]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-ddf.c
sysfs: allow sysfs_read to detect and drop removed disks
[thirdparty/mdadm.git] / super-ddf.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2006-2007 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neil@brown.name>
23 *
24 * Specifications for DDF takes from Common RAID DDF Specification Revision 1.2
25 * (July 28 2006). Reused by permission of SNIA.
26 */
27
28 #define HAVE_STDINT_H 1
29 #include "mdadm.h"
30 #include "mdmon.h"
31 #include "sha1.h"
32 #include <values.h>
33
34 /* a non-official T10 name for creation GUIDs */
35 static char T10[] = "Linux-MD";
36
37 /* DDF timestamps are 1980 based, so we need to add
38 * second-in-decade-of-seventies to convert to linux timestamps.
39 * 10 years with 2 leap years.
40 */
41 #define DECADE (3600*24*(365*10+2))
42 unsigned long crc32(
43 unsigned long crc,
44 const unsigned char *buf,
45 unsigned len);
46
47 /* The DDF metadata handling.
48 * DDF metadata lives at the end of the device.
49 * The last 512 byte block provides an 'anchor' which is used to locate
50 * the rest of the metadata which usually lives immediately behind the anchor.
51 *
52 * Note:
53 * - all multibyte numeric fields are bigendian.
54 * - all strings are space padded.
55 *
56 */
57
58 /* Primary Raid Level (PRL) */
59 #define DDF_RAID0 0x00
60 #define DDF_RAID1 0x01
61 #define DDF_RAID3 0x03
62 #define DDF_RAID4 0x04
63 #define DDF_RAID5 0x05
64 #define DDF_RAID1E 0x11
65 #define DDF_JBOD 0x0f
66 #define DDF_CONCAT 0x1f
67 #define DDF_RAID5E 0x15
68 #define DDF_RAID5EE 0x25
69 #define DDF_RAID6 0x06
70
71 /* Raid Level Qualifier (RLQ) */
72 #define DDF_RAID0_SIMPLE 0x00
73 #define DDF_RAID1_SIMPLE 0x00 /* just 2 devices in this plex */
74 #define DDF_RAID1_MULTI 0x01 /* exactly 3 devices in this plex */
75 #define DDF_RAID3_0 0x00 /* parity in first extent */
76 #define DDF_RAID3_N 0x01 /* parity in last extent */
77 #define DDF_RAID4_0 0x00 /* parity in first extent */
78 #define DDF_RAID4_N 0x01 /* parity in last extent */
79 /* these apply to raid5e and raid5ee as well */
80 #define DDF_RAID5_0_RESTART 0x00 /* same as 'right asymmetric' - layout 1 */
81 #define DDF_RAID6_0_RESTART 0x01 /* raid6 different from raid5 here!!! */
82 #define DDF_RAID5_N_RESTART 0x02 /* same as 'left asymmetric' - layout 0 */
83 #define DDF_RAID5_N_CONTINUE 0x03 /* same as 'left symmetric' - layout 2 */
84
85 #define DDF_RAID1E_ADJACENT 0x00 /* raid10 nearcopies==2 */
86 #define DDF_RAID1E_OFFSET 0x01 /* raid10 offsetcopies==2 */
87
88 /* Secondary RAID Level (SRL) */
89 #define DDF_2STRIPED 0x00 /* This is weirder than RAID0 !! */
90 #define DDF_2MIRRORED 0x01
91 #define DDF_2CONCAT 0x02
92 #define DDF_2SPANNED 0x03 /* This is also weird - be careful */
93
94 /* Magic numbers */
95 #define DDF_HEADER_MAGIC __cpu_to_be32(0xDE11DE11)
96 #define DDF_CONTROLLER_MAGIC __cpu_to_be32(0xAD111111)
97 #define DDF_PHYS_RECORDS_MAGIC __cpu_to_be32(0x22222222)
98 #define DDF_PHYS_DATA_MAGIC __cpu_to_be32(0x33333333)
99 #define DDF_VIRT_RECORDS_MAGIC __cpu_to_be32(0xDDDDDDDD)
100 #define DDF_VD_CONF_MAGIC __cpu_to_be32(0xEEEEEEEE)
101 #define DDF_SPARE_ASSIGN_MAGIC __cpu_to_be32(0x55555555)
102 #define DDF_VU_CONF_MAGIC __cpu_to_be32(0x88888888)
103 #define DDF_VENDOR_LOG_MAGIC __cpu_to_be32(0x01dBEEF0)
104 #define DDF_BBM_LOG_MAGIC __cpu_to_be32(0xABADB10C)
105
106 #define DDF_GUID_LEN 24
107 #define DDF_REVISION_0 "01.00.00"
108 #define DDF_REVISION_2 "01.02.00"
109
110 struct ddf_header {
111 __u32 magic; /* DDF_HEADER_MAGIC */
112 __u32 crc;
113 char guid[DDF_GUID_LEN];
114 char revision[8]; /* 01.02.00 */
115 __u32 seq; /* starts at '1' */
116 __u32 timestamp;
117 __u8 openflag;
118 __u8 foreignflag;
119 __u8 enforcegroups;
120 __u8 pad0; /* 0xff */
121 __u8 pad1[12]; /* 12 * 0xff */
122 /* 64 bytes so far */
123 __u8 header_ext[32]; /* reserved: fill with 0xff */
124 __u64 primary_lba;
125 __u64 secondary_lba;
126 __u8 type;
127 __u8 pad2[3]; /* 0xff */
128 __u32 workspace_len; /* sectors for vendor space -
129 * at least 32768(sectors) */
130 __u64 workspace_lba;
131 __u16 max_pd_entries; /* one of 15, 63, 255, 1023, 4095 */
132 __u16 max_vd_entries; /* 2^(4,6,8,10,12)-1 : i.e. as above */
133 __u16 max_partitions; /* i.e. max num of configuration
134 record entries per disk */
135 __u16 config_record_len; /* 1 +ROUNDUP(max_primary_element_entries
136 *12/512) */
137 __u16 max_primary_element_entries; /* 16, 64, 256, 1024, or 4096 */
138 __u8 pad3[54]; /* 0xff */
139 /* 192 bytes so far */
140 __u32 controller_section_offset;
141 __u32 controller_section_length;
142 __u32 phys_section_offset;
143 __u32 phys_section_length;
144 __u32 virt_section_offset;
145 __u32 virt_section_length;
146 __u32 config_section_offset;
147 __u32 config_section_length;
148 __u32 data_section_offset;
149 __u32 data_section_length;
150 __u32 bbm_section_offset;
151 __u32 bbm_section_length;
152 __u32 diag_space_offset;
153 __u32 diag_space_length;
154 __u32 vendor_offset;
155 __u32 vendor_length;
156 /* 256 bytes so far */
157 __u8 pad4[256]; /* 0xff */
158 };
159
160 /* type field */
161 #define DDF_HEADER_ANCHOR 0x00
162 #define DDF_HEADER_PRIMARY 0x01
163 #define DDF_HEADER_SECONDARY 0x02
164
165 /* The content of the 'controller section' - global scope */
166 struct ddf_controller_data {
167 __u32 magic; /* DDF_CONTROLLER_MAGIC */
168 __u32 crc;
169 char guid[DDF_GUID_LEN];
170 struct controller_type {
171 __u16 vendor_id;
172 __u16 device_id;
173 __u16 sub_vendor_id;
174 __u16 sub_device_id;
175 } type;
176 char product_id[16];
177 __u8 pad[8]; /* 0xff */
178 __u8 vendor_data[448];
179 };
180
181 /* The content of phys_section - global scope */
182 struct phys_disk {
183 __u32 magic; /* DDF_PHYS_RECORDS_MAGIC */
184 __u32 crc;
185 __u16 used_pdes;
186 __u16 max_pdes;
187 __u8 pad[52];
188 struct phys_disk_entry {
189 char guid[DDF_GUID_LEN];
190 __u32 refnum;
191 __u16 type;
192 __u16 state;
193 __u64 config_size; /* DDF structures must be after here */
194 char path[18]; /* another horrible structure really */
195 __u8 pad[6];
196 } entries[0];
197 };
198
199 /* phys_disk_entry.type is a bitmap - bigendian remember */
200 #define DDF_Forced_PD_GUID 1
201 #define DDF_Active_in_VD 2
202 #define DDF_Global_Spare 4 /* VD_CONF records are ignored */
203 #define DDF_Spare 8 /* overrides Global_spare */
204 #define DDF_Foreign 16
205 #define DDF_Legacy 32 /* no DDF on this device */
206
207 #define DDF_Interface_mask 0xf00
208 #define DDF_Interface_SCSI 0x100
209 #define DDF_Interface_SAS 0x200
210 #define DDF_Interface_SATA 0x300
211 #define DDF_Interface_FC 0x400
212
213 /* phys_disk_entry.state is a bigendian bitmap */
214 #define DDF_Online 1
215 #define DDF_Failed 2 /* overrides 1,4,8 */
216 #define DDF_Rebuilding 4
217 #define DDF_Transition 8
218 #define DDF_SMART 16
219 #define DDF_ReadErrors 32
220 #define DDF_Missing 64
221
222 /* The content of the virt_section global scope */
223 struct virtual_disk {
224 __u32 magic; /* DDF_VIRT_RECORDS_MAGIC */
225 __u32 crc;
226 __u16 populated_vdes;
227 __u16 max_vdes;
228 __u8 pad[52];
229 struct virtual_entry {
230 char guid[DDF_GUID_LEN];
231 __u16 unit;
232 __u16 pad0; /* 0xffff */
233 __u16 guid_crc;
234 __u16 type;
235 __u8 state;
236 __u8 init_state;
237 __u8 pad1[14];
238 char name[16];
239 } entries[0];
240 };
241
242 /* virtual_entry.type is a bitmap - bigendian */
243 #define DDF_Shared 1
244 #define DDF_Enforce_Groups 2
245 #define DDF_Unicode 4
246 #define DDF_Owner_Valid 8
247
248 /* virtual_entry.state is a bigendian bitmap */
249 #define DDF_state_mask 0x7
250 #define DDF_state_optimal 0x0
251 #define DDF_state_degraded 0x1
252 #define DDF_state_deleted 0x2
253 #define DDF_state_missing 0x3
254 #define DDF_state_failed 0x4
255 #define DDF_state_part_optimal 0x5
256
257 #define DDF_state_morphing 0x8
258 #define DDF_state_inconsistent 0x10
259
260 /* virtual_entry.init_state is a bigendian bitmap */
261 #define DDF_initstate_mask 0x03
262 #define DDF_init_not 0x00
263 #define DDF_init_quick 0x01 /* initialisation is progress.
264 * i.e. 'state_inconsistent' */
265 #define DDF_init_full 0x02
266
267 #define DDF_access_mask 0xc0
268 #define DDF_access_rw 0x00
269 #define DDF_access_ro 0x80
270 #define DDF_access_blocked 0xc0
271
272 /* The content of the config_section - local scope
273 * It has multiple records each config_record_len sectors
274 * They can be vd_config or spare_assign
275 */
276
277 struct vd_config {
278 __u32 magic; /* DDF_VD_CONF_MAGIC */
279 __u32 crc;
280 char guid[DDF_GUID_LEN];
281 __u32 timestamp;
282 __u32 seqnum;
283 __u8 pad0[24];
284 __u16 prim_elmnt_count;
285 __u8 chunk_shift; /* 0 == 512, 1==1024 etc */
286 __u8 prl;
287 __u8 rlq;
288 __u8 sec_elmnt_count;
289 __u8 sec_elmnt_seq;
290 __u8 srl;
291 __u64 blocks; /* blocks per component could be different
292 * on different component devices...(only
293 * for concat I hope) */
294 __u64 array_blocks; /* blocks in array */
295 __u8 pad1[8];
296 __u32 spare_refs[8];
297 __u8 cache_pol[8];
298 __u8 bg_rate;
299 __u8 pad2[3];
300 __u8 pad3[52];
301 __u8 pad4[192];
302 __u8 v0[32]; /* reserved- 0xff */
303 __u8 v1[32]; /* reserved- 0xff */
304 __u8 v2[16]; /* reserved- 0xff */
305 __u8 v3[16]; /* reserved- 0xff */
306 __u8 vendor[32];
307 __u32 phys_refnum[0]; /* refnum of each disk in sequence */
308 /*__u64 lba_offset[0]; LBA offset in each phys. Note extents in a
309 bvd are always the same size */
310 };
311
312 /* vd_config.cache_pol[7] is a bitmap */
313 #define DDF_cache_writeback 1 /* else writethrough */
314 #define DDF_cache_wadaptive 2 /* only applies if writeback */
315 #define DDF_cache_readahead 4
316 #define DDF_cache_radaptive 8 /* only if doing read-ahead */
317 #define DDF_cache_ifnobatt 16 /* even to write cache if battery is poor */
318 #define DDF_cache_wallowed 32 /* enable write caching */
319 #define DDF_cache_rallowed 64 /* enable read caching */
320
321 struct spare_assign {
322 __u32 magic; /* DDF_SPARE_ASSIGN_MAGIC */
323 __u32 crc;
324 __u32 timestamp;
325 __u8 reserved[7];
326 __u8 type;
327 __u16 populated; /* SAEs used */
328 __u16 max; /* max SAEs */
329 __u8 pad[8];
330 struct spare_assign_entry {
331 char guid[DDF_GUID_LEN];
332 __u16 secondary_element;
333 __u8 pad[6];
334 } spare_ents[0];
335 };
336 /* spare_assign.type is a bitmap */
337 #define DDF_spare_dedicated 0x1 /* else global */
338 #define DDF_spare_revertible 0x2 /* else committable */
339 #define DDF_spare_active 0x4 /* else not active */
340 #define DDF_spare_affinity 0x8 /* enclosure affinity */
341
342 /* The data_section contents - local scope */
343 struct disk_data {
344 __u32 magic; /* DDF_PHYS_DATA_MAGIC */
345 __u32 crc;
346 char guid[DDF_GUID_LEN];
347 __u32 refnum; /* crc of some magic drive data ... */
348 __u8 forced_ref; /* set when above was not result of magic */
349 __u8 forced_guid; /* set if guid was forced rather than magic */
350 __u8 vendor[32];
351 __u8 pad[442];
352 };
353
354 /* bbm_section content */
355 struct bad_block_log {
356 __u32 magic;
357 __u32 crc;
358 __u16 entry_count;
359 __u32 spare_count;
360 __u8 pad[10];
361 __u64 first_spare;
362 struct mapped_block {
363 __u64 defective_start;
364 __u32 replacement_start;
365 __u16 remap_count;
366 __u8 pad[2];
367 } entries[0];
368 };
369
370 /* Struct for internally holding ddf structures */
371 /* The DDF structure stored on each device is potentially
372 * quite different, as some data is global and some is local.
373 * The global data is:
374 * - ddf header
375 * - controller_data
376 * - Physical disk records
377 * - Virtual disk records
378 * The local data is:
379 * - Configuration records
380 * - Physical Disk data section
381 * ( and Bad block and vendor which I don't care about yet).
382 *
383 * The local data is parsed into separate lists as it is read
384 * and reconstructed for writing. This means that we only need
385 * to make config changes once and they are automatically
386 * propagated to all devices.
387 * Note that the ddf_super has space of the conf and disk data
388 * for this disk and also for a list of all such data.
389 * The list is only used for the superblock that is being
390 * built in Create or Assemble to describe the whole array.
391 */
392 struct ddf_super {
393 struct ddf_header anchor, primary, secondary;
394 struct ddf_controller_data controller;
395 struct ddf_header *active;
396 struct phys_disk *phys;
397 struct virtual_disk *virt;
398 int pdsize, vdsize;
399 int max_part, mppe, conf_rec_len;
400 int currentdev;
401 int updates_pending;
402 struct vcl {
403 union {
404 char space[512];
405 struct {
406 struct vcl *next;
407 __u64 *lba_offset; /* location in 'conf' of
408 * the lba table */
409 int vcnum; /* index into ->virt */
410 __u64 *block_sizes; /* NULL if all the same */
411 };
412 };
413 struct vd_config conf;
414 } *conflist, *currentconf;
415 struct dl {
416 union {
417 char space[512];
418 struct {
419 struct dl *next;
420 int major, minor;
421 char *devname;
422 int fd;
423 unsigned long long size; /* sectors */
424 int pdnum; /* index in ->phys */
425 struct spare_assign *spare;
426 void *mdupdate; /* hold metadata update */
427
428 /* These fields used by auto-layout */
429 int raiddisk; /* slot to fill in autolayout */
430 __u64 esize;
431 };
432 };
433 struct disk_data disk;
434 struct vcl *vlist[0]; /* max_part in size */
435 } *dlist, *add_list;
436 };
437
438 #ifndef offsetof
439 #define offsetof(t,f) ((size_t)&(((t*)0)->f))
440 #endif
441
442
443 static int calc_crc(void *buf, int len)
444 {
445 /* crcs are always at the same place as in the ddf_header */
446 struct ddf_header *ddf = buf;
447 __u32 oldcrc = ddf->crc;
448 __u32 newcrc;
449 ddf->crc = 0xffffffff;
450
451 newcrc = crc32(0, buf, len);
452 ddf->crc = oldcrc;
453 /* The crc is store (like everything) bigendian, so convert
454 * here for simplicity
455 */
456 return __cpu_to_be32(newcrc);
457 }
458
459 static int load_ddf_header(int fd, unsigned long long lba,
460 unsigned long long size,
461 int type,
462 struct ddf_header *hdr, struct ddf_header *anchor)
463 {
464 /* read a ddf header (primary or secondary) from fd/lba
465 * and check that it is consistent with anchor
466 * Need to check:
467 * magic, crc, guid, rev, and LBA's header_type, and
468 * everything after header_type must be the same
469 */
470 if (lba >= size-1)
471 return 0;
472
473 if (lseek64(fd, lba<<9, 0) < 0)
474 return 0;
475
476 if (read(fd, hdr, 512) != 512)
477 return 0;
478
479 if (hdr->magic != DDF_HEADER_MAGIC)
480 return 0;
481 if (calc_crc(hdr, 512) != hdr->crc)
482 return 0;
483 if (memcmp(anchor->guid, hdr->guid, DDF_GUID_LEN) != 0 ||
484 memcmp(anchor->revision, hdr->revision, 8) != 0 ||
485 anchor->primary_lba != hdr->primary_lba ||
486 anchor->secondary_lba != hdr->secondary_lba ||
487 hdr->type != type ||
488 memcmp(anchor->pad2, hdr->pad2, 512 -
489 offsetof(struct ddf_header, pad2)) != 0)
490 return 0;
491
492 /* Looks good enough to me... */
493 return 1;
494 }
495
496 static void *load_section(int fd, struct ddf_super *super, void *buf,
497 __u32 offset_be, __u32 len_be, int check)
498 {
499 unsigned long long offset = __be32_to_cpu(offset_be);
500 unsigned long long len = __be32_to_cpu(len_be);
501 int dofree = (buf == NULL);
502
503 if (check)
504 if (len != 2 && len != 8 && len != 32
505 && len != 128 && len != 512)
506 return NULL;
507
508 if (len > 1024)
509 return NULL;
510 if (buf) {
511 /* All pre-allocated sections are a single block */
512 if (len != 1)
513 return NULL;
514 } else if (posix_memalign(&buf, 512, len<<9) != 0)
515 buf = NULL;
516
517 if (!buf)
518 return NULL;
519
520 if (super->active->type == 1)
521 offset += __be64_to_cpu(super->active->primary_lba);
522 else
523 offset += __be64_to_cpu(super->active->secondary_lba);
524
525 if (lseek64(fd, offset<<9, 0) != (offset<<9)) {
526 if (dofree)
527 free(buf);
528 return NULL;
529 }
530 if (read(fd, buf, len<<9) != (len<<9)) {
531 if (dofree)
532 free(buf);
533 return NULL;
534 }
535 return buf;
536 }
537
538 static int load_ddf_headers(int fd, struct ddf_super *super, char *devname)
539 {
540 unsigned long long dsize;
541
542 get_dev_size(fd, NULL, &dsize);
543
544 if (lseek64(fd, dsize-512, 0) < 0) {
545 if (devname)
546 fprintf(stderr,
547 Name": Cannot seek to anchor block on %s: %s\n",
548 devname, strerror(errno));
549 return 1;
550 }
551 if (read(fd, &super->anchor, 512) != 512) {
552 if (devname)
553 fprintf(stderr,
554 Name ": Cannot read anchor block on %s: %s\n",
555 devname, strerror(errno));
556 return 1;
557 }
558 if (super->anchor.magic != DDF_HEADER_MAGIC) {
559 if (devname)
560 fprintf(stderr, Name ": no DDF anchor found on %s\n",
561 devname);
562 return 2;
563 }
564 if (calc_crc(&super->anchor, 512) != super->anchor.crc) {
565 if (devname)
566 fprintf(stderr, Name ": bad CRC on anchor on %s\n",
567 devname);
568 return 2;
569 }
570 if (memcmp(super->anchor.revision, DDF_REVISION_0, 8) != 0 &&
571 memcmp(super->anchor.revision, DDF_REVISION_2, 8) != 0) {
572 if (devname)
573 fprintf(stderr, Name ": can only support super revision"
574 " %.8s and earlier, not %.8s on %s\n",
575 DDF_REVISION_2, super->anchor.revision,devname);
576 return 2;
577 }
578 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.primary_lba),
579 dsize >> 9, 1,
580 &super->primary, &super->anchor) == 0) {
581 if (devname)
582 fprintf(stderr,
583 Name ": Failed to load primary DDF header "
584 "on %s\n", devname);
585 return 2;
586 }
587 super->active = &super->primary;
588 if (load_ddf_header(fd, __be64_to_cpu(super->anchor.secondary_lba),
589 dsize >> 9, 2,
590 &super->secondary, &super->anchor)) {
591 if ((__be32_to_cpu(super->primary.seq)
592 < __be32_to_cpu(super->secondary.seq) &&
593 !super->secondary.openflag)
594 || (__be32_to_cpu(super->primary.seq)
595 == __be32_to_cpu(super->secondary.seq) &&
596 super->primary.openflag && !super->secondary.openflag)
597 )
598 super->active = &super->secondary;
599 }
600 return 0;
601 }
602
603 static int load_ddf_global(int fd, struct ddf_super *super, char *devname)
604 {
605 void *ok;
606 ok = load_section(fd, super, &super->controller,
607 super->active->controller_section_offset,
608 super->active->controller_section_length,
609 0);
610 super->phys = load_section(fd, super, NULL,
611 super->active->phys_section_offset,
612 super->active->phys_section_length,
613 1);
614 super->pdsize = __be32_to_cpu(super->active->phys_section_length) * 512;
615
616 super->virt = load_section(fd, super, NULL,
617 super->active->virt_section_offset,
618 super->active->virt_section_length,
619 1);
620 super->vdsize = __be32_to_cpu(super->active->virt_section_length) * 512;
621 if (!ok ||
622 !super->phys ||
623 !super->virt) {
624 free(super->phys);
625 free(super->virt);
626 super->phys = NULL;
627 super->virt = NULL;
628 return 2;
629 }
630 super->conflist = NULL;
631 super->dlist = NULL;
632
633 super->max_part = __be16_to_cpu(super->active->max_partitions);
634 super->mppe = __be16_to_cpu(super->active->max_primary_element_entries);
635 super->conf_rec_len = __be16_to_cpu(super->active->config_record_len);
636 return 0;
637 }
638
639 static int load_ddf_local(int fd, struct ddf_super *super,
640 char *devname, int keep)
641 {
642 struct dl *dl;
643 struct stat stb;
644 char *conf;
645 int i;
646 int vnum;
647 int max_virt_disks = __be16_to_cpu(super->active->max_vd_entries);
648 unsigned long long dsize;
649
650 /* First the local disk info */
651 if (posix_memalign((void**)&dl, 512,
652 sizeof(*dl) +
653 (super->max_part) * sizeof(dl->vlist[0])) != 0) {
654 fprintf(stderr, Name ": %s could not allocate disk info buffer\n",
655 __func__);
656 return 1;
657 }
658
659 load_section(fd, super, &dl->disk,
660 super->active->data_section_offset,
661 super->active->data_section_length,
662 0);
663 dl->devname = devname ? strdup(devname) : NULL;
664
665 fstat(fd, &stb);
666 dl->major = major(stb.st_rdev);
667 dl->minor = minor(stb.st_rdev);
668 dl->next = super->dlist;
669 dl->fd = keep ? fd : -1;
670
671 dl->size = 0;
672 if (get_dev_size(fd, devname, &dsize))
673 dl->size = dsize >> 9;
674 dl->spare = NULL;
675 for (i=0 ; i < super->max_part ; i++)
676 dl->vlist[i] = NULL;
677 super->dlist = dl;
678 dl->pdnum = -1;
679 for (i=0; i < __be16_to_cpu(super->active->max_pd_entries); i++)
680 if (memcmp(super->phys->entries[i].guid,
681 dl->disk.guid, DDF_GUID_LEN) == 0)
682 dl->pdnum = i;
683
684 /* Now the config list. */
685 /* 'conf' is an array of config entries, some of which are
686 * probably invalid. Those which are good need to be copied into
687 * the conflist
688 */
689
690 conf = load_section(fd, super, NULL,
691 super->active->config_section_offset,
692 super->active->config_section_length,
693 0);
694
695 vnum = 0;
696 for (i = 0;
697 i < __be32_to_cpu(super->active->config_section_length);
698 i += super->conf_rec_len) {
699 struct vd_config *vd =
700 (struct vd_config *)((char*)conf + i*512);
701 struct vcl *vcl;
702
703 if (vd->magic == DDF_SPARE_ASSIGN_MAGIC) {
704 if (dl->spare)
705 continue;
706 if (posix_memalign((void**)&dl->spare, 512,
707 super->conf_rec_len*512) != 0) {
708 fprintf(stderr, Name
709 ": %s could not allocate spare info buf\n",
710 __func__);
711 return 1;
712 }
713
714 memcpy(dl->spare, vd, super->conf_rec_len*512);
715 continue;
716 }
717 if (vd->magic != DDF_VD_CONF_MAGIC)
718 continue;
719 for (vcl = super->conflist; vcl; vcl = vcl->next) {
720 if (memcmp(vcl->conf.guid,
721 vd->guid, DDF_GUID_LEN) == 0)
722 break;
723 }
724
725 if (vcl) {
726 dl->vlist[vnum++] = vcl;
727 if (__be32_to_cpu(vd->seqnum) <=
728 __be32_to_cpu(vcl->conf.seqnum))
729 continue;
730 } else {
731 if (posix_memalign((void**)&vcl, 512,
732 (super->conf_rec_len*512 +
733 offsetof(struct vcl, conf))) != 0) {
734 fprintf(stderr, Name
735 ": %s could not allocate vcl buf\n",
736 __func__);
737 return 1;
738 }
739 vcl->next = super->conflist;
740 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
741 super->conflist = vcl;
742 dl->vlist[vnum++] = vcl;
743 }
744 memcpy(&vcl->conf, vd, super->conf_rec_len*512);
745 vcl->lba_offset = (__u64*)
746 &vcl->conf.phys_refnum[super->mppe];
747
748 for (i=0; i < max_virt_disks ; i++)
749 if (memcmp(super->virt->entries[i].guid,
750 vcl->conf.guid, DDF_GUID_LEN)==0)
751 break;
752 if (i < max_virt_disks)
753 vcl->vcnum = i;
754 }
755 free(conf);
756
757 return 0;
758 }
759
760 #ifndef MDASSEMBLE
761 static int load_super_ddf_all(struct supertype *st, int fd,
762 void **sbp, char *devname, int keep_fd);
763 #endif
764 static int load_super_ddf(struct supertype *st, int fd,
765 char *devname)
766 {
767 unsigned long long dsize;
768 struct ddf_super *super;
769 int rv;
770
771 #ifndef MDASSEMBLE
772 /* if 'fd' is a container, load metadata from all the devices */
773 if (load_super_ddf_all(st, fd, &st->sb, devname, 1) == 0)
774 return 0;
775 #endif
776 if (st->subarray[0])
777 return 1; /* FIXME Is this correct */
778
779 if (get_dev_size(fd, devname, &dsize) == 0)
780 return 1;
781
782 /* 32M is a lower bound */
783 if (dsize <= 32*1024*1024) {
784 if (devname) {
785 fprintf(stderr,
786 Name ": %s is too small for ddf: "
787 "size is %llu sectors.\n",
788 devname, dsize>>9);
789 return 1;
790 }
791 }
792 if (dsize & 511) {
793 if (devname) {
794 fprintf(stderr,
795 Name ": %s is an odd size for ddf: "
796 "size is %llu bytes.\n",
797 devname, dsize);
798 return 1;
799 }
800 }
801
802 if (posix_memalign((void**)&super, 512, sizeof(*super))!= 0) {
803 fprintf(stderr, Name ": malloc of %zu failed.\n",
804 sizeof(*super));
805 return 1;
806 }
807 memset(super, 0, sizeof(*super));
808
809 rv = load_ddf_headers(fd, super, devname);
810 if (rv) {
811 free(super);
812 return rv;
813 }
814
815 /* Have valid headers and have chosen the best. Let's read in the rest*/
816
817 rv = load_ddf_global(fd, super, devname);
818
819 if (rv) {
820 if (devname)
821 fprintf(stderr,
822 Name ": Failed to load all information "
823 "sections on %s\n", devname);
824 free(super);
825 return rv;
826 }
827
828 rv = load_ddf_local(fd, super, devname, 0);
829
830 if (rv) {
831 if (devname)
832 fprintf(stderr,
833 Name ": Failed to load all information "
834 "sections on %s\n", devname);
835 free(super);
836 return rv;
837 }
838
839 /* Should possibly check the sections .... */
840
841 st->sb = super;
842 if (st->ss == NULL) {
843 st->ss = &super_ddf;
844 st->minor_version = 0;
845 st->max_devs = 512;
846 }
847 st->loaded_container = 0;
848 return 0;
849
850 }
851
852 static void free_super_ddf(struct supertype *st)
853 {
854 struct ddf_super *ddf = st->sb;
855 if (ddf == NULL)
856 return;
857 free(ddf->phys);
858 free(ddf->virt);
859 while (ddf->conflist) {
860 struct vcl *v = ddf->conflist;
861 ddf->conflist = v->next;
862 if (v->block_sizes)
863 free(v->block_sizes);
864 free(v);
865 }
866 while (ddf->dlist) {
867 struct dl *d = ddf->dlist;
868 ddf->dlist = d->next;
869 if (d->fd >= 0)
870 close(d->fd);
871 if (d->spare)
872 free(d->spare);
873 free(d);
874 }
875 free(ddf);
876 st->sb = NULL;
877 }
878
879 static struct supertype *match_metadata_desc_ddf(char *arg)
880 {
881 /* 'ddf' only support containers */
882 struct supertype *st;
883 if (strcmp(arg, "ddf") != 0 &&
884 strcmp(arg, "default") != 0
885 )
886 return NULL;
887
888 st = malloc(sizeof(*st));
889 memset(st, 0, sizeof(*st));
890 st->ss = &super_ddf;
891 st->max_devs = 512;
892 st->minor_version = 0;
893 st->sb = NULL;
894 return st;
895 }
896
897
898 #ifndef MDASSEMBLE
899
900 static mapping_t ddf_state[] = {
901 { "Optimal", 0},
902 { "Degraded", 1},
903 { "Deleted", 2},
904 { "Missing", 3},
905 { "Failed", 4},
906 { "Partially Optimal", 5},
907 { "-reserved-", 6},
908 { "-reserved-", 7},
909 { NULL, 0}
910 };
911
912 static mapping_t ddf_init_state[] = {
913 { "Not Initialised", 0},
914 { "QuickInit in Progress", 1},
915 { "Fully Initialised", 2},
916 { "*UNKNOWN*", 3},
917 { NULL, 0}
918 };
919 static mapping_t ddf_access[] = {
920 { "Read/Write", 0},
921 { "Reserved", 1},
922 { "Read Only", 2},
923 { "Blocked (no access)", 3},
924 { NULL ,0}
925 };
926
927 static mapping_t ddf_level[] = {
928 { "RAID0", DDF_RAID0},
929 { "RAID1", DDF_RAID1},
930 { "RAID3", DDF_RAID3},
931 { "RAID4", DDF_RAID4},
932 { "RAID5", DDF_RAID5},
933 { "RAID1E",DDF_RAID1E},
934 { "JBOD", DDF_JBOD},
935 { "CONCAT",DDF_CONCAT},
936 { "RAID5E",DDF_RAID5E},
937 { "RAID5EE",DDF_RAID5EE},
938 { "RAID6", DDF_RAID6},
939 { NULL, 0}
940 };
941 static mapping_t ddf_sec_level[] = {
942 { "Striped", DDF_2STRIPED},
943 { "Mirrored", DDF_2MIRRORED},
944 { "Concat", DDF_2CONCAT},
945 { "Spanned", DDF_2SPANNED},
946 { NULL, 0}
947 };
948 #endif
949
950 struct num_mapping {
951 int num1, num2;
952 };
953 static struct num_mapping ddf_level_num[] = {
954 { DDF_RAID0, 0 },
955 { DDF_RAID1, 1 },
956 { DDF_RAID3, LEVEL_UNSUPPORTED },
957 { DDF_RAID4, 4 },
958 { DDF_RAID5, 5 },
959 { DDF_RAID1E, LEVEL_UNSUPPORTED },
960 { DDF_JBOD, LEVEL_UNSUPPORTED },
961 { DDF_CONCAT, LEVEL_LINEAR },
962 { DDF_RAID5E, LEVEL_UNSUPPORTED },
963 { DDF_RAID5EE, LEVEL_UNSUPPORTED },
964 { DDF_RAID6, 6},
965 { MAXINT, MAXINT }
966 };
967
968 static int map_num1(struct num_mapping *map, int num)
969 {
970 int i;
971 for (i=0 ; map[i].num1 != MAXINT; i++)
972 if (map[i].num1 == num)
973 break;
974 return map[i].num2;
975 }
976
977 static int all_ff(char *guid)
978 {
979 int i;
980 for (i = 0; i < DDF_GUID_LEN; i++)
981 if (guid[i] != (char)0xff)
982 return 0;
983 return 1;
984 }
985
986 #ifndef MDASSEMBLE
987 static void print_guid(char *guid, int tstamp)
988 {
989 /* A GUIDs are part (or all) ASCII and part binary.
990 * They tend to be space padded.
991 * We print the GUID in HEX, then in parentheses add
992 * any initial ASCII sequence, and a possible
993 * time stamp from bytes 16-19
994 */
995 int l = DDF_GUID_LEN;
996 int i;
997
998 for (i=0 ; i<DDF_GUID_LEN ; i++) {
999 if ((i&3)==0 && i != 0) printf(":");
1000 printf("%02X", guid[i]&255);
1001 }
1002
1003 printf(" (");
1004 while (l && guid[l-1] == ' ')
1005 l--;
1006 for (i=0 ; i<l ; i++) {
1007 if (guid[i] >= 0x20 && guid[i] < 0x7f)
1008 fputc(guid[i], stdout);
1009 else
1010 break;
1011 }
1012 if (tstamp) {
1013 time_t then = __be32_to_cpu(*(__u32*)(guid+16)) + DECADE;
1014 char tbuf[100];
1015 struct tm *tm;
1016 tm = localtime(&then);
1017 strftime(tbuf, 100, " %D %T",tm);
1018 fputs(tbuf, stdout);
1019 }
1020 printf(")");
1021 }
1022
1023 static void examine_vd(int n, struct ddf_super *sb, char *guid)
1024 {
1025 int crl = sb->conf_rec_len;
1026 struct vcl *vcl;
1027
1028 for (vcl = sb->conflist ; vcl ; vcl = vcl->next) {
1029 int i;
1030 struct vd_config *vc = &vcl->conf;
1031
1032 if (calc_crc(vc, crl*512) != vc->crc)
1033 continue;
1034 if (memcmp(vc->guid, guid, DDF_GUID_LEN) != 0)
1035 continue;
1036
1037 /* Ok, we know about this VD, let's give more details */
1038 printf(" Raid Devices[%d] : %d (", n,
1039 __be16_to_cpu(vc->prim_elmnt_count));
1040 for (i=0; i<__be16_to_cpu(vc->prim_elmnt_count); i++) {
1041 int j;
1042 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1043 for (j=0; j<cnt; j++)
1044 if (vc->phys_refnum[i] == sb->phys->entries[j].refnum)
1045 break;
1046 if (i) printf(" ");
1047 if (j < cnt)
1048 printf("%d", j);
1049 else
1050 printf("--");
1051 }
1052 printf(")\n");
1053 if (vc->chunk_shift != 255)
1054 printf(" Chunk Size[%d] : %d sectors\n", n,
1055 1 << vc->chunk_shift);
1056 printf(" Raid Level[%d] : %s\n", n,
1057 map_num(ddf_level, vc->prl)?:"-unknown-");
1058 if (vc->sec_elmnt_count != 1) {
1059 printf(" Secondary Position[%d] : %d of %d\n", n,
1060 vc->sec_elmnt_seq, vc->sec_elmnt_count);
1061 printf(" Secondary Level[%d] : %s\n", n,
1062 map_num(ddf_sec_level, vc->srl) ?: "-unknown-");
1063 }
1064 printf(" Device Size[%d] : %llu\n", n,
1065 __be64_to_cpu(vc->blocks)/2);
1066 printf(" Array Size[%d] : %llu\n", n,
1067 __be64_to_cpu(vc->array_blocks)/2);
1068 }
1069 }
1070
1071 static void examine_vds(struct ddf_super *sb)
1072 {
1073 int cnt = __be16_to_cpu(sb->virt->populated_vdes);
1074 int i;
1075 printf(" Virtual Disks : %d\n", cnt);
1076
1077 for (i=0; i<cnt; i++) {
1078 struct virtual_entry *ve = &sb->virt->entries[i];
1079 printf("\n");
1080 printf(" VD GUID[%d] : ", i); print_guid(ve->guid, 1);
1081 printf("\n");
1082 printf(" unit[%d] : %d\n", i, __be16_to_cpu(ve->unit));
1083 printf(" state[%d] : %s, %s%s\n", i,
1084 map_num(ddf_state, ve->state & 7),
1085 (ve->state & 8) ? "Morphing, ": "",
1086 (ve->state & 16)? "Not Consistent" : "Consistent");
1087 printf(" init state[%d] : %s\n", i,
1088 map_num(ddf_init_state, ve->init_state&3));
1089 printf(" access[%d] : %s\n", i,
1090 map_num(ddf_access, (ve->init_state>>6) & 3));
1091 printf(" Name[%d] : %.16s\n", i, ve->name);
1092 examine_vd(i, sb, ve->guid);
1093 }
1094 if (cnt) printf("\n");
1095 }
1096
1097 static void examine_pds(struct ddf_super *sb)
1098 {
1099 int cnt = __be16_to_cpu(sb->phys->used_pdes);
1100 int i;
1101 struct dl *dl;
1102 printf(" Physical Disks : %d\n", cnt);
1103 printf(" Number RefNo Size Device Type/State\n");
1104
1105 for (i=0 ; i<cnt ; i++) {
1106 struct phys_disk_entry *pd = &sb->phys->entries[i];
1107 int type = __be16_to_cpu(pd->type);
1108 int state = __be16_to_cpu(pd->state);
1109
1110 //printf(" PD GUID[%d] : ", i); print_guid(pd->guid, 0);
1111 //printf("\n");
1112 printf(" %3d %08x ", i,
1113 __be32_to_cpu(pd->refnum));
1114 printf("%lluK ", __be64_to_cpu(pd->config_size)>>1);
1115 for (dl = sb->dlist; dl ; dl = dl->next) {
1116 if (dl->disk.refnum == pd->refnum) {
1117 char *dv = map_dev(dl->major, dl->minor, 0);
1118 if (dv) {
1119 printf("%-10s", dv);
1120 break;
1121 }
1122 }
1123 }
1124 if (!dl)
1125 printf("%10s","");
1126 printf(" %s%s%s%s%s",
1127 (type&2) ? "active":"",
1128 (type&4) ? "Global-Spare":"",
1129 (type&8) ? "spare" : "",
1130 (type&16)? ", foreign" : "",
1131 (type&32)? "pass-through" : "");
1132 printf("/%s%s%s%s%s%s%s",
1133 (state&1)? "Online": "Offline",
1134 (state&2)? ", Failed": "",
1135 (state&4)? ", Rebuilding": "",
1136 (state&8)? ", in-transition": "",
1137 (state&16)? ", SMART-errors": "",
1138 (state&32)? ", Unrecovered-Read-Errors": "",
1139 (state&64)? ", Missing" : "");
1140 printf("\n");
1141 }
1142 }
1143
1144 static void examine_super_ddf(struct supertype *st, char *homehost)
1145 {
1146 struct ddf_super *sb = st->sb;
1147
1148 printf(" Magic : %08x\n", __be32_to_cpu(sb->anchor.magic));
1149 printf(" Version : %.8s\n", sb->anchor.revision);
1150 printf("Controller GUID : "); print_guid(sb->controller.guid, 0);
1151 printf("\n");
1152 printf(" Container GUID : "); print_guid(sb->anchor.guid, 1);
1153 printf("\n");
1154 printf(" Seq : %08x\n", __be32_to_cpu(sb->active->seq));
1155 printf(" Redundant hdr : %s\n", sb->secondary.magic == DDF_HEADER_MAGIC
1156 ?"yes" : "no");
1157 examine_vds(sb);
1158 examine_pds(sb);
1159 }
1160
1161 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info);
1162
1163 static void uuid_from_super_ddf(struct supertype *st, int uuid[4]);
1164
1165 static void brief_examine_super_ddf(struct supertype *st)
1166 {
1167 /* We just write a generic DDF ARRAY entry
1168 */
1169 struct ddf_super *ddf = st->sb;
1170 struct mdinfo info;
1171 int i;
1172 char nbuf[64];
1173 getinfo_super_ddf(st, &info);
1174 fname_from_uuid(st, &info, nbuf, ':');
1175 printf("ARRAY metadata=ddf UUID=%s\n", nbuf + 5);
1176
1177 for (i=0; i<__be16_to_cpu(ddf->virt->max_vdes); i++) {
1178 struct virtual_entry *ve = &ddf->virt->entries[i];
1179 struct vcl vcl;
1180 char nbuf1[64];
1181 if (all_ff(ve->guid))
1182 continue;
1183 memcpy(vcl.conf.guid, ve->guid, DDF_GUID_LEN);
1184 ddf->currentconf =&vcl;
1185 uuid_from_super_ddf(st, info.uuid);
1186 fname_from_uuid(st, &info, nbuf1, ':');
1187 printf("ARRAY container=%s member=%d UUID=%s\n",
1188 nbuf+5, i, nbuf1+5);
1189 }
1190 }
1191
1192 static void detail_super_ddf(struct supertype *st, char *homehost)
1193 {
1194 /* FIXME later
1195 * Could print DDF GUID
1196 * Need to find which array
1197 * If whole, briefly list all arrays
1198 * If one, give name
1199 */
1200 }
1201
1202 static void brief_detail_super_ddf(struct supertype *st)
1203 {
1204 /* FIXME I really need to know which array we are detailing.
1205 * Can that be stored in ddf_super??
1206 */
1207 // struct ddf_super *ddf = st->sb;
1208 struct mdinfo info;
1209 char nbuf[64];
1210 getinfo_super_ddf(st, &info);
1211 fname_from_uuid(st, &info, nbuf,':');
1212 printf(" UUID=%s", nbuf + 5);
1213 }
1214 #endif
1215
1216 static int match_home_ddf(struct supertype *st, char *homehost)
1217 {
1218 /* It matches 'this' host if the controller is a
1219 * Linux-MD controller with vendor_data matching
1220 * the hostname
1221 */
1222 struct ddf_super *ddf = st->sb;
1223 int len = strlen(homehost);
1224
1225 return (memcmp(ddf->controller.guid, T10, 8) == 0 &&
1226 len < sizeof(ddf->controller.vendor_data) &&
1227 memcmp(ddf->controller.vendor_data, homehost,len) == 0 &&
1228 ddf->controller.vendor_data[len] == 0);
1229 }
1230
1231 #ifndef MDASSEMBLE
1232 static struct vd_config *find_vdcr(struct ddf_super *ddf, int inst)
1233 {
1234 struct vcl *v;
1235
1236 for (v = ddf->conflist; v; v = v->next)
1237 if (inst == v->vcnum)
1238 return &v->conf;
1239 return NULL;
1240 }
1241 #endif
1242
1243 static int find_phys(struct ddf_super *ddf, __u32 phys_refnum)
1244 {
1245 /* Find the entry in phys_disk which has the given refnum
1246 * and return it's index
1247 */
1248 int i;
1249 for (i=0; i < __be16_to_cpu(ddf->phys->max_pdes); i++)
1250 if (ddf->phys->entries[i].refnum == phys_refnum)
1251 return i;
1252 return -1;
1253 }
1254
1255 static void uuid_from_super_ddf(struct supertype *st, int uuid[4])
1256 {
1257 /* The uuid returned here is used for:
1258 * uuid to put into bitmap file (Create, Grow)
1259 * uuid for backup header when saving critical section (Grow)
1260 * comparing uuids when re-adding a device into an array
1261 * In these cases the uuid required is that of the data-array,
1262 * not the device-set.
1263 * uuid to recognise same set when adding a missing device back
1264 * to an array. This is a uuid for the device-set.
1265 *
1266 * For each of these we can make do with a truncated
1267 * or hashed uuid rather than the original, as long as
1268 * everyone agrees.
1269 * In the case of SVD we assume the BVD is of interest,
1270 * though that might be the case if a bitmap were made for
1271 * a mirrored SVD - worry about that later.
1272 * So we need to find the VD configuration record for the
1273 * relevant BVD and extract the GUID and Secondary_Element_Seq.
1274 * The first 16 bytes of the sha1 of these is used.
1275 */
1276 struct ddf_super *ddf = st->sb;
1277 struct vcl *vcl = ddf->currentconf;
1278 char *guid;
1279 char buf[20];
1280 struct sha1_ctx ctx;
1281
1282 if (vcl)
1283 guid = vcl->conf.guid;
1284 else
1285 guid = ddf->anchor.guid;
1286
1287 sha1_init_ctx(&ctx);
1288 sha1_process_bytes(guid, DDF_GUID_LEN, &ctx);
1289 sha1_finish_ctx(&ctx, buf);
1290 memcpy(uuid, buf, 4*4);
1291 }
1292
1293 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info);
1294
1295 static void getinfo_super_ddf(struct supertype *st, struct mdinfo *info)
1296 {
1297 struct ddf_super *ddf = st->sb;
1298
1299 if (ddf->currentconf) {
1300 getinfo_super_ddf_bvd(st, info);
1301 return;
1302 }
1303
1304 info->array.raid_disks = __be16_to_cpu(ddf->phys->used_pdes);
1305 info->array.level = LEVEL_CONTAINER;
1306 info->array.layout = 0;
1307 info->array.md_minor = -1;
1308 info->array.ctime = DECADE + __be32_to_cpu(*(__u32*)
1309 (ddf->anchor.guid+16));
1310 info->array.utime = 0;
1311 info->array.chunk_size = 0;
1312
1313
1314 info->disk.major = 0;
1315 info->disk.minor = 0;
1316 if (ddf->dlist) {
1317 info->disk.number = __be32_to_cpu(ddf->dlist->disk.refnum);
1318 info->disk.raid_disk = find_phys(ddf, ddf->dlist->disk.refnum);
1319
1320 info->data_offset = __be64_to_cpu(ddf->phys->
1321 entries[info->disk.raid_disk].
1322 config_size);
1323 info->component_size = ddf->dlist->size - info->data_offset;
1324 } else {
1325 info->disk.number = -1;
1326 // info->disk.raid_disk = find refnum in the table and use index;
1327 }
1328 info->disk.state = (1 << MD_DISK_SYNC);
1329
1330
1331 info->reshape_active = 0;
1332 info->name[0] = 0;
1333
1334 info->array.major_version = -1;
1335 info->array.minor_version = -2;
1336 strcpy(info->text_version, "ddf");
1337 info->safe_mode_delay = 0;
1338
1339 uuid_from_super_ddf(st, info->uuid);
1340
1341 }
1342
1343 static int rlq_to_layout(int rlq, int prl, int raiddisks);
1344
1345 static void getinfo_super_ddf_bvd(struct supertype *st, struct mdinfo *info)
1346 {
1347 struct ddf_super *ddf = st->sb;
1348 struct vcl *vc = ddf->currentconf;
1349 int cd = ddf->currentdev;
1350 int j;
1351 struct dl *dl;
1352
1353 /* FIXME this returns BVD info - what if we want SVD ?? */
1354
1355 info->array.raid_disks = __be16_to_cpu(vc->conf.prim_elmnt_count);
1356 info->array.level = map_num1(ddf_level_num, vc->conf.prl);
1357 info->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
1358 info->array.raid_disks);
1359 info->array.md_minor = -1;
1360 info->array.ctime = DECADE +
1361 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
1362 info->array.utime = DECADE + __be32_to_cpu(vc->conf.timestamp);
1363 info->array.chunk_size = 512 << vc->conf.chunk_shift;
1364
1365 if (cd >= 0 && cd < ddf->mppe) {
1366 info->data_offset = __be64_to_cpu(vc->lba_offset[cd]);
1367 if (vc->block_sizes)
1368 info->component_size = vc->block_sizes[cd];
1369 else
1370 info->component_size = __be64_to_cpu(vc->conf.blocks);
1371 }
1372
1373 for (dl = ddf->dlist; dl ; dl = dl->next)
1374 if (dl->raiddisk == info->disk.raid_disk)
1375 break;
1376 info->disk.major = 0;
1377 info->disk.minor = 0;
1378 if (dl) {
1379 info->disk.major = dl->major;
1380 info->disk.minor = dl->minor;
1381 }
1382 // info->disk.number = __be32_to_cpu(ddf->disk.refnum);
1383 // info->disk.raid_disk = find refnum in the table and use index;
1384 // info->disk.state = ???;
1385
1386 info->container_member = ddf->currentconf->vcnum;
1387
1388 info->resync_start = 0;
1389 if (!(ddf->virt->entries[info->container_member].state
1390 & DDF_state_inconsistent) &&
1391 (ddf->virt->entries[info->container_member].init_state
1392 & DDF_initstate_mask)
1393 == DDF_init_full)
1394 info->resync_start = ~0ULL;
1395
1396 uuid_from_super_ddf(st, info->uuid);
1397
1398 info->container_member = atoi(st->subarray);
1399 info->array.major_version = -1;
1400 info->array.minor_version = -2;
1401 sprintf(info->text_version, "/%s/%s",
1402 devnum2devname(st->container_dev),
1403 st->subarray);
1404 info->safe_mode_delay = 200;
1405
1406 memcpy(info->name, ddf->virt->entries[info->container_member].name, 16);
1407 info->name[16]=0;
1408 for(j=0; j<16; j++)
1409 if (info->name[j] == ' ')
1410 info->name[j] = 0;
1411 }
1412
1413
1414 static int update_super_ddf(struct supertype *st, struct mdinfo *info,
1415 char *update,
1416 char *devname, int verbose,
1417 int uuid_set, char *homehost)
1418 {
1419 /* For 'assemble' and 'force' we need to return non-zero if any
1420 * change was made. For others, the return value is ignored.
1421 * Update options are:
1422 * force-one : This device looks a bit old but needs to be included,
1423 * update age info appropriately.
1424 * assemble: clear any 'faulty' flag to allow this device to
1425 * be assembled.
1426 * force-array: Array is degraded but being forced, mark it clean
1427 * if that will be needed to assemble it.
1428 *
1429 * newdev: not used ????
1430 * grow: Array has gained a new device - this is currently for
1431 * linear only
1432 * resync: mark as dirty so a resync will happen.
1433 * uuid: Change the uuid of the array to match what is given
1434 * homehost: update the recorded homehost
1435 * name: update the name - preserving the homehost
1436 * _reshape_progress: record new reshape_progress position.
1437 *
1438 * Following are not relevant for this version:
1439 * sparc2.2 : update from old dodgey metadata
1440 * super-minor: change the preferred_minor number
1441 * summaries: update redundant counters.
1442 */
1443 int rv = 0;
1444 // struct ddf_super *ddf = st->sb;
1445 // struct vd_config *vd = find_vdcr(ddf, info->container_member);
1446 // struct virtual_entry *ve = find_ve(ddf);
1447
1448 /* we don't need to handle "force-*" or "assemble" as
1449 * there is no need to 'trick' the kernel. We the metadata is
1450 * first updated to activate the array, all the implied modifications
1451 * will just happen.
1452 */
1453
1454 if (strcmp(update, "grow") == 0) {
1455 /* FIXME */
1456 }
1457 if (strcmp(update, "resync") == 0) {
1458 // info->resync_checkpoint = 0;
1459 }
1460 /* We ignore UUID updates as they make even less sense
1461 * with DDF
1462 */
1463 if (strcmp(update, "homehost") == 0) {
1464 /* homehost is stored in controller->vendor_data,
1465 * or it is when we are the vendor
1466 */
1467 // if (info->vendor_is_local)
1468 // strcpy(ddf->controller.vendor_data, homehost);
1469 }
1470 if (strcmp(update, "name") == 0) {
1471 /* name is stored in virtual_entry->name */
1472 // memset(ve->name, ' ', 16);
1473 // strncpy(ve->name, info->name, 16);
1474 }
1475 if (strcmp(update, "_reshape_progress") == 0) {
1476 /* We don't support reshape yet */
1477 }
1478
1479 // update_all_csum(ddf);
1480
1481 return rv;
1482 }
1483
1484 static void make_header_guid(char *guid)
1485 {
1486 __u32 stamp;
1487 int rfd;
1488 /* Create a DDF Header of Virtual Disk GUID */
1489
1490 /* 24 bytes of fiction required.
1491 * first 8 are a 'vendor-id' - "Linux-MD"
1492 * next 8 are controller type.. how about 0X DEAD BEEF 0000 0000
1493 * Remaining 8 random number plus timestamp
1494 */
1495 memcpy(guid, T10, sizeof(T10));
1496 stamp = __cpu_to_be32(0xdeadbeef);
1497 memcpy(guid+8, &stamp, 4);
1498 stamp = __cpu_to_be32(0);
1499 memcpy(guid+12, &stamp, 4);
1500 stamp = __cpu_to_be32(time(0) - DECADE);
1501 memcpy(guid+16, &stamp, 4);
1502 rfd = open("/dev/urandom", O_RDONLY);
1503 if (rfd < 0 || read(rfd, &stamp, 4) != 4)
1504 stamp = random();
1505 memcpy(guid+20, &stamp, 4);
1506 if (rfd >= 0) close(rfd);
1507 }
1508
1509 static int init_super_ddf_bvd(struct supertype *st,
1510 mdu_array_info_t *info,
1511 unsigned long long size,
1512 char *name, char *homehost,
1513 int *uuid);
1514
1515 static int init_super_ddf(struct supertype *st,
1516 mdu_array_info_t *info,
1517 unsigned long long size, char *name, char *homehost,
1518 int *uuid)
1519 {
1520 /* This is primarily called by Create when creating a new array.
1521 * We will then get add_to_super called for each component, and then
1522 * write_init_super called to write it out to each device.
1523 * For DDF, Create can create on fresh devices or on a pre-existing
1524 * array.
1525 * To create on a pre-existing array a different method will be called.
1526 * This one is just for fresh drives.
1527 *
1528 * We need to create the entire 'ddf' structure which includes:
1529 * DDF headers - these are easy.
1530 * Controller data - a Sector describing this controller .. not that
1531 * this is a controller exactly.
1532 * Physical Disk Record - one entry per device, so
1533 * leave plenty of space.
1534 * Virtual Disk Records - again, just leave plenty of space.
1535 * This just lists VDs, doesn't give details
1536 * Config records - describes the VDs that use this disk
1537 * DiskData - describes 'this' device.
1538 * BadBlockManagement - empty
1539 * Diag Space - empty
1540 * Vendor Logs - Could we put bitmaps here?
1541 *
1542 */
1543 struct ddf_super *ddf;
1544 char hostname[17];
1545 int hostlen;
1546 int max_phys_disks, max_virt_disks;
1547 unsigned long long sector;
1548 int clen;
1549 int i;
1550 int pdsize, vdsize;
1551 struct phys_disk *pd;
1552 struct virtual_disk *vd;
1553
1554 if (!info) {
1555 st->sb = NULL;
1556 return 0;
1557 }
1558 if (st->sb)
1559 return init_super_ddf_bvd(st, info, size, name, homehost,
1560 uuid);
1561
1562 if (posix_memalign((void**)&ddf, 512, sizeof(*ddf)) != 0) {
1563 fprintf(stderr, Name ": %s could not allocate superblock\n", __func__);
1564 return 0;
1565 }
1566 memset(ddf, 0, sizeof(*ddf));
1567 ddf->dlist = NULL; /* no physical disks yet */
1568 ddf->conflist = NULL; /* No virtual disks yet */
1569
1570 /* At least 32MB *must* be reserved for the ddf. So let's just
1571 * start 32MB from the end, and put the primary header there.
1572 * Don't do secondary for now.
1573 * We don't know exactly where that will be yet as it could be
1574 * different on each device. To just set up the lengths.
1575 *
1576 */
1577
1578 ddf->anchor.magic = DDF_HEADER_MAGIC;
1579 make_header_guid(ddf->anchor.guid);
1580
1581 memcpy(ddf->anchor.revision, DDF_REVISION_2, 8);
1582 ddf->anchor.seq = __cpu_to_be32(1);
1583 ddf->anchor.timestamp = __cpu_to_be32(time(0) - DECADE);
1584 ddf->anchor.openflag = 0xFF;
1585 ddf->anchor.foreignflag = 0;
1586 ddf->anchor.enforcegroups = 0; /* Is this best?? */
1587 ddf->anchor.pad0 = 0xff;
1588 memset(ddf->anchor.pad1, 0xff, 12);
1589 memset(ddf->anchor.header_ext, 0xff, 32);
1590 ddf->anchor.primary_lba = ~(__u64)0;
1591 ddf->anchor.secondary_lba = ~(__u64)0;
1592 ddf->anchor.type = DDF_HEADER_ANCHOR;
1593 memset(ddf->anchor.pad2, 0xff, 3);
1594 ddf->anchor.workspace_len = __cpu_to_be32(32768); /* Must be reserved */
1595 ddf->anchor.workspace_lba = ~(__u64)0; /* Put this at bottom
1596 of 32M reserved.. */
1597 max_phys_disks = 1023; /* Should be enough */
1598 ddf->anchor.max_pd_entries = __cpu_to_be16(max_phys_disks);
1599 max_virt_disks = 255;
1600 ddf->anchor.max_vd_entries = __cpu_to_be16(max_virt_disks); /* ?? */
1601 ddf->anchor.max_partitions = __cpu_to_be16(64); /* ?? */
1602 ddf->max_part = 64;
1603 ddf->mppe = 256;
1604 ddf->conf_rec_len = 1 + ROUND_UP(ddf->mppe * (4+8), 512)/512;
1605 ddf->anchor.config_record_len = __cpu_to_be16(ddf->conf_rec_len);
1606 ddf->anchor.max_primary_element_entries = __cpu_to_be16(ddf->mppe);
1607 memset(ddf->anchor.pad3, 0xff, 54);
1608 /* controller sections is one sector long immediately
1609 * after the ddf header */
1610 sector = 1;
1611 ddf->anchor.controller_section_offset = __cpu_to_be32(sector);
1612 ddf->anchor.controller_section_length = __cpu_to_be32(1);
1613 sector += 1;
1614
1615 /* phys is 8 sectors after that */
1616 pdsize = ROUND_UP(sizeof(struct phys_disk) +
1617 sizeof(struct phys_disk_entry)*max_phys_disks,
1618 512);
1619 switch(pdsize/512) {
1620 case 2: case 8: case 32: case 128: case 512: break;
1621 default: abort();
1622 }
1623 ddf->anchor.phys_section_offset = __cpu_to_be32(sector);
1624 ddf->anchor.phys_section_length =
1625 __cpu_to_be32(pdsize/512); /* max_primary_element_entries/8 */
1626 sector += pdsize/512;
1627
1628 /* virt is another 32 sectors */
1629 vdsize = ROUND_UP(sizeof(struct virtual_disk) +
1630 sizeof(struct virtual_entry) * max_virt_disks,
1631 512);
1632 switch(vdsize/512) {
1633 case 2: case 8: case 32: case 128: case 512: break;
1634 default: abort();
1635 }
1636 ddf->anchor.virt_section_offset = __cpu_to_be32(sector);
1637 ddf->anchor.virt_section_length =
1638 __cpu_to_be32(vdsize/512); /* max_vd_entries/8 */
1639 sector += vdsize/512;
1640
1641 clen = ddf->conf_rec_len * (ddf->max_part+1);
1642 ddf->anchor.config_section_offset = __cpu_to_be32(sector);
1643 ddf->anchor.config_section_length = __cpu_to_be32(clen);
1644 sector += clen;
1645
1646 ddf->anchor.data_section_offset = __cpu_to_be32(sector);
1647 ddf->anchor.data_section_length = __cpu_to_be32(1);
1648 sector += 1;
1649
1650 ddf->anchor.bbm_section_length = __cpu_to_be32(0);
1651 ddf->anchor.bbm_section_offset = __cpu_to_be32(0xFFFFFFFF);
1652 ddf->anchor.diag_space_length = __cpu_to_be32(0);
1653 ddf->anchor.diag_space_offset = __cpu_to_be32(0xFFFFFFFF);
1654 ddf->anchor.vendor_length = __cpu_to_be32(0);
1655 ddf->anchor.vendor_offset = __cpu_to_be32(0xFFFFFFFF);
1656
1657 memset(ddf->anchor.pad4, 0xff, 256);
1658
1659 memcpy(&ddf->primary, &ddf->anchor, 512);
1660 memcpy(&ddf->secondary, &ddf->anchor, 512);
1661
1662 ddf->primary.openflag = 1; /* I guess.. */
1663 ddf->primary.type = DDF_HEADER_PRIMARY;
1664
1665 ddf->secondary.openflag = 1; /* I guess.. */
1666 ddf->secondary.type = DDF_HEADER_SECONDARY;
1667
1668 ddf->active = &ddf->primary;
1669
1670 ddf->controller.magic = DDF_CONTROLLER_MAGIC;
1671
1672 /* 24 more bytes of fiction required.
1673 * first 8 are a 'vendor-id' - "Linux-MD"
1674 * Remaining 16 are serial number.... maybe a hostname would do?
1675 */
1676 memcpy(ddf->controller.guid, T10, sizeof(T10));
1677 gethostname(hostname, sizeof(hostname));
1678 hostname[sizeof(hostname) - 1] = 0;
1679 hostlen = strlen(hostname);
1680 memcpy(ddf->controller.guid + 24 - hostlen, hostname, hostlen);
1681 for (i = strlen(T10) ; i+hostlen < 24; i++)
1682 ddf->controller.guid[i] = ' ';
1683
1684 ddf->controller.type.vendor_id = __cpu_to_be16(0xDEAD);
1685 ddf->controller.type.device_id = __cpu_to_be16(0xBEEF);
1686 ddf->controller.type.sub_vendor_id = 0;
1687 ddf->controller.type.sub_device_id = 0;
1688 memcpy(ddf->controller.product_id, "What Is My PID??", 16);
1689 memset(ddf->controller.pad, 0xff, 8);
1690 memset(ddf->controller.vendor_data, 0xff, 448);
1691 if (homehost && strlen(homehost) < 440)
1692 strcpy((char*)ddf->controller.vendor_data, homehost);
1693
1694 if (posix_memalign((void**)&pd, 512, pdsize) != 0) {
1695 fprintf(stderr, Name ": %s could not allocate pd\n", __func__);
1696 return 0;
1697 }
1698 ddf->phys = pd;
1699 ddf->pdsize = pdsize;
1700
1701 memset(pd, 0xff, pdsize);
1702 memset(pd, 0, sizeof(*pd));
1703 pd->magic = DDF_PHYS_DATA_MAGIC;
1704 pd->used_pdes = __cpu_to_be16(0);
1705 pd->max_pdes = __cpu_to_be16(max_phys_disks);
1706 memset(pd->pad, 0xff, 52);
1707
1708 if (posix_memalign((void**)&vd, 512, vdsize) != 0) {
1709 fprintf(stderr, Name ": %s could not allocate vd\n", __func__);
1710 return 0;
1711 }
1712 ddf->virt = vd;
1713 ddf->vdsize = vdsize;
1714 memset(vd, 0, vdsize);
1715 vd->magic = DDF_VIRT_RECORDS_MAGIC;
1716 vd->populated_vdes = __cpu_to_be16(0);
1717 vd->max_vdes = __cpu_to_be16(max_virt_disks);
1718 memset(vd->pad, 0xff, 52);
1719
1720 for (i=0; i<max_virt_disks; i++)
1721 memset(&vd->entries[i], 0xff, sizeof(struct virtual_entry));
1722
1723 st->sb = ddf;
1724 ddf->updates_pending = 1;
1725 return 1;
1726 }
1727
1728 static int chunk_to_shift(int chunksize)
1729 {
1730 return ffs(chunksize/512)-1;
1731 }
1732
1733 static int level_to_prl(int level)
1734 {
1735 switch (level) {
1736 case LEVEL_LINEAR: return DDF_CONCAT;
1737 case 0: return DDF_RAID0;
1738 case 1: return DDF_RAID1;
1739 case 4: return DDF_RAID4;
1740 case 5: return DDF_RAID5;
1741 case 6: return DDF_RAID6;
1742 default: return -1;
1743 }
1744 }
1745 static int layout_to_rlq(int level, int layout, int raiddisks)
1746 {
1747 switch(level) {
1748 case 0:
1749 return DDF_RAID0_SIMPLE;
1750 case 1:
1751 switch(raiddisks) {
1752 case 2: return DDF_RAID1_SIMPLE;
1753 case 3: return DDF_RAID1_MULTI;
1754 default: return -1;
1755 }
1756 case 4:
1757 switch(layout) {
1758 case 0: return DDF_RAID4_N;
1759 }
1760 break;
1761 case 5:
1762 case 6:
1763 switch(layout) {
1764 case ALGORITHM_LEFT_ASYMMETRIC:
1765 return DDF_RAID5_N_RESTART;
1766 case ALGORITHM_RIGHT_ASYMMETRIC:
1767 if (level == 5)
1768 return DDF_RAID5_0_RESTART;
1769 else
1770 return DDF_RAID6_0_RESTART;
1771 case ALGORITHM_LEFT_SYMMETRIC:
1772 return DDF_RAID5_N_CONTINUE;
1773 case ALGORITHM_RIGHT_SYMMETRIC:
1774 return -1; /* not mentioned in standard */
1775 }
1776 }
1777 return -1;
1778 }
1779
1780 static int rlq_to_layout(int rlq, int prl, int raiddisks)
1781 {
1782 switch(prl) {
1783 case DDF_RAID0:
1784 return 0; /* hopefully rlq == DDF_RAID0_SIMPLE */
1785 case DDF_RAID1:
1786 return 0; /* hopefully rlq == SIMPLE or MULTI depending
1787 on raiddisks*/
1788 case DDF_RAID4:
1789 switch(rlq) {
1790 case DDF_RAID4_N:
1791 return 0;
1792 default:
1793 /* not supported */
1794 return -1; /* FIXME this isn't checked */
1795 }
1796 case DDF_RAID5:
1797 switch(rlq) {
1798 case DDF_RAID5_N_RESTART:
1799 return ALGORITHM_LEFT_ASYMMETRIC;
1800 case DDF_RAID5_0_RESTART:
1801 return ALGORITHM_RIGHT_ASYMMETRIC;
1802 case DDF_RAID5_N_CONTINUE:
1803 return ALGORITHM_LEFT_SYMMETRIC;
1804 default:
1805 return -1;
1806 }
1807 case DDF_RAID6:
1808 switch(rlq) {
1809 case DDF_RAID5_N_RESTART:
1810 return ALGORITHM_LEFT_ASYMMETRIC;
1811 case DDF_RAID6_0_RESTART:
1812 return ALGORITHM_RIGHT_ASYMMETRIC;
1813 case DDF_RAID5_N_CONTINUE:
1814 return ALGORITHM_LEFT_SYMMETRIC;
1815 default:
1816 return -1;
1817 }
1818 }
1819 return -1;
1820 }
1821
1822 #ifndef MDASSEMBLE
1823 struct extent {
1824 unsigned long long start, size;
1825 };
1826 static int cmp_extent(const void *av, const void *bv)
1827 {
1828 const struct extent *a = av;
1829 const struct extent *b = bv;
1830 if (a->start < b->start)
1831 return -1;
1832 if (a->start > b->start)
1833 return 1;
1834 return 0;
1835 }
1836
1837 static struct extent *get_extents(struct ddf_super *ddf, struct dl *dl)
1838 {
1839 /* find a list of used extents on the give physical device
1840 * (dnum) of the given ddf.
1841 * Return a malloced array of 'struct extent'
1842
1843 FIXME ignore DDF_Legacy devices?
1844
1845 */
1846 struct extent *rv;
1847 int n = 0;
1848 int i, j;
1849
1850 rv = malloc(sizeof(struct extent) * (ddf->max_part + 2));
1851 if (!rv)
1852 return NULL;
1853
1854 for (i = 0; i < ddf->max_part; i++) {
1855 struct vcl *v = dl->vlist[i];
1856 if (v == NULL)
1857 continue;
1858 for (j=0; j < v->conf.prim_elmnt_count; j++)
1859 if (v->conf.phys_refnum[j] == dl->disk.refnum) {
1860 /* This device plays role 'j' in 'v'. */
1861 rv[n].start = __be64_to_cpu(v->lba_offset[j]);
1862 rv[n].size = __be64_to_cpu(v->conf.blocks);
1863 n++;
1864 break;
1865 }
1866 }
1867 qsort(rv, n, sizeof(*rv), cmp_extent);
1868
1869 rv[n].start = __be64_to_cpu(ddf->phys->entries[dl->pdnum].config_size);
1870 rv[n].size = 0;
1871 return rv;
1872 }
1873 #endif
1874
1875 static int init_super_ddf_bvd(struct supertype *st,
1876 mdu_array_info_t *info,
1877 unsigned long long size,
1878 char *name, char *homehost,
1879 int *uuid)
1880 {
1881 /* We are creating a BVD inside a pre-existing container.
1882 * so st->sb is already set.
1883 * We need to create a new vd_config and a new virtual_entry
1884 */
1885 struct ddf_super *ddf = st->sb;
1886 int venum;
1887 struct virtual_entry *ve;
1888 struct vcl *vcl;
1889 struct vd_config *vc;
1890
1891 if (__be16_to_cpu(ddf->virt->populated_vdes)
1892 >= __be16_to_cpu(ddf->virt->max_vdes)) {
1893 fprintf(stderr, Name": This ddf already has the "
1894 "maximum of %d virtual devices\n",
1895 __be16_to_cpu(ddf->virt->max_vdes));
1896 return 0;
1897 }
1898
1899 for (venum = 0; venum < __be16_to_cpu(ddf->virt->max_vdes); venum++)
1900 if (all_ff(ddf->virt->entries[venum].guid))
1901 break;
1902 if (venum == __be16_to_cpu(ddf->virt->max_vdes)) {
1903 fprintf(stderr, Name ": Cannot find spare slot for "
1904 "virtual disk - DDF is corrupt\n");
1905 return 0;
1906 }
1907 ve = &ddf->virt->entries[venum];
1908
1909 /* A Virtual Disk GUID contains the T10 Vendor ID, controller type,
1910 * timestamp, random number
1911 */
1912 make_header_guid(ve->guid);
1913 ve->unit = __cpu_to_be16(info->md_minor);
1914 ve->pad0 = 0xFFFF;
1915 ve->guid_crc = crc32(0, (unsigned char*)ddf->anchor.guid, DDF_GUID_LEN);
1916 ve->type = 0;
1917 ve->state = DDF_state_degraded; /* Will be modified as devices are added */
1918 if (info->state & 1) /* clean */
1919 ve->init_state = DDF_init_full;
1920 else
1921 ve->init_state = DDF_init_not;
1922
1923 memset(ve->pad1, 0xff, 14);
1924 memset(ve->name, ' ', 16);
1925 if (name)
1926 strncpy(ve->name, name, 16);
1927 ddf->virt->populated_vdes =
1928 __cpu_to_be16(__be16_to_cpu(ddf->virt->populated_vdes)+1);
1929
1930 /* Now create a new vd_config */
1931 if (posix_memalign((void**)&vcl, 512,
1932 (offsetof(struct vcl, conf) + ddf->conf_rec_len * 512)) != 0) {
1933 fprintf(stderr, Name ": %s could not allocate vd_config\n", __func__);
1934 return 0;
1935 }
1936 vcl->lba_offset = (__u64*) &vcl->conf.phys_refnum[ddf->mppe];
1937 vcl->vcnum = venum;
1938 sprintf(st->subarray, "%d", venum);
1939 vcl->block_sizes = NULL; /* FIXME not for CONCAT */
1940
1941 vc = &vcl->conf;
1942
1943 vc->magic = DDF_VD_CONF_MAGIC;
1944 memcpy(vc->guid, ve->guid, DDF_GUID_LEN);
1945 vc->timestamp = __cpu_to_be32(time(0)-DECADE);
1946 vc->seqnum = __cpu_to_be32(1);
1947 memset(vc->pad0, 0xff, 24);
1948 vc->prim_elmnt_count = __cpu_to_be16(info->raid_disks);
1949 vc->chunk_shift = chunk_to_shift(info->chunk_size);
1950 vc->prl = level_to_prl(info->level);
1951 vc->rlq = layout_to_rlq(info->level, info->layout, info->raid_disks);
1952 vc->sec_elmnt_count = 1;
1953 vc->sec_elmnt_seq = 0;
1954 vc->srl = 0;
1955 vc->blocks = __cpu_to_be64(info->size * 2);
1956 vc->array_blocks = __cpu_to_be64(
1957 calc_array_size(info->level, info->raid_disks, info->layout,
1958 info->chunk_size, info->size*2));
1959 memset(vc->pad1, 0xff, 8);
1960 vc->spare_refs[0] = 0xffffffff;
1961 vc->spare_refs[1] = 0xffffffff;
1962 vc->spare_refs[2] = 0xffffffff;
1963 vc->spare_refs[3] = 0xffffffff;
1964 vc->spare_refs[4] = 0xffffffff;
1965 vc->spare_refs[5] = 0xffffffff;
1966 vc->spare_refs[6] = 0xffffffff;
1967 vc->spare_refs[7] = 0xffffffff;
1968 memset(vc->cache_pol, 0, 8);
1969 vc->bg_rate = 0x80;
1970 memset(vc->pad2, 0xff, 3);
1971 memset(vc->pad3, 0xff, 52);
1972 memset(vc->pad4, 0xff, 192);
1973 memset(vc->v0, 0xff, 32);
1974 memset(vc->v1, 0xff, 32);
1975 memset(vc->v2, 0xff, 16);
1976 memset(vc->v3, 0xff, 16);
1977 memset(vc->vendor, 0xff, 32);
1978
1979 memset(vc->phys_refnum, 0xff, 4*ddf->mppe);
1980 memset(vc->phys_refnum+(ddf->mppe * 4), 0x00, 8*ddf->mppe);
1981
1982 vcl->next = ddf->conflist;
1983 ddf->conflist = vcl;
1984 ddf->currentconf = vcl;
1985 ddf->updates_pending = 1;
1986 return 1;
1987 }
1988
1989 #ifndef MDASSEMBLE
1990 static void add_to_super_ddf_bvd(struct supertype *st,
1991 mdu_disk_info_t *dk, int fd, char *devname)
1992 {
1993 /* fd and devname identify a device with-in the ddf container (st).
1994 * dk identifies a location in the new BVD.
1995 * We need to find suitable free space in that device and update
1996 * the phys_refnum and lba_offset for the newly created vd_config.
1997 * We might also want to update the type in the phys_disk
1998 * section.
1999 *
2000 * Alternately: fd == -1 and we have already chosen which device to
2001 * use and recorded in dlist->raid_disk;
2002 */
2003 struct dl *dl;
2004 struct ddf_super *ddf = st->sb;
2005 struct vd_config *vc;
2006 __u64 *lba_offset;
2007 int working;
2008 int i;
2009 unsigned long long blocks, pos, esize;
2010 struct extent *ex;
2011
2012 if (fd == -1) {
2013 for (dl = ddf->dlist; dl ; dl = dl->next)
2014 if (dl->raiddisk == dk->raid_disk)
2015 break;
2016 } else {
2017 for (dl = ddf->dlist; dl ; dl = dl->next)
2018 if (dl->major == dk->major &&
2019 dl->minor == dk->minor)
2020 break;
2021 }
2022 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
2023 return;
2024
2025 vc = &ddf->currentconf->conf;
2026 lba_offset = ddf->currentconf->lba_offset;
2027
2028 ex = get_extents(ddf, dl);
2029 if (!ex)
2030 return;
2031
2032 i = 0; pos = 0;
2033 blocks = __be64_to_cpu(vc->blocks);
2034 if (ddf->currentconf->block_sizes)
2035 blocks = ddf->currentconf->block_sizes[dk->raid_disk];
2036
2037 do {
2038 esize = ex[i].start - pos;
2039 if (esize >= blocks)
2040 break;
2041 pos = ex[i].start + ex[i].size;
2042 i++;
2043 } while (ex[i-1].size);
2044
2045 free(ex);
2046 if (esize < blocks)
2047 return;
2048
2049 ddf->currentdev = dk->raid_disk;
2050 vc->phys_refnum[dk->raid_disk] = dl->disk.refnum;
2051 lba_offset[dk->raid_disk] = __cpu_to_be64(pos);
2052
2053 for (i=0; i < ddf->max_part ; i++)
2054 if (dl->vlist[i] == NULL)
2055 break;
2056 if (i == ddf->max_part)
2057 return;
2058 dl->vlist[i] = ddf->currentconf;
2059
2060 if (fd >= 0)
2061 dl->fd = fd;
2062 if (devname)
2063 dl->devname = devname;
2064
2065 /* Check how many working raid_disks, and if we can mark
2066 * array as optimal yet
2067 */
2068 working = 0;
2069
2070 for (i=0; i < __be16_to_cpu(vc->prim_elmnt_count); i++)
2071 if (vc->phys_refnum[i] != 0xffffffff)
2072 working++;
2073
2074 /* Find which virtual_entry */
2075 i = ddf->currentconf->vcnum;
2076 if (working == __be16_to_cpu(vc->prim_elmnt_count))
2077 ddf->virt->entries[i].state =
2078 (ddf->virt->entries[i].state & ~DDF_state_mask)
2079 | DDF_state_optimal;
2080
2081 if (vc->prl == DDF_RAID6 &&
2082 working+1 == __be16_to_cpu(vc->prim_elmnt_count))
2083 ddf->virt->entries[i].state =
2084 (ddf->virt->entries[i].state & ~DDF_state_mask)
2085 | DDF_state_part_optimal;
2086
2087 ddf->phys->entries[dl->pdnum].type &= ~__cpu_to_be16(DDF_Global_Spare);
2088 ddf->phys->entries[dl->pdnum].type |= __cpu_to_be16(DDF_Active_in_VD);
2089 ddf->updates_pending = 1;
2090 }
2091
2092 /* add a device to a container, either while creating it or while
2093 * expanding a pre-existing container
2094 */
2095 static int add_to_super_ddf(struct supertype *st,
2096 mdu_disk_info_t *dk, int fd, char *devname)
2097 {
2098 struct ddf_super *ddf = st->sb;
2099 struct dl *dd;
2100 time_t now;
2101 struct tm *tm;
2102 unsigned long long size;
2103 struct phys_disk_entry *pde;
2104 int n, i;
2105 struct stat stb;
2106
2107 if (ddf->currentconf) {
2108 add_to_super_ddf_bvd(st, dk, fd, devname);
2109 return 0;
2110 }
2111
2112 /* This is device numbered dk->number. We need to create
2113 * a phys_disk entry and a more detailed disk_data entry.
2114 */
2115 fstat(fd, &stb);
2116 if (posix_memalign((void**)&dd, 512,
2117 sizeof(*dd) + sizeof(dd->vlist[0]) * ddf->max_part) != 0) {
2118 fprintf(stderr, Name
2119 ": %s could allocate buffer for new disk, aborting\n",
2120 __func__);
2121 return 1;
2122 }
2123 dd->major = major(stb.st_rdev);
2124 dd->minor = minor(stb.st_rdev);
2125 dd->devname = devname;
2126 dd->fd = fd;
2127 dd->spare = NULL;
2128
2129 dd->disk.magic = DDF_PHYS_DATA_MAGIC;
2130 now = time(0);
2131 tm = localtime(&now);
2132 sprintf(dd->disk.guid, "%8s%04d%02d%02d",
2133 T10, tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
2134 *(__u32*)(dd->disk.guid + 16) = random();
2135 *(__u32*)(dd->disk.guid + 20) = random();
2136
2137 do {
2138 /* Cannot be bothered finding a CRC of some irrelevant details*/
2139 dd->disk.refnum = random();
2140 for (i = __be16_to_cpu(ddf->active->max_pd_entries) - 1;
2141 i >= 0; i--)
2142 if (ddf->phys->entries[i].refnum == dd->disk.refnum)
2143 break;
2144 } while (i >= 0);
2145
2146 dd->disk.forced_ref = 1;
2147 dd->disk.forced_guid = 1;
2148 memset(dd->disk.vendor, ' ', 32);
2149 memcpy(dd->disk.vendor, "Linux", 5);
2150 memset(dd->disk.pad, 0xff, 442);
2151 for (i = 0; i < ddf->max_part ; i++)
2152 dd->vlist[i] = NULL;
2153
2154 n = __be16_to_cpu(ddf->phys->used_pdes);
2155 pde = &ddf->phys->entries[n];
2156 dd->pdnum = n;
2157
2158 if (st->update_tail) {
2159 int len = (sizeof(struct phys_disk) +
2160 sizeof(struct phys_disk_entry));
2161 struct phys_disk *pd;
2162
2163 pd = malloc(len);
2164 pd->magic = DDF_PHYS_RECORDS_MAGIC;
2165 pd->used_pdes = __cpu_to_be16(n);
2166 pde = &pd->entries[0];
2167 dd->mdupdate = pd;
2168 } else {
2169 n++;
2170 ddf->phys->used_pdes = __cpu_to_be16(n);
2171 }
2172
2173 memcpy(pde->guid, dd->disk.guid, DDF_GUID_LEN);
2174 pde->refnum = dd->disk.refnum;
2175 pde->type = __cpu_to_be16(DDF_Forced_PD_GUID | DDF_Global_Spare);
2176 pde->state = __cpu_to_be16(DDF_Online);
2177 get_dev_size(fd, NULL, &size);
2178 /* We are required to reserve 32Meg, and record the size in sectors */
2179 pde->config_size = __cpu_to_be64( (size - 32*1024*1024) / 512);
2180 sprintf(pde->path, "%17.17s","Information: nil") ;
2181 memset(pde->pad, 0xff, 6);
2182
2183 dd->size = size >> 9;
2184 if (st->update_tail) {
2185 dd->next = ddf->add_list;
2186 ddf->add_list = dd;
2187 } else {
2188 dd->next = ddf->dlist;
2189 ddf->dlist = dd;
2190 ddf->updates_pending = 1;
2191 }
2192
2193 return 0;
2194 }
2195
2196 /*
2197 * This is the write_init_super method for a ddf container. It is
2198 * called when creating a container or adding another device to a
2199 * container.
2200 */
2201
2202 static unsigned char null_conf[4096+512];
2203
2204 static int __write_init_super_ddf(struct supertype *st, int do_close)
2205 {
2206
2207 struct ddf_super *ddf = st->sb;
2208 int i;
2209 struct dl *d;
2210 int n_config;
2211 int conf_size;
2212 int attempts = 0;
2213 int successes = 0;
2214 unsigned long long size, sector;
2215
2216 /* try to write updated metadata,
2217 * if we catch a failure move on to the next disk
2218 */
2219 for (d = ddf->dlist; d; d=d->next) {
2220 int fd = d->fd;
2221
2222 if (fd < 0)
2223 continue;
2224
2225 attempts++;
2226 /* We need to fill in the primary, (secondary) and workspace
2227 * lba's in the headers, set their checksums,
2228 * Also checksum phys, virt....
2229 *
2230 * Then write everything out, finally the anchor is written.
2231 */
2232 get_dev_size(fd, NULL, &size);
2233 size /= 512;
2234 ddf->anchor.workspace_lba = __cpu_to_be64(size - 32*1024*2);
2235 ddf->anchor.primary_lba = __cpu_to_be64(size - 16*1024*2);
2236 ddf->anchor.seq = __cpu_to_be32(1);
2237 memcpy(&ddf->primary, &ddf->anchor, 512);
2238 memcpy(&ddf->secondary, &ddf->anchor, 512);
2239
2240 ddf->anchor.openflag = 0xFF; /* 'open' means nothing */
2241 ddf->anchor.seq = 0xFFFFFFFF; /* no sequencing in anchor */
2242 ddf->anchor.crc = calc_crc(&ddf->anchor, 512);
2243
2244 ddf->primary.openflag = 0;
2245 ddf->primary.type = DDF_HEADER_PRIMARY;
2246
2247 ddf->secondary.openflag = 0;
2248 ddf->secondary.type = DDF_HEADER_SECONDARY;
2249
2250 ddf->primary.crc = calc_crc(&ddf->primary, 512);
2251 ddf->secondary.crc = calc_crc(&ddf->secondary, 512);
2252
2253 sector = size - 16*1024*2;
2254 lseek64(fd, sector<<9, 0);
2255 if (write(fd, &ddf->primary, 512) < 0)
2256 continue;
2257
2258 ddf->controller.crc = calc_crc(&ddf->controller, 512);
2259 if (write(fd, &ddf->controller, 512) < 0)
2260 continue;
2261
2262 ddf->phys->crc = calc_crc(ddf->phys, ddf->pdsize);
2263
2264 if (write(fd, ddf->phys, ddf->pdsize) < 0)
2265 continue;
2266
2267 ddf->virt->crc = calc_crc(ddf->virt, ddf->vdsize);
2268 if (write(fd, ddf->virt, ddf->vdsize) < 0)
2269 continue;
2270
2271 /* Now write lots of config records. */
2272 n_config = ddf->max_part;
2273 conf_size = ddf->conf_rec_len * 512;
2274 for (i = 0 ; i <= n_config ; i++) {
2275 struct vcl *c = d->vlist[i];
2276 if (i == n_config)
2277 c = (struct vcl*)d->spare;
2278
2279 if (c) {
2280 c->conf.crc = calc_crc(&c->conf, conf_size);
2281 if (write(fd, &c->conf, conf_size) < 0)
2282 break;
2283 } else {
2284 char *null_aligned = (char*)((((unsigned long)null_conf)+511)&~511UL);
2285 if (null_conf[0] != 0xff)
2286 memset(null_conf, 0xff, sizeof(null_conf));
2287 int togo = conf_size;
2288 while (togo > sizeof(null_conf)-512) {
2289 if (write(fd, null_aligned, sizeof(null_conf)-512) < 0)
2290 break;
2291 togo -= sizeof(null_conf)-512;
2292 }
2293 if (write(fd, null_aligned, togo) < 0)
2294 break;
2295 }
2296 }
2297 if (i <= n_config)
2298 continue;
2299 d->disk.crc = calc_crc(&d->disk, 512);
2300 if (write(fd, &d->disk, 512) < 0)
2301 continue;
2302
2303 /* Maybe do the same for secondary */
2304
2305 lseek64(fd, (size-1)*512, SEEK_SET);
2306 if (write(fd, &ddf->anchor, 512) < 0)
2307 continue;
2308 successes++;
2309 }
2310
2311 if (do_close)
2312 for (d = ddf->dlist; d; d=d->next) {
2313 close(d->fd);
2314 d->fd = -1;
2315 }
2316
2317 return attempts != successes;
2318 }
2319
2320 static int write_init_super_ddf(struct supertype *st)
2321 {
2322
2323 if (st->update_tail) {
2324 /* queue the virtual_disk and vd_config as metadata updates */
2325 struct virtual_disk *vd;
2326 struct vd_config *vc;
2327 struct ddf_super *ddf = st->sb;
2328 int len;
2329
2330 if (!ddf->currentconf) {
2331 int len = (sizeof(struct phys_disk) +
2332 sizeof(struct phys_disk_entry));
2333
2334 /* adding a disk to the container. */
2335 if (!ddf->add_list)
2336 return 0;
2337
2338 append_metadata_update(st, ddf->add_list->mdupdate, len);
2339 ddf->add_list->mdupdate = NULL;
2340 return 0;
2341 }
2342
2343 /* Newly created VD */
2344
2345 /* First the virtual disk. We have a slightly fake header */
2346 len = sizeof(struct virtual_disk) + sizeof(struct virtual_entry);
2347 vd = malloc(len);
2348 *vd = *ddf->virt;
2349 vd->entries[0] = ddf->virt->entries[ddf->currentconf->vcnum];
2350 vd->populated_vdes = __cpu_to_be16(ddf->currentconf->vcnum);
2351 append_metadata_update(st, vd, len);
2352
2353 /* Then the vd_config */
2354 len = ddf->conf_rec_len * 512;
2355 vc = malloc(len);
2356 memcpy(vc, &ddf->currentconf->conf, len);
2357 append_metadata_update(st, vc, len);
2358
2359 /* FIXME I need to close the fds! */
2360 return 0;
2361 } else
2362 return __write_init_super_ddf(st, 1);
2363 }
2364
2365 #endif
2366
2367 static __u64 avail_size_ddf(struct supertype *st, __u64 devsize)
2368 {
2369 /* We must reserve the last 32Meg */
2370 if (devsize <= 32*1024*2)
2371 return 0;
2372 return devsize - 32*1024*2;
2373 }
2374
2375 #ifndef MDASSEMBLE
2376
2377 static int reserve_space(struct supertype *st, int raiddisks,
2378 unsigned long long size, int chunk,
2379 unsigned long long *freesize)
2380 {
2381 /* Find 'raiddisks' spare extents at least 'size' big (but
2382 * only caring about multiples of 'chunk') and remember
2383 * them.
2384 * If the cannot be found, fail.
2385 */
2386 struct dl *dl;
2387 struct ddf_super *ddf = st->sb;
2388 int cnt = 0;
2389
2390 for (dl = ddf->dlist; dl ; dl=dl->next) {
2391 dl->raiddisk = -1;
2392 dl->esize = 0;
2393 }
2394 /* Now find largest extent on each device */
2395 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2396 struct extent *e = get_extents(ddf, dl);
2397 unsigned long long pos = 0;
2398 int i = 0;
2399 int found = 0;
2400 unsigned long long minsize = size;
2401
2402 if (size == 0)
2403 minsize = chunk;
2404
2405 if (!e)
2406 continue;
2407 do {
2408 unsigned long long esize;
2409 esize = e[i].start - pos;
2410 if (esize >= minsize) {
2411 found = 1;
2412 minsize = esize;
2413 }
2414 pos = e[i].start + e[i].size;
2415 i++;
2416 } while (e[i-1].size);
2417 if (found) {
2418 cnt++;
2419 dl->esize = minsize;
2420 }
2421 free(e);
2422 }
2423 if (cnt < raiddisks) {
2424 fprintf(stderr, Name ": not enough devices with space to create array.\n");
2425 return 0; /* No enough free spaces large enough */
2426 }
2427 if (size == 0) {
2428 /* choose the largest size of which there are at least 'raiddisk' */
2429 for (dl = ddf->dlist ; dl ; dl=dl->next) {
2430 struct dl *dl2;
2431 if (dl->esize <= size)
2432 continue;
2433 /* This is bigger than 'size', see if there are enough */
2434 cnt = 0;
2435 for (dl2 = dl; dl2 ; dl2=dl2->next)
2436 if (dl2->esize >= dl->esize)
2437 cnt++;
2438 if (cnt >= raiddisks)
2439 size = dl->esize;
2440 }
2441 if (chunk) {
2442 size = size / chunk;
2443 size *= chunk;
2444 }
2445 *freesize = size;
2446 if (size < 32) {
2447 fprintf(stderr, Name ": not enough spare devices to create array.\n");
2448 return 0;
2449 }
2450 }
2451 /* We have a 'size' of which there are enough spaces.
2452 * We simply do a first-fit */
2453 cnt = 0;
2454 for (dl = ddf->dlist ; dl && cnt < raiddisks ; dl=dl->next) {
2455 if (dl->esize < size)
2456 continue;
2457
2458 dl->raiddisk = cnt;
2459 cnt++;
2460 }
2461 return 1;
2462 }
2463
2464
2465
2466 static int
2467 validate_geometry_ddf_container(struct supertype *st,
2468 int level, int layout, int raiddisks,
2469 int chunk, unsigned long long size,
2470 char *dev, unsigned long long *freesize,
2471 int verbose);
2472
2473 static int validate_geometry_ddf_bvd(struct supertype *st,
2474 int level, int layout, int raiddisks,
2475 int chunk, unsigned long long size,
2476 char *dev, unsigned long long *freesize,
2477 int verbose);
2478
2479 static int validate_geometry_ddf(struct supertype *st,
2480 int level, int layout, int raiddisks,
2481 int chunk, unsigned long long size,
2482 char *dev, unsigned long long *freesize,
2483 int verbose)
2484 {
2485 int fd;
2486 struct mdinfo *sra;
2487 int cfd;
2488
2489 /* ddf potentially supports lots of things, but it depends on
2490 * what devices are offered (and maybe kernel version?)
2491 * If given unused devices, we will make a container.
2492 * If given devices in a container, we will make a BVD.
2493 * If given BVDs, we make an SVD, changing all the GUIDs in the process.
2494 */
2495
2496 if (level == LEVEL_CONTAINER) {
2497 /* Must be a fresh device to add to a container */
2498 return validate_geometry_ddf_container(st, level, layout,
2499 raiddisks, chunk,
2500 size, dev, freesize,
2501 verbose);
2502 }
2503
2504 if (!dev) {
2505 /* Initial sanity check. Exclude illegal levels. */
2506 int i;
2507 for (i=0; ddf_level_num[i].num1 != MAXINT; i++)
2508 if (ddf_level_num[i].num2 == level)
2509 break;
2510 if (ddf_level_num[i].num1 == MAXINT)
2511 return 0;
2512 /* Should check layout? etc */
2513
2514 if (st->sb && freesize) {
2515 /* --create was given a container to create in.
2516 * So we need to check that there are enough
2517 * free spaces and return the amount of space.
2518 * We may as well remember which drives were
2519 * chosen so that add_to_super/getinfo_super
2520 * can return them.
2521 */
2522 return reserve_space(st, raiddisks, size, chunk, freesize);
2523 }
2524 return 1;
2525 }
2526
2527 if (st->sb) {
2528 /* A container has already been opened, so we are
2529 * creating in there. Maybe a BVD, maybe an SVD.
2530 * Should make a distinction one day.
2531 */
2532 return validate_geometry_ddf_bvd(st, level, layout, raiddisks,
2533 chunk, size, dev, freesize,
2534 verbose);
2535 }
2536 /* This is the first device for the array.
2537 * If it is a container, we read it in and do automagic allocations,
2538 * no other devices should be given.
2539 * Otherwise it must be a member device of a container, and we
2540 * do manual allocation.
2541 * Later we should check for a BVD and make an SVD.
2542 */
2543 fd = open(dev, O_RDONLY|O_EXCL, 0);
2544 if (fd >= 0) {
2545 sra = sysfs_read(fd, 0, GET_VERSION);
2546 close(fd);
2547 if (sra && sra->array.major_version == -1 &&
2548 strcmp(sra->text_version, "ddf") == 0) {
2549
2550 /* load super */
2551 /* find space for 'n' devices. */
2552 /* remember the devices */
2553 /* Somehow return the fact that we have enough */
2554 }
2555
2556 if (verbose)
2557 fprintf(stderr,
2558 Name ": ddf: Cannot create this array "
2559 "on device %s\n",
2560 dev);
2561 return 0;
2562 }
2563 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2564 if (verbose)
2565 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2566 dev, strerror(errno));
2567 return 0;
2568 }
2569 /* Well, it is in use by someone, maybe a 'ddf' container. */
2570 cfd = open_container(fd);
2571 if (cfd < 0) {
2572 close(fd);
2573 if (verbose)
2574 fprintf(stderr, Name ": ddf: Cannot use %s: %s\n",
2575 dev, strerror(EBUSY));
2576 return 0;
2577 }
2578 sra = sysfs_read(cfd, 0, GET_VERSION);
2579 close(fd);
2580 if (sra && sra->array.major_version == -1 &&
2581 strcmp(sra->text_version, "ddf") == 0) {
2582 /* This is a member of a ddf container. Load the container
2583 * and try to create a bvd
2584 */
2585 struct ddf_super *ddf;
2586 if (load_super_ddf_all(st, cfd, (void **)&ddf, NULL, 1) == 0) {
2587 st->sb = ddf;
2588 st->container_dev = fd2devnum(cfd);
2589 close(cfd);
2590 return validate_geometry_ddf_bvd(st, level, layout,
2591 raiddisks, chunk, size,
2592 dev, freesize,
2593 verbose);
2594 }
2595 close(cfd);
2596 } else /* device may belong to a different container */
2597 return 0;
2598
2599 return 1;
2600 }
2601
2602 static int
2603 validate_geometry_ddf_container(struct supertype *st,
2604 int level, int layout, int raiddisks,
2605 int chunk, unsigned long long size,
2606 char *dev, unsigned long long *freesize,
2607 int verbose)
2608 {
2609 int fd;
2610 unsigned long long ldsize;
2611
2612 if (level != LEVEL_CONTAINER)
2613 return 0;
2614 if (!dev)
2615 return 1;
2616
2617 fd = open(dev, O_RDONLY|O_EXCL, 0);
2618 if (fd < 0) {
2619 if (verbose)
2620 fprintf(stderr, Name ": ddf: Cannot open %s: %s\n",
2621 dev, strerror(errno));
2622 return 0;
2623 }
2624 if (!get_dev_size(fd, dev, &ldsize)) {
2625 close(fd);
2626 return 0;
2627 }
2628 close(fd);
2629
2630 *freesize = avail_size_ddf(st, ldsize >> 9);
2631
2632 return 1;
2633 }
2634
2635 static int validate_geometry_ddf_bvd(struct supertype *st,
2636 int level, int layout, int raiddisks,
2637 int chunk, unsigned long long size,
2638 char *dev, unsigned long long *freesize,
2639 int verbose)
2640 {
2641 struct stat stb;
2642 struct ddf_super *ddf = st->sb;
2643 struct dl *dl;
2644 unsigned long long pos = 0;
2645 unsigned long long maxsize;
2646 struct extent *e;
2647 int i;
2648 /* ddf/bvd supports lots of things, but not containers */
2649 if (level == LEVEL_CONTAINER)
2650 return 0;
2651 /* We must have the container info already read in. */
2652 if (!ddf)
2653 return 0;
2654
2655 if (!dev) {
2656 /* General test: make sure there is space for
2657 * 'raiddisks' device extents of size 'size'.
2658 */
2659 unsigned long long minsize = size;
2660 int dcnt = 0;
2661 if (minsize == 0)
2662 minsize = 8;
2663 for (dl = ddf->dlist; dl ; dl = dl->next)
2664 {
2665 int found = 0;
2666 pos = 0;
2667
2668 i = 0;
2669 e = get_extents(ddf, dl);
2670 if (!e) continue;
2671 do {
2672 unsigned long long esize;
2673 esize = e[i].start - pos;
2674 if (esize >= minsize)
2675 found = 1;
2676 pos = e[i].start + e[i].size;
2677 i++;
2678 } while (e[i-1].size);
2679 if (found)
2680 dcnt++;
2681 free(e);
2682 }
2683 if (dcnt < raiddisks) {
2684 if (verbose)
2685 fprintf(stderr,
2686 Name ": ddf: Not enough devices with "
2687 "space for this array (%d < %d)\n",
2688 dcnt, raiddisks);
2689 return 0;
2690 }
2691 return 1;
2692 }
2693 /* This device must be a member of the set */
2694 if (stat(dev, &stb) < 0)
2695 return 0;
2696 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2697 return 0;
2698 for (dl = ddf->dlist ; dl ; dl = dl->next) {
2699 if (dl->major == major(stb.st_rdev) &&
2700 dl->minor == minor(stb.st_rdev))
2701 break;
2702 }
2703 if (!dl) {
2704 if (verbose)
2705 fprintf(stderr, Name ": ddf: %s is not in the "
2706 "same DDF set\n",
2707 dev);
2708 return 0;
2709 }
2710 e = get_extents(ddf, dl);
2711 maxsize = 0;
2712 i = 0;
2713 if (e) do {
2714 unsigned long long esize;
2715 esize = e[i].start - pos;
2716 if (esize >= maxsize)
2717 maxsize = esize;
2718 pos = e[i].start + e[i].size;
2719 i++;
2720 } while (e[i-1].size);
2721 *freesize = maxsize;
2722 // FIXME here I am
2723
2724 return 1;
2725 }
2726
2727 static int load_super_ddf_all(struct supertype *st, int fd,
2728 void **sbp, char *devname, int keep_fd)
2729 {
2730 struct mdinfo *sra;
2731 struct ddf_super *super;
2732 struct mdinfo *sd, *best = NULL;
2733 int bestseq = 0;
2734 int seq;
2735 char nm[20];
2736 int dfd;
2737 int devnum = fd2devnum(fd);
2738 enum sysfs_read_flags flags;
2739
2740 flags = GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE;
2741 if (mdmon_running(devnum))
2742 flags |= SKIP_GONE_DEVS;
2743
2744 sra = sysfs_read(fd, 0, flags);
2745 if (!sra)
2746 return 1;
2747 if (sra->array.major_version != -1 ||
2748 sra->array.minor_version != -2 ||
2749 strcmp(sra->text_version, "ddf") != 0)
2750 return 1;
2751
2752 if (posix_memalign((void**)&super, 512, sizeof(*super)) != 0)
2753 return 1;
2754 memset(super, 0, sizeof(*super));
2755
2756 /* first, try each device, and choose the best ddf */
2757 for (sd = sra->devs ; sd ; sd = sd->next) {
2758 int rv;
2759 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2760 dfd = dev_open(nm, O_RDONLY);
2761 if (dfd < 0)
2762 return 2;
2763 rv = load_ddf_headers(dfd, super, NULL);
2764 close(dfd);
2765 if (rv == 0) {
2766 seq = __be32_to_cpu(super->active->seq);
2767 if (super->active->openflag)
2768 seq--;
2769 if (!best || seq > bestseq) {
2770 bestseq = seq;
2771 best = sd;
2772 }
2773 }
2774 }
2775 if (!best)
2776 return 1;
2777 /* OK, load this ddf */
2778 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2779 dfd = dev_open(nm, O_RDONLY);
2780 if (dfd < 0)
2781 return 1;
2782 load_ddf_headers(dfd, super, NULL);
2783 load_ddf_global(dfd, super, NULL);
2784 close(dfd);
2785 /* Now we need the device-local bits */
2786 for (sd = sra->devs ; sd ; sd = sd->next) {
2787 int rv;
2788
2789 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2790 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2791 if (dfd < 0)
2792 return 2;
2793 rv = load_ddf_headers(dfd, super, NULL);
2794 if (rv == 0)
2795 rv = load_ddf_local(dfd, super, NULL, keep_fd);
2796 if (!keep_fd) close(dfd);
2797 if (rv)
2798 return 1;
2799 }
2800 if (st->subarray[0]) {
2801 struct vcl *v;
2802
2803 for (v = super->conflist; v; v = v->next)
2804 if (v->vcnum == atoi(st->subarray))
2805 super->currentconf = v;
2806 if (!super->currentconf)
2807 return 1;
2808 }
2809 *sbp = super;
2810 if (st->ss == NULL) {
2811 st->ss = &super_ddf;
2812 st->minor_version = 0;
2813 st->max_devs = 512;
2814 st->container_dev = fd2devnum(fd);
2815 }
2816 st->loaded_container = 1;
2817 return 0;
2818 }
2819 #endif /* MDASSEMBLE */
2820
2821 static struct mdinfo *container_content_ddf(struct supertype *st)
2822 {
2823 /* Given a container loaded by load_super_ddf_all,
2824 * extract information about all the arrays into
2825 * an mdinfo tree.
2826 *
2827 * For each vcl in conflist: create an mdinfo, fill it in,
2828 * then look for matching devices (phys_refnum) in dlist
2829 * and create appropriate device mdinfo.
2830 */
2831 struct ddf_super *ddf = st->sb;
2832 struct mdinfo *rest = NULL;
2833 struct vcl *vc;
2834
2835 for (vc = ddf->conflist ; vc ; vc=vc->next)
2836 {
2837 int i;
2838 int j;
2839 struct mdinfo *this;
2840 this = malloc(sizeof(*this));
2841 memset(this, 0, sizeof(*this));
2842 this->next = rest;
2843 rest = this;
2844
2845 this->array.level = map_num1(ddf_level_num, vc->conf.prl);
2846 this->array.raid_disks =
2847 __be16_to_cpu(vc->conf.prim_elmnt_count);
2848 this->array.layout = rlq_to_layout(vc->conf.rlq, vc->conf.prl,
2849 this->array.raid_disks);
2850 this->array.md_minor = -1;
2851 this->array.major_version = -1;
2852 this->array.minor_version = -2;
2853 this->array.ctime = DECADE +
2854 __be32_to_cpu(*(__u32*)(vc->conf.guid+16));
2855 this->array.utime = DECADE +
2856 __be32_to_cpu(vc->conf.timestamp);
2857 this->array.chunk_size = 512 << vc->conf.chunk_shift;
2858
2859 i = vc->vcnum;
2860 if ((ddf->virt->entries[i].state & DDF_state_inconsistent) ||
2861 (ddf->virt->entries[i].init_state & DDF_initstate_mask) !=
2862 DDF_init_full) {
2863 this->array.state = 0;
2864 this->resync_start = 0;
2865 } else {
2866 this->array.state = 1;
2867 this->resync_start = ~0ULL;
2868 }
2869 memcpy(this->name, ddf->virt->entries[i].name, 16);
2870 this->name[16]=0;
2871 for(j=0; j<16; j++)
2872 if (this->name[j] == ' ')
2873 this->name[j] = 0;
2874
2875 memset(this->uuid, 0, sizeof(this->uuid));
2876 this->component_size = __be64_to_cpu(vc->conf.blocks);
2877 this->array.size = this->component_size / 2;
2878 this->container_member = i;
2879
2880 ddf->currentconf = vc;
2881 uuid_from_super_ddf(st, this->uuid);
2882 ddf->currentconf = NULL;
2883
2884 sprintf(this->text_version, "/%s/%d",
2885 devnum2devname(st->container_dev),
2886 this->container_member);
2887
2888 for (i=0 ; i < ddf->mppe ; i++) {
2889 struct mdinfo *dev;
2890 struct dl *d;
2891
2892 if (vc->conf.phys_refnum[i] == 0xFFFFFFFF)
2893 continue;
2894
2895 this->array.working_disks++;
2896
2897 for (d = ddf->dlist; d ; d=d->next)
2898 if (d->disk.refnum == vc->conf.phys_refnum[i])
2899 break;
2900 if (d == NULL)
2901 break;
2902
2903 dev = malloc(sizeof(*dev));
2904 memset(dev, 0, sizeof(*dev));
2905 dev->next = this->devs;
2906 this->devs = dev;
2907
2908 dev->disk.number = __be32_to_cpu(d->disk.refnum);
2909 dev->disk.major = d->major;
2910 dev->disk.minor = d->minor;
2911 dev->disk.raid_disk = i;
2912 dev->disk.state = (1<<MD_DISK_SYNC)|(1<<MD_DISK_ACTIVE);
2913
2914 dev->events = __be32_to_cpu(ddf->primary.seq);
2915 dev->data_offset = __be64_to_cpu(vc->lba_offset[i]);
2916 dev->component_size = __be64_to_cpu(vc->conf.blocks);
2917 if (d->devname)
2918 strcpy(dev->name, d->devname);
2919 }
2920 }
2921 return rest;
2922 }
2923
2924 static int store_zero_ddf(struct supertype *st, int fd)
2925 {
2926 unsigned long long dsize;
2927 void *buf;
2928 int rc;
2929
2930 if (!get_dev_size(fd, NULL, &dsize))
2931 return 1;
2932
2933 if (posix_memalign(&buf, 512, 512) != 0)
2934 return 1;
2935 memset(buf, 0, 512);
2936
2937 lseek64(fd, dsize-512, 0);
2938 rc = write(fd, buf, 512);
2939 free(buf);
2940 if (rc < 0)
2941 return 1;
2942 return 0;
2943 }
2944
2945 static int compare_super_ddf(struct supertype *st, struct supertype *tst)
2946 {
2947 /*
2948 * return:
2949 * 0 same, or first was empty, and second was copied
2950 * 1 second had wrong number
2951 * 2 wrong uuid
2952 * 3 wrong other info
2953 */
2954 struct ddf_super *first = st->sb;
2955 struct ddf_super *second = tst->sb;
2956
2957 if (!first) {
2958 st->sb = tst->sb;
2959 tst->sb = NULL;
2960 return 0;
2961 }
2962
2963 if (memcmp(first->anchor.guid, second->anchor.guid, DDF_GUID_LEN) != 0)
2964 return 2;
2965
2966 /* FIXME should I look at anything else? */
2967 return 0;
2968 }
2969
2970 #ifndef MDASSEMBLE
2971 /*
2972 * A new array 'a' has been started which claims to be instance 'inst'
2973 * within container 'c'.
2974 * We need to confirm that the array matches the metadata in 'c' so
2975 * that we don't corrupt any metadata.
2976 */
2977 static int ddf_open_new(struct supertype *c, struct active_array *a, char *inst)
2978 {
2979 dprintf("ddf: open_new %s\n", inst);
2980 a->info.container_member = atoi(inst);
2981 return 0;
2982 }
2983
2984 /*
2985 * The array 'a' is to be marked clean in the metadata.
2986 * If '->resync_start' is not ~(unsigned long long)0, then the array is only
2987 * clean up to the point (in sectors). If that cannot be recorded in the
2988 * metadata, then leave it as dirty.
2989 *
2990 * For DDF, we need to clear the DDF_state_inconsistent bit in the
2991 * !global! virtual_disk.virtual_entry structure.
2992 */
2993 static int ddf_set_array_state(struct active_array *a, int consistent)
2994 {
2995 struct ddf_super *ddf = a->container->sb;
2996 int inst = a->info.container_member;
2997 int old = ddf->virt->entries[inst].state;
2998 if (consistent == 2) {
2999 /* Should check if a recovery should be started FIXME */
3000 consistent = 1;
3001 if (!is_resync_complete(a))
3002 consistent = 0;
3003 }
3004 if (consistent)
3005 ddf->virt->entries[inst].state &= ~DDF_state_inconsistent;
3006 else
3007 ddf->virt->entries[inst].state |= DDF_state_inconsistent;
3008 if (old != ddf->virt->entries[inst].state)
3009 ddf->updates_pending = 1;
3010
3011 old = ddf->virt->entries[inst].init_state;
3012 ddf->virt->entries[inst].init_state &= ~DDF_initstate_mask;
3013 if (is_resync_complete(a))
3014 ddf->virt->entries[inst].init_state |= DDF_init_full;
3015 else if (a->resync_start == 0)
3016 ddf->virt->entries[inst].init_state |= DDF_init_not;
3017 else
3018 ddf->virt->entries[inst].init_state |= DDF_init_quick;
3019 if (old != ddf->virt->entries[inst].init_state)
3020 ddf->updates_pending = 1;
3021
3022 dprintf("ddf mark %d %s %llu\n", inst, consistent?"clean":"dirty",
3023 a->resync_start);
3024 return consistent;
3025 }
3026
3027 /*
3028 * The state of each disk is stored in the global phys_disk structure
3029 * in phys_disk.entries[n].state.
3030 * This makes various combinations awkward.
3031 * - When a device fails in any array, it must be failed in all arrays
3032 * that include a part of this device.
3033 * - When a component is rebuilding, we cannot include it officially in the
3034 * array unless this is the only array that uses the device.
3035 *
3036 * So: when transitioning:
3037 * Online -> failed, just set failed flag. monitor will propagate
3038 * spare -> online, the device might need to be added to the array.
3039 * spare -> failed, just set failed. Don't worry if in array or not.
3040 */
3041 static void ddf_set_disk(struct active_array *a, int n, int state)
3042 {
3043 struct ddf_super *ddf = a->container->sb;
3044 int inst = a->info.container_member;
3045 struct vd_config *vc = find_vdcr(ddf, inst);
3046 int pd = find_phys(ddf, vc->phys_refnum[n]);
3047 int i, st, working;
3048
3049 if (vc == NULL) {
3050 dprintf("ddf: cannot find instance %d!!\n", inst);
3051 return;
3052 }
3053 if (pd < 0) {
3054 /* disk doesn't currently exist. If it is now in_sync,
3055 * insert it. */
3056 if ((state & DS_INSYNC) && ! (state & DS_FAULTY)) {
3057 /* Find dev 'n' in a->info->devs, determine the
3058 * ddf refnum, and set vc->phys_refnum and update
3059 * phys->entries[]
3060 */
3061 /* FIXME */
3062 }
3063 } else {
3064 int old = ddf->phys->entries[pd].state;
3065 if (state & DS_FAULTY)
3066 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Failed);
3067 if (state & DS_INSYNC) {
3068 ddf->phys->entries[pd].state |= __cpu_to_be16(DDF_Online);
3069 ddf->phys->entries[pd].state &= __cpu_to_be16(~DDF_Rebuilding);
3070 }
3071 if (old != ddf->phys->entries[pd].state)
3072 ddf->updates_pending = 1;
3073 }
3074
3075 dprintf("ddf: set_disk %d to %x\n", n, state);
3076
3077 /* Now we need to check the state of the array and update
3078 * virtual_disk.entries[n].state.
3079 * It needs to be one of "optimal", "degraded", "failed".
3080 * I don't understand 'deleted' or 'missing'.
3081 */
3082 working = 0;
3083 for (i=0; i < a->info.array.raid_disks; i++) {
3084 pd = find_phys(ddf, vc->phys_refnum[i]);
3085 if (pd < 0)
3086 continue;
3087 st = __be16_to_cpu(ddf->phys->entries[pd].state);
3088 if ((st & (DDF_Online|DDF_Failed|DDF_Rebuilding))
3089 == DDF_Online)
3090 working++;
3091 }
3092 state = DDF_state_degraded;
3093 if (working == a->info.array.raid_disks)
3094 state = DDF_state_optimal;
3095 else switch(vc->prl) {
3096 case DDF_RAID0:
3097 case DDF_CONCAT:
3098 case DDF_JBOD:
3099 state = DDF_state_failed;
3100 break;
3101 case DDF_RAID1:
3102 if (working == 0)
3103 state = DDF_state_failed;
3104 break;
3105 case DDF_RAID4:
3106 case DDF_RAID5:
3107 if (working < a->info.array.raid_disks-1)
3108 state = DDF_state_failed;
3109 break;
3110 case DDF_RAID6:
3111 if (working < a->info.array.raid_disks-2)
3112 state = DDF_state_failed;
3113 else if (working == a->info.array.raid_disks-1)
3114 state = DDF_state_part_optimal;
3115 break;
3116 }
3117
3118 if (ddf->virt->entries[inst].state !=
3119 ((ddf->virt->entries[inst].state & ~DDF_state_mask)
3120 | state)) {
3121
3122 ddf->virt->entries[inst].state =
3123 (ddf->virt->entries[inst].state & ~DDF_state_mask)
3124 | state;
3125 ddf->updates_pending = 1;
3126 }
3127
3128 }
3129
3130 static void ddf_sync_metadata(struct supertype *st)
3131 {
3132
3133 /*
3134 * Write all data to all devices.
3135 * Later, we might be able to track whether only local changes
3136 * have been made, or whether any global data has been changed,
3137 * but ddf is sufficiently weird that it probably always
3138 * changes global data ....
3139 */
3140 struct ddf_super *ddf = st->sb;
3141 if (!ddf->updates_pending)
3142 return;
3143 ddf->updates_pending = 0;
3144 __write_init_super_ddf(st, 0);
3145 dprintf("ddf: sync_metadata\n");
3146 }
3147
3148 static void ddf_process_update(struct supertype *st,
3149 struct metadata_update *update)
3150 {
3151 /* Apply this update to the metadata.
3152 * The first 4 bytes are a DDF_*_MAGIC which guides
3153 * our actions.
3154 * Possible update are:
3155 * DDF_PHYS_RECORDS_MAGIC
3156 * Add a new physical device. Changes to this record
3157 * only happen implicitly.
3158 * used_pdes is the device number.
3159 * DDF_VIRT_RECORDS_MAGIC
3160 * Add a new VD. Possibly also change the 'access' bits.
3161 * populated_vdes is the entry number.
3162 * DDF_VD_CONF_MAGIC
3163 * New or updated VD. the VIRT_RECORD must already
3164 * exist. For an update, phys_refnum and lba_offset
3165 * (at least) are updated, and the VD_CONF must
3166 * be written to precisely those devices listed with
3167 * a phys_refnum.
3168 * DDF_SPARE_ASSIGN_MAGIC
3169 * replacement Spare Assignment Record... but for which device?
3170 *
3171 * So, e.g.:
3172 * - to create a new array, we send a VIRT_RECORD and
3173 * a VD_CONF. Then assemble and start the array.
3174 * - to activate a spare we send a VD_CONF to add the phys_refnum
3175 * and offset. This will also mark the spare as active with
3176 * a spare-assignment record.
3177 */
3178 struct ddf_super *ddf = st->sb;
3179 __u32 *magic = (__u32*)update->buf;
3180 struct phys_disk *pd;
3181 struct virtual_disk *vd;
3182 struct vd_config *vc;
3183 struct vcl *vcl;
3184 struct dl *dl;
3185 int mppe;
3186 int ent;
3187
3188 dprintf("Process update %x\n", *magic);
3189
3190 switch (*magic) {
3191 case DDF_PHYS_RECORDS_MAGIC:
3192
3193 if (update->len != (sizeof(struct phys_disk) +
3194 sizeof(struct phys_disk_entry)))
3195 return;
3196 pd = (struct phys_disk*)update->buf;
3197
3198 ent = __be16_to_cpu(pd->used_pdes);
3199 if (ent >= __be16_to_cpu(ddf->phys->max_pdes))
3200 return;
3201 if (!all_ff(ddf->phys->entries[ent].guid))
3202 return;
3203 ddf->phys->entries[ent] = pd->entries[0];
3204 ddf->phys->used_pdes = __cpu_to_be16(1 +
3205 __be16_to_cpu(ddf->phys->used_pdes));
3206 ddf->updates_pending = 1;
3207 if (ddf->add_list) {
3208 struct active_array *a;
3209 struct dl *al = ddf->add_list;
3210 ddf->add_list = al->next;
3211
3212 al->next = ddf->dlist;
3213 ddf->dlist = al;
3214
3215 /* As a device has been added, we should check
3216 * for any degraded devices that might make
3217 * use of this spare */
3218 for (a = st->arrays ; a; a=a->next)
3219 a->check_degraded = 1;
3220 }
3221 break;
3222
3223 case DDF_VIRT_RECORDS_MAGIC:
3224
3225 if (update->len != (sizeof(struct virtual_disk) +
3226 sizeof(struct virtual_entry)))
3227 return;
3228 vd = (struct virtual_disk*)update->buf;
3229
3230 ent = __be16_to_cpu(vd->populated_vdes);
3231 if (ent >= __be16_to_cpu(ddf->virt->max_vdes))
3232 return;
3233 if (!all_ff(ddf->virt->entries[ent].guid))
3234 return;
3235 ddf->virt->entries[ent] = vd->entries[0];
3236 ddf->virt->populated_vdes = __cpu_to_be16(1 +
3237 __be16_to_cpu(ddf->virt->populated_vdes));
3238 ddf->updates_pending = 1;
3239 break;
3240
3241 case DDF_VD_CONF_MAGIC:
3242 dprintf("len %d %d\n", update->len, ddf->conf_rec_len);
3243
3244 mppe = __be16_to_cpu(ddf->anchor.max_primary_element_entries);
3245 if (update->len != ddf->conf_rec_len * 512)
3246 return;
3247 vc = (struct vd_config*)update->buf;
3248 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3249 if (memcmp(vcl->conf.guid, vc->guid, DDF_GUID_LEN) == 0)
3250 break;
3251 dprintf("vcl = %p\n", vcl);
3252 if (vcl) {
3253 /* An update, just copy the phys_refnum and lba_offset
3254 * fields
3255 */
3256 memcpy(vcl->conf.phys_refnum, vc->phys_refnum,
3257 mppe * (sizeof(__u32) + sizeof(__u64)));
3258 } else {
3259 /* A new VD_CONF */
3260 if (!update->space)
3261 return;
3262 vcl = update->space;
3263 update->space = NULL;
3264 vcl->next = ddf->conflist;
3265 memcpy(&vcl->conf, vc, update->len);
3266 vcl->lba_offset = (__u64*)
3267 &vcl->conf.phys_refnum[mppe];
3268 ddf->conflist = vcl;
3269 }
3270 /* Now make sure vlist is correct for each dl. */
3271 for (dl = ddf->dlist; dl; dl = dl->next) {
3272 int dn;
3273 int vn = 0;
3274 for (vcl = ddf->conflist; vcl ; vcl = vcl->next)
3275 for (dn=0; dn < ddf->mppe ; dn++)
3276 if (vcl->conf.phys_refnum[dn] ==
3277 dl->disk.refnum) {
3278 dprintf("dev %d has %p at %d\n",
3279 dl->pdnum, vcl, vn);
3280 dl->vlist[vn++] = vcl;
3281 break;
3282 }
3283 while (vn < ddf->max_part)
3284 dl->vlist[vn++] = NULL;
3285 if (dl->vlist[0]) {
3286 ddf->phys->entries[dl->pdnum].type &=
3287 ~__cpu_to_be16(DDF_Global_Spare);
3288 ddf->phys->entries[dl->pdnum].type |=
3289 __cpu_to_be16(DDF_Active_in_VD);
3290 }
3291 if (dl->spare) {
3292 ddf->phys->entries[dl->pdnum].type &=
3293 ~__cpu_to_be16(DDF_Global_Spare);
3294 ddf->phys->entries[dl->pdnum].type |=
3295 __cpu_to_be16(DDF_Spare);
3296 }
3297 if (!dl->vlist[0] && !dl->spare) {
3298 ddf->phys->entries[dl->pdnum].type |=
3299 __cpu_to_be16(DDF_Global_Spare);
3300 ddf->phys->entries[dl->pdnum].type &=
3301 ~__cpu_to_be16(DDF_Spare |
3302 DDF_Active_in_VD);
3303 }
3304 }
3305 ddf->updates_pending = 1;
3306 break;
3307 case DDF_SPARE_ASSIGN_MAGIC:
3308 default: break;
3309 }
3310 }
3311
3312 static void ddf_prepare_update(struct supertype *st,
3313 struct metadata_update *update)
3314 {
3315 /* This update arrived at managemon.
3316 * We are about to pass it to monitor.
3317 * If a malloc is needed, do it here.
3318 */
3319 struct ddf_super *ddf = st->sb;
3320 __u32 *magic = (__u32*)update->buf;
3321 if (*magic == DDF_VD_CONF_MAGIC)
3322 if (posix_memalign(&update->space, 512,
3323 offsetof(struct vcl, conf)
3324 + ddf->conf_rec_len * 512) != 0)
3325 update->space = NULL;
3326 }
3327
3328 /*
3329 * Check if the array 'a' is degraded but not failed.
3330 * If it is, find as many spares as are available and needed and
3331 * arrange for their inclusion.
3332 * We only choose devices which are not already in the array,
3333 * and prefer those with a spare-assignment to this array.
3334 * otherwise we choose global spares - assuming always that
3335 * there is enough room.
3336 * For each spare that we assign, we return an 'mdinfo' which
3337 * describes the position for the device in the array.
3338 * We also add to 'updates' a DDF_VD_CONF_MAGIC update with
3339 * the new phys_refnum and lba_offset values.
3340 *
3341 * Only worry about BVDs at the moment.
3342 */
3343 static struct mdinfo *ddf_activate_spare(struct active_array *a,
3344 struct metadata_update **updates)
3345 {
3346 int working = 0;
3347 struct mdinfo *d;
3348 struct ddf_super *ddf = a->container->sb;
3349 int global_ok = 0;
3350 struct mdinfo *rv = NULL;
3351 struct mdinfo *di;
3352 struct metadata_update *mu;
3353 struct dl *dl;
3354 int i;
3355 struct vd_config *vc;
3356 __u64 *lba;
3357
3358 for (d = a->info.devs ; d ; d = d->next) {
3359 if ((d->curr_state & DS_FAULTY) &&
3360 d->state_fd >= 0)
3361 /* wait for Removal to happen */
3362 return NULL;
3363 if (d->state_fd >= 0)
3364 working ++;
3365 }
3366
3367 dprintf("ddf_activate: working=%d (%d) level=%d\n", working, a->info.array.raid_disks,
3368 a->info.array.level);
3369 if (working == a->info.array.raid_disks)
3370 return NULL; /* array not degraded */
3371 switch (a->info.array.level) {
3372 case 1:
3373 if (working == 0)
3374 return NULL; /* failed */
3375 break;
3376 case 4:
3377 case 5:
3378 if (working < a->info.array.raid_disks - 1)
3379 return NULL; /* failed */
3380 break;
3381 case 6:
3382 if (working < a->info.array.raid_disks - 2)
3383 return NULL; /* failed */
3384 break;
3385 default: /* concat or stripe */
3386 return NULL; /* failed */
3387 }
3388
3389 /* For each slot, if it is not working, find a spare */
3390 dl = ddf->dlist;
3391 for (i = 0; i < a->info.array.raid_disks; i++) {
3392 for (d = a->info.devs ; d ; d = d->next)
3393 if (d->disk.raid_disk == i)
3394 break;
3395 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3396 if (d && (d->state_fd >= 0))
3397 continue;
3398
3399 /* OK, this device needs recovery. Find a spare */
3400 again:
3401 for ( ; dl ; dl = dl->next) {
3402 unsigned long long esize;
3403 unsigned long long pos;
3404 struct mdinfo *d2;
3405 int is_global = 0;
3406 int is_dedicated = 0;
3407 struct extent *ex;
3408 int j;
3409 /* If in this array, skip */
3410 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
3411 if (d2->disk.major == dl->major &&
3412 d2->disk.minor == dl->minor) {
3413 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3414 break;
3415 }
3416 if (d2)
3417 continue;
3418 if (ddf->phys->entries[dl->pdnum].type &
3419 __cpu_to_be16(DDF_Spare)) {
3420 /* Check spare assign record */
3421 if (dl->spare) {
3422 if (dl->spare->type & DDF_spare_dedicated) {
3423 /* check spare_ents for guid */
3424 for (j = 0 ;
3425 j < __be16_to_cpu(dl->spare->populated);
3426 j++) {
3427 if (memcmp(dl->spare->spare_ents[j].guid,
3428 ddf->virt->entries[a->info.container_member].guid,
3429 DDF_GUID_LEN) == 0)
3430 is_dedicated = 1;
3431 }
3432 } else
3433 is_global = 1;
3434 }
3435 } else if (ddf->phys->entries[dl->pdnum].type &
3436 __cpu_to_be16(DDF_Global_Spare)) {
3437 is_global = 1;
3438 }
3439 if ( ! (is_dedicated ||
3440 (is_global && global_ok))) {
3441 dprintf("%x:%x not suitable: %d %d\n", dl->major, dl->minor,
3442 is_dedicated, is_global);
3443 continue;
3444 }
3445
3446 /* We are allowed to use this device - is there space?
3447 * We need a->info.component_size sectors */
3448 ex = get_extents(ddf, dl);
3449 if (!ex) {
3450 dprintf("cannot get extents\n");
3451 continue;
3452 }
3453 j = 0; pos = 0;
3454 esize = 0;
3455
3456 do {
3457 esize = ex[j].start - pos;
3458 if (esize >= a->info.component_size)
3459 break;
3460 pos = ex[i].start + ex[i].size;
3461 i++;
3462 } while (ex[i-1].size);
3463
3464 free(ex);
3465 if (esize < a->info.component_size) {
3466 dprintf("%x:%x has no room: %llu %llu\n", dl->major, dl->minor,
3467 esize, a->info.component_size);
3468 /* No room */
3469 continue;
3470 }
3471
3472 /* Cool, we have a device with some space at pos */
3473 di = malloc(sizeof(*di));
3474 if (!di)
3475 continue;
3476 memset(di, 0, sizeof(*di));
3477 di->disk.number = i;
3478 di->disk.raid_disk = i;
3479 di->disk.major = dl->major;
3480 di->disk.minor = dl->minor;
3481 di->disk.state = 0;
3482 di->data_offset = pos;
3483 di->component_size = a->info.component_size;
3484 di->container_member = dl->pdnum;
3485 di->next = rv;
3486 rv = di;
3487 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3488 i, pos);
3489
3490 break;
3491 }
3492 if (!dl && ! global_ok) {
3493 /* not enough dedicated spares, try global */
3494 global_ok = 1;
3495 dl = ddf->dlist;
3496 goto again;
3497 }
3498 }
3499
3500 if (!rv)
3501 /* No spares found */
3502 return rv;
3503 /* Now 'rv' has a list of devices to return.
3504 * Create a metadata_update record to update the
3505 * phys_refnum and lba_offset values
3506 */
3507 mu = malloc(sizeof(*mu));
3508 if (mu && posix_memalign(&mu->space, 512, sizeof(struct vcl)) != 0) {
3509 free(mu);
3510 mu = NULL;
3511 }
3512 if (!mu) {
3513 while (rv) {
3514 struct mdinfo *n = rv->next;
3515
3516 free(rv);
3517 rv = n;
3518 }
3519 return NULL;
3520 }
3521
3522 mu->buf = malloc(ddf->conf_rec_len * 512);
3523 mu->len = ddf->conf_rec_len;
3524 mu->next = *updates;
3525 vc = find_vdcr(ddf, a->info.container_member);
3526 memcpy(mu->buf, vc, ddf->conf_rec_len * 512);
3527
3528 vc = (struct vd_config*)mu->buf;
3529 lba = (__u64*)&vc->phys_refnum[ddf->mppe];
3530 for (di = rv ; di ; di = di->next) {
3531 vc->phys_refnum[di->disk.raid_disk] =
3532 ddf->phys->entries[dl->pdnum].refnum;
3533 lba[di->disk.raid_disk] = di->data_offset;
3534 }
3535 *updates = mu;
3536 return rv;
3537 }
3538 #endif /* MDASSEMBLE */
3539
3540 struct superswitch super_ddf = {
3541 #ifndef MDASSEMBLE
3542 .examine_super = examine_super_ddf,
3543 .brief_examine_super = brief_examine_super_ddf,
3544 .detail_super = detail_super_ddf,
3545 .brief_detail_super = brief_detail_super_ddf,
3546 .validate_geometry = validate_geometry_ddf,
3547 .write_init_super = write_init_super_ddf,
3548 .add_to_super = add_to_super_ddf,
3549 #endif
3550 .match_home = match_home_ddf,
3551 .uuid_from_super= uuid_from_super_ddf,
3552 .getinfo_super = getinfo_super_ddf,
3553 .update_super = update_super_ddf,
3554
3555 .avail_size = avail_size_ddf,
3556
3557 .compare_super = compare_super_ddf,
3558
3559 .load_super = load_super_ddf,
3560 .init_super = init_super_ddf,
3561 .store_super = store_zero_ddf,
3562 .free_super = free_super_ddf,
3563 .match_metadata_desc = match_metadata_desc_ddf,
3564 .container_content = container_content_ddf,
3565
3566 .external = 1,
3567
3568 #ifndef MDASSEMBLE
3569 /* for mdmon */
3570 .open_new = ddf_open_new,
3571 .set_array_state= ddf_set_array_state,
3572 .set_disk = ddf_set_disk,
3573 .sync_metadata = ddf_sync_metadata,
3574 .process_update = ddf_process_update,
3575 .prepare_update = ddf_prepare_update,
3576 .activate_spare = ddf_activate_spare,
3577 #endif
3578 .name = "ddf",
3579 };