]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
IMSM - allow assembling any imsm array even without OROM.
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
106 #define IMSM_DISK_FILLERS 3
107 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
108 };
109
110 /* map selector for map managment
111 */
112 #define MAP_0 0
113 #define MAP_1 1
114 #define MAP_X -1
115
116 /* RAID map configuration infos. */
117 struct imsm_map {
118 __u32 pba_of_lba0_lo; /* start address of partition */
119 __u32 blocks_per_member_lo;/* blocks per member */
120 __u32 num_data_stripes_lo; /* number of data stripes */
121 __u16 blocks_per_strip;
122 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
123 #define IMSM_T_STATE_NORMAL 0
124 #define IMSM_T_STATE_UNINITIALIZED 1
125 #define IMSM_T_STATE_DEGRADED 2
126 #define IMSM_T_STATE_FAILED 3
127 __u8 raid_level;
128 #define IMSM_T_RAID0 0
129 #define IMSM_T_RAID1 1
130 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
131 __u8 num_members; /* number of member disks */
132 __u8 num_domains; /* number of parity domains */
133 __u8 failed_disk_num; /* valid only when state is degraded */
134 __u8 ddf;
135 __u32 pba_of_lba0_hi;
136 __u32 blocks_per_member_hi;
137 __u32 num_data_stripes_hi;
138 __u32 filler[4]; /* expansion area */
139 #define IMSM_ORD_REBUILD (1 << 24)
140 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
141 * top byte contains some flags
142 */
143 } __attribute__ ((packed));
144
145 struct imsm_vol {
146 __u32 curr_migr_unit;
147 __u32 checkpoint_id; /* id to access curr_migr_unit */
148 __u8 migr_state; /* Normal or Migrating */
149 #define MIGR_INIT 0
150 #define MIGR_REBUILD 1
151 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
152 #define MIGR_GEN_MIGR 3
153 #define MIGR_STATE_CHANGE 4
154 #define MIGR_REPAIR 5
155 __u8 migr_type; /* Initializing, Rebuilding, ... */
156 __u8 dirty;
157 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
158 __u16 verify_errors; /* number of mismatches */
159 __u16 bad_blocks; /* number of bad blocks during verify */
160 __u32 filler[4];
161 struct imsm_map map[1];
162 /* here comes another one if migr_state */
163 } __attribute__ ((packed));
164
165 struct imsm_dev {
166 __u8 volume[MAX_RAID_SERIAL_LEN];
167 __u32 size_low;
168 __u32 size_high;
169 #define DEV_BOOTABLE __cpu_to_le32(0x01)
170 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
171 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
172 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
173 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
174 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
175 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
176 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
177 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
178 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
179 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
180 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
181 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
182 __u32 status; /* Persistent RaidDev status */
183 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
184 __u8 migr_priority;
185 __u8 num_sub_vols;
186 __u8 tid;
187 __u8 cng_master_disk;
188 __u16 cache_policy;
189 __u8 cng_state;
190 __u8 cng_sub_state;
191 #define IMSM_DEV_FILLERS 10
192 __u32 filler[IMSM_DEV_FILLERS];
193 struct imsm_vol vol;
194 } __attribute__ ((packed));
195
196 struct imsm_super {
197 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
198 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
199 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
200 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
201 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
202 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
203 __u32 attributes; /* 0x34 - 0x37 */
204 __u8 num_disks; /* 0x38 Number of configured disks */
205 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
206 __u8 error_log_pos; /* 0x3A */
207 __u8 fill[1]; /* 0x3B */
208 __u32 cache_size; /* 0x3c - 0x40 in mb */
209 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
210 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
211 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
212 #define IMSM_FILLERS 35
213 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
214 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
215 /* here comes imsm_dev[num_raid_devs] */
216 /* here comes BBM logs */
217 } __attribute__ ((packed));
218
219 #define BBM_LOG_MAX_ENTRIES 254
220
221 struct bbm_log_entry {
222 __u64 defective_block_start;
223 #define UNREADABLE 0xFFFFFFFF
224 __u32 spare_block_offset;
225 __u16 remapped_marked_count;
226 __u16 disk_ordinal;
227 } __attribute__ ((__packed__));
228
229 struct bbm_log {
230 __u32 signature; /* 0xABADB10C */
231 __u32 entry_count;
232 __u32 reserved_spare_block_count; /* 0 */
233 __u32 reserved; /* 0xFFFF */
234 __u64 first_spare_lba;
235 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
236 } __attribute__ ((__packed__));
237
238
239 #ifndef MDASSEMBLE
240 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
241 #endif
242
243 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
244
245 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
246
247 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
248 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
249 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
250 */
251
252
253 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
254 * be recovered using srcMap */
255 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
256 * already been migrated and must
257 * be recovered from checkpoint area */
258 struct migr_record {
259 __u32 rec_status; /* Status used to determine how to restart
260 * migration in case it aborts
261 * in some fashion */
262 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
263 __u32 family_num; /* Family number of MPB
264 * containing the RaidDev
265 * that is migrating */
266 __u32 ascending_migr; /* True if migrating in increasing
267 * order of lbas */
268 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
269 __u32 dest_depth_per_unit; /* Num member blocks each destMap
270 * member disk
271 * advances per unit-of-operation */
272 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
273 __u32 dest_1st_member_lba; /* First member lba on first
274 * stripe of destination */
275 __u32 num_migr_units; /* Total num migration units-of-op */
276 __u32 post_migr_vol_cap; /* Size of volume after
277 * migration completes */
278 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
279 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
280 * migration ckpt record was read from
281 * (for recovered migrations) */
282 } __attribute__ ((__packed__));
283
284 struct md_list {
285 /* usage marker:
286 * 1: load metadata
287 * 2: metadata does not match
288 * 4: already checked
289 */
290 int used;
291 char *devname;
292 int found;
293 int container;
294 dev_t st_rdev;
295 struct md_list *next;
296 };
297
298 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
299
300 static __u8 migr_type(struct imsm_dev *dev)
301 {
302 if (dev->vol.migr_type == MIGR_VERIFY &&
303 dev->status & DEV_VERIFY_AND_FIX)
304 return MIGR_REPAIR;
305 else
306 return dev->vol.migr_type;
307 }
308
309 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
310 {
311 /* for compatibility with older oroms convert MIGR_REPAIR, into
312 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
313 */
314 if (migr_type == MIGR_REPAIR) {
315 dev->vol.migr_type = MIGR_VERIFY;
316 dev->status |= DEV_VERIFY_AND_FIX;
317 } else {
318 dev->vol.migr_type = migr_type;
319 dev->status &= ~DEV_VERIFY_AND_FIX;
320 }
321 }
322
323 static unsigned int sector_count(__u32 bytes)
324 {
325 return ROUND_UP(bytes, 512) / 512;
326 }
327
328 static unsigned int mpb_sectors(struct imsm_super *mpb)
329 {
330 return sector_count(__le32_to_cpu(mpb->mpb_size));
331 }
332
333 struct intel_dev {
334 struct imsm_dev *dev;
335 struct intel_dev *next;
336 unsigned index;
337 };
338
339 struct intel_hba {
340 enum sys_dev_type type;
341 char *path;
342 char *pci_id;
343 struct intel_hba *next;
344 };
345
346 enum action {
347 DISK_REMOVE = 1,
348 DISK_ADD
349 };
350 /* internal representation of IMSM metadata */
351 struct intel_super {
352 union {
353 void *buf; /* O_DIRECT buffer for reading/writing metadata */
354 struct imsm_super *anchor; /* immovable parameters */
355 };
356 union {
357 void *migr_rec_buf; /* buffer for I/O operations */
358 struct migr_record *migr_rec; /* migration record */
359 };
360 int clean_migration_record_by_mdmon; /* when reshape is switched to next
361 array, it indicates that mdmon is allowed to clean migration
362 record */
363 size_t len; /* size of the 'buf' allocation */
364 void *next_buf; /* for realloc'ing buf from the manager */
365 size_t next_len;
366 int updates_pending; /* count of pending updates for mdmon */
367 int current_vol; /* index of raid device undergoing creation */
368 unsigned long long create_offset; /* common start for 'current_vol' */
369 __u32 random; /* random data for seeding new family numbers */
370 struct intel_dev *devlist;
371 struct dl {
372 struct dl *next;
373 int index;
374 __u8 serial[MAX_RAID_SERIAL_LEN];
375 int major, minor;
376 char *devname;
377 struct imsm_disk disk;
378 int fd;
379 int extent_cnt;
380 struct extent *e; /* for determining freespace @ create */
381 int raiddisk; /* slot to fill in autolayout */
382 enum action action;
383 } *disks, *current_disk;
384 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
385 active */
386 struct dl *missing; /* disks removed while we weren't looking */
387 struct bbm_log *bbm_log;
388 struct intel_hba *hba; /* device path of the raid controller for this metadata */
389 const struct imsm_orom *orom; /* platform firmware support */
390 struct intel_super *next; /* (temp) list for disambiguating family_num */
391 };
392
393 struct intel_disk {
394 struct imsm_disk disk;
395 #define IMSM_UNKNOWN_OWNER (-1)
396 int owner;
397 struct intel_disk *next;
398 };
399
400 struct extent {
401 unsigned long long start, size;
402 };
403
404 /* definitions of reshape process types */
405 enum imsm_reshape_type {
406 CH_TAKEOVER,
407 CH_MIGRATION,
408 CH_ARRAY_SIZE,
409 };
410
411 /* definition of messages passed to imsm_process_update */
412 enum imsm_update_type {
413 update_activate_spare,
414 update_create_array,
415 update_kill_array,
416 update_rename_array,
417 update_add_remove_disk,
418 update_reshape_container_disks,
419 update_reshape_migration,
420 update_takeover,
421 update_general_migration_checkpoint,
422 update_size_change,
423 };
424
425 struct imsm_update_activate_spare {
426 enum imsm_update_type type;
427 struct dl *dl;
428 int slot;
429 int array;
430 struct imsm_update_activate_spare *next;
431 };
432
433 struct geo_params {
434 int dev_id;
435 char *dev_name;
436 unsigned long long size;
437 int level;
438 int layout;
439 int chunksize;
440 int raid_disks;
441 };
442
443 enum takeover_direction {
444 R10_TO_R0,
445 R0_TO_R10
446 };
447 struct imsm_update_takeover {
448 enum imsm_update_type type;
449 int subarray;
450 enum takeover_direction direction;
451 };
452
453 struct imsm_update_reshape {
454 enum imsm_update_type type;
455 int old_raid_disks;
456 int new_raid_disks;
457
458 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
459 };
460
461 struct imsm_update_reshape_migration {
462 enum imsm_update_type type;
463 int old_raid_disks;
464 int new_raid_disks;
465 /* fields for array migration changes
466 */
467 int subdev;
468 int new_level;
469 int new_layout;
470 int new_chunksize;
471
472 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
473 };
474
475 struct imsm_update_size_change {
476 enum imsm_update_type type;
477 int subdev;
478 long long new_size;
479 };
480
481 struct imsm_update_general_migration_checkpoint {
482 enum imsm_update_type type;
483 __u32 curr_migr_unit;
484 };
485
486 struct disk_info {
487 __u8 serial[MAX_RAID_SERIAL_LEN];
488 };
489
490 struct imsm_update_create_array {
491 enum imsm_update_type type;
492 int dev_idx;
493 struct imsm_dev dev;
494 };
495
496 struct imsm_update_kill_array {
497 enum imsm_update_type type;
498 int dev_idx;
499 };
500
501 struct imsm_update_rename_array {
502 enum imsm_update_type type;
503 __u8 name[MAX_RAID_SERIAL_LEN];
504 int dev_idx;
505 };
506
507 struct imsm_update_add_remove_disk {
508 enum imsm_update_type type;
509 };
510
511
512 static const char *_sys_dev_type[] = {
513 [SYS_DEV_UNKNOWN] = "Unknown",
514 [SYS_DEV_SAS] = "SAS",
515 [SYS_DEV_SATA] = "SATA"
516 };
517
518 const char *get_sys_dev_type(enum sys_dev_type type)
519 {
520 if (type >= SYS_DEV_MAX)
521 type = SYS_DEV_UNKNOWN;
522
523 return _sys_dev_type[type];
524 }
525
526 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
527 {
528 struct intel_hba *result = xmalloc(sizeof(*result));
529
530 result->type = device->type;
531 result->path = xstrdup(device->path);
532 result->next = NULL;
533 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
534 result->pci_id++;
535
536 return result;
537 }
538
539 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
540 {
541 struct intel_hba *result=NULL;
542 for (result = hba; result; result = result->next) {
543 if (result->type == device->type && strcmp(result->path, device->path) == 0)
544 break;
545 }
546 return result;
547 }
548
549 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
550 {
551 struct intel_hba *hba;
552
553 /* check if disk attached to Intel HBA */
554 hba = find_intel_hba(super->hba, device);
555 if (hba != NULL)
556 return 1;
557 /* Check if HBA is already attached to super */
558 if (super->hba == NULL) {
559 super->hba = alloc_intel_hba(device);
560 return 1;
561 }
562
563 hba = super->hba;
564 /* Intel metadata allows for all disks attached to the same type HBA.
565 * Do not sypport odf HBA types mixing
566 */
567 if (device->type != hba->type)
568 return 2;
569
570 while (hba->next)
571 hba = hba->next;
572
573 hba->next = alloc_intel_hba(device);
574 return 1;
575 }
576
577 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
578 {
579 struct sys_dev *list, *elem, *prev;
580 char *disk_path;
581
582 if ((list = find_intel_devices()) == NULL)
583 return 0;
584
585 if (fd < 0)
586 disk_path = (char *) devname;
587 else
588 disk_path = diskfd_to_devpath(fd);
589
590 if (!disk_path) {
591 free_sys_dev(&list);
592 return 0;
593 }
594
595 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
596 if (path_attached_to_hba(disk_path, elem->path)) {
597 if (prev == NULL)
598 list = list->next;
599 else
600 prev->next = elem->next;
601 elem->next = NULL;
602 if (disk_path != devname)
603 free(disk_path);
604 free_sys_dev(&list);
605 return elem;
606 }
607 }
608 if (disk_path != devname)
609 free(disk_path);
610 free_sys_dev(&list);
611
612 return NULL;
613 }
614
615
616 static int find_intel_hba_capability(int fd, struct intel_super *super,
617 char *devname);
618
619 static struct supertype *match_metadata_desc_imsm(char *arg)
620 {
621 struct supertype *st;
622
623 if (strcmp(arg, "imsm") != 0 &&
624 strcmp(arg, "default") != 0
625 )
626 return NULL;
627
628 st = xcalloc(1, sizeof(*st));
629 st->container_dev = NoMdDev;
630 st->ss = &super_imsm;
631 st->max_devs = IMSM_MAX_DEVICES;
632 st->minor_version = 0;
633 st->sb = NULL;
634 return st;
635 }
636
637 #ifndef MDASSEMBLE
638 static __u8 *get_imsm_version(struct imsm_super *mpb)
639 {
640 return &mpb->sig[MPB_SIG_LEN];
641 }
642 #endif
643
644 /* retrieve a disk directly from the anchor when the anchor is known to be
645 * up-to-date, currently only at load time
646 */
647 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
648 {
649 if (index >= mpb->num_disks)
650 return NULL;
651 return &mpb->disk[index];
652 }
653
654 /* retrieve the disk description based on a index of the disk
655 * in the sub-array
656 */
657 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
658 {
659 struct dl *d;
660
661 for (d = super->disks; d; d = d->next)
662 if (d->index == index)
663 return d;
664
665 return NULL;
666 }
667 /* retrieve a disk from the parsed metadata */
668 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
669 {
670 struct dl *dl;
671
672 dl = get_imsm_dl_disk(super, index);
673 if (dl)
674 return &dl->disk;
675
676 return NULL;
677 }
678
679 /* generate a checksum directly from the anchor when the anchor is known to be
680 * up-to-date, currently only at load or write_super after coalescing
681 */
682 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
683 {
684 __u32 end = mpb->mpb_size / sizeof(end);
685 __u32 *p = (__u32 *) mpb;
686 __u32 sum = 0;
687
688 while (end--) {
689 sum += __le32_to_cpu(*p);
690 p++;
691 }
692
693 return sum - __le32_to_cpu(mpb->check_sum);
694 }
695
696 static size_t sizeof_imsm_map(struct imsm_map *map)
697 {
698 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
699 }
700
701 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
702 {
703 /* A device can have 2 maps if it is in the middle of a migration.
704 * If second_map is:
705 * MAP_0 - we return the first map
706 * MAP_1 - we return the second map if it exists, else NULL
707 * MAP_X - we return the second map if it exists, else the first
708 */
709 struct imsm_map *map = &dev->vol.map[0];
710 struct imsm_map *map2 = NULL;
711
712 if (dev->vol.migr_state)
713 map2 = (void *)map + sizeof_imsm_map(map);
714
715 switch (second_map) {
716 case MAP_0:
717 break;
718 case MAP_1:
719 map = map2;
720 break;
721 case MAP_X:
722 if (map2)
723 map = map2;
724 break;
725 default:
726 map = NULL;
727 }
728 return map;
729
730 }
731
732 /* return the size of the device.
733 * migr_state increases the returned size if map[0] were to be duplicated
734 */
735 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
736 {
737 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
738 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
739
740 /* migrating means an additional map */
741 if (dev->vol.migr_state)
742 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
743 else if (migr_state)
744 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
745
746 return size;
747 }
748
749 #ifndef MDASSEMBLE
750 /* retrieve disk serial number list from a metadata update */
751 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
752 {
753 void *u = update;
754 struct disk_info *inf;
755
756 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
757 sizeof_imsm_dev(&update->dev, 0);
758
759 return inf;
760 }
761 #endif
762
763 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
764 {
765 int offset;
766 int i;
767 void *_mpb = mpb;
768
769 if (index >= mpb->num_raid_devs)
770 return NULL;
771
772 /* devices start after all disks */
773 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
774
775 for (i = 0; i <= index; i++)
776 if (i == index)
777 return _mpb + offset;
778 else
779 offset += sizeof_imsm_dev(_mpb + offset, 0);
780
781 return NULL;
782 }
783
784 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
785 {
786 struct intel_dev *dv;
787
788 if (index >= super->anchor->num_raid_devs)
789 return NULL;
790 for (dv = super->devlist; dv; dv = dv->next)
791 if (dv->index == index)
792 return dv->dev;
793 return NULL;
794 }
795
796 /*
797 * for second_map:
798 * == MAP_0 get first map
799 * == MAP_1 get second map
800 * == MAP_X than get map according to the current migr_state
801 */
802 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
803 int slot,
804 int second_map)
805 {
806 struct imsm_map *map;
807
808 map = get_imsm_map(dev, second_map);
809
810 /* top byte identifies disk under rebuild */
811 return __le32_to_cpu(map->disk_ord_tbl[slot]);
812 }
813
814 #define ord_to_idx(ord) (((ord) << 8) >> 8)
815 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
816 {
817 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
818
819 return ord_to_idx(ord);
820 }
821
822 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
823 {
824 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
825 }
826
827 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
828 {
829 int slot;
830 __u32 ord;
831
832 for (slot = 0; slot < map->num_members; slot++) {
833 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
834 if (ord_to_idx(ord) == idx)
835 return slot;
836 }
837
838 return -1;
839 }
840
841 static int get_imsm_raid_level(struct imsm_map *map)
842 {
843 if (map->raid_level == 1) {
844 if (map->num_members == 2)
845 return 1;
846 else
847 return 10;
848 }
849
850 return map->raid_level;
851 }
852
853 static int cmp_extent(const void *av, const void *bv)
854 {
855 const struct extent *a = av;
856 const struct extent *b = bv;
857 if (a->start < b->start)
858 return -1;
859 if (a->start > b->start)
860 return 1;
861 return 0;
862 }
863
864 static int count_memberships(struct dl *dl, struct intel_super *super)
865 {
866 int memberships = 0;
867 int i;
868
869 for (i = 0; i < super->anchor->num_raid_devs; i++) {
870 struct imsm_dev *dev = get_imsm_dev(super, i);
871 struct imsm_map *map = get_imsm_map(dev, MAP_0);
872
873 if (get_imsm_disk_slot(map, dl->index) >= 0)
874 memberships++;
875 }
876
877 return memberships;
878 }
879
880 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
881
882 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
883 {
884 if (lo == 0 || hi == 0)
885 return 1;
886 *lo = __le32_to_cpu((unsigned)n);
887 *hi = __le32_to_cpu((unsigned)(n >> 32));
888 return 0;
889 }
890
891 static unsigned long long join_u32(__u32 lo, __u32 hi)
892 {
893 return (unsigned long long)__le32_to_cpu(lo) |
894 (((unsigned long long)__le32_to_cpu(hi)) << 32);
895 }
896
897 static unsigned long long total_blocks(struct imsm_disk *disk)
898 {
899 if (disk == NULL)
900 return 0;
901 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
902 }
903
904 static unsigned long long pba_of_lba0(struct imsm_map *map)
905 {
906 if (map == NULL)
907 return 0;
908 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
909 }
910
911 static unsigned long long blocks_per_member(struct imsm_map *map)
912 {
913 if (map == NULL)
914 return 0;
915 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
916 }
917
918 #ifndef MDASSEMBLE
919 static unsigned long long num_data_stripes(struct imsm_map *map)
920 {
921 if (map == NULL)
922 return 0;
923 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
924 }
925
926 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
927 {
928 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
929 }
930 #endif
931
932 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
933 {
934 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
935 }
936
937 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
938 {
939 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
940 }
941
942 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
943 {
944 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
945 }
946
947 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
948 {
949 /* find a list of used extents on the given physical device */
950 struct extent *rv, *e;
951 int i;
952 int memberships = count_memberships(dl, super);
953 __u32 reservation;
954
955 /* trim the reserved area for spares, so they can join any array
956 * regardless of whether the OROM has assigned sectors from the
957 * IMSM_RESERVED_SECTORS region
958 */
959 if (dl->index == -1)
960 reservation = imsm_min_reserved_sectors(super);
961 else
962 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
963
964 rv = xcalloc(sizeof(struct extent), (memberships + 1));
965 e = rv;
966
967 for (i = 0; i < super->anchor->num_raid_devs; i++) {
968 struct imsm_dev *dev = get_imsm_dev(super, i);
969 struct imsm_map *map = get_imsm_map(dev, MAP_0);
970
971 if (get_imsm_disk_slot(map, dl->index) >= 0) {
972 e->start = pba_of_lba0(map);
973 e->size = blocks_per_member(map);
974 e++;
975 }
976 }
977 qsort(rv, memberships, sizeof(*rv), cmp_extent);
978
979 /* determine the start of the metadata
980 * when no raid devices are defined use the default
981 * ...otherwise allow the metadata to truncate the value
982 * as is the case with older versions of imsm
983 */
984 if (memberships) {
985 struct extent *last = &rv[memberships - 1];
986 unsigned long long remainder;
987
988 remainder = total_blocks(&dl->disk) - (last->start + last->size);
989 /* round down to 1k block to satisfy precision of the kernel
990 * 'size' interface
991 */
992 remainder &= ~1UL;
993 /* make sure remainder is still sane */
994 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
995 remainder = ROUND_UP(super->len, 512) >> 9;
996 if (reservation > remainder)
997 reservation = remainder;
998 }
999 e->start = total_blocks(&dl->disk) - reservation;
1000 e->size = 0;
1001 return rv;
1002 }
1003
1004 /* try to determine how much space is reserved for metadata from
1005 * the last get_extents() entry, otherwise fallback to the
1006 * default
1007 */
1008 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1009 {
1010 struct extent *e;
1011 int i;
1012 __u32 rv;
1013
1014 /* for spares just return a minimal reservation which will grow
1015 * once the spare is picked up by an array
1016 */
1017 if (dl->index == -1)
1018 return MPB_SECTOR_CNT;
1019
1020 e = get_extents(super, dl);
1021 if (!e)
1022 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1023
1024 /* scroll to last entry */
1025 for (i = 0; e[i].size; i++)
1026 continue;
1027
1028 rv = total_blocks(&dl->disk) - e[i].start;
1029
1030 free(e);
1031
1032 return rv;
1033 }
1034
1035 static int is_spare(struct imsm_disk *disk)
1036 {
1037 return (disk->status & SPARE_DISK) == SPARE_DISK;
1038 }
1039
1040 static int is_configured(struct imsm_disk *disk)
1041 {
1042 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1043 }
1044
1045 static int is_failed(struct imsm_disk *disk)
1046 {
1047 return (disk->status & FAILED_DISK) == FAILED_DISK;
1048 }
1049
1050 /* try to determine how much space is reserved for metadata from
1051 * the last get_extents() entry on the smallest active disk,
1052 * otherwise fallback to the default
1053 */
1054 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1055 {
1056 struct extent *e;
1057 int i;
1058 unsigned long long min_active;
1059 __u32 remainder;
1060 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1061 struct dl *dl, *dl_min = NULL;
1062
1063 if (!super)
1064 return rv;
1065
1066 min_active = 0;
1067 for (dl = super->disks; dl; dl = dl->next) {
1068 if (dl->index < 0)
1069 continue;
1070 unsigned long long blocks = total_blocks(&dl->disk);
1071 if (blocks < min_active || min_active == 0) {
1072 dl_min = dl;
1073 min_active = blocks;
1074 }
1075 }
1076 if (!dl_min)
1077 return rv;
1078
1079 /* find last lba used by subarrays on the smallest active disk */
1080 e = get_extents(super, dl_min);
1081 if (!e)
1082 return rv;
1083 for (i = 0; e[i].size; i++)
1084 continue;
1085
1086 remainder = min_active - e[i].start;
1087 free(e);
1088
1089 /* to give priority to recovery we should not require full
1090 IMSM_RESERVED_SECTORS from the spare */
1091 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1092
1093 /* if real reservation is smaller use that value */
1094 return (remainder < rv) ? remainder : rv;
1095 }
1096
1097 /* Return minimum size of a spare that can be used in this array*/
1098 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1099 {
1100 struct intel_super *super = st->sb;
1101 struct dl *dl;
1102 struct extent *e;
1103 int i;
1104 unsigned long long rv = 0;
1105
1106 if (!super)
1107 return rv;
1108 /* find first active disk in array */
1109 dl = super->disks;
1110 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1111 dl = dl->next;
1112 if (!dl)
1113 return rv;
1114 /* find last lba used by subarrays */
1115 e = get_extents(super, dl);
1116 if (!e)
1117 return rv;
1118 for (i = 0; e[i].size; i++)
1119 continue;
1120 if (i > 0)
1121 rv = e[i-1].start + e[i-1].size;
1122 free(e);
1123
1124 /* add the amount of space needed for metadata */
1125 rv = rv + imsm_min_reserved_sectors(super);
1126
1127 return rv * 512;
1128 }
1129
1130 static int is_gen_migration(struct imsm_dev *dev);
1131
1132 #ifndef MDASSEMBLE
1133 static __u64 blocks_per_migr_unit(struct intel_super *super,
1134 struct imsm_dev *dev);
1135
1136 static void print_imsm_dev(struct intel_super *super,
1137 struct imsm_dev *dev,
1138 char *uuid,
1139 int disk_idx)
1140 {
1141 __u64 sz;
1142 int slot, i;
1143 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1144 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1145 __u32 ord;
1146
1147 printf("\n");
1148 printf("[%.16s]:\n", dev->volume);
1149 printf(" UUID : %s\n", uuid);
1150 printf(" RAID Level : %d", get_imsm_raid_level(map));
1151 if (map2)
1152 printf(" <-- %d", get_imsm_raid_level(map2));
1153 printf("\n");
1154 printf(" Members : %d", map->num_members);
1155 if (map2)
1156 printf(" <-- %d", map2->num_members);
1157 printf("\n");
1158 printf(" Slots : [");
1159 for (i = 0; i < map->num_members; i++) {
1160 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1161 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1162 }
1163 printf("]");
1164 if (map2) {
1165 printf(" <-- [");
1166 for (i = 0; i < map2->num_members; i++) {
1167 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1168 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1169 }
1170 printf("]");
1171 }
1172 printf("\n");
1173 printf(" Failed disk : ");
1174 if (map->failed_disk_num == 0xff)
1175 printf("none");
1176 else
1177 printf("%i", map->failed_disk_num);
1178 printf("\n");
1179 slot = get_imsm_disk_slot(map, disk_idx);
1180 if (slot >= 0) {
1181 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1182 printf(" This Slot : %d%s\n", slot,
1183 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1184 } else
1185 printf(" This Slot : ?\n");
1186 sz = __le32_to_cpu(dev->size_high);
1187 sz <<= 32;
1188 sz += __le32_to_cpu(dev->size_low);
1189 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1190 human_size(sz * 512));
1191 sz = blocks_per_member(map);
1192 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1193 human_size(sz * 512));
1194 printf(" Sector Offset : %llu\n",
1195 pba_of_lba0(map));
1196 printf(" Num Stripes : %llu\n",
1197 num_data_stripes(map));
1198 printf(" Chunk Size : %u KiB",
1199 __le16_to_cpu(map->blocks_per_strip) / 2);
1200 if (map2)
1201 printf(" <-- %u KiB",
1202 __le16_to_cpu(map2->blocks_per_strip) / 2);
1203 printf("\n");
1204 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1205 printf(" Migrate State : ");
1206 if (dev->vol.migr_state) {
1207 if (migr_type(dev) == MIGR_INIT)
1208 printf("initialize\n");
1209 else if (migr_type(dev) == MIGR_REBUILD)
1210 printf("rebuild\n");
1211 else if (migr_type(dev) == MIGR_VERIFY)
1212 printf("check\n");
1213 else if (migr_type(dev) == MIGR_GEN_MIGR)
1214 printf("general migration\n");
1215 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1216 printf("state change\n");
1217 else if (migr_type(dev) == MIGR_REPAIR)
1218 printf("repair\n");
1219 else
1220 printf("<unknown:%d>\n", migr_type(dev));
1221 } else
1222 printf("idle\n");
1223 printf(" Map State : %s", map_state_str[map->map_state]);
1224 if (dev->vol.migr_state) {
1225 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1226
1227 printf(" <-- %s", map_state_str[map->map_state]);
1228 printf("\n Checkpoint : %u ",
1229 __le32_to_cpu(dev->vol.curr_migr_unit));
1230 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
1231 printf("(N/A)");
1232 else
1233 printf("(%llu)", (unsigned long long)
1234 blocks_per_migr_unit(super, dev));
1235 }
1236 printf("\n");
1237 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1238 }
1239
1240 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1241 {
1242 char str[MAX_RAID_SERIAL_LEN + 1];
1243 __u64 sz;
1244
1245 if (index < -1 || !disk)
1246 return;
1247
1248 printf("\n");
1249 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1250 if (index >= 0)
1251 printf(" Disk%02d Serial : %s\n", index, str);
1252 else
1253 printf(" Disk Serial : %s\n", str);
1254 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1255 is_configured(disk) ? " active" : "",
1256 is_failed(disk) ? " failed" : "");
1257 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1258 sz = total_blocks(disk) - reserved;
1259 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1260 human_size(sz * 512));
1261 }
1262
1263 void examine_migr_rec_imsm(struct intel_super *super)
1264 {
1265 struct migr_record *migr_rec = super->migr_rec;
1266 struct imsm_super *mpb = super->anchor;
1267 int i;
1268
1269 for (i = 0; i < mpb->num_raid_devs; i++) {
1270 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1271 struct imsm_map *map;
1272 int slot = -1;
1273
1274 if (is_gen_migration(dev) == 0)
1275 continue;
1276
1277 printf("\nMigration Record Information:");
1278
1279 /* first map under migration */
1280 map = get_imsm_map(dev, MAP_0);
1281 if (map)
1282 slot = get_imsm_disk_slot(map, super->disks->index);
1283 if ((map == NULL) || (slot > 1) || (slot < 0)) {
1284 printf(" Empty\n ");
1285 printf("Examine one of first two disks in array\n");
1286 break;
1287 }
1288 printf("\n Status : ");
1289 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1290 printf("Normal\n");
1291 else
1292 printf("Contains Data\n");
1293 printf(" Current Unit : %u\n",
1294 __le32_to_cpu(migr_rec->curr_migr_unit));
1295 printf(" Family : %u\n",
1296 __le32_to_cpu(migr_rec->family_num));
1297 printf(" Ascending : %u\n",
1298 __le32_to_cpu(migr_rec->ascending_migr));
1299 printf(" Blocks Per Unit : %u\n",
1300 __le32_to_cpu(migr_rec->blocks_per_unit));
1301 printf(" Dest. Depth Per Unit : %u\n",
1302 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1303 printf(" Checkpoint Area pba : %u\n",
1304 __le32_to_cpu(migr_rec->ckpt_area_pba));
1305 printf(" First member lba : %u\n",
1306 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1307 printf(" Total Number of Units : %u\n",
1308 __le32_to_cpu(migr_rec->num_migr_units));
1309 printf(" Size of volume : %u\n",
1310 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1311 printf(" Expansion space for LBA64 : %u\n",
1312 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1313 printf(" Record was read from : %u\n",
1314 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1315
1316 break;
1317 }
1318 }
1319 #endif /* MDASSEMBLE */
1320 /*******************************************************************************
1321 * function: imsm_check_attributes
1322 * Description: Function checks if features represented by attributes flags
1323 * are supported by mdadm.
1324 * Parameters:
1325 * attributes - Attributes read from metadata
1326 * Returns:
1327 * 0 - passed attributes contains unsupported features flags
1328 * 1 - all features are supported
1329 ******************************************************************************/
1330 static int imsm_check_attributes(__u32 attributes)
1331 {
1332 int ret_val = 1;
1333 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1334
1335 not_supported &= ~MPB_ATTRIB_IGNORED;
1336
1337 not_supported &= attributes;
1338 if (not_supported) {
1339 pr_err("(IMSM): Unsupported attributes : %x\n",
1340 (unsigned)__le32_to_cpu(not_supported));
1341 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1342 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1343 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1344 }
1345 if (not_supported & MPB_ATTRIB_2TB) {
1346 dprintf("\t\tMPB_ATTRIB_2TB\n");
1347 not_supported ^= MPB_ATTRIB_2TB;
1348 }
1349 if (not_supported & MPB_ATTRIB_RAID0) {
1350 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1351 not_supported ^= MPB_ATTRIB_RAID0;
1352 }
1353 if (not_supported & MPB_ATTRIB_RAID1) {
1354 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1355 not_supported ^= MPB_ATTRIB_RAID1;
1356 }
1357 if (not_supported & MPB_ATTRIB_RAID10) {
1358 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1359 not_supported ^= MPB_ATTRIB_RAID10;
1360 }
1361 if (not_supported & MPB_ATTRIB_RAID1E) {
1362 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1363 not_supported ^= MPB_ATTRIB_RAID1E;
1364 }
1365 if (not_supported & MPB_ATTRIB_RAID5) {
1366 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1367 not_supported ^= MPB_ATTRIB_RAID5;
1368 }
1369 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1370 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1371 not_supported ^= MPB_ATTRIB_RAIDCNG;
1372 }
1373 if (not_supported & MPB_ATTRIB_BBM) {
1374 dprintf("\t\tMPB_ATTRIB_BBM\n");
1375 not_supported ^= MPB_ATTRIB_BBM;
1376 }
1377 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1378 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1379 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1380 }
1381 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1382 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1383 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1384 }
1385 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1386 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1387 not_supported ^= MPB_ATTRIB_2TB_DISK;
1388 }
1389 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1390 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1391 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1392 }
1393 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1394 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1395 not_supported ^= MPB_ATTRIB_NEVER_USE;
1396 }
1397
1398 if (not_supported)
1399 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1400
1401 ret_val = 0;
1402 }
1403
1404 return ret_val;
1405 }
1406
1407 #ifndef MDASSEMBLE
1408 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1409
1410 static void examine_super_imsm(struct supertype *st, char *homehost)
1411 {
1412 struct intel_super *super = st->sb;
1413 struct imsm_super *mpb = super->anchor;
1414 char str[MAX_SIGNATURE_LENGTH];
1415 int i;
1416 struct mdinfo info;
1417 char nbuf[64];
1418 __u32 sum;
1419 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1420 struct dl *dl;
1421
1422 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1423 printf(" Magic : %s\n", str);
1424 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1425 printf(" Version : %s\n", get_imsm_version(mpb));
1426 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1427 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1428 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1429 printf(" Attributes : ");
1430 if (imsm_check_attributes(mpb->attributes))
1431 printf("All supported\n");
1432 else
1433 printf("not supported\n");
1434 getinfo_super_imsm(st, &info, NULL);
1435 fname_from_uuid(st, &info, nbuf, ':');
1436 printf(" UUID : %s\n", nbuf + 5);
1437 sum = __le32_to_cpu(mpb->check_sum);
1438 printf(" Checksum : %08x %s\n", sum,
1439 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1440 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1441 printf(" Disks : %d\n", mpb->num_disks);
1442 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1443 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1444 if (super->bbm_log) {
1445 struct bbm_log *log = super->bbm_log;
1446
1447 printf("\n");
1448 printf("Bad Block Management Log:\n");
1449 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1450 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1451 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1452 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1453 printf(" First Spare : %llx\n",
1454 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1455 }
1456 for (i = 0; i < mpb->num_raid_devs; i++) {
1457 struct mdinfo info;
1458 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1459
1460 super->current_vol = i;
1461 getinfo_super_imsm(st, &info, NULL);
1462 fname_from_uuid(st, &info, nbuf, ':');
1463 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1464 }
1465 for (i = 0; i < mpb->num_disks; i++) {
1466 if (i == super->disks->index)
1467 continue;
1468 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1469 }
1470
1471 for (dl = super->disks; dl; dl = dl->next)
1472 if (dl->index == -1)
1473 print_imsm_disk(&dl->disk, -1, reserved);
1474
1475 examine_migr_rec_imsm(super);
1476 }
1477
1478 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1479 {
1480 /* We just write a generic IMSM ARRAY entry */
1481 struct mdinfo info;
1482 char nbuf[64];
1483 struct intel_super *super = st->sb;
1484
1485 if (!super->anchor->num_raid_devs) {
1486 printf("ARRAY metadata=imsm\n");
1487 return;
1488 }
1489
1490 getinfo_super_imsm(st, &info, NULL);
1491 fname_from_uuid(st, &info, nbuf, ':');
1492 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1493 }
1494
1495 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1496 {
1497 /* We just write a generic IMSM ARRAY entry */
1498 struct mdinfo info;
1499 char nbuf[64];
1500 char nbuf1[64];
1501 struct intel_super *super = st->sb;
1502 int i;
1503
1504 if (!super->anchor->num_raid_devs)
1505 return;
1506
1507 getinfo_super_imsm(st, &info, NULL);
1508 fname_from_uuid(st, &info, nbuf, ':');
1509 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1510 struct imsm_dev *dev = get_imsm_dev(super, i);
1511
1512 super->current_vol = i;
1513 getinfo_super_imsm(st, &info, NULL);
1514 fname_from_uuid(st, &info, nbuf1, ':');
1515 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1516 dev->volume, nbuf + 5, i, nbuf1 + 5);
1517 }
1518 }
1519
1520 static void export_examine_super_imsm(struct supertype *st)
1521 {
1522 struct intel_super *super = st->sb;
1523 struct imsm_super *mpb = super->anchor;
1524 struct mdinfo info;
1525 char nbuf[64];
1526
1527 getinfo_super_imsm(st, &info, NULL);
1528 fname_from_uuid(st, &info, nbuf, ':');
1529 printf("MD_METADATA=imsm\n");
1530 printf("MD_LEVEL=container\n");
1531 printf("MD_UUID=%s\n", nbuf+5);
1532 printf("MD_DEVICES=%u\n", mpb->num_disks);
1533 }
1534
1535 static void detail_super_imsm(struct supertype *st, char *homehost)
1536 {
1537 struct mdinfo info;
1538 char nbuf[64];
1539
1540 getinfo_super_imsm(st, &info, NULL);
1541 fname_from_uuid(st, &info, nbuf, ':');
1542 printf("\n UUID : %s\n", nbuf + 5);
1543 }
1544
1545 static void brief_detail_super_imsm(struct supertype *st)
1546 {
1547 struct mdinfo info;
1548 char nbuf[64];
1549 getinfo_super_imsm(st, &info, NULL);
1550 fname_from_uuid(st, &info, nbuf, ':');
1551 printf(" UUID=%s", nbuf + 5);
1552 }
1553
1554 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1555 static void fd2devname(int fd, char *name);
1556
1557 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1558 {
1559 /* dump an unsorted list of devices attached to AHCI Intel storage
1560 * controller, as well as non-connected ports
1561 */
1562 int hba_len = strlen(hba_path) + 1;
1563 struct dirent *ent;
1564 DIR *dir;
1565 char *path = NULL;
1566 int err = 0;
1567 unsigned long port_mask = (1 << port_count) - 1;
1568
1569 if (port_count > (int)sizeof(port_mask) * 8) {
1570 if (verbose > 0)
1571 pr_err("port_count %d out of range\n", port_count);
1572 return 2;
1573 }
1574
1575 /* scroll through /sys/dev/block looking for devices attached to
1576 * this hba
1577 */
1578 dir = opendir("/sys/dev/block");
1579 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1580 int fd;
1581 char model[64];
1582 char vendor[64];
1583 char buf[1024];
1584 int major, minor;
1585 char *device;
1586 char *c;
1587 int port;
1588 int type;
1589
1590 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1591 continue;
1592 path = devt_to_devpath(makedev(major, minor));
1593 if (!path)
1594 continue;
1595 if (!path_attached_to_hba(path, hba_path)) {
1596 free(path);
1597 path = NULL;
1598 continue;
1599 }
1600
1601 /* retrieve the scsi device type */
1602 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1603 if (verbose > 0)
1604 pr_err("failed to allocate 'device'\n");
1605 err = 2;
1606 break;
1607 }
1608 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1609 if (load_sys(device, buf) != 0) {
1610 if (verbose > 0)
1611 pr_err("failed to read device type for %s\n",
1612 path);
1613 err = 2;
1614 free(device);
1615 break;
1616 }
1617 type = strtoul(buf, NULL, 10);
1618
1619 /* if it's not a disk print the vendor and model */
1620 if (!(type == 0 || type == 7 || type == 14)) {
1621 vendor[0] = '\0';
1622 model[0] = '\0';
1623 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1624 if (load_sys(device, buf) == 0) {
1625 strncpy(vendor, buf, sizeof(vendor));
1626 vendor[sizeof(vendor) - 1] = '\0';
1627 c = (char *) &vendor[sizeof(vendor) - 1];
1628 while (isspace(*c) || *c == '\0')
1629 *c-- = '\0';
1630
1631 }
1632 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1633 if (load_sys(device, buf) == 0) {
1634 strncpy(model, buf, sizeof(model));
1635 model[sizeof(model) - 1] = '\0';
1636 c = (char *) &model[sizeof(model) - 1];
1637 while (isspace(*c) || *c == '\0')
1638 *c-- = '\0';
1639 }
1640
1641 if (vendor[0] && model[0])
1642 sprintf(buf, "%.64s %.64s", vendor, model);
1643 else
1644 switch (type) { /* numbers from hald/linux/device.c */
1645 case 1: sprintf(buf, "tape"); break;
1646 case 2: sprintf(buf, "printer"); break;
1647 case 3: sprintf(buf, "processor"); break;
1648 case 4:
1649 case 5: sprintf(buf, "cdrom"); break;
1650 case 6: sprintf(buf, "scanner"); break;
1651 case 8: sprintf(buf, "media_changer"); break;
1652 case 9: sprintf(buf, "comm"); break;
1653 case 12: sprintf(buf, "raid"); break;
1654 default: sprintf(buf, "unknown");
1655 }
1656 } else
1657 buf[0] = '\0';
1658 free(device);
1659
1660 /* chop device path to 'host%d' and calculate the port number */
1661 c = strchr(&path[hba_len], '/');
1662 if (!c) {
1663 if (verbose > 0)
1664 pr_err("%s - invalid path name\n", path + hba_len);
1665 err = 2;
1666 break;
1667 }
1668 *c = '\0';
1669 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1670 port -= host_base;
1671 else {
1672 if (verbose > 0) {
1673 *c = '/'; /* repair the full string */
1674 pr_err("failed to determine port number for %s\n",
1675 path);
1676 }
1677 err = 2;
1678 break;
1679 }
1680
1681 /* mark this port as used */
1682 port_mask &= ~(1 << port);
1683
1684 /* print out the device information */
1685 if (buf[0]) {
1686 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1687 continue;
1688 }
1689
1690 fd = dev_open(ent->d_name, O_RDONLY);
1691 if (fd < 0)
1692 printf(" Port%d : - disk info unavailable -\n", port);
1693 else {
1694 fd2devname(fd, buf);
1695 printf(" Port%d : %s", port, buf);
1696 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1697 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1698 else
1699 printf(" ()\n");
1700 close(fd);
1701 }
1702 free(path);
1703 path = NULL;
1704 }
1705 if (path)
1706 free(path);
1707 if (dir)
1708 closedir(dir);
1709 if (err == 0) {
1710 int i;
1711
1712 for (i = 0; i < port_count; i++)
1713 if (port_mask & (1 << i))
1714 printf(" Port%d : - no device attached -\n", i);
1715 }
1716
1717 return err;
1718 }
1719
1720 static void print_found_intel_controllers(struct sys_dev *elem)
1721 {
1722 for (; elem; elem = elem->next) {
1723 pr_err("found Intel(R) ");
1724 if (elem->type == SYS_DEV_SATA)
1725 fprintf(stderr, "SATA ");
1726 else if (elem->type == SYS_DEV_SAS)
1727 fprintf(stderr, "SAS ");
1728 fprintf(stderr, "RAID controller");
1729 if (elem->pci_id)
1730 fprintf(stderr, " at %s", elem->pci_id);
1731 fprintf(stderr, ".\n");
1732 }
1733 fflush(stderr);
1734 }
1735
1736 static int ahci_get_port_count(const char *hba_path, int *port_count)
1737 {
1738 struct dirent *ent;
1739 DIR *dir;
1740 int host_base = -1;
1741
1742 *port_count = 0;
1743 if ((dir = opendir(hba_path)) == NULL)
1744 return -1;
1745
1746 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1747 int host;
1748
1749 if (sscanf(ent->d_name, "host%d", &host) != 1)
1750 continue;
1751 if (*port_count == 0)
1752 host_base = host;
1753 else if (host < host_base)
1754 host_base = host;
1755
1756 if (host + 1 > *port_count + host_base)
1757 *port_count = host + 1 - host_base;
1758 }
1759 closedir(dir);
1760 return host_base;
1761 }
1762
1763 static void print_imsm_capability(const struct imsm_orom *orom)
1764 {
1765 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1766 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1767 orom->hotfix_ver, orom->build);
1768 printf(" RAID Levels :%s%s%s%s%s\n",
1769 imsm_orom_has_raid0(orom) ? " raid0" : "",
1770 imsm_orom_has_raid1(orom) ? " raid1" : "",
1771 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1772 imsm_orom_has_raid10(orom) ? " raid10" : "",
1773 imsm_orom_has_raid5(orom) ? " raid5" : "");
1774 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1775 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1776 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1777 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1778 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1779 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1780 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1781 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1782 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1783 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1784 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1785 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1786 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1787 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1788 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1789 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1790 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1791 printf(" 2TB volumes :%s supported\n",
1792 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
1793 printf(" 2TB disks :%s supported\n",
1794 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
1795 printf(" Max Disks : %d\n", orom->tds);
1796 printf(" Max Volumes : %d per array, %d per controller\n",
1797 orom->vpa, orom->vphba);
1798 return;
1799 }
1800
1801 static void print_imsm_capability_export(const struct imsm_orom *orom)
1802 {
1803 printf("MD_FIRMWARE_TYPE=imsm\n");
1804 printf("IMSM_VERSION=%d.%d.%d.%d\n",orom->major_ver, orom->minor_ver,
1805 orom->hotfix_ver, orom->build);
1806 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
1807 imsm_orom_has_raid0(orom) ? "raid0 " : "",
1808 imsm_orom_has_raid1(orom) ? "raid1 " : "",
1809 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
1810 imsm_orom_has_raid5(orom) ? "raid10 " : "",
1811 imsm_orom_has_raid10(orom) ? "raid5 " : "");
1812 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1813 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
1814 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
1815 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
1816 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
1817 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
1818 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
1819 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
1820 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
1821 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
1822 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
1823 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
1824 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
1825 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
1826 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
1827 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
1828 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
1829 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
1830 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
1831 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
1832 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
1833 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
1834 }
1835
1836 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
1837 {
1838 /* There are two components to imsm platform support, the ahci SATA
1839 * controller and the option-rom. To find the SATA controller we
1840 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1841 * controller with the Intel vendor id is present. This approach
1842 * allows mdadm to leverage the kernel's ahci detection logic, with the
1843 * caveat that if ahci.ko is not loaded mdadm will not be able to
1844 * detect platform raid capabilities. The option-rom resides in a
1845 * platform "Adapter ROM". We scan for its signature to retrieve the
1846 * platform capabilities. If raid support is disabled in the BIOS the
1847 * option-rom capability structure will not be available.
1848 */
1849 const struct imsm_orom *orom;
1850 struct sys_dev *list, *hba;
1851 int host_base = 0;
1852 int port_count = 0;
1853 int result=1;
1854
1855 if (enumerate_only) {
1856 if (check_env("IMSM_NO_PLATFORM"))
1857 return 0;
1858 list = find_intel_devices();
1859 if (!list)
1860 return 2;
1861 for (hba = list; hba; hba = hba->next) {
1862 orom = find_imsm_capability(hba->type);
1863 if (!orom) {
1864 result = 2;
1865 break;
1866 }
1867 else
1868 result = 0;
1869 }
1870 free_sys_dev(&list);
1871 return result;
1872 }
1873
1874 list = find_intel_devices();
1875 if (!list) {
1876 if (verbose > 0)
1877 pr_err("no active Intel(R) RAID "
1878 "controller found.\n");
1879 free_sys_dev(&list);
1880 return 2;
1881 } else if (verbose > 0)
1882 print_found_intel_controllers(list);
1883
1884 for (hba = list; hba; hba = hba->next) {
1885 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
1886 continue;
1887 orom = find_imsm_capability(hba->type);
1888 if (!orom)
1889 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
1890 hba->path, get_sys_dev_type(hba->type));
1891 else {
1892 result = 0;
1893 print_imsm_capability(orom);
1894 printf(" I/O Controller : %s (%s)\n",
1895 hba->path, get_sys_dev_type(hba->type));
1896 if (hba->type == SYS_DEV_SATA) {
1897 host_base = ahci_get_port_count(hba->path, &port_count);
1898 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1899 if (verbose > 0)
1900 pr_err("failed to enumerate "
1901 "ports on SATA controller at %s.\n", hba->pci_id);
1902 result |= 2;
1903 }
1904 }
1905 }
1906 }
1907
1908 if (controller_path && result == 1)
1909 pr_err("no active Intel(R) RAID "
1910 "controller found under %s\n",controller_path);
1911
1912 free_sys_dev(&list);
1913 return result;
1914 }
1915
1916 static int export_detail_platform_imsm(int verbose, char *controller_path)
1917 {
1918 const struct imsm_orom *orom;
1919 struct sys_dev *list, *hba;
1920 int result=1;
1921
1922 list = find_intel_devices();
1923 if (!list) {
1924 if (verbose > 0)
1925 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
1926 result = 2;
1927 free_sys_dev(&list);
1928 return result;
1929 }
1930
1931 for (hba = list; hba; hba = hba->next) {
1932 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
1933 continue;
1934 orom = find_imsm_capability(hba->type);
1935 if (!orom) {
1936 if (verbose > 0)
1937 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",hba->path);
1938 }
1939 else {
1940 print_imsm_capability_export(orom);
1941 result = 0;
1942 }
1943 }
1944
1945 return result;
1946 }
1947
1948 #endif
1949
1950 static int match_home_imsm(struct supertype *st, char *homehost)
1951 {
1952 /* the imsm metadata format does not specify any host
1953 * identification information. We return -1 since we can never
1954 * confirm nor deny whether a given array is "meant" for this
1955 * host. We rely on compare_super and the 'family_num' fields to
1956 * exclude member disks that do not belong, and we rely on
1957 * mdadm.conf to specify the arrays that should be assembled.
1958 * Auto-assembly may still pick up "foreign" arrays.
1959 */
1960
1961 return -1;
1962 }
1963
1964 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1965 {
1966 /* The uuid returned here is used for:
1967 * uuid to put into bitmap file (Create, Grow)
1968 * uuid for backup header when saving critical section (Grow)
1969 * comparing uuids when re-adding a device into an array
1970 * In these cases the uuid required is that of the data-array,
1971 * not the device-set.
1972 * uuid to recognise same set when adding a missing device back
1973 * to an array. This is a uuid for the device-set.
1974 *
1975 * For each of these we can make do with a truncated
1976 * or hashed uuid rather than the original, as long as
1977 * everyone agrees.
1978 * In each case the uuid required is that of the data-array,
1979 * not the device-set.
1980 */
1981 /* imsm does not track uuid's so we synthesis one using sha1 on
1982 * - The signature (Which is constant for all imsm array, but no matter)
1983 * - the orig_family_num of the container
1984 * - the index number of the volume
1985 * - the 'serial' number of the volume.
1986 * Hopefully these are all constant.
1987 */
1988 struct intel_super *super = st->sb;
1989
1990 char buf[20];
1991 struct sha1_ctx ctx;
1992 struct imsm_dev *dev = NULL;
1993 __u32 family_num;
1994
1995 /* some mdadm versions failed to set ->orig_family_num, in which
1996 * case fall back to ->family_num. orig_family_num will be
1997 * fixed up with the first metadata update.
1998 */
1999 family_num = super->anchor->orig_family_num;
2000 if (family_num == 0)
2001 family_num = super->anchor->family_num;
2002 sha1_init_ctx(&ctx);
2003 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2004 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2005 if (super->current_vol >= 0)
2006 dev = get_imsm_dev(super, super->current_vol);
2007 if (dev) {
2008 __u32 vol = super->current_vol;
2009 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2010 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2011 }
2012 sha1_finish_ctx(&ctx, buf);
2013 memcpy(uuid, buf, 4*4);
2014 }
2015
2016 #if 0
2017 static void
2018 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
2019 {
2020 __u8 *v = get_imsm_version(mpb);
2021 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2022 char major[] = { 0, 0, 0 };
2023 char minor[] = { 0 ,0, 0 };
2024 char patch[] = { 0, 0, 0 };
2025 char *ver_parse[] = { major, minor, patch };
2026 int i, j;
2027
2028 i = j = 0;
2029 while (*v != '\0' && v < end) {
2030 if (*v != '.' && j < 2)
2031 ver_parse[i][j++] = *v;
2032 else {
2033 i++;
2034 j = 0;
2035 }
2036 v++;
2037 }
2038
2039 *m = strtol(minor, NULL, 0);
2040 *p = strtol(patch, NULL, 0);
2041 }
2042 #endif
2043
2044 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2045 {
2046 /* migr_strip_size when repairing or initializing parity */
2047 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2048 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2049
2050 switch (get_imsm_raid_level(map)) {
2051 case 5:
2052 case 10:
2053 return chunk;
2054 default:
2055 return 128*1024 >> 9;
2056 }
2057 }
2058
2059 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2060 {
2061 /* migr_strip_size when rebuilding a degraded disk, no idea why
2062 * this is different than migr_strip_size_resync(), but it's good
2063 * to be compatible
2064 */
2065 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2066 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2067
2068 switch (get_imsm_raid_level(map)) {
2069 case 1:
2070 case 10:
2071 if (map->num_members % map->num_domains == 0)
2072 return 128*1024 >> 9;
2073 else
2074 return chunk;
2075 case 5:
2076 return max((__u32) 64*1024 >> 9, chunk);
2077 default:
2078 return 128*1024 >> 9;
2079 }
2080 }
2081
2082 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2083 {
2084 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2085 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2086 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2087 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2088
2089 return max((__u32) 1, hi_chunk / lo_chunk);
2090 }
2091
2092 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2093 {
2094 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2095 int level = get_imsm_raid_level(lo);
2096
2097 if (level == 1 || level == 10) {
2098 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2099
2100 return hi->num_domains;
2101 } else
2102 return num_stripes_per_unit_resync(dev);
2103 }
2104
2105 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2106 {
2107 /* named 'imsm_' because raid0, raid1 and raid10
2108 * counter-intuitively have the same number of data disks
2109 */
2110 struct imsm_map *map = get_imsm_map(dev, second_map);
2111
2112 switch (get_imsm_raid_level(map)) {
2113 case 0:
2114 return map->num_members;
2115 break;
2116 case 1:
2117 case 10:
2118 return map->num_members/2;
2119 case 5:
2120 return map->num_members - 1;
2121 default:
2122 dprintf("%s: unsupported raid level\n", __func__);
2123 return 0;
2124 }
2125 }
2126
2127 static __u32 parity_segment_depth(struct imsm_dev *dev)
2128 {
2129 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2130 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2131
2132 switch(get_imsm_raid_level(map)) {
2133 case 1:
2134 case 10:
2135 return chunk * map->num_domains;
2136 case 5:
2137 return chunk * map->num_members;
2138 default:
2139 return chunk;
2140 }
2141 }
2142
2143 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2144 {
2145 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2146 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2147 __u32 strip = block / chunk;
2148
2149 switch (get_imsm_raid_level(map)) {
2150 case 1:
2151 case 10: {
2152 __u32 vol_strip = (strip * map->num_domains) + 1;
2153 __u32 vol_stripe = vol_strip / map->num_members;
2154
2155 return vol_stripe * chunk + block % chunk;
2156 } case 5: {
2157 __u32 stripe = strip / (map->num_members - 1);
2158
2159 return stripe * chunk + block % chunk;
2160 }
2161 default:
2162 return 0;
2163 }
2164 }
2165
2166 static __u64 blocks_per_migr_unit(struct intel_super *super,
2167 struct imsm_dev *dev)
2168 {
2169 /* calculate the conversion factor between per member 'blocks'
2170 * (md/{resync,rebuild}_start) and imsm migration units, return
2171 * 0 for the 'not migrating' and 'unsupported migration' cases
2172 */
2173 if (!dev->vol.migr_state)
2174 return 0;
2175
2176 switch (migr_type(dev)) {
2177 case MIGR_GEN_MIGR: {
2178 struct migr_record *migr_rec = super->migr_rec;
2179 return __le32_to_cpu(migr_rec->blocks_per_unit);
2180 }
2181 case MIGR_VERIFY:
2182 case MIGR_REPAIR:
2183 case MIGR_INIT: {
2184 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2185 __u32 stripes_per_unit;
2186 __u32 blocks_per_unit;
2187 __u32 parity_depth;
2188 __u32 migr_chunk;
2189 __u32 block_map;
2190 __u32 block_rel;
2191 __u32 segment;
2192 __u32 stripe;
2193 __u8 disks;
2194
2195 /* yes, this is really the translation of migr_units to
2196 * per-member blocks in the 'resync' case
2197 */
2198 stripes_per_unit = num_stripes_per_unit_resync(dev);
2199 migr_chunk = migr_strip_blocks_resync(dev);
2200 disks = imsm_num_data_members(dev, MAP_0);
2201 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2202 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2203 segment = blocks_per_unit / stripe;
2204 block_rel = blocks_per_unit - segment * stripe;
2205 parity_depth = parity_segment_depth(dev);
2206 block_map = map_migr_block(dev, block_rel);
2207 return block_map + parity_depth * segment;
2208 }
2209 case MIGR_REBUILD: {
2210 __u32 stripes_per_unit;
2211 __u32 migr_chunk;
2212
2213 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2214 migr_chunk = migr_strip_blocks_rebuild(dev);
2215 return migr_chunk * stripes_per_unit;
2216 }
2217 case MIGR_STATE_CHANGE:
2218 default:
2219 return 0;
2220 }
2221 }
2222
2223 static int imsm_level_to_layout(int level)
2224 {
2225 switch (level) {
2226 case 0:
2227 case 1:
2228 return 0;
2229 case 5:
2230 case 6:
2231 return ALGORITHM_LEFT_ASYMMETRIC;
2232 case 10:
2233 return 0x102;
2234 }
2235 return UnSet;
2236 }
2237
2238 /*******************************************************************************
2239 * Function: read_imsm_migr_rec
2240 * Description: Function reads imsm migration record from last sector of disk
2241 * Parameters:
2242 * fd : disk descriptor
2243 * super : metadata info
2244 * Returns:
2245 * 0 : success,
2246 * -1 : fail
2247 ******************************************************************************/
2248 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2249 {
2250 int ret_val = -1;
2251 unsigned long long dsize;
2252
2253 get_dev_size(fd, NULL, &dsize);
2254 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2255 pr_err("Cannot seek to anchor block: %s\n",
2256 strerror(errno));
2257 goto out;
2258 }
2259 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2260 MIGR_REC_BUF_SIZE) {
2261 pr_err("Cannot read migr record block: %s\n",
2262 strerror(errno));
2263 goto out;
2264 }
2265 ret_val = 0;
2266
2267 out:
2268 return ret_val;
2269 }
2270
2271 static struct imsm_dev *imsm_get_device_during_migration(
2272 struct intel_super *super)
2273 {
2274
2275 struct intel_dev *dv;
2276
2277 for (dv = super->devlist; dv; dv = dv->next) {
2278 if (is_gen_migration(dv->dev))
2279 return dv->dev;
2280 }
2281 return NULL;
2282 }
2283
2284 /*******************************************************************************
2285 * Function: load_imsm_migr_rec
2286 * Description: Function reads imsm migration record (it is stored at the last
2287 * sector of disk)
2288 * Parameters:
2289 * super : imsm internal array info
2290 * info : general array info
2291 * Returns:
2292 * 0 : success
2293 * -1 : fail
2294 * -2 : no migration in progress
2295 ******************************************************************************/
2296 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2297 {
2298 struct mdinfo *sd;
2299 struct dl *dl = NULL;
2300 char nm[30];
2301 int retval = -1;
2302 int fd = -1;
2303 struct imsm_dev *dev;
2304 struct imsm_map *map = NULL;
2305 int slot = -1;
2306
2307 /* find map under migration */
2308 dev = imsm_get_device_during_migration(super);
2309 /* nothing to load,no migration in progress?
2310 */
2311 if (dev == NULL)
2312 return -2;
2313 map = get_imsm_map(dev, MAP_0);
2314
2315 if (info) {
2316 for (sd = info->devs ; sd ; sd = sd->next) {
2317 /* skip spare and failed disks
2318 */
2319 if (sd->disk.raid_disk < 0)
2320 continue;
2321 /* read only from one of the first two slots */
2322 if (map)
2323 slot = get_imsm_disk_slot(map,
2324 sd->disk.raid_disk);
2325 if ((map == NULL) || (slot > 1) || (slot < 0))
2326 continue;
2327
2328 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2329 fd = dev_open(nm, O_RDONLY);
2330 if (fd >= 0)
2331 break;
2332 }
2333 }
2334 if (fd < 0) {
2335 for (dl = super->disks; dl; dl = dl->next) {
2336 /* skip spare and failed disks
2337 */
2338 if (dl->index < 0)
2339 continue;
2340 /* read only from one of the first two slots */
2341 if (map)
2342 slot = get_imsm_disk_slot(map, dl->index);
2343 if ((map == NULL) || (slot > 1) || (slot < 0))
2344 continue;
2345 sprintf(nm, "%d:%d", dl->major, dl->minor);
2346 fd = dev_open(nm, O_RDONLY);
2347 if (fd >= 0)
2348 break;
2349 }
2350 }
2351 if (fd < 0)
2352 goto out;
2353 retval = read_imsm_migr_rec(fd, super);
2354
2355 out:
2356 if (fd >= 0)
2357 close(fd);
2358 return retval;
2359 }
2360
2361 #ifndef MDASSEMBLE
2362 /*******************************************************************************
2363 * function: imsm_create_metadata_checkpoint_update
2364 * Description: It creates update for checkpoint change.
2365 * Parameters:
2366 * super : imsm internal array info
2367 * u : pointer to prepared update
2368 * Returns:
2369 * Uptate length.
2370 * If length is equal to 0, input pointer u contains no update
2371 ******************************************************************************/
2372 static int imsm_create_metadata_checkpoint_update(
2373 struct intel_super *super,
2374 struct imsm_update_general_migration_checkpoint **u)
2375 {
2376
2377 int update_memory_size = 0;
2378
2379 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2380
2381 if (u == NULL)
2382 return 0;
2383 *u = NULL;
2384
2385 /* size of all update data without anchor */
2386 update_memory_size =
2387 sizeof(struct imsm_update_general_migration_checkpoint);
2388
2389 *u = xcalloc(1, update_memory_size);
2390 if (*u == NULL) {
2391 dprintf("error: cannot get memory for "
2392 "imsm_create_metadata_checkpoint_update update\n");
2393 return 0;
2394 }
2395 (*u)->type = update_general_migration_checkpoint;
2396 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2397 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2398 (*u)->curr_migr_unit);
2399
2400 return update_memory_size;
2401 }
2402
2403
2404 static void imsm_update_metadata_locally(struct supertype *st,
2405 void *buf, int len);
2406
2407 /*******************************************************************************
2408 * Function: write_imsm_migr_rec
2409 * Description: Function writes imsm migration record
2410 * (at the last sector of disk)
2411 * Parameters:
2412 * super : imsm internal array info
2413 * Returns:
2414 * 0 : success
2415 * -1 : if fail
2416 ******************************************************************************/
2417 static int write_imsm_migr_rec(struct supertype *st)
2418 {
2419 struct intel_super *super = st->sb;
2420 unsigned long long dsize;
2421 char nm[30];
2422 int fd = -1;
2423 int retval = -1;
2424 struct dl *sd;
2425 int len;
2426 struct imsm_update_general_migration_checkpoint *u;
2427 struct imsm_dev *dev;
2428 struct imsm_map *map = NULL;
2429
2430 /* find map under migration */
2431 dev = imsm_get_device_during_migration(super);
2432 /* if no migration, write buffer anyway to clear migr_record
2433 * on disk based on first available device
2434 */
2435 if (dev == NULL)
2436 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2437 super->current_vol);
2438
2439 map = get_imsm_map(dev, MAP_0);
2440
2441 for (sd = super->disks ; sd ; sd = sd->next) {
2442 int slot = -1;
2443
2444 /* skip failed and spare devices */
2445 if (sd->index < 0)
2446 continue;
2447 /* write to 2 first slots only */
2448 if (map)
2449 slot = get_imsm_disk_slot(map, sd->index);
2450 if ((map == NULL) || (slot > 1) || (slot < 0))
2451 continue;
2452
2453 sprintf(nm, "%d:%d", sd->major, sd->minor);
2454 fd = dev_open(nm, O_RDWR);
2455 if (fd < 0)
2456 continue;
2457 get_dev_size(fd, NULL, &dsize);
2458 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2459 pr_err("Cannot seek to anchor block: %s\n",
2460 strerror(errno));
2461 goto out;
2462 }
2463 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2464 MIGR_REC_BUF_SIZE) {
2465 pr_err("Cannot write migr record block: %s\n",
2466 strerror(errno));
2467 goto out;
2468 }
2469 close(fd);
2470 fd = -1;
2471 }
2472 /* update checkpoint information in metadata */
2473 len = imsm_create_metadata_checkpoint_update(super, &u);
2474
2475 if (len <= 0) {
2476 dprintf("imsm: Cannot prepare update\n");
2477 goto out;
2478 }
2479 /* update metadata locally */
2480 imsm_update_metadata_locally(st, u, len);
2481 /* and possibly remotely */
2482 if (st->update_tail) {
2483 append_metadata_update(st, u, len);
2484 /* during reshape we do all work inside metadata handler
2485 * manage_reshape(), so metadata update has to be triggered
2486 * insida it
2487 */
2488 flush_metadata_updates(st);
2489 st->update_tail = &st->updates;
2490 } else
2491 free(u);
2492
2493 retval = 0;
2494 out:
2495 if (fd >= 0)
2496 close(fd);
2497 return retval;
2498 }
2499 #endif /* MDASSEMBLE */
2500
2501 /* spare/missing disks activations are not allowe when
2502 * array/container performs reshape operation, because
2503 * all arrays in container works on the same disks set
2504 */
2505 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2506 {
2507 int rv = 0;
2508 struct intel_dev *i_dev;
2509 struct imsm_dev *dev;
2510
2511 /* check whole container
2512 */
2513 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2514 dev = i_dev->dev;
2515 if (is_gen_migration(dev)) {
2516 /* No repair during any migration in container
2517 */
2518 rv = 1;
2519 break;
2520 }
2521 }
2522 return rv;
2523 }
2524 static unsigned long long imsm_component_size_aligment_check(int level,
2525 int chunk_size,
2526 unsigned long long component_size)
2527 {
2528 unsigned int component_size_alligment;
2529
2530 /* check component size aligment
2531 */
2532 component_size_alligment = component_size % (chunk_size/512);
2533
2534 dprintf("imsm_component_size_aligment_check(Level: %i, "
2535 "chunk_size = %i, component_size = %llu), "
2536 "component_size_alligment = %u\n",
2537 level, chunk_size, component_size,
2538 component_size_alligment);
2539
2540 if (component_size_alligment && (level != 1) && (level != UnSet)) {
2541 dprintf("imsm: reported component size alligned from %llu ",
2542 component_size);
2543 component_size -= component_size_alligment;
2544 dprintf("to %llu (%i).\n",
2545 component_size, component_size_alligment);
2546 }
2547
2548 return component_size;
2549 }
2550
2551 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2552 {
2553 struct intel_super *super = st->sb;
2554 struct migr_record *migr_rec = super->migr_rec;
2555 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2556 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2557 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2558 struct imsm_map *map_to_analyse = map;
2559 struct dl *dl;
2560 char *devname;
2561 int map_disks = info->array.raid_disks;
2562
2563 memset(info, 0, sizeof(*info));
2564 if (prev_map)
2565 map_to_analyse = prev_map;
2566
2567 dl = super->current_disk;
2568
2569 info->container_member = super->current_vol;
2570 info->array.raid_disks = map->num_members;
2571 info->array.level = get_imsm_raid_level(map_to_analyse);
2572 info->array.layout = imsm_level_to_layout(info->array.level);
2573 info->array.md_minor = -1;
2574 info->array.ctime = 0;
2575 info->array.utime = 0;
2576 info->array.chunk_size =
2577 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2578 info->array.state = !dev->vol.dirty;
2579 info->custom_array_size = __le32_to_cpu(dev->size_high);
2580 info->custom_array_size <<= 32;
2581 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2582 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2583
2584 if (is_gen_migration(dev)) {
2585 info->reshape_active = 1;
2586 info->new_level = get_imsm_raid_level(map);
2587 info->new_layout = imsm_level_to_layout(info->new_level);
2588 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2589 info->delta_disks = map->num_members - prev_map->num_members;
2590 if (info->delta_disks) {
2591 /* this needs to be applied to every array
2592 * in the container.
2593 */
2594 info->reshape_active = CONTAINER_RESHAPE;
2595 }
2596 /* We shape information that we give to md might have to be
2597 * modify to cope with md's requirement for reshaping arrays.
2598 * For example, when reshaping a RAID0, md requires it to be
2599 * presented as a degraded RAID4.
2600 * Also if a RAID0 is migrating to a RAID5 we need to specify
2601 * the array as already being RAID5, but the 'before' layout
2602 * is a RAID4-like layout.
2603 */
2604 switch (info->array.level) {
2605 case 0:
2606 switch(info->new_level) {
2607 case 0:
2608 /* conversion is happening as RAID4 */
2609 info->array.level = 4;
2610 info->array.raid_disks += 1;
2611 break;
2612 case 5:
2613 /* conversion is happening as RAID5 */
2614 info->array.level = 5;
2615 info->array.layout = ALGORITHM_PARITY_N;
2616 info->delta_disks -= 1;
2617 break;
2618 default:
2619 /* FIXME error message */
2620 info->array.level = UnSet;
2621 break;
2622 }
2623 break;
2624 }
2625 } else {
2626 info->new_level = UnSet;
2627 info->new_layout = UnSet;
2628 info->new_chunk = info->array.chunk_size;
2629 info->delta_disks = 0;
2630 }
2631
2632 if (dl) {
2633 info->disk.major = dl->major;
2634 info->disk.minor = dl->minor;
2635 info->disk.number = dl->index;
2636 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2637 dl->index);
2638 }
2639
2640 info->data_offset = pba_of_lba0(map_to_analyse);
2641 info->component_size = blocks_per_member(map_to_analyse);
2642
2643 info->component_size = imsm_component_size_aligment_check(
2644 info->array.level,
2645 info->array.chunk_size,
2646 info->component_size);
2647
2648 memset(info->uuid, 0, sizeof(info->uuid));
2649 info->recovery_start = MaxSector;
2650
2651 info->reshape_progress = 0;
2652 info->resync_start = MaxSector;
2653 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2654 dev->vol.dirty) &&
2655 imsm_reshape_blocks_arrays_changes(super) == 0) {
2656 info->resync_start = 0;
2657 }
2658 if (dev->vol.migr_state) {
2659 switch (migr_type(dev)) {
2660 case MIGR_REPAIR:
2661 case MIGR_INIT: {
2662 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2663 dev);
2664 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2665
2666 info->resync_start = blocks_per_unit * units;
2667 break;
2668 }
2669 case MIGR_GEN_MIGR: {
2670 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2671 dev);
2672 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2673 unsigned long long array_blocks;
2674 int used_disks;
2675
2676 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2677 (units <
2678 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2679 (super->migr_rec->rec_status ==
2680 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2681 units++;
2682
2683 info->reshape_progress = blocks_per_unit * units;
2684
2685 dprintf("IMSM: General Migration checkpoint : %llu "
2686 "(%llu) -> read reshape progress : %llu\n",
2687 (unsigned long long)units,
2688 (unsigned long long)blocks_per_unit,
2689 info->reshape_progress);
2690
2691 used_disks = imsm_num_data_members(dev, MAP_1);
2692 if (used_disks > 0) {
2693 array_blocks = blocks_per_member(map) *
2694 used_disks;
2695 /* round array size down to closest MB
2696 */
2697 info->custom_array_size = (array_blocks
2698 >> SECT_PER_MB_SHIFT)
2699 << SECT_PER_MB_SHIFT;
2700 }
2701 }
2702 case MIGR_VERIFY:
2703 /* we could emulate the checkpointing of
2704 * 'sync_action=check' migrations, but for now
2705 * we just immediately complete them
2706 */
2707 case MIGR_REBUILD:
2708 /* this is handled by container_content_imsm() */
2709 case MIGR_STATE_CHANGE:
2710 /* FIXME handle other migrations */
2711 default:
2712 /* we are not dirty, so... */
2713 info->resync_start = MaxSector;
2714 }
2715 }
2716
2717 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2718 info->name[MAX_RAID_SERIAL_LEN] = 0;
2719
2720 info->array.major_version = -1;
2721 info->array.minor_version = -2;
2722 devname = devnum2devname(st->container_dev);
2723 *info->text_version = '\0';
2724 if (devname)
2725 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2726 free(devname);
2727 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2728 uuid_from_super_imsm(st, info->uuid);
2729
2730 if (dmap) {
2731 int i, j;
2732 for (i=0; i<map_disks; i++) {
2733 dmap[i] = 0;
2734 if (i < info->array.raid_disks) {
2735 struct imsm_disk *dsk;
2736 j = get_imsm_disk_idx(dev, i, MAP_X);
2737 dsk = get_imsm_disk(super, j);
2738 if (dsk && (dsk->status & CONFIGURED_DISK))
2739 dmap[i] = 1;
2740 }
2741 }
2742 }
2743 }
2744
2745 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2746 int failed, int look_in_map);
2747
2748 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2749 int look_in_map);
2750
2751
2752 #ifndef MDASSEMBLE
2753 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2754 {
2755 if (is_gen_migration(dev)) {
2756 int failed;
2757 __u8 map_state;
2758 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2759
2760 failed = imsm_count_failed(super, dev, MAP_1);
2761 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2762 if (map2->map_state != map_state) {
2763 map2->map_state = map_state;
2764 super->updates_pending++;
2765 }
2766 }
2767 }
2768 #endif
2769
2770 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2771 {
2772 struct dl *d;
2773
2774 for (d = super->missing; d; d = d->next)
2775 if (d->index == index)
2776 return &d->disk;
2777 return NULL;
2778 }
2779
2780 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2781 {
2782 struct intel_super *super = st->sb;
2783 struct imsm_disk *disk;
2784 int map_disks = info->array.raid_disks;
2785 int max_enough = -1;
2786 int i;
2787 struct imsm_super *mpb;
2788
2789 if (super->current_vol >= 0) {
2790 getinfo_super_imsm_volume(st, info, map);
2791 return;
2792 }
2793 memset(info, 0, sizeof(*info));
2794
2795 /* Set raid_disks to zero so that Assemble will always pull in valid
2796 * spares
2797 */
2798 info->array.raid_disks = 0;
2799 info->array.level = LEVEL_CONTAINER;
2800 info->array.layout = 0;
2801 info->array.md_minor = -1;
2802 info->array.ctime = 0; /* N/A for imsm */
2803 info->array.utime = 0;
2804 info->array.chunk_size = 0;
2805
2806 info->disk.major = 0;
2807 info->disk.minor = 0;
2808 info->disk.raid_disk = -1;
2809 info->reshape_active = 0;
2810 info->array.major_version = -1;
2811 info->array.minor_version = -2;
2812 strcpy(info->text_version, "imsm");
2813 info->safe_mode_delay = 0;
2814 info->disk.number = -1;
2815 info->disk.state = 0;
2816 info->name[0] = 0;
2817 info->recovery_start = MaxSector;
2818 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2819
2820 /* do we have the all the insync disks that we expect? */
2821 mpb = super->anchor;
2822
2823 for (i = 0; i < mpb->num_raid_devs; i++) {
2824 struct imsm_dev *dev = get_imsm_dev(super, i);
2825 int failed, enough, j, missing = 0;
2826 struct imsm_map *map;
2827 __u8 state;
2828
2829 failed = imsm_count_failed(super, dev, MAP_0);
2830 state = imsm_check_degraded(super, dev, failed, MAP_0);
2831 map = get_imsm_map(dev, MAP_0);
2832
2833 /* any newly missing disks?
2834 * (catches single-degraded vs double-degraded)
2835 */
2836 for (j = 0; j < map->num_members; j++) {
2837 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2838 __u32 idx = ord_to_idx(ord);
2839
2840 if (!(ord & IMSM_ORD_REBUILD) &&
2841 get_imsm_missing(super, idx)) {
2842 missing = 1;
2843 break;
2844 }
2845 }
2846
2847 if (state == IMSM_T_STATE_FAILED)
2848 enough = -1;
2849 else if (state == IMSM_T_STATE_DEGRADED &&
2850 (state != map->map_state || missing))
2851 enough = 0;
2852 else /* we're normal, or already degraded */
2853 enough = 1;
2854 if (is_gen_migration(dev) && missing) {
2855 /* during general migration we need all disks
2856 * that process is running on.
2857 * No new missing disk is allowed.
2858 */
2859 max_enough = -1;
2860 enough = -1;
2861 /* no more checks necessary
2862 */
2863 break;
2864 }
2865 /* in the missing/failed disk case check to see
2866 * if at least one array is runnable
2867 */
2868 max_enough = max(max_enough, enough);
2869 }
2870 dprintf("%s: enough: %d\n", __func__, max_enough);
2871 info->container_enough = max_enough;
2872
2873 if (super->disks) {
2874 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2875
2876 disk = &super->disks->disk;
2877 info->data_offset = total_blocks(&super->disks->disk) - reserved;
2878 info->component_size = reserved;
2879 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2880 /* we don't change info->disk.raid_disk here because
2881 * this state will be finalized in mdmon after we have
2882 * found the 'most fresh' version of the metadata
2883 */
2884 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2885 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2886 }
2887
2888 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2889 * ->compare_super may have updated the 'num_raid_devs' field for spares
2890 */
2891 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2892 uuid_from_super_imsm(st, info->uuid);
2893 else
2894 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2895
2896 /* I don't know how to compute 'map' on imsm, so use safe default */
2897 if (map) {
2898 int i;
2899 for (i = 0; i < map_disks; i++)
2900 map[i] = 1;
2901 }
2902
2903 }
2904
2905 /* allocates memory and fills disk in mdinfo structure
2906 * for each disk in array */
2907 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2908 {
2909 struct mdinfo *mddev = NULL;
2910 struct intel_super *super = st->sb;
2911 struct imsm_disk *disk;
2912 int count = 0;
2913 struct dl *dl;
2914 if (!super || !super->disks)
2915 return NULL;
2916 dl = super->disks;
2917 mddev = xcalloc(1, sizeof(*mddev));
2918 while (dl) {
2919 struct mdinfo *tmp;
2920 disk = &dl->disk;
2921 tmp = xcalloc(1, sizeof(*tmp));
2922 if (mddev->devs)
2923 tmp->next = mddev->devs;
2924 mddev->devs = tmp;
2925 tmp->disk.number = count++;
2926 tmp->disk.major = dl->major;
2927 tmp->disk.minor = dl->minor;
2928 tmp->disk.state = is_configured(disk) ?
2929 (1 << MD_DISK_ACTIVE) : 0;
2930 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2931 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2932 tmp->disk.raid_disk = -1;
2933 dl = dl->next;
2934 }
2935 return mddev;
2936 }
2937
2938 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2939 char *update, char *devname, int verbose,
2940 int uuid_set, char *homehost)
2941 {
2942 /* For 'assemble' and 'force' we need to return non-zero if any
2943 * change was made. For others, the return value is ignored.
2944 * Update options are:
2945 * force-one : This device looks a bit old but needs to be included,
2946 * update age info appropriately.
2947 * assemble: clear any 'faulty' flag to allow this device to
2948 * be assembled.
2949 * force-array: Array is degraded but being forced, mark it clean
2950 * if that will be needed to assemble it.
2951 *
2952 * newdev: not used ????
2953 * grow: Array has gained a new device - this is currently for
2954 * linear only
2955 * resync: mark as dirty so a resync will happen.
2956 * name: update the name - preserving the homehost
2957 * uuid: Change the uuid of the array to match watch is given
2958 *
2959 * Following are not relevant for this imsm:
2960 * sparc2.2 : update from old dodgey metadata
2961 * super-minor: change the preferred_minor number
2962 * summaries: update redundant counters.
2963 * homehost: update the recorded homehost
2964 * _reshape_progress: record new reshape_progress position.
2965 */
2966 int rv = 1;
2967 struct intel_super *super = st->sb;
2968 struct imsm_super *mpb;
2969
2970 /* we can only update container info */
2971 if (!super || super->current_vol >= 0 || !super->anchor)
2972 return 1;
2973
2974 mpb = super->anchor;
2975
2976 if (strcmp(update, "uuid") == 0) {
2977 /* We take this to mean that the family_num should be updated.
2978 * However that is much smaller than the uuid so we cannot really
2979 * allow an explicit uuid to be given. And it is hard to reliably
2980 * know if one was.
2981 * So if !uuid_set we know the current uuid is random and just used
2982 * the first 'int' and copy it to the other 3 positions.
2983 * Otherwise we require the 4 'int's to be the same as would be the
2984 * case if we are using a random uuid. So an explicit uuid will be
2985 * accepted as long as all for ints are the same... which shouldn't hurt
2986 */
2987 if (!uuid_set) {
2988 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
2989 rv = 0;
2990 } else {
2991 if (info->uuid[0] != info->uuid[1] ||
2992 info->uuid[1] != info->uuid[2] ||
2993 info->uuid[2] != info->uuid[3])
2994 rv = -1;
2995 else
2996 rv = 0;
2997 }
2998 if (rv == 0)
2999 mpb->orig_family_num = info->uuid[0];
3000 } else if (strcmp(update, "assemble") == 0)
3001 rv = 0;
3002 else
3003 rv = -1;
3004
3005 /* successful update? recompute checksum */
3006 if (rv == 0)
3007 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
3008
3009 return rv;
3010 }
3011
3012 static size_t disks_to_mpb_size(int disks)
3013 {
3014 size_t size;
3015
3016 size = sizeof(struct imsm_super);
3017 size += (disks - 1) * sizeof(struct imsm_disk);
3018 size += 2 * sizeof(struct imsm_dev);
3019 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3020 size += (4 - 2) * sizeof(struct imsm_map);
3021 /* 4 possible disk_ord_tbl's */
3022 size += 4 * (disks - 1) * sizeof(__u32);
3023
3024 return size;
3025 }
3026
3027 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3028 unsigned long long data_offset)
3029 {
3030 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3031 return 0;
3032
3033 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
3034 }
3035
3036 static void free_devlist(struct intel_super *super)
3037 {
3038 struct intel_dev *dv;
3039
3040 while (super->devlist) {
3041 dv = super->devlist->next;
3042 free(super->devlist->dev);
3043 free(super->devlist);
3044 super->devlist = dv;
3045 }
3046 }
3047
3048 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3049 {
3050 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3051 }
3052
3053 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3054 {
3055 /*
3056 * return:
3057 * 0 same, or first was empty, and second was copied
3058 * 1 second had wrong number
3059 * 2 wrong uuid
3060 * 3 wrong other info
3061 */
3062 struct intel_super *first = st->sb;
3063 struct intel_super *sec = tst->sb;
3064
3065 if (!first) {
3066 st->sb = tst->sb;
3067 tst->sb = NULL;
3068 return 0;
3069 }
3070 /* in platform dependent environment test if the disks
3071 * use the same Intel hba
3072 * If not on Intel hba at all, allow anything.
3073 */
3074 if (!check_env("IMSM_NO_PLATFORM")) {
3075 if (first->hba && sec->hba &&
3076 first->hba->type != sec->hba->type) {
3077 fprintf(stderr,
3078 "HBAs of devices does not match %s != %s\n",
3079 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
3080 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
3081 return 3;
3082 }
3083 }
3084
3085 /* if an anchor does not have num_raid_devs set then it is a free
3086 * floating spare
3087 */
3088 if (first->anchor->num_raid_devs > 0 &&
3089 sec->anchor->num_raid_devs > 0) {
3090 /* Determine if these disks might ever have been
3091 * related. Further disambiguation can only take place
3092 * in load_super_imsm_all
3093 */
3094 __u32 first_family = first->anchor->orig_family_num;
3095 __u32 sec_family = sec->anchor->orig_family_num;
3096
3097 if (memcmp(first->anchor->sig, sec->anchor->sig,
3098 MAX_SIGNATURE_LENGTH) != 0)
3099 return 3;
3100
3101 if (first_family == 0)
3102 first_family = first->anchor->family_num;
3103 if (sec_family == 0)
3104 sec_family = sec->anchor->family_num;
3105
3106 if (first_family != sec_family)
3107 return 3;
3108
3109 }
3110
3111
3112 /* if 'first' is a spare promote it to a populated mpb with sec's
3113 * family number
3114 */
3115 if (first->anchor->num_raid_devs == 0 &&
3116 sec->anchor->num_raid_devs > 0) {
3117 int i;
3118 struct intel_dev *dv;
3119 struct imsm_dev *dev;
3120
3121 /* we need to copy raid device info from sec if an allocation
3122 * fails here we don't associate the spare
3123 */
3124 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3125 dv = xmalloc(sizeof(*dv));
3126 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3127 dv->dev = dev;
3128 dv->index = i;
3129 dv->next = first->devlist;
3130 first->devlist = dv;
3131 }
3132 if (i < sec->anchor->num_raid_devs) {
3133 /* allocation failure */
3134 free_devlist(first);
3135 fprintf(stderr, "imsm: failed to associate spare\n");
3136 return 3;
3137 }
3138 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3139 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3140 first->anchor->family_num = sec->anchor->family_num;
3141 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3142 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3143 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3144 }
3145
3146 return 0;
3147 }
3148
3149 static void fd2devname(int fd, char *name)
3150 {
3151 struct stat st;
3152 char path[256];
3153 char dname[PATH_MAX];
3154 char *nm;
3155 int rv;
3156
3157 name[0] = '\0';
3158 if (fstat(fd, &st) != 0)
3159 return;
3160 sprintf(path, "/sys/dev/block/%d:%d",
3161 major(st.st_rdev), minor(st.st_rdev));
3162
3163 rv = readlink(path, dname, sizeof(dname)-1);
3164 if (rv <= 0)
3165 return;
3166
3167 dname[rv] = '\0';
3168 nm = strrchr(dname, '/');
3169 if (nm) {
3170 nm++;
3171 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3172 }
3173 }
3174
3175 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3176
3177 static int imsm_read_serial(int fd, char *devname,
3178 __u8 serial[MAX_RAID_SERIAL_LEN])
3179 {
3180 unsigned char scsi_serial[255];
3181 int rv;
3182 int rsp_len;
3183 int len;
3184 char *dest;
3185 char *src;
3186 char *rsp_buf;
3187 int i;
3188
3189 memset(scsi_serial, 0, sizeof(scsi_serial));
3190
3191 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3192
3193 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3194 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3195 fd2devname(fd, (char *) serial);
3196 return 0;
3197 }
3198
3199 if (rv != 0) {
3200 if (devname)
3201 pr_err("Failed to retrieve serial for %s\n",
3202 devname);
3203 return rv;
3204 }
3205
3206 rsp_len = scsi_serial[3];
3207 if (!rsp_len) {
3208 if (devname)
3209 pr_err("Failed to retrieve serial for %s\n",
3210 devname);
3211 return 2;
3212 }
3213 rsp_buf = (char *) &scsi_serial[4];
3214
3215 /* trim all whitespace and non-printable characters and convert
3216 * ':' to ';'
3217 */
3218 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3219 src = &rsp_buf[i];
3220 if (*src > 0x20) {
3221 /* ':' is reserved for use in placeholder serial
3222 * numbers for missing disks
3223 */
3224 if (*src == ':')
3225 *dest++ = ';';
3226 else
3227 *dest++ = *src;
3228 }
3229 }
3230 len = dest - rsp_buf;
3231 dest = rsp_buf;
3232
3233 /* truncate leading characters */
3234 if (len > MAX_RAID_SERIAL_LEN) {
3235 dest += len - MAX_RAID_SERIAL_LEN;
3236 len = MAX_RAID_SERIAL_LEN;
3237 }
3238
3239 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3240 memcpy(serial, dest, len);
3241
3242 return 0;
3243 }
3244
3245 static int serialcmp(__u8 *s1, __u8 *s2)
3246 {
3247 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3248 }
3249
3250 static void serialcpy(__u8 *dest, __u8 *src)
3251 {
3252 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3253 }
3254
3255 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3256 {
3257 struct dl *dl;
3258
3259 for (dl = super->disks; dl; dl = dl->next)
3260 if (serialcmp(dl->serial, serial) == 0)
3261 break;
3262
3263 return dl;
3264 }
3265
3266 static struct imsm_disk *
3267 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3268 {
3269 int i;
3270
3271 for (i = 0; i < mpb->num_disks; i++) {
3272 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3273
3274 if (serialcmp(disk->serial, serial) == 0) {
3275 if (idx)
3276 *idx = i;
3277 return disk;
3278 }
3279 }
3280
3281 return NULL;
3282 }
3283
3284 static int
3285 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3286 {
3287 struct imsm_disk *disk;
3288 struct dl *dl;
3289 struct stat stb;
3290 int rv;
3291 char name[40];
3292 __u8 serial[MAX_RAID_SERIAL_LEN];
3293
3294 rv = imsm_read_serial(fd, devname, serial);
3295
3296 if (rv != 0)
3297 return 2;
3298
3299 dl = xcalloc(1, sizeof(*dl));
3300
3301 fstat(fd, &stb);
3302 dl->major = major(stb.st_rdev);
3303 dl->minor = minor(stb.st_rdev);
3304 dl->next = super->disks;
3305 dl->fd = keep_fd ? fd : -1;
3306 assert(super->disks == NULL);
3307 super->disks = dl;
3308 serialcpy(dl->serial, serial);
3309 dl->index = -2;
3310 dl->e = NULL;
3311 fd2devname(fd, name);
3312 if (devname)
3313 dl->devname = xstrdup(devname);
3314 else
3315 dl->devname = xstrdup(name);
3316
3317 /* look up this disk's index in the current anchor */
3318 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3319 if (disk) {
3320 dl->disk = *disk;
3321 /* only set index on disks that are a member of a
3322 * populated contianer, i.e. one with raid_devs
3323 */
3324 if (is_failed(&dl->disk))
3325 dl->index = -2;
3326 else if (is_spare(&dl->disk))
3327 dl->index = -1;
3328 }
3329
3330 return 0;
3331 }
3332
3333 #ifndef MDASSEMBLE
3334 /* When migrating map0 contains the 'destination' state while map1
3335 * contains the current state. When not migrating map0 contains the
3336 * current state. This routine assumes that map[0].map_state is set to
3337 * the current array state before being called.
3338 *
3339 * Migration is indicated by one of the following states
3340 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3341 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3342 * map1state=unitialized)
3343 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3344 * map1state=normal)
3345 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3346 * map1state=degraded)
3347 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3348 * map1state=normal)
3349 */
3350 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3351 __u8 to_state, int migr_type)
3352 {
3353 struct imsm_map *dest;
3354 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3355
3356 dev->vol.migr_state = 1;
3357 set_migr_type(dev, migr_type);
3358 dev->vol.curr_migr_unit = 0;
3359 dest = get_imsm_map(dev, MAP_1);
3360
3361 /* duplicate and then set the target end state in map[0] */
3362 memcpy(dest, src, sizeof_imsm_map(src));
3363 if ((migr_type == MIGR_REBUILD) ||
3364 (migr_type == MIGR_GEN_MIGR)) {
3365 __u32 ord;
3366 int i;
3367
3368 for (i = 0; i < src->num_members; i++) {
3369 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3370 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3371 }
3372 }
3373
3374 if (migr_type == MIGR_GEN_MIGR)
3375 /* Clear migration record */
3376 memset(super->migr_rec, 0, sizeof(struct migr_record));
3377
3378 src->map_state = to_state;
3379 }
3380
3381 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3382 __u8 map_state)
3383 {
3384 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3385 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3386 MAP_0 : MAP_1);
3387 int i, j;
3388
3389 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3390 * completed in the last migration.
3391 *
3392 * FIXME add support for raid-level-migration
3393 */
3394 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3395 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3396 /* when final map state is other than expected
3397 * merge maps (not for migration)
3398 */
3399 int failed;
3400
3401 for (i = 0; i < prev->num_members; i++)
3402 for (j = 0; j < map->num_members; j++)
3403 /* during online capacity expansion
3404 * disks position can be changed
3405 * if takeover is used
3406 */
3407 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3408 ord_to_idx(prev->disk_ord_tbl[i])) {
3409 map->disk_ord_tbl[j] |=
3410 prev->disk_ord_tbl[i];
3411 break;
3412 }
3413 failed = imsm_count_failed(super, dev, MAP_0);
3414 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3415 }
3416
3417 dev->vol.migr_state = 0;
3418 set_migr_type(dev, 0);
3419 dev->vol.curr_migr_unit = 0;
3420 map->map_state = map_state;
3421 }
3422 #endif
3423
3424 static int parse_raid_devices(struct intel_super *super)
3425 {
3426 int i;
3427 struct imsm_dev *dev_new;
3428 size_t len, len_migr;
3429 size_t max_len = 0;
3430 size_t space_needed = 0;
3431 struct imsm_super *mpb = super->anchor;
3432
3433 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3434 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3435 struct intel_dev *dv;
3436
3437 len = sizeof_imsm_dev(dev_iter, 0);
3438 len_migr = sizeof_imsm_dev(dev_iter, 1);
3439 if (len_migr > len)
3440 space_needed += len_migr - len;
3441
3442 dv = xmalloc(sizeof(*dv));
3443 if (max_len < len_migr)
3444 max_len = len_migr;
3445 if (max_len > len_migr)
3446 space_needed += max_len - len_migr;
3447 dev_new = xmalloc(max_len);
3448 imsm_copy_dev(dev_new, dev_iter);
3449 dv->dev = dev_new;
3450 dv->index = i;
3451 dv->next = super->devlist;
3452 super->devlist = dv;
3453 }
3454
3455 /* ensure that super->buf is large enough when all raid devices
3456 * are migrating
3457 */
3458 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3459 void *buf;
3460
3461 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3462 if (posix_memalign(&buf, 512, len) != 0)
3463 return 1;
3464
3465 memcpy(buf, super->buf, super->len);
3466 memset(buf + super->len, 0, len - super->len);
3467 free(super->buf);
3468 super->buf = buf;
3469 super->len = len;
3470 }
3471
3472 return 0;
3473 }
3474
3475 /* retrieve a pointer to the bbm log which starts after all raid devices */
3476 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3477 {
3478 void *ptr = NULL;
3479
3480 if (__le32_to_cpu(mpb->bbm_log_size)) {
3481 ptr = mpb;
3482 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3483 }
3484
3485 return ptr;
3486 }
3487
3488 /*******************************************************************************
3489 * Function: check_mpb_migr_compatibility
3490 * Description: Function checks for unsupported migration features:
3491 * - migration optimization area (pba_of_lba0)
3492 * - descending reshape (ascending_migr)
3493 * Parameters:
3494 * super : imsm metadata information
3495 * Returns:
3496 * 0 : migration is compatible
3497 * -1 : migration is not compatible
3498 ******************************************************************************/
3499 int check_mpb_migr_compatibility(struct intel_super *super)
3500 {
3501 struct imsm_map *map0, *map1;
3502 struct migr_record *migr_rec = super->migr_rec;
3503 int i;
3504
3505 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3506 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3507
3508 if (dev_iter &&
3509 dev_iter->vol.migr_state == 1 &&
3510 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3511 /* This device is migrating */
3512 map0 = get_imsm_map(dev_iter, MAP_0);
3513 map1 = get_imsm_map(dev_iter, MAP_1);
3514 if (pba_of_lba0(map0) != pba_of_lba0(map1))
3515 /* migration optimization area was used */
3516 return -1;
3517 if (migr_rec->ascending_migr == 0
3518 && migr_rec->dest_depth_per_unit > 0)
3519 /* descending reshape not supported yet */
3520 return -1;
3521 }
3522 }
3523 return 0;
3524 }
3525
3526 static void __free_imsm(struct intel_super *super, int free_disks);
3527
3528 /* load_imsm_mpb - read matrix metadata
3529 * allocates super->mpb to be freed by free_imsm
3530 */
3531 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3532 {
3533 unsigned long long dsize;
3534 unsigned long long sectors;
3535 struct stat;
3536 struct imsm_super *anchor;
3537 __u32 check_sum;
3538
3539 get_dev_size(fd, NULL, &dsize);
3540 if (dsize < 1024) {
3541 if (devname)
3542 pr_err("%s: device to small for imsm\n",
3543 devname);
3544 return 1;
3545 }
3546
3547 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3548 if (devname)
3549 pr_err("Cannot seek to anchor block on %s: %s\n",
3550 devname, strerror(errno));
3551 return 1;
3552 }
3553
3554 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3555 if (devname)
3556 pr_err("Failed to allocate imsm anchor buffer"
3557 " on %s\n", devname);
3558 return 1;
3559 }
3560 if (read(fd, anchor, 512) != 512) {
3561 if (devname)
3562 pr_err("Cannot read anchor block on %s: %s\n",
3563 devname, strerror(errno));
3564 free(anchor);
3565 return 1;
3566 }
3567
3568 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3569 if (devname)
3570 pr_err("no IMSM anchor on %s\n", devname);
3571 free(anchor);
3572 return 2;
3573 }
3574
3575 __free_imsm(super, 0);
3576 /* reload capability and hba */
3577
3578 /* capability and hba must be updated with new super allocation */
3579 find_intel_hba_capability(fd, super, devname);
3580 super->len = ROUND_UP(anchor->mpb_size, 512);
3581 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3582 if (devname)
3583 pr_err("unable to allocate %zu byte mpb buffer\n",
3584 super->len);
3585 free(anchor);
3586 return 2;
3587 }
3588 memcpy(super->buf, anchor, 512);
3589
3590 sectors = mpb_sectors(anchor) - 1;
3591 free(anchor);
3592
3593 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3594 pr_err("%s could not allocate migr_rec buffer\n", __func__);
3595 free(super->buf);
3596 return 2;
3597 }
3598 super->clean_migration_record_by_mdmon = 0;
3599
3600 if (!sectors) {
3601 check_sum = __gen_imsm_checksum(super->anchor);
3602 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3603 if (devname)
3604 pr_err("IMSM checksum %x != %x on %s\n",
3605 check_sum,
3606 __le32_to_cpu(super->anchor->check_sum),
3607 devname);
3608 return 2;
3609 }
3610
3611 return 0;
3612 }
3613
3614 /* read the extended mpb */
3615 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3616 if (devname)
3617 pr_err("Cannot seek to extended mpb on %s: %s\n",
3618 devname, strerror(errno));
3619 return 1;
3620 }
3621
3622 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3623 if (devname)
3624 pr_err("Cannot read extended mpb on %s: %s\n",
3625 devname, strerror(errno));
3626 return 2;
3627 }
3628
3629 check_sum = __gen_imsm_checksum(super->anchor);
3630 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3631 if (devname)
3632 pr_err("IMSM checksum %x != %x on %s\n",
3633 check_sum, __le32_to_cpu(super->anchor->check_sum),
3634 devname);
3635 return 3;
3636 }
3637
3638 /* FIXME the BBM log is disk specific so we cannot use this global
3639 * buffer for all disks. Ok for now since we only look at the global
3640 * bbm_log_size parameter to gate assembly
3641 */
3642 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3643
3644 return 0;
3645 }
3646
3647 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3648
3649 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
3650 static void clear_hi(struct intel_super *super)
3651 {
3652 struct imsm_super *mpb = super->anchor;
3653 int i, n;
3654 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
3655 return;
3656 for (i = 0; i < mpb->num_disks; ++i) {
3657 struct imsm_disk *disk = &mpb->disk[i];
3658 disk->total_blocks_hi = 0;
3659 }
3660 for (i = 0; i < mpb->num_raid_devs; ++i) {
3661 struct imsm_dev *dev = get_imsm_dev(super, i);
3662 if (!dev)
3663 return;
3664 for (n = 0; n < 2; ++n) {
3665 struct imsm_map *map = get_imsm_map(dev, n);
3666 if (!map)
3667 continue;
3668 map->pba_of_lba0_hi = 0;
3669 map->blocks_per_member_hi = 0;
3670 map->num_data_stripes_hi = 0;
3671 }
3672 }
3673 }
3674
3675 static int
3676 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3677 {
3678 int err;
3679
3680 err = load_imsm_mpb(fd, super, devname);
3681 if (err)
3682 return err;
3683 err = load_imsm_disk(fd, super, devname, keep_fd);
3684 if (err)
3685 return err;
3686 err = parse_raid_devices(super);
3687 clear_hi(super);
3688 return err;
3689 }
3690
3691 static void __free_imsm_disk(struct dl *d)
3692 {
3693 if (d->fd >= 0)
3694 close(d->fd);
3695 if (d->devname)
3696 free(d->devname);
3697 if (d->e)
3698 free(d->e);
3699 free(d);
3700
3701 }
3702
3703 static void free_imsm_disks(struct intel_super *super)
3704 {
3705 struct dl *d;
3706
3707 while (super->disks) {
3708 d = super->disks;
3709 super->disks = d->next;
3710 __free_imsm_disk(d);
3711 }
3712 while (super->disk_mgmt_list) {
3713 d = super->disk_mgmt_list;
3714 super->disk_mgmt_list = d->next;
3715 __free_imsm_disk(d);
3716 }
3717 while (super->missing) {
3718 d = super->missing;
3719 super->missing = d->next;
3720 __free_imsm_disk(d);
3721 }
3722
3723 }
3724
3725 /* free all the pieces hanging off of a super pointer */
3726 static void __free_imsm(struct intel_super *super, int free_disks)
3727 {
3728 struct intel_hba *elem, *next;
3729
3730 if (super->buf) {
3731 free(super->buf);
3732 super->buf = NULL;
3733 }
3734 /* unlink capability description */
3735 super->orom = NULL;
3736 if (super->migr_rec_buf) {
3737 free(super->migr_rec_buf);
3738 super->migr_rec_buf = NULL;
3739 }
3740 if (free_disks)
3741 free_imsm_disks(super);
3742 free_devlist(super);
3743 elem = super->hba;
3744 while (elem) {
3745 if (elem->path)
3746 free((void *)elem->path);
3747 next = elem->next;
3748 free(elem);
3749 elem = next;
3750 }
3751 super->hba = NULL;
3752 }
3753
3754 static void free_imsm(struct intel_super *super)
3755 {
3756 __free_imsm(super, 1);
3757 free(super);
3758 }
3759
3760 static void free_super_imsm(struct supertype *st)
3761 {
3762 struct intel_super *super = st->sb;
3763
3764 if (!super)
3765 return;
3766
3767 free_imsm(super);
3768 st->sb = NULL;
3769 }
3770
3771 static struct intel_super *alloc_super(void)
3772 {
3773 struct intel_super *super = xcalloc(1, sizeof(*super));
3774
3775 super->current_vol = -1;
3776 super->create_offset = ~((unsigned long long) 0);
3777 return super;
3778 }
3779
3780 /*
3781 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3782 */
3783 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3784 {
3785 struct sys_dev *hba_name;
3786 int rv = 0;
3787
3788 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3789 super->orom = NULL;
3790 super->hba = NULL;
3791 return 0;
3792 }
3793 hba_name = find_disk_attached_hba(fd, NULL);
3794 if (!hba_name) {
3795 if (devname)
3796 pr_err("%s is not attached to Intel(R) RAID controller.\n",
3797 devname);
3798 return 1;
3799 }
3800 rv = attach_hba_to_super(super, hba_name);
3801 if (rv == 2) {
3802 if (devname) {
3803 struct intel_hba *hba = super->hba;
3804
3805 pr_err("%s is attached to Intel(R) %s RAID "
3806 "controller (%s),\n"
3807 " but the container is assigned to Intel(R) "
3808 "%s RAID controller (",
3809 devname,
3810 hba_name->path,
3811 hba_name->pci_id ? : "Err!",
3812 get_sys_dev_type(hba_name->type));
3813
3814 while (hba) {
3815 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3816 if (hba->next)
3817 fprintf(stderr, ", ");
3818 hba = hba->next;
3819 }
3820
3821 fprintf(stderr, ").\n"
3822 " Mixing devices attached to different controllers "
3823 "is not allowed.\n");
3824 }
3825 free_sys_dev(&hba_name);
3826 return 2;
3827 }
3828 super->orom = find_imsm_capability(hba_name->type);
3829 free_sys_dev(&hba_name);
3830 if (!super->orom)
3831 return 3;
3832 return 0;
3833 }
3834
3835 /* find_missing - helper routine for load_super_imsm_all that identifies
3836 * disks that have disappeared from the system. This routine relies on
3837 * the mpb being uptodate, which it is at load time.
3838 */
3839 static int find_missing(struct intel_super *super)
3840 {
3841 int i;
3842 struct imsm_super *mpb = super->anchor;
3843 struct dl *dl;
3844 struct imsm_disk *disk;
3845
3846 for (i = 0; i < mpb->num_disks; i++) {
3847 disk = __get_imsm_disk(mpb, i);
3848 dl = serial_to_dl(disk->serial, super);
3849 if (dl)
3850 continue;
3851
3852 dl = xmalloc(sizeof(*dl));
3853 dl->major = 0;
3854 dl->minor = 0;
3855 dl->fd = -1;
3856 dl->devname = xstrdup("missing");
3857 dl->index = i;
3858 serialcpy(dl->serial, disk->serial);
3859 dl->disk = *disk;
3860 dl->e = NULL;
3861 dl->next = super->missing;
3862 super->missing = dl;
3863 }
3864
3865 return 0;
3866 }
3867
3868 #ifndef MDASSEMBLE
3869 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3870 {
3871 struct intel_disk *idisk = disk_list;
3872
3873 while (idisk) {
3874 if (serialcmp(idisk->disk.serial, serial) == 0)
3875 break;
3876 idisk = idisk->next;
3877 }
3878
3879 return idisk;
3880 }
3881
3882 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3883 struct intel_super *super,
3884 struct intel_disk **disk_list)
3885 {
3886 struct imsm_disk *d = &super->disks->disk;
3887 struct imsm_super *mpb = super->anchor;
3888 int i, j;
3889
3890 for (i = 0; i < tbl_size; i++) {
3891 struct imsm_super *tbl_mpb = table[i]->anchor;
3892 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3893
3894 if (tbl_mpb->family_num == mpb->family_num) {
3895 if (tbl_mpb->check_sum == mpb->check_sum) {
3896 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3897 __func__, super->disks->major,
3898 super->disks->minor,
3899 table[i]->disks->major,
3900 table[i]->disks->minor);
3901 break;
3902 }
3903
3904 if (((is_configured(d) && !is_configured(tbl_d)) ||
3905 is_configured(d) == is_configured(tbl_d)) &&
3906 tbl_mpb->generation_num < mpb->generation_num) {
3907 /* current version of the mpb is a
3908 * better candidate than the one in
3909 * super_table, but copy over "cross
3910 * generational" status
3911 */
3912 struct intel_disk *idisk;
3913
3914 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3915 __func__, super->disks->major,
3916 super->disks->minor,
3917 table[i]->disks->major,
3918 table[i]->disks->minor);
3919
3920 idisk = disk_list_get(tbl_d->serial, *disk_list);
3921 if (idisk && is_failed(&idisk->disk))
3922 tbl_d->status |= FAILED_DISK;
3923 break;
3924 } else {
3925 struct intel_disk *idisk;
3926 struct imsm_disk *disk;
3927
3928 /* tbl_mpb is more up to date, but copy
3929 * over cross generational status before
3930 * returning
3931 */
3932 disk = __serial_to_disk(d->serial, mpb, NULL);
3933 if (disk && is_failed(disk))
3934 d->status |= FAILED_DISK;
3935
3936 idisk = disk_list_get(d->serial, *disk_list);
3937 if (idisk) {
3938 idisk->owner = i;
3939 if (disk && is_configured(disk))
3940 idisk->disk.status |= CONFIGURED_DISK;
3941 }
3942
3943 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3944 __func__, super->disks->major,
3945 super->disks->minor,
3946 table[i]->disks->major,
3947 table[i]->disks->minor);
3948
3949 return tbl_size;
3950 }
3951 }
3952 }
3953
3954 if (i >= tbl_size)
3955 table[tbl_size++] = super;
3956 else
3957 table[i] = super;
3958
3959 /* update/extend the merged list of imsm_disk records */
3960 for (j = 0; j < mpb->num_disks; j++) {
3961 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3962 struct intel_disk *idisk;
3963
3964 idisk = disk_list_get(disk->serial, *disk_list);
3965 if (idisk) {
3966 idisk->disk.status |= disk->status;
3967 if (is_configured(&idisk->disk) ||
3968 is_failed(&idisk->disk))
3969 idisk->disk.status &= ~(SPARE_DISK);
3970 } else {
3971 idisk = xcalloc(1, sizeof(*idisk));
3972 idisk->owner = IMSM_UNKNOWN_OWNER;
3973 idisk->disk = *disk;
3974 idisk->next = *disk_list;
3975 *disk_list = idisk;
3976 }
3977
3978 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3979 idisk->owner = i;
3980 }
3981
3982 return tbl_size;
3983 }
3984
3985 static struct intel_super *
3986 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3987 const int owner)
3988 {
3989 struct imsm_super *mpb = super->anchor;
3990 int ok_count = 0;
3991 int i;
3992
3993 for (i = 0; i < mpb->num_disks; i++) {
3994 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3995 struct intel_disk *idisk;
3996
3997 idisk = disk_list_get(disk->serial, disk_list);
3998 if (idisk) {
3999 if (idisk->owner == owner ||
4000 idisk->owner == IMSM_UNKNOWN_OWNER)
4001 ok_count++;
4002 else
4003 dprintf("%s: '%.16s' owner %d != %d\n",
4004 __func__, disk->serial, idisk->owner,
4005 owner);
4006 } else {
4007 dprintf("%s: unknown disk %x [%d]: %.16s\n",
4008 __func__, __le32_to_cpu(mpb->family_num), i,
4009 disk->serial);
4010 break;
4011 }
4012 }
4013
4014 if (ok_count == mpb->num_disks)
4015 return super;
4016 return NULL;
4017 }
4018
4019 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4020 {
4021 struct intel_super *s;
4022
4023 for (s = super_list; s; s = s->next) {
4024 if (family_num != s->anchor->family_num)
4025 continue;
4026 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
4027 __le32_to_cpu(family_num), s->disks->devname);
4028 }
4029 }
4030
4031 static struct intel_super *
4032 imsm_thunderdome(struct intel_super **super_list, int len)
4033 {
4034 struct intel_super *super_table[len];
4035 struct intel_disk *disk_list = NULL;
4036 struct intel_super *champion, *spare;
4037 struct intel_super *s, **del;
4038 int tbl_size = 0;
4039 int conflict;
4040 int i;
4041
4042 memset(super_table, 0, sizeof(super_table));
4043 for (s = *super_list; s; s = s->next)
4044 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4045
4046 for (i = 0; i < tbl_size; i++) {
4047 struct imsm_disk *d;
4048 struct intel_disk *idisk;
4049 struct imsm_super *mpb = super_table[i]->anchor;
4050
4051 s = super_table[i];
4052 d = &s->disks->disk;
4053
4054 /* 'd' must appear in merged disk list for its
4055 * configuration to be valid
4056 */
4057 idisk = disk_list_get(d->serial, disk_list);
4058 if (idisk && idisk->owner == i)
4059 s = validate_members(s, disk_list, i);
4060 else
4061 s = NULL;
4062
4063 if (!s)
4064 dprintf("%s: marking family: %#x from %d:%d offline\n",
4065 __func__, mpb->family_num,
4066 super_table[i]->disks->major,
4067 super_table[i]->disks->minor);
4068 super_table[i] = s;
4069 }
4070
4071 /* This is where the mdadm implementation differs from the Windows
4072 * driver which has no strict concept of a container. We can only
4073 * assemble one family from a container, so when returning a prodigal
4074 * array member to this system the code will not be able to disambiguate
4075 * the container contents that should be assembled ("foreign" versus
4076 * "local"). It requires user intervention to set the orig_family_num
4077 * to a new value to establish a new container. The Windows driver in
4078 * this situation fixes up the volume name in place and manages the
4079 * foreign array as an independent entity.
4080 */
4081 s = NULL;
4082 spare = NULL;
4083 conflict = 0;
4084 for (i = 0; i < tbl_size; i++) {
4085 struct intel_super *tbl_ent = super_table[i];
4086 int is_spare = 0;
4087
4088 if (!tbl_ent)
4089 continue;
4090
4091 if (tbl_ent->anchor->num_raid_devs == 0) {
4092 spare = tbl_ent;
4093 is_spare = 1;
4094 }
4095
4096 if (s && !is_spare) {
4097 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4098 conflict++;
4099 } else if (!s && !is_spare)
4100 s = tbl_ent;
4101 }
4102
4103 if (!s)
4104 s = spare;
4105 if (!s) {
4106 champion = NULL;
4107 goto out;
4108 }
4109 champion = s;
4110
4111 if (conflict)
4112 fprintf(stderr, "Chose family %#x on '%s', "
4113 "assemble conflicts to new container with '--update=uuid'\n",
4114 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4115
4116 /* collect all dl's onto 'champion', and update them to
4117 * champion's version of the status
4118 */
4119 for (s = *super_list; s; s = s->next) {
4120 struct imsm_super *mpb = champion->anchor;
4121 struct dl *dl = s->disks;
4122
4123 if (s == champion)
4124 continue;
4125
4126 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4127
4128 for (i = 0; i < mpb->num_disks; i++) {
4129 struct imsm_disk *disk;
4130
4131 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4132 if (disk) {
4133 dl->disk = *disk;
4134 /* only set index on disks that are a member of
4135 * a populated contianer, i.e. one with
4136 * raid_devs
4137 */
4138 if (is_failed(&dl->disk))
4139 dl->index = -2;
4140 else if (is_spare(&dl->disk))
4141 dl->index = -1;
4142 break;
4143 }
4144 }
4145
4146 if (i >= mpb->num_disks) {
4147 struct intel_disk *idisk;
4148
4149 idisk = disk_list_get(dl->serial, disk_list);
4150 if (idisk && is_spare(&idisk->disk) &&
4151 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4152 dl->index = -1;
4153 else {
4154 dl->index = -2;
4155 continue;
4156 }
4157 }
4158
4159 dl->next = champion->disks;
4160 champion->disks = dl;
4161 s->disks = NULL;
4162 }
4163
4164 /* delete 'champion' from super_list */
4165 for (del = super_list; *del; ) {
4166 if (*del == champion) {
4167 *del = (*del)->next;
4168 break;
4169 } else
4170 del = &(*del)->next;
4171 }
4172 champion->next = NULL;
4173
4174 out:
4175 while (disk_list) {
4176 struct intel_disk *idisk = disk_list;
4177
4178 disk_list = disk_list->next;
4179 free(idisk);
4180 }
4181
4182 return champion;
4183 }
4184
4185
4186 static int
4187 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4188 static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4189 int major, int minor, int keep_fd);
4190 static int
4191 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4192 int *max, int keep_fd);
4193
4194
4195 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4196 char *devname, struct md_list *devlist,
4197 int keep_fd)
4198 {
4199 struct intel_super *super_list = NULL;
4200 struct intel_super *super = NULL;
4201 int err = 0;
4202 int i = 0;
4203
4204 if (fd >= 0)
4205 /* 'fd' is an opened container */
4206 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4207 else
4208 /* get super block from devlist devices */
4209 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4210 if (err)
4211 goto error;
4212 /* all mpbs enter, maybe one leaves */
4213 super = imsm_thunderdome(&super_list, i);
4214 if (!super) {
4215 err = 1;
4216 goto error;
4217 }
4218
4219 if (find_missing(super) != 0) {
4220 free_imsm(super);
4221 err = 2;
4222 goto error;
4223 }
4224
4225 /* load migration record */
4226 err = load_imsm_migr_rec(super, NULL);
4227 if (err == -1) {
4228 /* migration is in progress,
4229 * but migr_rec cannot be loaded,
4230 */
4231 err = 4;
4232 goto error;
4233 }
4234
4235 /* Check migration compatibility */
4236 if ((err == 0) && (check_mpb_migr_compatibility(super) != 0)) {
4237 pr_err("Unsupported migration detected");
4238 if (devname)
4239 fprintf(stderr, " on %s\n", devname);
4240 else
4241 fprintf(stderr, " (IMSM).\n");
4242
4243 err = 5;
4244 goto error;
4245 }
4246
4247 err = 0;
4248
4249 error:
4250 while (super_list) {
4251 struct intel_super *s = super_list;
4252
4253 super_list = super_list->next;
4254 free_imsm(s);
4255 }
4256
4257
4258 if (err)
4259 return err;
4260
4261 *sbp = super;
4262 if (fd >= 0)
4263 st->container_dev = fd2devnum(fd);
4264 else
4265 st->container_dev = NoMdDev;
4266 if (err == 0 && st->ss == NULL) {
4267 st->ss = &super_imsm;
4268 st->minor_version = 0;
4269 st->max_devs = IMSM_MAX_DEVICES;
4270 }
4271 return 0;
4272 }
4273
4274
4275 static int
4276 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4277 int *max, int keep_fd)
4278 {
4279 struct md_list *tmpdev;
4280 int err = 0;
4281 int i = 0;
4282
4283 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4284 if (tmpdev->used != 1)
4285 continue;
4286 if (tmpdev->container == 1) {
4287 int lmax = 0;
4288 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4289 if (fd < 0) {
4290 pr_err("cannot open device %s: %s\n",
4291 tmpdev->devname, strerror(errno));
4292 err = 8;
4293 goto error;
4294 }
4295 err = get_sra_super_block(fd, super_list,
4296 tmpdev->devname, &lmax,
4297 keep_fd);
4298 i += lmax;
4299 close(fd);
4300 if (err) {
4301 err = 7;
4302 goto error;
4303 }
4304 } else {
4305 int major = major(tmpdev->st_rdev);
4306 int minor = minor(tmpdev->st_rdev);
4307 err = get_super_block(super_list,
4308 -1,
4309 tmpdev->devname,
4310 major, minor,
4311 keep_fd);
4312 i++;
4313 if (err) {
4314 err = 6;
4315 goto error;
4316 }
4317 }
4318 }
4319 error:
4320 *max = i;
4321 return err;
4322 }
4323
4324 static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4325 int major, int minor, int keep_fd)
4326 {
4327 struct intel_super*s = NULL;
4328 char nm[32];
4329 int dfd = -1;
4330 int err = 0;
4331 int retry;
4332
4333 s = alloc_super();
4334 if (!s) {
4335 err = 1;
4336 goto error;
4337 }
4338
4339 sprintf(nm, "%d:%d", major, minor);
4340 dfd = dev_open(nm, O_RDWR);
4341 if (dfd < 0) {
4342 err = 2;
4343 goto error;
4344 }
4345
4346 find_intel_hba_capability(dfd, s, devname);
4347 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4348
4349 /* retry the load if we might have raced against mdmon */
4350 if (err == 3 && (devnum != -1) && mdmon_running(devnum))
4351 for (retry = 0; retry < 3; retry++) {
4352 usleep(3000);
4353 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4354 if (err != 3)
4355 break;
4356 }
4357 error:
4358 if (!err) {
4359 s->next = *super_list;
4360 *super_list = s;
4361 } else {
4362 if (s)
4363 free(s);
4364 if (dfd >= 0)
4365 close(dfd);
4366 }
4367 if ((dfd >= 0) && (!keep_fd))
4368 close(dfd);
4369 return err;
4370
4371 }
4372
4373 static int
4374 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4375 {
4376 struct mdinfo *sra;
4377 int devnum;
4378 struct mdinfo *sd;
4379 int err = 0;
4380 int i = 0;
4381 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4382 if (!sra)
4383 return 1;
4384
4385 if (sra->array.major_version != -1 ||
4386 sra->array.minor_version != -2 ||
4387 strcmp(sra->text_version, "imsm") != 0) {
4388 err = 1;
4389 goto error;
4390 }
4391 /* load all mpbs */
4392 devnum = fd2devnum(fd);
4393 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4394 if (get_super_block(super_list, devnum, devname,
4395 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4396 err = 7;
4397 goto error;
4398 }
4399 }
4400 error:
4401 sysfs_free(sra);
4402 *max = i;
4403 return err;
4404 }
4405
4406 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4407 {
4408 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
4409 }
4410 #endif
4411
4412 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4413 {
4414 struct intel_super *super;
4415 int rv;
4416
4417 if (test_partition(fd))
4418 /* IMSM not allowed on partitions */
4419 return 1;
4420
4421 free_super_imsm(st);
4422
4423 super = alloc_super();
4424 /* Load hba and capabilities if they exist.
4425 * But do not preclude loading metadata in case capabilities or hba are
4426 * non-compliant and ignore_hw_compat is set.
4427 */
4428 rv = find_intel_hba_capability(fd, super, devname);
4429 /* no orom/efi or non-intel hba of the disk */
4430 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4431 if (devname)
4432 pr_err("No OROM/EFI properties for %s\n", devname);
4433 free_imsm(super);
4434 return 2;
4435 }
4436 rv = load_and_parse_mpb(fd, super, devname, 0);
4437
4438 if (rv) {
4439 if (devname)
4440 pr_err("Failed to load all information "
4441 "sections on %s\n", devname);
4442 free_imsm(super);
4443 return rv;
4444 }
4445
4446 st->sb = super;
4447 if (st->ss == NULL) {
4448 st->ss = &super_imsm;
4449 st->minor_version = 0;
4450 st->max_devs = IMSM_MAX_DEVICES;
4451 }
4452
4453 /* load migration record */
4454 if (load_imsm_migr_rec(super, NULL) == 0) {
4455 /* Check for unsupported migration features */
4456 if (check_mpb_migr_compatibility(super) != 0) {
4457 pr_err("Unsupported migration detected");
4458 if (devname)
4459 fprintf(stderr, " on %s\n", devname);
4460 else
4461 fprintf(stderr, " (IMSM).\n");
4462 return 3;
4463 }
4464 }
4465
4466 return 0;
4467 }
4468
4469 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4470 {
4471 if (info->level == 1)
4472 return 128;
4473 return info->chunk_size >> 9;
4474 }
4475
4476 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4477 unsigned long long size)
4478 {
4479 if (info->level == 1)
4480 return size * 2;
4481 else
4482 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4483 }
4484
4485 static void imsm_update_version_info(struct intel_super *super)
4486 {
4487 /* update the version and attributes */
4488 struct imsm_super *mpb = super->anchor;
4489 char *version;
4490 struct imsm_dev *dev;
4491 struct imsm_map *map;
4492 int i;
4493
4494 for (i = 0; i < mpb->num_raid_devs; i++) {
4495 dev = get_imsm_dev(super, i);
4496 map = get_imsm_map(dev, MAP_0);
4497 if (__le32_to_cpu(dev->size_high) > 0)
4498 mpb->attributes |= MPB_ATTRIB_2TB;
4499
4500 /* FIXME detect when an array spans a port multiplier */
4501 #if 0
4502 mpb->attributes |= MPB_ATTRIB_PM;
4503 #endif
4504
4505 if (mpb->num_raid_devs > 1 ||
4506 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4507 version = MPB_VERSION_ATTRIBS;
4508 switch (get_imsm_raid_level(map)) {
4509 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4510 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4511 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4512 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4513 }
4514 } else {
4515 if (map->num_members >= 5)
4516 version = MPB_VERSION_5OR6_DISK_ARRAY;
4517 else if (dev->status == DEV_CLONE_N_GO)
4518 version = MPB_VERSION_CNG;
4519 else if (get_imsm_raid_level(map) == 5)
4520 version = MPB_VERSION_RAID5;
4521 else if (map->num_members >= 3)
4522 version = MPB_VERSION_3OR4_DISK_ARRAY;
4523 else if (get_imsm_raid_level(map) == 1)
4524 version = MPB_VERSION_RAID1;
4525 else
4526 version = MPB_VERSION_RAID0;
4527 }
4528 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4529 }
4530 }
4531
4532 static int check_name(struct intel_super *super, char *name, int quiet)
4533 {
4534 struct imsm_super *mpb = super->anchor;
4535 char *reason = NULL;
4536 int i;
4537
4538 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4539 reason = "must be 16 characters or less";
4540
4541 for (i = 0; i < mpb->num_raid_devs; i++) {
4542 struct imsm_dev *dev = get_imsm_dev(super, i);
4543
4544 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4545 reason = "already exists";
4546 break;
4547 }
4548 }
4549
4550 if (reason && !quiet)
4551 pr_err("imsm volume name %s\n", reason);
4552
4553 return !reason;
4554 }
4555
4556 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4557 unsigned long long size, char *name,
4558 char *homehost, int *uuid,
4559 long long data_offset)
4560 {
4561 /* We are creating a volume inside a pre-existing container.
4562 * so st->sb is already set.
4563 */
4564 struct intel_super *super = st->sb;
4565 struct imsm_super *mpb = super->anchor;
4566 struct intel_dev *dv;
4567 struct imsm_dev *dev;
4568 struct imsm_vol *vol;
4569 struct imsm_map *map;
4570 int idx = mpb->num_raid_devs;
4571 int i;
4572 unsigned long long array_blocks;
4573 size_t size_old, size_new;
4574 unsigned long long num_data_stripes;
4575
4576 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4577 pr_err("This imsm-container already has the "
4578 "maximum of %d volumes\n", super->orom->vpa);
4579 return 0;
4580 }
4581
4582 /* ensure the mpb is large enough for the new data */
4583 size_old = __le32_to_cpu(mpb->mpb_size);
4584 size_new = disks_to_mpb_size(info->nr_disks);
4585 if (size_new > size_old) {
4586 void *mpb_new;
4587 size_t size_round = ROUND_UP(size_new, 512);
4588
4589 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4590 pr_err("could not allocate new mpb\n");
4591 return 0;
4592 }
4593 if (posix_memalign(&super->migr_rec_buf, 512,
4594 MIGR_REC_BUF_SIZE) != 0) {
4595 pr_err("%s could not allocate migr_rec buffer\n",
4596 __func__);
4597 free(super->buf);
4598 free(super);
4599 free(mpb_new);
4600 return 0;
4601 }
4602 memcpy(mpb_new, mpb, size_old);
4603 free(mpb);
4604 mpb = mpb_new;
4605 super->anchor = mpb_new;
4606 mpb->mpb_size = __cpu_to_le32(size_new);
4607 memset(mpb_new + size_old, 0, size_round - size_old);
4608 }
4609 super->current_vol = idx;
4610
4611 /* handle 'failed_disks' by either:
4612 * a) create dummy disk entries in the table if this the first
4613 * volume in the array. We add them here as this is the only
4614 * opportunity to add them. add_to_super_imsm_volume()
4615 * handles the non-failed disks and continues incrementing
4616 * mpb->num_disks.
4617 * b) validate that 'failed_disks' matches the current number
4618 * of missing disks if the container is populated
4619 */
4620 if (super->current_vol == 0) {
4621 mpb->num_disks = 0;
4622 for (i = 0; i < info->failed_disks; i++) {
4623 struct imsm_disk *disk;
4624
4625 mpb->num_disks++;
4626 disk = __get_imsm_disk(mpb, i);
4627 disk->status = CONFIGURED_DISK | FAILED_DISK;
4628 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4629 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4630 "missing:%d", i);
4631 }
4632 find_missing(super);
4633 } else {
4634 int missing = 0;
4635 struct dl *d;
4636
4637 for (d = super->missing; d; d = d->next)
4638 missing++;
4639 if (info->failed_disks > missing) {
4640 pr_err("unable to add 'missing' disk to container\n");
4641 return 0;
4642 }
4643 }
4644
4645 if (!check_name(super, name, 0))
4646 return 0;
4647 dv = xmalloc(sizeof(*dv));
4648 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4649 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4650 array_blocks = calc_array_size(info->level, info->raid_disks,
4651 info->layout, info->chunk_size,
4652 size * 2);
4653 /* round array size down to closest MB */
4654 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4655
4656 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4657 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4658 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4659 vol = &dev->vol;
4660 vol->migr_state = 0;
4661 set_migr_type(dev, MIGR_INIT);
4662 vol->dirty = !info->state;
4663 vol->curr_migr_unit = 0;
4664 map = get_imsm_map(dev, MAP_0);
4665 set_pba_of_lba0(map, super->create_offset);
4666 set_blocks_per_member(map, info_to_blocks_per_member(info, size));
4667 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4668 map->failed_disk_num = ~0;
4669 if (info->level > 0)
4670 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
4671 : IMSM_T_STATE_UNINITIALIZED);
4672 else
4673 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4674 IMSM_T_STATE_NORMAL;
4675 map->ddf = 1;
4676
4677 if (info->level == 1 && info->raid_disks > 2) {
4678 free(dev);
4679 free(dv);
4680 pr_err("imsm does not support more than 2 disks"
4681 "in a raid1 volume\n");
4682 return 0;
4683 }
4684
4685 map->raid_level = info->level;
4686 if (info->level == 10) {
4687 map->raid_level = 1;
4688 map->num_domains = info->raid_disks / 2;
4689 } else if (info->level == 1)
4690 map->num_domains = info->raid_disks;
4691 else
4692 map->num_domains = 1;
4693
4694 /* info->size is only int so use the 'size' parameter instead */
4695 num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4696 num_data_stripes /= map->num_domains;
4697 set_num_data_stripes(map, num_data_stripes);
4698
4699 map->num_members = info->raid_disks;
4700 for (i = 0; i < map->num_members; i++) {
4701 /* initialized in add_to_super */
4702 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4703 }
4704 mpb->num_raid_devs++;
4705
4706 dv->dev = dev;
4707 dv->index = super->current_vol;
4708 dv->next = super->devlist;
4709 super->devlist = dv;
4710
4711 imsm_update_version_info(super);
4712
4713 return 1;
4714 }
4715
4716 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4717 unsigned long long size, char *name,
4718 char *homehost, int *uuid,
4719 unsigned long long data_offset)
4720 {
4721 /* This is primarily called by Create when creating a new array.
4722 * We will then get add_to_super called for each component, and then
4723 * write_init_super called to write it out to each device.
4724 * For IMSM, Create can create on fresh devices or on a pre-existing
4725 * array.
4726 * To create on a pre-existing array a different method will be called.
4727 * This one is just for fresh drives.
4728 */
4729 struct intel_super *super;
4730 struct imsm_super *mpb;
4731 size_t mpb_size;
4732 char *version;
4733
4734 if (data_offset != INVALID_SECTORS) {
4735 fprintf(stderr, Name ": data-offset not supported by imsm\n");
4736 return 0;
4737 }
4738
4739 if (st->sb)
4740 return init_super_imsm_volume(st, info, size, name, homehost, uuid,
4741 data_offset);
4742
4743 if (info)
4744 mpb_size = disks_to_mpb_size(info->nr_disks);
4745 else
4746 mpb_size = 512;
4747
4748 super = alloc_super();
4749 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4750 free(super);
4751 super = NULL;
4752 }
4753 if (!super) {
4754 pr_err("%s could not allocate superblock\n", __func__);
4755 return 0;
4756 }
4757 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
4758 pr_err("%s could not allocate migr_rec buffer\n", __func__);
4759 free(super->buf);
4760 free(super);
4761 return 0;
4762 }
4763 memset(super->buf, 0, mpb_size);
4764 mpb = super->buf;
4765 mpb->mpb_size = __cpu_to_le32(mpb_size);
4766 st->sb = super;
4767
4768 if (info == NULL) {
4769 /* zeroing superblock */
4770 return 0;
4771 }
4772
4773 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4774
4775 version = (char *) mpb->sig;
4776 strcpy(version, MPB_SIGNATURE);
4777 version += strlen(MPB_SIGNATURE);
4778 strcpy(version, MPB_VERSION_RAID0);
4779
4780 return 1;
4781 }
4782
4783 #ifndef MDASSEMBLE
4784 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4785 int fd, char *devname)
4786 {
4787 struct intel_super *super = st->sb;
4788 struct imsm_super *mpb = super->anchor;
4789 struct imsm_disk *_disk;
4790 struct imsm_dev *dev;
4791 struct imsm_map *map;
4792 struct dl *dl, *df;
4793 int slot;
4794
4795 dev = get_imsm_dev(super, super->current_vol);
4796 map = get_imsm_map(dev, MAP_0);
4797
4798 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4799 pr_err("%s: Cannot add spare devices to IMSM volume\n",
4800 devname);
4801 return 1;
4802 }
4803
4804 if (fd == -1) {
4805 /* we're doing autolayout so grab the pre-marked (in
4806 * validate_geometry) raid_disk
4807 */
4808 for (dl = super->disks; dl; dl = dl->next)
4809 if (dl->raiddisk == dk->raid_disk)
4810 break;
4811 } else {
4812 for (dl = super->disks; dl ; dl = dl->next)
4813 if (dl->major == dk->major &&
4814 dl->minor == dk->minor)
4815 break;
4816 }
4817
4818 if (!dl) {
4819 pr_err("%s is not a member of the same container\n", devname);
4820 return 1;
4821 }
4822
4823 /* add a pristine spare to the metadata */
4824 if (dl->index < 0) {
4825 dl->index = super->anchor->num_disks;
4826 super->anchor->num_disks++;
4827 }
4828 /* Check the device has not already been added */
4829 slot = get_imsm_disk_slot(map, dl->index);
4830 if (slot >= 0 &&
4831 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
4832 pr_err("%s has been included in this array twice\n",
4833 devname);
4834 return 1;
4835 }
4836 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4837 dl->disk.status = CONFIGURED_DISK;
4838
4839 /* update size of 'missing' disks to be at least as large as the
4840 * largest acitve member (we only have dummy missing disks when
4841 * creating the first volume)
4842 */
4843 if (super->current_vol == 0) {
4844 for (df = super->missing; df; df = df->next) {
4845 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
4846 set_total_blocks(&df->disk, total_blocks(&dl->disk));
4847 _disk = __get_imsm_disk(mpb, df->index);
4848 *_disk = df->disk;
4849 }
4850 }
4851
4852 /* refresh unset/failed slots to point to valid 'missing' entries */
4853 for (df = super->missing; df; df = df->next)
4854 for (slot = 0; slot < mpb->num_disks; slot++) {
4855 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4856
4857 if ((ord & IMSM_ORD_REBUILD) == 0)
4858 continue;
4859 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4860 if (is_gen_migration(dev)) {
4861 struct imsm_map *map2 = get_imsm_map(dev,
4862 MAP_1);
4863 int slot2 = get_imsm_disk_slot(map2, df->index);
4864 if ((slot2 < map2->num_members) &&
4865 (slot2 >= 0)) {
4866 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4867 slot2,
4868 MAP_1);
4869 if ((unsigned)df->index ==
4870 ord_to_idx(ord2))
4871 set_imsm_ord_tbl_ent(map2,
4872 slot2,
4873 df->index |
4874 IMSM_ORD_REBUILD);
4875 }
4876 }
4877 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4878 break;
4879 }
4880
4881 /* if we are creating the first raid device update the family number */
4882 if (super->current_vol == 0) {
4883 __u32 sum;
4884 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4885
4886 _disk = __get_imsm_disk(mpb, dl->index);
4887 if (!_dev || !_disk) {
4888 pr_err("BUG mpb setup error\n");
4889 return 1;
4890 }
4891 *_dev = *dev;
4892 *_disk = dl->disk;
4893 sum = random32();
4894 sum += __gen_imsm_checksum(mpb);
4895 mpb->family_num = __cpu_to_le32(sum);
4896 mpb->orig_family_num = mpb->family_num;
4897 }
4898 super->current_disk = dl;
4899 return 0;
4900 }
4901
4902 /* mark_spare()
4903 * Function marks disk as spare and restores disk serial
4904 * in case it was previously marked as failed by takeover operation
4905 * reruns:
4906 * -1 : critical error
4907 * 0 : disk is marked as spare but serial is not set
4908 * 1 : success
4909 */
4910 int mark_spare(struct dl *disk)
4911 {
4912 __u8 serial[MAX_RAID_SERIAL_LEN];
4913 int ret_val = -1;
4914
4915 if (!disk)
4916 return ret_val;
4917
4918 ret_val = 0;
4919 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4920 /* Restore disk serial number, because takeover marks disk
4921 * as failed and adds to serial ':0' before it becomes
4922 * a spare disk.
4923 */
4924 serialcpy(disk->serial, serial);
4925 serialcpy(disk->disk.serial, serial);
4926 ret_val = 1;
4927 }
4928 disk->disk.status = SPARE_DISK;
4929 disk->index = -1;
4930
4931 return ret_val;
4932 }
4933
4934 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4935 int fd, char *devname,
4936 unsigned long long data_offset)
4937 {
4938 struct intel_super *super = st->sb;
4939 struct dl *dd;
4940 unsigned long long size;
4941 __u32 id;
4942 int rv;
4943 struct stat stb;
4944
4945 /* If we are on an RAID enabled platform check that the disk is
4946 * attached to the raid controller.
4947 * We do not need to test disks attachment for container based additions,
4948 * they shall be already tested when container was created/assembled.
4949 */
4950 rv = find_intel_hba_capability(fd, super, devname);
4951 /* no orom/efi or non-intel hba of the disk */
4952 if (rv != 0) {
4953 dprintf("capability: %p fd: %d ret: %d\n",
4954 super->orom, fd, rv);
4955 return 1;
4956 }
4957
4958 if (super->current_vol >= 0)
4959 return add_to_super_imsm_volume(st, dk, fd, devname);
4960
4961 fstat(fd, &stb);
4962 dd = xcalloc(sizeof(*dd), 1);
4963 dd->major = major(stb.st_rdev);
4964 dd->minor = minor(stb.st_rdev);
4965 dd->devname = devname ? xstrdup(devname) : NULL;
4966 dd->fd = fd;
4967 dd->e = NULL;
4968 dd->action = DISK_ADD;
4969 rv = imsm_read_serial(fd, devname, dd->serial);
4970 if (rv) {
4971 pr_err("failed to retrieve scsi serial, aborting\n");
4972 free(dd);
4973 abort();
4974 }
4975
4976 get_dev_size(fd, NULL, &size);
4977 size /= 512;
4978 serialcpy(dd->disk.serial, dd->serial);
4979 set_total_blocks(&dd->disk, size);
4980 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
4981 struct imsm_super *mpb = super->anchor;
4982 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
4983 }
4984 mark_spare(dd);
4985 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4986 dd->disk.scsi_id = __cpu_to_le32(id);
4987 else
4988 dd->disk.scsi_id = __cpu_to_le32(0);
4989
4990 if (st->update_tail) {
4991 dd->next = super->disk_mgmt_list;
4992 super->disk_mgmt_list = dd;
4993 } else {
4994 dd->next = super->disks;
4995 super->disks = dd;
4996 super->updates_pending++;
4997 }
4998
4999 return 0;
5000 }
5001
5002
5003 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5004 {
5005 struct intel_super *super = st->sb;
5006 struct dl *dd;
5007
5008 /* remove from super works only in mdmon - for communication
5009 * manager - monitor. Check if communication memory buffer
5010 * is prepared.
5011 */
5012 if (!st->update_tail) {
5013 pr_err("%s shall be used in mdmon context only"
5014 "(line %d).\n", __func__, __LINE__);
5015 return 1;
5016 }
5017 dd = xcalloc(1, sizeof(*dd));
5018 dd->major = dk->major;
5019 dd->minor = dk->minor;
5020 dd->fd = -1;
5021 mark_spare(dd);
5022 dd->action = DISK_REMOVE;
5023
5024 dd->next = super->disk_mgmt_list;
5025 super->disk_mgmt_list = dd;
5026
5027
5028 return 0;
5029 }
5030
5031 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5032
5033 static union {
5034 char buf[512];
5035 struct imsm_super anchor;
5036 } spare_record __attribute__ ((aligned(512)));
5037
5038 /* spare records have their own family number and do not have any defined raid
5039 * devices
5040 */
5041 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5042 {
5043 struct imsm_super *mpb = super->anchor;
5044 struct imsm_super *spare = &spare_record.anchor;
5045 __u32 sum;
5046 struct dl *d;
5047
5048 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
5049 spare->generation_num = __cpu_to_le32(1UL),
5050 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5051 spare->num_disks = 1,
5052 spare->num_raid_devs = 0,
5053 spare->cache_size = mpb->cache_size,
5054 spare->pwr_cycle_count = __cpu_to_le32(1),
5055
5056 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5057 MPB_SIGNATURE MPB_VERSION_RAID0);
5058
5059 for (d = super->disks; d; d = d->next) {
5060 if (d->index != -1)
5061 continue;
5062
5063 spare->disk[0] = d->disk;
5064 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5065 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5066
5067 sum = __gen_imsm_checksum(spare);
5068 spare->family_num = __cpu_to_le32(sum);
5069 spare->orig_family_num = 0;
5070 sum = __gen_imsm_checksum(spare);
5071 spare->check_sum = __cpu_to_le32(sum);
5072
5073 if (store_imsm_mpb(d->fd, spare)) {
5074 fprintf(stderr, "%s: failed for device %d:%d %s\n",
5075 __func__, d->major, d->minor, strerror(errno));
5076 return 1;
5077 }
5078 if (doclose) {
5079 close(d->fd);
5080 d->fd = -1;
5081 }
5082 }
5083
5084 return 0;
5085 }
5086
5087 static int write_super_imsm(struct supertype *st, int doclose)
5088 {
5089 struct intel_super *super = st->sb;
5090 struct imsm_super *mpb = super->anchor;
5091 struct dl *d;
5092 __u32 generation;
5093 __u32 sum;
5094 int spares = 0;
5095 int i;
5096 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5097 int num_disks = 0;
5098 int clear_migration_record = 1;
5099
5100 /* 'generation' is incremented everytime the metadata is written */
5101 generation = __le32_to_cpu(mpb->generation_num);
5102 generation++;
5103 mpb->generation_num = __cpu_to_le32(generation);
5104
5105 /* fix up cases where previous mdadm releases failed to set
5106 * orig_family_num
5107 */
5108 if (mpb->orig_family_num == 0)
5109 mpb->orig_family_num = mpb->family_num;
5110
5111 for (d = super->disks; d; d = d->next) {
5112 if (d->index == -1)
5113 spares++;
5114 else {
5115 mpb->disk[d->index] = d->disk;
5116 num_disks++;
5117 }
5118 }
5119 for (d = super->missing; d; d = d->next) {
5120 mpb->disk[d->index] = d->disk;
5121 num_disks++;
5122 }
5123 mpb->num_disks = num_disks;
5124 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5125
5126 for (i = 0; i < mpb->num_raid_devs; i++) {
5127 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5128 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5129 if (dev && dev2) {
5130 imsm_copy_dev(dev, dev2);
5131 mpb_size += sizeof_imsm_dev(dev, 0);
5132 }
5133 if (is_gen_migration(dev2))
5134 clear_migration_record = 0;
5135 }
5136 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5137 mpb->mpb_size = __cpu_to_le32(mpb_size);
5138
5139 /* recalculate checksum */
5140 sum = __gen_imsm_checksum(mpb);
5141 mpb->check_sum = __cpu_to_le32(sum);
5142
5143 if (super->clean_migration_record_by_mdmon) {
5144 clear_migration_record = 1;
5145 super->clean_migration_record_by_mdmon = 0;
5146 }
5147 if (clear_migration_record)
5148 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5149
5150 /* write the mpb for disks that compose raid devices */
5151 for (d = super->disks; d ; d = d->next) {
5152 if (d->index < 0 || is_failed(&d->disk))
5153 continue;
5154
5155 if (clear_migration_record) {
5156 unsigned long long dsize;
5157
5158 get_dev_size(d->fd, NULL, &dsize);
5159 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
5160 if (write(d->fd, super->migr_rec_buf,
5161 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5162 perror("Write migr_rec failed");
5163 }
5164 }
5165
5166 if (store_imsm_mpb(d->fd, mpb))
5167 fprintf(stderr,
5168 "%s: failed for device %d:%d (fd: %d)%s\n",
5169 __func__, d->major, d->minor,
5170 d->fd, strerror(errno));
5171
5172 if (doclose) {
5173 close(d->fd);
5174 d->fd = -1;
5175 }
5176 }
5177
5178 if (spares)
5179 return write_super_imsm_spares(super, doclose);
5180
5181 return 0;
5182 }
5183
5184
5185 static int create_array(struct supertype *st, int dev_idx)
5186 {
5187 size_t len;
5188 struct imsm_update_create_array *u;
5189 struct intel_super *super = st->sb;
5190 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5191 struct imsm_map *map = get_imsm_map(dev, MAP_0);
5192 struct disk_info *inf;
5193 struct imsm_disk *disk;
5194 int i;
5195
5196 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5197 sizeof(*inf) * map->num_members;
5198 u = xmalloc(len);
5199 u->type = update_create_array;
5200 u->dev_idx = dev_idx;
5201 imsm_copy_dev(&u->dev, dev);
5202 inf = get_disk_info(u);
5203 for (i = 0; i < map->num_members; i++) {
5204 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5205
5206 disk = get_imsm_disk(super, idx);
5207 serialcpy(inf[i].serial, disk->serial);
5208 }
5209 append_metadata_update(st, u, len);
5210
5211 return 0;
5212 }
5213
5214 static int mgmt_disk(struct supertype *st)
5215 {
5216 struct intel_super *super = st->sb;
5217 size_t len;
5218 struct imsm_update_add_remove_disk *u;
5219
5220 if (!super->disk_mgmt_list)
5221 return 0;
5222
5223 len = sizeof(*u);
5224 u = xmalloc(len);
5225 u->type = update_add_remove_disk;
5226 append_metadata_update(st, u, len);
5227
5228 return 0;
5229 }
5230
5231 static int write_init_super_imsm(struct supertype *st)
5232 {
5233 struct intel_super *super = st->sb;
5234 int current_vol = super->current_vol;
5235
5236 /* we are done with current_vol reset it to point st at the container */
5237 super->current_vol = -1;
5238
5239 if (st->update_tail) {
5240 /* queue the recently created array / added disk
5241 * as a metadata update */
5242 int rv;
5243
5244 /* determine if we are creating a volume or adding a disk */
5245 if (current_vol < 0) {
5246 /* in the mgmt (add/remove) disk case we are running
5247 * in mdmon context, so don't close fd's
5248 */
5249 return mgmt_disk(st);
5250 } else
5251 rv = create_array(st, current_vol);
5252
5253 return rv;
5254 } else {
5255 struct dl *d;
5256 for (d = super->disks; d; d = d->next)
5257 Kill(d->devname, NULL, 0, -1, 1);
5258 return write_super_imsm(st, 1);
5259 }
5260 }
5261 #endif
5262
5263 static int store_super_imsm(struct supertype *st, int fd)
5264 {
5265 struct intel_super *super = st->sb;
5266 struct imsm_super *mpb = super ? super->anchor : NULL;
5267
5268 if (!mpb)
5269 return 1;
5270
5271 #ifndef MDASSEMBLE
5272 return store_imsm_mpb(fd, mpb);
5273 #else
5274 return 1;
5275 #endif
5276 }
5277
5278 static int imsm_bbm_log_size(struct imsm_super *mpb)
5279 {
5280 return __le32_to_cpu(mpb->bbm_log_size);
5281 }
5282
5283 #ifndef MDASSEMBLE
5284 static int validate_geometry_imsm_container(struct supertype *st, int level,
5285 int layout, int raiddisks, int chunk,
5286 unsigned long long size,
5287 unsigned long long data_offset,
5288 char *dev,
5289 unsigned long long *freesize,
5290 int verbose)
5291 {
5292 int fd;
5293 unsigned long long ldsize;
5294 struct intel_super *super=NULL;
5295 int rv = 0;
5296
5297 if (level != LEVEL_CONTAINER)
5298 return 0;
5299 if (!dev)
5300 return 1;
5301
5302 fd = open(dev, O_RDONLY|O_EXCL, 0);
5303 if (fd < 0) {
5304 if (verbose > 0)
5305 pr_err("imsm: Cannot open %s: %s\n",
5306 dev, strerror(errno));
5307 return 0;
5308 }
5309 if (!get_dev_size(fd, dev, &ldsize)) {
5310 close(fd);
5311 return 0;
5312 }
5313
5314 /* capabilities retrieve could be possible
5315 * note that there is no fd for the disks in array.
5316 */
5317 super = alloc_super();
5318 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
5319 if (rv != 0) {
5320 #if DEBUG
5321 char str[256];
5322 fd2devname(fd, str);
5323 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5324 fd, str, super->orom, rv, raiddisks);
5325 #endif
5326 /* no orom/efi or non-intel hba of the disk */
5327 close(fd);
5328 free_imsm(super);
5329 return 0;
5330 }
5331 close(fd);
5332 if (super->orom) {
5333 if (raiddisks > super->orom->tds) {
5334 if (verbose)
5335 pr_err("%d exceeds maximum number of"
5336 " platform supported disks: %d\n",
5337 raiddisks, super->orom->tds);
5338 free_imsm(super);
5339 return 0;
5340 }
5341 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
5342 (ldsize >> 9) >> 32 > 0) {
5343 if (verbose)
5344 pr_err("%s exceeds maximum platform supported size\n", dev);
5345 free_imsm(super);
5346 return 0;
5347 }
5348 }
5349
5350 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
5351 free_imsm(super);
5352
5353 return 1;
5354 }
5355
5356 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5357 {
5358 const unsigned long long base_start = e[*idx].start;
5359 unsigned long long end = base_start + e[*idx].size;
5360 int i;
5361
5362 if (base_start == end)
5363 return 0;
5364
5365 *idx = *idx + 1;
5366 for (i = *idx; i < num_extents; i++) {
5367 /* extend overlapping extents */
5368 if (e[i].start >= base_start &&
5369 e[i].start <= end) {
5370 if (e[i].size == 0)
5371 return 0;
5372 if (e[i].start + e[i].size > end)
5373 end = e[i].start + e[i].size;
5374 } else if (e[i].start > end) {
5375 *idx = i;
5376 break;
5377 }
5378 }
5379
5380 return end - base_start;
5381 }
5382
5383 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5384 {
5385 /* build a composite disk with all known extents and generate a new
5386 * 'maxsize' given the "all disks in an array must share a common start
5387 * offset" constraint
5388 */
5389 struct extent *e = xcalloc(sum_extents, sizeof(*e));
5390 struct dl *dl;
5391 int i, j;
5392 int start_extent;
5393 unsigned long long pos;
5394 unsigned long long start = 0;
5395 unsigned long long maxsize;
5396 unsigned long reserve;
5397
5398 /* coalesce and sort all extents. also, check to see if we need to
5399 * reserve space between member arrays
5400 */
5401 j = 0;
5402 for (dl = super->disks; dl; dl = dl->next) {
5403 if (!dl->e)
5404 continue;
5405 for (i = 0; i < dl->extent_cnt; i++)
5406 e[j++] = dl->e[i];
5407 }
5408 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5409
5410 /* merge extents */
5411 i = 0;
5412 j = 0;
5413 while (i < sum_extents) {
5414 e[j].start = e[i].start;
5415 e[j].size = find_size(e, &i, sum_extents);
5416 j++;
5417 if (e[j-1].size == 0)
5418 break;
5419 }
5420
5421 pos = 0;
5422 maxsize = 0;
5423 start_extent = 0;
5424 i = 0;
5425 do {
5426 unsigned long long esize;
5427
5428 esize = e[i].start - pos;
5429 if (esize >= maxsize) {
5430 maxsize = esize;
5431 start = pos;
5432 start_extent = i;
5433 }
5434 pos = e[i].start + e[i].size;
5435 i++;
5436 } while (e[i-1].size);
5437 free(e);
5438
5439 if (maxsize == 0)
5440 return 0;
5441
5442 /* FIXME assumes volume at offset 0 is the first volume in a
5443 * container
5444 */
5445 if (start_extent > 0)
5446 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5447 else
5448 reserve = 0;
5449
5450 if (maxsize < reserve)
5451 return 0;
5452
5453 super->create_offset = ~((unsigned long long) 0);
5454 if (start + reserve > super->create_offset)
5455 return 0; /* start overflows create_offset */
5456 super->create_offset = start + reserve;
5457
5458 return maxsize - reserve;
5459 }
5460
5461 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5462 {
5463 if (level < 0 || level == 6 || level == 4)
5464 return 0;
5465
5466 /* if we have an orom prevent invalid raid levels */
5467 if (orom)
5468 switch (level) {
5469 case 0: return imsm_orom_has_raid0(orom);
5470 case 1:
5471 if (raiddisks > 2)
5472 return imsm_orom_has_raid1e(orom);
5473 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5474 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5475 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5476 }
5477 else
5478 return 1; /* not on an Intel RAID platform so anything goes */
5479
5480 return 0;
5481 }
5482
5483
5484 static int
5485 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5486 int dpa, int verbose)
5487 {
5488 struct mdstat_ent *mdstat = mdstat_read(0, 0);
5489 struct mdstat_ent *memb = NULL;
5490 int count = 0;
5491 int num = 0;
5492 struct md_list *dv = NULL;
5493 int found;
5494
5495 for (memb = mdstat ; memb ; memb = memb->next) {
5496 if (memb->metadata_version &&
5497 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
5498 (strcmp(&memb->metadata_version[9], name) == 0) &&
5499 !is_subarray(memb->metadata_version+9) &&
5500 memb->members) {
5501 struct dev_member *dev = memb->members;
5502 int fd = -1;
5503 while(dev && (fd < 0)) {
5504 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
5505 num = sprintf(path, "%s%s", "/dev/", dev->name);
5506 if (num > 0)
5507 fd = open(path, O_RDONLY, 0);
5508 if ((num <= 0) || (fd < 0)) {
5509 pr_vrb(": Cannot open %s: %s\n",
5510 dev->name, strerror(errno));
5511 }
5512 free(path);
5513 dev = dev->next;
5514 }
5515 found = 0;
5516 if ((fd >= 0) && disk_attached_to_hba(fd, hba)) {
5517 struct mdstat_ent *vol;
5518 for (vol = mdstat ; vol ; vol = vol->next) {
5519 if ((vol->active > 0) &&
5520 vol->metadata_version &&
5521 is_container_member(vol, memb->dev)) {
5522 found++;
5523 count++;
5524 }
5525 }
5526 if (*devlist && (found < dpa)) {
5527 dv = xcalloc(1, sizeof(*dv));
5528 dv->devname = xmalloc(strlen(memb->dev) + strlen("/dev/") + 1);
5529 sprintf(dv->devname, "%s%s", "/dev/", memb->dev);
5530 dv->found = found;
5531 dv->used = 0;
5532 dv->next = *devlist;
5533 *devlist = dv;
5534 }
5535 }
5536 if (fd >= 0)
5537 close(fd);
5538 }
5539 }
5540 free_mdstat(mdstat);
5541 return count;
5542 }
5543
5544 #ifdef DEBUG_LOOP
5545 static struct md_list*
5546 get_loop_devices(void)
5547 {
5548 int i;
5549 struct md_list *devlist = NULL;
5550 struct md_list *dv = NULL;
5551
5552 for(i = 0; i < 12; i++) {
5553 dv = xcalloc(1, sizeof(*dv));
5554 dv->devname = xmalloc(40);
5555 sprintf(dv->devname, "/dev/loop%d", i);
5556 dv->next = devlist;
5557 devlist = dv;
5558 }
5559 return devlist;
5560 }
5561 #endif
5562
5563 static struct md_list*
5564 get_devices(const char *hba_path)
5565 {
5566 struct md_list *devlist = NULL;
5567 struct md_list *dv = NULL;
5568 struct dirent *ent;
5569 DIR *dir;
5570 int err = 0;
5571
5572 #if DEBUG_LOOP
5573 devlist = get_loop_devices();
5574 return devlist;
5575 #endif
5576 /* scroll through /sys/dev/block looking for devices attached to
5577 * this hba
5578 */
5579 dir = opendir("/sys/dev/block");
5580 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5581 int fd;
5582 char buf[1024];
5583 int major, minor;
5584 char *path = NULL;
5585 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5586 continue;
5587 path = devt_to_devpath(makedev(major, minor));
5588 if (!path)
5589 continue;
5590 if (!path_attached_to_hba(path, hba_path)) {
5591 free(path);
5592 path = NULL;
5593 continue;
5594 }
5595 free(path);
5596 path = NULL;
5597 fd = dev_open(ent->d_name, O_RDONLY);
5598 if (fd >= 0) {
5599 fd2devname(fd, buf);
5600 close(fd);
5601 } else {
5602 pr_err("cannot open device: %s\n",
5603 ent->d_name);
5604 continue;
5605 }
5606
5607
5608 dv = xcalloc(1, sizeof(*dv));
5609 dv->devname = xstrdup(buf);
5610 dv->next = devlist;
5611 devlist = dv;
5612 }
5613 if (err) {
5614 while(devlist) {
5615 dv = devlist;
5616 devlist = devlist->next;
5617 free(dv->devname);
5618 free(dv);
5619 }
5620 }
5621 closedir(dir);
5622 return devlist;
5623 }
5624
5625 static int
5626 count_volumes_list(struct md_list *devlist, char *homehost,
5627 int verbose, int *found)
5628 {
5629 struct md_list *tmpdev;
5630 int count = 0;
5631 struct supertype *st = NULL;
5632
5633 /* first walk the list of devices to find a consistent set
5634 * that match the criterea, if that is possible.
5635 * We flag the ones we like with 'used'.
5636 */
5637 *found = 0;
5638 st = match_metadata_desc_imsm("imsm");
5639 if (st == NULL) {
5640 pr_vrb(": cannot allocate memory for imsm supertype\n");
5641 return 0;
5642 }
5643
5644 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5645 char *devname = tmpdev->devname;
5646 struct stat stb;
5647 struct supertype *tst;
5648 int dfd;
5649 if (tmpdev->used > 1)
5650 continue;
5651 tst = dup_super(st);
5652 if (tst == NULL) {
5653 pr_vrb(": cannot allocate memory for imsm supertype\n");
5654 goto err_1;
5655 }
5656 tmpdev->container = 0;
5657 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5658 if (dfd < 0) {
5659 dprintf(": cannot open device %s: %s\n",
5660 devname, strerror(errno));
5661 tmpdev->used = 2;
5662 } else if (fstat(dfd, &stb)< 0) {
5663 /* Impossible! */
5664 dprintf(": fstat failed for %s: %s\n",
5665 devname, strerror(errno));
5666 tmpdev->used = 2;
5667 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
5668 dprintf(": %s is not a block device.\n",
5669 devname);
5670 tmpdev->used = 2;
5671 } else if (must_be_container(dfd)) {
5672 struct supertype *cst;
5673 cst = super_by_fd(dfd, NULL);
5674 if (cst == NULL) {
5675 dprintf(": cannot recognize container type %s\n",
5676 devname);
5677 tmpdev->used = 2;
5678 } else if (tst->ss != st->ss) {
5679 dprintf(": non-imsm container - ignore it: %s\n",
5680 devname);
5681 tmpdev->used = 2;
5682 } else if (!tst->ss->load_container ||
5683 tst->ss->load_container(tst, dfd, NULL))
5684 tmpdev->used = 2;
5685 else {
5686 tmpdev->container = 1;
5687 }
5688 if (cst)
5689 cst->ss->free_super(cst);
5690 } else {
5691 tmpdev->st_rdev = stb.st_rdev;
5692 if (tst->ss->load_super(tst,dfd, NULL)) {
5693 dprintf(": no RAID superblock on %s\n",
5694 devname);
5695 tmpdev->used = 2;
5696 } else if (tst->ss->compare_super == NULL) {
5697 dprintf(": Cannot assemble %s metadata on %s\n",
5698 tst->ss->name, devname);
5699 tmpdev->used = 2;
5700 }
5701 }
5702 if (dfd >= 0)
5703 close(dfd);
5704 if (tmpdev->used == 2 || tmpdev->used == 4) {
5705 /* Ignore unrecognised devices during auto-assembly */
5706 goto loop;
5707 }
5708 else {
5709 struct mdinfo info;
5710 tst->ss->getinfo_super(tst, &info, NULL);
5711
5712 if (st->minor_version == -1)
5713 st->minor_version = tst->minor_version;
5714
5715 if (memcmp(info.uuid, uuid_zero,
5716 sizeof(int[4])) == 0) {
5717 /* this is a floating spare. It cannot define
5718 * an array unless there are no more arrays of
5719 * this type to be found. It can be included
5720 * in an array of this type though.
5721 */
5722 tmpdev->used = 3;
5723 goto loop;
5724 }
5725
5726 if (st->ss != tst->ss ||
5727 st->minor_version != tst->minor_version ||
5728 st->ss->compare_super(st, tst) != 0) {
5729 /* Some mismatch. If exactly one array matches this host,
5730 * we can resolve on that one.
5731 * Or, if we are auto assembling, we just ignore the second
5732 * for now.
5733 */
5734 dprintf(": superblock on %s doesn't match others - assembly aborted\n",
5735 devname);
5736 goto loop;
5737 }
5738 tmpdev->used = 1;
5739 *found = 1;
5740 dprintf("found: devname: %s\n", devname);
5741 }
5742 loop:
5743 if (tst)
5744 tst->ss->free_super(tst);
5745 }
5746 if (*found != 0) {
5747 int err;
5748 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
5749 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
5750 for (iter = head; iter; iter = iter->next) {
5751 dprintf("content->text_version: %s vol\n",
5752 iter->text_version);
5753 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
5754 /* do not assemble arrays with unsupported
5755 configurations */
5756 dprintf(": Cannot activate member %s.\n",
5757 iter->text_version);
5758 } else
5759 count++;
5760 }
5761 sysfs_free(head);
5762
5763 } else {
5764 dprintf(" no valid super block on device list: err: %d %p\n",
5765 err, st->sb);
5766 }
5767 } else {
5768 dprintf(" no more devices to examin\n");
5769 }
5770
5771 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5772 if ((tmpdev->used == 1) && (tmpdev->found)) {
5773 if (count) {
5774 if (count < tmpdev->found)
5775 count = 0;
5776 else
5777 count -= tmpdev->found;
5778 }
5779 }
5780 if (tmpdev->used == 1)
5781 tmpdev->used = 4;
5782 }
5783 err_1:
5784 if (st)
5785 st->ss->free_super(st);
5786 return count;
5787 }
5788
5789
5790 static int
5791 count_volumes(char *hba, int dpa, int verbose)
5792 {
5793 struct md_list *devlist = NULL;
5794 int count = 0;
5795 int found = 0;;
5796
5797 devlist = get_devices(hba);
5798 /* if no intel devices return zero volumes */
5799 if (devlist == NULL)
5800 return 0;
5801
5802 count = active_arrays_by_format("imsm", hba, &devlist, dpa, verbose);
5803 dprintf(" path: %s active arrays: %d\n", hba, count);
5804 if (devlist == NULL)
5805 return 0;
5806 do {
5807 found = 0;
5808 count += count_volumes_list(devlist,
5809 NULL,
5810 verbose,
5811 &found);
5812 dprintf("found %d count: %d\n", found, count);
5813 } while (found);
5814
5815 dprintf("path: %s total number of volumes: %d\n", hba, count);
5816
5817 while(devlist) {
5818 struct md_list *dv = devlist;
5819 devlist = devlist->next;
5820 free(dv->devname);
5821 free(dv);
5822 }
5823 return count;
5824 }
5825
5826 static int imsm_default_chunk(const struct imsm_orom *orom)
5827 {
5828 /* up to 512 if the plaform supports it, otherwise the platform max.
5829 * 128 if no platform detected
5830 */
5831 int fs = max(7, orom ? fls(orom->sss) : 0);
5832
5833 return min(512, (1 << fs));
5834 }
5835
5836 static int
5837 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5838 int raiddisks, int *chunk, unsigned long long size, int verbose)
5839 {
5840 /* check/set platform and metadata limits/defaults */
5841 if (super->orom && raiddisks > super->orom->dpa) {
5842 pr_vrb(": platform supports a maximum of %d disks per array\n",
5843 super->orom->dpa);
5844 return 0;
5845 }
5846
5847 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5848 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5849 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5850 level, raiddisks, raiddisks > 1 ? "s" : "");
5851 return 0;
5852 }
5853
5854 if (chunk && (*chunk == 0 || *chunk == UnSet))
5855 *chunk = imsm_default_chunk(super->orom);
5856
5857 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5858 pr_vrb(": platform does not support a chunk size of: "
5859 "%d\n", *chunk);
5860 return 0;
5861 }
5862
5863 if (layout != imsm_level_to_layout(level)) {
5864 if (level == 5)
5865 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5866 else if (level == 10)
5867 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5868 else
5869 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5870 layout, level);
5871 return 0;
5872 }
5873
5874 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 && chunk &&
5875 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
5876 pr_vrb(": platform does not support a volume size over 2TB\n");
5877 return 0;
5878 }
5879 return 1;
5880 }
5881
5882 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5883 * FIX ME add ahci details
5884 */
5885 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5886 int layout, int raiddisks, int *chunk,
5887 unsigned long long size,
5888 unsigned long long data_offset,
5889 char *dev,
5890 unsigned long long *freesize,
5891 int verbose)
5892 {
5893 struct stat stb;
5894 struct intel_super *super = st->sb;
5895 struct imsm_super *mpb;
5896 struct dl *dl;
5897 unsigned long long pos = 0;
5898 unsigned long long maxsize;
5899 struct extent *e;
5900 int i;
5901
5902 /* We must have the container info already read in. */
5903 if (!super)
5904 return 0;
5905
5906 mpb = super->anchor;
5907
5908 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
5909 pr_err("RAID gemetry validation failed. "
5910 "Cannot proceed with the action(s).\n");
5911 return 0;
5912 }
5913 if (!dev) {
5914 /* General test: make sure there is space for
5915 * 'raiddisks' device extents of size 'size' at a given
5916 * offset
5917 */
5918 unsigned long long minsize = size;
5919 unsigned long long start_offset = MaxSector;
5920 int dcnt = 0;
5921 if (minsize == 0)
5922 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5923 for (dl = super->disks; dl ; dl = dl->next) {
5924 int found = 0;
5925
5926 pos = 0;
5927 i = 0;
5928 e = get_extents(super, dl);
5929 if (!e) continue;
5930 do {
5931 unsigned long long esize;
5932 esize = e[i].start - pos;
5933 if (esize >= minsize)
5934 found = 1;
5935 if (found && start_offset == MaxSector) {
5936 start_offset = pos;
5937 break;
5938 } else if (found && pos != start_offset) {
5939 found = 0;
5940 break;
5941 }
5942 pos = e[i].start + e[i].size;
5943 i++;
5944 } while (e[i-1].size);
5945 if (found)
5946 dcnt++;
5947 free(e);
5948 }
5949 if (dcnt < raiddisks) {
5950 if (verbose)
5951 pr_err("imsm: Not enough "
5952 "devices with space for this array "
5953 "(%d < %d)\n",
5954 dcnt, raiddisks);
5955 return 0;
5956 }
5957 return 1;
5958 }
5959
5960 /* This device must be a member of the set */
5961 if (stat(dev, &stb) < 0)
5962 return 0;
5963 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5964 return 0;
5965 for (dl = super->disks ; dl ; dl = dl->next) {
5966 if (dl->major == (int)major(stb.st_rdev) &&
5967 dl->minor == (int)minor(stb.st_rdev))
5968 break;
5969 }
5970 if (!dl) {
5971 if (verbose)
5972 pr_err("%s is not in the "
5973 "same imsm set\n", dev);
5974 return 0;
5975 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5976 /* If a volume is present then the current creation attempt
5977 * cannot incorporate new spares because the orom may not
5978 * understand this configuration (all member disks must be
5979 * members of each array in the container).
5980 */
5981 pr_err("%s is a spare and a volume"
5982 " is already defined for this container\n", dev);
5983 pr_err("The option-rom requires all member"
5984 " disks to be a member of all volumes\n");
5985 return 0;
5986 } else if (super->orom && mpb->num_raid_devs > 0 &&
5987 mpb->num_disks != raiddisks) {
5988 pr_err("The option-rom requires all member"
5989 " disks to be a member of all volumes\n");
5990 return 0;
5991 }
5992
5993 /* retrieve the largest free space block */
5994 e = get_extents(super, dl);
5995 maxsize = 0;
5996 i = 0;
5997 if (e) {
5998 do {
5999 unsigned long long esize;
6000
6001 esize = e[i].start - pos;
6002 if (esize >= maxsize)
6003 maxsize = esize;
6004 pos = e[i].start + e[i].size;
6005 i++;
6006 } while (e[i-1].size);
6007 dl->e = e;
6008 dl->extent_cnt = i;
6009 } else {
6010 if (verbose)
6011 pr_err("unable to determine free space for: %s\n",
6012 dev);
6013 return 0;
6014 }
6015 if (maxsize < size) {
6016 if (verbose)
6017 pr_err("%s not enough space (%llu < %llu)\n",
6018 dev, maxsize, size);
6019 return 0;
6020 }
6021
6022 /* count total number of extents for merge */
6023 i = 0;
6024 for (dl = super->disks; dl; dl = dl->next)
6025 if (dl->e)
6026 i += dl->extent_cnt;
6027
6028 maxsize = merge_extents(super, i);
6029
6030 if (!check_env("IMSM_NO_PLATFORM") &&
6031 mpb->num_raid_devs > 0 && size && size != maxsize) {
6032 pr_err("attempting to create a second "
6033 "volume with size less then remaining space. "
6034 "Aborting...\n");
6035 return 0;
6036 }
6037
6038 if (maxsize < size || maxsize == 0) {
6039 if (verbose) {
6040 if (maxsize == 0)
6041 pr_err("no free space"
6042 " left on device. Aborting...\n");
6043 else
6044 pr_err("not enough space"
6045 " to create volume of given size"
6046 " (%llu < %llu). Aborting...\n",
6047 maxsize, size);
6048 }
6049 return 0;
6050 }
6051
6052 *freesize = maxsize;
6053
6054 if (super->orom) {
6055 int count = count_volumes(super->hba->path,
6056 super->orom->dpa, verbose);
6057 if (super->orom->vphba <= count) {
6058 pr_vrb(": platform does not support more than %d raid volumes.\n",
6059 super->orom->vphba);
6060 return 0;
6061 }
6062 }
6063 return 1;
6064 }
6065
6066 static int imsm_get_free_size(struct supertype *st, int raiddisks,
6067 unsigned long long size, int chunk,
6068 unsigned long long *freesize)
6069 {
6070 struct intel_super *super = st->sb;
6071 struct imsm_super *mpb = super->anchor;
6072 struct dl *dl;
6073 int i;
6074 int extent_cnt;
6075 struct extent *e;
6076 unsigned long long maxsize;
6077 unsigned long long minsize;
6078 int cnt;
6079 int used;
6080
6081 /* find the largest common start free region of the possible disks */
6082 used = 0;
6083 extent_cnt = 0;
6084 cnt = 0;
6085 for (dl = super->disks; dl; dl = dl->next) {
6086 dl->raiddisk = -1;
6087
6088 if (dl->index >= 0)
6089 used++;
6090
6091 /* don't activate new spares if we are orom constrained
6092 * and there is already a volume active in the container
6093 */
6094 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6095 continue;
6096
6097 e = get_extents(super, dl);
6098 if (!e)
6099 continue;
6100 for (i = 1; e[i-1].size; i++)
6101 ;
6102 dl->e = e;
6103 dl->extent_cnt = i;
6104 extent_cnt += i;
6105 cnt++;
6106 }
6107
6108 maxsize = merge_extents(super, extent_cnt);
6109 minsize = size;
6110 if (size == 0)
6111 /* chunk is in K */
6112 minsize = chunk * 2;
6113
6114 if (cnt < raiddisks ||
6115 (super->orom && used && used != raiddisks) ||
6116 maxsize < minsize ||
6117 maxsize == 0) {
6118 pr_err("not enough devices with space to create array.\n");
6119 return 0; /* No enough free spaces large enough */
6120 }
6121
6122 if (size == 0) {
6123 size = maxsize;
6124 if (chunk) {
6125 size /= 2 * chunk;
6126 size *= 2 * chunk;
6127 }
6128 maxsize = size;
6129 }
6130 if (!check_env("IMSM_NO_PLATFORM") &&
6131 mpb->num_raid_devs > 0 && size && size != maxsize) {
6132 pr_err("attempting to create a second "
6133 "volume with size less then remaining space. "
6134 "Aborting...\n");
6135 return 0;
6136 }
6137 cnt = 0;
6138 for (dl = super->disks; dl; dl = dl->next)
6139 if (dl->e)
6140 dl->raiddisk = cnt++;
6141
6142 *freesize = size;
6143
6144 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
6145
6146 return 1;
6147 }
6148
6149 static int reserve_space(struct supertype *st, int raiddisks,
6150 unsigned long long size, int chunk,
6151 unsigned long long *freesize)
6152 {
6153 struct intel_super *super = st->sb;
6154 struct dl *dl;
6155 int cnt;
6156 int rv = 0;
6157
6158 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
6159 if (rv) {
6160 cnt = 0;
6161 for (dl = super->disks; dl; dl = dl->next)
6162 if (dl->e)
6163 dl->raiddisk = cnt++;
6164 rv = 1;
6165 }
6166
6167 return rv;
6168 }
6169
6170 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
6171 int raiddisks, int *chunk, unsigned long long size,
6172 unsigned long long data_offset,
6173 char *dev, unsigned long long *freesize,
6174 int verbose)
6175 {
6176 int fd, cfd;
6177 struct mdinfo *sra;
6178 int is_member = 0;
6179
6180 /* load capability
6181 * if given unused devices create a container
6182 * if given given devices in a container create a member volume
6183 */
6184 if (level == LEVEL_CONTAINER) {
6185 /* Must be a fresh device to add to a container */
6186 return validate_geometry_imsm_container(st, level, layout,
6187 raiddisks,
6188 chunk?*chunk:0,
6189 size, data_offset,
6190 dev, freesize,
6191 verbose);
6192 }
6193
6194 if (!dev) {
6195 if (st->sb) {
6196 struct intel_super *super = st->sb;
6197 if (!validate_geometry_imsm_orom(st->sb, level, layout,
6198 raiddisks, chunk, size,
6199 verbose))
6200 return 0;
6201 /* we are being asked to automatically layout a
6202 * new volume based on the current contents of
6203 * the container. If the the parameters can be
6204 * satisfied reserve_space will record the disks,
6205 * start offset, and size of the volume to be
6206 * created. add_to_super and getinfo_super
6207 * detect when autolayout is in progress.
6208 */
6209 /* assuming that freesize is always given when array is
6210 created */
6211 if (super->orom && freesize) {
6212 int count;
6213 count = count_volumes(super->hba->path,
6214 super->orom->dpa, verbose);
6215 if (super->orom->vphba <= count) {
6216 pr_vrb(": platform does not support more"
6217 " than %d raid volumes.\n",
6218 super->orom->vphba);
6219 return 0;
6220 }
6221 }
6222 if (freesize)
6223 return reserve_space(st, raiddisks, size,
6224 chunk?*chunk:0, freesize);
6225 }
6226 return 1;
6227 }
6228 if (st->sb) {
6229 /* creating in a given container */
6230 return validate_geometry_imsm_volume(st, level, layout,
6231 raiddisks, chunk, size,
6232 data_offset,
6233 dev, freesize, verbose);
6234 }
6235
6236 /* This device needs to be a device in an 'imsm' container */
6237 fd = open(dev, O_RDONLY|O_EXCL, 0);
6238 if (fd >= 0) {
6239 if (verbose)
6240 pr_err("Cannot create this array on device %s\n",
6241 dev);
6242 close(fd);
6243 return 0;
6244 }
6245 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6246 if (verbose)
6247 pr_err("Cannot open %s: %s\n",
6248 dev, strerror(errno));
6249 return 0;
6250 }
6251 /* Well, it is in use by someone, maybe an 'imsm' container. */
6252 cfd = open_container(fd);
6253 close(fd);
6254 if (cfd < 0) {
6255 if (verbose)
6256 pr_err("Cannot use %s: It is busy\n",
6257 dev);
6258 return 0;
6259 }
6260 sra = sysfs_read(cfd, 0, GET_VERSION);
6261 if (sra && sra->array.major_version == -1 &&
6262 strcmp(sra->text_version, "imsm") == 0)
6263 is_member = 1;
6264 sysfs_free(sra);
6265 if (is_member) {
6266 /* This is a member of a imsm container. Load the container
6267 * and try to create a volume
6268 */
6269 struct intel_super *super;
6270
6271 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
6272 st->sb = super;
6273 st->container_dev = fd2devnum(cfd);
6274 close(cfd);
6275 return validate_geometry_imsm_volume(st, level, layout,
6276 raiddisks, chunk,
6277 size, data_offset, dev,
6278 freesize, 1)
6279 ? 1 : -1;
6280 }
6281 }
6282
6283 if (verbose)
6284 pr_err("failed container membership check\n");
6285
6286 close(cfd);
6287 return 0;
6288 }
6289
6290 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
6291 {
6292 struct intel_super *super = st->sb;
6293
6294 if (level && *level == UnSet)
6295 *level = LEVEL_CONTAINER;
6296
6297 if (level && layout && *layout == UnSet)
6298 *layout = imsm_level_to_layout(*level);
6299
6300 if (chunk && (*chunk == UnSet || *chunk == 0))
6301 *chunk = imsm_default_chunk(super->orom);
6302 }
6303
6304 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6305
6306 static int kill_subarray_imsm(struct supertype *st)
6307 {
6308 /* remove the subarray currently referenced by ->current_vol */
6309 __u8 i;
6310 struct intel_dev **dp;
6311 struct intel_super *super = st->sb;
6312 __u8 current_vol = super->current_vol;
6313 struct imsm_super *mpb = super->anchor;
6314
6315 if (super->current_vol < 0)
6316 return 2;
6317 super->current_vol = -1; /* invalidate subarray cursor */
6318
6319 /* block deletions that would change the uuid of active subarrays
6320 *
6321 * FIXME when immutable ids are available, but note that we'll
6322 * also need to fixup the invalidated/active subarray indexes in
6323 * mdstat
6324 */
6325 for (i = 0; i < mpb->num_raid_devs; i++) {
6326 char subarray[4];
6327
6328 if (i < current_vol)
6329 continue;
6330 sprintf(subarray, "%u", i);
6331 if (is_subarray_active(subarray, st->devname)) {
6332 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6333 current_vol, i);
6334
6335 return 2;
6336 }
6337 }
6338
6339 if (st->update_tail) {
6340 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
6341
6342 u->type = update_kill_array;
6343 u->dev_idx = current_vol;
6344 append_metadata_update(st, u, sizeof(*u));
6345
6346 return 0;
6347 }
6348
6349 for (dp = &super->devlist; *dp;)
6350 if ((*dp)->index == current_vol) {
6351 *dp = (*dp)->next;
6352 } else {
6353 handle_missing(super, (*dp)->dev);
6354 if ((*dp)->index > current_vol)
6355 (*dp)->index--;
6356 dp = &(*dp)->next;
6357 }
6358
6359 /* no more raid devices, all active components are now spares,
6360 * but of course failed are still failed
6361 */
6362 if (--mpb->num_raid_devs == 0) {
6363 struct dl *d;
6364
6365 for (d = super->disks; d; d = d->next)
6366 if (d->index > -2)
6367 mark_spare(d);
6368 }
6369
6370 super->updates_pending++;
6371
6372 return 0;
6373 }
6374
6375 static int update_subarray_imsm(struct supertype *st, char *subarray,
6376 char *update, struct mddev_ident *ident)
6377 {
6378 /* update the subarray currently referenced by ->current_vol */
6379 struct intel_super *super = st->sb;
6380 struct imsm_super *mpb = super->anchor;
6381
6382 if (strcmp(update, "name") == 0) {
6383 char *name = ident->name;
6384 char *ep;
6385 int vol;
6386
6387 if (is_subarray_active(subarray, st->devname)) {
6388 pr_err("Unable to update name of active subarray\n");
6389 return 2;
6390 }
6391
6392 if (!check_name(super, name, 0))
6393 return 2;
6394
6395 vol = strtoul(subarray, &ep, 10);
6396 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6397 return 2;
6398
6399 if (st->update_tail) {
6400 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
6401
6402 u->type = update_rename_array;
6403 u->dev_idx = vol;
6404 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6405 append_metadata_update(st, u, sizeof(*u));
6406 } else {
6407 struct imsm_dev *dev;
6408 int i;
6409
6410 dev = get_imsm_dev(super, vol);
6411 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6412 for (i = 0; i < mpb->num_raid_devs; i++) {
6413 dev = get_imsm_dev(super, i);
6414 handle_missing(super, dev);
6415 }
6416 super->updates_pending++;
6417 }
6418 } else
6419 return 2;
6420
6421 return 0;
6422 }
6423 #endif /* MDASSEMBLE */
6424
6425 static int is_gen_migration(struct imsm_dev *dev)
6426 {
6427 if (dev == NULL)
6428 return 0;
6429
6430 if (!dev->vol.migr_state)
6431 return 0;
6432
6433 if (migr_type(dev) == MIGR_GEN_MIGR)
6434 return 1;
6435
6436 return 0;
6437 }
6438
6439 static int is_rebuilding(struct imsm_dev *dev)
6440 {
6441 struct imsm_map *migr_map;
6442
6443 if (!dev->vol.migr_state)
6444 return 0;
6445
6446 if (migr_type(dev) != MIGR_REBUILD)
6447 return 0;
6448
6449 migr_map = get_imsm_map(dev, MAP_1);
6450
6451 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6452 return 1;
6453 else
6454 return 0;
6455 }
6456
6457 #ifndef MDASSEMBLE
6458 static int is_initializing(struct imsm_dev *dev)
6459 {
6460 struct imsm_map *migr_map;
6461
6462 if (!dev->vol.migr_state)
6463 return 0;
6464
6465 if (migr_type(dev) != MIGR_INIT)
6466 return 0;
6467
6468 migr_map = get_imsm_map(dev, MAP_1);
6469
6470 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6471 return 1;
6472
6473 return 0;
6474 }
6475 #endif
6476
6477 static void update_recovery_start(struct intel_super *super,
6478 struct imsm_dev *dev,
6479 struct mdinfo *array)
6480 {
6481 struct mdinfo *rebuild = NULL;
6482 struct mdinfo *d;
6483 __u32 units;
6484
6485 if (!is_rebuilding(dev))
6486 return;
6487
6488 /* Find the rebuild target, but punt on the dual rebuild case */
6489 for (d = array->devs; d; d = d->next)
6490 if (d->recovery_start == 0) {
6491 if (rebuild)
6492 return;
6493 rebuild = d;
6494 }
6495
6496 if (!rebuild) {
6497 /* (?) none of the disks are marked with
6498 * IMSM_ORD_REBUILD, so assume they are missing and the
6499 * disk_ord_tbl was not correctly updated
6500 */
6501 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
6502 return;
6503 }
6504
6505 units = __le32_to_cpu(dev->vol.curr_migr_unit);
6506 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
6507 }
6508
6509 #ifndef MDASSEMBLE
6510 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
6511 #endif
6512
6513 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
6514 {
6515 /* Given a container loaded by load_super_imsm_all,
6516 * extract information about all the arrays into
6517 * an mdinfo tree.
6518 * If 'subarray' is given, just extract info about that array.
6519 *
6520 * For each imsm_dev create an mdinfo, fill it in,
6521 * then look for matching devices in super->disks
6522 * and create appropriate device mdinfo.
6523 */
6524 struct intel_super *super = st->sb;
6525 struct imsm_super *mpb = super->anchor;
6526 struct mdinfo *rest = NULL;
6527 unsigned int i;
6528 int sb_errors = 0;
6529 struct dl *d;
6530 int spare_disks = 0;
6531
6532 /* do not assemble arrays when not all attributes are supported */
6533 if (imsm_check_attributes(mpb->attributes) == 0) {
6534 sb_errors = 1;
6535 pr_err("Unsupported attributes in IMSM metadata."
6536 "Arrays activation is blocked.\n");
6537 }
6538
6539 /* check for bad blocks */
6540 if (imsm_bbm_log_size(super->anchor)) {
6541 pr_err("BBM log found in IMSM metadata."
6542 "Arrays activation is blocked.\n");
6543 sb_errors = 1;
6544 }
6545
6546
6547 /* count spare devices, not used in maps
6548 */
6549 for (d = super->disks; d; d = d->next)
6550 if (d->index == -1)
6551 spare_disks++;
6552
6553 for (i = 0; i < mpb->num_raid_devs; i++) {
6554 struct imsm_dev *dev;
6555 struct imsm_map *map;
6556 struct imsm_map *map2;
6557 struct mdinfo *this;
6558 int slot;
6559 #ifndef MDASSEMBLE
6560 int chunk;
6561 #endif
6562 char *ep;
6563
6564 if (subarray &&
6565 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6566 continue;
6567
6568 dev = get_imsm_dev(super, i);
6569 map = get_imsm_map(dev, MAP_0);
6570 map2 = get_imsm_map(dev, MAP_1);
6571
6572 /* do not publish arrays that are in the middle of an
6573 * unsupported migration
6574 */
6575 if (dev->vol.migr_state &&
6576 (migr_type(dev) == MIGR_STATE_CHANGE)) {
6577 pr_err("cannot assemble volume '%.16s':"
6578 " unsupported migration in progress\n",
6579 dev->volume);
6580 continue;
6581 }
6582 /* do not publish arrays that are not support by controller's
6583 * OROM/EFI
6584 */
6585
6586 this = xmalloc(sizeof(*this));
6587
6588 super->current_vol = i;
6589 getinfo_super_imsm_volume(st, this, NULL);
6590 this->next = rest;
6591 #ifndef MDASSEMBLE
6592 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
6593 /* mdadm does not support all metadata features- set the bit in all arrays state */
6594 if (!validate_geometry_imsm_orom(super,
6595 get_imsm_raid_level(map), /* RAID level */
6596 imsm_level_to_layout(get_imsm_raid_level(map)),
6597 map->num_members, /* raid disks */
6598 &chunk, join_u32(dev->size_low, dev->size_high),
6599 1 /* verbose */)) {
6600 pr_err("IMSM RAID geometry validation"
6601 " failed. Array %s activation is blocked.\n",
6602 dev->volume);
6603 this->array.state |=
6604 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6605 (1<<MD_SB_BLOCK_VOLUME);
6606 }
6607 #endif
6608
6609 /* if array has bad blocks, set suitable bit in all arrays state */
6610 if (sb_errors)
6611 this->array.state |=
6612 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6613 (1<<MD_SB_BLOCK_VOLUME);
6614
6615 for (slot = 0 ; slot < map->num_members; slot++) {
6616 unsigned long long recovery_start;
6617 struct mdinfo *info_d;
6618 struct dl *d;
6619 int idx;
6620 int skip;
6621 __u32 ord;
6622
6623 skip = 0;
6624 idx = get_imsm_disk_idx(dev, slot, MAP_0);
6625 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
6626 for (d = super->disks; d ; d = d->next)
6627 if (d->index == idx)
6628 break;
6629
6630 recovery_start = MaxSector;
6631 if (d == NULL)
6632 skip = 1;
6633 if (d && is_failed(&d->disk))
6634 skip = 1;
6635 if (ord & IMSM_ORD_REBUILD)
6636 recovery_start = 0;
6637
6638 /*
6639 * if we skip some disks the array will be assmebled degraded;
6640 * reset resync start to avoid a dirty-degraded
6641 * situation when performing the intial sync
6642 *
6643 * FIXME handle dirty degraded
6644 */
6645 if ((skip || recovery_start == 0) && !dev->vol.dirty)
6646 this->resync_start = MaxSector;
6647 if (skip)
6648 continue;
6649
6650 info_d = xcalloc(1, sizeof(*info_d));
6651 info_d->next = this->devs;
6652 this->devs = info_d;
6653
6654 info_d->disk.number = d->index;
6655 info_d->disk.major = d->major;
6656 info_d->disk.minor = d->minor;
6657 info_d->disk.raid_disk = slot;
6658 info_d->recovery_start = recovery_start;
6659 if (map2) {
6660 if (slot < map2->num_members)
6661 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6662 else
6663 this->array.spare_disks++;
6664 } else {
6665 if (slot < map->num_members)
6666 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6667 else
6668 this->array.spare_disks++;
6669 }
6670 if (info_d->recovery_start == MaxSector)
6671 this->array.working_disks++;
6672
6673 info_d->events = __le32_to_cpu(mpb->generation_num);
6674 info_d->data_offset = pba_of_lba0(map);
6675 info_d->component_size = blocks_per_member(map);
6676 }
6677 /* now that the disk list is up-to-date fixup recovery_start */
6678 update_recovery_start(super, dev, this);
6679 this->array.spare_disks += spare_disks;
6680
6681 #ifndef MDASSEMBLE
6682 /* check for reshape */
6683 if (this->reshape_active == 1)
6684 recover_backup_imsm(st, this);
6685 #endif
6686 rest = this;
6687 }
6688
6689 return rest;
6690 }
6691
6692
6693 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6694 int failed, int look_in_map)
6695 {
6696 struct imsm_map *map;
6697
6698 map = get_imsm_map(dev, look_in_map);
6699
6700 if (!failed)
6701 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6702 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6703
6704 switch (get_imsm_raid_level(map)) {
6705 case 0:
6706 return IMSM_T_STATE_FAILED;
6707 break;
6708 case 1:
6709 if (failed < map->num_members)
6710 return IMSM_T_STATE_DEGRADED;
6711 else
6712 return IMSM_T_STATE_FAILED;
6713 break;
6714 case 10:
6715 {
6716 /**
6717 * check to see if any mirrors have failed, otherwise we
6718 * are degraded. Even numbered slots are mirrored on
6719 * slot+1
6720 */
6721 int i;
6722 /* gcc -Os complains that this is unused */
6723 int insync = insync;
6724
6725 for (i = 0; i < map->num_members; i++) {
6726 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6727 int idx = ord_to_idx(ord);
6728 struct imsm_disk *disk;
6729
6730 /* reset the potential in-sync count on even-numbered
6731 * slots. num_copies is always 2 for imsm raid10
6732 */
6733 if ((i & 1) == 0)
6734 insync = 2;
6735
6736 disk = get_imsm_disk(super, idx);
6737 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6738 insync--;
6739
6740 /* no in-sync disks left in this mirror the
6741 * array has failed
6742 */
6743 if (insync == 0)
6744 return IMSM_T_STATE_FAILED;
6745 }
6746
6747 return IMSM_T_STATE_DEGRADED;
6748 }
6749 case 5:
6750 if (failed < 2)
6751 return IMSM_T_STATE_DEGRADED;
6752 else
6753 return IMSM_T_STATE_FAILED;
6754 break;
6755 default:
6756 break;
6757 }
6758
6759 return map->map_state;
6760 }
6761
6762 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6763 int look_in_map)
6764 {
6765 int i;
6766 int failed = 0;
6767 struct imsm_disk *disk;
6768 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6769 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6770 struct imsm_map *map_for_loop;
6771 __u32 ord;
6772 int idx;
6773 int idx_1;
6774
6775 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6776 * disks that are being rebuilt. New failures are recorded to
6777 * map[0]. So we look through all the disks we started with and
6778 * see if any failures are still present, or if any new ones
6779 * have arrived
6780 */
6781 map_for_loop = map;
6782 if (prev && (map->num_members < prev->num_members))
6783 map_for_loop = prev;
6784
6785 for (i = 0; i < map_for_loop->num_members; i++) {
6786 idx_1 = -255;
6787 /* when MAP_X is passed both maps failures are counted
6788 */
6789 if (prev &&
6790 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6791 (i < prev->num_members)) {
6792 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6793 idx_1 = ord_to_idx(ord);
6794
6795 disk = get_imsm_disk(super, idx_1);
6796 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6797 failed++;
6798 }
6799 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6800 (i < map->num_members)) {
6801 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6802 idx = ord_to_idx(ord);
6803
6804 if (idx != idx_1) {
6805 disk = get_imsm_disk(super, idx);
6806 if (!disk || is_failed(disk) ||
6807 ord & IMSM_ORD_REBUILD)
6808 failed++;
6809 }
6810 }
6811 }
6812
6813 return failed;
6814 }
6815
6816 #ifndef MDASSEMBLE
6817 static int imsm_open_new(struct supertype *c, struct active_array *a,
6818 char *inst)
6819 {
6820 struct intel_super *super = c->sb;
6821 struct imsm_super *mpb = super->anchor;
6822
6823 if (atoi(inst) >= mpb->num_raid_devs) {
6824 fprintf(stderr, "%s: subarry index %d, out of range\n",
6825 __func__, atoi(inst));
6826 return -ENODEV;
6827 }
6828
6829 dprintf("imsm: open_new %s\n", inst);
6830 a->info.container_member = atoi(inst);
6831 return 0;
6832 }
6833
6834 static int is_resyncing(struct imsm_dev *dev)
6835 {
6836 struct imsm_map *migr_map;
6837
6838 if (!dev->vol.migr_state)
6839 return 0;
6840
6841 if (migr_type(dev) == MIGR_INIT ||
6842 migr_type(dev) == MIGR_REPAIR)
6843 return 1;
6844
6845 if (migr_type(dev) == MIGR_GEN_MIGR)
6846 return 0;
6847
6848 migr_map = get_imsm_map(dev, MAP_1);
6849
6850 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6851 (dev->vol.migr_type != MIGR_GEN_MIGR))
6852 return 1;
6853 else
6854 return 0;
6855 }
6856
6857 /* return true if we recorded new information */
6858 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6859 {
6860 __u32 ord;
6861 int slot;
6862 struct imsm_map *map;
6863 char buf[MAX_RAID_SERIAL_LEN+3];
6864 unsigned int len, shift = 0;
6865
6866 /* new failures are always set in map[0] */
6867 map = get_imsm_map(dev, MAP_0);
6868
6869 slot = get_imsm_disk_slot(map, idx);
6870 if (slot < 0)
6871 return 0;
6872
6873 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6874 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6875 return 0;
6876
6877 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6878 buf[MAX_RAID_SERIAL_LEN] = '\000';
6879 strcat(buf, ":0");
6880 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6881 shift = len - MAX_RAID_SERIAL_LEN + 1;
6882 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6883
6884 disk->status |= FAILED_DISK;
6885 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6886 /* mark failures in second map if second map exists and this disk
6887 * in this slot.
6888 * This is valid for migration, initialization and rebuild
6889 */
6890 if (dev->vol.migr_state) {
6891 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
6892 int slot2 = get_imsm_disk_slot(map2, idx);
6893
6894 if ((slot2 < map2->num_members) &&
6895 (slot2 >= 0))
6896 set_imsm_ord_tbl_ent(map2, slot2,
6897 idx | IMSM_ORD_REBUILD);
6898 }
6899 if (map->failed_disk_num == 0xff)
6900 map->failed_disk_num = slot;
6901 return 1;
6902 }
6903
6904 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6905 {
6906 mark_failure(dev, disk, idx);
6907
6908 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6909 return;
6910
6911 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6912 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6913 }
6914
6915 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6916 {
6917 struct dl *dl;
6918
6919 if (!super->missing)
6920 return;
6921
6922 dprintf("imsm: mark missing\n");
6923 /* end process for initialization and rebuild only
6924 */
6925 if (is_gen_migration(dev) == 0) {
6926 __u8 map_state;
6927 int failed;
6928
6929 failed = imsm_count_failed(super, dev, MAP_0);
6930 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6931
6932 end_migration(dev, super, map_state);
6933 }
6934 for (dl = super->missing; dl; dl = dl->next)
6935 mark_missing(dev, &dl->disk, dl->index);
6936 super->updates_pending++;
6937 }
6938
6939 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
6940 long long new_size)
6941 {
6942 int used_disks = imsm_num_data_members(dev, MAP_0);
6943 unsigned long long array_blocks;
6944 struct imsm_map *map;
6945
6946 if (used_disks == 0) {
6947 /* when problems occures
6948 * return current array_blocks value
6949 */
6950 array_blocks = __le32_to_cpu(dev->size_high);
6951 array_blocks = array_blocks << 32;
6952 array_blocks += __le32_to_cpu(dev->size_low);
6953
6954 return array_blocks;
6955 }
6956
6957 /* set array size in metadata
6958 */
6959 if (new_size <= 0) {
6960 /* OLCE size change is caused by added disks
6961 */
6962 map = get_imsm_map(dev, MAP_0);
6963 array_blocks = blocks_per_member(map) * used_disks;
6964 } else {
6965 /* Online Volume Size Change
6966 * Using available free space
6967 */
6968 array_blocks = new_size;
6969 }
6970
6971 /* round array size down to closest MB
6972 */
6973 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6974 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6975 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6976
6977 return array_blocks;
6978 }
6979
6980 static void imsm_set_disk(struct active_array *a, int n, int state);
6981
6982 static void imsm_progress_container_reshape(struct intel_super *super)
6983 {
6984 /* if no device has a migr_state, but some device has a
6985 * different number of members than the previous device, start
6986 * changing the number of devices in this device to match
6987 * previous.
6988 */
6989 struct imsm_super *mpb = super->anchor;
6990 int prev_disks = -1;
6991 int i;
6992 int copy_map_size;
6993
6994 for (i = 0; i < mpb->num_raid_devs; i++) {
6995 struct imsm_dev *dev = get_imsm_dev(super, i);
6996 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6997 struct imsm_map *map2;
6998 int prev_num_members;
6999
7000 if (dev->vol.migr_state)
7001 return;
7002
7003 if (prev_disks == -1)
7004 prev_disks = map->num_members;
7005 if (prev_disks == map->num_members)
7006 continue;
7007
7008 /* OK, this array needs to enter reshape mode.
7009 * i.e it needs a migr_state
7010 */
7011
7012 copy_map_size = sizeof_imsm_map(map);
7013 prev_num_members = map->num_members;
7014 map->num_members = prev_disks;
7015 dev->vol.migr_state = 1;
7016 dev->vol.curr_migr_unit = 0;
7017 set_migr_type(dev, MIGR_GEN_MIGR);
7018 for (i = prev_num_members;
7019 i < map->num_members; i++)
7020 set_imsm_ord_tbl_ent(map, i, i);
7021 map2 = get_imsm_map(dev, MAP_1);
7022 /* Copy the current map */
7023 memcpy(map2, map, copy_map_size);
7024 map2->num_members = prev_num_members;
7025
7026 imsm_set_array_size(dev, -1);
7027 super->clean_migration_record_by_mdmon = 1;
7028 super->updates_pending++;
7029 }
7030 }
7031
7032 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
7033 * states are handled in imsm_set_disk() with one exception, when a
7034 * resync is stopped due to a new failure this routine will set the
7035 * 'degraded' state for the array.
7036 */
7037 static int imsm_set_array_state(struct active_array *a, int consistent)
7038 {
7039 int inst = a->info.container_member;
7040 struct intel_super *super = a->container->sb;
7041 struct imsm_dev *dev = get_imsm_dev(super, inst);
7042 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7043 int failed = imsm_count_failed(super, dev, MAP_0);
7044 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7045 __u32 blocks_per_unit;
7046
7047 if (dev->vol.migr_state &&
7048 dev->vol.migr_type == MIGR_GEN_MIGR) {
7049 /* array state change is blocked due to reshape action
7050 * We might need to
7051 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7052 * - finish the reshape (if last_checkpoint is big and action != reshape)
7053 * - update curr_migr_unit
7054 */
7055 if (a->curr_action == reshape) {
7056 /* still reshaping, maybe update curr_migr_unit */
7057 goto mark_checkpoint;
7058 } else {
7059 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7060 /* for some reason we aborted the reshape.
7061 *
7062 * disable automatic metadata rollback
7063 * user action is required to recover process
7064 */
7065 if (0) {
7066 struct imsm_map *map2 =
7067 get_imsm_map(dev, MAP_1);
7068 dev->vol.migr_state = 0;
7069 set_migr_type(dev, 0);
7070 dev->vol.curr_migr_unit = 0;
7071 memcpy(map, map2,
7072 sizeof_imsm_map(map2));
7073 super->updates_pending++;
7074 }
7075 }
7076 if (a->last_checkpoint >= a->info.component_size) {
7077 unsigned long long array_blocks;
7078 int used_disks;
7079 struct mdinfo *mdi;
7080
7081 used_disks = imsm_num_data_members(dev, MAP_0);
7082 if (used_disks > 0) {
7083 array_blocks =
7084 blocks_per_member(map) *
7085 used_disks;
7086 /* round array size down to closest MB
7087 */
7088 array_blocks = (array_blocks
7089 >> SECT_PER_MB_SHIFT)
7090 << SECT_PER_MB_SHIFT;
7091 a->info.custom_array_size = array_blocks;
7092 /* encourage manager to update array
7093 * size
7094 */
7095
7096 a->check_reshape = 1;
7097 }
7098 /* finalize online capacity expansion/reshape */
7099 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7100 imsm_set_disk(a,
7101 mdi->disk.raid_disk,
7102 mdi->curr_state);
7103
7104 imsm_progress_container_reshape(super);
7105 }
7106 }
7107 }
7108
7109 /* before we activate this array handle any missing disks */
7110 if (consistent == 2)
7111 handle_missing(super, dev);
7112
7113 if (consistent == 2 &&
7114 (!is_resync_complete(&a->info) ||
7115 map_state != IMSM_T_STATE_NORMAL ||
7116 dev->vol.migr_state))
7117 consistent = 0;
7118
7119 if (is_resync_complete(&a->info)) {
7120 /* complete intialization / resync,
7121 * recovery and interrupted recovery is completed in
7122 * ->set_disk
7123 */
7124 if (is_resyncing(dev)) {
7125 dprintf("imsm: mark resync done\n");
7126 end_migration(dev, super, map_state);
7127 super->updates_pending++;
7128 a->last_checkpoint = 0;
7129 }
7130 } else if ((!is_resyncing(dev) && !failed) &&
7131 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
7132 /* mark the start of the init process if nothing is failed */
7133 dprintf("imsm: mark resync start\n");
7134 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
7135 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
7136 else
7137 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
7138 super->updates_pending++;
7139 }
7140
7141 mark_checkpoint:
7142 /* skip checkpointing for general migration,
7143 * it is controlled in mdadm
7144 */
7145 if (is_gen_migration(dev))
7146 goto skip_mark_checkpoint;
7147
7148 /* check if we can update curr_migr_unit from resync_start, recovery_start */
7149 blocks_per_unit = blocks_per_migr_unit(super, dev);
7150 if (blocks_per_unit) {
7151 __u32 units32;
7152 __u64 units;
7153
7154 units = a->last_checkpoint / blocks_per_unit;
7155 units32 = units;
7156
7157 /* check that we did not overflow 32-bits, and that
7158 * curr_migr_unit needs updating
7159 */
7160 if (units32 == units &&
7161 units32 != 0 &&
7162 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7163 dprintf("imsm: mark checkpoint (%u)\n", units32);
7164 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7165 super->updates_pending++;
7166 }
7167 }
7168
7169 skip_mark_checkpoint:
7170 /* mark dirty / clean */
7171 if (dev->vol.dirty != !consistent) {
7172 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
7173 if (consistent)
7174 dev->vol.dirty = 0;
7175 else
7176 dev->vol.dirty = 1;
7177 super->updates_pending++;
7178 }
7179
7180 return consistent;
7181 }
7182
7183 static void imsm_set_disk(struct active_array *a, int n, int state)
7184 {
7185 int inst = a->info.container_member;
7186 struct intel_super *super = a->container->sb;
7187 struct imsm_dev *dev = get_imsm_dev(super, inst);
7188 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7189 struct imsm_disk *disk;
7190 struct mdinfo *mdi;
7191 int recovery_not_finished = 0;
7192 int failed;
7193 __u32 ord;
7194 __u8 map_state;
7195
7196 if (n > map->num_members)
7197 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
7198 n, map->num_members - 1);
7199
7200 if (n < 0)
7201 return;
7202
7203 dprintf("imsm: set_disk %d:%x\n", n, state);
7204
7205 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
7206 disk = get_imsm_disk(super, ord_to_idx(ord));
7207
7208 /* check for new failures */
7209 if (state & DS_FAULTY) {
7210 if (mark_failure(dev, disk, ord_to_idx(ord)))
7211 super->updates_pending++;
7212 }
7213
7214 /* check if in_sync */
7215 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
7216 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7217
7218 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
7219 super->updates_pending++;
7220 }
7221
7222 failed = imsm_count_failed(super, dev, MAP_0);
7223 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7224
7225 /* check if recovery complete, newly degraded, or failed */
7226 dprintf("imsm: Detected transition to state ");
7227 switch (map_state) {
7228 case IMSM_T_STATE_NORMAL: /* transition to normal state */
7229 dprintf("normal: ");
7230 if (is_rebuilding(dev)) {
7231 dprintf("while rebuilding");
7232 /* check if recovery is really finished */
7233 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
7234 if (mdi->recovery_start != MaxSector) {
7235 recovery_not_finished = 1;
7236 break;
7237 }
7238 if (recovery_not_finished) {
7239 dprintf("\nimsm: Rebuild has not finished yet, "
7240 "state not changed");
7241 if (a->last_checkpoint < mdi->recovery_start) {
7242 a->last_checkpoint = mdi->recovery_start;
7243 super->updates_pending++;
7244 }
7245 break;
7246 }
7247 end_migration(dev, super, map_state);
7248 map = get_imsm_map(dev, MAP_0);
7249 map->failed_disk_num = ~0;
7250 super->updates_pending++;
7251 a->last_checkpoint = 0;
7252 break;
7253 }
7254 if (is_gen_migration(dev)) {
7255 dprintf("while general migration");
7256 if (a->last_checkpoint >= a->info.component_size)
7257 end_migration(dev, super, map_state);
7258 else
7259 map->map_state = map_state;
7260 map = get_imsm_map(dev, MAP_0);
7261 map->failed_disk_num = ~0;
7262 super->updates_pending++;
7263 break;
7264 }
7265 break;
7266 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
7267 dprintf("degraded: ");
7268 if ((map->map_state != map_state) &&
7269 !dev->vol.migr_state) {
7270 dprintf("mark degraded");
7271 map->map_state = map_state;
7272 super->updates_pending++;
7273 a->last_checkpoint = 0;
7274 break;
7275 }
7276 if (is_rebuilding(dev)) {
7277 dprintf("while rebuilding.");
7278 if (map->map_state != map_state) {
7279 dprintf(" Map state change");
7280 end_migration(dev, super, map_state);
7281 super->updates_pending++;
7282 }
7283 break;
7284 }
7285 if (is_gen_migration(dev)) {
7286 dprintf("while general migration");
7287 if (a->last_checkpoint >= a->info.component_size)
7288 end_migration(dev, super, map_state);
7289 else {
7290 map->map_state = map_state;
7291 manage_second_map(super, dev);
7292 }
7293 super->updates_pending++;
7294 break;
7295 }
7296 if (is_initializing(dev)) {
7297 dprintf("while initialization.");
7298 map->map_state = map_state;
7299 super->updates_pending++;
7300 break;
7301 }
7302 break;
7303 case IMSM_T_STATE_FAILED: /* transition to failed state */
7304 dprintf("failed: ");
7305 if (is_gen_migration(dev)) {
7306 dprintf("while general migration");
7307 map->map_state = map_state;
7308 super->updates_pending++;
7309 break;
7310 }
7311 if (map->map_state != map_state) {
7312 dprintf("mark failed");
7313 end_migration(dev, super, map_state);
7314 super->updates_pending++;
7315 a->last_checkpoint = 0;
7316 break;
7317 }
7318 break;
7319 default:
7320 dprintf("state %i\n", map_state);
7321 }
7322 dprintf("\n");
7323
7324 }
7325
7326 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
7327 {
7328 void *buf = mpb;
7329 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7330 unsigned long long dsize;
7331 unsigned long long sectors;
7332
7333 get_dev_size(fd, NULL, &dsize);
7334
7335 if (mpb_size > 512) {
7336 /* -1 to account for anchor */
7337 sectors = mpb_sectors(mpb) - 1;
7338
7339 /* write the extended mpb to the sectors preceeding the anchor */
7340 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
7341 return 1;
7342
7343 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
7344 != 512 * sectors)
7345 return 1;
7346 }
7347
7348 /* first block is stored on second to last sector of the disk */
7349 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
7350 return 1;
7351
7352 if (write(fd, buf, 512) != 512)
7353 return 1;
7354
7355 return 0;
7356 }
7357
7358 static void imsm_sync_metadata(struct supertype *container)
7359 {
7360 struct intel_super *super = container->sb;
7361
7362 dprintf("sync metadata: %d\n", super->updates_pending);
7363 if (!super->updates_pending)
7364 return;
7365
7366 write_super_imsm(container, 0);
7367
7368 super->updates_pending = 0;
7369 }
7370
7371 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7372 {
7373 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7374 int i = get_imsm_disk_idx(dev, idx, MAP_X);
7375 struct dl *dl;
7376
7377 for (dl = super->disks; dl; dl = dl->next)
7378 if (dl->index == i)
7379 break;
7380
7381 if (dl && is_failed(&dl->disk))
7382 dl = NULL;
7383
7384 if (dl)
7385 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
7386
7387 return dl;
7388 }
7389
7390 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
7391 struct active_array *a, int activate_new,
7392 struct mdinfo *additional_test_list)
7393 {
7394 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7395 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
7396 struct imsm_super *mpb = super->anchor;
7397 struct imsm_map *map;
7398 unsigned long long pos;
7399 struct mdinfo *d;
7400 struct extent *ex;
7401 int i, j;
7402 int found;
7403 __u32 array_start = 0;
7404 __u32 array_end = 0;
7405 struct dl *dl;
7406 struct mdinfo *test_list;
7407
7408 for (dl = super->disks; dl; dl = dl->next) {
7409 /* If in this array, skip */
7410 for (d = a->info.devs ; d ; d = d->next)
7411 if (d->state_fd >= 0 &&
7412 d->disk.major == dl->major &&
7413 d->disk.minor == dl->minor) {
7414 dprintf("%x:%x already in array\n",
7415 dl->major, dl->minor);
7416 break;
7417 }
7418 if (d)
7419 continue;
7420 test_list = additional_test_list;
7421 while (test_list) {
7422 if (test_list->disk.major == dl->major &&
7423 test_list->disk.minor == dl->minor) {
7424 dprintf("%x:%x already in additional test list\n",
7425 dl->major, dl->minor);
7426 break;
7427 }
7428 test_list = test_list->next;
7429 }
7430 if (test_list)
7431 continue;
7432
7433 /* skip in use or failed drives */
7434 if (is_failed(&dl->disk) || idx == dl->index ||
7435 dl->index == -2) {
7436 dprintf("%x:%x status (failed: %d index: %d)\n",
7437 dl->major, dl->minor, is_failed(&dl->disk), idx);
7438 continue;
7439 }
7440
7441 /* skip pure spares when we are looking for partially
7442 * assimilated drives
7443 */
7444 if (dl->index == -1 && !activate_new)
7445 continue;
7446
7447 /* Does this unused device have the requisite free space?
7448 * It needs to be able to cover all member volumes
7449 */
7450 ex = get_extents(super, dl);
7451 if (!ex) {
7452 dprintf("cannot get extents\n");
7453 continue;
7454 }
7455 for (i = 0; i < mpb->num_raid_devs; i++) {
7456 dev = get_imsm_dev(super, i);
7457 map = get_imsm_map(dev, MAP_0);
7458
7459 /* check if this disk is already a member of
7460 * this array
7461 */
7462 if (get_imsm_disk_slot(map, dl->index) >= 0)
7463 continue;
7464
7465 found = 0;
7466 j = 0;
7467 pos = 0;
7468 array_start = pba_of_lba0(map);
7469 array_end = array_start +
7470 blocks_per_member(map) - 1;
7471
7472 do {
7473 /* check that we can start at pba_of_lba0 with
7474 * blocks_per_member of space
7475 */
7476 if (array_start >= pos && array_end < ex[j].start) {
7477 found = 1;
7478 break;
7479 }
7480 pos = ex[j].start + ex[j].size;
7481 j++;
7482 } while (ex[j-1].size);
7483
7484 if (!found)
7485 break;
7486 }
7487
7488 free(ex);
7489 if (i < mpb->num_raid_devs) {
7490 dprintf("%x:%x does not have %u to %u available\n",
7491 dl->major, dl->minor, array_start, array_end);
7492 /* No room */
7493 continue;
7494 }
7495 return dl;
7496 }
7497
7498 return dl;
7499 }
7500
7501
7502 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7503 {
7504 struct imsm_dev *dev2;
7505 struct imsm_map *map;
7506 struct dl *idisk;
7507 int slot;
7508 int idx;
7509 __u8 state;
7510
7511 dev2 = get_imsm_dev(cont->sb, dev_idx);
7512 if (dev2) {
7513 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
7514 if (state == IMSM_T_STATE_FAILED) {
7515 map = get_imsm_map(dev2, MAP_0);
7516 if (!map)
7517 return 1;
7518 for (slot = 0; slot < map->num_members; slot++) {
7519 /*
7520 * Check if failed disks are deleted from intel
7521 * disk list or are marked to be deleted
7522 */
7523 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
7524 idisk = get_imsm_dl_disk(cont->sb, idx);
7525 /*
7526 * Do not rebuild the array if failed disks
7527 * from failed sub-array are not removed from
7528 * container.
7529 */
7530 if (idisk &&
7531 is_failed(&idisk->disk) &&
7532 (idisk->action != DISK_REMOVE))
7533 return 0;
7534 }
7535 }
7536 }
7537 return 1;
7538 }
7539
7540 static struct mdinfo *imsm_activate_spare(struct active_array *a,
7541 struct metadata_update **updates)
7542 {
7543 /**
7544 * Find a device with unused free space and use it to replace a
7545 * failed/vacant region in an array. We replace failed regions one a
7546 * array at a time. The result is that a new spare disk will be added
7547 * to the first failed array and after the monitor has finished
7548 * propagating failures the remainder will be consumed.
7549 *
7550 * FIXME add a capability for mdmon to request spares from another
7551 * container.
7552 */
7553
7554 struct intel_super *super = a->container->sb;
7555 int inst = a->info.container_member;
7556 struct imsm_dev *dev = get_imsm_dev(super, inst);
7557 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7558 int failed = a->info.array.raid_disks;
7559 struct mdinfo *rv = NULL;
7560 struct mdinfo *d;
7561 struct mdinfo *di;
7562 struct metadata_update *mu;
7563 struct dl *dl;
7564 struct imsm_update_activate_spare *u;
7565 int num_spares = 0;
7566 int i;
7567 int allowed;
7568
7569 for (d = a->info.devs ; d ; d = d->next) {
7570 if ((d->curr_state & DS_FAULTY) &&
7571 d->state_fd >= 0)
7572 /* wait for Removal to happen */
7573 return NULL;
7574 if (d->state_fd >= 0)
7575 failed--;
7576 }
7577
7578 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7579 inst, failed, a->info.array.raid_disks, a->info.array.level);
7580
7581 if (imsm_reshape_blocks_arrays_changes(super))
7582 return NULL;
7583
7584 /* Cannot activate another spare if rebuild is in progress already
7585 */
7586 if (is_rebuilding(dev)) {
7587 dprintf("imsm: No spare activation allowed. "
7588 "Rebuild in progress already.\n");
7589 return NULL;
7590 }
7591
7592 if (a->info.array.level == 4)
7593 /* No repair for takeovered array
7594 * imsm doesn't support raid4
7595 */
7596 return NULL;
7597
7598 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7599 IMSM_T_STATE_DEGRADED)
7600 return NULL;
7601
7602 /*
7603 * If there are any failed disks check state of the other volume.
7604 * Block rebuild if the another one is failed until failed disks
7605 * are removed from container.
7606 */
7607 if (failed) {
7608 dprintf("found failed disks in %.*s, check if there another"
7609 "failed sub-array.\n",
7610 MAX_RAID_SERIAL_LEN, dev->volume);
7611 /* check if states of the other volumes allow for rebuild */
7612 for (i = 0; i < super->anchor->num_raid_devs; i++) {
7613 if (i != inst) {
7614 allowed = imsm_rebuild_allowed(a->container,
7615 i, failed);
7616 if (!allowed)
7617 return NULL;
7618 }
7619 }
7620 }
7621
7622 /* For each slot, if it is not working, find a spare */
7623 for (i = 0; i < a->info.array.raid_disks; i++) {
7624 for (d = a->info.devs ; d ; d = d->next)
7625 if (d->disk.raid_disk == i)
7626 break;
7627 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7628 if (d && (d->state_fd >= 0))
7629 continue;
7630
7631 /*
7632 * OK, this device needs recovery. Try to re-add the
7633 * previous occupant of this slot, if this fails see if
7634 * we can continue the assimilation of a spare that was
7635 * partially assimilated, finally try to activate a new
7636 * spare.
7637 */
7638 dl = imsm_readd(super, i, a);
7639 if (!dl)
7640 dl = imsm_add_spare(super, i, a, 0, rv);
7641 if (!dl)
7642 dl = imsm_add_spare(super, i, a, 1, rv);
7643 if (!dl)
7644 continue;
7645
7646 /* found a usable disk with enough space */
7647 di = xcalloc(1, sizeof(*di));
7648
7649 /* dl->index will be -1 in the case we are activating a
7650 * pristine spare. imsm_process_update() will create a
7651 * new index in this case. Once a disk is found to be
7652 * failed in all member arrays it is kicked from the
7653 * metadata
7654 */
7655 di->disk.number = dl->index;
7656
7657 /* (ab)use di->devs to store a pointer to the device
7658 * we chose
7659 */
7660 di->devs = (struct mdinfo *) dl;
7661
7662 di->disk.raid_disk = i;
7663 di->disk.major = dl->major;
7664 di->disk.minor = dl->minor;
7665 di->disk.state = 0;
7666 di->recovery_start = 0;
7667 di->data_offset = pba_of_lba0(map);
7668 di->component_size = a->info.component_size;
7669 di->container_member = inst;
7670 super->random = random32();
7671 di->next = rv;
7672 rv = di;
7673 num_spares++;
7674 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7675 i, di->data_offset);
7676 }
7677
7678 if (!rv)
7679 /* No spares found */
7680 return rv;
7681 /* Now 'rv' has a list of devices to return.
7682 * Create a metadata_update record to update the
7683 * disk_ord_tbl for the array
7684 */
7685 mu = xmalloc(sizeof(*mu));
7686 mu->buf = xcalloc(num_spares,
7687 sizeof(struct imsm_update_activate_spare));
7688 mu->space = NULL;
7689 mu->space_list = NULL;
7690 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7691 mu->next = *updates;
7692 u = (struct imsm_update_activate_spare *) mu->buf;
7693
7694 for (di = rv ; di ; di = di->next) {
7695 u->type = update_activate_spare;
7696 u->dl = (struct dl *) di->devs;
7697 di->devs = NULL;
7698 u->slot = di->disk.raid_disk;
7699 u->array = inst;
7700 u->next = u + 1;
7701 u++;
7702 }
7703 (u-1)->next = NULL;
7704 *updates = mu;
7705
7706 return rv;
7707 }
7708
7709 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7710 {
7711 struct imsm_dev *dev = get_imsm_dev(super, idx);
7712 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7713 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7714 struct disk_info *inf = get_disk_info(u);
7715 struct imsm_disk *disk;
7716 int i;
7717 int j;
7718
7719 for (i = 0; i < map->num_members; i++) {
7720 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7721 for (j = 0; j < new_map->num_members; j++)
7722 if (serialcmp(disk->serial, inf[j].serial) == 0)
7723 return 1;
7724 }
7725
7726 return 0;
7727 }
7728
7729
7730 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7731 {
7732 struct dl *dl = NULL;
7733 for (dl = super->disks; dl; dl = dl->next)
7734 if ((dl->major == major) && (dl->minor == minor))
7735 return dl;
7736 return NULL;
7737 }
7738
7739 static int remove_disk_super(struct intel_super *super, int major, int minor)
7740 {
7741 struct dl *prev = NULL;
7742 struct dl *dl;
7743
7744 prev = NULL;
7745 for (dl = super->disks; dl; dl = dl->next) {
7746 if ((dl->major == major) && (dl->minor == minor)) {
7747 /* remove */
7748 if (prev)
7749 prev->next = dl->next;
7750 else
7751 super->disks = dl->next;
7752 dl->next = NULL;
7753 __free_imsm_disk(dl);
7754 dprintf("%s: removed %x:%x\n",
7755 __func__, major, minor);
7756 break;
7757 }
7758 prev = dl;
7759 }
7760 return 0;
7761 }
7762
7763 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7764
7765 static int add_remove_disk_update(struct intel_super *super)
7766 {
7767 int check_degraded = 0;
7768 struct dl *disk = NULL;
7769 /* add/remove some spares to/from the metadata/contrainer */
7770 while (super->disk_mgmt_list) {
7771 struct dl *disk_cfg;
7772
7773 disk_cfg = super->disk_mgmt_list;
7774 super->disk_mgmt_list = disk_cfg->next;
7775 disk_cfg->next = NULL;
7776
7777 if (disk_cfg->action == DISK_ADD) {
7778 disk_cfg->next = super->disks;
7779 super->disks = disk_cfg;
7780 check_degraded = 1;
7781 dprintf("%s: added %x:%x\n",
7782 __func__, disk_cfg->major,
7783 disk_cfg->minor);
7784 } else if (disk_cfg->action == DISK_REMOVE) {
7785 dprintf("Disk remove action processed: %x.%x\n",
7786 disk_cfg->major, disk_cfg->minor);
7787 disk = get_disk_super(super,
7788 disk_cfg->major,
7789 disk_cfg->minor);
7790 if (disk) {
7791 /* store action status */
7792 disk->action = DISK_REMOVE;
7793 /* remove spare disks only */
7794 if (disk->index == -1) {
7795 remove_disk_super(super,
7796 disk_cfg->major,
7797 disk_cfg->minor);
7798 }
7799 }
7800 /* release allocate disk structure */
7801 __free_imsm_disk(disk_cfg);
7802 }
7803 }
7804 return check_degraded;
7805 }
7806
7807
7808 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7809 struct intel_super *super,
7810 void ***space_list)
7811 {
7812 struct intel_dev *id;
7813 void **tofree = NULL;
7814 int ret_val = 0;
7815
7816 dprintf("apply_reshape_migration_update()\n");
7817 if ((u->subdev < 0) ||
7818 (u->subdev > 1)) {
7819 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7820 return ret_val;
7821 }
7822 if ((space_list == NULL) || (*space_list == NULL)) {
7823 dprintf("imsm: Error: Memory is not allocated\n");
7824 return ret_val;
7825 }
7826
7827 for (id = super->devlist ; id; id = id->next) {
7828 if (id->index == (unsigned)u->subdev) {
7829 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7830 struct imsm_map *map;
7831 struct imsm_dev *new_dev =
7832 (struct imsm_dev *)*space_list;
7833 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7834 int to_state;
7835 struct dl *new_disk;
7836
7837 if (new_dev == NULL)
7838 return ret_val;
7839 *space_list = **space_list;
7840 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
7841 map = get_imsm_map(new_dev, MAP_0);
7842 if (migr_map) {
7843 dprintf("imsm: Error: migration in progress");
7844 return ret_val;
7845 }
7846
7847 to_state = map->map_state;
7848 if ((u->new_level == 5) && (map->raid_level == 0)) {
7849 map->num_members++;
7850 /* this should not happen */
7851 if (u->new_disks[0] < 0) {
7852 map->failed_disk_num =
7853 map->num_members - 1;
7854 to_state = IMSM_T_STATE_DEGRADED;
7855 } else
7856 to_state = IMSM_T_STATE_NORMAL;
7857 }
7858 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
7859 if (u->new_level > -1)
7860 map->raid_level = u->new_level;
7861 migr_map = get_imsm_map(new_dev, MAP_1);
7862 if ((u->new_level == 5) &&
7863 (migr_map->raid_level == 0)) {
7864 int ord = map->num_members - 1;
7865 migr_map->num_members--;
7866 if (u->new_disks[0] < 0)
7867 ord |= IMSM_ORD_REBUILD;
7868 set_imsm_ord_tbl_ent(map,
7869 map->num_members - 1,
7870 ord);
7871 }
7872 id->dev = new_dev;
7873 tofree = (void **)dev;
7874
7875 /* update chunk size
7876 */
7877 if (u->new_chunksize > 0)
7878 map->blocks_per_strip =
7879 __cpu_to_le16(u->new_chunksize * 2);
7880
7881 /* add disk
7882 */
7883 if ((u->new_level != 5) ||
7884 (migr_map->raid_level != 0) ||
7885 (migr_map->raid_level == map->raid_level))
7886 goto skip_disk_add;
7887
7888 if (u->new_disks[0] >= 0) {
7889 /* use passes spare
7890 */
7891 new_disk = get_disk_super(super,
7892 major(u->new_disks[0]),
7893 minor(u->new_disks[0]));
7894 dprintf("imsm: new disk for reshape is: %i:%i "
7895 "(%p, index = %i)\n",
7896 major(u->new_disks[0]),
7897 minor(u->new_disks[0]),
7898 new_disk, new_disk->index);
7899 if (new_disk == NULL)
7900 goto error_disk_add;
7901
7902 new_disk->index = map->num_members - 1;
7903 /* slot to fill in autolayout
7904 */
7905 new_disk->raiddisk = new_disk->index;
7906 new_disk->disk.status |= CONFIGURED_DISK;
7907 new_disk->disk.status &= ~SPARE_DISK;
7908 } else
7909 goto error_disk_add;
7910
7911 skip_disk_add:
7912 *tofree = *space_list;
7913 /* calculate new size
7914 */
7915 imsm_set_array_size(new_dev, -1);
7916
7917 ret_val = 1;
7918 }
7919 }
7920
7921 if (tofree)
7922 *space_list = tofree;
7923 return ret_val;
7924
7925 error_disk_add:
7926 dprintf("Error: imsm: Cannot find disk.\n");
7927 return ret_val;
7928 }
7929
7930 static int apply_size_change_update(struct imsm_update_size_change *u,
7931 struct intel_super *super)
7932 {
7933 struct intel_dev *id;
7934 int ret_val = 0;
7935
7936 dprintf("apply_size_change_update()\n");
7937 if ((u->subdev < 0) ||
7938 (u->subdev > 1)) {
7939 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7940 return ret_val;
7941 }
7942
7943 for (id = super->devlist ; id; id = id->next) {
7944 if (id->index == (unsigned)u->subdev) {
7945 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7946 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7947 int used_disks = imsm_num_data_members(dev, MAP_0);
7948 unsigned long long blocks_per_member;
7949
7950 /* calculate new size
7951 */
7952 blocks_per_member = u->new_size / used_disks;
7953 dprintf("imsm: apply_size_change_update(size: %llu, "
7954 "blocks per member: %llu)\n",
7955 u->new_size, blocks_per_member);
7956 set_blocks_per_member(map, blocks_per_member);
7957 imsm_set_array_size(dev, u->new_size);
7958
7959 ret_val = 1;
7960 break;
7961 }
7962 }
7963
7964 return ret_val;
7965 }
7966
7967
7968 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7969 struct intel_super *super,
7970 struct active_array *active_array)
7971 {
7972 struct imsm_super *mpb = super->anchor;
7973 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7974 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7975 struct imsm_map *migr_map;
7976 struct active_array *a;
7977 struct imsm_disk *disk;
7978 __u8 to_state;
7979 struct dl *dl;
7980 unsigned int found;
7981 int failed;
7982 int victim;
7983 int i;
7984 int second_map_created = 0;
7985
7986 for (; u; u = u->next) {
7987 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
7988
7989 if (victim < 0)
7990 return 0;
7991
7992 for (dl = super->disks; dl; dl = dl->next)
7993 if (dl == u->dl)
7994 break;
7995
7996 if (!dl) {
7997 fprintf(stderr, "error: imsm_activate_spare passed "
7998 "an unknown disk (index: %d)\n",
7999 u->dl->index);
8000 return 0;
8001 }
8002
8003 /* count failures (excluding rebuilds and the victim)
8004 * to determine map[0] state
8005 */
8006 failed = 0;
8007 for (i = 0; i < map->num_members; i++) {
8008 if (i == u->slot)
8009 continue;
8010 disk = get_imsm_disk(super,
8011 get_imsm_disk_idx(dev, i, MAP_X));
8012 if (!disk || is_failed(disk))
8013 failed++;
8014 }
8015
8016 /* adding a pristine spare, assign a new index */
8017 if (dl->index < 0) {
8018 dl->index = super->anchor->num_disks;
8019 super->anchor->num_disks++;
8020 }
8021 disk = &dl->disk;
8022 disk->status |= CONFIGURED_DISK;
8023 disk->status &= ~SPARE_DISK;
8024
8025 /* mark rebuild */
8026 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
8027 if (!second_map_created) {
8028 second_map_created = 1;
8029 map->map_state = IMSM_T_STATE_DEGRADED;
8030 migrate(dev, super, to_state, MIGR_REBUILD);
8031 } else
8032 map->map_state = to_state;
8033 migr_map = get_imsm_map(dev, MAP_1);
8034 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8035 set_imsm_ord_tbl_ent(migr_map, u->slot,
8036 dl->index | IMSM_ORD_REBUILD);
8037
8038 /* update the family_num to mark a new container
8039 * generation, being careful to record the existing
8040 * family_num in orig_family_num to clean up after
8041 * earlier mdadm versions that neglected to set it.
8042 */
8043 if (mpb->orig_family_num == 0)
8044 mpb->orig_family_num = mpb->family_num;
8045 mpb->family_num += super->random;
8046
8047 /* count arrays using the victim in the metadata */
8048 found = 0;
8049 for (a = active_array; a ; a = a->next) {
8050 dev = get_imsm_dev(super, a->info.container_member);
8051 map = get_imsm_map(dev, MAP_0);
8052
8053 if (get_imsm_disk_slot(map, victim) >= 0)
8054 found++;
8055 }
8056
8057 /* delete the victim if it is no longer being
8058 * utilized anywhere
8059 */
8060 if (!found) {
8061 struct dl **dlp;
8062
8063 /* We know that 'manager' isn't touching anything,
8064 * so it is safe to delete
8065 */
8066 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
8067 if ((*dlp)->index == victim)
8068 break;
8069
8070 /* victim may be on the missing list */
8071 if (!*dlp)
8072 for (dlp = &super->missing; *dlp;
8073 dlp = &(*dlp)->next)
8074 if ((*dlp)->index == victim)
8075 break;
8076 imsm_delete(super, dlp, victim);
8077 }
8078 }
8079
8080 return 1;
8081 }
8082
8083 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8084 struct intel_super *super,
8085 void ***space_list)
8086 {
8087 struct dl *new_disk;
8088 struct intel_dev *id;
8089 int i;
8090 int delta_disks = u->new_raid_disks - u->old_raid_disks;
8091 int disk_count = u->old_raid_disks;
8092 void **tofree = NULL;
8093 int devices_to_reshape = 1;
8094 struct imsm_super *mpb = super->anchor;
8095 int ret_val = 0;
8096 unsigned int dev_id;
8097
8098 dprintf("imsm: apply_reshape_container_disks_update()\n");
8099
8100 /* enable spares to use in array */
8101 for (i = 0; i < delta_disks; i++) {
8102 new_disk = get_disk_super(super,
8103 major(u->new_disks[i]),
8104 minor(u->new_disks[i]));
8105 dprintf("imsm: new disk for reshape is: %i:%i "
8106 "(%p, index = %i)\n",
8107 major(u->new_disks[i]), minor(u->new_disks[i]),
8108 new_disk, new_disk->index);
8109 if ((new_disk == NULL) ||
8110 ((new_disk->index >= 0) &&
8111 (new_disk->index < u->old_raid_disks)))
8112 goto update_reshape_exit;
8113 new_disk->index = disk_count++;
8114 /* slot to fill in autolayout
8115 */
8116 new_disk->raiddisk = new_disk->index;
8117 new_disk->disk.status |=
8118 CONFIGURED_DISK;
8119 new_disk->disk.status &= ~SPARE_DISK;
8120 }
8121
8122 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8123 mpb->num_raid_devs);
8124 /* manage changes in volume
8125 */
8126 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
8127 void **sp = *space_list;
8128 struct imsm_dev *newdev;
8129 struct imsm_map *newmap, *oldmap;
8130
8131 for (id = super->devlist ; id; id = id->next) {
8132 if (id->index == dev_id)
8133 break;
8134 }
8135 if (id == NULL)
8136 break;
8137 if (!sp)
8138 continue;
8139 *space_list = *sp;
8140 newdev = (void*)sp;
8141 /* Copy the dev, but not (all of) the map */
8142 memcpy(newdev, id->dev, sizeof(*newdev));
8143 oldmap = get_imsm_map(id->dev, MAP_0);
8144 newmap = get_imsm_map(newdev, MAP_0);
8145 /* Copy the current map */
8146 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8147 /* update one device only
8148 */
8149 if (devices_to_reshape) {
8150 dprintf("imsm: modifying subdev: %i\n",
8151 id->index);
8152 devices_to_reshape--;
8153 newdev->vol.migr_state = 1;
8154 newdev->vol.curr_migr_unit = 0;
8155 set_migr_type(newdev, MIGR_GEN_MIGR);
8156 newmap->num_members = u->new_raid_disks;
8157 for (i = 0; i < delta_disks; i++) {
8158 set_imsm_ord_tbl_ent(newmap,
8159 u->old_raid_disks + i,
8160 u->old_raid_disks + i);
8161 }
8162 /* New map is correct, now need to save old map
8163 */
8164 newmap = get_imsm_map(newdev, MAP_1);
8165 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8166
8167 imsm_set_array_size(newdev, -1);
8168 }
8169
8170 sp = (void **)id->dev;
8171 id->dev = newdev;
8172 *sp = tofree;
8173 tofree = sp;
8174
8175 /* Clear migration record */
8176 memset(super->migr_rec, 0, sizeof(struct migr_record));
8177 }
8178 if (tofree)
8179 *space_list = tofree;
8180 ret_val = 1;
8181
8182 update_reshape_exit:
8183
8184 return ret_val;
8185 }
8186
8187 static int apply_takeover_update(struct imsm_update_takeover *u,
8188 struct intel_super *super,
8189 void ***space_list)
8190 {
8191 struct imsm_dev *dev = NULL;
8192 struct intel_dev *dv;
8193 struct imsm_dev *dev_new;
8194 struct imsm_map *map;
8195 struct dl *dm, *du;
8196 int i;
8197
8198 for (dv = super->devlist; dv; dv = dv->next)
8199 if (dv->index == (unsigned int)u->subarray) {
8200 dev = dv->dev;
8201 break;
8202 }
8203
8204 if (dev == NULL)
8205 return 0;
8206
8207 map = get_imsm_map(dev, MAP_0);
8208
8209 if (u->direction == R10_TO_R0) {
8210 /* Number of failed disks must be half of initial disk number */
8211 if (imsm_count_failed(super, dev, MAP_0) !=
8212 (map->num_members / 2))
8213 return 0;
8214
8215 /* iterate through devices to mark removed disks as spare */
8216 for (dm = super->disks; dm; dm = dm->next) {
8217 if (dm->disk.status & FAILED_DISK) {
8218 int idx = dm->index;
8219 /* update indexes on the disk list */
8220 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
8221 the index values will end up being correct.... NB */
8222 for (du = super->disks; du; du = du->next)
8223 if (du->index > idx)
8224 du->index--;
8225 /* mark as spare disk */
8226 mark_spare(dm);
8227 }
8228 }
8229 /* update map */
8230 map->num_members = map->num_members / 2;
8231 map->map_state = IMSM_T_STATE_NORMAL;
8232 map->num_domains = 1;
8233 map->raid_level = 0;
8234 map->failed_disk_num = -1;
8235 }
8236
8237 if (u->direction == R0_TO_R10) {
8238 void **space;
8239 /* update slots in current disk list */
8240 for (dm = super->disks; dm; dm = dm->next) {
8241 if (dm->index >= 0)
8242 dm->index *= 2;
8243 }
8244 /* create new *missing* disks */
8245 for (i = 0; i < map->num_members; i++) {
8246 space = *space_list;
8247 if (!space)
8248 continue;
8249 *space_list = *space;
8250 du = (void *)space;
8251 memcpy(du, super->disks, sizeof(*du));
8252 du->fd = -1;
8253 du->minor = 0;
8254 du->major = 0;
8255 du->index = (i * 2) + 1;
8256 sprintf((char *)du->disk.serial,
8257 " MISSING_%d", du->index);
8258 sprintf((char *)du->serial,
8259 "MISSING_%d", du->index);
8260 du->next = super->missing;
8261 super->missing = du;
8262 }
8263 /* create new dev and map */
8264 space = *space_list;
8265 if (!space)
8266 return 0;
8267 *space_list = *space;
8268 dev_new = (void *)space;
8269 memcpy(dev_new, dev, sizeof(*dev));
8270 /* update new map */
8271 map = get_imsm_map(dev_new, MAP_0);
8272 map->num_members = map->num_members * 2;
8273 map->map_state = IMSM_T_STATE_DEGRADED;
8274 map->num_domains = 2;
8275 map->raid_level = 1;
8276 /* replace dev<->dev_new */
8277 dv->dev = dev_new;
8278 }
8279 /* update disk order table */
8280 for (du = super->disks; du; du = du->next)
8281 if (du->index >= 0)
8282 set_imsm_ord_tbl_ent(map, du->index, du->index);
8283 for (du = super->missing; du; du = du->next)
8284 if (du->index >= 0) {
8285 set_imsm_ord_tbl_ent(map, du->index, du->index);
8286 mark_missing(dv->dev, &du->disk, du->index);
8287 }
8288
8289 return 1;
8290 }
8291
8292 static void imsm_process_update(struct supertype *st,
8293 struct metadata_update *update)
8294 {
8295 /**
8296 * crack open the metadata_update envelope to find the update record
8297 * update can be one of:
8298 * update_reshape_container_disks - all the arrays in the container
8299 * are being reshaped to have more devices. We need to mark
8300 * the arrays for general migration and convert selected spares
8301 * into active devices.
8302 * update_activate_spare - a spare device has replaced a failed
8303 * device in an array, update the disk_ord_tbl. If this disk is
8304 * present in all member arrays then also clear the SPARE_DISK
8305 * flag
8306 * update_create_array
8307 * update_kill_array
8308 * update_rename_array
8309 * update_add_remove_disk
8310 */
8311 struct intel_super *super = st->sb;
8312 struct imsm_super *mpb;
8313 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8314
8315 /* update requires a larger buf but the allocation failed */
8316 if (super->next_len && !super->next_buf) {
8317 super->next_len = 0;
8318 return;
8319 }
8320
8321 if (super->next_buf) {
8322 memcpy(super->next_buf, super->buf, super->len);
8323 free(super->buf);
8324 super->len = super->next_len;
8325 super->buf = super->next_buf;
8326
8327 super->next_len = 0;
8328 super->next_buf = NULL;
8329 }
8330
8331 mpb = super->anchor;
8332
8333 switch (type) {
8334 case update_general_migration_checkpoint: {
8335 struct intel_dev *id;
8336 struct imsm_update_general_migration_checkpoint *u =
8337 (void *)update->buf;
8338
8339 dprintf("imsm: process_update() "
8340 "for update_general_migration_checkpoint called\n");
8341
8342 /* find device under general migration */
8343 for (id = super->devlist ; id; id = id->next) {
8344 if (is_gen_migration(id->dev)) {
8345 id->dev->vol.curr_migr_unit =
8346 __cpu_to_le32(u->curr_migr_unit);
8347 super->updates_pending++;
8348 }
8349 }
8350 break;
8351 }
8352 case update_takeover: {
8353 struct imsm_update_takeover *u = (void *)update->buf;
8354 if (apply_takeover_update(u, super, &update->space_list)) {
8355 imsm_update_version_info(super);
8356 super->updates_pending++;
8357 }
8358 break;
8359 }
8360
8361 case update_reshape_container_disks: {
8362 struct imsm_update_reshape *u = (void *)update->buf;
8363 if (apply_reshape_container_disks_update(
8364 u, super, &update->space_list))
8365 super->updates_pending++;
8366 break;
8367 }
8368 case update_reshape_migration: {
8369 struct imsm_update_reshape_migration *u = (void *)update->buf;
8370 if (apply_reshape_migration_update(
8371 u, super, &update->space_list))
8372 super->updates_pending++;
8373 break;
8374 }
8375 case update_size_change: {
8376 struct imsm_update_size_change *u = (void *)update->buf;
8377 if (apply_size_change_update(u, super))
8378 super->updates_pending++;
8379 break;
8380 }
8381 case update_activate_spare: {
8382 struct imsm_update_activate_spare *u = (void *) update->buf;
8383 if (apply_update_activate_spare(u, super, st->arrays))
8384 super->updates_pending++;
8385 break;
8386 }
8387 case update_create_array: {
8388 /* someone wants to create a new array, we need to be aware of
8389 * a few races/collisions:
8390 * 1/ 'Create' called by two separate instances of mdadm
8391 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8392 * devices that have since been assimilated via
8393 * activate_spare.
8394 * In the event this update can not be carried out mdadm will
8395 * (FIX ME) notice that its update did not take hold.
8396 */
8397 struct imsm_update_create_array *u = (void *) update->buf;
8398 struct intel_dev *dv;
8399 struct imsm_dev *dev;
8400 struct imsm_map *map, *new_map;
8401 unsigned long long start, end;
8402 unsigned long long new_start, new_end;
8403 int i;
8404 struct disk_info *inf;
8405 struct dl *dl;
8406
8407 /* handle racing creates: first come first serve */
8408 if (u->dev_idx < mpb->num_raid_devs) {
8409 dprintf("%s: subarray %d already defined\n",
8410 __func__, u->dev_idx);
8411 goto create_error;
8412 }
8413
8414 /* check update is next in sequence */
8415 if (u->dev_idx != mpb->num_raid_devs) {
8416 dprintf("%s: can not create array %d expected index %d\n",
8417 __func__, u->dev_idx, mpb->num_raid_devs);
8418 goto create_error;
8419 }
8420
8421 new_map = get_imsm_map(&u->dev, MAP_0);
8422 new_start = pba_of_lba0(new_map);
8423 new_end = new_start + blocks_per_member(new_map);
8424 inf = get_disk_info(u);
8425
8426 /* handle activate_spare versus create race:
8427 * check to make sure that overlapping arrays do not include
8428 * overalpping disks
8429 */
8430 for (i = 0; i < mpb->num_raid_devs; i++) {
8431 dev = get_imsm_dev(super, i);
8432 map = get_imsm_map(dev, MAP_0);
8433 start = pba_of_lba0(map);
8434 end = start + blocks_per_member(map);
8435 if ((new_start >= start && new_start <= end) ||
8436 (start >= new_start && start <= new_end))
8437 /* overlap */;
8438 else
8439 continue;
8440
8441 if (disks_overlap(super, i, u)) {
8442 dprintf("%s: arrays overlap\n", __func__);
8443 goto create_error;
8444 }
8445 }
8446
8447 /* check that prepare update was successful */
8448 if (!update->space) {
8449 dprintf("%s: prepare update failed\n", __func__);
8450 goto create_error;
8451 }
8452
8453 /* check that all disks are still active before committing
8454 * changes. FIXME: could we instead handle this by creating a
8455 * degraded array? That's probably not what the user expects,
8456 * so better to drop this update on the floor.
8457 */
8458 for (i = 0; i < new_map->num_members; i++) {
8459 dl = serial_to_dl(inf[i].serial, super);
8460 if (!dl) {
8461 dprintf("%s: disk disappeared\n", __func__);
8462 goto create_error;
8463 }
8464 }
8465
8466 super->updates_pending++;
8467
8468 /* convert spares to members and fixup ord_tbl */
8469 for (i = 0; i < new_map->num_members; i++) {
8470 dl = serial_to_dl(inf[i].serial, super);
8471 if (dl->index == -1) {
8472 dl->index = mpb->num_disks;
8473 mpb->num_disks++;
8474 dl->disk.status |= CONFIGURED_DISK;
8475 dl->disk.status &= ~SPARE_DISK;
8476 }
8477 set_imsm_ord_tbl_ent(new_map, i, dl->index);
8478 }
8479
8480 dv = update->space;
8481 dev = dv->dev;
8482 update->space = NULL;
8483 imsm_copy_dev(dev, &u->dev);
8484 dv->index = u->dev_idx;
8485 dv->next = super->devlist;
8486 super->devlist = dv;
8487 mpb->num_raid_devs++;
8488
8489 imsm_update_version_info(super);
8490 break;
8491 create_error:
8492 /* mdmon knows how to release update->space, but not
8493 * ((struct intel_dev *) update->space)->dev
8494 */
8495 if (update->space) {
8496 dv = update->space;
8497 free(dv->dev);
8498 }
8499 break;
8500 }
8501 case update_kill_array: {
8502 struct imsm_update_kill_array *u = (void *) update->buf;
8503 int victim = u->dev_idx;
8504 struct active_array *a;
8505 struct intel_dev **dp;
8506 struct imsm_dev *dev;
8507
8508 /* sanity check that we are not affecting the uuid of
8509 * active arrays, or deleting an active array
8510 *
8511 * FIXME when immutable ids are available, but note that
8512 * we'll also need to fixup the invalidated/active
8513 * subarray indexes in mdstat
8514 */
8515 for (a = st->arrays; a; a = a->next)
8516 if (a->info.container_member >= victim)
8517 break;
8518 /* by definition if mdmon is running at least one array
8519 * is active in the container, so checking
8520 * mpb->num_raid_devs is just extra paranoia
8521 */
8522 dev = get_imsm_dev(super, victim);
8523 if (a || !dev || mpb->num_raid_devs == 1) {
8524 dprintf("failed to delete subarray-%d\n", victim);
8525 break;
8526 }
8527
8528 for (dp = &super->devlist; *dp;)
8529 if ((*dp)->index == (unsigned)super->current_vol) {
8530 *dp = (*dp)->next;
8531 } else {
8532 if ((*dp)->index > (unsigned)victim)
8533 (*dp)->index--;
8534 dp = &(*dp)->next;
8535 }
8536 mpb->num_raid_devs--;
8537 super->updates_pending++;
8538 break;
8539 }
8540 case update_rename_array: {
8541 struct imsm_update_rename_array *u = (void *) update->buf;
8542 char name[MAX_RAID_SERIAL_LEN+1];
8543 int target = u->dev_idx;
8544 struct active_array *a;
8545 struct imsm_dev *dev;
8546
8547 /* sanity check that we are not affecting the uuid of
8548 * an active array
8549 */
8550 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8551 name[MAX_RAID_SERIAL_LEN] = '\0';
8552 for (a = st->arrays; a; a = a->next)
8553 if (a->info.container_member == target)
8554 break;
8555 dev = get_imsm_dev(super, u->dev_idx);
8556 if (a || !dev || !check_name(super, name, 1)) {
8557 dprintf("failed to rename subarray-%d\n", target);
8558 break;
8559 }
8560
8561 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
8562 super->updates_pending++;
8563 break;
8564 }
8565 case update_add_remove_disk: {
8566 /* we may be able to repair some arrays if disks are
8567 * being added, check teh status of add_remove_disk
8568 * if discs has been added.
8569 */
8570 if (add_remove_disk_update(super)) {
8571 struct active_array *a;
8572
8573 super->updates_pending++;
8574 for (a = st->arrays; a; a = a->next)
8575 a->check_degraded = 1;
8576 }
8577 break;
8578 }
8579 default:
8580 fprintf(stderr, "error: unsuported process update type:"
8581 "(type: %d)\n", type);
8582 }
8583 }
8584
8585 static struct mdinfo *get_spares_for_grow(struct supertype *st);
8586
8587 static void imsm_prepare_update(struct supertype *st,
8588 struct metadata_update *update)
8589 {
8590 /**
8591 * Allocate space to hold new disk entries, raid-device entries or a new
8592 * mpb if necessary. The manager synchronously waits for updates to
8593 * complete in the monitor, so new mpb buffers allocated here can be
8594 * integrated by the monitor thread without worrying about live pointers
8595 * in the manager thread.
8596 */
8597 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8598 struct intel_super *super = st->sb;
8599 struct imsm_super *mpb = super->anchor;
8600 size_t buf_len;
8601 size_t len = 0;
8602
8603 switch (type) {
8604 case update_general_migration_checkpoint:
8605 dprintf("imsm: prepare_update() "
8606 "for update_general_migration_checkpoint called\n");
8607 break;
8608 case update_takeover: {
8609 struct imsm_update_takeover *u = (void *)update->buf;
8610 if (u->direction == R0_TO_R10) {
8611 void **tail = (void **)&update->space_list;
8612 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
8613 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8614 int num_members = map->num_members;
8615 void *space;
8616 int size, i;
8617 /* allocate memory for added disks */
8618 for (i = 0; i < num_members; i++) {
8619 size = sizeof(struct dl);
8620 space = xmalloc(size);
8621 *tail = space;
8622 tail = space;
8623 *tail = NULL;
8624 }
8625 /* allocate memory for new device */
8626 size = sizeof_imsm_dev(super->devlist->dev, 0) +
8627 (num_members * sizeof(__u32));
8628 space = xmalloc(size);
8629 *tail = space;
8630 tail = space;
8631 *tail = NULL;
8632 len = disks_to_mpb_size(num_members * 2);
8633 }
8634
8635 break;
8636 }
8637 case update_reshape_container_disks: {
8638 /* Every raid device in the container is about to
8639 * gain some more devices, and we will enter a
8640 * reconfiguration.
8641 * So each 'imsm_map' will be bigger, and the imsm_vol
8642 * will now hold 2 of them.
8643 * Thus we need new 'struct imsm_dev' allocations sized
8644 * as sizeof_imsm_dev but with more devices in both maps.
8645 */
8646 struct imsm_update_reshape *u = (void *)update->buf;
8647 struct intel_dev *dl;
8648 void **space_tail = (void**)&update->space_list;
8649
8650 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8651
8652 for (dl = super->devlist; dl; dl = dl->next) {
8653 int size = sizeof_imsm_dev(dl->dev, 1);
8654 void *s;
8655 if (u->new_raid_disks > u->old_raid_disks)
8656 size += sizeof(__u32)*2*
8657 (u->new_raid_disks - u->old_raid_disks);
8658 s = xmalloc(size);
8659 *space_tail = s;
8660 space_tail = s;
8661 *space_tail = NULL;
8662 }
8663
8664 len = disks_to_mpb_size(u->new_raid_disks);
8665 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8666 break;
8667 }
8668 case update_reshape_migration: {
8669 /* for migration level 0->5 we need to add disks
8670 * so the same as for container operation we will copy
8671 * device to the bigger location.
8672 * in memory prepared device and new disk area are prepared
8673 * for usage in process update
8674 */
8675 struct imsm_update_reshape_migration *u = (void *)update->buf;
8676 struct intel_dev *id;
8677 void **space_tail = (void **)&update->space_list;
8678 int size;
8679 void *s;
8680 int current_level = -1;
8681
8682 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8683
8684 /* add space for bigger array in update
8685 */
8686 for (id = super->devlist; id; id = id->next) {
8687 if (id->index == (unsigned)u->subdev) {
8688 size = sizeof_imsm_dev(id->dev, 1);
8689 if (u->new_raid_disks > u->old_raid_disks)
8690 size += sizeof(__u32)*2*
8691 (u->new_raid_disks - u->old_raid_disks);
8692 s = xmalloc(size);
8693 *space_tail = s;
8694 space_tail = s;
8695 *space_tail = NULL;
8696 break;
8697 }
8698 }
8699 if (update->space_list == NULL)
8700 break;
8701
8702 /* add space for disk in update
8703 */
8704 size = sizeof(struct dl);
8705 s = xmalloc(size);
8706 *space_tail = s;
8707 space_tail = s;
8708 *space_tail = NULL;
8709
8710 /* add spare device to update
8711 */
8712 for (id = super->devlist ; id; id = id->next)
8713 if (id->index == (unsigned)u->subdev) {
8714 struct imsm_dev *dev;
8715 struct imsm_map *map;
8716
8717 dev = get_imsm_dev(super, u->subdev);
8718 map = get_imsm_map(dev, MAP_0);
8719 current_level = map->raid_level;
8720 break;
8721 }
8722 if ((u->new_level == 5) && (u->new_level != current_level)) {
8723 struct mdinfo *spares;
8724
8725 spares = get_spares_for_grow(st);
8726 if (spares) {
8727 struct dl *dl;
8728 struct mdinfo *dev;
8729
8730 dev = spares->devs;
8731 if (dev) {
8732 u->new_disks[0] =
8733 makedev(dev->disk.major,
8734 dev->disk.minor);
8735 dl = get_disk_super(super,
8736 dev->disk.major,
8737 dev->disk.minor);
8738 dl->index = u->old_raid_disks;
8739 dev = dev->next;
8740 }
8741 sysfs_free(spares);
8742 }
8743 }
8744 len = disks_to_mpb_size(u->new_raid_disks);
8745 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8746 break;
8747 }
8748 case update_size_change: {
8749 break;
8750 }
8751 case update_create_array: {
8752 struct imsm_update_create_array *u = (void *) update->buf;
8753 struct intel_dev *dv;
8754 struct imsm_dev *dev = &u->dev;
8755 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8756 struct dl *dl;
8757 struct disk_info *inf;
8758 int i;
8759 int activate = 0;
8760
8761 inf = get_disk_info(u);
8762 len = sizeof_imsm_dev(dev, 1);
8763 /* allocate a new super->devlist entry */
8764 dv = xmalloc(sizeof(*dv));
8765 dv->dev = xmalloc(len);
8766 update->space = dv;
8767
8768 /* count how many spares will be converted to members */
8769 for (i = 0; i < map->num_members; i++) {
8770 dl = serial_to_dl(inf[i].serial, super);
8771 if (!dl) {
8772 /* hmm maybe it failed?, nothing we can do about
8773 * it here
8774 */
8775 continue;
8776 }
8777 if (count_memberships(dl, super) == 0)
8778 activate++;
8779 }
8780 len += activate * sizeof(struct imsm_disk);
8781 break;
8782 default:
8783 break;
8784 }
8785 }
8786
8787 /* check if we need a larger metadata buffer */
8788 if (super->next_buf)
8789 buf_len = super->next_len;
8790 else
8791 buf_len = super->len;
8792
8793 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8794 /* ok we need a larger buf than what is currently allocated
8795 * if this allocation fails process_update will notice that
8796 * ->next_len is set and ->next_buf is NULL
8797 */
8798 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8799 if (super->next_buf)
8800 free(super->next_buf);
8801
8802 super->next_len = buf_len;
8803 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
8804 memset(super->next_buf, 0, buf_len);
8805 else
8806 super->next_buf = NULL;
8807 }
8808 }
8809
8810 /* must be called while manager is quiesced */
8811 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
8812 {
8813 struct imsm_super *mpb = super->anchor;
8814 struct dl *iter;
8815 struct imsm_dev *dev;
8816 struct imsm_map *map;
8817 int i, j, num_members;
8818 __u32 ord;
8819
8820 dprintf("%s: deleting device[%d] from imsm_super\n",
8821 __func__, index);
8822
8823 /* shift all indexes down one */
8824 for (iter = super->disks; iter; iter = iter->next)
8825 if (iter->index > (int)index)
8826 iter->index--;
8827 for (iter = super->missing; iter; iter = iter->next)
8828 if (iter->index > (int)index)
8829 iter->index--;
8830
8831 for (i = 0; i < mpb->num_raid_devs; i++) {
8832 dev = get_imsm_dev(super, i);
8833 map = get_imsm_map(dev, MAP_0);
8834 num_members = map->num_members;
8835 for (j = 0; j < num_members; j++) {
8836 /* update ord entries being careful not to propagate
8837 * ord-flags to the first map
8838 */
8839 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
8840
8841 if (ord_to_idx(ord) <= index)
8842 continue;
8843
8844 map = get_imsm_map(dev, MAP_0);
8845 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
8846 map = get_imsm_map(dev, MAP_1);
8847 if (map)
8848 set_imsm_ord_tbl_ent(map, j, ord - 1);
8849 }
8850 }
8851
8852 mpb->num_disks--;
8853 super->updates_pending++;
8854 if (*dlp) {
8855 struct dl *dl = *dlp;
8856
8857 *dlp = (*dlp)->next;
8858 __free_imsm_disk(dl);
8859 }
8860 }
8861 #endif /* MDASSEMBLE */
8862
8863 static void close_targets(int *targets, int new_disks)
8864 {
8865 int i;
8866
8867 if (!targets)
8868 return;
8869
8870 for (i = 0; i < new_disks; i++) {
8871 if (targets[i] >= 0) {
8872 close(targets[i]);
8873 targets[i] = -1;
8874 }
8875 }
8876 }
8877
8878 static int imsm_get_allowed_degradation(int level, int raid_disks,
8879 struct intel_super *super,
8880 struct imsm_dev *dev)
8881 {
8882 switch (level) {
8883 case 1:
8884 case 10:{
8885 int ret_val = 0;
8886 struct imsm_map *map;
8887 int i;
8888
8889 ret_val = raid_disks/2;
8890 /* check map if all disks pairs not failed
8891 * in both maps
8892 */
8893 map = get_imsm_map(dev, MAP_0);
8894 for (i = 0; i < ret_val; i++) {
8895 int degradation = 0;
8896 if (get_imsm_disk(super, i) == NULL)
8897 degradation++;
8898 if (get_imsm_disk(super, i + 1) == NULL)
8899 degradation++;
8900 if (degradation == 2)
8901 return 0;
8902 }
8903 map = get_imsm_map(dev, MAP_1);
8904 /* if there is no second map
8905 * result can be returned
8906 */
8907 if (map == NULL)
8908 return ret_val;
8909 /* check degradation in second map
8910 */
8911 for (i = 0; i < ret_val; i++) {
8912 int degradation = 0;
8913 if (get_imsm_disk(super, i) == NULL)
8914 degradation++;
8915 if (get_imsm_disk(super, i + 1) == NULL)
8916 degradation++;
8917 if (degradation == 2)
8918 return 0;
8919 }
8920 return ret_val;
8921 }
8922 case 5:
8923 return 1;
8924 case 6:
8925 return 2;
8926 default:
8927 return 0;
8928 }
8929 }
8930
8931
8932 /*******************************************************************************
8933 * Function: open_backup_targets
8934 * Description: Function opens file descriptors for all devices given in
8935 * info->devs
8936 * Parameters:
8937 * info : general array info
8938 * raid_disks : number of disks
8939 * raid_fds : table of device's file descriptors
8940 * super : intel super for raid10 degradation check
8941 * dev : intel device for raid10 degradation check
8942 * Returns:
8943 * 0 : success
8944 * -1 : fail
8945 ******************************************************************************/
8946 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
8947 struct intel_super *super, struct imsm_dev *dev)
8948 {
8949 struct mdinfo *sd;
8950 int i;
8951 int opened = 0;
8952
8953 for (i = 0; i < raid_disks; i++)
8954 raid_fds[i] = -1;
8955
8956 for (sd = info->devs ; sd ; sd = sd->next) {
8957 char *dn;
8958
8959 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
8960 dprintf("disk is faulty!!\n");
8961 continue;
8962 }
8963
8964 if ((sd->disk.raid_disk >= raid_disks) ||
8965 (sd->disk.raid_disk < 0))
8966 continue;
8967
8968 dn = map_dev(sd->disk.major,
8969 sd->disk.minor, 1);
8970 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8971 if (raid_fds[sd->disk.raid_disk] < 0) {
8972 fprintf(stderr, "cannot open component\n");
8973 continue;
8974 }
8975 opened++;
8976 }
8977 /* check if maximum array degradation level is not exceeded
8978 */
8979 if ((raid_disks - opened) >
8980 imsm_get_allowed_degradation(info->new_level,
8981 raid_disks,
8982 super, dev)) {
8983 fprintf(stderr, "Not enough disks can be opened.\n");
8984 close_targets(raid_fds, raid_disks);
8985 return -2;
8986 }
8987 return 0;
8988 }
8989
8990 #ifndef MDASSEMBLE
8991 /*******************************************************************************
8992 * Function: init_migr_record_imsm
8993 * Description: Function inits imsm migration record
8994 * Parameters:
8995 * super : imsm internal array info
8996 * dev : device under migration
8997 * info : general array info to find the smallest device
8998 * Returns:
8999 * none
9000 ******************************************************************************/
9001 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
9002 struct mdinfo *info)
9003 {
9004 struct intel_super *super = st->sb;
9005 struct migr_record *migr_rec = super->migr_rec;
9006 int new_data_disks;
9007 unsigned long long dsize, dev_sectors;
9008 long long unsigned min_dev_sectors = -1LLU;
9009 struct mdinfo *sd;
9010 char nm[30];
9011 int fd;
9012 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9013 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
9014 unsigned long long num_migr_units;
9015 unsigned long long array_blocks;
9016
9017 memset(migr_rec, 0, sizeof(struct migr_record));
9018 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9019
9020 /* only ascending reshape supported now */
9021 migr_rec->ascending_migr = __cpu_to_le32(1);
9022
9023 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9024 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9025 migr_rec->dest_depth_per_unit *=
9026 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9027 new_data_disks = imsm_num_data_members(dev, MAP_0);
9028 migr_rec->blocks_per_unit =
9029 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9030 migr_rec->dest_depth_per_unit =
9031 __cpu_to_le32(migr_rec->dest_depth_per_unit);
9032 array_blocks = info->component_size * new_data_disks;
9033 num_migr_units =
9034 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9035
9036 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9037 num_migr_units++;
9038 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9039
9040 migr_rec->post_migr_vol_cap = dev->size_low;
9041 migr_rec->post_migr_vol_cap_hi = dev->size_high;
9042
9043
9044 /* Find the smallest dev */
9045 for (sd = info->devs ; sd ; sd = sd->next) {
9046 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9047 fd = dev_open(nm, O_RDONLY);
9048 if (fd < 0)
9049 continue;
9050 get_dev_size(fd, NULL, &dsize);
9051 dev_sectors = dsize / 512;
9052 if (dev_sectors < min_dev_sectors)
9053 min_dev_sectors = dev_sectors;
9054 close(fd);
9055 }
9056 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9057 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9058
9059 write_imsm_migr_rec(st);
9060
9061 return;
9062 }
9063
9064 /*******************************************************************************
9065 * Function: save_backup_imsm
9066 * Description: Function saves critical data stripes to Migration Copy Area
9067 * and updates the current migration unit status.
9068 * Use restore_stripes() to form a destination stripe,
9069 * and to write it to the Copy Area.
9070 * Parameters:
9071 * st : supertype information
9072 * dev : imsm device that backup is saved for
9073 * info : general array info
9074 * buf : input buffer
9075 * length : length of data to backup (blocks_per_unit)
9076 * Returns:
9077 * 0 : success
9078 *, -1 : fail
9079 ******************************************************************************/
9080 int save_backup_imsm(struct supertype *st,
9081 struct imsm_dev *dev,
9082 struct mdinfo *info,
9083 void *buf,
9084 int length)
9085 {
9086 int rv = -1;
9087 struct intel_super *super = st->sb;
9088 unsigned long long *target_offsets = NULL;
9089 int *targets = NULL;
9090 int i;
9091 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9092 int new_disks = map_dest->num_members;
9093 int dest_layout = 0;
9094 int dest_chunk;
9095 unsigned long long start;
9096 int data_disks = imsm_num_data_members(dev, MAP_0);
9097
9098 targets = xmalloc(new_disks * sizeof(int));
9099
9100 for (i = 0; i < new_disks; i++)
9101 targets[i] = -1;
9102
9103 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
9104
9105 start = info->reshape_progress * 512;
9106 for (i = 0; i < new_disks; i++) {
9107 target_offsets[i] = (unsigned long long)
9108 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
9109 /* move back copy area adderss, it will be moved forward
9110 * in restore_stripes() using start input variable
9111 */
9112 target_offsets[i] -= start/data_disks;
9113 }
9114
9115 if (open_backup_targets(info, new_disks, targets,
9116 super, dev))
9117 goto abort;
9118
9119 dest_layout = imsm_level_to_layout(map_dest->raid_level);
9120 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9121
9122 if (restore_stripes(targets, /* list of dest devices */
9123 target_offsets, /* migration record offsets */
9124 new_disks,
9125 dest_chunk,
9126 map_dest->raid_level,
9127 dest_layout,
9128 -1, /* source backup file descriptor */
9129 0, /* input buf offset
9130 * always 0 buf is already offseted */
9131 start,
9132 length,
9133 buf) != 0) {
9134 pr_err("Error restoring stripes\n");
9135 goto abort;
9136 }
9137
9138 rv = 0;
9139
9140 abort:
9141 if (targets) {
9142 close_targets(targets, new_disks);
9143 free(targets);
9144 }
9145 free(target_offsets);
9146
9147 return rv;
9148 }
9149
9150 /*******************************************************************************
9151 * Function: save_checkpoint_imsm
9152 * Description: Function called for current unit status update
9153 * in the migration record. It writes it to disk.
9154 * Parameters:
9155 * super : imsm internal array info
9156 * info : general array info
9157 * Returns:
9158 * 0: success
9159 * 1: failure
9160 * 2: failure, means no valid migration record
9161 * / no general migration in progress /
9162 ******************************************************************************/
9163 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9164 {
9165 struct intel_super *super = st->sb;
9166 unsigned long long blocks_per_unit;
9167 unsigned long long curr_migr_unit;
9168
9169 if (load_imsm_migr_rec(super, info) != 0) {
9170 dprintf("imsm: ERROR: Cannot read migration record "
9171 "for checkpoint save.\n");
9172 return 1;
9173 }
9174
9175 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9176 if (blocks_per_unit == 0) {
9177 dprintf("imsm: no migration in progress.\n");
9178 return 2;
9179 }
9180 curr_migr_unit = info->reshape_progress / blocks_per_unit;
9181 /* check if array is alligned to copy area
9182 * if it is not alligned, add one to current migration unit value
9183 * this can happend on array reshape finish only
9184 */
9185 if (info->reshape_progress % blocks_per_unit)
9186 curr_migr_unit++;
9187
9188 super->migr_rec->curr_migr_unit =
9189 __cpu_to_le32(curr_migr_unit);
9190 super->migr_rec->rec_status = __cpu_to_le32(state);
9191 super->migr_rec->dest_1st_member_lba =
9192 __cpu_to_le32(curr_migr_unit *
9193 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
9194 if (write_imsm_migr_rec(st) < 0) {
9195 dprintf("imsm: Cannot write migration record "
9196 "outside backup area\n");
9197 return 1;
9198 }
9199
9200 return 0;
9201 }
9202
9203 /*******************************************************************************
9204 * Function: recover_backup_imsm
9205 * Description: Function recovers critical data from the Migration Copy Area
9206 * while assembling an array.
9207 * Parameters:
9208 * super : imsm internal array info
9209 * info : general array info
9210 * Returns:
9211 * 0 : success (or there is no data to recover)
9212 * 1 : fail
9213 ******************************************************************************/
9214 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9215 {
9216 struct intel_super *super = st->sb;
9217 struct migr_record *migr_rec = super->migr_rec;
9218 struct imsm_map *map_dest = NULL;
9219 struct intel_dev *id = NULL;
9220 unsigned long long read_offset;
9221 unsigned long long write_offset;
9222 unsigned unit_len;
9223 int *targets = NULL;
9224 int new_disks, i, err;
9225 char *buf = NULL;
9226 int retval = 1;
9227 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9228 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
9229 char buffer[20];
9230 int skipped_disks = 0;
9231
9232 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9233 if (err < 1)
9234 return 1;
9235
9236 /* recover data only during assemblation */
9237 if (strncmp(buffer, "inactive", 8) != 0)
9238 return 0;
9239 /* no data to recover */
9240 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9241 return 0;
9242 if (curr_migr_unit >= num_migr_units)
9243 return 1;
9244
9245 /* find device during reshape */
9246 for (id = super->devlist; id; id = id->next)
9247 if (is_gen_migration(id->dev))
9248 break;
9249 if (id == NULL)
9250 return 1;
9251
9252 map_dest = get_imsm_map(id->dev, MAP_0);
9253 new_disks = map_dest->num_members;
9254
9255 read_offset = (unsigned long long)
9256 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9257
9258 write_offset = ((unsigned long long)
9259 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
9260 pba_of_lba0(map_dest)) * 512;
9261
9262 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9263 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
9264 goto abort;
9265 targets = xcalloc(new_disks, sizeof(int));
9266
9267 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
9268 pr_err("Cannot open some devices belonging to array.\n");
9269 goto abort;
9270 }
9271
9272 for (i = 0; i < new_disks; i++) {
9273 if (targets[i] < 0) {
9274 skipped_disks++;
9275 continue;
9276 }
9277 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
9278 pr_err("Cannot seek to block: %s\n",
9279 strerror(errno));
9280 skipped_disks++;
9281 continue;
9282 }
9283 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
9284 pr_err("Cannot read copy area block: %s\n",
9285 strerror(errno));
9286 skipped_disks++;
9287 continue;
9288 }
9289 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
9290 pr_err("Cannot seek to block: %s\n",
9291 strerror(errno));
9292 skipped_disks++;
9293 continue;
9294 }
9295 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
9296 pr_err("Cannot restore block: %s\n",
9297 strerror(errno));
9298 skipped_disks++;
9299 continue;
9300 }
9301 }
9302
9303 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9304 new_disks,
9305 super,
9306 id->dev)) {
9307 pr_err("Cannot restore data from backup."
9308 " Too many failed disks\n");
9309 goto abort;
9310 }
9311
9312 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9313 /* ignore error == 2, this can mean end of reshape here
9314 */
9315 dprintf("imsm: Cannot write checkpoint to "
9316 "migration record (UNIT_SRC_NORMAL) during restart\n");
9317 } else
9318 retval = 0;
9319
9320 abort:
9321 if (targets) {
9322 for (i = 0; i < new_disks; i++)
9323 if (targets[i])
9324 close(targets[i]);
9325 free(targets);
9326 }
9327 free(buf);
9328 return retval;
9329 }
9330
9331 static char disk_by_path[] = "/dev/disk/by-path/";
9332
9333 static const char *imsm_get_disk_controller_domain(const char *path)
9334 {
9335 char disk_path[PATH_MAX];
9336 char *drv=NULL;
9337 struct stat st;
9338
9339 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
9340 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9341 if (stat(disk_path, &st) == 0) {
9342 struct sys_dev* hba;
9343 char *path=NULL;
9344
9345 path = devt_to_devpath(st.st_rdev);
9346 if (path == NULL)
9347 return "unknown";
9348 hba = find_disk_attached_hba(-1, path);
9349 if (hba && hba->type == SYS_DEV_SAS)
9350 drv = "isci";
9351 else if (hba && hba->type == SYS_DEV_SATA)
9352 drv = "ahci";
9353 else
9354 drv = "unknown";
9355 dprintf("path: %s hba: %s attached: %s\n",
9356 path, (hba) ? hba->path : "NULL", drv);
9357 free(path);
9358 if (hba)
9359 free_sys_dev(&hba);
9360 }
9361 return drv;
9362 }
9363
9364 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
9365 {
9366 char subdev_name[20];
9367 struct mdstat_ent *mdstat;
9368
9369 sprintf(subdev_name, "%d", subdev);
9370 mdstat = mdstat_by_subdev(subdev_name, container);
9371 if (!mdstat)
9372 return -1;
9373
9374 *minor = mdstat->devnum;
9375 free_mdstat(mdstat);
9376 return 0;
9377 }
9378
9379 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9380 struct geo_params *geo,
9381 int *old_raid_disks,
9382 int direction)
9383 {
9384 /* currently we only support increasing the number of devices
9385 * for a container. This increases the number of device for each
9386 * member array. They must all be RAID0 or RAID5.
9387 */
9388 int ret_val = 0;
9389 struct mdinfo *info, *member;
9390 int devices_that_can_grow = 0;
9391
9392 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
9393 "st->devnum = (%i)\n",
9394 st->devnum);
9395
9396 if (geo->size > 0 ||
9397 geo->level != UnSet ||
9398 geo->layout != UnSet ||
9399 geo->chunksize != 0 ||
9400 geo->raid_disks == UnSet) {
9401 dprintf("imsm: Container operation is allowed for "
9402 "raid disks number change only.\n");
9403 return ret_val;
9404 }
9405
9406 if (direction == ROLLBACK_METADATA_CHANGES) {
9407 dprintf("imsm: Metadata changes rollback is not supported for "
9408 "container operation.\n");
9409 return ret_val;
9410 }
9411
9412 info = container_content_imsm(st, NULL);
9413 for (member = info; member; member = member->next) {
9414 int result;
9415 int minor;
9416
9417 dprintf("imsm: checking device_num: %i\n",
9418 member->container_member);
9419
9420 if (geo->raid_disks <= member->array.raid_disks) {
9421 /* we work on container for Online Capacity Expansion
9422 * only so raid_disks has to grow
9423 */
9424 dprintf("imsm: for container operation raid disks "
9425 "increase is required\n");
9426 break;
9427 }
9428
9429 if ((info->array.level != 0) &&
9430 (info->array.level != 5)) {
9431 /* we cannot use this container with other raid level
9432 */
9433 dprintf("imsm: for container operation wrong"
9434 " raid level (%i) detected\n",
9435 info->array.level);
9436 break;
9437 } else {
9438 /* check for platform support
9439 * for this raid level configuration
9440 */
9441 struct intel_super *super = st->sb;
9442 if (!is_raid_level_supported(super->orom,
9443 member->array.level,
9444 geo->raid_disks)) {
9445 dprintf("platform does not support raid%d with"
9446 " %d disk%s\n",
9447 info->array.level,
9448 geo->raid_disks,
9449 geo->raid_disks > 1 ? "s" : "");
9450 break;
9451 }
9452 /* check if component size is aligned to chunk size
9453 */
9454 if (info->component_size %
9455 (info->array.chunk_size/512)) {
9456 dprintf("Component size is not aligned to "
9457 "chunk size\n");
9458 break;
9459 }
9460 }
9461
9462 if (*old_raid_disks &&
9463 info->array.raid_disks != *old_raid_disks)
9464 break;
9465 *old_raid_disks = info->array.raid_disks;
9466
9467 /* All raid5 and raid0 volumes in container
9468 * have to be ready for Online Capacity Expansion
9469 * so they need to be assembled. We have already
9470 * checked that no recovery etc is happening.
9471 */
9472 result = imsm_find_array_minor_by_subdev(member->container_member,
9473 st->container_dev,
9474 &minor);
9475 if (result < 0) {
9476 dprintf("imsm: cannot find array\n");
9477 break;
9478 }
9479 devices_that_can_grow++;
9480 }
9481 sysfs_free(info);
9482 if (!member && devices_that_can_grow)
9483 ret_val = 1;
9484
9485 if (ret_val)
9486 dprintf("\tContainer operation allowed\n");
9487 else
9488 dprintf("\tError: %i\n", ret_val);
9489
9490 return ret_val;
9491 }
9492
9493 /* Function: get_spares_for_grow
9494 * Description: Allocates memory and creates list of spare devices
9495 * avaliable in container. Checks if spare drive size is acceptable.
9496 * Parameters: Pointer to the supertype structure
9497 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
9498 * NULL if fail
9499 */
9500 static struct mdinfo *get_spares_for_grow(struct supertype *st)
9501 {
9502 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
9503 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
9504 }
9505
9506 /******************************************************************************
9507 * function: imsm_create_metadata_update_for_reshape
9508 * Function creates update for whole IMSM container.
9509 *
9510 ******************************************************************************/
9511 static int imsm_create_metadata_update_for_reshape(
9512 struct supertype *st,
9513 struct geo_params *geo,
9514 int old_raid_disks,
9515 struct imsm_update_reshape **updatep)
9516 {
9517 struct intel_super *super = st->sb;
9518 struct imsm_super *mpb = super->anchor;
9519 int update_memory_size = 0;
9520 struct imsm_update_reshape *u = NULL;
9521 struct mdinfo *spares = NULL;
9522 int i;
9523 int delta_disks = 0;
9524 struct mdinfo *dev;
9525
9526 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
9527 geo->raid_disks);
9528
9529 delta_disks = geo->raid_disks - old_raid_disks;
9530
9531 /* size of all update data without anchor */
9532 update_memory_size = sizeof(struct imsm_update_reshape);
9533
9534 /* now add space for spare disks that we need to add. */
9535 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9536
9537 u = xcalloc(1, update_memory_size);
9538 u->type = update_reshape_container_disks;
9539 u->old_raid_disks = old_raid_disks;
9540 u->new_raid_disks = geo->raid_disks;
9541
9542 /* now get spare disks list
9543 */
9544 spares = get_spares_for_grow(st);
9545
9546 if (spares == NULL
9547 || delta_disks > spares->array.spare_disks) {
9548 pr_err("imsm: ERROR: Cannot get spare devices "
9549 "for %s.\n", geo->dev_name);
9550 i = -1;
9551 goto abort;
9552 }
9553
9554 /* we have got spares
9555 * update disk list in imsm_disk list table in anchor
9556 */
9557 dprintf("imsm: %i spares are available.\n\n",
9558 spares->array.spare_disks);
9559
9560 dev = spares->devs;
9561 for (i = 0; i < delta_disks; i++) {
9562 struct dl *dl;
9563
9564 if (dev == NULL)
9565 break;
9566 u->new_disks[i] = makedev(dev->disk.major,
9567 dev->disk.minor);
9568 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
9569 dl->index = mpb->num_disks;
9570 mpb->num_disks++;
9571 dev = dev->next;
9572 }
9573
9574 abort:
9575 /* free spares
9576 */
9577 sysfs_free(spares);
9578
9579 dprintf("imsm: reshape update preparation :");
9580 if (i == delta_disks) {
9581 dprintf(" OK\n");
9582 *updatep = u;
9583 return update_memory_size;
9584 }
9585 free(u);
9586 dprintf(" Error\n");
9587
9588 return 0;
9589 }
9590
9591
9592 /******************************************************************************
9593 * function: imsm_create_metadata_update_for_size_change()
9594 * Creates update for IMSM array for array size change.
9595 *
9596 ******************************************************************************/
9597 static int imsm_create_metadata_update_for_size_change(
9598 struct supertype *st,
9599 struct geo_params *geo,
9600 struct imsm_update_size_change **updatep)
9601 {
9602 struct intel_super *super = st->sb;
9603 int update_memory_size = 0;
9604 struct imsm_update_size_change *u = NULL;
9605
9606 dprintf("imsm_create_metadata_update_for_size_change(enter)"
9607 " New size = %llu\n", geo->size);
9608
9609 /* size of all update data without anchor */
9610 update_memory_size = sizeof(struct imsm_update_size_change);
9611
9612 u = xcalloc(1, update_memory_size);
9613 u->type = update_size_change;
9614 u->subdev = super->current_vol;
9615 u->new_size = geo->size;
9616
9617 dprintf("imsm: reshape update preparation : OK\n");
9618 *updatep = u;
9619
9620 return update_memory_size;
9621 }
9622
9623 /******************************************************************************
9624 * function: imsm_create_metadata_update_for_migration()
9625 * Creates update for IMSM array.
9626 *
9627 ******************************************************************************/
9628 static int imsm_create_metadata_update_for_migration(
9629 struct supertype *st,
9630 struct geo_params *geo,
9631 struct imsm_update_reshape_migration **updatep)
9632 {
9633 struct intel_super *super = st->sb;
9634 int update_memory_size = 0;
9635 struct imsm_update_reshape_migration *u = NULL;
9636 struct imsm_dev *dev;
9637 int previous_level = -1;
9638
9639 dprintf("imsm_create_metadata_update_for_migration(enter)"
9640 " New Level = %i\n", geo->level);
9641
9642 /* size of all update data without anchor */
9643 update_memory_size = sizeof(struct imsm_update_reshape_migration);
9644
9645 u = xcalloc(1, update_memory_size);
9646 u->type = update_reshape_migration;
9647 u->subdev = super->current_vol;
9648 u->new_level = geo->level;
9649 u->new_layout = geo->layout;
9650 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
9651 u->new_disks[0] = -1;
9652 u->new_chunksize = -1;
9653
9654 dev = get_imsm_dev(super, u->subdev);
9655 if (dev) {
9656 struct imsm_map *map;
9657
9658 map = get_imsm_map(dev, MAP_0);
9659 if (map) {
9660 int current_chunk_size =
9661 __le16_to_cpu(map->blocks_per_strip) / 2;
9662
9663 if (geo->chunksize != current_chunk_size) {
9664 u->new_chunksize = geo->chunksize / 1024;
9665 dprintf("imsm: "
9666 "chunk size change from %i to %i\n",
9667 current_chunk_size, u->new_chunksize);
9668 }
9669 previous_level = map->raid_level;
9670 }
9671 }
9672 if ((geo->level == 5) && (previous_level == 0)) {
9673 struct mdinfo *spares = NULL;
9674
9675 u->new_raid_disks++;
9676 spares = get_spares_for_grow(st);
9677 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9678 free(u);
9679 sysfs_free(spares);
9680 update_memory_size = 0;
9681 dprintf("error: cannot get spare device "
9682 "for requested migration");
9683 return 0;
9684 }
9685 sysfs_free(spares);
9686 }
9687 dprintf("imsm: reshape update preparation : OK\n");
9688 *updatep = u;
9689
9690 return update_memory_size;
9691 }
9692
9693 static void imsm_update_metadata_locally(struct supertype *st,
9694 void *buf, int len)
9695 {
9696 struct metadata_update mu;
9697
9698 mu.buf = buf;
9699 mu.len = len;
9700 mu.space = NULL;
9701 mu.space_list = NULL;
9702 mu.next = NULL;
9703 imsm_prepare_update(st, &mu);
9704 imsm_process_update(st, &mu);
9705
9706 while (mu.space_list) {
9707 void **space = mu.space_list;
9708 mu.space_list = *space;
9709 free(space);
9710 }
9711 }
9712
9713 /***************************************************************************
9714 * Function: imsm_analyze_change
9715 * Description: Function analyze change for single volume
9716 * and validate if transition is supported
9717 * Parameters: Geometry parameters, supertype structure,
9718 * metadata change direction (apply/rollback)
9719 * Returns: Operation type code on success, -1 if fail
9720 ****************************************************************************/
9721 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9722 struct geo_params *geo,
9723 int direction)
9724 {
9725 struct mdinfo info;
9726 int change = -1;
9727 int check_devs = 0;
9728 int chunk;
9729 /* number of added/removed disks in operation result */
9730 int devNumChange = 0;
9731 /* imsm compatible layout value for array geometry verification */
9732 int imsm_layout = -1;
9733 int data_disks;
9734 struct imsm_dev *dev;
9735 struct intel_super *super;
9736 unsigned long long current_size;
9737 unsigned long long free_size;
9738 unsigned long long max_size;
9739 int rv;
9740
9741 getinfo_super_imsm_volume(st, &info, NULL);
9742 if ((geo->level != info.array.level) &&
9743 (geo->level >= 0) &&
9744 (geo->level != UnSet)) {
9745 switch (info.array.level) {
9746 case 0:
9747 if (geo->level == 5) {
9748 change = CH_MIGRATION;
9749 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
9750 pr_err("Error. Requested Layout "
9751 "not supported (left-asymmetric layout "
9752 "is supported only)!\n");
9753 change = -1;
9754 goto analyse_change_exit;
9755 }
9756 imsm_layout = geo->layout;
9757 check_devs = 1;
9758 devNumChange = 1; /* parity disk added */
9759 } else if (geo->level == 10) {
9760 change = CH_TAKEOVER;
9761 check_devs = 1;
9762 devNumChange = 2; /* two mirrors added */
9763 imsm_layout = 0x102; /* imsm supported layout */
9764 }
9765 break;
9766 case 1:
9767 case 10:
9768 if (geo->level == 0) {
9769 change = CH_TAKEOVER;
9770 check_devs = 1;
9771 devNumChange = -(geo->raid_disks/2);
9772 imsm_layout = 0; /* imsm raid0 layout */
9773 }
9774 break;
9775 }
9776 if (change == -1) {
9777 pr_err("Error. Level Migration from %d to %d "
9778 "not supported!\n",
9779 info.array.level, geo->level);
9780 goto analyse_change_exit;
9781 }
9782 } else
9783 geo->level = info.array.level;
9784
9785 if ((geo->layout != info.array.layout)
9786 && ((geo->layout != UnSet) && (geo->layout != -1))) {
9787 change = CH_MIGRATION;
9788 if ((info.array.layout == 0)
9789 && (info.array.level == 5)
9790 && (geo->layout == 5)) {
9791 /* reshape 5 -> 4 */
9792 } else if ((info.array.layout == 5)
9793 && (info.array.level == 5)
9794 && (geo->layout == 0)) {
9795 /* reshape 4 -> 5 */
9796 geo->layout = 0;
9797 geo->level = 5;
9798 } else {
9799 pr_err("Error. Layout Migration from %d to %d "
9800 "not supported!\n",
9801 info.array.layout, geo->layout);
9802 change = -1;
9803 goto analyse_change_exit;
9804 }
9805 } else {
9806 geo->layout = info.array.layout;
9807 if (imsm_layout == -1)
9808 imsm_layout = info.array.layout;
9809 }
9810
9811 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
9812 && (geo->chunksize != info.array.chunk_size))
9813 change = CH_MIGRATION;
9814 else
9815 geo->chunksize = info.array.chunk_size;
9816
9817 chunk = geo->chunksize / 1024;
9818
9819 super = st->sb;
9820 dev = get_imsm_dev(super, super->current_vol);
9821 data_disks = imsm_num_data_members(dev , MAP_0);
9822 /* compute current size per disk member
9823 */
9824 current_size = info.custom_array_size / data_disks;
9825
9826 if ((geo->size > 0) && (geo->size != MAX_SIZE)) {
9827 /* align component size
9828 */
9829 geo->size = imsm_component_size_aligment_check(
9830 get_imsm_raid_level(dev->vol.map),
9831 chunk * 1024,
9832 geo->size * 2);
9833 if (geo->size == 0) {
9834 pr_err("Error. Size expansion is " \
9835 "supported only (current size is %llu, " \
9836 "requested size /rounded/ is 0).\n",
9837 current_size);
9838 goto analyse_change_exit;
9839 }
9840 }
9841
9842 if ((current_size != geo->size) && (geo->size > 0)) {
9843 if (change != -1) {
9844 pr_err("Error. Size change should be the only "
9845 "one at a time.\n");
9846 change = -1;
9847 goto analyse_change_exit;
9848 }
9849 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
9850 pr_err("Error. The last volume in container "
9851 "can be expanded only (%i/%i).\n",
9852 super->current_vol, st->devnum);
9853 goto analyse_change_exit;
9854 }
9855 /* check the maximum available size
9856 */
9857 rv = imsm_get_free_size(st, dev->vol.map->num_members,
9858 0, chunk, &free_size);
9859 if (rv == 0)
9860 /* Cannot find maximum available space
9861 */
9862 max_size = 0;
9863 else {
9864 max_size = free_size + current_size;
9865 /* align component size
9866 */
9867 max_size = imsm_component_size_aligment_check(
9868 get_imsm_raid_level(dev->vol.map),
9869 chunk * 1024,
9870 max_size);
9871 }
9872 if (geo->size == MAX_SIZE) {
9873 /* requested size change to the maximum available size
9874 */
9875 if (max_size == 0) {
9876 pr_err("Error. Cannot find "
9877 "maximum available space.\n");
9878 change = -1;
9879 goto analyse_change_exit;
9880 } else
9881 geo->size = max_size;
9882 }
9883
9884 if ((direction == ROLLBACK_METADATA_CHANGES)) {
9885 /* accept size for rollback only
9886 */
9887 } else {
9888 /* round size due to metadata compatibility
9889 */
9890 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
9891 << SECT_PER_MB_SHIFT;
9892 dprintf("Prepare update for size change to %llu\n",
9893 geo->size );
9894 if (current_size >= geo->size) {
9895 pr_err("Error. Size expansion is "
9896 "supported only (current size is %llu, "
9897 "requested size /rounded/ is %llu).\n",
9898 current_size, geo->size);
9899 goto analyse_change_exit;
9900 }
9901 if (max_size && geo->size > max_size) {
9902 pr_err("Error. Requested size is larger "
9903 "than maximum available size (maximum "
9904 "available size is %llu, "
9905 "requested size /rounded/ is %llu).\n",
9906 max_size, geo->size);
9907 goto analyse_change_exit;
9908 }
9909 }
9910 geo->size *= data_disks;
9911 geo->raid_disks = dev->vol.map->num_members;
9912 change = CH_ARRAY_SIZE;
9913 }
9914 if (!validate_geometry_imsm(st,
9915 geo->level,
9916 imsm_layout,
9917 geo->raid_disks + devNumChange,
9918 &chunk,
9919 geo->size, INVALID_SECTORS,
9920 0, 0, 1))
9921 change = -1;
9922
9923 if (check_devs) {
9924 struct intel_super *super = st->sb;
9925 struct imsm_super *mpb = super->anchor;
9926
9927 if (mpb->num_raid_devs > 1) {
9928 pr_err("Error. Cannot perform operation on %s"
9929 "- for this operation it MUST be single "
9930 "array in container\n",
9931 geo->dev_name);
9932 change = -1;
9933 }
9934 }
9935
9936 analyse_change_exit:
9937 if ((direction == ROLLBACK_METADATA_CHANGES) &&
9938 ((change == CH_MIGRATION) || (change == CH_TAKEOVER))) {
9939 dprintf("imsm: Metadata changes rollback is not supported for "
9940 "migration and takeover operations.\n");
9941 change = -1;
9942 }
9943 return change;
9944 }
9945
9946 int imsm_takeover(struct supertype *st, struct geo_params *geo)
9947 {
9948 struct intel_super *super = st->sb;
9949 struct imsm_update_takeover *u;
9950
9951 u = xmalloc(sizeof(struct imsm_update_takeover));
9952
9953 u->type = update_takeover;
9954 u->subarray = super->current_vol;
9955
9956 /* 10->0 transition */
9957 if (geo->level == 0)
9958 u->direction = R10_TO_R0;
9959
9960 /* 0->10 transition */
9961 if (geo->level == 10)
9962 u->direction = R0_TO_R10;
9963
9964 /* update metadata locally */
9965 imsm_update_metadata_locally(st, u,
9966 sizeof(struct imsm_update_takeover));
9967 /* and possibly remotely */
9968 if (st->update_tail)
9969 append_metadata_update(st, u,
9970 sizeof(struct imsm_update_takeover));
9971 else
9972 free(u);
9973
9974 return 0;
9975 }
9976
9977 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
9978 int level,
9979 int layout, int chunksize, int raid_disks,
9980 int delta_disks, char *backup, char *dev,
9981 int direction, int verbose)
9982 {
9983 int ret_val = 1;
9984 struct geo_params geo;
9985
9986 dprintf("imsm: reshape_super called.\n");
9987
9988 memset(&geo, 0, sizeof(struct geo_params));
9989
9990 geo.dev_name = dev;
9991 geo.dev_id = st->devnum;
9992 geo.size = size;
9993 geo.level = level;
9994 geo.layout = layout;
9995 geo.chunksize = chunksize;
9996 geo.raid_disks = raid_disks;
9997 if (delta_disks != UnSet)
9998 geo.raid_disks += delta_disks;
9999
10000 dprintf("\tfor level : %i\n", geo.level);
10001 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
10002
10003 if (experimental() == 0)
10004 return ret_val;
10005
10006 if (st->container_dev == st->devnum) {
10007 /* On container level we can only increase number of devices. */
10008 dprintf("imsm: info: Container operation\n");
10009 int old_raid_disks = 0;
10010
10011 if (imsm_reshape_is_allowed_on_container(
10012 st, &geo, &old_raid_disks, direction)) {
10013 struct imsm_update_reshape *u = NULL;
10014 int len;
10015
10016 len = imsm_create_metadata_update_for_reshape(
10017 st, &geo, old_raid_disks, &u);
10018
10019 if (len <= 0) {
10020 dprintf("imsm: Cannot prepare update\n");
10021 goto exit_imsm_reshape_super;
10022 }
10023
10024 ret_val = 0;
10025 /* update metadata locally */
10026 imsm_update_metadata_locally(st, u, len);
10027 /* and possibly remotely */
10028 if (st->update_tail)
10029 append_metadata_update(st, u, len);
10030 else
10031 free(u);
10032
10033 } else {
10034 pr_err("(imsm) Operation "
10035 "is not allowed on this container\n");
10036 }
10037 } else {
10038 /* On volume level we support following operations
10039 * - takeover: raid10 -> raid0; raid0 -> raid10
10040 * - chunk size migration
10041 * - migration: raid5 -> raid0; raid0 -> raid5
10042 */
10043 struct intel_super *super = st->sb;
10044 struct intel_dev *dev = super->devlist;
10045 int change, devnum;
10046 dprintf("imsm: info: Volume operation\n");
10047 /* find requested device */
10048 while (dev) {
10049 if (imsm_find_array_minor_by_subdev(
10050 dev->index, st->container_dev, &devnum) == 0
10051 && devnum == geo.dev_id)
10052 break;
10053 dev = dev->next;
10054 }
10055 if (dev == NULL) {
10056 pr_err("Cannot find %s (%i) subarray\n",
10057 geo.dev_name, geo.dev_id);
10058 goto exit_imsm_reshape_super;
10059 }
10060 super->current_vol = dev->index;
10061 change = imsm_analyze_change(st, &geo, direction);
10062 switch (change) {
10063 case CH_TAKEOVER:
10064 ret_val = imsm_takeover(st, &geo);
10065 break;
10066 case CH_MIGRATION: {
10067 struct imsm_update_reshape_migration *u = NULL;
10068 int len =
10069 imsm_create_metadata_update_for_migration(
10070 st, &geo, &u);
10071 if (len < 1) {
10072 dprintf("imsm: "
10073 "Cannot prepare update\n");
10074 break;
10075 }
10076 ret_val = 0;
10077 /* update metadata locally */
10078 imsm_update_metadata_locally(st, u, len);
10079 /* and possibly remotely */
10080 if (st->update_tail)
10081 append_metadata_update(st, u, len);
10082 else
10083 free(u);
10084 }
10085 break;
10086 case CH_ARRAY_SIZE: {
10087 struct imsm_update_size_change *u = NULL;
10088 int len =
10089 imsm_create_metadata_update_for_size_change(
10090 st, &geo, &u);
10091 if (len < 1) {
10092 dprintf("imsm: "
10093 "Cannot prepare update\n");
10094 break;
10095 }
10096 ret_val = 0;
10097 /* update metadata locally */
10098 imsm_update_metadata_locally(st, u, len);
10099 /* and possibly remotely */
10100 if (st->update_tail)
10101 append_metadata_update(st, u, len);
10102 else
10103 free(u);
10104 }
10105 break;
10106 default:
10107 ret_val = 1;
10108 }
10109 }
10110
10111 exit_imsm_reshape_super:
10112 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
10113 return ret_val;
10114 }
10115
10116 /*******************************************************************************
10117 * Function: wait_for_reshape_imsm
10118 * Description: Function writes new sync_max value and waits until
10119 * reshape process reach new position
10120 * Parameters:
10121 * sra : general array info
10122 * ndata : number of disks in new array's layout
10123 * Returns:
10124 * 0 : success,
10125 * 1 : there is no reshape in progress,
10126 * -1 : fail
10127 ******************************************************************************/
10128 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
10129 {
10130 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
10131 unsigned long long completed;
10132 /* to_complete : new sync_max position */
10133 unsigned long long to_complete = sra->reshape_progress;
10134 unsigned long long position_to_set = to_complete / ndata;
10135
10136 if (fd < 0) {
10137 dprintf("imsm: wait_for_reshape_imsm() "
10138 "cannot open reshape_position\n");
10139 return 1;
10140 }
10141
10142 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10143 dprintf("imsm: wait_for_reshape_imsm() "
10144 "cannot read reshape_position (no reshape in progres)\n");
10145 close(fd);
10146 return 0;
10147 }
10148
10149 if (completed > to_complete) {
10150 dprintf("imsm: wait_for_reshape_imsm() "
10151 "wrong next position to set %llu (%llu)\n",
10152 to_complete, completed);
10153 close(fd);
10154 return -1;
10155 }
10156 dprintf("Position set: %llu\n", position_to_set);
10157 if (sysfs_set_num(sra, NULL, "sync_max",
10158 position_to_set) != 0) {
10159 dprintf("imsm: wait_for_reshape_imsm() "
10160 "cannot set reshape position to %llu\n",
10161 position_to_set);
10162 close(fd);
10163 return -1;
10164 }
10165
10166 do {
10167 char action[20];
10168 fd_set rfds;
10169 FD_ZERO(&rfds);
10170 FD_SET(fd, &rfds);
10171 select(fd+1, &rfds, NULL, NULL, NULL);
10172 if (sysfs_get_str(sra, NULL, "sync_action",
10173 action, 20) > 0 &&
10174 strncmp(action, "reshape", 7) != 0)
10175 break;
10176 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10177 dprintf("imsm: wait_for_reshape_imsm() "
10178 "cannot read reshape_position (in loop)\n");
10179 close(fd);
10180 return 1;
10181 }
10182 } while (completed < to_complete);
10183 close(fd);
10184 return 0;
10185
10186 }
10187
10188 /*******************************************************************************
10189 * Function: check_degradation_change
10190 * Description: Check that array hasn't become failed.
10191 * Parameters:
10192 * info : for sysfs access
10193 * sources : source disks descriptors
10194 * degraded: previous degradation level
10195 * Returns:
10196 * degradation level
10197 ******************************************************************************/
10198 int check_degradation_change(struct mdinfo *info,
10199 int *sources,
10200 int degraded)
10201 {
10202 unsigned long long new_degraded;
10203 int rv;
10204
10205 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10206 if ((rv == -1) || (new_degraded != (unsigned long long)degraded)) {
10207 /* check each device to ensure it is still working */
10208 struct mdinfo *sd;
10209 new_degraded = 0;
10210 for (sd = info->devs ; sd ; sd = sd->next) {
10211 if (sd->disk.state & (1<<MD_DISK_FAULTY))
10212 continue;
10213 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10214 char sbuf[20];
10215 if (sysfs_get_str(info,
10216 sd, "state", sbuf, 20) < 0 ||
10217 strstr(sbuf, "faulty") ||
10218 strstr(sbuf, "in_sync") == NULL) {
10219 /* this device is dead */
10220 sd->disk.state = (1<<MD_DISK_FAULTY);
10221 if (sd->disk.raid_disk >= 0 &&
10222 sources[sd->disk.raid_disk] >= 0) {
10223 close(sources[
10224 sd->disk.raid_disk]);
10225 sources[sd->disk.raid_disk] =
10226 -1;
10227 }
10228 new_degraded++;
10229 }
10230 }
10231 }
10232 }
10233
10234 return new_degraded;
10235 }
10236
10237 /*******************************************************************************
10238 * Function: imsm_manage_reshape
10239 * Description: Function finds array under reshape and it manages reshape
10240 * process. It creates stripes backups (if required) and sets
10241 * checheckpoits.
10242 * Parameters:
10243 * afd : Backup handle (nattive) - not used
10244 * sra : general array info
10245 * reshape : reshape parameters - not used
10246 * st : supertype structure
10247 * blocks : size of critical section [blocks]
10248 * fds : table of source device descriptor
10249 * offsets : start of array (offest per devices)
10250 * dests : not used
10251 * destfd : table of destination device descriptor
10252 * destoffsets : table of destination offsets (per device)
10253 * Returns:
10254 * 1 : success, reshape is done
10255 * 0 : fail
10256 ******************************************************************************/
10257 static int imsm_manage_reshape(
10258 int afd, struct mdinfo *sra, struct reshape *reshape,
10259 struct supertype *st, unsigned long backup_blocks,
10260 int *fds, unsigned long long *offsets,
10261 int dests, int *destfd, unsigned long long *destoffsets)
10262 {
10263 int ret_val = 0;
10264 struct intel_super *super = st->sb;
10265 struct intel_dev *dv = NULL;
10266 struct imsm_dev *dev = NULL;
10267 struct imsm_map *map_src;
10268 int migr_vol_qan = 0;
10269 int ndata, odata; /* [bytes] */
10270 int chunk; /* [bytes] */
10271 struct migr_record *migr_rec;
10272 char *buf = NULL;
10273 unsigned int buf_size; /* [bytes] */
10274 unsigned long long max_position; /* array size [bytes] */
10275 unsigned long long next_step; /* [blocks]/[bytes] */
10276 unsigned long long old_data_stripe_length;
10277 unsigned long long start_src; /* [bytes] */
10278 unsigned long long start; /* [bytes] */
10279 unsigned long long start_buf_shift; /* [bytes] */
10280 int degraded = 0;
10281 int source_layout = 0;
10282
10283 if (!fds || !offsets || !sra)
10284 goto abort;
10285
10286 /* Find volume during the reshape */
10287 for (dv = super->devlist; dv; dv = dv->next) {
10288 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10289 && dv->dev->vol.migr_state == 1) {
10290 dev = dv->dev;
10291 migr_vol_qan++;
10292 }
10293 }
10294 /* Only one volume can migrate at the same time */
10295 if (migr_vol_qan != 1) {
10296 pr_err(": %s", migr_vol_qan ?
10297 "Number of migrating volumes greater than 1\n" :
10298 "There is no volume during migrationg\n");
10299 goto abort;
10300 }
10301
10302 map_src = get_imsm_map(dev, MAP_1);
10303 if (map_src == NULL)
10304 goto abort;
10305
10306 ndata = imsm_num_data_members(dev, MAP_0);
10307 odata = imsm_num_data_members(dev, MAP_1);
10308
10309 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10310 old_data_stripe_length = odata * chunk;
10311
10312 migr_rec = super->migr_rec;
10313
10314 /* initialize migration record for start condition */
10315 if (sra->reshape_progress == 0)
10316 init_migr_record_imsm(st, dev, sra);
10317 else {
10318 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
10319 dprintf("imsm: cannot restart migration when data "
10320 "are present in copy area.\n");
10321 goto abort;
10322 }
10323 /* Save checkpoint to update migration record for current
10324 * reshape position (in md). It can be farther than current
10325 * reshape position in metadata.
10326 */
10327 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10328 /* ignore error == 2, this can mean end of reshape here
10329 */
10330 dprintf("imsm: Cannot write checkpoint to "
10331 "migration record (UNIT_SRC_NORMAL, "
10332 "initial save)\n");
10333 goto abort;
10334 }
10335 }
10336
10337 /* size for data */
10338 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10339 /* extend buffer size for parity disk */
10340 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10341 /* add space for stripe aligment */
10342 buf_size += old_data_stripe_length;
10343 if (posix_memalign((void **)&buf, 4096, buf_size)) {
10344 dprintf("imsm: Cannot allocate checpoint buffer\n");
10345 goto abort;
10346 }
10347
10348 max_position = sra->component_size * ndata;
10349 source_layout = imsm_level_to_layout(map_src->raid_level);
10350
10351 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10352 __le32_to_cpu(migr_rec->num_migr_units)) {
10353 /* current reshape position [blocks] */
10354 unsigned long long current_position =
10355 __le32_to_cpu(migr_rec->blocks_per_unit)
10356 * __le32_to_cpu(migr_rec->curr_migr_unit);
10357 unsigned long long border;
10358
10359 /* Check that array hasn't become failed.
10360 */
10361 degraded = check_degradation_change(sra, fds, degraded);
10362 if (degraded > 1) {
10363 dprintf("imsm: Abort reshape due to degradation"
10364 " level (%i)\n", degraded);
10365 goto abort;
10366 }
10367
10368 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10369
10370 if ((current_position + next_step) > max_position)
10371 next_step = max_position - current_position;
10372
10373 start = current_position * 512;
10374
10375 /* allign reading start to old geometry */
10376 start_buf_shift = start % old_data_stripe_length;
10377 start_src = start - start_buf_shift;
10378
10379 border = (start_src / odata) - (start / ndata);
10380 border /= 512;
10381 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10382 /* save critical stripes to buf
10383 * start - start address of current unit
10384 * to backup [bytes]
10385 * start_src - start address of current unit
10386 * to backup alligned to source array
10387 * [bytes]
10388 */
10389 unsigned long long next_step_filler = 0;
10390 unsigned long long copy_length = next_step * 512;
10391
10392 /* allign copy area length to stripe in old geometry */
10393 next_step_filler = ((copy_length + start_buf_shift)
10394 % old_data_stripe_length);
10395 if (next_step_filler)
10396 next_step_filler = (old_data_stripe_length
10397 - next_step_filler);
10398 dprintf("save_stripes() parameters: start = %llu,"
10399 "\tstart_src = %llu,\tnext_step*512 = %llu,"
10400 "\tstart_in_buf_shift = %llu,"
10401 "\tnext_step_filler = %llu\n",
10402 start, start_src, copy_length,
10403 start_buf_shift, next_step_filler);
10404
10405 if (save_stripes(fds, offsets, map_src->num_members,
10406 chunk, map_src->raid_level,
10407 source_layout, 0, NULL, start_src,
10408 copy_length +
10409 next_step_filler + start_buf_shift,
10410 buf)) {
10411 dprintf("imsm: Cannot save stripes"
10412 " to buffer\n");
10413 goto abort;
10414 }
10415 /* Convert data to destination format and store it
10416 * in backup general migration area
10417 */
10418 if (save_backup_imsm(st, dev, sra,
10419 buf + start_buf_shift, copy_length)) {
10420 dprintf("imsm: Cannot save stripes to "
10421 "target devices\n");
10422 goto abort;
10423 }
10424 if (save_checkpoint_imsm(st, sra,
10425 UNIT_SRC_IN_CP_AREA)) {
10426 dprintf("imsm: Cannot write checkpoint to "
10427 "migration record (UNIT_SRC_IN_CP_AREA)\n");
10428 goto abort;
10429 }
10430 } else {
10431 /* set next step to use whole border area */
10432 border /= next_step;
10433 if (border > 1)
10434 next_step *= border;
10435 }
10436 /* When data backed up, checkpoint stored,
10437 * kick the kernel to reshape unit of data
10438 */
10439 next_step = next_step + sra->reshape_progress;
10440 /* limit next step to array max position */
10441 if (next_step > max_position)
10442 next_step = max_position;
10443 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10444 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
10445 sra->reshape_progress = next_step;
10446
10447 /* wait until reshape finish */
10448 if (wait_for_reshape_imsm(sra, ndata) < 0) {
10449 dprintf("wait_for_reshape_imsm returned error!\n");
10450 goto abort;
10451 }
10452
10453 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10454 /* ignore error == 2, this can mean end of reshape here
10455 */
10456 dprintf("imsm: Cannot write checkpoint to "
10457 "migration record (UNIT_SRC_NORMAL)\n");
10458 goto abort;
10459 }
10460
10461 }
10462
10463 /* return '1' if done */
10464 ret_val = 1;
10465 abort:
10466 free(buf);
10467 abort_reshape(sra);
10468
10469 return ret_val;
10470 }
10471 #endif /* MDASSEMBLE */
10472
10473 struct superswitch super_imsm = {
10474 #ifndef MDASSEMBLE
10475 .examine_super = examine_super_imsm,
10476 .brief_examine_super = brief_examine_super_imsm,
10477 .brief_examine_subarrays = brief_examine_subarrays_imsm,
10478 .export_examine_super = export_examine_super_imsm,
10479 .detail_super = detail_super_imsm,
10480 .brief_detail_super = brief_detail_super_imsm,
10481 .write_init_super = write_init_super_imsm,
10482 .validate_geometry = validate_geometry_imsm,
10483 .add_to_super = add_to_super_imsm,
10484 .remove_from_super = remove_from_super_imsm,
10485 .detail_platform = detail_platform_imsm,
10486 .export_detail_platform = export_detail_platform_imsm,
10487 .kill_subarray = kill_subarray_imsm,
10488 .update_subarray = update_subarray_imsm,
10489 .load_container = load_container_imsm,
10490 .default_geometry = default_geometry_imsm,
10491 .get_disk_controller_domain = imsm_get_disk_controller_domain,
10492 .reshape_super = imsm_reshape_super,
10493 .manage_reshape = imsm_manage_reshape,
10494 .recover_backup = recover_backup_imsm,
10495 #endif
10496 .match_home = match_home_imsm,
10497 .uuid_from_super= uuid_from_super_imsm,
10498 .getinfo_super = getinfo_super_imsm,
10499 .getinfo_super_disks = getinfo_super_disks_imsm,
10500 .update_super = update_super_imsm,
10501
10502 .avail_size = avail_size_imsm,
10503 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
10504
10505 .compare_super = compare_super_imsm,
10506
10507 .load_super = load_super_imsm,
10508 .init_super = init_super_imsm,
10509 .store_super = store_super_imsm,
10510 .free_super = free_super_imsm,
10511 .match_metadata_desc = match_metadata_desc_imsm,
10512 .container_content = container_content_imsm,
10513
10514
10515 .external = 1,
10516 .name = "imsm",
10517
10518 #ifndef MDASSEMBLE
10519 /* for mdmon */
10520 .open_new = imsm_open_new,
10521 .set_array_state= imsm_set_array_state,
10522 .set_disk = imsm_set_disk,
10523 .sync_metadata = imsm_sync_metadata,
10524 .activate_spare = imsm_activate_spare,
10525 .process_update = imsm_process_update,
10526 .prepare_update = imsm_prepare_update,
10527 #endif /* MDASSEMBLE */
10528 };