]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
Provide ddf support for adding a device to an active container.
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2007 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 };
427 };
428 struct disk_data disk;
429 void *mdupdate; /* hold metadata update */
430 struct vcl *vlist[0]; /* max_part in size */
431 } *dlist, *add_list;
432 };
433
434 #ifndef offsetof
435 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
436 #endif
437
438
439 static int calc_crc(void *buf, int len)
440 {
441 /* crcs are always at the same place as in the ddf_header */
442 struct ddf_header *ddf = buf;
443 __u32 oldcrc = ddf->crc;
444 __u32 newcrc;
445 ddf->crc = 0xffffffff;
446
447 newcrc = crc32(0, buf, len);
448 ddf->crc = oldcrc;
449 return newcrc;
450 }
451
452 static int load_ddf_header(int fd, unsigned long long lba,
453 unsigned long long size,
454 int type,
455 struct ddf_header *hdr, struct ddf_header *anchor)
456 {
457 /* read a ddf header (primary or secondary) from fd/lba
458 * and check that it is consistent with anchor
459 * Need to check:
460 * magic, crc, guid, rev, and LBA's header_type, and
461 * everything after header_type must be the same
462 */
463 if (lba >= size-1)
464 return 0;
465
466 if (lseek64(fd, lba<<9, 0) < 0)
467 return 0;
468
469 if (read(fd, hdr, 512) != 512)
470 return 0;
471
472 if (hdr->magic != DDF_HEADER_MAGIC)
473 return 0;
474 if (calc_crc(hdr, 512) != hdr->crc)
475 return 0;
476 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
477 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
478 anchor->primary_lba != hdr->primary_lba ||
479 anchor->secondary_lba != hdr->secondary_lba ||
480 hdr->type != type ||
481 memcmp(anchor->pad2, hdr->pad2, 512 -
482 offsetof(struct ddf_header, pad2)) != 0)
483 return 0;
484
485 /* Looks good enough to me... */
486 return 1;
487 }
488
489 static void *load_section(int fd, struct ddf_super *super, void *buf,
490 __u32 offset_be, __u32 len_be, int check)
491 {
492 unsigned long long offset = __be32_to_cpu(offset_be);
493 unsigned long long len = __be32_to_cpu(len_be);
494 int dofree = (buf == NULL);
495
496 if (check)
497 if (len != 2 && len != 8 && len != 32
498 && len != 128 && len != 512)
499 return NULL;
500
501 if (len > 1024)
502 return NULL;
503 if (buf) {
504 /* All pre-allocated sections are a single block */
505 if (len != 1)
506 return NULL;
507 } else {
508 posix_memalign(&buf, 512, len<<9);
509 }
510
511 if (!buf)
512 return NULL;
513
514 if (super->active->type == 1)
515 offset += __be64_to_cpu(super->active->primary_lba);
516 else
517 offset += __be64_to_cpu(super->active->secondary_lba);
518
519 if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
520 if (dofree)
521 free(buf);
522 return NULL;
523 }
524 if (read(fd, buf, len<<9) != (len<<9)) {
525 if (dofree)
526 free(buf);
527 return NULL;
528 }
529 return buf;
530 }
531
532 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
533 {
534 unsigned long long dsize;
535
536 get_dev_size(fd, NULL, &dsize);
537
538 if (lseek64(fd, dsize-512, 0) < 0) {
539 if (devname)
540 fprintf(stderr,
541 Name": Cannot seek to anchor block on %s: %s\n",
542 devname, strerror(errno));
543 return 1;
544 }
545 if (read(fd, &super->anchor, 512) != 512) {
546 if (devname)
547 fprintf(stderr,
548 Name ": Cannot read anchor block on %s: %s\n",
549 devname, strerror(errno));
550 return 1;
551 }
552 if (super->anchor.magic != DDF_HEADER_MAGIC) {
553 if (devname)
554 fprintf(stderr, Name ": no DDF anchor found on %s\n",
555 devname);
556 return 2;
557 }
558 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
559 if (devname)
560 fprintf(stderr, Name ": bad CRC on anchor on %s\n",
561 devname);
562 return 2;
563 }
564 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
565 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
566 if (devname)
567 fprintf(stderr, Name ": can only support super revision"
568 " %.8s and earlier, not %.8s on %s\n",
569 DDF_REVISION_2, super->anchor.revision,devname);
570 return 2;
571 }
572 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
573 dsize >> 9, 1,
574 &super->primary, &super->anchor) == 0) {
575 if (devname)
576 fprintf(stderr,
577 Name ": Failed to load primary DDF header "
578 "on %s\n", devname);
579 return 2;
580 }
581 super->active = &super->primary;
582 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
583 dsize >> 9, 2,
584 &super->secondary, &super->anchor)) {
585 if ((__be32_to_cpu(super->primary.seq)
586 < __be32_to_cpu(super->secondary.seq) &&
587 !super->secondary.openflag)
588 || (__be32_to_cpu(super->primary.seq)
589 == __be32_to_cpu(super->secondary.seq) &&
590 super->primary.openflag && !super->secondary.openflag)
591 )
592 super->active = &super->secondary;
593 }
594 return 0;
595 }
596
597 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
598 {
599 void *ok;
600 ok = load_section(fd, super, &super->controller,
601 super->active->controller_section_offset,
602 super->active->controller_section_length,
603 0);
604 super->phys = load_section(fd, super, NULL,
605 super->active->phys_section_offset,
606 super->active->phys_section_length,
607 1);
608 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
609
610 super->virt = load_section(fd, super, NULL,
611 super->active->virt_section_offset,
612 super->active->virt_section_length,
613 1);
614 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
615 if (!ok ||
616 !super->phys ||
617 !super->virt) {
618 free(super->phys);
619 free(super->virt);
620 super->phys = NULL;
621 super->virt = NULL;
622 return 2;
623 }
624 super->conflist = NULL;
625 super->dlist = NULL;
626
627 super->max_part = __be16_to_cpu(super->active->max_partitions);
628 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
629 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
630 return 0;
631 }
632
633 static int load_ddf_local(int fd, struct ddf_super *super,
634 char *devname, int keep)
635 {
636 struct dl *dl;
637 struct stat stb;
638 char *conf;
639 int i;
640 int vnum;
641 int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
642 unsigned long long dsize;
643
644 /* First the local disk info */
645 posix_memalign((void**)&dl, 512,
646 sizeof(*dl) +
647 (super->max_part) * sizeof(dl->vlist[0]));
648
649 load_section(fd, super, &dl->disk,
650 super->active->data_section_offset,
651 super->active->data_section_length,
652 0);
653 dl->devname = devname ? strdup(devname) : NULL;
654
655 fstat(fd, &stb);
656 dl->major = major(stb.st_rdev);
657 dl->minor = minor(stb.st_rdev);
658 dl->next = super->dlist;
659 dl->fd = keep ? fd : -1;
660
661 dl->size = 0;
662 if (get_dev_size(fd, devname, &dsize))
663 dl->size = dsize >> 9;
664 dl->spare = NULL;
665 for (i=0 ; i < super->max_part ; i++)
666 dl->vlist[i] = NULL;
667 super->dlist = dl;
668 dl->pdnum = -1;
669 for (i=0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
670 if (memcmp(super->phys->entries[i].guid,
671 dl->disk.guid, DDF_GUID_LEN) == 0)
672 dl->pdnum = i;
673
674 /* Now the config list. */
675 /* 'conf' is an array of config entries, some of which are
676 * probably invalid. Those which are good need to be copied into
677 * the conflist
678 */
679
680 conf = load_section(fd, super, NULL,
681 super->active->config_section_offset,
682 super->active->config_section_length,
683 0);
684
685 vnum = 0;
686 for (i = 0;
687 i < __be32_to_cpu(super->active->config_section_length);
688 i += super->conf_rec_len) {
689 struct vd_config *vd =
690 (struct vd_config *)((char*)conf + i*512);
691 struct vcl *vcl;
692
693 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
694 if (dl->spare)
695 continue;
696 posix_memalign((void**)&dl->spare, 512,
697 super->conf_rec_len*512);
698 memcpy(dl->spare, vd, super->conf_rec_len*512);
699 continue;
700 }
701 if (vd->magic != DDF_VD_CONF_MAGIC)
702 continue;
703 for (vcl = super->conflist; vcl; vcl = vcl->next) {
704 if (memcmp(vcl->conf.guid,
705 vd->guid, DDF_GUID_LEN) == 0)
706 break;
707 }
708
709 if (vcl) {
710 dl->vlist[vnum++] = vcl;
711 if (__be32_to_cpu(vd->seqnum) <=
712 __be32_to_cpu(vcl->conf.seqnum))
713 continue;
714 } else {
715 posix_memalign((void**)&vcl, 512,
716 (super->conf_rec_len*512 +
717 offsetof(struct vcl, conf)));
718 vcl->next = super->conflist;
719 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
720 super->conflist = vcl;
721 dl->vlist[vnum++] = vcl;
722 }
723 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
724 vcl->lba_offset = (__u64*)
725 &vcl->conf.phys_refnum[super->mppe];
726
727 for (i=0; i < max_virt_disks ; i++)
728 if (memcmp(super->virt->entries[i].guid,
729 vcl->conf.guid, DDF_GUID_LEN)==0)
730 break;
731 if (i < max_virt_disks)
732 vcl->vcnum = i;
733 }
734 free(conf);
735
736 return 0;
737 }
738
739 #ifndef MDASSEMBLE
740 static int load_super_ddf_all(struct supertype *st, int fd,
741 void **sbp, char *devname, int keep_fd);
742 #endif
743 static int load_super_ddf(struct supertype *st, int fd,
744 char *devname)
745 {
746 unsigned long long dsize;
747 struct ddf_super *super;
748 int rv;
749
750 #ifndef MDASSEMBLE
751 /* if 'fd' is a container, load metadata from all the devices */
752 if (load_super_ddf_all(st, fd, &st->sb, devname, 1) == 0)
753 return 0;
754 #endif
755 if (st->subarray[0])
756 return 1; /* FIXME Is this correct */
757
758 if (get_dev_size(fd, devname, &dsize) == 0)
759 return 1;
760
761 /* 32M is a lower bound */
762 if (dsize <= 32*1024*1024) {
763 if (devname) {
764 fprintf(stderr,
765 Name ": %s is too small for ddf: "
766 "size is %llu sectors.\n",
767 devname, dsize>>9);
768 return 1;
769 }
770 }
771 if (dsize & 511) {
772 if (devname) {
773 fprintf(stderr,
774 Name ": %s is an odd size for ddf: "
775 "size is %llu bytes.\n",
776 devname, dsize);
777 return 1;
778 }
779 }
780
781 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
782 fprintf(stderr, Name ": malloc of %zu failed.\n",
783 sizeof(*super));
784 return 1;
785 }
786 memset(super, 0, sizeof(*super));
787
788 rv = load_ddf_headers(fd, super, devname);
789 if (rv) {
790 free(super);
791 return rv;
792 }
793
794 /* Have valid headers and have chosen the best. Let's read in the rest*/
795
796 rv = load_ddf_global(fd, super, devname);
797
798 if (rv) {
799 if (devname)
800 fprintf(stderr,
801 Name ": Failed to load all information "
802 "sections on %s\n", devname);
803 free(super);
804 return rv;
805 }
806
807 load_ddf_local(fd, super, devname, 0);
808
809 /* Should possibly check the sections .... */
810
811 st->sb = super;
812 if (st->ss == NULL) {
813 st->ss = &super_ddf;
814 st->minor_version = 0;
815 st->max_devs = 512;
816 }
817 return 0;
818
819 }
820
821 static void free_super_ddf(struct supertype *st)
822 {
823 struct ddf_super *ddf = st->sb;
824 if (ddf == NULL)
825 return;
826 free(ddf->phys);
827 free(ddf->virt);
828 while (ddf->conflist) {
829 struct vcl *v = ddf->conflist;
830 ddf->conflist = v->next;
831 if (v->block_sizes)
832 free(v->block_sizes);
833 free(v);
834 }
835 while (ddf->dlist) {
836 struct dl *d = ddf->dlist;
837 ddf->dlist = d->next;
838 if (d->fd >= 0)
839 close(d->fd);
840 if (d->spare)
841 free(d->spare);
842 free(d);
843 }
844 free(ddf);
845 st->sb = NULL;
846 }
847
848 static struct supertype *match_metadata_desc_ddf(char *arg)
849 {
850 /* 'ddf' only support containers */
851 struct supertype *st;
852 if (strcmp(arg, "ddf") != 0 &&
853 strcmp(arg, "default") != 0
854 )
855 return NULL;
856
857 st = malloc(sizeof(*st));
858 memset(st, 0, sizeof(*st));
859 st->ss = &super_ddf;
860 st->max_devs = 512;
861 st->minor_version = 0;
862 st->sb = NULL;
863 return st;
864 }
865
866
867 #ifndef MDASSEMBLE
868
869 static mapping_t ddf_state[] = {
870 { "Optimal", 0},
871 { "Degraded", 1},
872 { "Deleted", 2},
873 { "Missing", 3},
874 { "Failed", 4},
875 { "Partially Optimal", 5},
876 { "-reserved-", 6},
877 { "-reserved-", 7},
878 { NULL, 0}
879 };
880
881 static mapping_t ddf_init_state[] = {
882 { "Not Initialised", 0},
883 { "QuickInit in Progress", 1},
884 { "Fully Initialised", 2},
885 { "*UNKNOWN*", 3},
886 { NULL, 0}
887 };
888 static mapping_t ddf_access[] = {
889 { "Read/Write", 0},
890 { "Reserved", 1},
891 { "Read Only", 2},
892 { "Blocked (no access)", 3},
893 { NULL ,0}
894 };
895
896 static mapping_t ddf_level[] = {
897 { "RAID0", DDF_RAID0},
898 { "RAID1", DDF_RAID1},
899 { "RAID3", DDF_RAID3},
900 { "RAID4", DDF_RAID4},
901 { "RAID5", DDF_RAID5},
902 { "RAID1E",DDF_RAID1E},
903 { "JBOD", DDF_JBOD},
904 { "CONCAT",DDF_CONCAT},
905 { "RAID5E",DDF_RAID5E},
906 { "RAID5EE",DDF_RAID5EE},
907 { "RAID6", DDF_RAID6},
908 { NULL, 0}
909 };
910 static mapping_t ddf_sec_level[] = {
911 { "Striped", DDF_2STRIPED},
912 { "Mirrored", DDF_2MIRRORED},
913 { "Concat", DDF_2CONCAT},
914 { "Spanned", DDF_2SPANNED},
915 { NULL, 0}
916 };
917 #endif
918
919 struct num_mapping {
920 int num1, num2;
921 };
922 static struct num_mapping ddf_level_num[] = {
923 { DDF_RAID0, 0 },
924 { DDF_RAID1, 1 },
925 { DDF_RAID3, LEVEL_UNSUPPORTED },
926 { DDF_RAID4, 4 },
927 { DDF_RAID5, 5 },
928 { DDF_RAID1E, LEVEL_UNSUPPORTED },
929 { DDF_JBOD, LEVEL_UNSUPPORTED },
930 { DDF_CONCAT, LEVEL_LINEAR },
931 { DDF_RAID5E, LEVEL_UNSUPPORTED },
932 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
933 { DDF_RAID6, 6},
934 { MAXINT, MAXINT }
935 };
936
937 static int map_num1(struct num_mapping *map, int num)
938 {
939 int i;
940 for (i=0 ; map[i].num1 != MAXINT; i++)
941 if (map[i].num1 == num)
942 break;
943 return map[i].num2;
944 }
945
946 #ifndef MDASSEMBLE
947 static void print_guid(char *guid, int tstamp)
948 {
949 /* A GUIDs are part (or all) ASCII and part binary.
950 * They tend to be space padded.
951 * We print the GUID in HEX, then in parentheses add
952 * any initial ASCII sequence, and a possible
953 * time stamp from bytes 16-19
954 */
955 int l = DDF_GUID_LEN;
956 int i;
957
958 for (i=0 ; i<DDF_GUID_LEN ; i++) {
959 if ((i&3)==0 && i != 0) printf(":");
960 printf("%02X", guid[i]&255);
961 }
962
963 printf(" (");
964 while (l && guid[l-1] == ' ')
965 l--;
966 for (i=0 ; i<l ; i++) {
967 if (guid[i] >= 0x20 && guid[i] < 0x7f)
968 fputc(guid[i], stdout);
969 else
970 break;
971 }
972 if (tstamp) {
973 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
974 char tbuf[100];
975 struct tm *tm;
976 tm = localtime(&then);
977 strftime(tbuf, 100, " %D %T",tm);
978 fputs(tbuf, stdout);
979 }
980 printf(")");
981 }
982
983 static void examine_vd(int n, struct ddf_super *sb, char *guid)
984 {
985 int crl = sb->conf_rec_len;
986 struct vcl *vcl;
987
988 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
989 struct vd_config *vc = &vcl->conf;
990
991 if (calc_crc(vc, crl*512) != vc->crc)
992 continue;
993 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
994 continue;
995
996 /* Ok, we know about this VD, let's give more details */
997 printf(" Raid Devices[%d] : %d\n", n,
998 __be16_to_cpu(vc->prim_elmnt_count));
999 printf(" Chunk Size[%d] : %d sectors\n", n,
1000 1 << vc->chunk_shift);
1001 printf(" Raid Level[%d] : %s\n", n,
1002 map_num(ddf_level, vc->prl)?:"-unknown-");
1003 if (vc->sec_elmnt_count != 1) {
1004 printf(" Secondary Position[%d] : %d of %d\n", n,
1005 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1006 printf(" Secondary Level[%d] : %s\n", n,
1007 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1008 }
1009 printf(" Device Size[%d] : %llu\n", n,
1010 __be64_to_cpu(vc->blocks)/2);
1011 printf(" Array Size[%d] : %llu\n", n,
1012 __be64_to_cpu(vc->array_blocks)/2);
1013 }
1014 }
1015
1016 static void examine_vds(struct ddf_super *sb)
1017 {
1018 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1019 int i;
1020 printf(" Virtual Disks : %d\n", cnt);
1021
1022 for (i=0; i<cnt; i++) {
1023 struct virtual_entry *ve = &sb->virt->entries[i];
1024 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1025 printf("\n");
1026 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1027 printf(" state[%d] : %s, %s%s\n", i,
1028 map_num(ddf_state, ve->state & 7),
1029 (ve->state & 8) ? "Morphing, ": "",
1030 (ve->state & 16)? "Not Consistent" : "Consistent");
1031 printf(" init state[%d] : %s\n", i,
1032 map_num(ddf_init_state, ve->init_state&3));
1033 printf(" access[%d] : %s\n", i,
1034 map_num(ddf_access, (ve->init_state>>6) & 3));
1035 printf(" Name[%d] : %.16s\n", i, ve->name);
1036 examine_vd(i, sb, ve->guid);
1037 }
1038 if (cnt) printf("\n");
1039 }
1040
1041 static void examine_pds(struct ddf_super *sb)
1042 {
1043 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1044 int i;
1045 struct dl *dl;
1046 printf(" Physical Disks : %d\n", cnt);
1047
1048 for (i=0 ; i<cnt ; i++) {
1049 struct phys_disk_entry *pd = &sb->phys->entries[i];
1050 int type = __be16_to_cpu(pd->type);
1051 int state = __be16_to_cpu(pd->state);
1052
1053 printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1054 printf("\n");
1055 printf(" ref[%d] : %08x\n", i,
1056 __be32_to_cpu(pd->refnum));
1057 printf(" mode[%d] : %s%s%s%s%s\n", i,
1058 (type&2) ? "active":"",
1059 (type&4) ? "Global Spare":"",
1060 (type&8) ? "spare" : "",
1061 (type&16)? ", foreign" : "",
1062 (type&32)? "pass-through" : "");
1063 printf(" state[%d] : %s%s%s%s%s%s%s\n", i,
1064 (state&1)? "Online": "Offline",
1065 (state&2)? ", Failed": "",
1066 (state&4)? ", Rebuilding": "",
1067 (state&8)? ", in-transition": "",
1068 (state&16)? ", SMART errors": "",
1069 (state&32)? ", Unrecovered Read Errors": "",
1070 (state&64)? ", Missing" : "");
1071 printf(" Avail Size[%d] : %llu K\n", i,
1072 __be64_to_cpu(pd->config_size)>>1);
1073 for (dl = sb->dlist; dl ; dl = dl->next) {
1074 if (dl->disk.refnum == pd->refnum) {
1075 char *dv = map_dev(dl->major, dl->minor, 0);
1076 if (dv)
1077 printf(" Device[%d] : %s\n",
1078 i, dv);
1079 }
1080 }
1081 printf("\n");
1082 }
1083 }
1084
1085 static void examine_super_ddf(struct supertype *st, char *homehost)
1086 {
1087 struct ddf_super *sb = st->sb;
1088
1089 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1090 printf(" Version : %.8s\n", sb->anchor.revision);
1091 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1092 printf("\n");
1093 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1094 printf("\n");
1095 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1096 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1097 ?"yes" : "no");
1098 examine_vds(sb);
1099 examine_pds(sb);
1100 }
1101
1102 static void brief_examine_super_ddf(struct supertype *st)
1103 {
1104 /* We just write a generic DDF ARRAY entry
1105 * The uuid is all hex, 6 groups of 4 bytes
1106 */
1107 struct ddf_super *ddf = st->sb;
1108 int i;
1109 printf("ARRAY /dev/ddf metadata=ddf UUID=");
1110 for (i = 0; i < DDF_GUID_LEN; i++) {
1111 if ((i&3) == 0 && i != 0)
1112 printf(":");
1113 printf("%02X", 255&ddf->anchor.guid[i]);
1114 }
1115 printf("\n");
1116 }
1117
1118 static void detail_super_ddf(struct supertype *st, char *homehost)
1119 {
1120 /* FIXME later
1121 * Could print DDF GUID
1122 * Need to find which array
1123 * If whole, briefly list all arrays
1124 * If one, give name
1125 */
1126 }
1127
1128 static void brief_detail_super_ddf(struct supertype *st)
1129 {
1130 /* FIXME I really need to know which array we are detailing.
1131 * Can that be stored in ddf_super??
1132 */
1133 // struct ddf_super *ddf = st->sb;
1134 }
1135 #endif
1136
1137 static int match_home_ddf(struct supertype *st, char *homehost)
1138 {
1139 /* It matches 'this' host if the controller is a
1140 * Linux-MD controller with vendor_data matching
1141 * the hostname
1142 */
1143 struct ddf_super *ddf = st->sb;
1144 int len = strlen(homehost);
1145
1146 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1147 len < sizeof(ddf->controller.vendor_data) &&
1148 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1149 ddf->controller.vendor_data[len] == 0);
1150 }
1151
1152 static struct vd_config *find_vdcr(struct ddf_super *ddf, int inst)
1153 {
1154 struct vcl *v;
1155
1156 for (v = ddf->conflist; v; v = v->next)
1157 if (inst == v->vcnum)
1158 return &v->conf;
1159 return NULL;
1160 }
1161
1162 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1163 {
1164 /* Find the entry in phys_disk which has the given refnum
1165 * and return it's index
1166 */
1167 int i;
1168 for (i=0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1169 if (ddf->phys->entries[i].refnum == phys_refnum)
1170 return i;
1171 return -1;
1172 }
1173
1174 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1175 {
1176 /* The uuid returned here is used for:
1177 * uuid to put into bitmap file (Create, Grow)
1178 * uuid for backup header when saving critical section (Grow)
1179 * comparing uuids when re-adding a device into an array
1180 * For each of these we can make do with a truncated
1181 * or hashed uuid rather than the original, as long as
1182 * everyone agrees.
1183 * In each case the uuid required is that of the data-array,
1184 * not the device-set.
1185 * In the case of SVD we assume the BVD is of interest,
1186 * though that might be the case if a bitmap were made for
1187 * a mirrored SVD - worry about that later.
1188 * So we need to find the VD configuration record for the
1189 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1190 * The first 16 bytes of the sha1 of these is used.
1191 */
1192 struct ddf_super *ddf = st->sb;
1193 struct vcl *vcl = ddf->currentconf;
1194
1195 if (!vcl)
1196 memset(uuid, 0, sizeof (uuid));
1197 else {
1198 char buf[20];
1199 struct sha1_ctx ctx;
1200 sha1_init_ctx(&ctx);
1201 sha1_process_bytes(&vcl->conf.guid, DDF_GUID_LEN, &ctx);
1202 if (vcl->conf.sec_elmnt_count > 1)
1203 sha1_process_bytes(&vcl->conf.sec_elmnt_seq, 1, &ctx);
1204 sha1_finish_ctx(&ctx, buf);
1205 memcpy(uuid, buf, sizeof(uuid));
1206 }
1207 }
1208
1209 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info);
1210
1211 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1212 {
1213 struct ddf_super *ddf = st->sb;
1214
1215 if (ddf->currentconf) {
1216 getinfo_super_ddf_bvd(st, info);
1217 return;
1218 }
1219
1220 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1221 info->array.level = LEVEL_CONTAINER;
1222 info->array.layout = 0;
1223 info->array.md_minor = -1;
1224 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)
1225 (ddf->anchor.guid+16));
1226 info->array.utime = 0;
1227 info->array.chunk_size = 0;
1228
1229
1230 info->disk.major = 0;
1231 info->disk.minor = 0;
1232 if (ddf->dlist) {
1233 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1234 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1235
1236 info->data_offset = __be64_to_cpu(ddf->phys->
1237 entries[info->disk.raid_disk].
1238 config_size);
1239 info->component_size = ddf->dlist->size - info->data_offset;
1240 } else {
1241 info->disk.number = -1;
1242 // info->disk.raid_disk = find refnum in the table and use index;
1243 }
1244 info->disk.state = (1 << MD_DISK_SYNC);
1245
1246
1247 info->reshape_active = 0;
1248
1249 strcpy(info->text_version, "ddf");
1250
1251 // uuid_from_super_ddf(info->uuid, sbv);
1252
1253 // info->name[] ?? ;
1254 }
1255
1256 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1257
1258 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1259 {
1260 struct ddf_super *ddf = st->sb;
1261 struct vcl *vc = ddf->currentconf;
1262 int cd = ddf->currentdev;
1263
1264 /* FIXME this returns BVD info - what if we want SVD ?? */
1265
1266 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1267 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1268 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1269 info->array.raid_disks);
1270 info->array.md_minor = -1;
1271 info->array.ctime = DECADE +
1272 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
1273 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1274 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1275
1276 if (cd >= 0 && cd < ddf->mppe) {
1277 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1278 if (vc->block_sizes)
1279 info->component_size = vc->block_sizes[cd];
1280 else
1281 info->component_size = __be64_to_cpu(vc->conf.blocks);
1282 }
1283
1284 info->disk.major = 0;
1285 info->disk.minor = 0;
1286 // info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1287 // info->disk.raid_disk = find refnum in the table and use index;
1288 // info->disk.state = ???;
1289
1290 info->container_member = ddf->currentconf->vcnum;
1291
1292 info->resync_start = 0;
1293 if (!(ddf->virt->entries[info->container_member].state
1294 & DDF_state_inconsistent) &&
1295 (ddf->virt->entries[info->container_member].init_state
1296 & DDF_initstate_mask)
1297 == DDF_init_full)
1298 info->resync_start = ~0ULL;
1299
1300 uuid_from_super_ddf(st, info->uuid);
1301
1302 info->container_member = atoi(st->subarray);
1303 sprintf(info->text_version, "/%s/%s",
1304 devnum2devname(st->container_dev),
1305 st->subarray);
1306
1307 // info->name[] ?? ;
1308 }
1309
1310
1311 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1312 char *update,
1313 char *devname, int verbose,
1314 int uuid_set, char *homehost)
1315 {
1316 /* For 'assemble' and 'force' we need to return non-zero if any
1317 * change was made. For others, the return value is ignored.
1318 * Update options are:
1319 * force-one : This device looks a bit old but needs to be included,
1320 * update age info appropriately.
1321 * assemble: clear any 'faulty' flag to allow this device to
1322 * be assembled.
1323 * force-array: Array is degraded but being forced, mark it clean
1324 * if that will be needed to assemble it.
1325 *
1326 * newdev: not used ????
1327 * grow: Array has gained a new device - this is currently for
1328 * linear only
1329 * resync: mark as dirty so a resync will happen.
1330 * uuid: Change the uuid of the array to match what is given
1331 * homehost: update the recorded homehost
1332 * name: update the name - preserving the homehost
1333 * _reshape_progress: record new reshape_progress position.
1334 *
1335 * Following are not relevant for this version:
1336 * sparc2.2 : update from old dodgey metadata
1337 * super-minor: change the preferred_minor number
1338 * summaries: update redundant counters.
1339 */
1340 int rv = 0;
1341 // struct ddf_super *ddf = st->sb;
1342 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1343 // struct virtual_entry *ve = find_ve(ddf);
1344
1345 /* we don't need to handle "force-*" or "assemble" as
1346 * there is no need to 'trick' the kernel. We the metadata is
1347 * first updated to activate the array, all the implied modifications
1348 * will just happen.
1349 */
1350
1351 if (strcmp(update, "grow") == 0) {
1352 /* FIXME */
1353 }
1354 if (strcmp(update, "resync") == 0) {
1355 // info->resync_checkpoint = 0;
1356 }
1357 /* We ignore UUID updates as they make even less sense
1358 * with DDF
1359 */
1360 if (strcmp(update, "homehost") == 0) {
1361 /* homehost is stored in controller->vendor_data,
1362 * or it is when we are the vendor
1363 */
1364 // if (info->vendor_is_local)
1365 // strcpy(ddf->controller.vendor_data, homehost);
1366 }
1367 if (strcmp(update, "name") == 0) {
1368 /* name is stored in virtual_entry->name */
1369 // memset(ve->name, ' ', 16);
1370 // strncpy(ve->name, info->name, 16);
1371 }
1372 if (strcmp(update, "_reshape_progress") == 0) {
1373 /* We don't support reshape yet */
1374 }
1375
1376 // update_all_csum(ddf);
1377
1378 return rv;
1379 }
1380
1381 static void make_header_guid(char *guid)
1382 {
1383 __u32 stamp;
1384 int rfd;
1385 /* Create a DDF Header of Virtual Disk GUID */
1386
1387 /* 24 bytes of fiction required.
1388 * first 8 are a 'vendor-id' - "Linux-MD"
1389 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1390 * Remaining 8 random number plus timestamp
1391 */
1392 memcpy(guid, T10, sizeof(T10));
1393 stamp = __cpu_to_be32(0xdeadbeef);
1394 memcpy(guid+8, &stamp, 4);
1395 stamp = __cpu_to_be32(0);
1396 memcpy(guid+12, &stamp, 4);
1397 stamp = __cpu_to_be32(time(0) - DECADE);
1398 memcpy(guid+16, &stamp, 4);
1399 rfd = open("/dev/urandom", O_RDONLY);
1400 if (rfd < 0 || read(rfd, &stamp, 4) != 4)
1401 stamp = random();
1402 memcpy(guid+20, &stamp, 4);
1403 if (rfd >= 0) close(rfd);
1404 }
1405
1406 static int init_super_ddf_bvd(struct supertype *st,
1407 mdu_array_info_t *info,
1408 unsigned long long size,
1409 char *name, char *homehost,
1410 int *uuid);
1411
1412 static int init_super_ddf(struct supertype *st,
1413 mdu_array_info_t *info,
1414 unsigned long long size, char *name, char *homehost,
1415 int *uuid)
1416 {
1417 /* This is primarily called by Create when creating a new array.
1418 * We will then get add_to_super called for each component, and then
1419 * write_init_super called to write it out to each device.
1420 * For DDF, Create can create on fresh devices or on a pre-existing
1421 * array.
1422 * To create on a pre-existing array a different method will be called.
1423 * This one is just for fresh drives.
1424 *
1425 * We need to create the entire 'ddf' structure which includes:
1426 * DDF headers - these are easy.
1427 * Controller data - a Sector describing this controller .. not that
1428 * this is a controller exactly.
1429 * Physical Disk Record - one entry per device, so
1430 * leave plenty of space.
1431 * Virtual Disk Records - again, just leave plenty of space.
1432 * This just lists VDs, doesn't give details
1433 * Config records - describes the VDs that use this disk
1434 * DiskData - describes 'this' device.
1435 * BadBlockManagement - empty
1436 * Diag Space - empty
1437 * Vendor Logs - Could we put bitmaps here?
1438 *
1439 */
1440 struct ddf_super *ddf;
1441 char hostname[17];
1442 int hostlen;
1443 int max_phys_disks, max_virt_disks;
1444 unsigned long long sector;
1445 int clen;
1446 int i;
1447 int pdsize, vdsize;
1448 struct phys_disk *pd;
1449 struct virtual_disk *vd;
1450
1451 if (!info) {
1452 st->sb = NULL;
1453 return 0;
1454 }
1455 if (st->sb)
1456 return init_super_ddf_bvd(st, info, size, name, homehost,
1457 uuid);
1458
1459 posix_memalign((void**)&ddf, 512, sizeof(*ddf));
1460 memset(ddf, 0, sizeof(*ddf));
1461 ddf->dlist = NULL; /* no physical disks yet */
1462 ddf->conflist = NULL; /* No virtual disks yet */
1463
1464 /* At least 32MB *must* be reserved for the ddf. So let's just
1465 * start 32MB from the end, and put the primary header there.
1466 * Don't do secondary for now.
1467 * We don't know exactly where that will be yet as it could be
1468 * different on each device. To just set up the lengths.
1469 *
1470 */
1471
1472 ddf->anchor.magic = DDF_HEADER_MAGIC;
1473 make_header_guid(ddf->anchor.guid);
1474
1475 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1476 ddf->anchor.seq = __cpu_to_be32(1);
1477 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1478 ddf->anchor.openflag = 0xFF;
1479 ddf->anchor.foreignflag = 0;
1480 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1481 ddf->anchor.pad0 = 0xff;
1482 memset(ddf->anchor.pad1, 0xff, 12);
1483 memset(ddf->anchor.header_ext, 0xff, 32);
1484 ddf->anchor.primary_lba = ~(__u64)0;
1485 ddf->anchor.secondary_lba = ~(__u64)0;
1486 ddf->anchor.type = DDF_HEADER_ANCHOR;
1487 memset(ddf->anchor.pad2, 0xff, 3);
1488 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1489 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1490 of 32M reserved.. */
1491 max_phys_disks = 1023; /* Should be enough */
1492 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1493 max_virt_disks = 255;
1494 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1495 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1496 ddf->max_part = 64;
1497 ddf->mppe = 256;
1498 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1499 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1500 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1501 memset(ddf->anchor.pad3, 0xff, 54);
1502 /* controller sections is one sector long immediately
1503 * after the ddf header */
1504 sector = 1;
1505 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1506 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1507 sector += 1;
1508
1509 /* phys is 8 sectors after that */
1510 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1511 sizeof(struct phys_disk_entry)*max_phys_disks,
1512 512);
1513 switch(pdsize/512) {
1514 case 2: case 8: case 32: case 128: case 512: break;
1515 default: abort();
1516 }
1517 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1518 ddf->anchor.phys_section_length =
1519 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1520 sector += pdsize/512;
1521
1522 /* virt is another 32 sectors */
1523 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1524 sizeof(struct virtual_entry) * max_virt_disks,
1525 512);
1526 switch(vdsize/512) {
1527 case 2: case 8: case 32: case 128: case 512: break;
1528 default: abort();
1529 }
1530 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1531 ddf->anchor.virt_section_length =
1532 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1533 sector += vdsize/512;
1534
1535 clen = ddf->conf_rec_len * (ddf->max_part+1);
1536 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1537 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1538 sector += clen;
1539
1540 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1541 ddf->anchor.data_section_length = __cpu_to_be32(1);
1542 sector += 1;
1543
1544 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1545 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1546 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1547 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1548 ddf->anchor.vendor_length = __cpu_to_be32(0);
1549 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1550
1551 memset(ddf->anchor.pad4, 0xff, 256);
1552
1553 memcpy(&ddf->primary, &ddf->anchor, 512);
1554 memcpy(&ddf->secondary, &ddf->anchor, 512);
1555
1556 ddf->primary.openflag = 1; /* I guess.. */
1557 ddf->primary.type = DDF_HEADER_PRIMARY;
1558
1559 ddf->secondary.openflag = 1; /* I guess.. */
1560 ddf->secondary.type = DDF_HEADER_SECONDARY;
1561
1562 ddf->active = &ddf->primary;
1563
1564 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1565
1566 /* 24 more bytes of fiction required.
1567 * first 8 are a 'vendor-id' - "Linux-MD"
1568 * Remaining 16 are serial number.... maybe a hostname would do?
1569 */
1570 memcpy(ddf->controller.guid, T10, sizeof(T10));
1571 gethostname(hostname, sizeof(hostname));
1572 hostname[sizeof(hostname) - 1] = 0;
1573 hostlen = strlen(hostname);
1574 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1575 for (i = strlen(T10) ; i+hostlen < 24; i++)
1576 ddf->controller.guid[i] = ' ';
1577
1578 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1579 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1580 ddf->controller.type.sub_vendor_id = 0;
1581 ddf->controller.type.sub_device_id = 0;
1582 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1583 memset(ddf->controller.pad, 0xff, 8);
1584 memset(ddf->controller.vendor_data, 0xff, 448);
1585
1586 posix_memalign((void**)&pd, 512, pdsize);
1587 ddf->phys = pd;
1588 ddf->pdsize = pdsize;
1589
1590 memset(pd, 0xff, pdsize);
1591 memset(pd, 0, sizeof(*pd));
1592 pd->magic = DDF_PHYS_DATA_MAGIC;
1593 pd->used_pdes = __cpu_to_be16(0);
1594 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1595 memset(pd->pad, 0xff, 52);
1596
1597 posix_memalign((void**)&vd, 512, vdsize);
1598 ddf->virt = vd;
1599 ddf->vdsize = vdsize;
1600 memset(vd, 0, vdsize);
1601 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1602 vd->populated_vdes = __cpu_to_be16(0);
1603 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1604 memset(vd->pad, 0xff, 52);
1605
1606 for (i=0; i<max_virt_disks; i++)
1607 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1608
1609 st->sb = ddf;
1610 ddf->updates_pending = 1;
1611 return 1;
1612 }
1613
1614 static int all_ff(char *guid)
1615 {
1616 int i;
1617 for (i = 0; i < DDF_GUID_LEN; i++)
1618 if (guid[i] != (char)0xff)
1619 return 0;
1620 return 1;
1621 }
1622 static int chunk_to_shift(int chunksize)
1623 {
1624 return ffs(chunksize/512)-1;
1625 }
1626
1627 static int level_to_prl(int level)
1628 {
1629 switch (level) {
1630 case LEVEL_LINEAR: return DDF_CONCAT;
1631 case 0: return DDF_RAID0;
1632 case 1: return DDF_RAID1;
1633 case 4: return DDF_RAID4;
1634 case 5: return DDF_RAID5;
1635 case 6: return DDF_RAID6;
1636 default: return -1;
1637 }
1638 }
1639 static int layout_to_rlq(int level, int layout, int raiddisks)
1640 {
1641 switch(level) {
1642 case 0:
1643 return DDF_RAID0_SIMPLE;
1644 case 1:
1645 switch(raiddisks) {
1646 case 2: return DDF_RAID1_SIMPLE;
1647 case 3: return DDF_RAID1_MULTI;
1648 default: return -1;
1649 }
1650 case 4:
1651 switch(layout) {
1652 case 0: return DDF_RAID4_N;
1653 }
1654 break;
1655 case 5:
1656 case 6:
1657 switch(layout) {
1658 case ALGORITHM_LEFT_ASYMMETRIC:
1659 return DDF_RAID5_N_RESTART;
1660 case ALGORITHM_RIGHT_ASYMMETRIC:
1661 if (level == 5)
1662 return DDF_RAID5_0_RESTART;
1663 else
1664 return DDF_RAID6_0_RESTART;
1665 case ALGORITHM_LEFT_SYMMETRIC:
1666 return DDF_RAID5_N_CONTINUE;
1667 case ALGORITHM_RIGHT_SYMMETRIC:
1668 return -1; /* not mentioned in standard */
1669 }
1670 }
1671 return -1;
1672 }
1673
1674 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1675 {
1676 switch(prl) {
1677 case DDF_RAID0:
1678 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1679 case DDF_RAID1:
1680 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1681 on raiddisks*/
1682 case DDF_RAID4:
1683 switch(rlq) {
1684 case DDF_RAID4_N:
1685 return 0;
1686 default:
1687 /* not supported */
1688 return -1; /* FIXME this isn't checked */
1689 }
1690 case DDF_RAID5:
1691 switch(rlq) {
1692 case DDF_RAID5_N_RESTART:
1693 return ALGORITHM_LEFT_ASYMMETRIC;
1694 case DDF_RAID5_0_RESTART:
1695 return ALGORITHM_RIGHT_ASYMMETRIC;
1696 case DDF_RAID5_N_CONTINUE:
1697 return ALGORITHM_LEFT_SYMMETRIC;
1698 default:
1699 return -1;
1700 }
1701 case DDF_RAID6:
1702 switch(rlq) {
1703 case DDF_RAID5_N_RESTART:
1704 return ALGORITHM_LEFT_ASYMMETRIC;
1705 case DDF_RAID6_0_RESTART:
1706 return ALGORITHM_RIGHT_ASYMMETRIC;
1707 case DDF_RAID5_N_CONTINUE:
1708 return ALGORITHM_LEFT_SYMMETRIC;
1709 default:
1710 return -1;
1711 }
1712 }
1713 return -1;
1714 }
1715
1716 struct extent {
1717 unsigned long long start, size;
1718 };
1719 static int cmp_extent(const void *av, const void *bv)
1720 {
1721 const struct extent *a = av;
1722 const struct extent *b = bv;
1723 if (a->start < b->start)
1724 return -1;
1725 if (a->start > b->start)
1726 return 1;
1727 return 0;
1728 }
1729
1730 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1731 {
1732 /* find a list of used extents on the give physical device
1733 * (dnum) of the given ddf.
1734 * Return a malloced array of 'struct extent'
1735
1736 FIXME ignore DDF_Legacy devices?
1737
1738 */
1739 struct extent *rv;
1740 int n = 0;
1741 int i, j;
1742
1743 rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1744 if (!rv)
1745 return NULL;
1746
1747 for (i = 0; i < ddf->max_part; i++) {
1748 struct vcl *v = dl->vlist[i];
1749 if (v == NULL)
1750 continue;
1751 for (j=0; j < v->conf.prim_elmnt_count; j++)
1752 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1753 /* This device plays role 'j' in 'v'. */
1754 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1755 rv[n].size = __be64_to_cpu(v->conf.blocks);
1756 n++;
1757 break;
1758 }
1759 }
1760 qsort(rv, n, sizeof(*rv), cmp_extent);
1761
1762 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1763 rv[n].size = 0;
1764 return rv;
1765 }
1766
1767 static int init_super_ddf_bvd(struct supertype *st,
1768 mdu_array_info_t *info,
1769 unsigned long long size,
1770 char *name, char *homehost,
1771 int *uuid)
1772 {
1773 /* We are creating a BVD inside a pre-existing container.
1774 * so st->sb is already set.
1775 * We need to create a new vd_config and a new virtual_entry
1776 */
1777 struct ddf_super *ddf = st->sb;
1778 int venum;
1779 struct virtual_entry *ve;
1780 struct vcl *vcl;
1781 struct vd_config *vc;
1782
1783 if (__be16_to_cpu(ddf->virt->populated_vdes)
1784 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1785 fprintf(stderr, Name": This ddf already has the "
1786 "maximum of %d virtual devices\n",
1787 __be16_to_cpu(ddf->virt->max_vdes));
1788 return 0;
1789 }
1790
1791 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1792 if (all_ff(ddf->virt->entries[venum].guid))
1793 break;
1794 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1795 fprintf(stderr, Name ": Cannot find spare slot for "
1796 "virtual disk - DDF is corrupt\n");
1797 return 0;
1798 }
1799 ve = &ddf->virt->entries[venum];
1800
1801 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1802 * timestamp, random number
1803 */
1804 make_header_guid(ve->guid);
1805 ve->unit = __cpu_to_be16(info->md_minor);
1806 ve->pad0 = 0xFFFF;
1807 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1808 ve->type = 0;
1809 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1810 if (info->state & 1) /* clean */
1811 ve->init_state = DDF_init_full;
1812 else
1813 ve->init_state = DDF_init_not;
1814
1815 memset(ve->pad1, 0xff, 14);
1816 memset(ve->name, ' ', 16);
1817 if (name)
1818 strncpy(ve->name, name, 16);
1819 ddf->virt->populated_vdes =
1820 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
1821
1822 /* Now create a new vd_config */
1823 posix_memalign((void**)&vcl, 512,
1824 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512));
1825 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
1826 vcl->vcnum = venum;
1827 sprintf(st->subarray, "%d", venum);
1828 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
1829
1830 vc = &vcl->conf;
1831
1832 vc->magic = DDF_VD_CONF_MAGIC;
1833 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
1834 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
1835 vc->seqnum = __cpu_to_be32(1);
1836 memset(vc->pad0, 0xff, 24);
1837 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
1838 vc->chunk_shift = chunk_to_shift(info->chunk_size);
1839 vc->prl = level_to_prl(info->level);
1840 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
1841 vc->sec_elmnt_count = 1;
1842 vc->sec_elmnt_seq = 0;
1843 vc->srl = 0;
1844 vc->blocks = __cpu_to_be64(info->size * 2);
1845 vc->array_blocks = __cpu_to_be64(
1846 calc_array_size(info->level, info->raid_disks, info->layout,
1847 info->chunk_size, info->size*2));
1848 memset(vc->pad1, 0xff, 8);
1849 vc->spare_refs[0] = 0xffffffff;
1850 vc->spare_refs[1] = 0xffffffff;
1851 vc->spare_refs[2] = 0xffffffff;
1852 vc->spare_refs[3] = 0xffffffff;
1853 vc->spare_refs[4] = 0xffffffff;
1854 vc->spare_refs[5] = 0xffffffff;
1855 vc->spare_refs[6] = 0xffffffff;
1856 vc->spare_refs[7] = 0xffffffff;
1857 memset(vc->cache_pol, 0, 8);
1858 vc->bg_rate = 0x80;
1859 memset(vc->pad2, 0xff, 3);
1860 memset(vc->pad3, 0xff, 52);
1861 memset(vc->pad4, 0xff, 192);
1862 memset(vc->v0, 0xff, 32);
1863 memset(vc->v1, 0xff, 32);
1864 memset(vc->v2, 0xff, 16);
1865 memset(vc->v3, 0xff, 16);
1866 memset(vc->vendor, 0xff, 32);
1867
1868 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
1869 memset(vc->phys_refnum+(ddf->mppe * 4), 0x00, 8*ddf->mppe);
1870
1871 vcl->next = ddf->conflist;
1872 ddf->conflist = vcl;
1873 ddf->currentconf = vcl;
1874 ddf->updates_pending = 1;
1875 return 1;
1876 }
1877
1878 static void add_to_super_ddf_bvd(struct supertype *st,
1879 mdu_disk_info_t *dk, int fd, char *devname)
1880 {
1881 /* fd and devname identify a device with-in the ddf container (st).
1882 * dk identifies a location in the new BVD.
1883 * We need to find suitable free space in that device and update
1884 * the phys_refnum and lba_offset for the newly created vd_config.
1885 * We might also want to update the type in the phys_disk
1886 * section.
1887 */
1888 struct dl *dl;
1889 struct ddf_super *ddf = st->sb;
1890 struct vd_config *vc;
1891 __u64 *lba_offset;
1892 int working;
1893 int i;
1894 unsigned long long blocks, pos, esize;
1895 struct extent *ex;
1896
1897 for (dl = ddf->dlist; dl ; dl = dl->next)
1898 if (dl->major == dk->major &&
1899 dl->minor == dk->minor)
1900 break;
1901 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1902 return;
1903
1904 vc = &ddf->currentconf->conf;
1905 lba_offset = ddf->currentconf->lba_offset;
1906
1907 ex = get_extents(ddf, dl);
1908 if (!ex)
1909 return;
1910
1911 i = 0; pos = 0;
1912 blocks = __be64_to_cpu(vc->blocks);
1913 if (ddf->currentconf->block_sizes)
1914 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
1915
1916 do {
1917 esize = ex[i].start - pos;
1918 if (esize >= blocks)
1919 break;
1920 pos = ex[i].start + ex[i].size;
1921 i++;
1922 } while (ex[i-1].size);
1923
1924 free(ex);
1925 if (esize < blocks)
1926 return;
1927
1928 ddf->currentdev = dk->raid_disk;
1929 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
1930 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
1931
1932 for (i=0; i < ddf->max_part ; i++)
1933 if (dl->vlist[i] == NULL)
1934 break;
1935 if (i == ddf->max_part)
1936 return;
1937 dl->vlist[i] = ddf->currentconf;
1938
1939 dl->fd = fd;
1940 dl->devname = devname;
1941
1942 /* Check how many working raid_disks, and if we can mark
1943 * array as optimal yet
1944 */
1945 working = 0;
1946
1947 for (i=0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
1948 if (vc->phys_refnum[i] != 0xffffffff)
1949 working++;
1950
1951 /* Find which virtual_entry */
1952 i = ddf->currentconf->vcnum;
1953 if (working == __be16_to_cpu(vc->prim_elmnt_count))
1954 ddf->virt->entries[i].state =
1955 (ddf->virt->entries[i].state & ~DDF_state_mask)
1956 | DDF_state_optimal;
1957
1958 if (vc->prl == DDF_RAID6 &&
1959 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
1960 ddf->virt->entries[i].state =
1961 (ddf->virt->entries[i].state & ~DDF_state_mask)
1962 | DDF_state_part_optimal;
1963
1964 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
1965 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
1966 ddf->updates_pending = 1;
1967 }
1968
1969 /* add a device to a container, either while creating it or while
1970 * expanding a pre-existing container
1971 */
1972 static void add_to_super_ddf(struct supertype *st,
1973 mdu_disk_info_t *dk, int fd, char *devname)
1974 {
1975 struct ddf_super *ddf = st->sb;
1976 struct dl *dd;
1977 time_t now;
1978 struct tm *tm;
1979 unsigned long long size;
1980 struct phys_disk_entry *pde;
1981 int n, i;
1982 struct stat stb;
1983
1984 if (ddf->currentconf) {
1985 add_to_super_ddf_bvd(st, dk, fd, devname);
1986 return;
1987 }
1988
1989 /* This is device numbered dk->number. We need to create
1990 * a phys_disk entry and a more detailed disk_data entry.
1991 */
1992 fstat(fd, &stb);
1993 posix_memalign((void**)&dd, 512,
1994 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part);
1995 dd->major = major(stb.st_rdev);
1996 dd->minor = minor(stb.st_rdev);
1997 dd->devname = devname;
1998 dd->fd = fd;
1999 dd->spare = NULL;
2000
2001 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2002 now = time(0);
2003 tm = localtime(&now);
2004 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2005 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2006 *(__u32*)(dd->disk.guid + 16) = random();
2007 *(__u32*)(dd->disk.guid + 20) = random();
2008
2009 do {
2010 /* Cannot be bothered finding a CRC of some irrelevant details*/
2011 dd->disk.refnum = random();
2012 for (i = __be16_to_cpu(ddf->active->max_pd_entries) - 1;
2013 i >= 0; i--)
2014 if (ddf->phys->entries[i].refnum == dd->disk.refnum)
2015 break;
2016 } while (i >= 0);
2017
2018 dd->disk.forced_ref = 1;
2019 dd->disk.forced_guid = 1;
2020 memset(dd->disk.vendor, ' ', 32);
2021 memcpy(dd->disk.vendor, "Linux", 5);
2022 memset(dd->disk.pad, 0xff, 442);
2023 for (i = 0; i < ddf->max_part ; i++)
2024 dd->vlist[i] = NULL;
2025
2026 n = __be16_to_cpu(ddf->phys->used_pdes);
2027 pde = &ddf->phys->entries[n];
2028 dd->pdnum = n;
2029
2030 if (st->update_tail) {
2031 int len = (sizeof(struct phys_disk) +
2032 sizeof(struct phys_disk_entry));
2033 struct phys_disk *pd;
2034
2035 pd = malloc(len);
2036 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2037 pd->used_pdes = __cpu_to_be16(n);
2038 pde = &pd->entries[0];
2039 dd->mdupdate = pd;
2040 } else {
2041 n++;
2042 ddf->phys->used_pdes = __cpu_to_be16(n);
2043 }
2044
2045 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2046 pde->refnum = dd->disk.refnum;
2047 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2048 pde->state = __cpu_to_be16(DDF_Online);
2049 get_dev_size(fd, NULL, &size);
2050 /* We are required to reserve 32Meg, and record the size in sectors */
2051 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2052 sprintf(pde->path, "%17.17s","Information: nil") ;
2053 memset(pde->pad, 0xff, 6);
2054
2055 dd->size = size >> 9;
2056 if (st->update_tail) {
2057 dd->next = ddf->add_list;
2058 ddf->add_list = dd;
2059 } else {
2060 dd->next = ddf->dlist;
2061 ddf->dlist = dd;
2062 ddf->updates_pending = 1;
2063 }
2064 }
2065
2066 /*
2067 * This is the write_init_super method for a ddf container. It is
2068 * called when creating a container or adding another device to a
2069 * container.
2070 */
2071
2072 #ifndef MDASSEMBLE
2073
2074 static unsigned char null_conf[4096+512];
2075
2076 static int __write_init_super_ddf(struct supertype *st, int do_close)
2077 {
2078
2079 struct ddf_super *ddf = st->sb;
2080 int i;
2081 struct dl *d;
2082 int n_config;
2083 int conf_size;
2084
2085 unsigned long long size, sector;
2086
2087 for (d = ddf->dlist; d; d=d->next) {
2088 int fd = d->fd;
2089
2090 if (fd < 0)
2091 continue;
2092
2093 /* We need to fill in the primary, (secondary) and workspace
2094 * lba's in the headers, set their checksums,
2095 * Also checksum phys, virt....
2096 *
2097 * Then write everything out, finally the anchor is written.
2098 */
2099 get_dev_size(fd, NULL, &size);
2100 size /= 512;
2101 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2102 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2103 ddf->anchor.seq = __cpu_to_be32(1);
2104 memcpy(&ddf->primary, &ddf->anchor, 512);
2105 memcpy(&ddf->secondary, &ddf->anchor, 512);
2106
2107 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2108 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2109 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2110
2111 ddf->primary.openflag = 0;
2112 ddf->primary.type = DDF_HEADER_PRIMARY;
2113
2114 ddf->secondary.openflag = 0;
2115 ddf->secondary.type = DDF_HEADER_SECONDARY;
2116
2117 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2118 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2119
2120 sector = size - 16*1024*2;
2121 lseek64(fd, sector<<9, 0);
2122 write(fd, &ddf->primary, 512);
2123
2124 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2125 write(fd, &ddf->controller, 512);
2126
2127 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2128
2129 write(fd, ddf->phys, ddf->pdsize);
2130
2131 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2132 write(fd, ddf->virt, ddf->vdsize);
2133
2134 /* Now write lots of config records. */
2135 n_config = ddf->max_part;
2136 conf_size = ddf->conf_rec_len * 512;
2137 for (i = 0 ; i <= n_config ; i++) {
2138 struct vcl *c = d->vlist[i];
2139 if (i == n_config)
2140 c = (struct vcl*)d->spare;
2141
2142 if (c) {
2143 c->conf.crc = calc_crc(&c->conf, conf_size);
2144 write(fd, &c->conf, conf_size);
2145 } else {
2146 char *null_aligned = (char*)((((unsigned long)null_conf)+511)&~511UL);
2147 if (null_conf[0] != 0xff)
2148 memset(null_conf, 0xff, sizeof(null_conf));
2149 int togo = conf_size;
2150 while (togo > sizeof(null_conf)-512) {
2151 write(fd, null_aligned, sizeof(null_conf)-512);
2152 togo -= sizeof(null_conf)-512;
2153 }
2154 write(fd, null_aligned, togo);
2155 }
2156 }
2157 d->disk.crc = calc_crc(&d->disk, 512);
2158 write(fd, &d->disk, 512);
2159
2160 /* Maybe do the same for secondary */
2161
2162 lseek64(fd, (size-1)*512, SEEK_SET);
2163 write(fd, &ddf->anchor, 512);
2164 if (do_close) {
2165 close(fd);
2166 d->fd = -1;
2167 }
2168 }
2169 return 1;
2170 }
2171
2172 static int write_init_super_ddf(struct supertype *st)
2173 {
2174
2175 if (st->update_tail) {
2176 /* queue the virtual_disk and vd_config as metadata updates */
2177 struct virtual_disk *vd;
2178 struct vd_config *vc;
2179 struct ddf_super *ddf = st->sb;
2180 int len;
2181
2182 if (!ddf->currentconf) {
2183 int len = (sizeof(struct phys_disk) +
2184 sizeof(struct phys_disk_entry));
2185
2186 /* adding a disk to the container. */
2187 if (!ddf->add_list)
2188 return 0;
2189
2190 append_metadata_update(st, ddf->add_list->mdupdate, len);
2191 ddf->add_list->mdupdate = NULL;
2192 return 0;
2193 }
2194
2195 /* Newly created VD */
2196
2197 /* First the virtual disk. We have a slightly fake header */
2198 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2199 vd = malloc(len);
2200 *vd = *ddf->virt;
2201 vd->entries[0] = ddf->virt->entries[ddf->currentconf->vcnum];
2202 vd->populated_vdes = __cpu_to_be16(ddf->currentconf->vcnum);
2203 append_metadata_update(st, vd, len);
2204
2205 /* Then the vd_config */
2206 len = ddf->conf_rec_len * 512;
2207 vc = malloc(len);
2208 memcpy(vc, &ddf->currentconf->conf, len);
2209 append_metadata_update(st, vc, len);
2210
2211 /* FIXME I need to close the fds! */
2212 return 0;
2213 } else
2214 return __write_init_super_ddf(st, 1);
2215 }
2216
2217 #endif
2218
2219 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2220 {
2221 /* We must reserve the last 32Meg */
2222 if (devsize <= 32*1024*2)
2223 return 0;
2224 return devsize - 32*1024*2;
2225 }
2226
2227 #ifndef MDASSEMBLE
2228 static int
2229 validate_geometry_ddf_container(struct supertype *st,
2230 int level, int layout, int raiddisks,
2231 int chunk, unsigned long long size,
2232 char *dev, unsigned long long *freesize,
2233 int verbose);
2234
2235 static int validate_geometry_ddf_bvd(struct supertype *st,
2236 int level, int layout, int raiddisks,
2237 int chunk, unsigned long long size,
2238 char *dev, unsigned long long *freesize,
2239 int verbose);
2240
2241 static int validate_geometry_ddf(struct supertype *st,
2242 int level, int layout, int raiddisks,
2243 int chunk, unsigned long long size,
2244 char *dev, unsigned long long *freesize,
2245 int verbose)
2246 {
2247 int fd;
2248 struct mdinfo *sra;
2249 int cfd;
2250
2251 /* ddf potentially supports lots of things, but it depends on
2252 * what devices are offered (and maybe kernel version?)
2253 * If given unused devices, we will make a container.
2254 * If given devices in a container, we will make a BVD.
2255 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2256 */
2257
2258 if (level == LEVEL_CONTAINER) {
2259 /* Must be a fresh device to add to a container */
2260 return validate_geometry_ddf_container(st, level, layout,
2261 raiddisks, chunk,
2262 size, dev, freesize,
2263 verbose);
2264 }
2265
2266 if (st->sb) {
2267 /* A container has already been opened, so we are
2268 * creating in there. Maybe a BVD, maybe an SVD.
2269 * Should make a distinction one day.
2270 */
2271 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2272 chunk, size, dev, freesize,
2273 verbose);
2274 }
2275 if (!dev) {
2276 /* Initial sanity check. Exclude illegal levels. */
2277 int i;
2278 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2279 if (ddf_level_num[i].num2 == level)
2280 break;
2281 if (ddf_level_num[i].num1 == MAXINT)
2282 return 0;
2283 /* Should check layout? etc */
2284 return 1;
2285 }
2286
2287 /* This is the first device for the array.
2288 * If it is a container, we read it in and do automagic allocations,
2289 * no other devices should be given.
2290 * Otherwise it must be a member device of a container, and we
2291 * do manual allocation.
2292 * Later we should check for a BVD and make an SVD.
2293 */
2294 fd = open(dev, O_RDONLY|O_EXCL, 0);
2295 if (fd >= 0) {
2296 sra = sysfs_read(fd, 0, GET_VERSION);
2297 close(fd);
2298 if (sra && sra->array.major_version == -1 &&
2299 strcmp(sra->text_version, "ddf") == 0) {
2300
2301 /* load super */
2302 /* find space for 'n' devices. */
2303 /* remember the devices */
2304 /* Somehow return the fact that we have enough */
2305 }
2306
2307 if (verbose)
2308 fprintf(stderr,
2309 Name ": ddf: Cannot create this array "
2310 "on device %s\n",
2311 dev);
2312 return 0;
2313 }
2314 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2315 if (verbose)
2316 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2317 dev, strerror(errno));
2318 return 0;
2319 }
2320 /* Well, it is in use by someone, maybe a 'ddf' container. */
2321 cfd = open_container(fd);
2322 if (cfd < 0) {
2323 close(fd);
2324 if (verbose)
2325 fprintf(stderr, Name ": ddf: Cannot use %s: %s\n",
2326 dev, strerror(EBUSY));
2327 return 0;
2328 }
2329 sra = sysfs_read(cfd, 0, GET_VERSION);
2330 close(fd);
2331 if (sra && sra->array.major_version == -1 &&
2332 strcmp(sra->text_version, "ddf") == 0) {
2333 /* This is a member of a ddf container. Load the container
2334 * and try to create a bvd
2335 */
2336 struct ddf_super *ddf;
2337 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
2338 st->sb = ddf;
2339 st->container_dev = fd2devnum(cfd);
2340 close(cfd);
2341 return validate_geometry_ddf_bvd(st, level, layout,
2342 raiddisks, chunk, size,
2343 dev, freesize,
2344 verbose);
2345 }
2346 close(cfd);
2347 } else /* device may belong to a different container */
2348 return 0;
2349
2350 return 1;
2351 }
2352
2353 static int
2354 validate_geometry_ddf_container(struct supertype *st,
2355 int level, int layout, int raiddisks,
2356 int chunk, unsigned long long size,
2357 char *dev, unsigned long long *freesize,
2358 int verbose)
2359 {
2360 int fd;
2361 unsigned long long ldsize;
2362
2363 if (level != LEVEL_CONTAINER)
2364 return 0;
2365 if (!dev)
2366 return 1;
2367
2368 fd = open(dev, O_RDONLY|O_EXCL, 0);
2369 if (fd < 0) {
2370 if (verbose)
2371 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2372 dev, strerror(errno));
2373 return 0;
2374 }
2375 if (!get_dev_size(fd, dev, &ldsize)) {
2376 close(fd);
2377 return 0;
2378 }
2379 close(fd);
2380
2381 *freesize = avail_size_ddf(st, ldsize >> 9);
2382
2383 return 1;
2384 }
2385
2386 static int validate_geometry_ddf_bvd(struct supertype *st,
2387 int level, int layout, int raiddisks,
2388 int chunk, unsigned long long size,
2389 char *dev, unsigned long long *freesize,
2390 int verbose)
2391 {
2392 struct stat stb;
2393 struct ddf_super *ddf = st->sb;
2394 struct dl *dl;
2395 unsigned long long pos = 0;
2396 unsigned long long maxsize;
2397 struct extent *e;
2398 int i;
2399 /* ddf/bvd supports lots of things, but not containers */
2400 if (level == LEVEL_CONTAINER)
2401 return 0;
2402 /* We must have the container info already read in. */
2403 if (!ddf)
2404 return 0;
2405
2406 if (!dev) {
2407 /* General test: make sure there is space for
2408 * 'raiddisks' device extents of size 'size'.
2409 */
2410 unsigned long long minsize = size;
2411 int dcnt = 0;
2412 if (minsize == 0)
2413 minsize = 8;
2414 for (dl = ddf->dlist; dl ; dl = dl->next)
2415 {
2416 int found = 0;
2417 pos = 0;
2418
2419 i = 0;
2420 e = get_extents(ddf, dl);
2421 if (!e) continue;
2422 do {
2423 unsigned long long esize;
2424 esize = e[i].start - pos;
2425 if (esize >= minsize)
2426 found = 1;
2427 pos = e[i].start + e[i].size;
2428 i++;
2429 } while (e[i-1].size);
2430 if (found)
2431 dcnt++;
2432 free(e);
2433 }
2434 if (dcnt < raiddisks) {
2435 if (verbose)
2436 fprintf(stderr,
2437 Name ": ddf: Not enough devices with "
2438 "space for this array (%d < %d)\n",
2439 dcnt, raiddisks);
2440 return 0;
2441 }
2442 return 1;
2443 }
2444 /* This device must be a member of the set */
2445 if (stat(dev, &stb) < 0)
2446 return 0;
2447 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2448 return 0;
2449 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2450 if (dl->major == major(stb.st_rdev) &&
2451 dl->minor == minor(stb.st_rdev))
2452 break;
2453 }
2454 if (!dl) {
2455 if (verbose)
2456 fprintf(stderr, Name ": ddf: %s is not in the "
2457 "same DDF set\n",
2458 dev);
2459 return 0;
2460 }
2461 e = get_extents(ddf, dl);
2462 maxsize = 0;
2463 i = 0;
2464 if (e) do {
2465 unsigned long long esize;
2466 esize = e[i].start - pos;
2467 if (esize >= maxsize)
2468 maxsize = esize;
2469 pos = e[i].start + e[i].size;
2470 i++;
2471 } while (e[i-1].size);
2472 *freesize = maxsize;
2473 // FIXME here I am
2474
2475 return 1;
2476 }
2477
2478 static int load_super_ddf_all(struct supertype *st, int fd,
2479 void **sbp, char *devname, int keep_fd)
2480 {
2481 struct mdinfo *sra;
2482 struct ddf_super *super;
2483 struct mdinfo *sd, *best = NULL;
2484 int bestseq = 0;
2485 int seq;
2486 char nm[20];
2487 int dfd;
2488
2489 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2490 if (!sra)
2491 return 1;
2492 if (sra->array.major_version != -1 ||
2493 sra->array.minor_version != -2 ||
2494 strcmp(sra->text_version, "ddf") != 0)
2495 return 1;
2496
2497 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2498 return 1;
2499 memset(super, 0, sizeof(*super));
2500
2501 /* first, try each device, and choose the best ddf */
2502 for (sd = sra->devs ; sd ; sd = sd->next) {
2503 int rv;
2504 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2505 dfd = dev_open(nm, O_RDONLY);
2506 if (dfd < 0)
2507 return 2;
2508 rv = load_ddf_headers(dfd, super, NULL);
2509 close(dfd);
2510 if (rv == 0) {
2511 seq = __be32_to_cpu(super->active->seq);
2512 if (super->active->openflag)
2513 seq--;
2514 if (!best || seq > bestseq) {
2515 bestseq = seq;
2516 best = sd;
2517 }
2518 }
2519 }
2520 if (!best)
2521 return 1;
2522 /* OK, load this ddf */
2523 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2524 dfd = dev_open(nm, O_RDONLY);
2525 if (dfd < 0)
2526 return 1;
2527 load_ddf_headers(dfd, super, NULL);
2528 load_ddf_global(dfd, super, NULL);
2529 close(dfd);
2530 /* Now we need the device-local bits */
2531 for (sd = sra->devs ; sd ; sd = sd->next) {
2532 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2533 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2534 if (dfd < 0)
2535 return 2;
2536 seq = load_ddf_local(dfd, super, NULL, keep_fd);
2537 if (!keep_fd) close(dfd);
2538 }
2539 if (st->subarray[0]) {
2540 struct vcl *v;
2541
2542 for (v = super->conflist; v; v = v->next)
2543 if (v->vcnum == atoi(st->subarray))
2544 super->currentconf = v;
2545 if (!super->currentconf)
2546 return 1;
2547 }
2548 *sbp = super;
2549 if (st->ss == NULL) {
2550 st->ss = &super_ddf;
2551 st->minor_version = 0;
2552 st->max_devs = 512;
2553 st->container_dev = fd2devnum(fd);
2554 }
2555 return 0;
2556 }
2557 #endif
2558
2559 static struct mdinfo *container_content_ddf(struct supertype *st)
2560 {
2561 /* Given a container loaded by load_super_ddf_all,
2562 * extract information about all the arrays into
2563 * an mdinfo tree.
2564 *
2565 * For each vcl in conflist: create an mdinfo, fill it in,
2566 * then look for matching devices (phys_refnum) in dlist
2567 * and create appropriate device mdinfo.
2568 */
2569 struct ddf_super *ddf = st->sb;
2570 struct mdinfo *rest = NULL;
2571 struct vcl *vc;
2572
2573 for (vc = ddf->conflist ; vc ; vc=vc->next)
2574 {
2575 int i;
2576 struct mdinfo *this;
2577 this = malloc(sizeof(*this));
2578 memset(this, 0, sizeof(*this));
2579 this->next = rest;
2580 rest = this;
2581
2582 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2583 this->array.raid_disks =
2584 __be16_to_cpu(vc->conf.prim_elmnt_count);
2585 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2586 this->array.raid_disks);
2587 this->array.md_minor = -1;
2588 this->array.ctime = DECADE +
2589 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2590 this->array.utime = DECADE +
2591 __be32_to_cpu(vc->conf.timestamp);
2592 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2593
2594 i = vc->vcnum;
2595 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2596 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2597 DDF_init_full) {
2598 this->array.state = 0;
2599 this->resync_start = 0;
2600 } else {
2601 this->array.state = 1;
2602 this->resync_start = ~0ULL;
2603 }
2604 memcpy(this->name, ddf->virt->entries[i].name, 32);
2605 this->name[33]=0;
2606
2607 memset(this->uuid, 0, sizeof(this->uuid));
2608 this->component_size = __be64_to_cpu(vc->conf.blocks);
2609 this->array.size = this->component_size / 2;
2610 this->container_member = i;
2611
2612 sprintf(this->text_version, "/%s/%d",
2613 devnum2devname(st->container_dev),
2614 this->container_member);
2615
2616 for (i=0 ; i < ddf->mppe ; i++) {
2617 struct mdinfo *dev;
2618 struct dl *d;
2619
2620 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
2621 continue;
2622
2623 this->array.working_disks++;
2624
2625 for (d = ddf->dlist; d ; d=d->next)
2626 if (d->disk.refnum == vc->conf.phys_refnum[i])
2627 break;
2628 if (d == NULL)
2629 break;
2630
2631 dev = malloc(sizeof(*dev));
2632 memset(dev, 0, sizeof(*dev));
2633 dev->next = this->devs;
2634 this->devs = dev;
2635
2636 dev->disk.number = __be32_to_cpu(d->disk.refnum);
2637 dev->disk.major = d->major;
2638 dev->disk.minor = d->minor;
2639 dev->disk.raid_disk = i;
2640 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2641
2642 dev->events = __be32_to_cpu(ddf->primary.seq);
2643 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
2644 dev->component_size = __be64_to_cpu(vc->conf.blocks);
2645 if (d->devname)
2646 strcpy(dev->name, d->devname);
2647 }
2648 }
2649 return rest;
2650 }
2651
2652 static int store_zero_ddf(struct supertype *st, int fd)
2653 {
2654 unsigned long long dsize;
2655 void *buf;
2656
2657 if (!get_dev_size(fd, NULL, &dsize))
2658 return 1;
2659
2660 posix_memalign(&buf, 512, 512);
2661 memset(buf, 0, 512);
2662
2663 lseek64(fd, dsize-512, 0);
2664 write(fd, buf, 512);
2665 free(buf);
2666 return 0;
2667 }
2668
2669 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
2670 {
2671 /*
2672 * return:
2673 * 0 same, or first was empty, and second was copied
2674 * 1 second had wrong number
2675 * 2 wrong uuid
2676 * 3 wrong other info
2677 */
2678 struct ddf_super *first = st->sb;
2679 struct ddf_super *second = tst->sb;
2680
2681 if (!first) {
2682 st->sb = tst->sb;
2683 tst->sb = NULL;
2684 return 0;
2685 }
2686
2687 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
2688 return 2;
2689
2690 /* FIXME should I look at anything else? */
2691 return 0;
2692 }
2693
2694 /*
2695 * A new array 'a' has been started which claims to be instance 'inst'
2696 * within container 'c'.
2697 * We need to confirm that the array matches the metadata in 'c' so
2698 * that we don't corrupt any metadata.
2699 */
2700 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
2701 {
2702 dprintf("ddf: open_new %s\n", inst);
2703 a->info.container_member = atoi(inst);
2704 return 0;
2705 }
2706
2707 /*
2708 * The array 'a' is to be marked clean in the metadata.
2709 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
2710 * clean up to the point (in sectors). If that cannot be recorded in the
2711 * metadata, then leave it as dirty.
2712 *
2713 * For DDF, we need to clear the DDF_state_inconsistent bit in the
2714 * !global! virtual_disk.virtual_entry structure.
2715 */
2716 static int ddf_set_array_state(struct active_array *a, int consistent)
2717 {
2718 struct ddf_super *ddf = a->container->sb;
2719 int inst = a->info.container_member;
2720 int old = ddf->virt->entries[inst].state;
2721 if (consistent == 2) {
2722 /* Should check if a recovery should be started FIXME */
2723 consistent = 1;
2724 if (a->resync_start != ~0ULL)
2725 consistent = 0;
2726 }
2727 if (consistent)
2728 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
2729 else
2730 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
2731 if (old != ddf->virt->entries[inst].state)
2732 ddf->updates_pending = 1;
2733
2734 old = ddf->virt->entries[inst].init_state;
2735 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
2736 if (a->resync_start == ~0ULL)
2737 ddf->virt->entries[inst].init_state |= DDF_init_full;
2738 else if (a->resync_start == 0)
2739 ddf->virt->entries[inst].init_state |= DDF_init_not;
2740 else
2741 ddf->virt->entries[inst].init_state |= DDF_init_quick;
2742 if (old != ddf->virt->entries[inst].init_state)
2743 ddf->updates_pending = 1;
2744
2745 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
2746 a->resync_start);
2747 return consistent;
2748 }
2749
2750 /*
2751 * The state of each disk is stored in the global phys_disk structure
2752 * in phys_disk.entries[n].state.
2753 * This makes various combinations awkward.
2754 * - When a device fails in any array, it must be failed in all arrays
2755 * that include a part of this device.
2756 * - When a component is rebuilding, we cannot include it officially in the
2757 * array unless this is the only array that uses the device.
2758 *
2759 * So: when transitioning:
2760 * Online -> failed, just set failed flag. monitor will propagate
2761 * spare -> online, the device might need to be added to the array.
2762 * spare -> failed, just set failed. Don't worry if in array or not.
2763 */
2764 static void ddf_set_disk(struct active_array *a, int n, int state)
2765 {
2766 struct ddf_super *ddf = a->container->sb;
2767 int inst = a->info.container_member;
2768 struct vd_config *vc = find_vdcr(ddf, inst);
2769 int pd = find_phys(ddf, vc->phys_refnum[n]);
2770 int i, st, working;
2771
2772 if (vc == NULL) {
2773 dprintf("ddf: cannot find instance %d!!\n", inst);
2774 return;
2775 }
2776 if (pd < 0) {
2777 /* disk doesn't currently exist. If it is now in_sync,
2778 * insert it. */
2779 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
2780 /* Find dev 'n' in a->info->devs, determine the
2781 * ddf refnum, and set vc->phys_refnum and update
2782 * phys->entries[]
2783 */
2784 /* FIXME */
2785 }
2786 } else {
2787 int old = ddf->phys->entries[pd].state;
2788 if (state & DS_FAULTY)
2789 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
2790 if (state & DS_INSYNC) {
2791 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
2792 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
2793 }
2794 if (old != ddf->phys->entries[pd].state)
2795 ddf->updates_pending = 1;
2796 }
2797
2798 dprintf("ddf: set_disk %d to %x\n", n, state);
2799
2800 /* Now we need to check the state of the array and update
2801 * virtual_disk.entries[n].state.
2802 * It needs to be one of "optimal", "degraded", "failed".
2803 * I don't understand 'deleted' or 'missing'.
2804 */
2805 working = 0;
2806 for (i=0; i < a->info.array.raid_disks; i++) {
2807 pd = find_phys(ddf, vc->phys_refnum[i]);
2808 if (pd < 0)
2809 continue;
2810 st = __be16_to_cpu(ddf->phys->entries[pd].state);
2811 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
2812 == DDF_Online)
2813 working++;
2814 }
2815 state = DDF_state_degraded;
2816 if (working == a->info.array.raid_disks)
2817 state = DDF_state_optimal;
2818 else switch(vc->prl) {
2819 case DDF_RAID0:
2820 case DDF_CONCAT:
2821 case DDF_JBOD:
2822 state = DDF_state_failed;
2823 break;
2824 case DDF_RAID1:
2825 if (working == 0)
2826 state = DDF_state_failed;
2827 break;
2828 case DDF_RAID4:
2829 case DDF_RAID5:
2830 if (working < a->info.array.raid_disks-1)
2831 state = DDF_state_failed;
2832 break;
2833 case DDF_RAID6:
2834 if (working < a->info.array.raid_disks-2)
2835 state = DDF_state_failed;
2836 else if (working == a->info.array.raid_disks-1)
2837 state = DDF_state_part_optimal;
2838 break;
2839 }
2840
2841 if (ddf->virt->entries[inst].state !=
2842 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
2843 | state)) {
2844
2845 ddf->virt->entries[inst].state =
2846 (ddf->virt->entries[inst].state & ~DDF_state_mask)
2847 | state;
2848 ddf->updates_pending = 1;
2849 }
2850
2851 }
2852
2853 static void ddf_sync_metadata(struct supertype *st)
2854 {
2855
2856 /*
2857 * Write all data to all devices.
2858 * Later, we might be able to track whether only local changes
2859 * have been made, or whether any global data has been changed,
2860 * but ddf is sufficiently weird that it probably always
2861 * changes global data ....
2862 */
2863 struct ddf_super *ddf = st->sb;
2864 if (!ddf->updates_pending)
2865 return;
2866 ddf->updates_pending = 0;
2867 __write_init_super_ddf(st, 0);
2868 dprintf("ddf: sync_metadata\n");
2869 }
2870
2871 static void ddf_process_update(struct supertype *st,
2872 struct metadata_update *update)
2873 {
2874 /* Apply this update to the metadata.
2875 * The first 4 bytes are a DDF_*_MAGIC which guides
2876 * our actions.
2877 * Possible update are:
2878 * DDF_PHYS_RECORDS_MAGIC
2879 * Add a new physical device. Changes to this record
2880 * only happen implicitly.
2881 * used_pdes is the device number.
2882 * DDF_VIRT_RECORDS_MAGIC
2883 * Add a new VD. Possibly also change the 'access' bits.
2884 * populated_vdes is the entry number.
2885 * DDF_VD_CONF_MAGIC
2886 * New or updated VD. the VIRT_RECORD must already
2887 * exist. For an update, phys_refnum and lba_offset
2888 * (at least) are updated, and the VD_CONF must
2889 * be written to precisely those devices listed with
2890 * a phys_refnum.
2891 * DDF_SPARE_ASSIGN_MAGIC
2892 * replacement Spare Assignment Record... but for which device?
2893 *
2894 * So, e.g.:
2895 * - to create a new array, we send a VIRT_RECORD and
2896 * a VD_CONF. Then assemble and start the array.
2897 * - to activate a spare we send a VD_CONF to add the phys_refnum
2898 * and offset. This will also mark the spare as active with
2899 * a spare-assignment record.
2900 */
2901 struct ddf_super *ddf = st->sb;
2902 __u32 *magic = (__u32*)update->buf;
2903 struct phys_disk *pd;
2904 struct virtual_disk *vd;
2905 struct vd_config *vc;
2906 struct vcl *vcl;
2907 struct dl *dl;
2908 int mppe;
2909 int ent;
2910
2911 dprintf("Process update %x\n", *magic);
2912
2913 switch (*magic) {
2914 case DDF_PHYS_RECORDS_MAGIC:
2915
2916 if (update->len != (sizeof(struct phys_disk) +
2917 sizeof(struct phys_disk_entry)))
2918 return;
2919 pd = (struct phys_disk*)update->buf;
2920
2921 ent = __be16_to_cpu(pd->used_pdes);
2922 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
2923 return;
2924 if (!all_ff(ddf->phys->entries[ent].guid))
2925 return;
2926 ddf->phys->entries[ent] = pd->entries[0];
2927 ddf->phys->used_pdes = __cpu_to_be16(1 +
2928 __be16_to_cpu(ddf->phys->used_pdes));
2929 ddf->updates_pending = 1;
2930 if (ddf->add_list) {
2931 struct active_array *a;
2932 struct dl *al = ddf->add_list;
2933 ddf->add_list = al->next;
2934
2935 al->next = ddf->dlist;
2936 ddf->dlist = al;
2937
2938 /* As a device has been added, we should check
2939 * for any degraded devices that might make
2940 * use of this spare */
2941 for (a = st->arrays ; a; a=a->next)
2942 a->check_degraded = 1;
2943 }
2944 break;
2945
2946 case DDF_VIRT_RECORDS_MAGIC:
2947
2948 if (update->len != (sizeof(struct virtual_disk) +
2949 sizeof(struct virtual_entry)))
2950 return;
2951 vd = (struct virtual_disk*)update->buf;
2952
2953 ent = __be16_to_cpu(vd->populated_vdes);
2954 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
2955 return;
2956 if (!all_ff(ddf->virt->entries[ent].guid))
2957 return;
2958 ddf->virt->entries[ent] = vd->entries[0];
2959 ddf->virt->populated_vdes = __cpu_to_be16(1 +
2960 __be16_to_cpu(ddf->virt->populated_vdes));
2961 ddf->updates_pending = 1;
2962 break;
2963
2964 case DDF_VD_CONF_MAGIC:
2965 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
2966
2967 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
2968 if (update->len != ddf->conf_rec_len * 512)
2969 return;
2970 vc = (struct vd_config*)update->buf;
2971 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2972 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
2973 break;
2974 dprintf("vcl = %p\n", vcl);
2975 if (vcl) {
2976 /* An update, just copy the phys_refnum and lba_offset
2977 * fields
2978 */
2979 memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
2980 mppe * (sizeof(__u32) + sizeof(__u64)));
2981 } else {
2982 /* A new VD_CONF */
2983 vcl = update->space;
2984 update->space = NULL;
2985 vcl->next = ddf->conflist;
2986 memcpy(&vcl->conf, vc, update->len);
2987 vcl->lba_offset = (__u64*)
2988 &vcl->conf.phys_refnum[mppe];
2989 ddf->conflist = vcl;
2990 }
2991 /* Now make sure vlist is correct for each dl. */
2992 for (dl = ddf->dlist; dl; dl = dl->next) {
2993 int dn;
2994 int vn = 0;
2995 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
2996 for (dn=0; dn < ddf->mppe ; dn++)
2997 if (vcl->conf.phys_refnum[dn] ==
2998 dl->disk.refnum) {
2999 dprintf("dev %d has %p at %d\n",
3000 dl->pdnum, vcl, vn);
3001 dl->vlist[vn++] = vcl;
3002 break;
3003 }
3004 while (vn < ddf->max_part)
3005 dl->vlist[vn++] = NULL;
3006 if (dl->vlist[0]) {
3007 ddf->phys->entries[dl->pdnum].type &=
3008 ~__cpu_to_be16(DDF_Global_Spare);
3009 ddf->phys->entries[dl->pdnum].type |=
3010 __cpu_to_be16(DDF_Active_in_VD);
3011 }
3012 if (dl->spare) {
3013 ddf->phys->entries[dl->pdnum].type &=
3014 ~__cpu_to_be16(DDF_Global_Spare);
3015 ddf->phys->entries[dl->pdnum].type |=
3016 __cpu_to_be16(DDF_Spare);
3017 }
3018 if (!dl->vlist[0] && !dl->spare) {
3019 ddf->phys->entries[dl->pdnum].type |=
3020 __cpu_to_be16(DDF_Global_Spare);
3021 ddf->phys->entries[dl->pdnum].type &=
3022 ~__cpu_to_be16(DDF_Spare |
3023 DDF_Active_in_VD);
3024 }
3025 }
3026 ddf->updates_pending = 1;
3027 break;
3028 case DDF_SPARE_ASSIGN_MAGIC:
3029 default: break;
3030 }
3031 }
3032
3033 static void ddf_prepare_update(struct supertype *st,
3034 struct metadata_update *update)
3035 {
3036 /* This update arrived at managemon.
3037 * We are about to pass it to monitor.
3038 * If a malloc is needed, do it here.
3039 */
3040 struct ddf_super *ddf = st->sb;
3041 __u32 *magic = (__u32*)update->buf;
3042 if (*magic == DDF_VD_CONF_MAGIC)
3043 posix_memalign(&update->space, 512,
3044 offsetof(struct vcl, conf)
3045 + ddf->conf_rec_len * 512);
3046 }
3047
3048 /*
3049 * Check if the array 'a' is degraded but not failed.
3050 * If it is, find as many spares as are available and needed and
3051 * arrange for their inclusion.
3052 * We only choose devices which are not already in the array,
3053 * and prefer those with a spare-assignment to this array.
3054 * otherwise we choose global spares - assuming always that
3055 * there is enough room.
3056 * For each spare that we assign, we return an 'mdinfo' which
3057 * describes the position for the device in the array.
3058 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3059 * the new phys_refnum and lba_offset values.
3060 *
3061 * Only worry about BVDs at the moment.
3062 */
3063 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3064 struct metadata_update **updates)
3065 {
3066 int working = 0;
3067 struct mdinfo *d;
3068 struct ddf_super *ddf = a->container->sb;
3069 int global_ok = 0;
3070 struct mdinfo *rv = NULL;
3071 struct mdinfo *di;
3072 struct metadata_update *mu;
3073 struct dl *dl;
3074 int i;
3075 struct vd_config *vc;
3076 __u64 *lba;
3077
3078 for (d = a->info.devs ; d ; d = d->next) {
3079 if ((d->curr_state & DS_FAULTY) &&
3080 d->state_fd >= 0)
3081 /* wait for Removal to happen */
3082 return NULL;
3083 if (d->state_fd >= 0)
3084 working ++;
3085 }
3086
3087 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3088 a->info.array.level);
3089 if (working == a->info.array.raid_disks)
3090 return NULL; /* array not degraded */
3091 switch (a->info.array.level) {
3092 case 1:
3093 if (working == 0)
3094 return NULL; /* failed */
3095 break;
3096 case 4:
3097 case 5:
3098 if (working < a->info.array.raid_disks - 1)
3099 return NULL; /* failed */
3100 break;
3101 case 6:
3102 if (working < a->info.array.raid_disks - 2)
3103 return NULL; /* failed */
3104 break;
3105 default: /* concat or stripe */
3106 return NULL; /* failed */
3107 }
3108
3109 /* For each slot, if it is not working, find a spare */
3110 dl = ddf->dlist;
3111 for (i = 0; i < a->info.array.raid_disks; i++) {
3112 for (d = a->info.devs ; d ; d = d->next)
3113 if (d->disk.raid_disk == i)
3114 break;
3115 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3116 if (d && (d->state_fd >= 0))
3117 continue;
3118
3119 /* OK, this device needs recovery. Find a spare */
3120 again:
3121 for ( ; dl ; dl = dl->next) {
3122 unsigned long long esize;
3123 unsigned long long pos;
3124 struct mdinfo *d2;
3125 int is_global = 0;
3126 int is_dedicated = 0;
3127 struct extent *ex;
3128 int j;
3129 /* If in this array, skip */
3130 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3131 if (d2->disk.major == dl->major &&
3132 d2->disk.minor == dl->minor) {
3133 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3134 break;
3135 }
3136 if (d2)
3137 continue;
3138 if (ddf->phys->entries[dl->pdnum].type &
3139 __cpu_to_be16(DDF_Spare)) {
3140 /* Check spare assign record */
3141 if (dl->spare) {
3142 if (dl->spare->type & DDF_spare_dedicated) {
3143 /* check spare_ents for guid */
3144 for (j = 0 ;
3145 j < __be16_to_cpu(dl->spare->populated);
3146 j++) {
3147 if (memcmp(dl->spare->spare_ents[j].guid,
3148 ddf->virt->entries[a->info.container_member].guid,
3149 DDF_GUID_LEN) == 0)
3150 is_dedicated = 1;
3151 }
3152 } else
3153 is_global = 1;
3154 }
3155 } else if (ddf->phys->entries[dl->pdnum].type &
3156 __cpu_to_be16(DDF_Global_Spare)) {
3157 is_global = 1;
3158 }
3159 if ( ! (is_dedicated ||
3160 (is_global && global_ok))) {
3161 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3162 is_dedicated, is_global);
3163 continue;
3164 }
3165
3166 /* We are allowed to use this device - is there space?
3167 * We need a->info.component_size sectors */
3168 ex = get_extents(ddf, dl);
3169 if (!ex) {
3170 dprintf("cannot get extents\n");
3171 continue;
3172 }
3173 j = 0; pos = 0;
3174 esize = 0;
3175
3176 do {
3177 esize = ex[j].start - pos;
3178 if (esize >= a->info.component_size)
3179 break;
3180 pos = ex[i].start + ex[i].size;
3181 i++;
3182 } while (ex[i-1].size);
3183
3184 free(ex);
3185 if (esize < a->info.component_size) {
3186 dprintf("%x:%x has no room: %llu %llu\n", dl->major, dl->minor,
3187 esize, a->info.component_size);
3188 /* No room */
3189 continue;
3190 }
3191
3192 /* Cool, we have a device with some space at pos */
3193 di = malloc(sizeof(*di));
3194 memset(di, 0, sizeof(*di));
3195 di->disk.number = i;
3196 di->disk.raid_disk = i;
3197 di->disk.major = dl->major;
3198 di->disk.minor = dl->minor;
3199 di->disk.state = 0;
3200 di->data_offset = pos;
3201 di->component_size = a->info.component_size;
3202 di->container_member = dl->pdnum;
3203 di->next = rv;
3204 rv = di;
3205 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3206 i, pos);
3207
3208 break;
3209 }
3210 if (!dl && ! global_ok) {
3211 /* not enough dedicated spares, try global */
3212 global_ok = 1;
3213 dl = ddf->dlist;
3214 goto again;
3215 }
3216 }
3217
3218 if (!rv)
3219 /* No spares found */
3220 return rv;
3221 /* Now 'rv' has a list of devices to return.
3222 * Create a metadata_update record to update the
3223 * phys_refnum and lba_offset values
3224 */
3225 mu = malloc(sizeof(*mu));
3226 mu->buf = malloc(ddf->conf_rec_len * 512);
3227 posix_memalign(&mu->space, 512, sizeof(struct vcl));
3228 mu->len = ddf->conf_rec_len;
3229 mu->next = *updates;
3230 vc = find_vdcr(ddf, a->info.container_member);
3231 memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3232
3233 vc = (struct vd_config*)mu->buf;
3234 lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3235 for (di = rv ; di ; di = di->next) {
3236 vc->phys_refnum[di->disk.raid_disk] =
3237 ddf->phys->entries[dl->pdnum].refnum;
3238 lba[di->disk.raid_disk] = di->data_offset;
3239 }
3240 *updates = mu;
3241 return rv;
3242 }
3243
3244 struct superswitch super_ddf = {
3245 #ifndef MDASSEMBLE
3246 .examine_super = examine_super_ddf,
3247 .brief_examine_super = brief_examine_super_ddf,
3248 .detail_super = detail_super_ddf,
3249 .brief_detail_super = brief_detail_super_ddf,
3250 .validate_geometry = validate_geometry_ddf,
3251 .write_init_super = write_init_super_ddf,
3252 #endif
3253 .match_home = match_home_ddf,
3254 .uuid_from_super= uuid_from_super_ddf,
3255 .getinfo_super = getinfo_super_ddf,
3256 .update_super = update_super_ddf,
3257
3258 .avail_size = avail_size_ddf,
3259
3260 .compare_super = compare_super_ddf,
3261
3262 .load_super = load_super_ddf,
3263 .init_super = init_super_ddf,
3264 .store_super = store_zero_ddf,
3265 .free_super = free_super_ddf,
3266 .match_metadata_desc = match_metadata_desc_ddf,
3267 .add_to_super = add_to_super_ddf,
3268 .container_content = container_content_ddf,
3269
3270 .external = 1,
3271
3272 /* for mdmon */
3273 .open_new = ddf_open_new,
3274 .set_array_state= ddf_set_array_state,
3275 .set_disk = ddf_set_disk,
3276 .sync_metadata = ddf_sync_metadata,
3277 .process_update = ddf_process_update,
3278 .prepare_update = ddf_prepare_update,
3279 .activate_spare = ddf_activate_spare,
3280
3281 };