]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
cb7f67c4fdeb9e00a12c4dee2b6109c9193fed76
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2007 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 };
427 };
428 struct disk_data disk;
429 struct vcl *vlist[0]; /* max_part in size */
430 } *dlist;
431 };
432
433 #ifndef offsetof
434 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
435 #endif
436
437
438 static int calc_crc(void *buf, int len)
439 {
440 /* crcs are always at the same place as in the ddf_header */
441 struct ddf_header *ddf = buf;
442 __u32 oldcrc = ddf->crc;
443 __u32 newcrc;
444 ddf->crc = 0xffffffff;
445
446 newcrc = crc32(0, buf, len);
447 ddf->crc = oldcrc;
448 return newcrc;
449 }
450
451 static int load_ddf_header(int fd, unsigned long long lba,
452 unsigned long long size,
453 int type,
454 struct ddf_header *hdr, struct ddf_header *anchor)
455 {
456 /* read a ddf header (primary or secondary) from fd/lba
457 * and check that it is consistent with anchor
458 * Need to check:
459 * magic, crc, guid, rev, and LBA's header_type, and
460 * everything after header_type must be the same
461 */
462 if (lba >= size-1)
463 return 0;
464
465 if (lseek64(fd, lba<<9, 0) < 0)
466 return 0;
467
468 if (read(fd, hdr, 512) != 512)
469 return 0;
470
471 if (hdr->magic != DDF_HEADER_MAGIC)
472 return 0;
473 if (calc_crc(hdr, 512) != hdr->crc)
474 return 0;
475 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
476 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
477 anchor->primary_lba != hdr->primary_lba ||
478 anchor->secondary_lba != hdr->secondary_lba ||
479 hdr->type != type ||
480 memcmp(anchor->pad2, hdr->pad2, 512 -
481 offsetof(struct ddf_header, pad2)) != 0)
482 return 0;
483
484 /* Looks good enough to me... */
485 return 1;
486 }
487
488 static void *load_section(int fd, struct ddf_super *super, void *buf,
489 __u32 offset_be, __u32 len_be, int check)
490 {
491 unsigned long long offset = __be32_to_cpu(offset_be);
492 unsigned long long len = __be32_to_cpu(len_be);
493 int dofree = (buf == NULL);
494
495 if (check)
496 if (len != 2 && len != 8 && len != 32
497 && len != 128 && len != 512)
498 return NULL;
499
500 if (len > 1024)
501 return NULL;
502 if (buf) {
503 /* All pre-allocated sections are a single block */
504 if (len != 1)
505 return NULL;
506 } else {
507 posix_memalign(&buf, 512, len<<9);
508 }
509
510 if (!buf)
511 return NULL;
512
513 if (super->active->type == 1)
514 offset += __be64_to_cpu(super->active->primary_lba);
515 else
516 offset += __be64_to_cpu(super->active->secondary_lba);
517
518 if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
519 if (dofree)
520 free(buf);
521 return NULL;
522 }
523 if (read(fd, buf, len<<9) != (len<<9)) {
524 if (dofree)
525 free(buf);
526 return NULL;
527 }
528 return buf;
529 }
530
531 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
532 {
533 unsigned long long dsize;
534
535 get_dev_size(fd, NULL, &dsize);
536
537 if (lseek64(fd, dsize-512, 0) < 0) {
538 if (devname)
539 fprintf(stderr,
540 Name": Cannot seek to anchor block on %s: %s\n",
541 devname, strerror(errno));
542 return 1;
543 }
544 if (read(fd, &super->anchor, 512) != 512) {
545 if (devname)
546 fprintf(stderr,
547 Name ": Cannot read anchor block on %s: %s\n",
548 devname, strerror(errno));
549 return 1;
550 }
551 if (super->anchor.magic != DDF_HEADER_MAGIC) {
552 if (devname)
553 fprintf(stderr, Name ": no DDF anchor found on %s\n",
554 devname);
555 return 2;
556 }
557 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
558 if (devname)
559 fprintf(stderr, Name ": bad CRC on anchor on %s\n",
560 devname);
561 return 2;
562 }
563 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
564 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
565 if (devname)
566 fprintf(stderr, Name ": can only support super revision"
567 " %.8s and earlier, not %.8s on %s\n",
568 DDF_REVISION_2, super->anchor.revision,devname);
569 return 2;
570 }
571 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
572 dsize >> 9, 1,
573 &super->primary, &super->anchor) == 0) {
574 if (devname)
575 fprintf(stderr,
576 Name ": Failed to load primary DDF header "
577 "on %s\n", devname);
578 return 2;
579 }
580 super->active = &super->primary;
581 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
582 dsize >> 9, 2,
583 &super->secondary, &super->anchor)) {
584 if ((__be32_to_cpu(super->primary.seq)
585 < __be32_to_cpu(super->secondary.seq) &&
586 !super->secondary.openflag)
587 || (__be32_to_cpu(super->primary.seq)
588 == __be32_to_cpu(super->secondary.seq) &&
589 super->primary.openflag && !super->secondary.openflag)
590 )
591 super->active = &super->secondary;
592 }
593 return 0;
594 }
595
596 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
597 {
598 void *ok;
599 ok = load_section(fd, super, &super->controller,
600 super->active->controller_section_offset,
601 super->active->controller_section_length,
602 0);
603 super->phys = load_section(fd, super, NULL,
604 super->active->phys_section_offset,
605 super->active->phys_section_length,
606 1);
607 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
608
609 super->virt = load_section(fd, super, NULL,
610 super->active->virt_section_offset,
611 super->active->virt_section_length,
612 1);
613 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
614 if (!ok ||
615 !super->phys ||
616 !super->virt) {
617 free(super->phys);
618 free(super->virt);
619 super->phys = NULL;
620 super->virt = NULL;
621 return 2;
622 }
623 super->conflist = NULL;
624 super->dlist = NULL;
625
626 super->max_part = __be16_to_cpu(super->active->max_partitions);
627 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
628 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
629 return 0;
630 }
631
632 static int load_ddf_local(int fd, struct ddf_super *super,
633 char *devname, int keep)
634 {
635 struct dl *dl;
636 struct stat stb;
637 char *conf;
638 int i;
639 int vnum;
640 int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
641 unsigned long long dsize;
642
643 /* First the local disk info */
644 posix_memalign((void**)&dl, 512,
645 sizeof(*dl) +
646 (super->max_part) * sizeof(dl->vlist[0]));
647
648 load_section(fd, super, &dl->disk,
649 super->active->data_section_offset,
650 super->active->data_section_length,
651 0);
652 dl->devname = devname ? strdup(devname) : NULL;
653
654 fstat(fd, &stb);
655 dl->major = major(stb.st_rdev);
656 dl->minor = minor(stb.st_rdev);
657 dl->next = super->dlist;
658 dl->fd = keep ? fd : -1;
659
660 dl->size = 0;
661 if (get_dev_size(fd, devname, &dsize))
662 dl->size = dsize >> 9;
663 dl->spare = NULL;
664 for (i=0 ; i < super->max_part ; i++)
665 dl->vlist[i] = NULL;
666 super->dlist = dl;
667 dl->pdnum = -1;
668 for (i=0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
669 if (memcmp(super->phys->entries[i].guid,
670 dl->disk.guid, DDF_GUID_LEN) == 0)
671 dl->pdnum = i;
672
673 /* Now the config list. */
674 /* 'conf' is an array of config entries, some of which are
675 * probably invalid. Those which are good need to be copied into
676 * the conflist
677 */
678
679 conf = load_section(fd, super, NULL,
680 super->active->config_section_offset,
681 super->active->config_section_length,
682 0);
683
684 vnum = 0;
685 for (i = 0;
686 i < __be32_to_cpu(super->active->config_section_length);
687 i += super->conf_rec_len) {
688 struct vd_config *vd =
689 (struct vd_config *)((char*)conf + i*512);
690 struct vcl *vcl;
691
692 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
693 if (dl->spare)
694 continue;
695 posix_memalign((void**)&dl->spare, 512,
696 super->conf_rec_len*512);
697 memcpy(dl->spare, vd, super->conf_rec_len*512);
698 continue;
699 }
700 if (vd->magic != DDF_VD_CONF_MAGIC)
701 continue;
702 for (vcl = super->conflist; vcl; vcl = vcl->next) {
703 if (memcmp(vcl->conf.guid,
704 vd->guid, DDF_GUID_LEN) == 0)
705 break;
706 }
707
708 if (vcl) {
709 dl->vlist[vnum++] = vcl;
710 if (__be32_to_cpu(vd->seqnum) <=
711 __be32_to_cpu(vcl->conf.seqnum))
712 continue;
713 } else {
714 posix_memalign((void**)&vcl, 512,
715 (super->conf_rec_len*512 +
716 offsetof(struct vcl, conf)));
717 vcl->next = super->conflist;
718 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
719 super->conflist = vcl;
720 dl->vlist[vnum++] = vcl;
721 }
722 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
723 vcl->lba_offset = (__u64*)
724 &vcl->conf.phys_refnum[super->mppe];
725
726 for (i=0; i < max_virt_disks ; i++)
727 if (memcmp(super->virt->entries[i].guid,
728 vcl->conf.guid, DDF_GUID_LEN)==0)
729 break;
730 if (i < max_virt_disks)
731 vcl->vcnum = i;
732 }
733 free(conf);
734
735 return 0;
736 }
737
738 #ifndef MDASSEMBLE
739 static int load_super_ddf_all(struct supertype *st, int fd,
740 void **sbp, char *devname, int keep_fd);
741 #endif
742 static int load_super_ddf(struct supertype *st, int fd,
743 char *devname)
744 {
745 unsigned long long dsize;
746 struct ddf_super *super;
747 int rv;
748
749 #ifndef MDASSEMBLE
750 /* if 'fd' is a container, load metadata from all the devices */
751 if (load_super_ddf_all(st, fd, &st->sb, devname, 1) == 0)
752 return 0;
753 #endif
754 if (st->subarray[0])
755 return 1; /* FIXME Is this correct */
756
757 if (get_dev_size(fd, devname, &dsize) == 0)
758 return 1;
759
760 /* 32M is a lower bound */
761 if (dsize <= 32*1024*1024) {
762 if (devname) {
763 fprintf(stderr,
764 Name ": %s is too small for ddf: "
765 "size is %llu sectors.\n",
766 devname, dsize>>9);
767 return 1;
768 }
769 }
770 if (dsize & 511) {
771 if (devname) {
772 fprintf(stderr,
773 Name ": %s is an odd size for ddf: "
774 "size is %llu bytes.\n",
775 devname, dsize);
776 return 1;
777 }
778 }
779
780 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
781 fprintf(stderr, Name ": malloc of %zu failed.\n",
782 sizeof(*super));
783 return 1;
784 }
785 memset(super, 0, sizeof(*super));
786
787 rv = load_ddf_headers(fd, super, devname);
788 if (rv) {
789 free(super);
790 return rv;
791 }
792
793 /* Have valid headers and have chosen the best. Let's read in the rest*/
794
795 rv = load_ddf_global(fd, super, devname);
796
797 if (rv) {
798 if (devname)
799 fprintf(stderr,
800 Name ": Failed to load all information "
801 "sections on %s\n", devname);
802 free(super);
803 return rv;
804 }
805
806 load_ddf_local(fd, super, devname, 0);
807
808 /* Should possibly check the sections .... */
809
810 st->sb = super;
811 if (st->ss == NULL) {
812 st->ss = &super_ddf;
813 st->minor_version = 0;
814 st->max_devs = 512;
815 }
816 return 0;
817
818 }
819
820 static void free_super_ddf(struct supertype *st)
821 {
822 struct ddf_super *ddf = st->sb;
823 if (ddf == NULL)
824 return;
825 free(ddf->phys);
826 free(ddf->virt);
827 while (ddf->conflist) {
828 struct vcl *v = ddf->conflist;
829 ddf->conflist = v->next;
830 if (v->block_sizes)
831 free(v->block_sizes);
832 free(v);
833 }
834 while (ddf->dlist) {
835 struct dl *d = ddf->dlist;
836 ddf->dlist = d->next;
837 if (d->fd >= 0)
838 close(d->fd);
839 if (d->spare)
840 free(d->spare);
841 free(d);
842 }
843 free(ddf);
844 st->sb = NULL;
845 }
846
847 static struct supertype *match_metadata_desc_ddf(char *arg)
848 {
849 /* 'ddf' only support containers */
850 struct supertype *st;
851 if (strcmp(arg, "ddf") != 0 &&
852 strcmp(arg, "default") != 0
853 )
854 return NULL;
855
856 st = malloc(sizeof(*st));
857 memset(st, 0, sizeof(*st));
858 st->ss = &super_ddf;
859 st->max_devs = 512;
860 st->minor_version = 0;
861 st->sb = NULL;
862 return st;
863 }
864
865
866 #ifndef MDASSEMBLE
867
868 static mapping_t ddf_state[] = {
869 { "Optimal", 0},
870 { "Degraded", 1},
871 { "Deleted", 2},
872 { "Missing", 3},
873 { "Failed", 4},
874 { "Partially Optimal", 5},
875 { "-reserved-", 6},
876 { "-reserved-", 7},
877 { NULL, 0}
878 };
879
880 static mapping_t ddf_init_state[] = {
881 { "Not Initialised", 0},
882 { "QuickInit in Progress", 1},
883 { "Fully Initialised", 2},
884 { "*UNKNOWN*", 3},
885 { NULL, 0}
886 };
887 static mapping_t ddf_access[] = {
888 { "Read/Write", 0},
889 { "Reserved", 1},
890 { "Read Only", 2},
891 { "Blocked (no access)", 3},
892 { NULL ,0}
893 };
894
895 static mapping_t ddf_level[] = {
896 { "RAID0", DDF_RAID0},
897 { "RAID1", DDF_RAID1},
898 { "RAID3", DDF_RAID3},
899 { "RAID4", DDF_RAID4},
900 { "RAID5", DDF_RAID5},
901 { "RAID1E",DDF_RAID1E},
902 { "JBOD", DDF_JBOD},
903 { "CONCAT",DDF_CONCAT},
904 { "RAID5E",DDF_RAID5E},
905 { "RAID5EE",DDF_RAID5EE},
906 { "RAID6", DDF_RAID6},
907 { NULL, 0}
908 };
909 static mapping_t ddf_sec_level[] = {
910 { "Striped", DDF_2STRIPED},
911 { "Mirrored", DDF_2MIRRORED},
912 { "Concat", DDF_2CONCAT},
913 { "Spanned", DDF_2SPANNED},
914 { NULL, 0}
915 };
916 #endif
917
918 struct num_mapping {
919 int num1, num2;
920 };
921 static struct num_mapping ddf_level_num[] = {
922 { DDF_RAID0, 0 },
923 { DDF_RAID1, 1 },
924 { DDF_RAID3, LEVEL_UNSUPPORTED },
925 { DDF_RAID4, 4 },
926 { DDF_RAID5, 5 },
927 { DDF_RAID1E, LEVEL_UNSUPPORTED },
928 { DDF_JBOD, LEVEL_UNSUPPORTED },
929 { DDF_CONCAT, LEVEL_LINEAR },
930 { DDF_RAID5E, LEVEL_UNSUPPORTED },
931 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
932 { DDF_RAID6, 6},
933 { MAXINT, MAXINT }
934 };
935
936 static int map_num1(struct num_mapping *map, int num)
937 {
938 int i;
939 for (i=0 ; map[i].num1 != MAXINT; i++)
940 if (map[i].num1 == num)
941 break;
942 return map[i].num2;
943 }
944
945 #ifndef MDASSEMBLE
946 static void print_guid(char *guid, int tstamp)
947 {
948 /* A GUIDs are part (or all) ASCII and part binary.
949 * They tend to be space padded.
950 * We print the GUID in HEX, then in parentheses add
951 * any initial ASCII sequence, and a possible
952 * time stamp from bytes 16-19
953 */
954 int l = DDF_GUID_LEN;
955 int i;
956
957 for (i=0 ; i<DDF_GUID_LEN ; i++) {
958 if ((i&3)==0 && i != 0) printf(":");
959 printf("%02X", guid[i]&255);
960 }
961
962 printf(" (");
963 while (l && guid[l-1] == ' ')
964 l--;
965 for (i=0 ; i<l ; i++) {
966 if (guid[i] >= 0x20 && guid[i] < 0x7f)
967 fputc(guid[i], stdout);
968 else
969 break;
970 }
971 if (tstamp) {
972 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
973 char tbuf[100];
974 struct tm *tm;
975 tm = localtime(&then);
976 strftime(tbuf, 100, " %D %T",tm);
977 fputs(tbuf, stdout);
978 }
979 printf(")");
980 }
981
982 static void examine_vd(int n, struct ddf_super *sb, char *guid)
983 {
984 int crl = sb->conf_rec_len;
985 struct vcl *vcl;
986
987 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
988 struct vd_config *vc = &vcl->conf;
989
990 if (calc_crc(vc, crl*512) != vc->crc)
991 continue;
992 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
993 continue;
994
995 /* Ok, we know about this VD, let's give more details */
996 printf(" Raid Devices[%d] : %d\n", n,
997 __be16_to_cpu(vc->prim_elmnt_count));
998 printf(" Chunk Size[%d] : %d sectors\n", n,
999 1 << vc->chunk_shift);
1000 printf(" Raid Level[%d] : %s\n", n,
1001 map_num(ddf_level, vc->prl)?:"-unknown-");
1002 if (vc->sec_elmnt_count != 1) {
1003 printf(" Secondary Position[%d] : %d of %d\n", n,
1004 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1005 printf(" Secondary Level[%d] : %s\n", n,
1006 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1007 }
1008 printf(" Device Size[%d] : %llu\n", n,
1009 __be64_to_cpu(vc->blocks)/2);
1010 printf(" Array Size[%d] : %llu\n", n,
1011 __be64_to_cpu(vc->array_blocks)/2);
1012 }
1013 }
1014
1015 static void examine_vds(struct ddf_super *sb)
1016 {
1017 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1018 int i;
1019 printf(" Virtual Disks : %d\n", cnt);
1020
1021 for (i=0; i<cnt; i++) {
1022 struct virtual_entry *ve = &sb->virt->entries[i];
1023 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1024 printf("\n");
1025 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1026 printf(" state[%d] : %s, %s%s\n", i,
1027 map_num(ddf_state, ve->state & 7),
1028 (ve->state & 8) ? "Morphing, ": "",
1029 (ve->state & 16)? "Not Consistent" : "Consistent");
1030 printf(" init state[%d] : %s\n", i,
1031 map_num(ddf_init_state, ve->init_state&3));
1032 printf(" access[%d] : %s\n", i,
1033 map_num(ddf_access, (ve->init_state>>6) & 3));
1034 printf(" Name[%d] : %.16s\n", i, ve->name);
1035 examine_vd(i, sb, ve->guid);
1036 }
1037 if (cnt) printf("\n");
1038 }
1039
1040 static void examine_pds(struct ddf_super *sb)
1041 {
1042 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1043 int i;
1044 struct dl *dl;
1045 printf(" Physical Disks : %d\n", cnt);
1046
1047 for (i=0 ; i<cnt ; i++) {
1048 struct phys_disk_entry *pd = &sb->phys->entries[i];
1049 int type = __be16_to_cpu(pd->type);
1050 int state = __be16_to_cpu(pd->state);
1051
1052 printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1053 printf("\n");
1054 printf(" ref[%d] : %08x\n", i,
1055 __be32_to_cpu(pd->refnum));
1056 printf(" mode[%d] : %s%s%s%s%s\n", i,
1057 (type&2) ? "active":"",
1058 (type&4) ? "Global Spare":"",
1059 (type&8) ? "spare" : "",
1060 (type&16)? ", foreign" : "",
1061 (type&32)? "pass-through" : "");
1062 printf(" state[%d] : %s%s%s%s%s%s%s\n", i,
1063 (state&1)? "Online": "Offline",
1064 (state&2)? ", Failed": "",
1065 (state&4)? ", Rebuilding": "",
1066 (state&8)? ", in-transition": "",
1067 (state&16)? ", SMART errors": "",
1068 (state&32)? ", Unrecovered Read Errors": "",
1069 (state&64)? ", Missing" : "");
1070 printf(" Avail Size[%d] : %llu K\n", i,
1071 __be64_to_cpu(pd->config_size)>>1);
1072 for (dl = sb->dlist; dl ; dl = dl->next) {
1073 if (dl->disk.refnum == pd->refnum) {
1074 char *dv = map_dev(dl->major, dl->minor, 0);
1075 if (dv)
1076 printf(" Device[%d] : %s\n",
1077 i, dv);
1078 }
1079 }
1080 printf("\n");
1081 }
1082 }
1083
1084 static void examine_super_ddf(struct supertype *st, char *homehost)
1085 {
1086 struct ddf_super *sb = st->sb;
1087
1088 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1089 printf(" Version : %.8s\n", sb->anchor.revision);
1090 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1091 printf("\n");
1092 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1093 printf("\n");
1094 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1095 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1096 ?"yes" : "no");
1097 examine_vds(sb);
1098 examine_pds(sb);
1099 }
1100
1101 static void brief_examine_super_ddf(struct supertype *st)
1102 {
1103 /* We just write a generic DDF ARRAY entry
1104 * The uuid is all hex, 6 groups of 4 bytes
1105 */
1106 struct ddf_super *ddf = st->sb;
1107 int i;
1108 printf("ARRAY /dev/ddf metadata=ddf UUID=");
1109 for (i = 0; i < DDF_GUID_LEN; i++) {
1110 if ((i&3) == 0 && i != 0)
1111 printf(":");
1112 printf("%02X", 255&ddf->anchor.guid[i]);
1113 }
1114 printf("\n");
1115 }
1116
1117 static void detail_super_ddf(struct supertype *st, char *homehost)
1118 {
1119 /* FIXME later
1120 * Could print DDF GUID
1121 * Need to find which array
1122 * If whole, briefly list all arrays
1123 * If one, give name
1124 */
1125 }
1126
1127 static void brief_detail_super_ddf(struct supertype *st)
1128 {
1129 /* FIXME I really need to know which array we are detailing.
1130 * Can that be stored in ddf_super??
1131 */
1132 // struct ddf_super *ddf = st->sb;
1133 }
1134 #endif
1135
1136 static int match_home_ddf(struct supertype *st, char *homehost)
1137 {
1138 /* It matches 'this' host if the controller is a
1139 * Linux-MD controller with vendor_data matching
1140 * the hostname
1141 */
1142 struct ddf_super *ddf = st->sb;
1143 int len = strlen(homehost);
1144
1145 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1146 len < sizeof(ddf->controller.vendor_data) &&
1147 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1148 ddf->controller.vendor_data[len] == 0);
1149 }
1150
1151 static struct vd_config *find_vdcr(struct ddf_super *ddf, int inst)
1152 {
1153 struct vcl *v;
1154
1155 for (v = ddf->conflist; v; v = v->next)
1156 if (inst == v->vcnum)
1157 return &v->conf;
1158 return NULL;
1159 }
1160
1161 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1162 {
1163 /* Find the entry in phys_disk which has the given refnum
1164 * and return it's index
1165 */
1166 int i;
1167 for (i=0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1168 if (ddf->phys->entries[i].refnum == phys_refnum)
1169 return i;
1170 return -1;
1171 }
1172
1173 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1174 {
1175 /* The uuid returned here is used for:
1176 * uuid to put into bitmap file (Create, Grow)
1177 * uuid for backup header when saving critical section (Grow)
1178 * comparing uuids when re-adding a device into an array
1179 * For each of these we can make do with a truncated
1180 * or hashed uuid rather than the original, as long as
1181 * everyone agrees.
1182 * In each case the uuid required is that of the data-array,
1183 * not the device-set.
1184 * In the case of SVD we assume the BVD is of interest,
1185 * though that might be the case if a bitmap were made for
1186 * a mirrored SVD - worry about that later.
1187 * So we need to find the VD configuration record for the
1188 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1189 * The first 16 bytes of the sha1 of these is used.
1190 */
1191 struct ddf_super *ddf = st->sb;
1192 struct vcl *vcl = ddf->currentconf;
1193
1194 if (!vcl)
1195 memset(uuid, 0, sizeof (uuid));
1196 else {
1197 char buf[20];
1198 struct sha1_ctx ctx;
1199 sha1_init_ctx(&ctx);
1200 sha1_process_bytes(&vcl->conf.guid, DDF_GUID_LEN, &ctx);
1201 if (vcl->conf.sec_elmnt_count > 1)
1202 sha1_process_bytes(&vcl->conf.sec_elmnt_seq, 1, &ctx);
1203 sha1_finish_ctx(&ctx, buf);
1204 memcpy(uuid, buf, sizeof(uuid));
1205 }
1206 }
1207
1208 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info);
1209
1210 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1211 {
1212 struct ddf_super *ddf = st->sb;
1213
1214 if (ddf->currentconf) {
1215 getinfo_super_ddf_bvd(st, info);
1216 return;
1217 }
1218
1219 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1220 info->array.level = LEVEL_CONTAINER;
1221 info->array.layout = 0;
1222 info->array.md_minor = -1;
1223 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)
1224 (ddf->anchor.guid+16));
1225 info->array.utime = 0;
1226 info->array.chunk_size = 0;
1227
1228
1229 info->disk.major = 0;
1230 info->disk.minor = 0;
1231 if (ddf->dlist) {
1232 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1233 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1234
1235 info->data_offset = __be64_to_cpu(ddf->phys->
1236 entries[info->disk.raid_disk].
1237 config_size);
1238 info->component_size = ddf->dlist->size - info->data_offset;
1239 } else {
1240 info->disk.number = -1;
1241 // info->disk.raid_disk = find refnum in the table and use index;
1242 }
1243 info->disk.state = (1 << MD_DISK_SYNC);
1244
1245
1246 info->reshape_active = 0;
1247
1248 strcpy(info->text_version, "ddf");
1249
1250 // uuid_from_super_ddf(info->uuid, sbv);
1251
1252 // info->name[] ?? ;
1253 }
1254
1255 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1256
1257 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1258 {
1259 struct ddf_super *ddf = st->sb;
1260 struct vcl *vc = ddf->currentconf;
1261 int cd = ddf->currentdev;
1262
1263 /* FIXME this returns BVD info - what if we want SVD ?? */
1264
1265 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1266 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1267 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1268 info->array.raid_disks);
1269 info->array.md_minor = -1;
1270 info->array.ctime = DECADE +
1271 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
1272 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1273 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1274
1275 if (cd >= 0 && cd < ddf->mppe) {
1276 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1277 if (vc->block_sizes)
1278 info->component_size = vc->block_sizes[cd];
1279 else
1280 info->component_size = __be64_to_cpu(vc->conf.blocks);
1281 }
1282
1283 info->disk.major = 0;
1284 info->disk.minor = 0;
1285 // info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1286 // info->disk.raid_disk = find refnum in the table and use index;
1287 // info->disk.state = ???;
1288
1289 info->resync_start = 0;
1290 if (!(ddf->virt->entries[info->container_member].state
1291 & DDF_state_inconsistent) &&
1292 (ddf->virt->entries[info->container_member].init_state
1293 & DDF_initstate_mask)
1294 == DDF_init_full)
1295 info->resync_start = ~0ULL;
1296
1297 uuid_from_super_ddf(st, info->uuid);
1298
1299 info->container_member = atoi(st->subarray);
1300 sprintf(info->text_version, "/%s/%s",
1301 devnum2devname(st->container_dev),
1302 st->subarray);
1303
1304 // info->name[] ?? ;
1305 }
1306
1307
1308 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1309 char *update,
1310 char *devname, int verbose,
1311 int uuid_set, char *homehost)
1312 {
1313 /* For 'assemble' and 'force' we need to return non-zero if any
1314 * change was made. For others, the return value is ignored.
1315 * Update options are:
1316 * force-one : This device looks a bit old but needs to be included,
1317 * update age info appropriately.
1318 * assemble: clear any 'faulty' flag to allow this device to
1319 * be assembled.
1320 * force-array: Array is degraded but being forced, mark it clean
1321 * if that will be needed to assemble it.
1322 *
1323 * newdev: not used ????
1324 * grow: Array has gained a new device - this is currently for
1325 * linear only
1326 * resync: mark as dirty so a resync will happen.
1327 * uuid: Change the uuid of the array to match what is given
1328 * homehost: update the recorded homehost
1329 * name: update the name - preserving the homehost
1330 * _reshape_progress: record new reshape_progress position.
1331 *
1332 * Following are not relevant for this version:
1333 * sparc2.2 : update from old dodgey metadata
1334 * super-minor: change the preferred_minor number
1335 * summaries: update redundant counters.
1336 */
1337 int rv = 0;
1338 // struct ddf_super *ddf = st->sb;
1339 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1340 // struct virtual_entry *ve = find_ve(ddf);
1341
1342 /* we don't need to handle "force-*" or "assemble" as
1343 * there is no need to 'trick' the kernel. We the metadata is
1344 * first updated to activate the array, all the implied modifications
1345 * will just happen.
1346 */
1347
1348 if (strcmp(update, "grow") == 0) {
1349 /* FIXME */
1350 }
1351 if (strcmp(update, "resync") == 0) {
1352 // info->resync_checkpoint = 0;
1353 }
1354 /* We ignore UUID updates as they make even less sense
1355 * with DDF
1356 */
1357 if (strcmp(update, "homehost") == 0) {
1358 /* homehost is stored in controller->vendor_data,
1359 * or it is when we are the vendor
1360 */
1361 // if (info->vendor_is_local)
1362 // strcpy(ddf->controller.vendor_data, homehost);
1363 }
1364 if (strcmp(update, "name") == 0) {
1365 /* name is stored in virtual_entry->name */
1366 // memset(ve->name, ' ', 16);
1367 // strncpy(ve->name, info->name, 16);
1368 }
1369 if (strcmp(update, "_reshape_progress") == 0) {
1370 /* We don't support reshape yet */
1371 }
1372
1373 // update_all_csum(ddf);
1374
1375 return rv;
1376 }
1377
1378 static void make_header_guid(char *guid)
1379 {
1380 __u32 stamp;
1381 int rfd;
1382 /* Create a DDF Header of Virtual Disk GUID */
1383
1384 /* 24 bytes of fiction required.
1385 * first 8 are a 'vendor-id' - "Linux-MD"
1386 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1387 * Remaining 8 random number plus timestamp
1388 */
1389 memcpy(guid, T10, sizeof(T10));
1390 stamp = __cpu_to_be32(0xdeadbeef);
1391 memcpy(guid+8, &stamp, 4);
1392 stamp = __cpu_to_be32(0);
1393 memcpy(guid+12, &stamp, 4);
1394 stamp = __cpu_to_be32(time(0) - DECADE);
1395 memcpy(guid+16, &stamp, 4);
1396 rfd = open("/dev/urandom", O_RDONLY);
1397 if (rfd < 0 || read(rfd, &stamp, 4) != 4)
1398 stamp = random();
1399 memcpy(guid+20, &stamp, 4);
1400 if (rfd >= 0) close(rfd);
1401 }
1402
1403 static int init_super_ddf_bvd(struct supertype *st,
1404 mdu_array_info_t *info,
1405 unsigned long long size,
1406 char *name, char *homehost,
1407 int *uuid);
1408
1409 static int init_super_ddf(struct supertype *st,
1410 mdu_array_info_t *info,
1411 unsigned long long size, char *name, char *homehost,
1412 int *uuid)
1413 {
1414 /* This is primarily called by Create when creating a new array.
1415 * We will then get add_to_super called for each component, and then
1416 * write_init_super called to write it out to each device.
1417 * For DDF, Create can create on fresh devices or on a pre-existing
1418 * array.
1419 * To create on a pre-existing array a different method will be called.
1420 * This one is just for fresh drives.
1421 *
1422 * We need to create the entire 'ddf' structure which includes:
1423 * DDF headers - these are easy.
1424 * Controller data - a Sector describing this controller .. not that
1425 * this is a controller exactly.
1426 * Physical Disk Record - one entry per device, so
1427 * leave plenty of space.
1428 * Virtual Disk Records - again, just leave plenty of space.
1429 * This just lists VDs, doesn't give details
1430 * Config records - describes the VDs that use this disk
1431 * DiskData - describes 'this' device.
1432 * BadBlockManagement - empty
1433 * Diag Space - empty
1434 * Vendor Logs - Could we put bitmaps here?
1435 *
1436 */
1437 struct ddf_super *ddf;
1438 char hostname[17];
1439 int hostlen;
1440 int max_phys_disks, max_virt_disks;
1441 unsigned long long sector;
1442 int clen;
1443 int i;
1444 int pdsize, vdsize;
1445 struct phys_disk *pd;
1446 struct virtual_disk *vd;
1447
1448 if (!info) {
1449 st->sb = NULL;
1450 return 0;
1451 }
1452 if (st->sb)
1453 return init_super_ddf_bvd(st, info, size, name, homehost,
1454 uuid);
1455
1456 posix_memalign((void**)&ddf, 512, sizeof(*ddf));
1457 memset(ddf, 0, sizeof(*ddf));
1458 ddf->dlist = NULL; /* no physical disks yet */
1459 ddf->conflist = NULL; /* No virtual disks yet */
1460
1461 /* At least 32MB *must* be reserved for the ddf. So let's just
1462 * start 32MB from the end, and put the primary header there.
1463 * Don't do secondary for now.
1464 * We don't know exactly where that will be yet as it could be
1465 * different on each device. To just set up the lengths.
1466 *
1467 */
1468
1469 ddf->anchor.magic = DDF_HEADER_MAGIC;
1470 make_header_guid(ddf->anchor.guid);
1471
1472 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1473 ddf->anchor.seq = __cpu_to_be32(1);
1474 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1475 ddf->anchor.openflag = 0xFF;
1476 ddf->anchor.foreignflag = 0;
1477 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1478 ddf->anchor.pad0 = 0xff;
1479 memset(ddf->anchor.pad1, 0xff, 12);
1480 memset(ddf->anchor.header_ext, 0xff, 32);
1481 ddf->anchor.primary_lba = ~(__u64)0;
1482 ddf->anchor.secondary_lba = ~(__u64)0;
1483 ddf->anchor.type = DDF_HEADER_ANCHOR;
1484 memset(ddf->anchor.pad2, 0xff, 3);
1485 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1486 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1487 of 32M reserved.. */
1488 max_phys_disks = 1023; /* Should be enough */
1489 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1490 max_virt_disks = 255;
1491 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1492 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1493 ddf->max_part = 64;
1494 ddf->mppe = 256;
1495 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1496 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1497 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1498 memset(ddf->anchor.pad3, 0xff, 54);
1499 /* controller sections is one sector long immediately
1500 * after the ddf header */
1501 sector = 1;
1502 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1503 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1504 sector += 1;
1505
1506 /* phys is 8 sectors after that */
1507 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1508 sizeof(struct phys_disk_entry)*max_phys_disks,
1509 512);
1510 switch(pdsize/512) {
1511 case 2: case 8: case 32: case 128: case 512: break;
1512 default: abort();
1513 }
1514 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1515 ddf->anchor.phys_section_length =
1516 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1517 sector += pdsize/512;
1518
1519 /* virt is another 32 sectors */
1520 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1521 sizeof(struct virtual_entry) * max_virt_disks,
1522 512);
1523 switch(vdsize/512) {
1524 case 2: case 8: case 32: case 128: case 512: break;
1525 default: abort();
1526 }
1527 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1528 ddf->anchor.virt_section_length =
1529 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1530 sector += vdsize/512;
1531
1532 clen = ddf->conf_rec_len * (ddf->max_part+1);
1533 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1534 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1535 sector += clen;
1536
1537 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1538 ddf->anchor.data_section_length = __cpu_to_be32(1);
1539 sector += 1;
1540
1541 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1542 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1543 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1544 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1545 ddf->anchor.vendor_length = __cpu_to_be32(0);
1546 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1547
1548 memset(ddf->anchor.pad4, 0xff, 256);
1549
1550 memcpy(&ddf->primary, &ddf->anchor, 512);
1551 memcpy(&ddf->secondary, &ddf->anchor, 512);
1552
1553 ddf->primary.openflag = 1; /* I guess.. */
1554 ddf->primary.type = DDF_HEADER_PRIMARY;
1555
1556 ddf->secondary.openflag = 1; /* I guess.. */
1557 ddf->secondary.type = DDF_HEADER_SECONDARY;
1558
1559 ddf->active = &ddf->primary;
1560
1561 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1562
1563 /* 24 more bytes of fiction required.
1564 * first 8 are a 'vendor-id' - "Linux-MD"
1565 * Remaining 16 are serial number.... maybe a hostname would do?
1566 */
1567 memcpy(ddf->controller.guid, T10, sizeof(T10));
1568 gethostname(hostname, sizeof(hostname));
1569 hostname[sizeof(hostname) - 1] = 0;
1570 hostlen = strlen(hostname);
1571 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1572 for (i = strlen(T10) ; i+hostlen < 24; i++)
1573 ddf->controller.guid[i] = ' ';
1574
1575 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1576 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1577 ddf->controller.type.sub_vendor_id = 0;
1578 ddf->controller.type.sub_device_id = 0;
1579 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1580 memset(ddf->controller.pad, 0xff, 8);
1581 memset(ddf->controller.vendor_data, 0xff, 448);
1582
1583 posix_memalign((void**)&pd, 512, pdsize);
1584 ddf->phys = pd;
1585 ddf->pdsize = pdsize;
1586
1587 memset(pd, 0xff, pdsize);
1588 memset(pd, 0, sizeof(*pd));
1589 pd->magic = DDF_PHYS_DATA_MAGIC;
1590 pd->used_pdes = __cpu_to_be16(0);
1591 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1592 memset(pd->pad, 0xff, 52);
1593
1594 posix_memalign((void**)&vd, 512, vdsize);
1595 ddf->virt = vd;
1596 ddf->vdsize = vdsize;
1597 memset(vd, 0, vdsize);
1598 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1599 vd->populated_vdes = __cpu_to_be16(0);
1600 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1601 memset(vd->pad, 0xff, 52);
1602
1603 for (i=0; i<max_virt_disks; i++)
1604 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1605
1606 st->sb = ddf;
1607 ddf->updates_pending = 1;
1608 return 1;
1609 }
1610
1611 static int all_ff(char *guid)
1612 {
1613 int i;
1614 for (i = 0; i < DDF_GUID_LEN; i++)
1615 if (guid[i] != (char)0xff)
1616 return 0;
1617 return 1;
1618 }
1619 static int chunk_to_shift(int chunksize)
1620 {
1621 return ffs(chunksize/512)-1;
1622 }
1623
1624 static int level_to_prl(int level)
1625 {
1626 switch (level) {
1627 case LEVEL_LINEAR: return DDF_CONCAT;
1628 case 0: return DDF_RAID0;
1629 case 1: return DDF_RAID1;
1630 case 4: return DDF_RAID4;
1631 case 5: return DDF_RAID5;
1632 case 6: return DDF_RAID6;
1633 default: return -1;
1634 }
1635 }
1636 static int layout_to_rlq(int level, int layout, int raiddisks)
1637 {
1638 switch(level) {
1639 case 0:
1640 return DDF_RAID0_SIMPLE;
1641 case 1:
1642 switch(raiddisks) {
1643 case 2: return DDF_RAID1_SIMPLE;
1644 case 3: return DDF_RAID1_MULTI;
1645 default: return -1;
1646 }
1647 case 4:
1648 switch(layout) {
1649 case 0: return DDF_RAID4_N;
1650 }
1651 break;
1652 case 5:
1653 case 6:
1654 switch(layout) {
1655 case ALGORITHM_LEFT_ASYMMETRIC:
1656 return DDF_RAID5_N_RESTART;
1657 case ALGORITHM_RIGHT_ASYMMETRIC:
1658 if (level == 5)
1659 return DDF_RAID5_0_RESTART;
1660 else
1661 return DDF_RAID6_0_RESTART;
1662 case ALGORITHM_LEFT_SYMMETRIC:
1663 return DDF_RAID5_N_CONTINUE;
1664 case ALGORITHM_RIGHT_SYMMETRIC:
1665 return -1; /* not mentioned in standard */
1666 }
1667 }
1668 return -1;
1669 }
1670
1671 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1672 {
1673 switch(prl) {
1674 case DDF_RAID0:
1675 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1676 case DDF_RAID1:
1677 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1678 on raiddisks*/
1679 case DDF_RAID4:
1680 switch(rlq) {
1681 case DDF_RAID4_N:
1682 return 0;
1683 default:
1684 /* not supported */
1685 return -1; /* FIXME this isn't checked */
1686 }
1687 case DDF_RAID5:
1688 switch(rlq) {
1689 case DDF_RAID5_N_RESTART:
1690 return ALGORITHM_LEFT_ASYMMETRIC;
1691 case DDF_RAID5_0_RESTART:
1692 return ALGORITHM_RIGHT_ASYMMETRIC;
1693 case DDF_RAID5_N_CONTINUE:
1694 return ALGORITHM_LEFT_SYMMETRIC;
1695 default:
1696 return -1;
1697 }
1698 case DDF_RAID6:
1699 switch(rlq) {
1700 case DDF_RAID5_N_RESTART:
1701 return ALGORITHM_LEFT_ASYMMETRIC;
1702 case DDF_RAID6_0_RESTART:
1703 return ALGORITHM_RIGHT_ASYMMETRIC;
1704 case DDF_RAID5_N_CONTINUE:
1705 return ALGORITHM_LEFT_SYMMETRIC;
1706 default:
1707 return -1;
1708 }
1709 }
1710 return -1;
1711 }
1712
1713 struct extent {
1714 unsigned long long start, size;
1715 };
1716 static int cmp_extent(const void *av, const void *bv)
1717 {
1718 const struct extent *a = av;
1719 const struct extent *b = bv;
1720 if (a->start < b->start)
1721 return -1;
1722 if (a->start > b->start)
1723 return 1;
1724 return 0;
1725 }
1726
1727 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1728 {
1729 /* find a list of used extents on the give physical device
1730 * (dnum) of the given ddf.
1731 * Return a malloced array of 'struct extent'
1732
1733 FIXME ignore DDF_Legacy devices?
1734
1735 */
1736 struct extent *rv;
1737 int n = 0;
1738 int i, j;
1739
1740 rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1741 if (!rv)
1742 return NULL;
1743
1744 for (i = 0; i < ddf->max_part; i++) {
1745 struct vcl *v = dl->vlist[i];
1746 if (v == NULL)
1747 continue;
1748 for (j=0; j < v->conf.prim_elmnt_count; j++)
1749 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1750 /* This device plays role 'j' in 'v'. */
1751 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1752 rv[n].size = __be64_to_cpu(v->conf.blocks);
1753 n++;
1754 break;
1755 }
1756 }
1757 qsort(rv, n, sizeof(*rv), cmp_extent);
1758
1759 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1760 rv[n].size = 0;
1761 return rv;
1762 }
1763
1764 static int init_super_ddf_bvd(struct supertype *st,
1765 mdu_array_info_t *info,
1766 unsigned long long size,
1767 char *name, char *homehost,
1768 int *uuid)
1769 {
1770 /* We are creating a BVD inside a pre-existing container.
1771 * so st->sb is already set.
1772 * We need to create a new vd_config and a new virtual_entry
1773 */
1774 struct ddf_super *ddf = st->sb;
1775 int venum;
1776 struct virtual_entry *ve;
1777 struct vcl *vcl;
1778 struct vd_config *vc;
1779
1780 if (__be16_to_cpu(ddf->virt->populated_vdes)
1781 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1782 fprintf(stderr, Name": This ddf already has the "
1783 "maximum of %d virtual devices\n",
1784 __be16_to_cpu(ddf->virt->max_vdes));
1785 return 0;
1786 }
1787
1788 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1789 if (all_ff(ddf->virt->entries[venum].guid))
1790 break;
1791 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1792 fprintf(stderr, Name ": Cannot find spare slot for "
1793 "virtual disk - DDF is corrupt\n");
1794 return 0;
1795 }
1796 ve = &ddf->virt->entries[venum];
1797
1798 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1799 * timestamp, random number
1800 */
1801 make_header_guid(ve->guid);
1802 ve->unit = __cpu_to_be16(info->md_minor);
1803 ve->pad0 = 0xFFFF;
1804 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1805 ve->type = 0;
1806 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1807 if (info->state & 1) /* clean */
1808 ve->init_state = DDF_init_full;
1809 else
1810 ve->init_state = DDF_init_not;
1811
1812 memset(ve->pad1, 0xff, 14);
1813 memset(ve->name, ' ', 16);
1814 if (name)
1815 strncpy(ve->name, name, 16);
1816 ddf->virt->populated_vdes =
1817 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
1818
1819 /* Now create a new vd_config */
1820 posix_memalign((void**)&vcl, 512,
1821 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512));
1822 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
1823 vcl->vcnum = venum;
1824 sprintf(st->subarray, "%d", venum);
1825 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
1826
1827 vc = &vcl->conf;
1828
1829 vc->magic = DDF_VD_CONF_MAGIC;
1830 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
1831 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
1832 vc->seqnum = __cpu_to_be32(1);
1833 memset(vc->pad0, 0xff, 24);
1834 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
1835 vc->chunk_shift = chunk_to_shift(info->chunk_size);
1836 vc->prl = level_to_prl(info->level);
1837 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
1838 vc->sec_elmnt_count = 1;
1839 vc->sec_elmnt_seq = 0;
1840 vc->srl = 0;
1841 vc->blocks = __cpu_to_be64(info->size * 2);
1842 vc->array_blocks = __cpu_to_be64(
1843 calc_array_size(info->level, info->raid_disks, info->layout,
1844 info->chunk_size, info->size*2));
1845 memset(vc->pad1, 0xff, 8);
1846 vc->spare_refs[0] = 0xffffffff;
1847 vc->spare_refs[1] = 0xffffffff;
1848 vc->spare_refs[2] = 0xffffffff;
1849 vc->spare_refs[3] = 0xffffffff;
1850 vc->spare_refs[4] = 0xffffffff;
1851 vc->spare_refs[5] = 0xffffffff;
1852 vc->spare_refs[6] = 0xffffffff;
1853 vc->spare_refs[7] = 0xffffffff;
1854 memset(vc->cache_pol, 0, 8);
1855 vc->bg_rate = 0x80;
1856 memset(vc->pad2, 0xff, 3);
1857 memset(vc->pad3, 0xff, 52);
1858 memset(vc->pad4, 0xff, 192);
1859 memset(vc->v0, 0xff, 32);
1860 memset(vc->v1, 0xff, 32);
1861 memset(vc->v2, 0xff, 16);
1862 memset(vc->v3, 0xff, 16);
1863 memset(vc->vendor, 0xff, 32);
1864
1865 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
1866 memset(vc->phys_refnum+(ddf->mppe * 4), 0x00, 8*ddf->mppe);
1867
1868 vcl->next = ddf->conflist;
1869 ddf->conflist = vcl;
1870 ddf->currentconf = vcl;
1871 ddf->updates_pending = 1;
1872 return 1;
1873 }
1874
1875 static void add_to_super_ddf_bvd(struct supertype *st,
1876 mdu_disk_info_t *dk, int fd, char *devname)
1877 {
1878 /* fd and devname identify a device with-in the ddf container (st).
1879 * dk identifies a location in the new BVD.
1880 * We need to find suitable free space in that device and update
1881 * the phys_refnum and lba_offset for the newly created vd_config.
1882 * We might also want to update the type in the phys_disk
1883 * section.
1884 */
1885 struct dl *dl;
1886 struct ddf_super *ddf = st->sb;
1887 struct vd_config *vc;
1888 __u64 *lba_offset;
1889 int working;
1890 int i;
1891 unsigned long long blocks, pos, esize;
1892 struct extent *ex;
1893
1894 for (dl = ddf->dlist; dl ; dl = dl->next)
1895 if (dl->major == dk->major &&
1896 dl->minor == dk->minor)
1897 break;
1898 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1899 return;
1900
1901 vc = &ddf->currentconf->conf;
1902 lba_offset = ddf->currentconf->lba_offset;
1903
1904 ex = get_extents(ddf, dl);
1905 if (!ex)
1906 return;
1907
1908 i = 0; pos = 0;
1909 blocks = __be64_to_cpu(vc->blocks);
1910 if (ddf->currentconf->block_sizes)
1911 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
1912
1913 do {
1914 esize = ex[i].start - pos;
1915 if (esize >= blocks)
1916 break;
1917 pos = ex[i].start + ex[i].size;
1918 i++;
1919 } while (ex[i-1].size);
1920
1921 free(ex);
1922 if (esize < blocks)
1923 return;
1924
1925 ddf->currentdev = dk->raid_disk;
1926 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
1927 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
1928
1929 for (i=0; i < ddf->max_part ; i++)
1930 if (dl->vlist[i] == NULL)
1931 break;
1932 if (i == ddf->max_part)
1933 return;
1934 dl->vlist[i] = ddf->currentconf;
1935
1936 dl->fd = fd;
1937 dl->devname = devname;
1938
1939 /* Check how many working raid_disks, and if we can mark
1940 * array as optimal yet
1941 */
1942 working = 0;
1943
1944 for (i=0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
1945 if (vc->phys_refnum[i] != 0xffffffff)
1946 working++;
1947
1948 /* Find which virtual_entry */
1949 i = ddf->currentconf->vcnum;
1950 if (working == __be16_to_cpu(vc->prim_elmnt_count))
1951 ddf->virt->entries[i].state =
1952 (ddf->virt->entries[i].state & ~DDF_state_mask)
1953 | DDF_state_optimal;
1954
1955 if (vc->prl == DDF_RAID6 &&
1956 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
1957 ddf->virt->entries[i].state =
1958 (ddf->virt->entries[i].state & ~DDF_state_mask)
1959 | DDF_state_part_optimal;
1960
1961 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
1962 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
1963 ddf->updates_pending = 1;
1964 }
1965
1966 /* add a device to a container, either while creating it or while
1967 * expanding a pre-existing container
1968 */
1969 static void add_to_super_ddf(struct supertype *st,
1970 mdu_disk_info_t *dk, int fd, char *devname)
1971 {
1972 struct ddf_super *ddf = st->sb;
1973 struct dl *dd;
1974 time_t now;
1975 struct tm *tm;
1976 unsigned long long size;
1977 struct phys_disk_entry *pde;
1978 int n, i;
1979 struct stat stb;
1980
1981 if (ddf->currentconf) {
1982 add_to_super_ddf_bvd(st, dk, fd, devname);
1983 return;
1984 }
1985
1986 /* This is device numbered dk->number. We need to create
1987 * a phys_disk entry and a more detailed disk_data entry.
1988 */
1989 fstat(fd, &stb);
1990 posix_memalign((void**)&dd, 512,
1991 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part);
1992 dd->major = major(stb.st_rdev);
1993 dd->minor = minor(stb.st_rdev);
1994 dd->devname = devname;
1995 dd->next = ddf->dlist;
1996 dd->fd = fd;
1997 dd->spare = NULL;
1998
1999 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2000 now = time(0);
2001 tm = localtime(&now);
2002 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2003 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2004 *(__u32*)(dd->disk.guid + 16) = random();
2005 *(__u32*)(dd->disk.guid + 20) = random();
2006
2007 do {
2008 /* Cannot be bothered finding a CRC of some irrelevant details*/
2009 dd->disk.refnum = random();
2010 for (i = __be16_to_cpu(ddf->active->max_pd_entries) - 1;
2011 i >= 0; i--)
2012 if (ddf->phys->entries[i].refnum == dd->disk.refnum)
2013 break;
2014 } while (i >= 0);
2015
2016 dd->disk.forced_ref = 1;
2017 dd->disk.forced_guid = 1;
2018 memset(dd->disk.vendor, ' ', 32);
2019 memcpy(dd->disk.vendor, "Linux", 5);
2020 memset(dd->disk.pad, 0xff, 442);
2021 for (i = 0; i < ddf->max_part ; i++)
2022 dd->vlist[i] = NULL;
2023
2024 n = __be16_to_cpu(ddf->phys->used_pdes);
2025 pde = &ddf->phys->entries[n];
2026 dd->pdnum = n;
2027
2028 n++;
2029 ddf->phys->used_pdes = __cpu_to_be16(n);
2030
2031 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2032 pde->refnum = dd->disk.refnum;
2033 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2034 pde->state = __cpu_to_be16(DDF_Online);
2035 get_dev_size(fd, NULL, &size);
2036 /* We are required to reserve 32Meg, and record the size in sectors */
2037 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2038 sprintf(pde->path, "%17.17s","Information: nil") ;
2039 memset(pde->pad, 0xff, 6);
2040
2041 dd->size = size >> 9;
2042 ddf->dlist = dd;
2043 ddf->updates_pending = 1;
2044 }
2045
2046 /*
2047 * This is the write_init_super method for a ddf container. It is
2048 * called when creating a container or adding another device to a
2049 * container.
2050 */
2051
2052 #ifndef MDASSEMBLE
2053
2054 static unsigned char null_conf[4096+512];
2055
2056 static int __write_init_super_ddf(struct supertype *st, int do_close)
2057 {
2058
2059 struct ddf_super *ddf = st->sb;
2060 int i;
2061 struct dl *d;
2062 int n_config;
2063 int conf_size;
2064
2065 unsigned long long size, sector;
2066
2067 for (d = ddf->dlist; d; d=d->next) {
2068 int fd = d->fd;
2069
2070 if (fd < 0)
2071 continue;
2072
2073 /* We need to fill in the primary, (secondary) and workspace
2074 * lba's in the headers, set their checksums,
2075 * Also checksum phys, virt....
2076 *
2077 * Then write everything out, finally the anchor is written.
2078 */
2079 get_dev_size(fd, NULL, &size);
2080 size /= 512;
2081 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2082 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2083 ddf->anchor.seq = __cpu_to_be32(1);
2084 memcpy(&ddf->primary, &ddf->anchor, 512);
2085 memcpy(&ddf->secondary, &ddf->anchor, 512);
2086
2087 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2088 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2089 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2090
2091 ddf->primary.openflag = 0;
2092 ddf->primary.type = DDF_HEADER_PRIMARY;
2093
2094 ddf->secondary.openflag = 0;
2095 ddf->secondary.type = DDF_HEADER_SECONDARY;
2096
2097 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2098 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2099
2100 sector = size - 16*1024*2;
2101 lseek64(fd, sector<<9, 0);
2102 write(fd, &ddf->primary, 512);
2103
2104 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2105 write(fd, &ddf->controller, 512);
2106
2107 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2108
2109 write(fd, ddf->phys, ddf->pdsize);
2110
2111 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2112 write(fd, ddf->virt, ddf->vdsize);
2113
2114 /* Now write lots of config records. */
2115 n_config = ddf->max_part;
2116 conf_size = ddf->conf_rec_len * 512;
2117 for (i = 0 ; i <= n_config ; i++) {
2118 struct vcl *c = d->vlist[i];
2119 if (i == n_config)
2120 c = (struct vcl*)d->spare;
2121
2122 if (c) {
2123 c->conf.crc = calc_crc(&c->conf, conf_size);
2124 write(fd, &c->conf, conf_size);
2125 } else {
2126 char *null_aligned = (char*)((((unsigned long)null_conf)+511)&~511UL);
2127 if (null_conf[0] != 0xff)
2128 memset(null_conf, 0xff, sizeof(null_conf));
2129 int togo = conf_size;
2130 while (togo > sizeof(null_conf)-512) {
2131 write(fd, null_aligned, sizeof(null_conf)-512);
2132 togo -= sizeof(null_conf)-512;
2133 }
2134 write(fd, null_aligned, togo);
2135 }
2136 }
2137 d->disk.crc = calc_crc(&d->disk, 512);
2138 write(fd, &d->disk, 512);
2139
2140 /* Maybe do the same for secondary */
2141
2142 lseek64(fd, (size-1)*512, SEEK_SET);
2143 write(fd, &ddf->anchor, 512);
2144 if (do_close) {
2145 close(fd);
2146 d->fd = -1;
2147 }
2148 }
2149 return 1;
2150 }
2151
2152 static int write_init_super_ddf(struct supertype *st)
2153 {
2154
2155 if (st->update_tail) {
2156 /* queue the virtual_disk and vd_config as metadata updates */
2157 struct virtual_disk *vd;
2158 struct vd_config *vc;
2159 struct ddf_super *ddf = st->sb;
2160 int len;
2161
2162 /* First the virtual disk. We have a slightly fake header */
2163 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2164 vd = malloc(len);
2165 *vd = *ddf->virt;
2166 vd->entries[0] = ddf->virt->entries[ddf->currentconf->vcnum];
2167 vd->populated_vdes = __cpu_to_be16(ddf->currentconf->vcnum);
2168 append_metadata_update(st, vd, len);
2169
2170 /* Then the vd_config */
2171 len = ddf->conf_rec_len * 512;
2172 vc = malloc(len);
2173 memcpy(vc, &ddf->currentconf->conf, len);
2174 append_metadata_update(st, vc, len);
2175
2176 /* FIXME I need to close the fds! */
2177 return 0;
2178 } else
2179 return __write_init_super_ddf(st, 1);
2180 }
2181
2182 #endif
2183
2184 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2185 {
2186 /* We must reserve the last 32Meg */
2187 if (devsize <= 32*1024*2)
2188 return 0;
2189 return devsize - 32*1024*2;
2190 }
2191
2192 #ifndef MDASSEMBLE
2193 static int
2194 validate_geometry_ddf_container(struct supertype *st,
2195 int level, int layout, int raiddisks,
2196 int chunk, unsigned long long size,
2197 char *dev, unsigned long long *freesize,
2198 int verbose);
2199
2200 static int validate_geometry_ddf_bvd(struct supertype *st,
2201 int level, int layout, int raiddisks,
2202 int chunk, unsigned long long size,
2203 char *dev, unsigned long long *freesize,
2204 int verbose);
2205
2206 static int validate_geometry_ddf(struct supertype *st,
2207 int level, int layout, int raiddisks,
2208 int chunk, unsigned long long size,
2209 char *dev, unsigned long long *freesize,
2210 int verbose)
2211 {
2212 int fd;
2213 struct mdinfo *sra;
2214 int cfd;
2215
2216 /* ddf potentially supports lots of things, but it depends on
2217 * what devices are offered (and maybe kernel version?)
2218 * If given unused devices, we will make a container.
2219 * If given devices in a container, we will make a BVD.
2220 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2221 */
2222
2223 if (level == LEVEL_CONTAINER) {
2224 /* Must be a fresh device to add to a container */
2225 return validate_geometry_ddf_container(st, level, layout,
2226 raiddisks, chunk,
2227 size, dev, freesize,
2228 verbose);
2229 }
2230
2231 if (st->sb) {
2232 /* A container has already been opened, so we are
2233 * creating in there. Maybe a BVD, maybe an SVD.
2234 * Should make a distinction one day.
2235 */
2236 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2237 chunk, size, dev, freesize,
2238 verbose);
2239 }
2240 if (!dev) {
2241 /* Initial sanity check. Exclude illegal levels. */
2242 int i;
2243 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2244 if (ddf_level_num[i].num2 == level)
2245 break;
2246 if (ddf_level_num[i].num1 == MAXINT)
2247 return 0;
2248 /* Should check layout? etc */
2249 return 1;
2250 }
2251
2252 /* This is the first device for the array.
2253 * If it is a container, we read it in and do automagic allocations,
2254 * no other devices should be given.
2255 * Otherwise it must be a member device of a container, and we
2256 * do manual allocation.
2257 * Later we should check for a BVD and make an SVD.
2258 */
2259 fd = open(dev, O_RDONLY|O_EXCL, 0);
2260 if (fd >= 0) {
2261 sra = sysfs_read(fd, 0, GET_VERSION);
2262 close(fd);
2263 if (sra && sra->array.major_version == -1 &&
2264 strcmp(sra->text_version, "ddf") == 0) {
2265
2266 /* load super */
2267 /* find space for 'n' devices. */
2268 /* remember the devices */
2269 /* Somehow return the fact that we have enough */
2270 }
2271
2272 if (verbose)
2273 fprintf(stderr,
2274 Name ": ddf: Cannot create this array "
2275 "on device %s\n",
2276 dev);
2277 return 0;
2278 }
2279 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2280 if (verbose)
2281 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2282 dev, strerror(errno));
2283 return 0;
2284 }
2285 /* Well, it is in use by someone, maybe a 'ddf' container. */
2286 cfd = open_container(fd);
2287 if (cfd < 0) {
2288 close(fd);
2289 if (verbose)
2290 fprintf(stderr, Name ": ddf: Cannot use %s: %s\n",
2291 dev, strerror(EBUSY));
2292 return 0;
2293 }
2294 sra = sysfs_read(cfd, 0, GET_VERSION);
2295 close(fd);
2296 if (sra && sra->array.major_version == -1 &&
2297 strcmp(sra->text_version, "ddf") == 0) {
2298 /* This is a member of a ddf container. Load the container
2299 * and try to create a bvd
2300 */
2301 struct ddf_super *ddf;
2302 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
2303 st->sb = ddf;
2304 st->container_dev = fd2devnum(cfd);
2305 close(cfd);
2306 return validate_geometry_ddf_bvd(st, level, layout,
2307 raiddisks, chunk, size,
2308 dev, freesize,
2309 verbose);
2310 }
2311 close(cfd);
2312 } else /* device may belong to a different container */
2313 return 0;
2314
2315 return 1;
2316 }
2317
2318 static int
2319 validate_geometry_ddf_container(struct supertype *st,
2320 int level, int layout, int raiddisks,
2321 int chunk, unsigned long long size,
2322 char *dev, unsigned long long *freesize,
2323 int verbose)
2324 {
2325 int fd;
2326 unsigned long long ldsize;
2327
2328 if (level != LEVEL_CONTAINER)
2329 return 0;
2330 if (!dev)
2331 return 1;
2332
2333 fd = open(dev, O_RDONLY|O_EXCL, 0);
2334 if (fd < 0) {
2335 if (verbose)
2336 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2337 dev, strerror(errno));
2338 return 0;
2339 }
2340 if (!get_dev_size(fd, dev, &ldsize)) {
2341 close(fd);
2342 return 0;
2343 }
2344 close(fd);
2345
2346 *freesize = avail_size_ddf(st, ldsize >> 9);
2347
2348 return 1;
2349 }
2350
2351 static int validate_geometry_ddf_bvd(struct supertype *st,
2352 int level, int layout, int raiddisks,
2353 int chunk, unsigned long long size,
2354 char *dev, unsigned long long *freesize,
2355 int verbose)
2356 {
2357 struct stat stb;
2358 struct ddf_super *ddf = st->sb;
2359 struct dl *dl;
2360 unsigned long long pos = 0;
2361 unsigned long long maxsize;
2362 struct extent *e;
2363 int i;
2364 /* ddf/bvd supports lots of things, but not containers */
2365 if (level == LEVEL_CONTAINER)
2366 return 0;
2367 /* We must have the container info already read in. */
2368 if (!ddf)
2369 return 0;
2370
2371 if (!dev) {
2372 /* General test: make sure there is space for
2373 * 'raiddisks' device extents of size 'size'.
2374 */
2375 unsigned long long minsize = size;
2376 int dcnt = 0;
2377 if (minsize == 0)
2378 minsize = 8;
2379 for (dl = ddf->dlist; dl ; dl = dl->next)
2380 {
2381 int found = 0;
2382 pos = 0;
2383
2384 i = 0;
2385 e = get_extents(ddf, dl);
2386 if (!e) continue;
2387 do {
2388 unsigned long long esize;
2389 esize = e[i].start - pos;
2390 if (esize >= minsize)
2391 found = 1;
2392 pos = e[i].start + e[i].size;
2393 i++;
2394 } while (e[i-1].size);
2395 if (found)
2396 dcnt++;
2397 free(e);
2398 }
2399 if (dcnt < raiddisks) {
2400 if (verbose)
2401 fprintf(stderr,
2402 Name ": ddf: Not enough devices with "
2403 "space for this array (%d < %d)\n",
2404 dcnt, raiddisks);
2405 return 0;
2406 }
2407 return 1;
2408 }
2409 /* This device must be a member of the set */
2410 if (stat(dev, &stb) < 0)
2411 return 0;
2412 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2413 return 0;
2414 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2415 if (dl->major == major(stb.st_rdev) &&
2416 dl->minor == minor(stb.st_rdev))
2417 break;
2418 }
2419 if (!dl) {
2420 if (verbose)
2421 fprintf(stderr, Name ": ddf: %s is not in the "
2422 "same DDF set\n",
2423 dev);
2424 return 0;
2425 }
2426 e = get_extents(ddf, dl);
2427 maxsize = 0;
2428 i = 0;
2429 if (e) do {
2430 unsigned long long esize;
2431 esize = e[i].start - pos;
2432 if (esize >= maxsize)
2433 maxsize = esize;
2434 pos = e[i].start + e[i].size;
2435 i++;
2436 } while (e[i-1].size);
2437 *freesize = maxsize;
2438 // FIXME here I am
2439
2440 return 1;
2441 }
2442
2443 static int load_super_ddf_all(struct supertype *st, int fd,
2444 void **sbp, char *devname, int keep_fd)
2445 {
2446 struct mdinfo *sra;
2447 struct ddf_super *super;
2448 struct mdinfo *sd, *best = NULL;
2449 int bestseq = 0;
2450 int seq;
2451 char nm[20];
2452 int dfd;
2453
2454 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2455 if (!sra)
2456 return 1;
2457 if (sra->array.major_version != -1 ||
2458 sra->array.minor_version != -2 ||
2459 strcmp(sra->text_version, "ddf") != 0)
2460 return 1;
2461
2462 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2463 return 1;
2464 memset(super, 0, sizeof(*super));
2465
2466 /* first, try each device, and choose the best ddf */
2467 for (sd = sra->devs ; sd ; sd = sd->next) {
2468 int rv;
2469 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2470 dfd = dev_open(nm, O_RDONLY);
2471 if (dfd < 0)
2472 return 2;
2473 rv = load_ddf_headers(dfd, super, NULL);
2474 close(dfd);
2475 if (rv == 0) {
2476 seq = __be32_to_cpu(super->active->seq);
2477 if (super->active->openflag)
2478 seq--;
2479 if (!best || seq > bestseq) {
2480 bestseq = seq;
2481 best = sd;
2482 }
2483 }
2484 }
2485 if (!best)
2486 return 1;
2487 /* OK, load this ddf */
2488 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2489 dfd = dev_open(nm, O_RDONLY);
2490 if (dfd < 0)
2491 return 1;
2492 load_ddf_headers(dfd, super, NULL);
2493 load_ddf_global(dfd, super, NULL);
2494 close(dfd);
2495 /* Now we need the device-local bits */
2496 for (sd = sra->devs ; sd ; sd = sd->next) {
2497 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2498 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2499 if (dfd < 0)
2500 return 2;
2501 seq = load_ddf_local(dfd, super, NULL, keep_fd);
2502 if (!keep_fd) close(dfd);
2503 }
2504 if (st->subarray[0]) {
2505 struct vcl *v;
2506
2507 for (v = super->conflist; v; v = v->next)
2508 if (v->vcnum == atoi(st->subarray))
2509 super->currentconf = v;
2510 if (!super->currentconf)
2511 return 1;
2512 }
2513 *sbp = super;
2514 if (st->ss == NULL) {
2515 st->ss = &super_ddf;
2516 st->minor_version = 0;
2517 st->max_devs = 512;
2518 st->container_dev = fd2devnum(fd);
2519 }
2520 return 0;
2521 }
2522 #endif
2523
2524 static struct mdinfo *container_content_ddf(struct supertype *st)
2525 {
2526 /* Given a container loaded by load_super_ddf_all,
2527 * extract information about all the arrays into
2528 * an mdinfo tree.
2529 *
2530 * For each vcl in conflist: create an mdinfo, fill it in,
2531 * then look for matching devices (phys_refnum) in dlist
2532 * and create appropriate device mdinfo.
2533 */
2534 struct ddf_super *ddf = st->sb;
2535 struct mdinfo *rest = NULL;
2536 struct vcl *vc;
2537
2538 for (vc = ddf->conflist ; vc ; vc=vc->next)
2539 {
2540 int i;
2541 struct mdinfo *this;
2542 this = malloc(sizeof(*this));
2543 memset(this, 0, sizeof(*this));
2544 this->next = rest;
2545 rest = this;
2546
2547 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2548 this->array.raid_disks =
2549 __be16_to_cpu(vc->conf.prim_elmnt_count);
2550 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2551 this->array.raid_disks);
2552 this->array.md_minor = -1;
2553 this->array.ctime = DECADE +
2554 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2555 this->array.utime = DECADE +
2556 __be32_to_cpu(vc->conf.timestamp);
2557 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2558
2559 i = vc->vcnum;
2560 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2561 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2562 DDF_init_full) {
2563 this->array.state = 0;
2564 this->resync_start = 0;
2565 } else {
2566 this->array.state = 1;
2567 this->resync_start = ~0ULL;
2568 }
2569 memcpy(this->name, ddf->virt->entries[i].name, 32);
2570 this->name[33]=0;
2571
2572 memset(this->uuid, 0, sizeof(this->uuid));
2573 this->component_size = __be64_to_cpu(vc->conf.blocks);
2574 this->array.size = this->component_size / 2;
2575 this->container_member = i;
2576
2577 sprintf(this->text_version, "/%s/%d",
2578 devnum2devname(st->container_dev),
2579 this->container_member);
2580
2581 for (i=0 ; i < ddf->mppe ; i++) {
2582 struct mdinfo *dev;
2583 struct dl *d;
2584
2585 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
2586 continue;
2587
2588 this->array.working_disks++;
2589
2590 for (d = ddf->dlist; d ; d=d->next)
2591 if (d->disk.refnum == vc->conf.phys_refnum[i])
2592 break;
2593 if (d == NULL)
2594 break;
2595
2596 dev = malloc(sizeof(*dev));
2597 memset(dev, 0, sizeof(*dev));
2598 dev->next = this->devs;
2599 this->devs = dev;
2600
2601 dev->disk.number = __be32_to_cpu(d->disk.refnum);
2602 dev->disk.major = d->major;
2603 dev->disk.minor = d->minor;
2604 dev->disk.raid_disk = i;
2605 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2606
2607 dev->events = __be32_to_cpu(ddf->primary.seq);
2608 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
2609 dev->component_size = __be64_to_cpu(vc->conf.blocks);
2610 if (d->devname)
2611 strcpy(dev->name, d->devname);
2612 }
2613 }
2614 return rest;
2615 }
2616
2617 static int store_zero_ddf(struct supertype *st, int fd)
2618 {
2619 unsigned long long dsize;
2620 void *buf;
2621
2622 if (!get_dev_size(fd, NULL, &dsize))
2623 return 1;
2624
2625 posix_memalign(&buf, 512, 512);
2626 memset(buf, 0, 512);
2627
2628 lseek64(fd, dsize-512, 0);
2629 write(fd, buf, 512);
2630 free(buf);
2631 return 0;
2632 }
2633
2634 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
2635 {
2636 /*
2637 * return:
2638 * 0 same, or first was empty, and second was copied
2639 * 1 second had wrong number
2640 * 2 wrong uuid
2641 * 3 wrong other info
2642 */
2643 struct ddf_super *first = st->sb;
2644 struct ddf_super *second = tst->sb;
2645
2646 if (!first) {
2647 st->sb = tst->sb;
2648 tst->sb = NULL;
2649 return 0;
2650 }
2651
2652 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
2653 return 2;
2654
2655 /* FIXME should I look at anything else? */
2656 return 0;
2657 }
2658
2659 /*
2660 * A new array 'a' has been started which claims to be instance 'inst'
2661 * within container 'c'.
2662 * We need to confirm that the array matches the metadata in 'c' so
2663 * that we don't corrupt any metadata.
2664 */
2665 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
2666 {
2667 dprintf("ddf: open_new %s\n", inst);
2668 a->info.container_member = atoi(inst);
2669 return 0;
2670 }
2671
2672 /*
2673 * The array 'a' is to be marked clean in the metadata.
2674 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
2675 * clean up to the point (in sectors). If that cannot be recorded in the
2676 * metadata, then leave it as dirty.
2677 *
2678 * For DDF, we need to clear the DDF_state_inconsistent bit in the
2679 * !global! virtual_disk.virtual_entry structure.
2680 */
2681 static void ddf_set_array_state(struct active_array *a, int consistent)
2682 {
2683 struct ddf_super *ddf = a->container->sb;
2684 int inst = a->info.container_member;
2685 int old = ddf->virt->entries[inst].state;
2686 if (consistent)
2687 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
2688 else
2689 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
2690 if (old != ddf->virt->entries[inst].state)
2691 ddf->updates_pending = 1;
2692
2693 old = ddf->virt->entries[inst].init_state;
2694 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
2695 if (a->resync_start == ~0ULL)
2696 ddf->virt->entries[inst].init_state |= DDF_init_full;
2697 else if (a->resync_start == 0)
2698 ddf->virt->entries[inst].init_state |= DDF_init_not;
2699 else
2700 ddf->virt->entries[inst].init_state |= DDF_init_quick;
2701 if (old != ddf->virt->entries[inst].init_state)
2702 ddf->updates_pending = 1;
2703
2704 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
2705 a->resync_start);
2706 }
2707
2708 /*
2709 * The state of each disk is stored in the global phys_disk structure
2710 * in phys_disk.entries[n].state.
2711 * This makes various combinations awkward.
2712 * - When a device fails in any array, it must be failed in all arrays
2713 * that include a part of this device.
2714 * - When a component is rebuilding, we cannot include it officially in the
2715 * array unless this is the only array that uses the device.
2716 *
2717 * So: when transitioning:
2718 * Online -> failed, just set failed flag. monitor will propagate
2719 * spare -> online, the device might need to be added to the array.
2720 * spare -> failed, just set failed. Don't worry if in array or not.
2721 */
2722 static void ddf_set_disk(struct active_array *a, int n, int state)
2723 {
2724 struct ddf_super *ddf = a->container->sb;
2725 int inst = a->info.container_member;
2726 struct vd_config *vc = find_vdcr(ddf, inst);
2727 int pd = find_phys(ddf, vc->phys_refnum[n]);
2728 int i, st, working;
2729
2730 if (vc == NULL) {
2731 dprintf("ddf: cannot find instance %d!!\n", inst);
2732 return;
2733 }
2734 if (pd < 0) {
2735 /* disk doesn't currently exist. If it is now in_sync,
2736 * insert it. */
2737 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
2738 /* Find dev 'n' in a->info->devs, determine the
2739 * ddf refnum, and set vc->phys_refnum and update
2740 * phys->entries[]
2741 */
2742 /* FIXME */
2743 }
2744 } else {
2745 int old = ddf->phys->entries[pd].state;
2746 if (state & DS_FAULTY)
2747 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
2748 if (state & DS_INSYNC) {
2749 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
2750 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
2751 }
2752 if (old != ddf->phys->entries[pd].state)
2753 ddf->updates_pending = 1;
2754 }
2755
2756 dprintf("ddf: set_disk %d to %x\n", n, state);
2757
2758 /* Now we need to check the state of the array and update
2759 * virtual_disk.entries[n].state.
2760 * It needs to be one of "optimal", "degraded", "failed".
2761 * I don't understand 'deleted' or 'missing'.
2762 */
2763 working = 0;
2764 for (i=0; i < a->info.array.raid_disks; i++) {
2765 pd = find_phys(ddf, vc->phys_refnum[i]);
2766 if (pd < 0)
2767 continue;
2768 st = __be16_to_cpu(ddf->phys->entries[pd].state);
2769 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
2770 == DDF_Online)
2771 working++;
2772 }
2773 state = DDF_state_degraded;
2774 if (working == a->info.array.raid_disks)
2775 state = DDF_state_optimal;
2776 else switch(vc->prl) {
2777 case DDF_RAID0:
2778 case DDF_CONCAT:
2779 case DDF_JBOD:
2780 state = DDF_state_failed;
2781 break;
2782 case DDF_RAID1:
2783 if (working == 0)
2784 state = DDF_state_failed;
2785 break;
2786 case DDF_RAID4:
2787 case DDF_RAID5:
2788 if (working < a->info.array.raid_disks-1)
2789 state = DDF_state_failed;
2790 break;
2791 case DDF_RAID6:
2792 if (working < a->info.array.raid_disks-2)
2793 state = DDF_state_failed;
2794 else if (working == a->info.array.raid_disks-1)
2795 state = DDF_state_part_optimal;
2796 break;
2797 }
2798
2799 if (ddf->virt->entries[inst].state !=
2800 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
2801 | state)) {
2802
2803 ddf->virt->entries[inst].state =
2804 (ddf->virt->entries[inst].state & ~DDF_state_mask)
2805 | state;
2806 ddf->updates_pending = 1;
2807 }
2808
2809 }
2810
2811 static void ddf_sync_metadata(struct supertype *st)
2812 {
2813
2814 /*
2815 * Write all data to all devices.
2816 * Later, we might be able to track whether only local changes
2817 * have been made, or whether any global data has been changed,
2818 * but ddf is sufficiently weird that it probably always
2819 * changes global data ....
2820 */
2821 struct ddf_super *ddf = st->sb;
2822 if (!ddf->updates_pending)
2823 return;
2824 ddf->updates_pending = 0;
2825 __write_init_super_ddf(st, 0);
2826 dprintf("ddf: sync_metadata\n");
2827 }
2828
2829 static void ddf_process_update(struct supertype *st,
2830 struct metadata_update *update)
2831 {
2832 /* Apply this update to the metadata.
2833 * The first 4 bytes are a DDF_*_MAGIC which guides
2834 * our actions.
2835 * Possible update are:
2836 * DDF_PHYS_RECORDS_MAGIC
2837 * Add a new physical device. Changes to this record
2838 * only happen implicitly.
2839 * used_pdes is the device number.
2840 * DDF_VIRT_RECORDS_MAGIC
2841 * Add a new VD. Possibly also change the 'access' bits.
2842 * populated_vdes is the entry number.
2843 * DDF_VD_CONF_MAGIC
2844 * New or updated VD. the VIRT_RECORD must already
2845 * exist. For an update, phys_refnum and lba_offset
2846 * (at least) are updated, and the VD_CONF must
2847 * be written to precisely those devices listed with
2848 * a phys_refnum.
2849 * DDF_SPARE_ASSIGN_MAGIC
2850 * replacement Spare Assignment Record... but for which device?
2851 *
2852 * So, e.g.:
2853 * - to create a new array, we send a VIRT_RECORD and
2854 * a VD_CONF. Then assemble and start the array.
2855 * - to activate a spare we send a VD_CONF to add the phys_refnum
2856 * and offset. This will also mark the spare as active with
2857 * a spare-assignment record.
2858 */
2859 struct ddf_super *ddf = st->sb;
2860 __u32 *magic = (__u32*)update->buf;
2861 struct phys_disk *pd;
2862 struct virtual_disk *vd;
2863 struct vd_config *vc;
2864 struct vcl *vcl;
2865 struct dl *dl;
2866 int mppe;
2867 int ent;
2868
2869 dprintf("Process update %x\n", *magic);
2870
2871 switch (*magic) {
2872 case DDF_PHYS_RECORDS_MAGIC:
2873
2874 if (update->len != (sizeof(struct phys_disk) +
2875 sizeof(struct phys_disk_entry)))
2876 return;
2877 pd = (struct phys_disk*)update->buf;
2878
2879 ent = __be16_to_cpu(pd->used_pdes);
2880 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
2881 return;
2882 if (!all_ff(ddf->phys->entries[ent].guid))
2883 return;
2884 ddf->phys->entries[ent] = pd->entries[0];
2885 ddf->phys->used_pdes = __cpu_to_be16(1 +
2886 __be16_to_cpu(ddf->phys->used_pdes));
2887 ddf->updates_pending = 1;
2888 break;
2889
2890 case DDF_VIRT_RECORDS_MAGIC:
2891
2892 if (update->len != (sizeof(struct virtual_disk) +
2893 sizeof(struct virtual_entry)))
2894 return;
2895 vd = (struct virtual_disk*)update->buf;
2896
2897 ent = __be16_to_cpu(vd->populated_vdes);
2898 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
2899 return;
2900 if (!all_ff(ddf->virt->entries[ent].guid))
2901 return;
2902 ddf->virt->entries[ent] = vd->entries[0];
2903 ddf->virt->populated_vdes = __cpu_to_be16(1 +
2904 __be16_to_cpu(ddf->virt->populated_vdes));
2905 ddf->updates_pending = 1;
2906 break;
2907
2908 case DDF_VD_CONF_MAGIC:
2909 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
2910
2911 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
2912 if (update->len != ddf->conf_rec_len * 512)
2913 return;
2914 vc = (struct vd_config*)update->buf;
2915 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2916 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
2917 break;
2918 dprintf("vcl = %p\n", vcl);
2919 if (vcl) {
2920 /* An update, just copy the phys_refnum and lba_offset
2921 * fields
2922 */
2923 memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
2924 mppe * (sizeof(__u32) + sizeof(__u64)));
2925 } else {
2926 /* A new VD_CONF */
2927 vcl = update->space;
2928 update->space = NULL;
2929 vcl->next = ddf->conflist;
2930 memcpy(&vcl->conf, vc, update->len);
2931 vcl->lba_offset = (__u64*)
2932 &vcl->conf.phys_refnum[mppe];
2933 ddf->conflist = vcl;
2934 }
2935 /* Now make sure vlist is correct for each dl. */
2936 for (dl = ddf->dlist; dl; dl = dl->next) {
2937 int dn;
2938 int vn = 0;
2939 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2940 for (dn=0; dn < ddf->mppe ; dn++)
2941 if (vcl->conf.phys_refnum[dn] ==
2942 dl->disk.refnum) {
2943 dprintf("dev %d has %p at %d\n",
2944 dl->pdnum, vcl, vn);
2945 dl->vlist[vn++] = vcl;
2946 break;
2947 }
2948 while (vn < ddf->max_part)
2949 dl->vlist[vn++] = NULL;
2950 if (dl->vlist[0]) {
2951 ddf->phys->entries[dl->pdnum].type &=
2952 ~__cpu_to_be16(DDF_Global_Spare);
2953 ddf->phys->entries[dl->pdnum].type |=
2954 __cpu_to_be16(DDF_Active_in_VD);
2955 }
2956 if (dl->spare) {
2957 ddf->phys->entries[dl->pdnum].type &=
2958 ~__cpu_to_be16(DDF_Global_Spare);
2959 ddf->phys->entries[dl->pdnum].type |=
2960 __cpu_to_be16(DDF_Spare);
2961 }
2962 if (!dl->vlist[0] && !dl->spare) {
2963 ddf->phys->entries[dl->pdnum].type |=
2964 __cpu_to_be16(DDF_Global_Spare);
2965 ddf->phys->entries[dl->pdnum].type &=
2966 ~__cpu_to_be16(DDF_Spare |
2967 DDF_Active_in_VD);
2968 }
2969 }
2970 ddf->updates_pending = 1;
2971 break;
2972 case DDF_SPARE_ASSIGN_MAGIC:
2973 default: break;
2974 }
2975 }
2976
2977 static void ddf_prepare_update(struct supertype *st,
2978 struct metadata_update *update)
2979 {
2980 /* This update arrived at managemon.
2981 * We are about to pass it to monitor.
2982 * If a malloc is needed, do it here.
2983 */
2984 struct ddf_super *ddf = st->sb;
2985 __u32 *magic = (__u32*)update->buf;
2986 if (*magic == DDF_VD_CONF_MAGIC)
2987 posix_memalign(&update->space, 512,
2988 offsetof(struct vcl, conf)
2989 + ddf->conf_rec_len * 512);
2990 }
2991
2992 /*
2993 * Check if the array 'a' is degraded but not failed.
2994 * If it is, find as many spares as are available and needed and
2995 * arrange for their inclusion.
2996 * We only choose devices which are not already in the array,
2997 * and prefer those with a spare-assignment to this array.
2998 * otherwise we choose global spares - assuming always that
2999 * there is enough room.
3000 * For each spare that we assign, we return an 'mdinfo' which
3001 * describes the position for the device in the array.
3002 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3003 * the new phys_refnum and lba_offset values.
3004 *
3005 * Only worry about BVDs at the moment.
3006 */
3007 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3008 struct metadata_update **updates)
3009 {
3010 int working = 0;
3011 struct mdinfo *d;
3012 struct ddf_super *ddf = a->container->sb;
3013 int global_ok = 0;
3014 struct mdinfo *rv = NULL;
3015 struct mdinfo *di;
3016 struct metadata_update *mu;
3017 struct dl *dl;
3018 int i;
3019 struct vd_config *vc;
3020 __u64 *lba;
3021
3022 for (d = a->info.devs ; d ; d = d->next) {
3023 if ((d->curr_state & DS_FAULTY) &&
3024 d->state_fd >= 0)
3025 /* wait for Removal to happen */
3026 return NULL;
3027 if (d->state_fd >= 0)
3028 working ++;
3029 }
3030
3031 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3032 a->info.array.level);
3033 if (working == a->info.array.raid_disks)
3034 return NULL; /* array not degraded */
3035 switch (a->info.array.level) {
3036 case 1:
3037 if (working == 0)
3038 return NULL; /* failed */
3039 break;
3040 case 4:
3041 case 5:
3042 if (working < a->info.array.raid_disks - 1)
3043 return NULL; /* failed */
3044 break;
3045 case 6:
3046 if (working < a->info.array.raid_disks - 2)
3047 return NULL; /* failed */
3048 break;
3049 default: /* concat or stripe */
3050 return NULL; /* failed */
3051 }
3052
3053 /* For each slot, if it is not working, find a spare */
3054 dl = ddf->dlist;
3055 for (i = 0; i < a->info.array.raid_disks; i++) {
3056 for (d = a->info.devs ; d ; d = d->next)
3057 if (d->disk.raid_disk == i)
3058 break;
3059 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3060 if (d && (d->state_fd >= 0))
3061 continue;
3062
3063 /* OK, this device needs recovery. Find a spare */
3064 again:
3065 for ( ; dl ; dl = dl->next) {
3066 unsigned long long esize;
3067 unsigned long long pos;
3068 struct mdinfo *d2;
3069 int is_global = 0;
3070 int is_dedicated = 0;
3071 struct extent *ex;
3072 int j;
3073 /* If in this array, skip */
3074 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3075 if (d2->disk.major == dl->major &&
3076 d2->disk.minor == dl->minor) {
3077 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3078 break;
3079 }
3080 if (d2)
3081 continue;
3082 if (ddf->phys->entries[dl->pdnum].type &
3083 __cpu_to_be16(DDF_Spare)) {
3084 /* Check spare assign record */
3085 if (dl->spare) {
3086 if (dl->spare->type & DDF_spare_dedicated) {
3087 /* check spare_ents for guid */
3088 for (j = 0 ;
3089 j < __be16_to_cpu(dl->spare->populated);
3090 j++) {
3091 if (memcmp(dl->spare->spare_ents[j].guid,
3092 ddf->virt->entries[a->info.container_member].guid,
3093 DDF_GUID_LEN) == 0)
3094 is_dedicated = 1;
3095 }
3096 } else
3097 is_global = 1;
3098 }
3099 } else if (ddf->phys->entries[dl->pdnum].type &
3100 __cpu_to_be16(DDF_Global_Spare)) {
3101 is_global = 1;
3102 }
3103 if ( ! (is_dedicated ||
3104 (is_global && global_ok))) {
3105 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3106 is_dedicated, is_global);
3107 continue;
3108 }
3109
3110 /* We are allowed to use this device - is there space?
3111 * We need a->info.component_size sectors */
3112 ex = get_extents(ddf, dl);
3113 if (!ex) {
3114 dprintf("cannot get extents\n");
3115 continue;
3116 }
3117 j = 0; pos = 0;
3118 esize = 0;
3119
3120 do {
3121 esize = ex[j].start - pos;
3122 if (esize >= a->info.component_size)
3123 break;
3124 pos = ex[i].start + ex[i].size;
3125 i++;
3126 } while (ex[i-1].size);
3127
3128 free(ex);
3129 if (esize < a->info.component_size) {
3130 dprintf("%x:%x has no room: %llu %llu\n", dl->major, dl->minor,
3131 esize, a->info.component_size);
3132 /* No room */
3133 continue;
3134 }
3135
3136 /* Cool, we have a device with some space at pos */
3137 di = malloc(sizeof(*di));
3138 memset(di, 0, sizeof(*di));
3139 di->disk.number = i;
3140 di->disk.raid_disk = i;
3141 di->disk.major = dl->major;
3142 di->disk.minor = dl->minor;
3143 di->disk.state = 0;
3144 di->data_offset = pos;
3145 di->component_size = a->info.component_size;
3146 di->container_member = dl->pdnum;
3147 di->next = rv;
3148 rv = di;
3149 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3150 i, pos);
3151
3152 break;
3153 }
3154 if (!dl && ! global_ok) {
3155 /* not enough dedicated spares, try global */
3156 global_ok = 1;
3157 dl = ddf->dlist;
3158 goto again;
3159 }
3160 }
3161
3162 if (!rv)
3163 /* No spares found */
3164 return rv;
3165 /* Now 'rv' has a list of devices to return.
3166 * Create a metadata_update record to update the
3167 * phys_refnum and lba_offset values
3168 */
3169 mu = malloc(sizeof(*mu));
3170 mu->buf = malloc(ddf->conf_rec_len * 512);
3171 posix_memalign(&mu->space, 512, sizeof(struct vcl));
3172 mu->len = ddf->conf_rec_len;
3173 mu->next = *updates;
3174 vc = find_vdcr(ddf, a->info.container_member);
3175 memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3176
3177 vc = (struct vd_config*)mu->buf;
3178 lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3179 for (di = rv ; di ; di = di->next) {
3180 vc->phys_refnum[di->disk.raid_disk] =
3181 ddf->phys->entries[dl->pdnum].refnum;
3182 lba[di->disk.raid_disk] = di->data_offset;
3183 }
3184 *updates = mu;
3185 return rv;
3186 }
3187
3188 struct superswitch super_ddf = {
3189 #ifndef MDASSEMBLE
3190 .examine_super = examine_super_ddf,
3191 .brief_examine_super = brief_examine_super_ddf,
3192 .detail_super = detail_super_ddf,
3193 .brief_detail_super = brief_detail_super_ddf,
3194 .validate_geometry = validate_geometry_ddf,
3195 .write_init_super = write_init_super_ddf,
3196 #endif
3197 .match_home = match_home_ddf,
3198 .uuid_from_super= uuid_from_super_ddf,
3199 .getinfo_super = getinfo_super_ddf,
3200 .update_super = update_super_ddf,
3201
3202 .avail_size = avail_size_ddf,
3203
3204 .compare_super = compare_super_ddf,
3205
3206 .load_super = load_super_ddf,
3207 .init_super = init_super_ddf,
3208 .store_super = store_zero_ddf,
3209 .free_super = free_super_ddf,
3210 .match_metadata_desc = match_metadata_desc_ddf,
3211 .add_to_super = add_to_super_ddf,
3212 .container_content = container_content_ddf,
3213
3214 .external = 1,
3215
3216 /* for mdmon */
3217 .open_new = ddf_open_new,
3218 .set_array_state= ddf_set_array_state,
3219 .set_disk = ddf_set_disk,
3220 .sync_metadata = ddf_sync_metadata,
3221 .process_update = ddf_process_update,
3222 .prepare_update = ddf_prepare_update,
3223 .activate_spare = ddf_activate_spare,
3224
3225 };