
1521         /* virt is another 32 sectors */
1522         vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1523                           sizeof(struct virtual_entry) * max_virt_disks,
1524                           512);
1525         switch(vdsize/512) {
1526         case 2: case 8: case 32: case 128: case 512: break;
1527         default: abort();
1528         }
1529         ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1530         ddf->anchor.virt_section_length =
1531                 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1532         sector += vdsize/512;
1533
1534         clen = ddf->conf_rec_len * (ddf->max_part+1);
1535         ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1536         ddf->anchor.config_section_length = __cpu_to_be32(clen);
1537         sector += clen;
1538
1539         ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1540         ddf->anchor.data_section_length = __cpu_to_be32(1);
1541         sector += 1;
1542
1543         ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1544         ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1545         ddf->anchor.diag_space_length = __cpu_to_be32(0);
1546         ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1547         ddf->anchor.vendor_length = __cpu_to_be32(0);
1548         ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1549
1550         memset(ddf->anchor.pad4, 0xff, 256);
1551
1552         memcpy(&ddf->primary, &ddf->anchor, 512);
1553         memcpy(&ddf->secondary, &ddf->anchor, 512);
1554
1555         ddf->primary.openflag = 1; /* I guess.. */
1556         ddf->primary.type = DDF_HEADER_PRIMARY;
1557
1558         ddf->secondary.openflag = 1; /* I guess.. */
1559         ddf->secondary.type = DDF_HEADER_SECONDARY;
1560
1561         ddf->active = &ddf->primary;
1562
1563         ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1564
1565         /* 24 more bytes of fiction required.
1566          * first 8 are a 'vendor-id'  - "Linux-MD"
1567          * Remaining 16 are serial number.... maybe a hostname would do?
1568          */
1569         memcpy(ddf->controller.guid, T10, sizeof(T10));
1570         gethostname(hostname, sizeof(hostname));
1571         hostname[sizeof(hostname) - 1] = 0;
1572         hostlen = strlen(hostname);
1573         memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1574         for (i = strlen(T10) ; i+hostlen < 24; i++)
1575                 ddf->controller.guid[i] = ' ';
1576
1577         ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1578         ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1579         ddf->controller.type.sub_vendor_id = 0;
1580         ddf->controller.type.sub_device_id = 0;
1581         memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1582         memset(ddf->controller.pad, 0xff, 8);
1583         memset(ddf->controller.vendor_data, 0xff, 448);
1584
1585         pd = ddf->phys = malloc(pdsize);
1586         ddf->pdsize = pdsize;
1587
1588         memset(pd, 0xff, pdsize);
1589         memset(pd, 0, sizeof(*pd));
1590         pd->magic = DDF_PHYS_DATA_MAGIC;
1591         pd->used_pdes = __cpu_to_be16(0);
1592         pd->max_pdes = __cpu_to_be16(max_phys_disks);
1593         memset(pd->pad, 0xff, 52);
1594
1595         vd = ddf->virt = malloc(vdsize);
1596         ddf->vdsize = vdsize;
1597         memset(vd, 0, vdsize);
1598         vd->magic = DDF_VIRT_RECORDS_MAGIC;
1599         vd->populated_vdes = __cpu_to_be16(0);
1600         vd->max_vdes = __cpu_to_be16(max_virt_disks);
1601         memset(vd->pad, 0xff, 52);
1602
1603         for (i=0; i<max_virt_disks; i++)
1604                 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1605
1606         st->sb = ddf;
1607         return 1;
1608 }
1609
1610 static int all_ff(char *guid)
1611 {
1612         int i;
1613         for (i = 0; i < DDF_GUID_LEN; i++)
1614                 if (guid[i] != (char)0xff)
1615                         return 0;
1616         return 1;
1617 }
1618 static int chunk_to_shift(int chunksize)
1619 {
1620         return ffs(chunksize/512)-1;
1621 }
1622
1623 static int level_to_prl(int level)
1624 {
1625         switch (level) {
1626         case LEVEL_LINEAR: return DDF_CONCAT;
1627         case 0: return DDF_RAID0;
1628         case 1: return DDF_RAID1;
1629         case 4: return DDF_RAID4;
1630         case 5: return DDF_RAID5;
1631         case 6: return DDF_RAID6;
1632         default: return -1;
1633         }
1634 }
1635 static int layout_to_rlq(int level, int layout, int raiddisks)
1636 {
1637         switch(level) {
1638         case 0:
1639                 return DDF_RAID0_SIMPLE;
1640         case 1:
1641                 switch(raiddisks) {
1642                 case 2: return DDF_RAID1_SIMPLE;
1643                 case 3: return DDF_RAID1_MULTI;
1644                 default: return -1;
1645                 }
1646         case 4:
1647                 switch(layout) {
1648                 case 0: return DDF_RAID4_N;
1649                 }
1650                 break;
1651         case 5:
1652         case 6:
1653                 switch(layout) {
1654                 case ALGORITHM_LEFT_ASYMMETRIC:
1655                         return DDF_RAID5_N_RESTART;
1656                 case ALGORITHM_RIGHT_ASYMMETRIC:
1657                         if (level == 5)
1658                                 return DDF_RAID5_0_RESTART;
1659                         else
1660                                 return DDF_RAID6_0_RESTART;
1661                 case ALGORITHM_LEFT_SYMMETRIC:
1662                         return DDF_RAID5_N_CONTINUE;
1663                 case ALGORITHM_RIGHT_SYMMETRIC:
1664                         return -1; /* not mentioned in standard */
1665                 }
1666         }
1667         return -1;
1668 }
1669
1670 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1671 {
1672         switch(prl) {
1673         case DDF_RAID0:
1674                 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1675         case DDF_RAID1:
1676                 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1677                              on raiddisks*/
1678         case DDF_RAID4:
1679                 switch(rlq) {
1680                 case DDF_RAID4_N:
1681                         return 0;
1682                 default:
1683                         /* not supported */
1684                         return -1; /* FIXME this isn't checked */
1685                 }
1686         case DDF_RAID5:
1687                 switch(rlq) {
1688                 case DDF_RAID5_N_RESTART:
1689                         return ALGORITHM_LEFT_ASYMMETRIC;
1690                 case DDF_RAID5_0_RESTART:
1691                         return ALGORITHM_RIGHT_ASYMMETRIC;
1692                 case DDF_RAID5_N_CONTINUE:
1693                         return ALGORITHM_LEFT_SYMMETRIC;
1694                 default:
1695                         return -1;
1696                 }
1697         case DDF_RAID6:
1698                 switch(rlq) {
1699                 case DDF_RAID5_N_RESTART:
1700                         return ALGORITHM_LEFT_ASYMMETRIC;
1701                 case DDF_RAID6_0_RESTART:
1702                         return ALGORITHM_RIGHT_ASYMMETRIC;
1703                 case DDF_RAID5_N_CONTINUE:
1704                         return ALGORITHM_LEFT_SYMMETRIC;
1705                 default:
1706                         return -1;
1707                 }
1708         }
1709         return -1;
1710 }
1711
1712 struct extent {
1713         unsigned long long start, size;
1714 };
1715 int cmp_extent(const void *av, const void *bv)
1716 {
1717         const struct extent *a = av;
1718         const struct extent *b = bv;
1719         if (a->start < b->start)
1720                 return -1;
1721         if (a->start > b->start)
1722                 return 1;
1723         return 0;
1724 }
1725
1726 struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1727 {
1728         /* find a list of used extents on the give physical device
1729          * (dnum) of the given ddf.
1730          * Return a malloced array of 'struct extent'
1731
1732 FIXME ignore DDF_Legacy devices?
1733
1734          */
1735         struct extent *rv;
1736         int n = 0;
1737         int i, j;
1738
1739         rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1740         if (!rv)
1741                 return NULL;
1742
1743         for (i = 0; i < ddf->max_part; i++) {
1744                 struct vcl *v = dl->vlist[i];
1745                 if (v == NULL)
1746                         continue;
1747                 for (j=0; j < v->conf.prim_elmnt_count; j++)
1748                         if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1749                                 /* This device plays role 'j' in  'v'. */
1750                                 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1751                                 rv[n].size = __be64_to_cpu(v->conf.blocks);
1752                                 n++;
1753                                 break;
1754                         }
1755         }
1756         qsort(rv, n, sizeof(*rv), cmp_extent);
1757
1758         rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1759         rv[n].size = 0;
1760         return rv;
1761 }
1762
1763 static int init_super_ddf_bvd(struct supertype *st,
1764                               mdu_array_info_t *info,
1765                               unsigned long long size,
1766                               char *name, char *homehost,
1767                               int *uuid)
1768 {
1769         /* We are creating a BVD inside a pre-existing container.
1770          * so st->sb is already set.
1771          * We need to create a new vd_config and a new virtual_entry
1772          */
1773         struct ddf_super *ddf = st->sb;
1774         int venum;
1775         struct virtual_entry *ve;
1776         struct vcl *vcl;
1777         struct vd_config *vc;
1778
1779         if (__be16_to_cpu(ddf->virt->populated_vdes)
1780             >= __be16_to_cpu(ddf->virt->max_vdes)) {
1781                 fprintf(stderr, Name": This ddf already has the "
1782                         "maximum of %d virtual devices\n",
1783                         __be16_to_cpu(ddf->virt->max_vdes));
1784                 return 0;
1785         }
1786
1787         for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1788                 if (all_ff(ddf->virt->entries[venum].guid))
1789                         break;
1790         if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1791                 fprintf(stderr, Name ": Cannot find spare slot for "
1792                         "virtual disk - DDF is corrupt\n");
1793                 return 0;
1794         }
1795         ve = &ddf->virt->entries[venum];
1796
1797         /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1798          * timestamp, random number
1799          */
1800         make_header_guid(ve->guid);
1801         ve->unit = __cpu_to_be16(info->md_minor);
1802         ve->pad0 = 0xFFFF;
1803         ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1804         ve->type = 0;
1805         ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1806         if (info->state & 1) /* clean */
1807                 ve->init_state = DDF_init_full;
1808         else
1809                 ve->init_state = DDF_init_not;
1810
1811         memset(ve->pad1, 0xff, 14);
1812         memset(ve->name, ' ', 16);
1813         if (name)
1814                 strncpy(ve->name, name, 16);
1815         ddf->virt->populated_vdes =
1816                 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
1817
1818         /* Now create a new vd_config */
1819         vcl = malloc(offsetof(struct vcl, conf) + ddf->conf_rec_len * 512);
1820         vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
1821         vcl->vcnum = venum;
1822         sprintf(st->subarray, "%d", venum);
1823         vcl->block_sizes = NULL; /* FIXME not for CONCAT */
1824
1825         vc = &vcl->conf;
1826
1827         vc->magic = DDF_VD_CONF_MAGIC;
1828         memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
1829         vc->timestamp = __cpu_to_be32(time(0)-DECADE);
1830         vc->seqnum = __cpu_to_be32(1);
1831         memset(vc->pad0, 0xff, 24);
1832         vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
1833         vc->chunk_shift = chunk_to_shift(info->chunk_size);
1834         vc->prl = level_to_prl(info->level);
1835         vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
1836         vc->sec_elmnt_count = 1;
1837         vc->sec_elmnt_seq = 0;
1838         vc->srl = 0;
1839         vc->blocks = __cpu_to_be64(info->size * 2);
1840         vc->array_blocks = __cpu_to_be64(
1841                 calc_array_size(info->level, info->raid_disks, info->layout,
1842                                 info->chunk_size, info->size*2));
1843         memset(vc->pad1, 0xff, 8);
1844         vc->spare_refs[0] = 0xffffffff;
1845         vc->spare_refs[1] = 0xffffffff;
1846         vc->spare_refs[2] = 0xffffffff;
1847         vc->spare_refs[3] = 0xffffffff;
1848         vc->spare_refs[4] = 0xffffffff;
1849         vc->spare_refs[5] = 0xffffffff;
1850         vc->spare_refs[6] = 0xffffffff;
1851         vc->spare_refs[7] = 0xffffffff;
1852         memset(vc->cache_pol, 0, 8);
1853         vc->bg_rate = 0x80;
1854         memset(vc->pad2, 0xff, 3);
1855         memset(vc->pad3, 0xff, 52);
1856         memset(vc->pad4, 0xff, 192);
1857         memset(vc->v0, 0xff, 32);
1858         memset(vc->v1, 0xff, 32);
1859         memset(vc->v2, 0xff, 16);
1860         memset(vc->v3, 0xff, 16);
1861         memset(vc->vendor, 0xff, 32);
1862
1863         memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
1864         memset(vc->phys_refnum+(ddf->mppe * 4), 0x00, 8*ddf->mppe);
1865
1866         vcl->next = ddf->conflist;
1867         ddf->conflist = vcl;
1868         ddf->currentconf = vcl;
1869         return 1;
1870 }
1871
1872 static void add_to_super_ddf_bvd(struct supertype *st,
1873                                  mdu_disk_info_t *dk, int fd, char *devname)
1874 {
1875         /* fd and devname identify a device with-in the ddf container (st).
1876          * dk identifies a location in the new BVD.
1877          * We need to find suitable free space in that device and update
1878          * the phys_refnum and lba_offset for the newly created vd_config.
1879          * We might also want to update the type in the phys_disk
1880          * section.
1881          */
1882         struct dl *dl;
1883         struct ddf_super *ddf = st->sb;
1884         struct vd_config *vc;
1885         __u64 *lba_offset;
1886         int working;
1887         int i;
1888         unsigned long long blocks, pos, esize;
1889         struct extent *ex;
1890
1891         for (dl = ddf->dlist; dl ; dl = dl->next)
1892                 if (dl->major == dk->major &&
1893                     dl->minor == dk->minor)
1894                         break;
1895         if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1896                 return;
1897
1898         vc = &ddf->currentconf->conf;
1899         lba_offset = ddf->currentconf->lba_offset;
1900
1901         ex = get_extents(ddf, dl);
1902         if (!ex)
1903                 return;
1904
1905         i = 0; pos = 0;
1906         blocks = __be64_to_cpu(vc->blocks);
1907         if (ddf->currentconf->block_sizes)
1908                 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
1909
1910         do {
1911                 esize = ex[i].start - pos;
1912                 if (esize >= blocks)
1913                         break;
1914                 pos = ex[i].start + ex[i].size;
1915                 i++;
1916         } while (ex[i-1].size);
1917
1918         free(ex);
1919         if (esize < blocks)
1920                 return;
1921
1922         ddf->currentdev = dk->raid_disk;
1923         vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
1924         lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
1925
1926         for (i=0; i < ddf->max_part ; i++)
1927                 if (dl->vlist[i] == NULL)
1928                         break;
1929         if (i == ddf->max_part)
1930                 return;
1931         dl->vlist[i] = ddf->currentconf;
1932
1933         dl->fd = fd;
1934         dl->devname = devname;
1935
1936         /* Check how many working raid_disks, and if we can mark
1937          * array as optimal yet
1938          */
1939         working = 0;
1940
1941         for (i=0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
1942                 if (vc->phys_refnum[i] != 0xffffffff)
1943                         working++;
1944
1945         /* Find which virtual_entry */
1946         i = ddf->currentconf->vcnum;
1947         if (working == __be16_to_cpu(vc->prim_elmnt_count))
1948                 ddf->virt->entries[i].state =
1949                         (ddf->virt->entries[i].state & ~DDF_state_mask)
1950                         | DDF_state_optimal;
1951
1952         if (vc->prl == DDF_RAID6 &&
1953             working+1 == __be16_to_cpu(vc->prim_elmnt_count))
1954                 ddf->virt->entries[i].state =
1955                         (ddf->virt->entries[i].state & ~DDF_state_mask)
1956                         | DDF_state_part_optimal;
1957
1958         ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
1959         ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
1960 }
1961
1962 /* add a device to a container, either while creating it or while
1963  * expanding a pre-existing container
1964  */
1965 static void add_to_super_ddf(struct supertype *st,
1966                              mdu_disk_info_t *dk, int fd, char *devname)
1967 {
1968         struct ddf_super *ddf = st->sb;
1969         struct dl *dd;
1970         time_t now;
1971         struct tm *tm;
1972         unsigned long long size;
1973         struct phys_disk_entry *pde;
1974         int n, i;
1975         struct stat stb;
1976
1977         /* This is device numbered dk->number.  We need to create
1978          * a phys_disk entry and a more detailed disk_data entry.
1979          */
1980         fstat(fd, &stb);
1981         dd = malloc(sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part);
1982         dd->major = major(stb.st_rdev);
1983         dd->minor = minor(stb.st_rdev);
1984         dd->devname = devname;
1985         dd->next = ddf->dlist;
1986         dd->fd = fd;
1987         dd->spare = NULL;
1988
1989         dd->disk.magic = DDF_PHYS_DATA_MAGIC;
1990         now = time(0);
1991         tm = localtime(&now);
1992         sprintf(dd->disk.guid, "%8s%04d%02d%02d",
1993                 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
1994         *(__u32*)(dd->disk.guid + 16) = random();
1995         *(__u32*)(dd->disk.guid + 20) = random();
1996
1997         do {
1998                 /* Cannot be bothered finding a CRC of some irrelevant details*/
1999                 dd->disk.refnum = random();
2000                 for (i = __be16_to_cpu(ddf->active->max_pd_entries) - 1;
2001                      i >= 0; i--)
2002                         if (ddf->phys->entries[i].refnum == dd->disk.refnum)
2003                                 break;
2004         } while (i >= 0);
2005
2006         dd->disk.forced_ref = 1;
2007         dd->disk.forced_guid = 1;
2008         memset(dd->disk.vendor, ' ', 32);
2009         memcpy(dd->disk.vendor, "Linux", 5);
2010         memset(dd->disk.pad, 0xff, 442);
2011         for (i = 0; i < ddf->max_part ; i++)
2012                 dd->vlist[i] = NULL;
2013
2014         n = __be16_to_cpu(ddf->phys->used_pdes);
2015         pde = &ddf->phys->entries[n];
2016         dd->pdnum = n;
2017
2018         n++;
2019         ddf->phys->used_pdes = __cpu_to_be16(n);
2020
2021         memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2022         pde->refnum = dd->disk.refnum;
2023         pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2024         pde->state = __cpu_to_be16(DDF_Online);
2025         get_dev_size(fd, NULL, &size);
2026         /* We are required to reserve 32Meg, and record the size in sectors */
2027         pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2028         sprintf(pde->path, "%17.17s","Information: nil") ;
2029         memset(pde->pad, 0xff, 6);
2030
2031         dd->size = size >> 9;
2032         ddf->dlist = dd;
2033 }
2034
2035 /*
2036  * This is the write_init_super method for a ddf container.  It is
2037  * called when creating a container or adding another device to a
2038  * container.
2039  */
2040
2041 #ifndef MDASSEMBLE
2042 static int __write_init_super_ddf(struct supertype *st, int do_close)
2043 {
2044
2045         struct ddf_super *ddf = st->sb;
2046         int i;
2047         struct dl *d;
2048         int n_config;
2049         int conf_size;
2050
2051         unsigned long long size, sector;
2052
2053         for (d = ddf->dlist; d; d=d->next) {
2054                 int fd = d->fd;
2055
2056                 if (fd < 0)
2057                         continue;
2058
2059                 /* We need to fill in the primary, (secondary) and workspace
2060                  * lba's in the headers, set their checksums,
2061                  * Also checksum phys, virt....
2062                  *
2063                  * Then write everything out, finally the anchor is written.
2064                  */
2065                 get_dev_size(fd, NULL, &size);
2066                 size /= 512;
2067                 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2068                 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2069                 ddf->anchor.seq = __cpu_to_be32(1);
2070                 memcpy(&ddf->primary, &ddf->anchor, 512);
2071                 memcpy(&ddf->secondary, &ddf->anchor, 512);
2072
2073                 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2074                 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2075                 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2076
2077                 ddf->primary.openflag = 0;
2078                 ddf->primary.type = DDF_HEADER_PRIMARY;
2079
2080                 ddf->secondary.openflag = 0;
2081                 ddf->secondary.type = DDF_HEADER_SECONDARY;
2082
2083                 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2084                 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2085
2086                 sector = size - 16*1024*2;
2087                 lseek64(fd, sector<<9, 0);
2088                 write(fd, &ddf->primary, 512);
2089
2090                 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2091                 write(fd, &ddf->controller, 512);
2092
2093                 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2094
2095                 write(fd, ddf->phys, ddf->pdsize);
2096
2097                 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2098                 write(fd, ddf->virt, ddf->vdsize);
2099
2100                 /* Now write lots of config records. */
2101                 n_config = ddf->max_part;
2102                 conf_size = ddf->conf_rec_len * 512;
2103                 for (i = 0 ; i <= n_config ; i++) {
2104                         struct vcl *c = d->vlist[i];
2105                         if (i == n_config)
2106                                 c = (struct vcl*)d->spare;
2107
2108                         if (c) {
2109                                 c->conf.crc = calc_crc(&c->conf, conf_size);
2110                                 write(fd, &c->conf, conf_size);
2111                         } else {
2112                                 __u32 sig = 0xffffffff;
2113                                 write(fd, &sig, 4);
2114                                 lseek64(fd, conf_size-4, SEEK_CUR);
2115                         }
2116                 }
2117                 d->disk.crc = calc_crc(&d->disk, 512);
2118                 write(fd, &d->disk, 512);
2119
2120                 /* Maybe do the same for secondary */
2121
2122                 lseek64(fd, (size-1)*512, SEEK_SET);
2123                 write(fd, &ddf->anchor, 512);
2124                 if (do_close) {
2125                         close(fd);
2126                         d->fd = -1;
2127                 }
2128         }
2129         return 1;
2130 }
2131
2132 static int write_init_super_ddf(struct supertype *st)
2133 {
2134         return __write_init_super_ddf(st, 1);
2135 }
2136
2137 #endif
2138
2139 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2140 {
2141         /* We must reserve the last 32Meg */
2142         if (devsize <= 32*1024*2)
2143                 return 0;
2144         return devsize - 32*1024*2;
2145 }
2146
2147 #ifndef MDASSEMBLE
2148 int validate_geometry_ddf(struct supertype *st,
2149                           int level, int layout, int raiddisks,
2150                           int chunk, unsigned long long size,
2151                           char *dev, unsigned long long *freesize)
2152 {
2153         int fd;
2154         struct mdinfo *sra;
2155         int cfd;
2156
2157         /* ddf potentially supports lots of things, but it depends on
2158          * what devices are offered (and maybe kernel version?)
2159          * If given unused devices, we will make a container.
2160          * If given devices in a container, we will make a BVD.
2161          * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2162          */
2163
2164         if (level == LEVEL_CONTAINER) {
2165                 st->ss = &super_ddf_container;
2166                 if (dev) {
2167                         int rv =st->ss->validate_geometry(st, level, layout,
2168                                                           raiddisks, chunk,
2169                                                           size,
2170                                                           NULL, freesize);
2171                         if (rv)
2172                                 return rv;
2173                 }
2174                 return st->ss->validate_geometry(st, level, layout, raiddisks,
2175                                                  chunk, size, dev, freesize);
2176         }
2177
2178         if (st->sb) {
2179                 /* creating in a given container */
2180                 st->ss = &super_ddf_bvd;
2181                 if (dev) {
2182                         int rv =st->ss->validate_geometry(st, level, layout,
2183                                                           raiddisks, chunk,
2184                                                           size,
2185                                                           NULL, freesize);
2186                         if (rv)
2187                                 return rv;
2188                 }
2189                 return st->ss->validate_geometry(st, level, layout, raiddisks,
2190                                                  chunk, size, dev, freesize);
2191         }
2192         /* FIXME should exclude MULTIPATH, or more appropriately, allow
2193          * only known levels.
2194          */
2195         if (!dev)
2196                 return 1;
2197
2198         /* This device needs to be either a device in a 'ddf' container,
2199          * or it needs to be a 'ddf-bvd' array.
2200          */
2201
2202         fd = open(dev, O_RDONLY|O_EXCL, 0);
2203         if (fd >= 0) {
2204                 sra = sysfs_read(fd, 0, GET_VERSION);
2205                 close(fd);
2206                 if (sra && sra->array.major_version == -1 &&
2207                     strcmp(sra->text_version, "ddf-bvd") == 0) {
2208                         st->ss = &super_ddf_svd;
2209                         return st->ss->validate_geometry(st, level, layout,
2210                                                          raiddisks, chunk, size,
2211                                                          dev, freesize);
2212                 }
2213
2214                 fprintf(stderr,
2215                         Name ": Cannot create this array on device %s\n",
2216                         dev);
2217                 return 0;
2218         }
2219         if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2220                 fprintf(stderr, Name ": Cannot open %s: %s\n",
2221                         dev, strerror(errno));
2222                 return 0;
2223         }
2224         /* Well, it is in use by someone, maybe a 'ddf' container. */
2225         cfd = open_container(fd);
2226         if (cfd < 0) {
2227                 close(fd);
2228                 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
2229                         dev);
2230                 return 0;
2231         }
2232         sra = sysfs_read(cfd, 0, GET_VERSION);
2233         close(fd);
2234         if (sra && sra->array.major_version == -1 &&
2235             strcmp(sra->text_version, "ddf") == 0) {
2236                 /* This is a member of a ddf container.  Load the container
2237                  * and try to create a bvd
2238                  */
2239                 struct ddf_super *ddf;
2240                 st->ss = &super_ddf_bvd;
2241                 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
2242                         st->sb = ddf;
2243                         st->container_dev = fd2devnum(cfd);
2244                         close(cfd);
2245                         return st->ss->validate_geometry(st, level, layout,
2246                                                          raiddisks, chunk, size,
2247                                                          dev, freesize);
2248                 }
2249                 close(cfd);
2250         } else /* device may belong to a different container */
2251                 return 0;
2252
2253         return 1;
2254 }
2255
2256 int validate_geometry_ddf_container(struct supertype *st,
2257                                     int level, int layout, int raiddisks,
2258                                     int chunk, unsigned long long size,
2259                                     char *dev, unsigned long long *freesize)
2260 {
2261         int fd;
2262         unsigned long long ldsize;
2263
2264         if (level != LEVEL_CONTAINER)
2265                 return 0;
2266         if (!dev)
2267                 return 1;
2268
2269         fd = open(dev, O_RDONLY|O_EXCL, 0);
2270         if (fd < 0) {
2271                 fprintf(stderr, Name ": Cannot open %s: %s\n",
2272                         dev, strerror(errno));
2273                 return 0;
2274         }
2275         if (!get_dev_size(fd, dev, &ldsize)) {
2276                 close(fd);
2277                 return 0;
2278         }
2279         close(fd);
2280
2281         *freesize = avail_size_ddf(st, ldsize >> 9);
2282
2283         return 1;
2284 }
2285
2286 int validate_geometry_ddf_bvd(struct supertype *st,
2287                               int level, int layout, int raiddisks,
2288                               int chunk, unsigned long long size,
2289                               char *dev, unsigned long long *freesize)
2290 {
2291         struct stat stb;
2292         struct ddf_super *ddf = st->sb;
2293         struct dl *dl;
2294         unsigned long long pos = 0;
2295         unsigned long long maxsize;
2296         struct extent *e;
2297         int i;
2298         /* ddf/bvd supports lots of things, but not containers */
2299         if (level == LEVEL_CONTAINER)
2300                 return 0;
2301         /* We must have the container info already read in. */
2302         if (!ddf)
2303                 return 0;
2304
2305         if (!dev) {
2306                 /* General test:  make sure there is space for
2307                  * 'raiddisks' device extents of size 'size'.
2308                  */
2309                 unsigned long long minsize = size;
2310                 int dcnt = 0;
2311                 if (minsize == 0)
2312                         minsize = 8;
2313                 for (dl = ddf->dlist; dl ; dl = dl->next)
2314                 {
2315                         int found = 0;
2316                         pos = 0;
2317
2318                         i = 0;
2319                         e = get_extents(ddf, dl);
2320                         if (!e) continue;
2321                         do {
2322                                 unsigned long long esize;
2323                                 esize = e[i].start - pos;
2324                                 if (esize >= minsize)
2325                                         found = 1;
2326                                 pos = e[i].start + e[i].size;
2327                                 i++;
2328                         } while (e[i-1].size);
2329                         if (found)
2330                                 dcnt++;
2331                         free(e);
2332                 }
2333                 if (dcnt < raiddisks) {
2334                         fprintf(stderr, Name ": Not enough devices with space "
2335                                 "for this array (%d < %d)\n",
2336                                 dcnt, raiddisks);
2337                         return 0;
2338                 }
2339                 return 1;
2340         }
2341         /* This device must be a member of the set */
2342         if (stat(dev, &stb) < 0)
2343                 return 0;
2344         if ((S_IFMT & stb.st_mode) != S_IFBLK)
2345                 return 0;
2346         for (dl = ddf->dlist ; dl ; dl = dl->next) {
2347                 if (dl->major == major(stb.st_rdev) &&
2348                     dl->minor == minor(stb.st_rdev))
2349                         break;
2350         }
2351         if (!dl) {
2352                 fprintf(stderr, Name ": %s is not in the same DDF set\n",
2353                         dev);
2354                 return 0;
2355         }
2356         e = get_extents(ddf, dl);
2357         maxsize = 0;
2358         i = 0;
2359         if (e) do {
2360                 unsigned long long esize;
2361                 esize = e[i].start - pos;
2362                 if (esize >= maxsize)
2363                         maxsize = esize;
2364                 pos = e[i].start + e[i].size;
2365                 i++;
2366         } while (e[i-1].size);
2367         *freesize = maxsize;
2368         // FIXME here I am
2369
2370         return 1;
2371 }
2372
2373 int validate_geometry_ddf_svd(struct supertype *st,
2374                               int level, int layout, int raiddisks,
2375                               int chunk, unsigned long long size,
2376                               char *dev, unsigned long long *freesize)
2377 {
2378         /* dd/svd only supports striped, mirrored, concat, spanned... */
2379         if (level != LEVEL_LINEAR &&
2380             level != 0 &&
2381             level != 1)
2382                 return 0;
2383         return 1;
2384 }
2385
2386 static int load_super_ddf_all(struct supertype *st, int fd,
2387                               void **sbp, char *devname, int keep_fd)
2388 {
2389         struct mdinfo *sra;
2390         struct ddf_super *super;
2391         struct mdinfo *sd, *best = NULL;
2392         int bestseq = 0;
2393         int seq;
2394         char nm[20];
2395         int dfd;
2396
2397         sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2398         if (!sra)
2399                 return 1;
2400         if (sra->array.major_version != -1 ||
2401             sra->array.minor_version != -2 ||
2402             strcmp(sra->text_version, "ddf") != 0)
2403                 return 1;
2404
2405         super = malloc(sizeof(*super));
2406         if (!super)
2407                 return 1;
2408         memset(super, 0, sizeof(*super));
2409
2410         /* first, try each device, and choose the best ddf */
2411         for (sd = sra->devs ; sd ; sd = sd->next) {
2412                 int rv;
2413                 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2414                 dfd = dev_open(nm, O_RDONLY);
2415                 if (dfd < 0)
2416                         return 2;
2417                 rv = load_ddf_headers(dfd, super, NULL);
2418                 close(dfd);
2419                 if (rv == 0) {
2420                         seq = __be32_to_cpu(super->active->seq);
2421                         if (super->active->openflag)
2422                                 seq--;
2423                         if (!best || seq > bestseq) {
2424                                 bestseq = seq;
2425                                 best = sd;
2426                         }
2427                 }
2428         }
2429         if (!best)
2430                 return 1;
2431         /* OK, load this ddf */
2432         sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2433         dfd = dev_open(nm, O_RDONLY);
2434         if (dfd < 0)
2435                 return 1;
2436         load_ddf_headers(dfd, super, NULL);
2437         load_ddf_global(dfd, super, NULL);
2438         close(dfd);
2439         /* Now we need the device-local bits */
2440         for (sd = sra->devs ; sd ; sd = sd->next) {
2441                 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2442                 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2443                 if (dfd < 0)
2444                         return 2;
2445                 seq = load_ddf_local(dfd, super, NULL, keep_fd);
2446                 if (!keep_fd) close(dfd);
2447         }
2448         if (st->subarray[0]) {
2449                 struct vcl *v;
2450
2451                 for (v = super->conflist; v; v = v->next)
2452                         if (v->vcnum == atoi(st->subarray))
2453                                 super->currentconf = v;
2454                 if (!super->currentconf)
2455                         return 1;
2456         }
2457         *sbp = super;
2458         if (st->ss == NULL) {
2459                 st->ss = &super_ddf_container;
2460                 st->minor_version = 0;
2461                 st->max_devs = 512;
2462                 st->container_dev = fd2devnum(fd);
2463         }
2464         return 0;
2465 }
2466 #endif
2467
2468 static struct mdinfo *container_content_ddf(struct supertype *st)
2469 {
2470         /* Given a container loaded by load_super_ddf_all,
2471          * extract information about all the arrays into
2472          * an mdinfo tree.
2473          *
2474          * For each vcl in conflist: create an mdinfo, fill it in,
2475          *  then look for matching devices (phys_refnum) in dlist
2476          *  and create appropriate device mdinfo.
2477          */
2478         struct ddf_super *ddf = st->sb;
2479         struct mdinfo *rest = NULL;
2480         struct vcl *vc;
2481
2482         for (vc = ddf->conflist ; vc ; vc=vc->next)
2483         {
2484                 int i;
2485                 struct mdinfo *this;
2486                 this = malloc(sizeof(*this));
2487                 memset(this, 0, sizeof(*this));
2488                 this->next = rest;
2489                 rest = this;
2490
2491                 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2492                 this->array.raid_disks =
2493                         __be16_to_cpu(vc->conf.prim_elmnt_count);
2494                 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2495                                                    this->array.raid_disks);
2496                 this->array.md_minor      = -1;
2497                 this->array.ctime         = DECADE +
2498                         __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2499                 this->array.utime         = DECADE +
2500                         __be32_to_cpu(vc->conf.timestamp);
2501                 this->array.chunk_size    = 512 << vc->conf.chunk_shift;
2502
2503                 i = vc->vcnum;
2504                 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2505                     (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2506                     DDF_init_full) {
2507                         this->array.state = 0;
2508                         this->resync_start = 0;
2509                 } else {
2510                         this->array.state = 1;
2511                         this->resync_start = ~0ULL;
2512                 }
2513                 memcpy(this->name, ddf->virt->entries[i].name, 32);
2514                 this->name[33]=0;
2515
2516                 memset(this->uuid, 0, sizeof(this->uuid));
2517                 this->component_size = __be64_to_cpu(vc->conf.blocks);
2518                 this->array.size = this->component_size / 2;
2519                 this->container_member = i;
2520
2521                 sprintf(this->text_version, "/%s/%d",
2522                         devnum2devname(st->container_dev),
2523                         this->container_member);
2524
2525                 for (i=0 ; i < ddf->mppe ; i++) {
2526                         struct mdinfo *dev;
2527                         struct dl *d;
2528
2529                         if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
2530                                 continue;
2531
2532                         this->array.working_disks++;
2533
2534                         for (d = ddf->dlist; d ; d=d->next)
2535                                 if (d->disk.refnum == vc->conf.phys_refnum[i])
2536                                         break;
2537                         if (d == NULL)
2538                                 break;
2539
2540                         dev = malloc(sizeof(*dev));
2541                         memset(dev, 0, sizeof(*dev));
2542                         dev->next = this->devs;
2543                         this->devs = dev;
2544
2545                         dev->disk.number = __be32_to_cpu(d->disk.refnum);
2546                         dev->disk.major = d->major;
2547                         dev->disk.minor = d->minor;
2548                         dev->disk.raid_disk = i;
2549                         dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2550
2551                         dev->events = __le32_to_cpu(ddf->primary.seq);
2552                         dev->data_offset = vc->lba_offset[i];
2553                         dev->component_size = __be64_to_cpu(vc->conf.blocks);
2554                         if (d->devname)
2555                                 strcpy(dev->name, d->devname);
2556                 }
2557         }
2558         return rest;
2559 }
2560
2561 static int init_zero_ddf(struct supertype *st,
2562                          mdu_array_info_t *info,
2563                          unsigned long long size, char *name,
2564                          char *homehost, int *uuid)
2565 {
2566         st->sb = NULL;
2567         return 0;
2568 }
2569
2570 static int store_zero_ddf(struct supertype *st, int fd)
2571 {
2572         unsigned long long dsize;
2573         char buf[512];
2574         memset(buf, 0, 512);
2575
2576         if (!get_dev_size(fd, NULL, &dsize))
2577                 return 1;
2578
2579         lseek64(fd, dsize-512, 0);
2580         write(fd, buf, 512);
2581         return 0;
2582 }
2583
2584 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
2585 {
2586         /*
2587          * return:
2588          *  0 same, or first was empty, and second was copied
2589          *  1 second had wrong number
2590          *  2 wrong uuid
2591          *  3 wrong other info
2592          */
2593         struct ddf_super *first = st->sb;
2594         struct ddf_super *second = tst->sb;
2595
2596         if (!first) {
2597                 st->sb = tst->sb;
2598                 tst->sb = NULL;
2599                 return 0;
2600         }
2601
2602         if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
2603                 return 2;
2604
2605         /* FIXME should I look at anything else? */
2606         return 0;
2607 }
2608
2609 /*
2610  * A new array 'a' has been started which claims to be instance 'inst'
2611  * within container 'c'.
2612  * We need to confirm that the array matches the metadata in 'c' so
2613  * that we don't corrupt any metadata.
2614  */
2615 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
2616 {
2617         fprintf(stderr, "ddf: open_new %s\n", inst);
2618         a->info.container_member = atoi(inst);
2619         return 0;
2620 }
2621
2622 /*
2623  * The array 'a' is to be marked clean in the metadata.
2624  * If '->resync_start' is not ~(unsigned long long)0, then the array is only
2625  * clean up to the point (in sectors).  If that cannot be recorded in the
2626  * metadata, then leave it as dirty.
2627  *
2628  * For DDF, we need to clear the DDF_state_inconsistent bit in the
2629  * !global! virtual_disk.virtual_entry structure.
2630  */
2631 static void ddf_set_array_state(struct active_array *a, int consistent)
2632 {
2633         struct ddf_super *ddf = a->container->sb;
2634         int inst = a->info.container_member;
2635         if (consistent)
2636                 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
2637         else
2638                 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
2639         ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
2640         if (a->resync_start == ~0ULL)
2641                 ddf->virt->entries[inst].init_state |= DDF_init_full;
2642         else if (a->resync_start == 0)
2643                 ddf->virt->entries[inst].init_state |= DDF_init_not;
2644         else
2645                 ddf->virt->entries[inst].init_state |= DDF_init_quick;
2646
2647         printf("ddf mark %s %llu\n", consistent?"clean":"dirty",
2648                a->resync_start);
2649 }
2650
2651 /*
2652  * The state of each disk is stored in the global phys_disk structure
2653  * in phys_disk.entries[n].state.
2654  * This makes various combinations awkward.
2655  * - When a device fails in any array, it must be failed in all arrays
2656  *   that include a part of this device.
2657  * - When a component is rebuilding, we cannot include it officially in the
2658  *   array unless this is the only array that uses the device.
2659  *
2660  * So: when transitioning:
2661  *   Online -> failed,  just set failed flag.  monitor will propagate
2662  *   spare -> online,   the device might need to be added to the array.
2663  *   spare -> failed,   just set failed.  Don't worry if in array or not.
2664  */
2665 static void ddf_set_disk(struct active_array *a, int n, int state)
2666 {
2667         struct ddf_super *ddf = a->container->sb;
2668         int inst = a->info.container_member;
2669         struct vd_config *vc = find_vdcr(ddf, inst);
2670         int pd = find_phys(ddf, vc->phys_refnum[n]);
2671         int i, st, working;
2672
2673         if (vc == NULL) {
2674                 fprintf(stderr, "ddf: cannot find instance %d!!\n", inst);
2675                 return;
2676         }
2677         if (pd < 0) {
2678                 /* disk doesn't currently exist. If it is now in_sync,
2679                  * insert it. */
2680                 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
2681                         /* Find dev 'n' in a->info->devs, determine the
2682                          * ddf refnum, and set vc->phys_refnum and update
2683                          * phys->entries[]
2684                          */
2685                         /* FIXME */
2686                 }
2687         } else {
2688                 if (state & DS_FAULTY)
2689                         ddf->phys->entries[pd].state  |= __cpu_to_be16(DDF_Failed);
2690                 if (state & DS_INSYNC) {
2691                         ddf->phys->entries[pd].state  |= __cpu_to_be16(DDF_Online);
2692                         ddf->phys->entries[pd].state  &= __cpu_to_be16(~DDF_Rebuilding);
2693                 }
2694         }
2695
2696         fprintf(stderr, "ddf: set_disk %d to %x\n", n, state);
2697
2698         /* Now we need to check the state of the array and update
2699          * virtual_disk.entries[n].state.
2700          * It needs to be one of "optimal", "degraded", "failed".
2701          * I don't understand 'deleted' or 'missing'.
2702          */
2703         working = 0;
2704         for (i=0; i < a->info.array.raid_disks; i++) {
2705                 pd = find_phys(ddf, vc->phys_refnum[i]);
2706                 if (pd < 0)
2707                         continue;
2708                 st = __be16_to_cpu(ddf->phys->entries[pd].state);
2709                 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
2710                     == DDF_Online)
2711                         working++;
2712         }
2713         state = DDF_state_degraded;
2714         if (working == a->info.array.raid_disks)
2715                 state = DDF_state_optimal;
2716         else switch(vc->prl) {
2717         case DDF_RAID0:
2718         case DDF_CONCAT:
2719         case DDF_JBOD:
2720                 state = DDF_state_failed;
2721                 break;
2722         case DDF_RAID1:
2723                 if (working == 0)
2724                         state = DDF_state_failed;
2725                 break;
2726         case DDF_RAID4:
2727         case DDF_RAID5:
2728                 if (working < a->info.array.raid_disks-1)
2729                         state = DDF_state_failed;
2730                 break;
2731         case DDF_RAID6:
2732                 if (working < a->info.array.raid_disks-2)
2733                         state = DDF_state_failed;
2734                 else if (working == a->info.array.raid_disks-1)
2735                         state = DDF_state_part_optimal;
2736                 break;
2737         }
2738
2739         ddf->virt->entries[inst].state =
2740                 (ddf->virt->entries[inst].state & ~DDF_state_mask)
2741                 | state;
2742
2743 }
2744
2745 static void ddf_sync_metadata(struct supertype *st)
2746 {
2747
2748         /*
2749          * Write all data to all devices.
2750          * Later, we might be able to track whether only local changes
2751          * have been made, or whether any global data has been changed,
2752          * but ddf is sufficiently weird that it probably always
2753          * changes global data ....
2754          */
2755         __write_init_super_ddf(st, 0);
2756         fprintf(stderr, "ddf: sync_metadata\n");
2757 }
2758
2759 static void ddf_process_update(struct supertype *st,
2760                                struct metadata_update *update)
2761 {
2762         /* Apply this update to the metadata.
2763          * The first 4 bytes are a DDF_*_MAGIC which guides
2764          * our actions.
2765          * Possible update are:
2766          *  DDF_PHYS_RECORDS_MAGIC
2767          *    Add a new physical device.  Changes to this record
2768          *    only happen implicitly.
2769          *    used_pdes is the device number.
2770          *  DDF_VIRT_RECORDS_MAGIC
2771          *    Add a new VD.  Possibly also change the 'access' bits.
2772          *    populated_vdes is the entry number.
2773          *  DDF_VD_CONF_MAGIC
2774          *    New or updated VD.  the VIRT_RECORD must already
2775          *    exist.  For an update, phys_refnum and lba_offset
2776          *    (at least) are updated, and the VD_CONF must
2777          *    be written to precisely those devices listed with
2778          *    a phys_refnum.
2779          *  DDF_SPARE_ASSIGN_MAGIC
2780          *    replacement Spare Assignment Record... but for which device?
2781          *
2782          * So, e.g.:
2783          *  - to create a new array, we send a VIRT_RECORD and
2784          *    a VD_CONF.  Then assemble and start the array.
2785          *  - to activate a spare we send a VD_CONF to add the phys_refnum
2786          *    and offset.  This will also mark the spare as active with
2787          *    a spare-assignment record.
2788          */
2789         struct ddf_super *ddf = st->sb;
2790         __u32 *magic = (__u32*)update->buf;
2791         struct phys_disk *pd;
2792         struct virtual_disk *vd;
2793         struct vd_config *vc;
2794         struct vcl *vcl;
2795         struct dl *dl;
2796         int mppe;
2797         int ent;
2798
2799         printf("Process update %x\n", *magic);
2800
2801         switch (*magic) {
2802         case DDF_PHYS_RECORDS_MAGIC:
2803
2804                 if (update->len != (sizeof(struct phys_disk) +
2805                                     sizeof(struct phys_disk_entry)))
2806                         return;
2807                 pd = (struct phys_disk*)update->buf;
2808
2809                 ent = __be16_to_cpu(pd->used_pdes);
2810                 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
2811                         return;
2812                 if (!all_ff(ddf->phys->entries[ent].guid))
2813                         return;
2814                 ddf->phys->entries[ent] = pd->entries[0];
2815                 ddf->phys->used_pdes = __cpu_to_be16(1 +
2816                                            __be16_to_cpu(ddf->phys->used_pdes));
2817                 break;
2818
2819         case DDF_VIRT_RECORDS_MAGIC:
2820
2821                 if (update->len != (sizeof(struct virtual_disk) +
2822                                     sizeof(struct virtual_entry)))
2823                         return;
2824                 vd = (struct virtual_disk*)update->buf;
2825
2826                 ent = __be16_to_cpu(vd->populated_vdes);
2827                 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
2828                         return;
2829                 if (!all_ff(ddf->virt->entries[ent].guid))
2830                         return;
2831                 ddf->virt->entries[ent] = vd->entries[0];
2832                 ddf->virt->populated_vdes = __cpu_to_be16(1 +
2833                               __be16_to_cpu(ddf->virt->populated_vdes));
2834                 break;
2835
2836         case DDF_VD_CONF_MAGIC:
2837                 printf("len %d %d\n", update->len, ddf->conf_rec_len);
2838
2839                 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
2840                 if (update->len != ddf->conf_rec_len)
2841                         return;
2842                 vc = (struct vd_config*)update->buf;
2843                 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2844                         if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
2845                                 break;
2846                 printf("vcl = %p\n", vcl);
2847                 if (vcl) {
2848                         /* An update, just copy the phys_refnum and lba_offset
2849                          * fields
2850                          */
2851                         memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
2852                                mppe * (sizeof(__u32) + sizeof(__u64)));
2853                 } else {
2854                         /* A new VD_CONF */
2855                         vcl = update->space;
2856                         update->space = NULL;
2857                         vcl->next = ddf->conflist;
2858                         vcl->conf = *vc;
2859                         vcl->lba_offset = (__u64*)
2860                                 &vcl->conf.phys_refnum[mppe];
2861                         ddf->conflist = vcl;
2862                 }
2863                 /* Now make sure vlist is correct for each dl. */
2864                 for (dl = ddf->dlist; dl; dl = dl->next) {
2865                         int dn;
2866                         int vn = 0;
2867                         for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2868                                 for (dn=0; dn < ddf->mppe ; dn++)
2869                                         if (vcl->conf.phys_refnum[dn] ==
2870                                             dl->disk.refnum) {
2871                                                 printf("dev %d has %p at %d\n",
2872                                                        dl->pdnum, vcl, vn);
2873                                                 dl->vlist[vn++] = vcl;
2874                                                 break;
2875                                         }
2876                         while (vn < ddf->max_part)
2877                                 dl->vlist[vn++] = NULL;
2878                         if (dl->vlist[0]) {
2879                                 ddf->phys->entries[dl->pdnum].type &=
2880                                         ~__cpu_to_be16(DDF_Global_Spare);
2881                                 ddf->phys->entries[dl->pdnum].type |=
2882                                         __cpu_to_be16(DDF_Active_in_VD);
2883                         }
2884                         if (dl->spare) {
2885                                 ddf->phys->entries[dl->pdnum].type &=
2886                                         ~__cpu_to_be16(DDF_Global_Spare);
2887                                 ddf->phys->entries[dl->pdnum].type |=
2888                                         __cpu_to_be16(DDF_Spare);
2889                         }
2890                         if (!dl->vlist[0] && !dl->spare) {
2891                                 ddf->phys->entries[dl->pdnum].type |=
2892                                         __cpu_to_be16(DDF_Global_Spare);
2893                                 ddf->phys->entries[dl->pdnum].type &=
2894                                         ~__cpu_to_be16(DDF_Spare |
2895                                                        DDF_Active_in_VD);
2896                         }
2897                 }
2898                 break;
2899         case DDF_SPARE_ASSIGN_MAGIC:
2900         default: break;
2901         }
2902 }
2903
2904 /*
2905  * Check if the array 'a' is degraded but not failed.
2906  * If it is, find as many spares as are available and needed and
2907  * arrange for their inclusion.
2908  * We only choose devices which are not already in the array,
2909  * and prefer those with a spare-assignment to this array.
2910  * otherwise we choose global spares - assuming always that
2911  * there is enough room.
2912  * For each spare that we assign, we return an 'mdinfo' which
2913  * describes the position for the device in the array.
2914  * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
2915  * the new phys_refnum and lba_offset values.
2916  *
2917  * Only worry about BVDs at the moment.
2918  */
2919 static struct mdinfo *ddf_activate_spare(struct active_array *a,
2920                                          struct metadata_update **updates)
2921 {
2922         int working = 0;
2923         struct mdinfo *d;
2924         struct ddf_super *ddf = a->container->sb;
2925         int global_ok = 0;
2926         struct mdinfo *rv = NULL;
2927         struct mdinfo *di;
2928         struct metadata_update *mu;
2929         struct dl *dl;
2930         int i;
2931         struct vd_config *vc;
2932         __u64 *lba;
2933
2934         for (d = a->info.devs ; d ; d = d->next) {
2935                 if ((d->curr_state & DS_FAULTY) &&
2936                         d->state_fd >= 0)
2937                         /* wait for Removal to happen */
2938                         return NULL;
2939                 if (d->state_fd >= 0)
2940                         working ++;
2941         }
2942
2943         printf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
2944                a->info.array.level);
2945         if (working == a->info.array.raid_disks)
2946                 return NULL; /* array not degraded */
2947         switch (a->info.array.level) {
2948         case 1:
2949                 if (working == 0)
2950                         return NULL; /* failed */
2951                 break;
2952         case 4:
2953         case 5:
2954                 if (working < a->info.array.raid_disks - 1)
2955                         return NULL; /* failed */
2956                 break;
2957         case 6:
2958                 if (working < a->info.array.raid_disks - 2)
2959                         return NULL; /* failed */
2960                 break;
2961         default: /* concat or stripe */
2962                 return NULL; /* failed */
2963         }
2964
2965         /* For each slot, if it is not working, find a spare */
2966         dl = ddf->dlist;
2967         for (i = 0; i < a->info.array.raid_disks; i++) {
2968                 for (d = a->info.devs ; d ; d = d->next)
2969                         if (d->disk.raid_disk == i)
2970                                 break;
2971                 printf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2972                 if (d && (d->state_fd >= 0))
2973                         continue;
2974
2975                 /* OK, this device needs recovery.  Find a spare */
2976         again:
2977                 for ( ; dl ; dl = dl->next) {
2978                         unsigned long long esize;
2979                         unsigned long long pos;
2980                         struct mdinfo *d2;
2981                         int is_global = 0;
2982                         int is_dedicated = 0;
2983                         struct extent *ex;
2984                         int j;
2985                         /* If in this array, skip */
2986                         for (d2 = a->info.devs ; d2 ; d2 = d2->next)
2987                                 if (d2->disk.major == dl->major &&
2988                                     d2->disk.minor == dl->minor) {
2989                                         printf("%x:%x already in array\n", dl->major, dl->minor);
2990                                         break;
2991                                 }
2992                         if (d2)
2993                                 continue;
2994                         if (ddf->phys->entries[dl->pdnum].type &
2995                             __cpu_to_be16(DDF_Spare)) {
2996                                 /* Check spare assign record */
2997                                 if (dl->spare) {
2998                                         if (dl->spare->type & DDF_spare_dedicated) {
2999                                                 /* check spare_ents for guid */
3000                                                 for (j = 0 ;
3001                                                      j < __be16_to_cpu(dl->spare->populated);
3002                                                      j++) {
3003                                                         if (memcmp(dl->spare->spare_ents[j].guid,
3004                                                                    ddf->virt->entries[a->info.container_member].guid,
3005                                                                    DDF_GUID_LEN) == 0)
3006                                                                 is_dedicated = 1;
3007                                                 }
3008                                         } else
3009                                                 is_global = 1;
3010                                 }
3011                         } else if (ddf->phys->entries[dl->pdnum].type &
3012                                    __cpu_to_be16(DDF_Global_Spare)) {
3013                                 is_global = 1;
3014                         }
3015                         if ( ! (is_dedicated ||
3016                                 (is_global && global_ok))) {
3017                                 printf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3018                                        is_dedicated, is_global);
3019                                 continue;
3020                         }
3021
3022                         /* We are allowed to use this device - is there space?
3023                          * We need a->info.component_size sectors */
3024                         ex = get_extents(ddf, dl);
3025                         if (!ex) {
3026                                 printf("cannot get extents\n");
3027                                 continue;
3028                         }
3029                         j = 0; pos = 0;
3030                         esize = 0;
3031
3032                         do {
3033                                 esize = ex[j].start - pos;
3034                                 if (esize >= a->info.component_size)
3035                                         break;
3036                                 pos = ex[i].start + ex[i].size;
3037                                 i++;
3038                         } while (ex[i-1].size);
3039
3040                         free(ex);
3041                         if (esize < a->info.component_size) {
3042                                 printf("%x:%x has no room: %llu %llu\n", dl->major, dl->minor,
3043                                        esize, a->info.component_size);
3044                                 /* No room */
3045                                 continue;
3046                         }
3047
3048                         /* Cool, we have a device with some space at pos */
3049                         di = malloc(sizeof(*di));
3050                         memset(di, 0, sizeof(*di));
3051                         di->disk.number = i;
3052                         di->disk.raid_disk = i;
3053                         di->disk.major = dl->major;
3054                         di->disk.minor = dl->minor;
3055                         di->disk.state = 0;
3056                         di->data_offset = pos;
3057                         di->component_size = a->info.component_size;
3058                         di->container_member = dl->pdnum;
3059                         di->next = rv;
3060                         rv = di;
3061                         printf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3062                                i, pos);
3063
3064                         break;
3065                 }
3066                 if (!dl && ! global_ok) {
3067                         /* not enough dedicated spares, try global */
3068                         global_ok = 1;
3069                         dl = ddf->dlist;
3070                         goto again;
3071                 }
3072         }
3073
3074         if (!rv)
3075                 /* No spares found */
3076                 return rv;
3077         /* Now 'rv' has a list of devices to return.
3078          * Create a metadata_update record to update the
3079          * phys_refnum and lba_offset values
3080          */
3081         mu = malloc(sizeof(*mu));
3082         mu->buf = malloc(ddf->conf_rec_len * 512);
3083         mu->space = malloc(sizeof(struct vcl));
3084         mu->len = ddf->conf_rec_len;
3085         mu->next = *updates;
3086         vc = find_vdcr(ddf, a->info.container_member);
3087         memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3088
3089         vc = (struct vd_config*)mu->buf;
3090         lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3091         for (di = rv ; di ; di = di->next) {
3092                 vc->phys_refnum[di->disk.raid_disk] =
3093                         ddf->phys->entries[dl->pdnum].refnum;
3094                 lba[di->disk.raid_disk] = di->data_offset;
3095         }
3096         *updates = mu;
3097         return rv;
3098 }
3099
3100 struct superswitch super_ddf = {
3101 #ifndef MDASSEMBLE
3102         .examine_super  = examine_super_ddf,
3103         .brief_examine_super = brief_examine_super_ddf,
3104         .detail_super   = detail_super_ddf,
3105         .brief_detail_super = brief_detail_super_ddf,
3106         .validate_geometry = validate_geometry_ddf,
3107 #endif
3108         .match_home     = match_home_ddf,
3109         .uuid_from_super= uuid_from_super_ddf,
3110         .getinfo_super  = getinfo_super_ddf,
3111         .update_super   = update_super_ddf,
3112
3113         .avail_size     = avail_size_ddf,
3114
3115         .compare_super  = compare_super_ddf,
3116
3117         .load_super     = load_super_ddf,
3118         .init_super     = init_zero_ddf,
3119         .store_super    = store_zero_ddf,
3120         .free_super     = free_super_ddf,
3121         .match_metadata_desc = match_metadata_desc_ddf,
3122
3123         .external       = 1,
3124
3125 /* for mdmon */
3126         .open_new       = ddf_open_new,
3127         .set_array_state= ddf_set_array_state,
3128         .set_disk       = ddf_set_disk,
3129         .sync_metadata  = ddf_sync_metadata,
3130         .process_update = ddf_process_update,
3131         .activate_spare = ddf_activate_spare,
3132
3133 };
3134
3135 /* Super_ddf_container is set by validate_geometry_ddf when given a
3136  * device that is not part of any array
3137  */
3138 static struct superswitch super_ddf_container = {
3139 #ifndef MDASSEMBLE
3140         .validate_geometry = validate_geometry_ddf_container,
3141         .write_init_super = write_init_super_ddf,
3142 #endif
3143
3144         .load_super     = load_super_ddf,
3145         .init_super     = init_super_ddf,
3146         .add_to_super   = add_to_super_ddf,
3147         .getinfo_super  = getinfo_super_ddf,
3148
3149         .free_super     = free_super_ddf,
3150
3151         .container_content = container_content_ddf,
3152
3153         .external       = 1,
3154 };
3155
3156 static struct superswitch super_ddf_bvd = {
3157 #ifndef MDASSEMBLE
3158 //      .detail_super   = detail_super_ddf_bvd,
3159 //      .brief_detail_super = brief_detail_super_ddf_bvd,
3160         .validate_geometry = validate_geometry_ddf_bvd,
3161         .write_init_super = write_init_super_ddf,
3162 #endif
3163         .update_super   = update_super_ddf,
3164         .init_super     = init_super_ddf_bvd,
3165         .add_to_super   = add_to_super_ddf_bvd,
3166         .getinfo_super  = getinfo_super_ddf_bvd,
3167
3168         .load_super     = load_super_ddf,
3169         .free_super     = free_super_ddf,
3170         .match_metadata_desc = match_metadata_desc_ddf_bvd,
3171
3172         .external       = 2,
3173 };
3174
3175 static struct superswitch super_ddf_svd = {
3176 #ifndef MDASSEMBLE
3177 //      .detail_super   = detail_super_ddf_svd,
3178 //      .brief_detail_super = brief_detail_super_ddf_svd,
3179         .validate_geometry = validate_geometry_ddf_svd,
3180 #endif
3181         .update_super   = update_super_ddf,
3182         .init_super     = init_super_ddf,
3183
3184         .load_super     = load_super_ddf,
3185         .free_super     = free_super_ddf,
3186         .match_metadata_desc = match_metadata_desc_ddf_svd,
3187
3188         .external       = 2,
3189 };