]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
Assemble: allow members of containers to be assembled and auto-assembled.
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include <values.h>
25 #include <scsi/sg.h>
26 #include <ctype.h>
27
28 /* MPB == Metadata Parameter Block */
29 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
30 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
31 #define MPB_VERSION_RAID0 "1.0.00"
32 #define MPB_VERSION_RAID1 "1.1.00"
33 #define MPB_VERSION_RAID5 "1.2.02"
34 #define MAX_SIGNATURE_LENGTH 32
35 #define MAX_RAID_SERIAL_LEN 16
36 #define MPB_SECTOR_CNT 418
37 #define IMSM_RESERVED_SECTORS 4096
38
39 /* Disk configuration info. */
40 #define IMSM_MAX_DEVICES 255
41 struct imsm_disk {
42 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
43 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
44 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
45 __u32 status; /* 0xF0 - 0xF3 */
46 #define SPARE_DISK 0x01 /* Spare */
47 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
48 #define FAILED_DISK 0x04 /* Permanent failure */
49 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
50
51 #define IMSM_DISK_FILLERS 5
52 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
53 };
54
55 /* RAID map configuration infos. */
56 struct imsm_map {
57 __u32 pba_of_lba0; /* start address of partition */
58 __u32 blocks_per_member;/* blocks per member */
59 __u32 num_data_stripes; /* number of data stripes */
60 __u16 blocks_per_strip;
61 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
62 #define IMSM_T_STATE_NORMAL 0
63 #define IMSM_T_STATE_UNINITIALIZED 1
64 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
65 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
66 __u8 raid_level;
67 #define IMSM_T_RAID0 0
68 #define IMSM_T_RAID1 1
69 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
70 __u8 num_members; /* number of member disks */
71 __u8 reserved[3];
72 __u32 filler[7]; /* expansion area */
73 #define IMSM_ORD_REBUILD (1 << 24)
74 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
75 * top byte contains some flags
76 */
77 } __attribute__ ((packed));
78
79 struct imsm_vol {
80 __u32 curr_migr_unit;
81 __u32 reserved;
82 __u8 migr_state; /* Normal or Migrating */
83 __u8 migr_type; /* Initializing, Rebuilding, ... */
84 __u8 dirty;
85 __u8 fill[1];
86 __u32 filler[5];
87 struct imsm_map map[1];
88 /* here comes another one if migr_state */
89 } __attribute__ ((packed));
90
91 struct imsm_dev {
92 __u8 volume[MAX_RAID_SERIAL_LEN];
93 __u32 size_low;
94 __u32 size_high;
95 __u32 status; /* Persistent RaidDev status */
96 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
97 #define IMSM_DEV_FILLERS 12
98 __u32 filler[IMSM_DEV_FILLERS];
99 struct imsm_vol vol;
100 } __attribute__ ((packed));
101
102 struct imsm_super {
103 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
104 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
105 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
106 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
107 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
108 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
109 __u32 attributes; /* 0x34 - 0x37 */
110 __u8 num_disks; /* 0x38 Number of configured disks */
111 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
112 __u8 error_log_pos; /* 0x3A */
113 __u8 fill[1]; /* 0x3B */
114 __u32 cache_size; /* 0x3c - 0x40 in mb */
115 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
116 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
117 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
118 #define IMSM_FILLERS 35
119 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
120 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
121 /* here comes imsm_dev[num_raid_devs] */
122 /* here comes BBM logs */
123 } __attribute__ ((packed));
124
125 #define BBM_LOG_MAX_ENTRIES 254
126
127 struct bbm_log_entry {
128 __u64 defective_block_start;
129 #define UNREADABLE 0xFFFFFFFF
130 __u32 spare_block_offset;
131 __u16 remapped_marked_count;
132 __u16 disk_ordinal;
133 } __attribute__ ((__packed__));
134
135 struct bbm_log {
136 __u32 signature; /* 0xABADB10C */
137 __u32 entry_count;
138 __u32 reserved_spare_block_count; /* 0 */
139 __u32 reserved; /* 0xFFFF */
140 __u64 first_spare_lba;
141 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
142 } __attribute__ ((__packed__));
143
144
145 #ifndef MDASSEMBLE
146 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
147 #endif
148
149 static unsigned int sector_count(__u32 bytes)
150 {
151 return ((bytes + (512-1)) & (~(512-1))) / 512;
152 }
153
154 static unsigned int mpb_sectors(struct imsm_super *mpb)
155 {
156 return sector_count(__le32_to_cpu(mpb->mpb_size));
157 }
158
159 /* internal representation of IMSM metadata */
160 struct intel_super {
161 union {
162 void *buf; /* O_DIRECT buffer for reading/writing metadata */
163 struct imsm_super *anchor; /* immovable parameters */
164 };
165 size_t len; /* size of the 'buf' allocation */
166 void *next_buf; /* for realloc'ing buf from the manager */
167 size_t next_len;
168 int updates_pending; /* count of pending updates for mdmon */
169 int creating_imsm; /* flag to indicate container creation */
170 int current_vol; /* index of raid device undergoing creation */
171 #define IMSM_MAX_RAID_DEVS 2
172 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
173 struct dl {
174 struct dl *next;
175 int index;
176 __u8 serial[MAX_RAID_SERIAL_LEN];
177 int major, minor;
178 char *devname;
179 struct imsm_disk disk;
180 int fd;
181 } *disks;
182 struct dl *add; /* list of disks to add while mdmon active */
183 struct dl *missing; /* disks removed while we weren't looking */
184 struct bbm_log *bbm_log;
185 };
186
187 struct extent {
188 unsigned long long start, size;
189 };
190
191 /* definition of messages passed to imsm_process_update */
192 enum imsm_update_type {
193 update_activate_spare,
194 update_create_array,
195 update_add_disk,
196 };
197
198 struct imsm_update_activate_spare {
199 enum imsm_update_type type;
200 struct dl *dl;
201 int slot;
202 int array;
203 struct imsm_update_activate_spare *next;
204 };
205
206 struct imsm_update_create_array {
207 enum imsm_update_type type;
208 int dev_idx;
209 struct imsm_dev dev;
210 };
211
212 struct imsm_update_add_disk {
213 enum imsm_update_type type;
214 };
215
216 static struct supertype *match_metadata_desc_imsm(char *arg)
217 {
218 struct supertype *st;
219
220 if (strcmp(arg, "imsm") != 0 &&
221 strcmp(arg, "default") != 0
222 )
223 return NULL;
224
225 st = malloc(sizeof(*st));
226 memset(st, 0, sizeof(*st));
227 st->ss = &super_imsm;
228 st->max_devs = IMSM_MAX_DEVICES;
229 st->minor_version = 0;
230 st->sb = NULL;
231 return st;
232 }
233
234 #ifndef MDASSEMBLE
235 static __u8 *get_imsm_version(struct imsm_super *mpb)
236 {
237 return &mpb->sig[MPB_SIG_LEN];
238 }
239 #endif
240
241 /* retrieve a disk directly from the anchor when the anchor is known to be
242 * up-to-date, currently only at load time
243 */
244 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
245 {
246 if (index >= mpb->num_disks)
247 return NULL;
248 return &mpb->disk[index];
249 }
250
251 #ifndef MDASSEMBLE
252 /* retrieve a disk from the parsed metadata */
253 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
254 {
255 struct dl *d;
256
257 for (d = super->disks; d; d = d->next)
258 if (d->index == index)
259 return &d->disk;
260
261 return NULL;
262 }
263 #endif
264
265 /* generate a checksum directly from the anchor when the anchor is known to be
266 * up-to-date, currently only at load or write_super after coalescing
267 */
268 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
269 {
270 __u32 end = mpb->mpb_size / sizeof(end);
271 __u32 *p = (__u32 *) mpb;
272 __u32 sum = 0;
273
274 while (end--)
275 sum += __le32_to_cpu(*p++);
276
277 return sum - __le32_to_cpu(mpb->check_sum);
278 }
279
280 static size_t sizeof_imsm_map(struct imsm_map *map)
281 {
282 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
283 }
284
285 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
286 {
287 struct imsm_map *map = &dev->vol.map[0];
288
289 if (second_map && !dev->vol.migr_state)
290 return NULL;
291 else if (second_map) {
292 void *ptr = map;
293
294 return ptr + sizeof_imsm_map(map);
295 } else
296 return map;
297
298 }
299
300 /* return the size of the device.
301 * migr_state increases the returned size if map[0] were to be duplicated
302 */
303 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
304 {
305 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
306 sizeof_imsm_map(get_imsm_map(dev, 0));
307
308 /* migrating means an additional map */
309 if (dev->vol.migr_state)
310 size += sizeof_imsm_map(get_imsm_map(dev, 1));
311 else if (migr_state)
312 size += sizeof_imsm_map(get_imsm_map(dev, 0));
313
314 return size;
315 }
316
317 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
318 {
319 int offset;
320 int i;
321 void *_mpb = mpb;
322
323 if (index >= mpb->num_raid_devs)
324 return NULL;
325
326 /* devices start after all disks */
327 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
328
329 for (i = 0; i <= index; i++)
330 if (i == index)
331 return _mpb + offset;
332 else
333 offset += sizeof_imsm_dev(_mpb + offset, 0);
334
335 return NULL;
336 }
337
338 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
339 {
340 if (index >= super->anchor->num_raid_devs)
341 return NULL;
342 return super->dev_tbl[index];
343 }
344
345 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
346 {
347 struct imsm_map *map;
348
349 if (dev->vol.migr_state)
350 map = get_imsm_map(dev, 1);
351 else
352 map = get_imsm_map(dev, 0);
353
354 /* top byte identifies disk under rebuild */
355 return __le32_to_cpu(map->disk_ord_tbl[slot]);
356 }
357
358 #define ord_to_idx(ord) (((ord) << 8) >> 8)
359 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
360 {
361 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
362
363 return ord_to_idx(ord);
364 }
365
366 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
367 {
368 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
369 }
370
371 static int get_imsm_raid_level(struct imsm_map *map)
372 {
373 if (map->raid_level == 1) {
374 if (map->num_members == 2)
375 return 1;
376 else
377 return 10;
378 }
379
380 return map->raid_level;
381 }
382
383 static int cmp_extent(const void *av, const void *bv)
384 {
385 const struct extent *a = av;
386 const struct extent *b = bv;
387 if (a->start < b->start)
388 return -1;
389 if (a->start > b->start)
390 return 1;
391 return 0;
392 }
393
394 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
395 {
396 /* find a list of used extents on the given physical device */
397 struct extent *rv, *e;
398 int i, j;
399 int memberships = 0;
400 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
401
402 for (i = 0; i < super->anchor->num_raid_devs; i++) {
403 struct imsm_dev *dev = get_imsm_dev(super, i);
404 struct imsm_map *map = get_imsm_map(dev, 0);
405
406 for (j = 0; j < map->num_members; j++) {
407 __u32 index = get_imsm_disk_idx(dev, j);
408
409 if (index == dl->index)
410 memberships++;
411 }
412 }
413 rv = malloc(sizeof(struct extent) * (memberships + 1));
414 if (!rv)
415 return NULL;
416 e = rv;
417
418 for (i = 0; i < super->anchor->num_raid_devs; i++) {
419 struct imsm_dev *dev = get_imsm_dev(super, i);
420 struct imsm_map *map = get_imsm_map(dev, 0);
421
422 for (j = 0; j < map->num_members; j++) {
423 __u32 index = get_imsm_disk_idx(dev, j);
424
425 if (index == dl->index) {
426 e->start = __le32_to_cpu(map->pba_of_lba0);
427 e->size = __le32_to_cpu(map->blocks_per_member);
428 e++;
429 }
430 }
431 }
432 qsort(rv, memberships, sizeof(*rv), cmp_extent);
433
434 /* determine the start of the metadata
435 * when no raid devices are defined use the default
436 * ...otherwise allow the metadata to truncate the value
437 * as is the case with older versions of imsm
438 */
439 if (memberships) {
440 struct extent *last = &rv[memberships - 1];
441 __u32 remainder;
442
443 remainder = __le32_to_cpu(dl->disk.total_blocks) -
444 (last->start + last->size);
445 if (reservation > remainder)
446 reservation = remainder;
447 }
448 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
449 e->size = 0;
450 return rv;
451 }
452
453 /* try to determine how much space is reserved for metadata from
454 * the last get_extents() entry, otherwise fallback to the
455 * default
456 */
457 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
458 {
459 struct extent *e;
460 int i;
461 __u32 rv;
462
463 /* for spares just return a minimal reservation which will grow
464 * once the spare is picked up by an array
465 */
466 if (dl->index == -1)
467 return MPB_SECTOR_CNT;
468
469 e = get_extents(super, dl);
470 if (!e)
471 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
472
473 /* scroll to last entry */
474 for (i = 0; e[i].size; i++)
475 continue;
476
477 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
478
479 free(e);
480
481 return rv;
482 }
483
484 #ifndef MDASSEMBLE
485 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
486 {
487 __u64 sz;
488 int slot;
489 struct imsm_map *map = get_imsm_map(dev, 0);
490 __u32 ord;
491
492 printf("\n");
493 printf("[%.16s]:\n", dev->volume);
494 printf(" UUID : %s\n", uuid);
495 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
496 printf(" Members : %d\n", map->num_members);
497 for (slot = 0; slot < map->num_members; slot++)
498 if (disk_idx== get_imsm_disk_idx(dev, slot))
499 break;
500 if (slot < map->num_members) {
501 ord = get_imsm_ord_tbl_ent(dev, slot);
502 printf(" This Slot : %d%s\n", slot,
503 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
504 } else
505 printf(" This Slot : ?\n");
506 sz = __le32_to_cpu(dev->size_high);
507 sz <<= 32;
508 sz += __le32_to_cpu(dev->size_low);
509 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
510 human_size(sz * 512));
511 sz = __le32_to_cpu(map->blocks_per_member);
512 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
513 human_size(sz * 512));
514 printf(" Sector Offset : %u\n",
515 __le32_to_cpu(map->pba_of_lba0));
516 printf(" Num Stripes : %u\n",
517 __le32_to_cpu(map->num_data_stripes));
518 printf(" Chunk Size : %u KiB\n",
519 __le16_to_cpu(map->blocks_per_strip) / 2);
520 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
521 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
522 if (dev->vol.migr_state)
523 printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
524 printf("\n");
525 printf(" Map State : %s", map_state_str[map->map_state]);
526 if (dev->vol.migr_state) {
527 struct imsm_map *map = get_imsm_map(dev, 1);
528 printf(" <-- %s", map_state_str[map->map_state]);
529 }
530 printf("\n");
531 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
532 }
533
534 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
535 {
536 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
537 char str[MAX_RAID_SERIAL_LEN + 1];
538 __u32 s;
539 __u64 sz;
540
541 if (index < 0)
542 return;
543
544 printf("\n");
545 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
546 printf(" Disk%02d Serial : %s\n", index, str);
547 s = __le32_to_cpu(disk->status);
548 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
549 s&CONFIGURED_DISK ? " active" : "",
550 s&FAILED_DISK ? " failed" : "",
551 s&USABLE_DISK ? " usable" : "");
552 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
553 sz = __le32_to_cpu(disk->total_blocks) - reserved;
554 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
555 human_size(sz * 512));
556 }
557
558 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
559
560 static void examine_super_imsm(struct supertype *st, char *homehost)
561 {
562 struct intel_super *super = st->sb;
563 struct imsm_super *mpb = super->anchor;
564 char str[MAX_SIGNATURE_LENGTH];
565 int i;
566 struct mdinfo info;
567 char nbuf[64];
568 __u32 sum;
569 __u32 reserved = imsm_reserved_sectors(super, super->disks);
570
571
572 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
573 printf(" Magic : %s\n", str);
574 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
575 printf(" Version : %s\n", get_imsm_version(mpb));
576 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
577 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
578 getinfo_super_imsm(st, &info);
579 fname_from_uuid(st, &info, nbuf,'-');
580 printf(" UUID : %s\n", nbuf + 5);
581 sum = __le32_to_cpu(mpb->check_sum);
582 printf(" Checksum : %08x %s\n", sum,
583 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
584 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
585 printf(" Disks : %d\n", mpb->num_disks);
586 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
587 print_imsm_disk(mpb, super->disks->index, reserved);
588 if (super->bbm_log) {
589 struct bbm_log *log = super->bbm_log;
590
591 printf("\n");
592 printf("Bad Block Management Log:\n");
593 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
594 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
595 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
596 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
597 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
598 }
599 for (i = 0; i < mpb->num_raid_devs; i++) {
600 struct mdinfo info;
601 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
602
603 super->current_vol = i;
604 getinfo_super_imsm(st, &info);
605 fname_from_uuid(st, &info, nbuf, '-');
606 print_imsm_dev(dev, nbuf + 5, super->disks->index);
607 }
608 for (i = 0; i < mpb->num_disks; i++) {
609 if (i == super->disks->index)
610 continue;
611 print_imsm_disk(mpb, i, reserved);
612 }
613 }
614
615 static void brief_examine_super_imsm(struct supertype *st)
616 {
617 /* We just write a generic IMSM ARRAY entry */
618 struct mdinfo info;
619 char nbuf[64];
620 char nbuf1[64];
621 struct intel_super *super = st->sb;
622 int i;
623
624 if (!super->anchor->num_raid_devs)
625 return;
626
627 getinfo_super_imsm(st, &info);
628 fname_from_uuid(st, &info, nbuf,'-');
629 printf("ARRAY metadata=imsm auto=md UUID=%s\n", nbuf + 5);
630 for (i = 0; i < super->anchor->num_raid_devs; i++) {
631 struct imsm_dev *dev = get_imsm_dev(super, i);
632
633 super->current_vol = i;
634 getinfo_super_imsm(st, &info);
635 fname_from_uuid(st, &info, nbuf1,'-');
636 printf("ARRAY /dev/md/%.16s container=%s\n"
637 " member=%d auto=mdp UUID=%s\n",
638 dev->volume, nbuf + 5, i, nbuf1 + 5);
639 }
640 }
641
642 static void detail_super_imsm(struct supertype *st, char *homehost)
643 {
644 struct mdinfo info;
645 char nbuf[64];
646
647 getinfo_super_imsm(st, &info);
648 fname_from_uuid(st, &info, nbuf,'-');
649 printf("\n UUID : %s\n", nbuf + 5);
650 }
651
652 static void brief_detail_super_imsm(struct supertype *st)
653 {
654 struct mdinfo info;
655 char nbuf[64];
656 getinfo_super_imsm(st, &info);
657 fname_from_uuid(st, &info, nbuf,'-');
658 printf(" UUID=%s", nbuf + 5);
659 }
660 #endif
661
662 static int match_home_imsm(struct supertype *st, char *homehost)
663 {
664 printf("%s\n", __FUNCTION__);
665
666 return -1;
667 }
668
669 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
670 {
671 /* The uuid returned here is used for:
672 * uuid to put into bitmap file (Create, Grow)
673 * uuid for backup header when saving critical section (Grow)
674 * comparing uuids when re-adding a device into an array
675 * In these cases the uuid required is that of the data-array,
676 * not the device-set.
677 * uuid to recognise same set when adding a missing device back
678 * to an array. This is a uuid for the device-set.
679 *
680 * For each of these we can make do with a truncated
681 * or hashed uuid rather than the original, as long as
682 * everyone agrees.
683 * In each case the uuid required is that of the data-array,
684 * not the device-set.
685 */
686 /* imsm does not track uuid's so we synthesis one using sha1 on
687 * - The signature (Which is constant for all imsm array, but no matter)
688 * - the family_num of the container
689 * - the index number of the volume
690 * - the 'serial' number of the volume.
691 * Hopefully these are all constant.
692 */
693 struct intel_super *super = st->sb;
694
695 char buf[20];
696 struct sha1_ctx ctx;
697 struct imsm_dev *dev = NULL;
698
699 sha1_init_ctx(&ctx);
700 sha1_process_bytes(super->anchor->sig, MAX_SIGNATURE_LENGTH, &ctx);
701 sha1_process_bytes(&super->anchor->family_num, sizeof(__u32), &ctx);
702 if (super->current_vol >= 0)
703 dev = get_imsm_dev(super, super->current_vol);
704 if (dev) {
705 __u32 vol = super->current_vol;
706 sha1_process_bytes(&vol, sizeof(vol), &ctx);
707 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
708 }
709 sha1_finish_ctx(&ctx, buf);
710 memcpy(uuid, buf, 4*4);
711 }
712
713 #if 0
714 static void
715 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
716 {
717 __u8 *v = get_imsm_version(mpb);
718 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
719 char major[] = { 0, 0, 0 };
720 char minor[] = { 0 ,0, 0 };
721 char patch[] = { 0, 0, 0 };
722 char *ver_parse[] = { major, minor, patch };
723 int i, j;
724
725 i = j = 0;
726 while (*v != '\0' && v < end) {
727 if (*v != '.' && j < 2)
728 ver_parse[i][j++] = *v;
729 else {
730 i++;
731 j = 0;
732 }
733 v++;
734 }
735
736 *m = strtol(minor, NULL, 0);
737 *p = strtol(patch, NULL, 0);
738 }
739 #endif
740
741 static int imsm_level_to_layout(int level)
742 {
743 switch (level) {
744 case 0:
745 case 1:
746 return 0;
747 case 5:
748 case 6:
749 return ALGORITHM_LEFT_ASYMMETRIC;
750 case 10:
751 return 0x102;
752 }
753 return -1;
754 }
755
756 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
757 {
758 struct intel_super *super = st->sb;
759 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
760 struct imsm_map *map = get_imsm_map(dev, 0);
761
762 info->container_member = super->current_vol;
763 info->array.raid_disks = map->num_members;
764 info->array.level = get_imsm_raid_level(map);
765 info->array.layout = imsm_level_to_layout(info->array.level);
766 info->array.md_minor = -1;
767 info->array.ctime = 0;
768 info->array.utime = 0;
769 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
770 info->array.state = !dev->vol.dirty;
771
772 info->disk.major = 0;
773 info->disk.minor = 0;
774
775 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
776 info->component_size = __le32_to_cpu(map->blocks_per_member);
777 memset(info->uuid, 0, sizeof(info->uuid));
778
779 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
780 info->resync_start = 0;
781 else if (dev->vol.migr_state)
782 info->resync_start = __le32_to_cpu(dev->vol.curr_migr_unit);
783 else
784 info->resync_start = ~0ULL;
785
786 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
787 info->name[MAX_RAID_SERIAL_LEN] = 0;
788
789 info->array.major_version = -1;
790 info->array.minor_version = -2;
791 sprintf(info->text_version, "/%s/%d",
792 devnum2devname(st->container_dev),
793 info->container_member);
794 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
795 uuid_from_super_imsm(st, info->uuid);
796 }
797
798
799 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
800 {
801 struct intel_super *super = st->sb;
802 struct imsm_disk *disk;
803 __u32 s;
804
805 if (super->current_vol >= 0) {
806 getinfo_super_imsm_volume(st, info);
807 return;
808 }
809
810 /* Set raid_disks to zero so that Assemble will always pull in valid
811 * spares
812 */
813 info->array.raid_disks = 0;
814 info->array.level = LEVEL_CONTAINER;
815 info->array.layout = 0;
816 info->array.md_minor = -1;
817 info->array.ctime = 0; /* N/A for imsm */
818 info->array.utime = 0;
819 info->array.chunk_size = 0;
820
821 info->disk.major = 0;
822 info->disk.minor = 0;
823 info->disk.raid_disk = -1;
824 info->reshape_active = 0;
825 info->array.major_version = -1;
826 info->array.minor_version = -2;
827 strcpy(info->text_version, "imsm");
828 info->safe_mode_delay = 0;
829 info->disk.number = -1;
830 info->disk.state = 0;
831 info->name[0] = 0;
832
833 if (super->disks) {
834 __u32 reserved = imsm_reserved_sectors(super, super->disks);
835
836 disk = &super->disks->disk;
837 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
838 info->component_size = reserved;
839 s = __le32_to_cpu(disk->status);
840 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
841 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
842 info->disk.state |= s & SPARE_DISK ? 0 : (1 << MD_DISK_SYNC);
843 }
844
845 /* only call uuid_from_super_imsm when this disk is part of a populated container,
846 * ->compare_super may have updated the 'num_raid_devs' field for spares
847 */
848 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
849 uuid_from_super_imsm(st, info->uuid);
850 else
851 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
852 }
853
854 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
855 char *update, char *devname, int verbose,
856 int uuid_set, char *homehost)
857 {
858 /* FIXME */
859
860 /* For 'assemble' and 'force' we need to return non-zero if any
861 * change was made. For others, the return value is ignored.
862 * Update options are:
863 * force-one : This device looks a bit old but needs to be included,
864 * update age info appropriately.
865 * assemble: clear any 'faulty' flag to allow this device to
866 * be assembled.
867 * force-array: Array is degraded but being forced, mark it clean
868 * if that will be needed to assemble it.
869 *
870 * newdev: not used ????
871 * grow: Array has gained a new device - this is currently for
872 * linear only
873 * resync: mark as dirty so a resync will happen.
874 * name: update the name - preserving the homehost
875 *
876 * Following are not relevant for this imsm:
877 * sparc2.2 : update from old dodgey metadata
878 * super-minor: change the preferred_minor number
879 * summaries: update redundant counters.
880 * uuid: Change the uuid of the array to match watch is given
881 * homehost: update the recorded homehost
882 * _reshape_progress: record new reshape_progress position.
883 */
884 int rv = 0;
885 //struct intel_super *super = st->sb;
886 //struct imsm_super *mpb = super->mpb;
887
888 if (strcmp(update, "grow") == 0) {
889 }
890 if (strcmp(update, "resync") == 0) {
891 /* dev->vol.dirty = 1; */
892 }
893
894 /* IMSM has no concept of UUID or homehost */
895
896 return rv;
897 }
898
899 static size_t disks_to_mpb_size(int disks)
900 {
901 size_t size;
902
903 size = sizeof(struct imsm_super);
904 size += (disks - 1) * sizeof(struct imsm_disk);
905 size += 2 * sizeof(struct imsm_dev);
906 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
907 size += (4 - 2) * sizeof(struct imsm_map);
908 /* 4 possible disk_ord_tbl's */
909 size += 4 * (disks - 1) * sizeof(__u32);
910
911 return size;
912 }
913
914 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
915 {
916 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
917 return 0;
918
919 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
920 }
921
922 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
923 {
924 /*
925 * return:
926 * 0 same, or first was empty, and second was copied
927 * 1 second had wrong number
928 * 2 wrong uuid
929 * 3 wrong other info
930 */
931 struct intel_super *first = st->sb;
932 struct intel_super *sec = tst->sb;
933
934 if (!first) {
935 st->sb = tst->sb;
936 tst->sb = NULL;
937 return 0;
938 }
939
940 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
941 return 3;
942
943 /* if an anchor does not have num_raid_devs set then it is a free
944 * floating spare
945 */
946 if (first->anchor->num_raid_devs > 0 &&
947 sec->anchor->num_raid_devs > 0) {
948 if (first->anchor->family_num != sec->anchor->family_num)
949 return 3;
950 }
951
952 /* if 'first' is a spare promote it to a populated mpb with sec's
953 * family number
954 */
955 if (first->anchor->num_raid_devs == 0 &&
956 sec->anchor->num_raid_devs > 0) {
957 int i;
958
959 /* we need to copy raid device info from sec if an allocation
960 * fails here we don't associate the spare
961 */
962 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
963 first->dev_tbl[i] = malloc(sizeof(struct imsm_dev));
964 if (!first->dev_tbl) {
965 while (--i >= 0) {
966 free(first->dev_tbl[i]);
967 first->dev_tbl[i] = NULL;
968 }
969 fprintf(stderr, "imsm: failed to associate spare\n");
970 return 3;
971 }
972 *first->dev_tbl[i] = *sec->dev_tbl[i];
973 }
974
975 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
976 first->anchor->family_num = sec->anchor->family_num;
977 }
978
979 return 0;
980 }
981
982 static void fd2devname(int fd, char *name)
983 {
984 struct stat st;
985 char path[256];
986 char dname[100];
987 char *nm;
988 int rv;
989
990 name[0] = '\0';
991 if (fstat(fd, &st) != 0)
992 return;
993 sprintf(path, "/sys/dev/block/%d:%d",
994 major(st.st_rdev), minor(st.st_rdev));
995
996 rv = readlink(path, dname, sizeof(dname));
997 if (rv <= 0)
998 return;
999
1000 dname[rv] = '\0';
1001 nm = strrchr(dname, '/');
1002 nm++;
1003 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1004 }
1005
1006
1007 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1008
1009 static int imsm_read_serial(int fd, char *devname,
1010 __u8 serial[MAX_RAID_SERIAL_LEN])
1011 {
1012 unsigned char scsi_serial[255];
1013 int rv;
1014 int rsp_len;
1015 int len;
1016 char *c, *rsp_buf;
1017
1018 memset(scsi_serial, 0, sizeof(scsi_serial));
1019
1020 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1021
1022 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
1023 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1024 fd2devname(fd, (char *) serial);
1025 return 0;
1026 }
1027
1028 if (rv != 0) {
1029 if (devname)
1030 fprintf(stderr,
1031 Name ": Failed to retrieve serial for %s\n",
1032 devname);
1033 return rv;
1034 }
1035
1036 /* trim leading whitespace */
1037 rsp_len = scsi_serial[3];
1038 rsp_buf = (char *) &scsi_serial[4];
1039 c = rsp_buf;
1040 while (isspace(*c))
1041 c++;
1042
1043 /* truncate len to the end of rsp_buf if necessary */
1044 if (c + MAX_RAID_SERIAL_LEN > rsp_buf + rsp_len)
1045 len = rsp_len - (c - rsp_buf);
1046 else
1047 len = MAX_RAID_SERIAL_LEN;
1048
1049 /* initialize the buffer and copy rsp_buf characters */
1050 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1051 memcpy(serial, c, len);
1052
1053 /* trim trailing whitespace starting with the last character copied */
1054 c = (char *) &serial[len - 1];
1055 while (isspace(*c) || *c == '\0')
1056 *c-- = '\0';
1057
1058 return 0;
1059 }
1060
1061 static int serialcmp(__u8 *s1, __u8 *s2)
1062 {
1063 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1064 }
1065
1066 static void serialcpy(__u8 *dest, __u8 *src)
1067 {
1068 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1069 }
1070
1071 static int
1072 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1073 {
1074 struct dl *dl;
1075 struct stat stb;
1076 int rv;
1077 int i;
1078 int alloc = 1;
1079 __u8 serial[MAX_RAID_SERIAL_LEN];
1080
1081 rv = imsm_read_serial(fd, devname, serial);
1082
1083 if (rv != 0)
1084 return 2;
1085
1086 /* check if this is a disk we have seen before. it may be a spare in
1087 * super->disks while the current anchor believes it is a raid member,
1088 * check if we need to update dl->index
1089 */
1090 for (dl = super->disks; dl; dl = dl->next)
1091 if (serialcmp(dl->serial, serial) == 0)
1092 break;
1093
1094 if (!dl)
1095 dl = malloc(sizeof(*dl));
1096 else
1097 alloc = 0;
1098
1099 if (!dl) {
1100 if (devname)
1101 fprintf(stderr,
1102 Name ": failed to allocate disk buffer for %s\n",
1103 devname);
1104 return 2;
1105 }
1106
1107 if (alloc) {
1108 fstat(fd, &stb);
1109 dl->major = major(stb.st_rdev);
1110 dl->minor = minor(stb.st_rdev);
1111 dl->next = super->disks;
1112 dl->fd = keep_fd ? fd : -1;
1113 dl->devname = devname ? strdup(devname) : NULL;
1114 serialcpy(dl->serial, serial);
1115 dl->index = -2;
1116 } else if (keep_fd) {
1117 close(dl->fd);
1118 dl->fd = fd;
1119 }
1120
1121 /* look up this disk's index in the current anchor */
1122 for (i = 0; i < super->anchor->num_disks; i++) {
1123 struct imsm_disk *disk_iter;
1124
1125 disk_iter = __get_imsm_disk(super->anchor, i);
1126
1127 if (serialcmp(disk_iter->serial, dl->serial) == 0) {
1128 __u32 status;
1129
1130 dl->disk = *disk_iter;
1131 status = __le32_to_cpu(dl->disk.status);
1132 /* only set index on disks that are a member of a
1133 * populated contianer, i.e. one with raid_devs
1134 */
1135 if (status & FAILED_DISK)
1136 dl->index = -2;
1137 else if (status & SPARE_DISK)
1138 dl->index = -1;
1139 else
1140 dl->index = i;
1141
1142 break;
1143 }
1144 }
1145
1146 /* no match, maybe a stale failed drive */
1147 if (i == super->anchor->num_disks && dl->index >= 0) {
1148 dl->disk = *__get_imsm_disk(super->anchor, dl->index);
1149 if (__le32_to_cpu(dl->disk.status) & FAILED_DISK)
1150 dl->index = -2;
1151 }
1152
1153 if (alloc)
1154 super->disks = dl;
1155
1156 return 0;
1157 }
1158
1159 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1160 {
1161 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1162 }
1163
1164 #ifndef MDASSEMBLE
1165 /* When migrating map0 contains the 'destination' state while map1
1166 * contains the current state. When not migrating map0 contains the
1167 * current state. This routine assumes that map[0].map_state is set to
1168 * the current array state before being called.
1169 *
1170 * Migration is indicated by one of the following states
1171 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1172 * 2/ Initialize (migr_state=1 migr_type=0 map0state=normal
1173 * map1state=unitialized)
1174 * 3/ Verify (Resync) (migr_state=1 migr_type=1 map0state=normal
1175 * map1state=normal)
1176 * 4/ Rebuild (migr_state=1 migr_type=1 map0state=normal
1177 * map1state=degraded)
1178 */
1179 static void migrate(struct imsm_dev *dev, __u8 to_state, int rebuild_resync)
1180 {
1181 struct imsm_map *dest;
1182 struct imsm_map *src = get_imsm_map(dev, 0);
1183
1184 dev->vol.migr_state = 1;
1185 dev->vol.migr_type = rebuild_resync;
1186 dev->vol.curr_migr_unit = 0;
1187 dest = get_imsm_map(dev, 1);
1188
1189 memcpy(dest, src, sizeof_imsm_map(src));
1190 src->map_state = to_state;
1191 }
1192
1193 static void end_migration(struct imsm_dev *dev, __u8 map_state)
1194 {
1195 struct imsm_map *map = get_imsm_map(dev, 0);
1196
1197 dev->vol.migr_state = 0;
1198 dev->vol.curr_migr_unit = 0;
1199 map->map_state = map_state;
1200 }
1201 #endif
1202
1203 static int parse_raid_devices(struct intel_super *super)
1204 {
1205 int i;
1206 struct imsm_dev *dev_new;
1207 size_t len, len_migr;
1208 size_t space_needed = 0;
1209 struct imsm_super *mpb = super->anchor;
1210
1211 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1212 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
1213
1214 len = sizeof_imsm_dev(dev_iter, 0);
1215 len_migr = sizeof_imsm_dev(dev_iter, 1);
1216 if (len_migr > len)
1217 space_needed += len_migr - len;
1218
1219 dev_new = malloc(len_migr);
1220 if (!dev_new)
1221 return 1;
1222 imsm_copy_dev(dev_new, dev_iter);
1223 super->dev_tbl[i] = dev_new;
1224 }
1225
1226 /* ensure that super->buf is large enough when all raid devices
1227 * are migrating
1228 */
1229 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1230 void *buf;
1231
1232 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1233 if (posix_memalign(&buf, 512, len) != 0)
1234 return 1;
1235
1236 memcpy(buf, super->buf, len);
1237 free(super->buf);
1238 super->buf = buf;
1239 super->len = len;
1240 }
1241
1242 return 0;
1243 }
1244
1245 /* retrieve a pointer to the bbm log which starts after all raid devices */
1246 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1247 {
1248 void *ptr = NULL;
1249
1250 if (__le32_to_cpu(mpb->bbm_log_size)) {
1251 ptr = mpb;
1252 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1253 }
1254
1255 return ptr;
1256 }
1257
1258 static void __free_imsm(struct intel_super *super, int free_disks);
1259
1260 /* load_imsm_mpb - read matrix metadata
1261 * allocates super->mpb to be freed by free_super
1262 */
1263 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1264 {
1265 unsigned long long dsize;
1266 unsigned long long sectors;
1267 struct stat;
1268 struct imsm_super *anchor;
1269 __u32 check_sum;
1270 int rc;
1271
1272 get_dev_size(fd, NULL, &dsize);
1273
1274 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1275 if (devname)
1276 fprintf(stderr,
1277 Name ": Cannot seek to anchor block on %s: %s\n",
1278 devname, strerror(errno));
1279 return 1;
1280 }
1281
1282 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1283 if (devname)
1284 fprintf(stderr,
1285 Name ": Failed to allocate imsm anchor buffer"
1286 " on %s\n", devname);
1287 return 1;
1288 }
1289 if (read(fd, anchor, 512) != 512) {
1290 if (devname)
1291 fprintf(stderr,
1292 Name ": Cannot read anchor block on %s: %s\n",
1293 devname, strerror(errno));
1294 free(anchor);
1295 return 1;
1296 }
1297
1298 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1299 if (devname)
1300 fprintf(stderr,
1301 Name ": no IMSM anchor on %s\n", devname);
1302 free(anchor);
1303 return 2;
1304 }
1305
1306 __free_imsm(super, 0);
1307 super->len = ROUND_UP(anchor->mpb_size, 512);
1308 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1309 if (devname)
1310 fprintf(stderr,
1311 Name ": unable to allocate %zu byte mpb buffer\n",
1312 super->len);
1313 free(anchor);
1314 return 2;
1315 }
1316 memcpy(super->buf, anchor, 512);
1317
1318 sectors = mpb_sectors(anchor) - 1;
1319 free(anchor);
1320 if (!sectors) {
1321 rc = load_imsm_disk(fd, super, devname, 0);
1322 if (rc == 0)
1323 rc = parse_raid_devices(super);
1324 return rc;
1325 }
1326
1327 /* read the extended mpb */
1328 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1329 if (devname)
1330 fprintf(stderr,
1331 Name ": Cannot seek to extended mpb on %s: %s\n",
1332 devname, strerror(errno));
1333 return 1;
1334 }
1335
1336 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1337 if (devname)
1338 fprintf(stderr,
1339 Name ": Cannot read extended mpb on %s: %s\n",
1340 devname, strerror(errno));
1341 return 2;
1342 }
1343
1344 check_sum = __gen_imsm_checksum(super->anchor);
1345 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1346 if (devname)
1347 fprintf(stderr,
1348 Name ": IMSM checksum %x != %x on %s\n",
1349 check_sum, __le32_to_cpu(super->anchor->check_sum),
1350 devname);
1351 return 2;
1352 }
1353
1354 /* FIXME the BBM log is disk specific so we cannot use this global
1355 * buffer for all disks. Ok for now since we only look at the global
1356 * bbm_log_size parameter to gate assembly
1357 */
1358 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1359
1360 rc = load_imsm_disk(fd, super, devname, 0);
1361 if (rc == 0)
1362 rc = parse_raid_devices(super);
1363
1364 return rc;
1365 }
1366
1367 static void __free_imsm_disk(struct dl *d)
1368 {
1369 if (d->fd >= 0)
1370 close(d->fd);
1371 if (d->devname)
1372 free(d->devname);
1373 free(d);
1374
1375 }
1376 static void free_imsm_disks(struct intel_super *super)
1377 {
1378 struct dl *d;
1379
1380 while (super->disks) {
1381 d = super->disks;
1382 super->disks = d->next;
1383 __free_imsm_disk(d);
1384 }
1385 while (super->missing) {
1386 d = super->missing;
1387 super->missing = d->next;
1388 __free_imsm_disk(d);
1389 }
1390
1391 }
1392
1393 /* free all the pieces hanging off of a super pointer */
1394 static void __free_imsm(struct intel_super *super, int free_disks)
1395 {
1396 int i;
1397
1398 if (super->buf) {
1399 free(super->buf);
1400 super->buf = NULL;
1401 }
1402 if (free_disks)
1403 free_imsm_disks(super);
1404 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1405 if (super->dev_tbl[i]) {
1406 free(super->dev_tbl[i]);
1407 super->dev_tbl[i] = NULL;
1408 }
1409 }
1410
1411 static void free_imsm(struct intel_super *super)
1412 {
1413 __free_imsm(super, 1);
1414 free(super);
1415 }
1416
1417 static void free_super_imsm(struct supertype *st)
1418 {
1419 struct intel_super *super = st->sb;
1420
1421 if (!super)
1422 return;
1423
1424 free_imsm(super);
1425 st->sb = NULL;
1426 }
1427
1428 static struct intel_super *alloc_super(int creating_imsm)
1429 {
1430 struct intel_super *super = malloc(sizeof(*super));
1431
1432 if (super) {
1433 memset(super, 0, sizeof(*super));
1434 super->creating_imsm = creating_imsm;
1435 super->current_vol = -1;
1436 }
1437
1438 return super;
1439 }
1440
1441 #ifndef MDASSEMBLE
1442 /* find_missing - helper routine for load_super_imsm_all that identifies
1443 * disks that have disappeared from the system. This routine relies on
1444 * the mpb being uptodate, which it is at load time.
1445 */
1446 static int find_missing(struct intel_super *super)
1447 {
1448 int i;
1449 struct imsm_super *mpb = super->anchor;
1450 struct dl *dl;
1451 struct imsm_disk *disk;
1452 __u32 status;
1453
1454 for (i = 0; i < mpb->num_disks; i++) {
1455 disk = __get_imsm_disk(mpb, i);
1456 for (dl = super->disks; dl; dl = dl->next)
1457 if (serialcmp(dl->disk.serial, disk->serial) == 0)
1458 break;
1459 if (dl)
1460 continue;
1461 /* ok we have a 'disk' without a live entry in
1462 * super->disks
1463 */
1464 status = __le32_to_cpu(disk->status);
1465 if (status & FAILED_DISK || !(status & USABLE_DISK))
1466 continue; /* never mind, already marked */
1467
1468 dl = malloc(sizeof(*dl));
1469 if (!dl)
1470 return 1;
1471 dl->major = 0;
1472 dl->minor = 0;
1473 dl->fd = -1;
1474 dl->devname = strdup("missing");
1475 dl->index = i;
1476 serialcpy(dl->serial, disk->serial);
1477 dl->disk = *disk;
1478 dl->next = super->missing;
1479 super->missing = dl;
1480 }
1481
1482 return 0;
1483 }
1484
1485 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1486 char *devname, int keep_fd)
1487 {
1488 struct mdinfo *sra;
1489 struct intel_super *super;
1490 struct mdinfo *sd, *best = NULL;
1491 __u32 bestgen = 0;
1492 __u32 gen;
1493 char nm[20];
1494 int dfd;
1495 int rv;
1496
1497 /* check if this disk is a member of an active array */
1498 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1499 if (!sra)
1500 return 1;
1501
1502 if (sra->array.major_version != -1 ||
1503 sra->array.minor_version != -2 ||
1504 strcmp(sra->text_version, "imsm") != 0)
1505 return 1;
1506
1507 super = alloc_super(0);
1508 if (!super)
1509 return 1;
1510
1511 /* find the most up to date disk in this array, skipping spares */
1512 for (sd = sra->devs; sd; sd = sd->next) {
1513 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1514 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1515 if (!dfd) {
1516 free_imsm(super);
1517 return 2;
1518 }
1519 rv = load_imsm_mpb(dfd, super, NULL);
1520 if (!keep_fd)
1521 close(dfd);
1522 if (rv == 0) {
1523 if (super->anchor->num_raid_devs == 0)
1524 gen = 0;
1525 else
1526 gen = __le32_to_cpu(super->anchor->generation_num);
1527 if (!best || gen > bestgen) {
1528 bestgen = gen;
1529 best = sd;
1530 }
1531 } else {
1532 free_imsm(super);
1533 return 2;
1534 }
1535 }
1536
1537 if (!best) {
1538 free_imsm(super);
1539 return 1;
1540 }
1541
1542 /* load the most up to date anchor */
1543 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1544 dfd = dev_open(nm, O_RDONLY);
1545 if (!dfd) {
1546 free_imsm(super);
1547 return 1;
1548 }
1549 rv = load_imsm_mpb(dfd, super, NULL);
1550 close(dfd);
1551 if (rv != 0) {
1552 free_imsm(super);
1553 return 2;
1554 }
1555
1556 /* re-parse the disk list with the current anchor */
1557 for (sd = sra->devs ; sd ; sd = sd->next) {
1558 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1559 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1560 if (!dfd) {
1561 free_imsm(super);
1562 return 2;
1563 }
1564 load_imsm_disk(dfd, super, NULL, keep_fd);
1565 if (!keep_fd)
1566 close(dfd);
1567 }
1568
1569
1570 if (find_missing(super) != 0) {
1571 free_imsm(super);
1572 return 2;
1573 }
1574
1575 if (st->subarray[0]) {
1576 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1577 super->current_vol = atoi(st->subarray);
1578 else
1579 return 1;
1580 }
1581
1582 *sbp = super;
1583 st->container_dev = fd2devnum(fd);
1584 if (st->ss == NULL) {
1585 st->ss = &super_imsm;
1586 st->minor_version = 0;
1587 st->max_devs = IMSM_MAX_DEVICES;
1588 }
1589 st->loaded_container = 1;
1590
1591 return 0;
1592 }
1593 #endif
1594
1595 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1596 {
1597 struct intel_super *super;
1598 int rv;
1599
1600 #ifndef MDASSEMBLE
1601 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1602 return 0;
1603 #endif
1604 if (st->subarray[0])
1605 return 1; /* FIXME */
1606
1607 super = alloc_super(0);
1608 if (!super) {
1609 fprintf(stderr,
1610 Name ": malloc of %zu failed.\n",
1611 sizeof(*super));
1612 return 1;
1613 }
1614
1615 rv = load_imsm_mpb(fd, super, devname);
1616
1617 if (rv) {
1618 if (devname)
1619 fprintf(stderr,
1620 Name ": Failed to load all information "
1621 "sections on %s\n", devname);
1622 free_imsm(super);
1623 return rv;
1624 }
1625
1626 st->sb = super;
1627 if (st->ss == NULL) {
1628 st->ss = &super_imsm;
1629 st->minor_version = 0;
1630 st->max_devs = IMSM_MAX_DEVICES;
1631 }
1632 st->loaded_container = 0;
1633
1634 return 0;
1635 }
1636
1637 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1638 {
1639 if (info->level == 1)
1640 return 128;
1641 return info->chunk_size >> 9;
1642 }
1643
1644 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1645 {
1646 __u32 num_stripes;
1647
1648 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1649 if (info->level == 1)
1650 num_stripes /= 2;
1651
1652 return num_stripes;
1653 }
1654
1655 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1656 {
1657 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1658 }
1659
1660 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1661 unsigned long long size, char *name,
1662 char *homehost, int *uuid)
1663 {
1664 /* We are creating a volume inside a pre-existing container.
1665 * so st->sb is already set.
1666 */
1667 struct intel_super *super = st->sb;
1668 struct imsm_super *mpb = super->anchor;
1669 struct imsm_dev *dev;
1670 struct imsm_vol *vol;
1671 struct imsm_map *map;
1672 int idx = mpb->num_raid_devs;
1673 int i;
1674 unsigned long long array_blocks;
1675 __u32 offset = 0;
1676 size_t size_old, size_new;
1677
1678 if (mpb->num_raid_devs >= 2) {
1679 fprintf(stderr, Name": This imsm-container already has the "
1680 "maximum of 2 volumes\n");
1681 return 0;
1682 }
1683
1684 /* ensure the mpb is large enough for the new data */
1685 size_old = __le32_to_cpu(mpb->mpb_size);
1686 size_new = disks_to_mpb_size(info->nr_disks);
1687 if (size_new > size_old) {
1688 void *mpb_new;
1689 size_t size_round = ROUND_UP(size_new, 512);
1690
1691 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1692 fprintf(stderr, Name": could not allocate new mpb\n");
1693 return 0;
1694 }
1695 memcpy(mpb_new, mpb, size_old);
1696 free(mpb);
1697 mpb = mpb_new;
1698 super->anchor = mpb_new;
1699 mpb->mpb_size = __cpu_to_le32(size_new);
1700 memset(mpb_new + size_old, 0, size_round - size_old);
1701 }
1702 super->current_vol = idx;
1703 /* when creating the first raid device in this container set num_disks
1704 * to zero, i.e. delete this spare and add raid member devices in
1705 * add_to_super_imsm_volume()
1706 */
1707 if (super->current_vol == 0)
1708 mpb->num_disks = 0;
1709 sprintf(st->subarray, "%d", idx);
1710 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1711 if (!dev) {
1712 fprintf(stderr, Name": could not allocate raid device\n");
1713 return 0;
1714 }
1715 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1716 array_blocks = calc_array_size(info->level, info->raid_disks,
1717 info->layout, info->chunk_size,
1718 info->size*2);
1719 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1720 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1721 dev->status = __cpu_to_le32(0);
1722 dev->reserved_blocks = __cpu_to_le32(0);
1723 vol = &dev->vol;
1724 vol->migr_state = 0;
1725 vol->migr_type = 0;
1726 vol->dirty = 0;
1727 vol->curr_migr_unit = 0;
1728 for (i = 0; i < idx; i++) {
1729 struct imsm_dev *prev = get_imsm_dev(super, i);
1730 struct imsm_map *pmap = get_imsm_map(prev, 0);
1731
1732 offset += __le32_to_cpu(pmap->blocks_per_member);
1733 offset += IMSM_RESERVED_SECTORS;
1734 }
1735 map = get_imsm_map(dev, 0);
1736 map->pba_of_lba0 = __cpu_to_le32(offset);
1737 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1738 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1739 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1740 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1741 IMSM_T_STATE_NORMAL;
1742
1743 if (info->level == 1 && info->raid_disks > 2) {
1744 fprintf(stderr, Name": imsm does not support more than 2 disks"
1745 "in a raid1 volume\n");
1746 return 0;
1747 }
1748 if (info->level == 10)
1749 map->raid_level = 1;
1750 else
1751 map->raid_level = info->level;
1752
1753 map->num_members = info->raid_disks;
1754 for (i = 0; i < map->num_members; i++) {
1755 /* initialized in add_to_super */
1756 set_imsm_ord_tbl_ent(map, i, 0);
1757 }
1758 mpb->num_raid_devs++;
1759 super->dev_tbl[super->current_vol] = dev;
1760
1761 return 1;
1762 }
1763
1764 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1765 unsigned long long size, char *name,
1766 char *homehost, int *uuid)
1767 {
1768 /* This is primarily called by Create when creating a new array.
1769 * We will then get add_to_super called for each component, and then
1770 * write_init_super called to write it out to each device.
1771 * For IMSM, Create can create on fresh devices or on a pre-existing
1772 * array.
1773 * To create on a pre-existing array a different method will be called.
1774 * This one is just for fresh drives.
1775 */
1776 struct intel_super *super;
1777 struct imsm_super *mpb;
1778 size_t mpb_size;
1779
1780 if (!info) {
1781 st->sb = NULL;
1782 return 0;
1783 }
1784 if (st->sb)
1785 return init_super_imsm_volume(st, info, size, name, homehost,
1786 uuid);
1787
1788 super = alloc_super(1);
1789 if (!super)
1790 return 0;
1791 mpb_size = disks_to_mpb_size(info->nr_disks);
1792 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1793 free(super);
1794 return 0;
1795 }
1796 mpb = super->buf;
1797 memset(mpb, 0, mpb_size);
1798
1799 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1800 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1801 strlen(MPB_VERSION_RAID5));
1802 mpb->mpb_size = mpb_size;
1803
1804 st->sb = super;
1805 return 1;
1806 }
1807
1808 #ifndef MDASSEMBLE
1809 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1810 int fd, char *devname)
1811 {
1812 struct intel_super *super = st->sb;
1813 struct imsm_super *mpb = super->anchor;
1814 struct dl *dl;
1815 struct imsm_dev *dev;
1816 struct imsm_map *map;
1817 __u32 status;
1818
1819 dev = get_imsm_dev(super, super->current_vol);
1820 map = get_imsm_map(dev, 0);
1821
1822 for (dl = super->disks; dl ; dl = dl->next)
1823 if (dl->major == dk->major &&
1824 dl->minor == dk->minor)
1825 break;
1826
1827 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1828 return;
1829
1830 /* add a pristine spare to the metadata */
1831 if (dl->index < 0) {
1832 dl->index = super->anchor->num_disks;
1833 super->anchor->num_disks++;
1834 }
1835 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
1836 status = CONFIGURED_DISK | USABLE_DISK;
1837 dl->disk.status = __cpu_to_le32(status);
1838
1839 /* if we are creating the first raid device update the family number */
1840 if (super->current_vol == 0) {
1841 __u32 sum;
1842 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1843 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1844
1845 *_dev = *dev;
1846 *_disk = dl->disk;
1847 sum = __gen_imsm_checksum(mpb);
1848 mpb->family_num = __cpu_to_le32(sum);
1849 }
1850 }
1851
1852 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1853 int fd, char *devname)
1854 {
1855 struct intel_super *super = st->sb;
1856 struct dl *dd;
1857 unsigned long long size;
1858 __u32 status, id;
1859 int rv;
1860 struct stat stb;
1861
1862 if (super->current_vol >= 0) {
1863 add_to_super_imsm_volume(st, dk, fd, devname);
1864 return;
1865 }
1866
1867 fstat(fd, &stb);
1868 dd = malloc(sizeof(*dd));
1869 if (!dd) {
1870 fprintf(stderr,
1871 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1872 abort();
1873 }
1874 memset(dd, 0, sizeof(*dd));
1875 dd->major = major(stb.st_rdev);
1876 dd->minor = minor(stb.st_rdev);
1877 dd->index = -1;
1878 dd->devname = devname ? strdup(devname) : NULL;
1879 dd->fd = fd;
1880 rv = imsm_read_serial(fd, devname, dd->serial);
1881 if (rv) {
1882 fprintf(stderr,
1883 Name ": failed to retrieve scsi serial, aborting\n");
1884 free(dd);
1885 abort();
1886 }
1887
1888 get_dev_size(fd, NULL, &size);
1889 size /= 512;
1890 status = USABLE_DISK | SPARE_DISK;
1891 serialcpy(dd->disk.serial, dd->serial);
1892 dd->disk.total_blocks = __cpu_to_le32(size);
1893 dd->disk.status = __cpu_to_le32(status);
1894 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1895 dd->disk.scsi_id = __cpu_to_le32(id);
1896 else
1897 dd->disk.scsi_id = __cpu_to_le32(0);
1898
1899 if (st->update_tail) {
1900 dd->next = super->add;
1901 super->add = dd;
1902 } else {
1903 dd->next = super->disks;
1904 super->disks = dd;
1905 }
1906 }
1907
1908 static int store_imsm_mpb(int fd, struct intel_super *super);
1909
1910 /* spare records have their own family number and do not have any defined raid
1911 * devices
1912 */
1913 static int write_super_imsm_spares(struct intel_super *super, int doclose)
1914 {
1915 struct imsm_super mpb_save;
1916 struct imsm_super *mpb = super->anchor;
1917 __u32 sum;
1918 struct dl *d;
1919
1920 mpb_save = *mpb;
1921 mpb->num_raid_devs = 0;
1922 mpb->num_disks = 1;
1923 mpb->mpb_size = sizeof(struct imsm_super);
1924 mpb->generation_num = __cpu_to_le32(1UL);
1925
1926 for (d = super->disks; d; d = d->next) {
1927 if (d->index != -1)
1928 continue;
1929
1930 mpb->disk[0] = d->disk;
1931 sum = __gen_imsm_checksum(mpb);
1932 mpb->family_num = __cpu_to_le32(sum);
1933 sum = __gen_imsm_checksum(mpb);
1934 mpb->check_sum = __cpu_to_le32(sum);
1935
1936 if (store_imsm_mpb(d->fd, super)) {
1937 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1938 __func__, d->major, d->minor, strerror(errno));
1939 *mpb = mpb_save;
1940 return 1;
1941 }
1942 if (doclose) {
1943 close(d->fd);
1944 d->fd = -1;
1945 }
1946 }
1947
1948 *mpb = mpb_save;
1949 return 0;
1950 }
1951
1952 static int write_super_imsm(struct intel_super *super, int doclose)
1953 {
1954 struct imsm_super *mpb = super->anchor;
1955 struct dl *d;
1956 __u32 generation;
1957 __u32 sum;
1958 int spares = 0;
1959 int i;
1960 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
1961
1962 /* 'generation' is incremented everytime the metadata is written */
1963 generation = __le32_to_cpu(mpb->generation_num);
1964 generation++;
1965 mpb->generation_num = __cpu_to_le32(generation);
1966
1967 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
1968 for (d = super->disks; d; d = d->next) {
1969 if (d->index == -1)
1970 spares++;
1971 else
1972 mpb->disk[d->index] = d->disk;
1973 }
1974 for (d = super->missing; d; d = d->next)
1975 mpb->disk[d->index] = d->disk;
1976
1977 for (i = 0; i < mpb->num_raid_devs; i++) {
1978 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1979
1980 imsm_copy_dev(dev, super->dev_tbl[i]);
1981 mpb_size += sizeof_imsm_dev(dev, 0);
1982 }
1983 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
1984 mpb->mpb_size = __cpu_to_le32(mpb_size);
1985
1986 /* recalculate checksum */
1987 sum = __gen_imsm_checksum(mpb);
1988 mpb->check_sum = __cpu_to_le32(sum);
1989
1990 /* write the mpb for disks that compose raid devices */
1991 for (d = super->disks; d ; d = d->next) {
1992 if (d->index < 0)
1993 continue;
1994 if (store_imsm_mpb(d->fd, super))
1995 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1996 __func__, d->major, d->minor, strerror(errno));
1997 if (doclose) {
1998 close(d->fd);
1999 d->fd = -1;
2000 }
2001 }
2002
2003 if (spares)
2004 return write_super_imsm_spares(super, doclose);
2005
2006 return 0;
2007 }
2008
2009
2010 static int create_array(struct supertype *st)
2011 {
2012 size_t len;
2013 struct imsm_update_create_array *u;
2014 struct intel_super *super = st->sb;
2015 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2016
2017 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0);
2018 u = malloc(len);
2019 if (!u) {
2020 fprintf(stderr, "%s: failed to allocate update buffer\n",
2021 __func__);
2022 return 1;
2023 }
2024
2025 u->type = update_create_array;
2026 u->dev_idx = super->current_vol;
2027 imsm_copy_dev(&u->dev, dev);
2028 append_metadata_update(st, u, len);
2029
2030 return 0;
2031 }
2032
2033 static int _add_disk(struct supertype *st)
2034 {
2035 struct intel_super *super = st->sb;
2036 size_t len;
2037 struct imsm_update_add_disk *u;
2038
2039 if (!super->add)
2040 return 0;
2041
2042 len = sizeof(*u);
2043 u = malloc(len);
2044 if (!u) {
2045 fprintf(stderr, "%s: failed to allocate update buffer\n",
2046 __func__);
2047 return 1;
2048 }
2049
2050 u->type = update_add_disk;
2051 append_metadata_update(st, u, len);
2052
2053 return 0;
2054 }
2055
2056 static int write_init_super_imsm(struct supertype *st)
2057 {
2058 if (st->update_tail) {
2059 /* queue the recently created array / added disk
2060 * as a metadata update */
2061 struct intel_super *super = st->sb;
2062 struct dl *d;
2063 int rv;
2064
2065 /* determine if we are creating a volume or adding a disk */
2066 if (super->current_vol < 0) {
2067 /* in the add disk case we are running in mdmon
2068 * context, so don't close fd's
2069 */
2070 return _add_disk(st);
2071 } else
2072 rv = create_array(st);
2073
2074 for (d = super->disks; d ; d = d->next) {
2075 close(d->fd);
2076 d->fd = -1;
2077 }
2078
2079 return rv;
2080 } else
2081 return write_super_imsm(st->sb, 1);
2082 }
2083 #endif
2084
2085 static int store_zero_imsm(struct supertype *st, int fd)
2086 {
2087 unsigned long long dsize;
2088 void *buf;
2089
2090 get_dev_size(fd, NULL, &dsize);
2091
2092 /* first block is stored on second to last sector of the disk */
2093 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2094 return 1;
2095
2096 if (posix_memalign(&buf, 512, 512) != 0)
2097 return 1;
2098
2099 memset(buf, 0, 512);
2100 if (write(fd, buf, 512) != 512)
2101 return 1;
2102 return 0;
2103 }
2104
2105 static int imsm_bbm_log_size(struct imsm_super *mpb)
2106 {
2107 return __le32_to_cpu(mpb->bbm_log_size);
2108 }
2109
2110 #ifndef MDASSEMBLE
2111 static int validate_geometry_imsm_container(struct supertype *st, int level,
2112 int layout, int raiddisks, int chunk,
2113 unsigned long long size, char *dev,
2114 unsigned long long *freesize,
2115 int verbose)
2116 {
2117 int fd;
2118 unsigned long long ldsize;
2119
2120 if (level != LEVEL_CONTAINER)
2121 return 0;
2122 if (!dev)
2123 return 1;
2124
2125 fd = open(dev, O_RDONLY|O_EXCL, 0);
2126 if (fd < 0) {
2127 if (verbose)
2128 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
2129 dev, strerror(errno));
2130 return 0;
2131 }
2132 if (!get_dev_size(fd, dev, &ldsize)) {
2133 close(fd);
2134 return 0;
2135 }
2136 close(fd);
2137
2138 *freesize = avail_size_imsm(st, ldsize >> 9);
2139
2140 return 1;
2141 }
2142
2143 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
2144 * FIX ME add ahci details
2145 */
2146 static int validate_geometry_imsm_volume(struct supertype *st, int level,
2147 int layout, int raiddisks, int chunk,
2148 unsigned long long size, char *dev,
2149 unsigned long long *freesize,
2150 int verbose)
2151 {
2152 struct stat stb;
2153 struct intel_super *super = st->sb;
2154 struct dl *dl;
2155 unsigned long long pos = 0;
2156 unsigned long long maxsize;
2157 struct extent *e;
2158 int i;
2159
2160 if (level == LEVEL_CONTAINER)
2161 return 0;
2162
2163 if (level == 1 && raiddisks > 2) {
2164 if (verbose)
2165 fprintf(stderr, Name ": imsm does not support more "
2166 "than 2 in a raid1 configuration\n");
2167 return 0;
2168 }
2169
2170 /* We must have the container info already read in. */
2171 if (!super)
2172 return 0;
2173
2174 if (!dev) {
2175 /* General test: make sure there is space for
2176 * 'raiddisks' device extents of size 'size' at a given
2177 * offset
2178 */
2179 unsigned long long minsize = size*2 /* convert to blocks */;
2180 unsigned long long start_offset = ~0ULL;
2181 int dcnt = 0;
2182 if (minsize == 0)
2183 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
2184 for (dl = super->disks; dl ; dl = dl->next) {
2185 int found = 0;
2186
2187 pos = 0;
2188 i = 0;
2189 e = get_extents(super, dl);
2190 if (!e) continue;
2191 do {
2192 unsigned long long esize;
2193 esize = e[i].start - pos;
2194 if (esize >= minsize)
2195 found = 1;
2196 if (found && start_offset == ~0ULL) {
2197 start_offset = pos;
2198 break;
2199 } else if (found && pos != start_offset) {
2200 found = 0;
2201 break;
2202 }
2203 pos = e[i].start + e[i].size;
2204 i++;
2205 } while (e[i-1].size);
2206 if (found)
2207 dcnt++;
2208 free(e);
2209 }
2210 if (dcnt < raiddisks) {
2211 if (verbose)
2212 fprintf(stderr, Name ": imsm: Not enough "
2213 "devices with space for this array "
2214 "(%d < %d)\n",
2215 dcnt, raiddisks);
2216 return 0;
2217 }
2218 return 1;
2219 }
2220 /* This device must be a member of the set */
2221 if (stat(dev, &stb) < 0)
2222 return 0;
2223 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2224 return 0;
2225 for (dl = super->disks ; dl ; dl = dl->next) {
2226 if (dl->major == major(stb.st_rdev) &&
2227 dl->minor == minor(stb.st_rdev))
2228 break;
2229 }
2230 if (!dl) {
2231 if (verbose)
2232 fprintf(stderr, Name ": %s is not in the "
2233 "same imsm set\n", dev);
2234 return 0;
2235 }
2236 e = get_extents(super, dl);
2237 maxsize = 0;
2238 i = 0;
2239 if (e) do {
2240 unsigned long long esize;
2241 esize = e[i].start - pos;
2242 if (esize >= maxsize)
2243 maxsize = esize;
2244 pos = e[i].start + e[i].size;
2245 i++;
2246 } while (e[i-1].size);
2247 *freesize = maxsize;
2248
2249 return 1;
2250 }
2251
2252 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
2253 int raiddisks, int chunk, unsigned long long size,
2254 char *dev, unsigned long long *freesize,
2255 int verbose)
2256 {
2257 int fd, cfd;
2258 struct mdinfo *sra;
2259
2260 /* if given unused devices create a container
2261 * if given given devices in a container create a member volume
2262 */
2263 if (level == LEVEL_CONTAINER) {
2264 /* Must be a fresh device to add to a container */
2265 return validate_geometry_imsm_container(st, level, layout,
2266 raiddisks, chunk, size,
2267 dev, freesize,
2268 verbose);
2269 }
2270
2271 if (st->sb) {
2272 /* creating in a given container */
2273 return validate_geometry_imsm_volume(st, level, layout,
2274 raiddisks, chunk, size,
2275 dev, freesize, verbose);
2276 }
2277
2278 /* limit creation to the following levels */
2279 if (!dev)
2280 switch (level) {
2281 case 0:
2282 case 1:
2283 case 10:
2284 case 5:
2285 break;
2286 default:
2287 return 1;
2288 }
2289
2290 /* This device needs to be a device in an 'imsm' container */
2291 fd = open(dev, O_RDONLY|O_EXCL, 0);
2292 if (fd >= 0) {
2293 if (verbose)
2294 fprintf(stderr,
2295 Name ": Cannot create this array on device %s\n",
2296 dev);
2297 close(fd);
2298 return 0;
2299 }
2300 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2301 if (verbose)
2302 fprintf(stderr, Name ": Cannot open %s: %s\n",
2303 dev, strerror(errno));
2304 return 0;
2305 }
2306 /* Well, it is in use by someone, maybe an 'imsm' container. */
2307 cfd = open_container(fd);
2308 if (cfd < 0) {
2309 close(fd);
2310 if (verbose)
2311 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
2312 dev);
2313 return 0;
2314 }
2315 sra = sysfs_read(cfd, 0, GET_VERSION);
2316 close(fd);
2317 if (sra && sra->array.major_version == -1 &&
2318 strcmp(sra->text_version, "imsm") == 0) {
2319 /* This is a member of a imsm container. Load the container
2320 * and try to create a volume
2321 */
2322 struct intel_super *super;
2323
2324 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
2325 st->sb = super;
2326 st->container_dev = fd2devnum(cfd);
2327 close(cfd);
2328 return validate_geometry_imsm_volume(st, level, layout,
2329 raiddisks, chunk,
2330 size, dev,
2331 freesize, verbose);
2332 }
2333 close(cfd);
2334 } else /* may belong to another container */
2335 return 0;
2336
2337 return 1;
2338 }
2339 #endif /* MDASSEMBLE */
2340
2341 static struct mdinfo *container_content_imsm(struct supertype *st)
2342 {
2343 /* Given a container loaded by load_super_imsm_all,
2344 * extract information about all the arrays into
2345 * an mdinfo tree.
2346 *
2347 * For each imsm_dev create an mdinfo, fill it in,
2348 * then look for matching devices in super->disks
2349 * and create appropriate device mdinfo.
2350 */
2351 struct intel_super *super = st->sb;
2352 struct imsm_super *mpb = super->anchor;
2353 struct mdinfo *rest = NULL;
2354 int i;
2355
2356 /* do not assemble arrays that might have bad blocks */
2357 if (imsm_bbm_log_size(super->anchor)) {
2358 fprintf(stderr, Name ": BBM log found in metadata. "
2359 "Cannot activate array(s).\n");
2360 return NULL;
2361 }
2362
2363 for (i = 0; i < mpb->num_raid_devs; i++) {
2364 struct imsm_dev *dev = get_imsm_dev(super, i);
2365 struct imsm_map *map = get_imsm_map(dev, 0);
2366 struct mdinfo *this;
2367 int slot;
2368
2369 this = malloc(sizeof(*this));
2370 memset(this, 0, sizeof(*this));
2371 this->next = rest;
2372
2373 super->current_vol = i;
2374 getinfo_super_imsm_volume(st, this);
2375 for (slot = 0 ; slot < map->num_members; slot++) {
2376 struct mdinfo *info_d;
2377 struct dl *d;
2378 int idx;
2379 int skip;
2380 __u32 s;
2381 __u32 ord;
2382
2383 skip = 0;
2384 idx = get_imsm_disk_idx(dev, slot);
2385 ord = get_imsm_ord_tbl_ent(dev, slot);
2386 for (d = super->disks; d ; d = d->next)
2387 if (d->index == idx)
2388 break;
2389
2390 if (d == NULL)
2391 skip = 1;
2392
2393 s = d ? __le32_to_cpu(d->disk.status) : 0;
2394 if (s & FAILED_DISK)
2395 skip = 1;
2396 if (!(s & USABLE_DISK))
2397 skip = 1;
2398 if (ord & IMSM_ORD_REBUILD)
2399 skip = 1;
2400
2401 /*
2402 * if we skip some disks the array will be assmebled degraded;
2403 * reset resync start to avoid a dirty-degraded situation
2404 *
2405 * FIXME handle dirty degraded
2406 */
2407 if (skip && !dev->vol.dirty)
2408 this->resync_start = ~0ULL;
2409 if (skip)
2410 continue;
2411
2412 info_d = malloc(sizeof(*info_d));
2413 if (!info_d) {
2414 fprintf(stderr, Name ": failed to allocate disk"
2415 " for volume %s\n", (char *) dev->volume);
2416 free(this);
2417 this = rest;
2418 break;
2419 }
2420 memset(info_d, 0, sizeof(*info_d));
2421 info_d->next = this->devs;
2422 this->devs = info_d;
2423
2424 info_d->disk.number = d->index;
2425 info_d->disk.major = d->major;
2426 info_d->disk.minor = d->minor;
2427 info_d->disk.raid_disk = slot;
2428
2429 this->array.working_disks++;
2430
2431 info_d->events = __le32_to_cpu(mpb->generation_num);
2432 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2433 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2434 if (d->devname)
2435 strcpy(info_d->name, d->devname);
2436 }
2437 rest = this;
2438 }
2439
2440 return rest;
2441 }
2442
2443
2444 #ifndef MDASSEMBLE
2445 static int imsm_open_new(struct supertype *c, struct active_array *a,
2446 char *inst)
2447 {
2448 struct intel_super *super = c->sb;
2449 struct imsm_super *mpb = super->anchor;
2450
2451 if (atoi(inst) >= mpb->num_raid_devs) {
2452 fprintf(stderr, "%s: subarry index %d, out of range\n",
2453 __func__, atoi(inst));
2454 return -ENODEV;
2455 }
2456
2457 dprintf("imsm: open_new %s\n", inst);
2458 a->info.container_member = atoi(inst);
2459 return 0;
2460 }
2461
2462 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
2463 {
2464 struct imsm_map *map = get_imsm_map(dev, 0);
2465
2466 if (!failed)
2467 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
2468 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
2469
2470 switch (get_imsm_raid_level(map)) {
2471 case 0:
2472 return IMSM_T_STATE_FAILED;
2473 break;
2474 case 1:
2475 if (failed < map->num_members)
2476 return IMSM_T_STATE_DEGRADED;
2477 else
2478 return IMSM_T_STATE_FAILED;
2479 break;
2480 case 10:
2481 {
2482 /**
2483 * check to see if any mirrors have failed, otherwise we
2484 * are degraded. Even numbered slots are mirrored on
2485 * slot+1
2486 */
2487 int i;
2488 /* gcc -Os complains that this is unused */
2489 int insync = insync;
2490
2491 for (i = 0; i < map->num_members; i++) {
2492 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2493 int idx = ord_to_idx(ord);
2494 struct imsm_disk *disk;
2495
2496 /* reset the potential in-sync count on even-numbered
2497 * slots. num_copies is always 2 for imsm raid10
2498 */
2499 if ((i & 1) == 0)
2500 insync = 2;
2501
2502 disk = get_imsm_disk(super, idx);
2503 if (!disk ||
2504 __le32_to_cpu(disk->status) & FAILED_DISK ||
2505 ord & IMSM_ORD_REBUILD)
2506 insync--;
2507
2508 /* no in-sync disks left in this mirror the
2509 * array has failed
2510 */
2511 if (insync == 0)
2512 return IMSM_T_STATE_FAILED;
2513 }
2514
2515 return IMSM_T_STATE_DEGRADED;
2516 }
2517 case 5:
2518 if (failed < 2)
2519 return IMSM_T_STATE_DEGRADED;
2520 else
2521 return IMSM_T_STATE_FAILED;
2522 break;
2523 default:
2524 break;
2525 }
2526
2527 return map->map_state;
2528 }
2529
2530 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
2531 {
2532 int i;
2533 int failed = 0;
2534 struct imsm_disk *disk;
2535 struct imsm_map *map = get_imsm_map(dev, 0);
2536
2537 for (i = 0; i < map->num_members; i++) {
2538 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2539 int idx = ord_to_idx(ord);
2540
2541 disk = get_imsm_disk(super, idx);
2542 if (!disk ||
2543 __le32_to_cpu(disk->status) & FAILED_DISK ||
2544 ord & IMSM_ORD_REBUILD)
2545 failed++;
2546 }
2547
2548 return failed;
2549 }
2550
2551 static int is_resyncing(struct imsm_dev *dev)
2552 {
2553 struct imsm_map *migr_map;
2554
2555 if (!dev->vol.migr_state)
2556 return 0;
2557
2558 if (dev->vol.migr_type == 0)
2559 return 1;
2560
2561 migr_map = get_imsm_map(dev, 1);
2562
2563 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
2564 return 1;
2565 else
2566 return 0;
2567 }
2568
2569 static int is_rebuilding(struct imsm_dev *dev)
2570 {
2571 struct imsm_map *migr_map;
2572
2573 if (!dev->vol.migr_state)
2574 return 0;
2575
2576 if (dev->vol.migr_type == 0)
2577 return 0;
2578
2579 migr_map = get_imsm_map(dev, 1);
2580
2581 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
2582 return 1;
2583 else
2584 return 0;
2585 }
2586
2587 static void mark_failure(struct imsm_disk *disk)
2588 {
2589 __u32 status = __le32_to_cpu(disk->status);
2590
2591 if (status & FAILED_DISK)
2592 return;
2593 status |= FAILED_DISK;
2594 disk->status = __cpu_to_le32(status);
2595 disk->scsi_id = __cpu_to_le32(~(__u32)0);
2596 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
2597 }
2598
2599 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
2600 * states are handled in imsm_set_disk() with one exception, when a
2601 * resync is stopped due to a new failure this routine will set the
2602 * 'degraded' state for the array.
2603 */
2604 static int imsm_set_array_state(struct active_array *a, int consistent)
2605 {
2606 int inst = a->info.container_member;
2607 struct intel_super *super = a->container->sb;
2608 struct imsm_dev *dev = get_imsm_dev(super, inst);
2609 struct imsm_map *map = get_imsm_map(dev, 0);
2610 int failed = imsm_count_failed(super, dev);
2611 __u8 map_state = imsm_check_degraded(super, dev, failed);
2612
2613 /* before we activate this array handle any missing disks */
2614 if (consistent == 2 && super->missing) {
2615 struct dl *dl;
2616
2617 dprintf("imsm: mark missing\n");
2618 end_migration(dev, map_state);
2619 for (dl = super->missing; dl; dl = dl->next)
2620 mark_failure(&dl->disk);
2621 super->updates_pending++;
2622 }
2623
2624 if (consistent == 2 &&
2625 (!is_resync_complete(a) ||
2626 map_state != IMSM_T_STATE_NORMAL ||
2627 dev->vol.migr_state))
2628 consistent = 0;
2629
2630 if (is_resync_complete(a)) {
2631 /* complete intialization / resync,
2632 * recovery is completed in ->set_disk
2633 */
2634 if (is_resyncing(dev)) {
2635 dprintf("imsm: mark resync done\n");
2636 end_migration(dev, map_state);
2637 super->updates_pending++;
2638 }
2639 } else if (!is_resyncing(dev) && !failed) {
2640 /* mark the start of the init process if nothing is failed */
2641 dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
2642 map->map_state = map_state;
2643 migrate(dev, IMSM_T_STATE_NORMAL,
2644 map->map_state == IMSM_T_STATE_NORMAL);
2645 super->updates_pending++;
2646 }
2647
2648 /* check if we can update the migration checkpoint */
2649 if (dev->vol.migr_state &&
2650 __le32_to_cpu(dev->vol.curr_migr_unit) != a->resync_start) {
2651 dprintf("imsm: checkpoint migration (%llu)\n", a->resync_start);
2652 dev->vol.curr_migr_unit = __cpu_to_le32(a->resync_start);
2653 super->updates_pending++;
2654 }
2655
2656 /* mark dirty / clean */
2657 if (dev->vol.dirty != !consistent) {
2658 dprintf("imsm: mark '%s' (%llu)\n",
2659 consistent ? "clean" : "dirty", a->resync_start);
2660 if (consistent)
2661 dev->vol.dirty = 0;
2662 else
2663 dev->vol.dirty = 1;
2664 super->updates_pending++;
2665 }
2666 return consistent;
2667 }
2668
2669 static void imsm_set_disk(struct active_array *a, int n, int state)
2670 {
2671 int inst = a->info.container_member;
2672 struct intel_super *super = a->container->sb;
2673 struct imsm_dev *dev = get_imsm_dev(super, inst);
2674 struct imsm_map *map = get_imsm_map(dev, 0);
2675 struct imsm_disk *disk;
2676 int failed;
2677 __u32 status;
2678 __u32 ord;
2679 __u8 map_state;
2680
2681 if (n > map->num_members)
2682 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2683 n, map->num_members - 1);
2684
2685 if (n < 0)
2686 return;
2687
2688 dprintf("imsm: set_disk %d:%x\n", n, state);
2689
2690 ord = get_imsm_ord_tbl_ent(dev, n);
2691 disk = get_imsm_disk(super, ord_to_idx(ord));
2692
2693 /* check for new failures */
2694 status = __le32_to_cpu(disk->status);
2695 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2696 mark_failure(disk);
2697 super->updates_pending++;
2698 }
2699
2700 /* check if in_sync */
2701 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD) {
2702 struct imsm_map *migr_map = get_imsm_map(dev, 1);
2703
2704 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
2705 super->updates_pending++;
2706 }
2707
2708 failed = imsm_count_failed(super, dev);
2709 map_state = imsm_check_degraded(super, dev, failed);
2710
2711 /* check if recovery complete, newly degraded, or failed */
2712 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
2713 end_migration(dev, map_state);
2714 super->updates_pending++;
2715 } else if (map_state == IMSM_T_STATE_DEGRADED &&
2716 map->map_state != map_state &&
2717 !dev->vol.migr_state) {
2718 dprintf("imsm: mark degraded\n");
2719 map->map_state = map_state;
2720 super->updates_pending++;
2721 } else if (map_state == IMSM_T_STATE_FAILED &&
2722 map->map_state != map_state) {
2723 dprintf("imsm: mark failed\n");
2724 end_migration(dev, map_state);
2725 super->updates_pending++;
2726 }
2727 }
2728
2729 static int store_imsm_mpb(int fd, struct intel_super *super)
2730 {
2731 struct imsm_super *mpb = super->anchor;
2732 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2733 unsigned long long dsize;
2734 unsigned long long sectors;
2735
2736 get_dev_size(fd, NULL, &dsize);
2737
2738 if (mpb_size > 512) {
2739 /* -1 to account for anchor */
2740 sectors = mpb_sectors(mpb) - 1;
2741
2742 /* write the extended mpb to the sectors preceeding the anchor */
2743 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2744 return 1;
2745
2746 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2747 return 1;
2748 }
2749
2750 /* first block is stored on second to last sector of the disk */
2751 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2752 return 1;
2753
2754 if (write(fd, super->buf, 512) != 512)
2755 return 1;
2756
2757 return 0;
2758 }
2759
2760 static void imsm_sync_metadata(struct supertype *container)
2761 {
2762 struct intel_super *super = container->sb;
2763
2764 if (!super->updates_pending)
2765 return;
2766
2767 write_super_imsm(super, 0);
2768
2769 super->updates_pending = 0;
2770 }
2771
2772 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
2773 {
2774 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2775 int i = get_imsm_disk_idx(dev, idx);
2776 struct dl *dl;
2777
2778 for (dl = super->disks; dl; dl = dl->next)
2779 if (dl->index == i)
2780 break;
2781
2782 if (dl && __le32_to_cpu(dl->disk.status) & FAILED_DISK)
2783 dl = NULL;
2784
2785 if (dl)
2786 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
2787
2788 return dl;
2789 }
2790
2791 static struct dl *imsm_add_spare(struct intel_super *super, int slot, struct active_array *a)
2792 {
2793 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2794 int idx = get_imsm_disk_idx(dev, slot);
2795 struct imsm_map *map = get_imsm_map(dev, 0);
2796 unsigned long long esize;
2797 unsigned long long pos;
2798 struct mdinfo *d;
2799 struct extent *ex;
2800 int j;
2801 int found;
2802 __u32 array_start;
2803 __u32 status;
2804 struct dl *dl;
2805
2806 for (dl = super->disks; dl; dl = dl->next) {
2807 /* If in this array, skip */
2808 for (d = a->info.devs ; d ; d = d->next)
2809 if (d->state_fd >= 0 &&
2810 d->disk.major == dl->major &&
2811 d->disk.minor == dl->minor) {
2812 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2813 break;
2814 }
2815 if (d)
2816 continue;
2817
2818 /* skip in use or failed drives */
2819 status = __le32_to_cpu(dl->disk.status);
2820 if (status & FAILED_DISK || idx == dl->index) {
2821 dprintf("%x:%x status ( %s%s)\n",
2822 dl->major, dl->minor,
2823 status & FAILED_DISK ? "failed " : "",
2824 idx == dl->index ? "in use " : "");
2825 continue;
2826 }
2827
2828 /* Does this unused device have the requisite free space?
2829 * We need a->info.component_size sectors
2830 */
2831 ex = get_extents(super, dl);
2832 if (!ex) {
2833 dprintf("cannot get extents\n");
2834 continue;
2835 }
2836 found = 0;
2837 j = 0;
2838 pos = 0;
2839 array_start = __le32_to_cpu(map->pba_of_lba0);
2840
2841 do {
2842 /* check that we can start at pba_of_lba0 with
2843 * a->info.component_size of space
2844 */
2845 esize = ex[j].start - pos;
2846 if (array_start >= pos &&
2847 array_start + a->info.component_size < ex[j].start) {
2848 found = 1;
2849 break;
2850 }
2851 pos = ex[j].start + ex[j].size;
2852 j++;
2853
2854 } while (ex[j-1].size);
2855
2856 free(ex);
2857 if (!found) {
2858 dprintf("%x:%x does not have %llu at %d\n",
2859 dl->major, dl->minor,
2860 a->info.component_size,
2861 __le32_to_cpu(map->pba_of_lba0));
2862 /* No room */
2863 continue;
2864 } else
2865 break;
2866 }
2867
2868 return dl;
2869 }
2870
2871 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2872 struct metadata_update **updates)
2873 {
2874 /**
2875 * Find a device with unused free space and use it to replace a
2876 * failed/vacant region in an array. We replace failed regions one a
2877 * array at a time. The result is that a new spare disk will be added
2878 * to the first failed array and after the monitor has finished
2879 * propagating failures the remainder will be consumed.
2880 *
2881 * FIXME add a capability for mdmon to request spares from another
2882 * container.
2883 */
2884
2885 struct intel_super *super = a->container->sb;
2886 int inst = a->info.container_member;
2887 struct imsm_dev *dev = get_imsm_dev(super, inst);
2888 struct imsm_map *map = get_imsm_map(dev, 0);
2889 int failed = a->info.array.raid_disks;
2890 struct mdinfo *rv = NULL;
2891 struct mdinfo *d;
2892 struct mdinfo *di;
2893 struct metadata_update *mu;
2894 struct dl *dl;
2895 struct imsm_update_activate_spare *u;
2896 int num_spares = 0;
2897 int i;
2898
2899 for (d = a->info.devs ; d ; d = d->next) {
2900 if ((d->curr_state & DS_FAULTY) &&
2901 d->state_fd >= 0)
2902 /* wait for Removal to happen */
2903 return NULL;
2904 if (d->state_fd >= 0)
2905 failed--;
2906 }
2907
2908 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2909 inst, failed, a->info.array.raid_disks, a->info.array.level);
2910 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
2911 return NULL;
2912
2913 /* For each slot, if it is not working, find a spare */
2914 for (i = 0; i < a->info.array.raid_disks; i++) {
2915 for (d = a->info.devs ; d ; d = d->next)
2916 if (d->disk.raid_disk == i)
2917 break;
2918 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2919 if (d && (d->state_fd >= 0))
2920 continue;
2921
2922 /*
2923 * OK, this device needs recovery. Try to re-add the previous
2924 * occupant of this slot, if this fails add a new spare
2925 */
2926 dl = imsm_readd(super, i, a);
2927 if (!dl)
2928 dl = imsm_add_spare(super, i, a);
2929 if (!dl)
2930 continue;
2931
2932 /* found a usable disk with enough space */
2933 di = malloc(sizeof(*di));
2934 if (!di)
2935 continue;
2936 memset(di, 0, sizeof(*di));
2937
2938 /* dl->index will be -1 in the case we are activating a
2939 * pristine spare. imsm_process_update() will create a
2940 * new index in this case. Once a disk is found to be
2941 * failed in all member arrays it is kicked from the
2942 * metadata
2943 */
2944 di->disk.number = dl->index;
2945
2946 /* (ab)use di->devs to store a pointer to the device
2947 * we chose
2948 */
2949 di->devs = (struct mdinfo *) dl;
2950
2951 di->disk.raid_disk = i;
2952 di->disk.major = dl->major;
2953 di->disk.minor = dl->minor;
2954 di->disk.state = 0;
2955 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
2956 di->component_size = a->info.component_size;
2957 di->container_member = inst;
2958 di->next = rv;
2959 rv = di;
2960 num_spares++;
2961 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2962 i, di->data_offset);
2963
2964 break;
2965 }
2966
2967 if (!rv)
2968 /* No spares found */
2969 return rv;
2970 /* Now 'rv' has a list of devices to return.
2971 * Create a metadata_update record to update the
2972 * disk_ord_tbl for the array
2973 */
2974 mu = malloc(sizeof(*mu));
2975 if (mu) {
2976 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2977 if (mu->buf == NULL) {
2978 free(mu);
2979 mu = NULL;
2980 }
2981 }
2982 if (!mu) {
2983 while (rv) {
2984 struct mdinfo *n = rv->next;
2985
2986 free(rv);
2987 rv = n;
2988 }
2989 return NULL;
2990 }
2991
2992 mu->space = NULL;
2993 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2994 mu->next = *updates;
2995 u = (struct imsm_update_activate_spare *) mu->buf;
2996
2997 for (di = rv ; di ; di = di->next) {
2998 u->type = update_activate_spare;
2999 u->dl = (struct dl *) di->devs;
3000 di->devs = NULL;
3001 u->slot = di->disk.raid_disk;
3002 u->array = inst;
3003 u->next = u + 1;
3004 u++;
3005 }
3006 (u-1)->next = NULL;
3007 *updates = mu;
3008
3009 return rv;
3010 }
3011
3012 static int disks_overlap(struct imsm_dev *d1, struct imsm_dev *d2)
3013 {
3014 struct imsm_map *m1 = get_imsm_map(d1, 0);
3015 struct imsm_map *m2 = get_imsm_map(d2, 0);
3016 int i;
3017 int j;
3018 int idx;
3019
3020 for (i = 0; i < m1->num_members; i++) {
3021 idx = get_imsm_disk_idx(d1, i);
3022 for (j = 0; j < m2->num_members; j++)
3023 if (idx == get_imsm_disk_idx(d2, j))
3024 return 1;
3025 }
3026
3027 return 0;
3028 }
3029
3030 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
3031
3032 static void imsm_process_update(struct supertype *st,
3033 struct metadata_update *update)
3034 {
3035 /**
3036 * crack open the metadata_update envelope to find the update record
3037 * update can be one of:
3038 * update_activate_spare - a spare device has replaced a failed
3039 * device in an array, update the disk_ord_tbl. If this disk is
3040 * present in all member arrays then also clear the SPARE_DISK
3041 * flag
3042 */
3043 struct intel_super *super = st->sb;
3044 struct imsm_super *mpb;
3045 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
3046
3047 /* update requires a larger buf but the allocation failed */
3048 if (super->next_len && !super->next_buf) {
3049 super->next_len = 0;
3050 return;
3051 }
3052
3053 if (super->next_buf) {
3054 memcpy(super->next_buf, super->buf, super->len);
3055 free(super->buf);
3056 super->len = super->next_len;
3057 super->buf = super->next_buf;
3058
3059 super->next_len = 0;
3060 super->next_buf = NULL;
3061 }
3062
3063 mpb = super->anchor;
3064
3065 switch (type) {
3066 case update_activate_spare: {
3067 struct imsm_update_activate_spare *u = (void *) update->buf;
3068 struct imsm_dev *dev = get_imsm_dev(super, u->array);
3069 struct imsm_map *map = get_imsm_map(dev, 0);
3070 struct imsm_map *migr_map;
3071 struct active_array *a;
3072 struct imsm_disk *disk;
3073 __u32 status;
3074 __u8 to_state;
3075 struct dl *dl;
3076 unsigned int found;
3077 int failed;
3078 int victim = get_imsm_disk_idx(dev, u->slot);
3079 int i;
3080
3081 for (dl = super->disks; dl; dl = dl->next)
3082 if (dl == u->dl)
3083 break;
3084
3085 if (!dl) {
3086 fprintf(stderr, "error: imsm_activate_spare passed "
3087 "an unknown disk (index: %d)\n",
3088 u->dl->index);
3089 return;
3090 }
3091
3092 super->updates_pending++;
3093
3094 /* count failures (excluding rebuilds and the victim)
3095 * to determine map[0] state
3096 */
3097 failed = 0;
3098 for (i = 0; i < map->num_members; i++) {
3099 if (i == u->slot)
3100 continue;
3101 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
3102 if (!disk ||
3103 __le32_to_cpu(disk->status) & FAILED_DISK)
3104 failed++;
3105 }
3106
3107 /* adding a pristine spare, assign a new index */
3108 if (dl->index < 0) {
3109 dl->index = super->anchor->num_disks;
3110 super->anchor->num_disks++;
3111 }
3112 disk = &dl->disk;
3113 status = __le32_to_cpu(disk->status);
3114 status |= CONFIGURED_DISK;
3115 status &= ~SPARE_DISK;
3116 disk->status = __cpu_to_le32(status);
3117
3118 /* mark rebuild */
3119 to_state = imsm_check_degraded(super, dev, failed);
3120 map->map_state = IMSM_T_STATE_DEGRADED;
3121 migrate(dev, to_state, 1);
3122 migr_map = get_imsm_map(dev, 1);
3123 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
3124 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
3125
3126 /* count arrays using the victim in the metadata */
3127 found = 0;
3128 for (a = st->arrays; a ; a = a->next) {
3129 dev = get_imsm_dev(super, a->info.container_member);
3130 for (i = 0; i < map->num_members; i++)
3131 if (victim == get_imsm_disk_idx(dev, i))
3132 found++;
3133 }
3134
3135 /* delete the victim if it is no longer being
3136 * utilized anywhere
3137 */
3138 if (!found) {
3139 struct dl **dlp;
3140
3141 /* We know that 'manager' isn't touching anything,
3142 * so it is safe to delete
3143 */
3144 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
3145 if ((*dlp)->index == victim)
3146 break;
3147
3148 /* victim may be on the missing list */
3149 if (!*dlp)
3150 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
3151 if ((*dlp)->index == victim)
3152 break;
3153 imsm_delete(super, dlp, victim);
3154 }
3155 break;
3156 }
3157 case update_create_array: {
3158 /* someone wants to create a new array, we need to be aware of
3159 * a few races/collisions:
3160 * 1/ 'Create' called by two separate instances of mdadm
3161 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
3162 * devices that have since been assimilated via
3163 * activate_spare.
3164 * In the event this update can not be carried out mdadm will
3165 * (FIX ME) notice that its update did not take hold.
3166 */
3167 struct imsm_update_create_array *u = (void *) update->buf;
3168 struct imsm_dev *dev;
3169 struct imsm_map *map, *new_map;
3170 unsigned long long start, end;
3171 unsigned long long new_start, new_end;
3172 int i;
3173 int overlap = 0;
3174
3175 /* handle racing creates: first come first serve */
3176 if (u->dev_idx < mpb->num_raid_devs) {
3177 dprintf("%s: subarray %d already defined\n",
3178 __func__, u->dev_idx);
3179 return;
3180 }
3181
3182 /* check update is next in sequence */
3183 if (u->dev_idx != mpb->num_raid_devs) {
3184 dprintf("%s: can not create array %d expected index %d\n",
3185 __func__, u->dev_idx, mpb->num_raid_devs);
3186 return;
3187 }
3188
3189 new_map = get_imsm_map(&u->dev, 0);
3190 new_start = __le32_to_cpu(new_map->pba_of_lba0);
3191 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
3192
3193 /* handle activate_spare versus create race:
3194 * check to make sure that overlapping arrays do not include
3195 * overalpping disks
3196 */
3197 for (i = 0; i < mpb->num_raid_devs; i++) {
3198 dev = get_imsm_dev(super, i);
3199 map = get_imsm_map(dev, 0);
3200 start = __le32_to_cpu(map->pba_of_lba0);
3201 end = start + __le32_to_cpu(map->blocks_per_member);
3202 if ((new_start >= start && new_start <= end) ||
3203 (start >= new_start && start <= new_end))
3204 overlap = 1;
3205 if (overlap && disks_overlap(dev, &u->dev)) {
3206 dprintf("%s: arrays overlap\n", __func__);
3207 return;
3208 }
3209 }
3210 /* check num_members sanity */
3211 if (new_map->num_members > mpb->num_disks) {
3212 dprintf("%s: num_disks out of range\n", __func__);
3213 return;
3214 }
3215
3216 /* check that prepare update was successful */
3217 if (!update->space) {
3218 dprintf("%s: prepare update failed\n", __func__);
3219 return;
3220 }
3221
3222 super->updates_pending++;
3223 dev = update->space;
3224 map = get_imsm_map(dev, 0);
3225 update->space = NULL;
3226 imsm_copy_dev(dev, &u->dev);
3227 map = get_imsm_map(dev, 0);
3228 super->dev_tbl[u->dev_idx] = dev;
3229 mpb->num_raid_devs++;
3230
3231 /* fix up flags */
3232 for (i = 0; i < map->num_members; i++) {
3233 struct imsm_disk *disk;
3234 __u32 status;
3235
3236 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
3237 status = __le32_to_cpu(disk->status);
3238 status |= CONFIGURED_DISK;
3239 status &= ~SPARE_DISK;
3240 disk->status = __cpu_to_le32(status);
3241 }
3242 break;
3243 }
3244 case update_add_disk:
3245
3246 /* we may be able to repair some arrays if disks are
3247 * being added */
3248 if (super->add) {
3249 struct active_array *a;
3250
3251 super->updates_pending++;
3252 for (a = st->arrays; a; a = a->next)
3253 a->check_degraded = 1;
3254 }
3255 /* add some spares to the metadata */
3256 while (super->add) {
3257 struct dl *al;
3258
3259 al = super->add;
3260 super->add = al->next;
3261 al->next = super->disks;
3262 super->disks = al;
3263 dprintf("%s: added %x:%x\n",
3264 __func__, al->major, al->minor);
3265 }
3266
3267 break;
3268 }
3269 }
3270
3271 static void imsm_prepare_update(struct supertype *st,
3272 struct metadata_update *update)
3273 {
3274 /**
3275 * Allocate space to hold new disk entries, raid-device entries or a new
3276 * mpb if necessary. The manager synchronously waits for updates to
3277 * complete in the monitor, so new mpb buffers allocated here can be
3278 * integrated by the monitor thread without worrying about live pointers
3279 * in the manager thread.
3280 */
3281 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
3282 struct intel_super *super = st->sb;
3283 struct imsm_super *mpb = super->anchor;
3284 size_t buf_len;
3285 size_t len = 0;
3286
3287 switch (type) {
3288 case update_create_array: {
3289 struct imsm_update_create_array *u = (void *) update->buf;
3290
3291 len = sizeof_imsm_dev(&u->dev, 1);
3292 update->space = malloc(len);
3293 break;
3294 default:
3295 break;
3296 }
3297 }
3298
3299 /* check if we need a larger metadata buffer */
3300 if (super->next_buf)
3301 buf_len = super->next_len;
3302 else
3303 buf_len = super->len;
3304
3305 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
3306 /* ok we need a larger buf than what is currently allocated
3307 * if this allocation fails process_update will notice that
3308 * ->next_len is set and ->next_buf is NULL
3309 */
3310 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
3311 if (super->next_buf)
3312 free(super->next_buf);
3313
3314 super->next_len = buf_len;
3315 if (posix_memalign(&super->next_buf, buf_len, 512) != 0)
3316 super->next_buf = NULL;
3317 }
3318 }
3319
3320 /* must be called while manager is quiesced */
3321 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
3322 {
3323 struct imsm_super *mpb = super->anchor;
3324 struct dl *iter;
3325 struct imsm_dev *dev;
3326 struct imsm_map *map;
3327 int i, j, num_members;
3328 __u32 ord;
3329
3330 dprintf("%s: deleting device[%d] from imsm_super\n",
3331 __func__, index);
3332
3333 /* shift all indexes down one */
3334 for (iter = super->disks; iter; iter = iter->next)
3335 if (iter->index > index)
3336 iter->index--;
3337 for (iter = super->missing; iter; iter = iter->next)
3338 if (iter->index > index)
3339 iter->index--;
3340
3341 for (i = 0; i < mpb->num_raid_devs; i++) {
3342 dev = get_imsm_dev(super, i);
3343 map = get_imsm_map(dev, 0);
3344 num_members = map->num_members;
3345 for (j = 0; j < num_members; j++) {
3346 /* update ord entries being careful not to propagate
3347 * ord-flags to the first map
3348 */
3349 ord = get_imsm_ord_tbl_ent(dev, j);
3350
3351 if (ord_to_idx(ord) <= index)
3352 continue;
3353
3354 map = get_imsm_map(dev, 0);
3355 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
3356 map = get_imsm_map(dev, 1);
3357 if (map)
3358 set_imsm_ord_tbl_ent(map, j, ord - 1);
3359 }
3360 }
3361
3362 mpb->num_disks--;
3363 super->updates_pending++;
3364 if (*dlp) {
3365 struct dl *dl = *dlp;
3366
3367 *dlp = (*dlp)->next;
3368 __free_imsm_disk(dl);
3369 }
3370 }
3371 #endif /* MDASSEMBLE */
3372
3373 struct superswitch super_imsm = {
3374 #ifndef MDASSEMBLE
3375 .examine_super = examine_super_imsm,
3376 .brief_examine_super = brief_examine_super_imsm,
3377 .detail_super = detail_super_imsm,
3378 .brief_detail_super = brief_detail_super_imsm,
3379 .write_init_super = write_init_super_imsm,
3380 .validate_geometry = validate_geometry_imsm,
3381 .add_to_super = add_to_super_imsm,
3382 #endif
3383 .match_home = match_home_imsm,
3384 .uuid_from_super= uuid_from_super_imsm,
3385 .getinfo_super = getinfo_super_imsm,
3386 .update_super = update_super_imsm,
3387
3388 .avail_size = avail_size_imsm,
3389
3390 .compare_super = compare_super_imsm,
3391
3392 .load_super = load_super_imsm,
3393 .init_super = init_super_imsm,
3394 .store_super = store_zero_imsm,
3395 .free_super = free_super_imsm,
3396 .match_metadata_desc = match_metadata_desc_imsm,
3397 .container_content = container_content_imsm,
3398
3399 .external = 1,
3400
3401 #ifndef MDASSEMBLE
3402 /* for mdmon */
3403 .open_new = imsm_open_new,
3404 .load_super = load_super_imsm,
3405 .set_array_state= imsm_set_array_state,
3406 .set_disk = imsm_set_disk,
3407 .sync_metadata = imsm_sync_metadata,
3408 .activate_spare = imsm_activate_spare,
3409 .process_update = imsm_process_update,
3410 .prepare_update = imsm_prepare_update,
3411 #endif /* MDASSEMBLE */
3412 };