]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
Allow a metadata update to have a linked list of allocated spaces.
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54 #define MPB_SECTOR_CNT 418
55 #define IMSM_RESERVED_SECTORS 4096
56 #define SECT_PER_MB_SHIFT 11
57
58 /* Disk configuration info. */
59 #define IMSM_MAX_DEVICES 255
60 struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67 __u32 status; /* 0xF0 - 0xF3 */
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69 #define IMSM_DISK_FILLERS 4
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71 };
72
73 /* RAID map configuration infos. */
74 struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80 #define IMSM_T_STATE_NORMAL 0
81 #define IMSM_T_STATE_UNINITIALIZED 1
82 #define IMSM_T_STATE_DEGRADED 2
83 #define IMSM_T_STATE_FAILED 3
84 __u8 raid_level;
85 #define IMSM_T_RAID0 0
86 #define IMSM_T_RAID1 1
87 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
91 __u8 ddf;
92 __u32 filler[7]; /* expansion area */
93 #define IMSM_ORD_REBUILD (1 << 24)
94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
95 * top byte contains some flags
96 */
97 } __attribute__ ((packed));
98
99 struct imsm_vol {
100 __u32 curr_migr_unit;
101 __u32 checkpoint_id; /* id to access curr_migr_unit */
102 __u8 migr_state; /* Normal or Migrating */
103 #define MIGR_INIT 0
104 #define MIGR_REBUILD 1
105 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106 #define MIGR_GEN_MIGR 3
107 #define MIGR_STATE_CHANGE 4
108 #define MIGR_REPAIR 5
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117 } __attribute__ ((packed));
118
119 struct imsm_dev {
120 __u8 volume[MAX_RAID_SERIAL_LEN];
121 __u32 size_low;
122 __u32 size_high;
123 #define DEV_BOOTABLE __cpu_to_le32(0x01)
124 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
126 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145 #define IMSM_DEV_FILLERS 10
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148 } __attribute__ ((packed));
149
150 struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166 #define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
170 /* here comes BBM logs */
171 } __attribute__ ((packed));
172
173 #define BBM_LOG_MAX_ENTRIES 254
174
175 struct bbm_log_entry {
176 __u64 defective_block_start;
177 #define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181 } __attribute__ ((__packed__));
182
183 struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190 } __attribute__ ((__packed__));
191
192
193 #ifndef MDASSEMBLE
194 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195 #endif
196
197 static __u8 migr_type(struct imsm_dev *dev)
198 {
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204 }
205
206 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207 {
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218 }
219
220 static unsigned int sector_count(__u32 bytes)
221 {
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223 }
224
225 static unsigned int mpb_sectors(struct imsm_super *mpb)
226 {
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
228 }
229
230 struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 unsigned index;
234 };
235
236 enum action {
237 DISK_REMOVE = 1,
238 DISK_ADD
239 };
240 /* internal representation of IMSM metadata */
241 struct intel_super {
242 union {
243 void *buf; /* O_DIRECT buffer for reading/writing metadata */
244 struct imsm_super *anchor; /* immovable parameters */
245 };
246 size_t len; /* size of the 'buf' allocation */
247 void *next_buf; /* for realloc'ing buf from the manager */
248 size_t next_len;
249 int updates_pending; /* count of pending updates for mdmon */
250 int current_vol; /* index of raid device undergoing creation */
251 __u32 create_offset; /* common start for 'current_vol' */
252 __u32 random; /* random data for seeding new family numbers */
253 struct intel_dev *devlist;
254 struct dl {
255 struct dl *next;
256 int index;
257 __u8 serial[MAX_RAID_SERIAL_LEN];
258 int major, minor;
259 char *devname;
260 struct imsm_disk disk;
261 int fd;
262 int extent_cnt;
263 struct extent *e; /* for determining freespace @ create */
264 int raiddisk; /* slot to fill in autolayout */
265 enum action action;
266 } *disks;
267 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
268 active */
269 struct dl *missing; /* disks removed while we weren't looking */
270 struct bbm_log *bbm_log;
271 const char *hba; /* device path of the raid controller for this metadata */
272 const struct imsm_orom *orom; /* platform firmware support */
273 struct intel_super *next; /* (temp) list for disambiguating family_num */
274 };
275
276 struct intel_disk {
277 struct imsm_disk disk;
278 #define IMSM_UNKNOWN_OWNER (-1)
279 int owner;
280 struct intel_disk *next;
281 };
282
283 struct extent {
284 unsigned long long start, size;
285 };
286
287 /* definition of messages passed to imsm_process_update */
288 enum imsm_update_type {
289 update_activate_spare,
290 update_create_array,
291 update_kill_array,
292 update_rename_array,
293 update_add_remove_disk,
294 update_reshape_container_disks,
295 };
296
297 struct imsm_update_activate_spare {
298 enum imsm_update_type type;
299 struct dl *dl;
300 int slot;
301 int array;
302 struct imsm_update_activate_spare *next;
303 };
304
305 struct geo_params {
306 int dev_id;
307 char *dev_name;
308 long long size;
309 int level;
310 int layout;
311 int chunksize;
312 int raid_disks;
313 };
314
315
316 struct imsm_update_reshape {
317 enum imsm_update_type type;
318 int old_raid_disks;
319 int new_raid_disks;
320 int new_disks[1]; /* new_raid_disk - old_raid_disks makedev number */
321 };
322
323 struct disk_info {
324 __u8 serial[MAX_RAID_SERIAL_LEN];
325 };
326
327 struct imsm_update_create_array {
328 enum imsm_update_type type;
329 int dev_idx;
330 struct imsm_dev dev;
331 };
332
333 struct imsm_update_kill_array {
334 enum imsm_update_type type;
335 int dev_idx;
336 };
337
338 struct imsm_update_rename_array {
339 enum imsm_update_type type;
340 __u8 name[MAX_RAID_SERIAL_LEN];
341 int dev_idx;
342 };
343
344 struct imsm_update_add_remove_disk {
345 enum imsm_update_type type;
346 };
347
348 static struct supertype *match_metadata_desc_imsm(char *arg)
349 {
350 struct supertype *st;
351
352 if (strcmp(arg, "imsm") != 0 &&
353 strcmp(arg, "default") != 0
354 )
355 return NULL;
356
357 st = malloc(sizeof(*st));
358 if (!st)
359 return NULL;
360 memset(st, 0, sizeof(*st));
361 st->container_dev = NoMdDev;
362 st->ss = &super_imsm;
363 st->max_devs = IMSM_MAX_DEVICES;
364 st->minor_version = 0;
365 st->sb = NULL;
366 return st;
367 }
368
369 #ifndef MDASSEMBLE
370 static __u8 *get_imsm_version(struct imsm_super *mpb)
371 {
372 return &mpb->sig[MPB_SIG_LEN];
373 }
374 #endif
375
376 /* retrieve a disk directly from the anchor when the anchor is known to be
377 * up-to-date, currently only at load time
378 */
379 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
380 {
381 if (index >= mpb->num_disks)
382 return NULL;
383 return &mpb->disk[index];
384 }
385
386 /* retrieve the disk description based on a index of the disk
387 * in the sub-array
388 */
389 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
390 {
391 struct dl *d;
392
393 for (d = super->disks; d; d = d->next)
394 if (d->index == index)
395 return d;
396
397 return NULL;
398 }
399 /* retrieve a disk from the parsed metadata */
400 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
401 {
402 struct dl *dl;
403
404 dl = get_imsm_dl_disk(super, index);
405 if (dl)
406 return &dl->disk;
407
408 return NULL;
409 }
410
411 /* generate a checksum directly from the anchor when the anchor is known to be
412 * up-to-date, currently only at load or write_super after coalescing
413 */
414 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
415 {
416 __u32 end = mpb->mpb_size / sizeof(end);
417 __u32 *p = (__u32 *) mpb;
418 __u32 sum = 0;
419
420 while (end--) {
421 sum += __le32_to_cpu(*p);
422 p++;
423 }
424
425 return sum - __le32_to_cpu(mpb->check_sum);
426 }
427
428 static size_t sizeof_imsm_map(struct imsm_map *map)
429 {
430 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
431 }
432
433 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
434 {
435 struct imsm_map *map = &dev->vol.map[0];
436
437 if (second_map && !dev->vol.migr_state)
438 return NULL;
439 else if (second_map) {
440 void *ptr = map;
441
442 return ptr + sizeof_imsm_map(map);
443 } else
444 return map;
445
446 }
447
448 /* return the size of the device.
449 * migr_state increases the returned size if map[0] were to be duplicated
450 */
451 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
452 {
453 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
454 sizeof_imsm_map(get_imsm_map(dev, 0));
455
456 /* migrating means an additional map */
457 if (dev->vol.migr_state)
458 size += sizeof_imsm_map(get_imsm_map(dev, 1));
459 else if (migr_state)
460 size += sizeof_imsm_map(get_imsm_map(dev, 0));
461
462 return size;
463 }
464
465 #ifndef MDASSEMBLE
466 /* retrieve disk serial number list from a metadata update */
467 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
468 {
469 void *u = update;
470 struct disk_info *inf;
471
472 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
473 sizeof_imsm_dev(&update->dev, 0);
474
475 return inf;
476 }
477 #endif
478
479 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
480 {
481 int offset;
482 int i;
483 void *_mpb = mpb;
484
485 if (index >= mpb->num_raid_devs)
486 return NULL;
487
488 /* devices start after all disks */
489 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
490
491 for (i = 0; i <= index; i++)
492 if (i == index)
493 return _mpb + offset;
494 else
495 offset += sizeof_imsm_dev(_mpb + offset, 0);
496
497 return NULL;
498 }
499
500 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
501 {
502 struct intel_dev *dv;
503
504 if (index >= super->anchor->num_raid_devs)
505 return NULL;
506 for (dv = super->devlist; dv; dv = dv->next)
507 if (dv->index == index)
508 return dv->dev;
509 return NULL;
510 }
511
512 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
513 {
514 struct imsm_map *map;
515
516 if (dev->vol.migr_state)
517 map = get_imsm_map(dev, 1);
518 else
519 map = get_imsm_map(dev, 0);
520
521 /* top byte identifies disk under rebuild */
522 return __le32_to_cpu(map->disk_ord_tbl[slot]);
523 }
524
525 #define ord_to_idx(ord) (((ord) << 8) >> 8)
526 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
527 {
528 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
529
530 return ord_to_idx(ord);
531 }
532
533 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
534 {
535 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
536 }
537
538 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
539 {
540 int slot;
541 __u32 ord;
542
543 for (slot = 0; slot < map->num_members; slot++) {
544 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
545 if (ord_to_idx(ord) == idx)
546 return slot;
547 }
548
549 return -1;
550 }
551
552 static int get_imsm_raid_level(struct imsm_map *map)
553 {
554 if (map->raid_level == 1) {
555 if (map->num_members == 2)
556 return 1;
557 else
558 return 10;
559 }
560
561 return map->raid_level;
562 }
563
564 static int cmp_extent(const void *av, const void *bv)
565 {
566 const struct extent *a = av;
567 const struct extent *b = bv;
568 if (a->start < b->start)
569 return -1;
570 if (a->start > b->start)
571 return 1;
572 return 0;
573 }
574
575 static int count_memberships(struct dl *dl, struct intel_super *super)
576 {
577 int memberships = 0;
578 int i;
579
580 for (i = 0; i < super->anchor->num_raid_devs; i++) {
581 struct imsm_dev *dev = get_imsm_dev(super, i);
582 struct imsm_map *map = get_imsm_map(dev, 0);
583
584 if (get_imsm_disk_slot(map, dl->index) >= 0)
585 memberships++;
586 }
587
588 return memberships;
589 }
590
591 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
592 {
593 /* find a list of used extents on the given physical device */
594 struct extent *rv, *e;
595 int i;
596 int memberships = count_memberships(dl, super);
597 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
598
599 rv = malloc(sizeof(struct extent) * (memberships + 1));
600 if (!rv)
601 return NULL;
602 e = rv;
603
604 for (i = 0; i < super->anchor->num_raid_devs; i++) {
605 struct imsm_dev *dev = get_imsm_dev(super, i);
606 struct imsm_map *map = get_imsm_map(dev, 0);
607
608 if (get_imsm_disk_slot(map, dl->index) >= 0) {
609 e->start = __le32_to_cpu(map->pba_of_lba0);
610 e->size = __le32_to_cpu(map->blocks_per_member);
611 e++;
612 }
613 }
614 qsort(rv, memberships, sizeof(*rv), cmp_extent);
615
616 /* determine the start of the metadata
617 * when no raid devices are defined use the default
618 * ...otherwise allow the metadata to truncate the value
619 * as is the case with older versions of imsm
620 */
621 if (memberships) {
622 struct extent *last = &rv[memberships - 1];
623 __u32 remainder;
624
625 remainder = __le32_to_cpu(dl->disk.total_blocks) -
626 (last->start + last->size);
627 /* round down to 1k block to satisfy precision of the kernel
628 * 'size' interface
629 */
630 remainder &= ~1UL;
631 /* make sure remainder is still sane */
632 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
633 remainder = ROUND_UP(super->len, 512) >> 9;
634 if (reservation > remainder)
635 reservation = remainder;
636 }
637 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
638 e->size = 0;
639 return rv;
640 }
641
642 /* try to determine how much space is reserved for metadata from
643 * the last get_extents() entry, otherwise fallback to the
644 * default
645 */
646 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
647 {
648 struct extent *e;
649 int i;
650 __u32 rv;
651
652 /* for spares just return a minimal reservation which will grow
653 * once the spare is picked up by an array
654 */
655 if (dl->index == -1)
656 return MPB_SECTOR_CNT;
657
658 e = get_extents(super, dl);
659 if (!e)
660 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
661
662 /* scroll to last entry */
663 for (i = 0; e[i].size; i++)
664 continue;
665
666 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
667
668 free(e);
669
670 return rv;
671 }
672
673 static int is_spare(struct imsm_disk *disk)
674 {
675 return (disk->status & SPARE_DISK) == SPARE_DISK;
676 }
677
678 static int is_configured(struct imsm_disk *disk)
679 {
680 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
681 }
682
683 static int is_failed(struct imsm_disk *disk)
684 {
685 return (disk->status & FAILED_DISK) == FAILED_DISK;
686 }
687
688 /* Return minimum size of a spare that can be used in this array*/
689 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
690 {
691 struct intel_super *super = st->sb;
692 struct dl *dl;
693 struct extent *e;
694 int i;
695 unsigned long long rv = 0;
696
697 if (!super)
698 return rv;
699 /* find first active disk in array */
700 dl = super->disks;
701 while (dl && (is_failed(&dl->disk) || dl->index == -1))
702 dl = dl->next;
703 if (!dl)
704 return rv;
705 /* find last lba used by subarrays */
706 e = get_extents(super, dl);
707 if (!e)
708 return rv;
709 for (i = 0; e[i].size; i++)
710 continue;
711 if (i > 0)
712 rv = e[i-1].start + e[i-1].size;
713 free(e);
714 /* add the amount of space needed for metadata */
715 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
716 return rv * 512;
717 }
718
719 #ifndef MDASSEMBLE
720 static __u64 blocks_per_migr_unit(struct imsm_dev *dev);
721
722 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
723 {
724 __u64 sz;
725 int slot, i;
726 struct imsm_map *map = get_imsm_map(dev, 0);
727 __u32 ord;
728
729 printf("\n");
730 printf("[%.16s]:\n", dev->volume);
731 printf(" UUID : %s\n", uuid);
732 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
733 printf(" Members : %d\n", map->num_members);
734 printf(" Slots : [");
735 for (i = 0; i < map->num_members; i++) {
736 ord = get_imsm_ord_tbl_ent(dev, i);
737 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
738 }
739 printf("]\n");
740 slot = get_imsm_disk_slot(map, disk_idx);
741 if (slot >= 0) {
742 ord = get_imsm_ord_tbl_ent(dev, slot);
743 printf(" This Slot : %d%s\n", slot,
744 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
745 } else
746 printf(" This Slot : ?\n");
747 sz = __le32_to_cpu(dev->size_high);
748 sz <<= 32;
749 sz += __le32_to_cpu(dev->size_low);
750 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
751 human_size(sz * 512));
752 sz = __le32_to_cpu(map->blocks_per_member);
753 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
754 human_size(sz * 512));
755 printf(" Sector Offset : %u\n",
756 __le32_to_cpu(map->pba_of_lba0));
757 printf(" Num Stripes : %u\n",
758 __le32_to_cpu(map->num_data_stripes));
759 printf(" Chunk Size : %u KiB\n",
760 __le16_to_cpu(map->blocks_per_strip) / 2);
761 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
762 printf(" Migrate State : ");
763 if (dev->vol.migr_state) {
764 if (migr_type(dev) == MIGR_INIT)
765 printf("initialize\n");
766 else if (migr_type(dev) == MIGR_REBUILD)
767 printf("rebuild\n");
768 else if (migr_type(dev) == MIGR_VERIFY)
769 printf("check\n");
770 else if (migr_type(dev) == MIGR_GEN_MIGR)
771 printf("general migration\n");
772 else if (migr_type(dev) == MIGR_STATE_CHANGE)
773 printf("state change\n");
774 else if (migr_type(dev) == MIGR_REPAIR)
775 printf("repair\n");
776 else
777 printf("<unknown:%d>\n", migr_type(dev));
778 } else
779 printf("idle\n");
780 printf(" Map State : %s", map_state_str[map->map_state]);
781 if (dev->vol.migr_state) {
782 struct imsm_map *map = get_imsm_map(dev, 1);
783
784 printf(" <-- %s", map_state_str[map->map_state]);
785 printf("\n Checkpoint : %u (%llu)",
786 __le32_to_cpu(dev->vol.curr_migr_unit),
787 (unsigned long long)blocks_per_migr_unit(dev));
788 }
789 printf("\n");
790 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
791 }
792
793 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
794 {
795 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
796 char str[MAX_RAID_SERIAL_LEN + 1];
797 __u64 sz;
798
799 if (index < 0 || !disk)
800 return;
801
802 printf("\n");
803 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
804 printf(" Disk%02d Serial : %s\n", index, str);
805 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
806 is_configured(disk) ? " active" : "",
807 is_failed(disk) ? " failed" : "");
808 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
809 sz = __le32_to_cpu(disk->total_blocks) - reserved;
810 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
811 human_size(sz * 512));
812 }
813
814 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
815
816 static void examine_super_imsm(struct supertype *st, char *homehost)
817 {
818 struct intel_super *super = st->sb;
819 struct imsm_super *mpb = super->anchor;
820 char str[MAX_SIGNATURE_LENGTH];
821 int i;
822 struct mdinfo info;
823 char nbuf[64];
824 __u32 sum;
825 __u32 reserved = imsm_reserved_sectors(super, super->disks);
826 struct dl *dl;
827
828 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
829 printf(" Magic : %s\n", str);
830 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
831 printf(" Version : %s\n", get_imsm_version(mpb));
832 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
833 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
834 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
835 getinfo_super_imsm(st, &info, NULL);
836 fname_from_uuid(st, &info, nbuf, ':');
837 printf(" UUID : %s\n", nbuf + 5);
838 sum = __le32_to_cpu(mpb->check_sum);
839 printf(" Checksum : %08x %s\n", sum,
840 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
841 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
842 printf(" Disks : %d\n", mpb->num_disks);
843 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
844 print_imsm_disk(mpb, super->disks->index, reserved);
845 if (super->bbm_log) {
846 struct bbm_log *log = super->bbm_log;
847
848 printf("\n");
849 printf("Bad Block Management Log:\n");
850 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
851 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
852 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
853 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
854 printf(" First Spare : %llx\n",
855 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
856 }
857 for (i = 0; i < mpb->num_raid_devs; i++) {
858 struct mdinfo info;
859 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
860
861 super->current_vol = i;
862 getinfo_super_imsm(st, &info, NULL);
863 fname_from_uuid(st, &info, nbuf, ':');
864 print_imsm_dev(dev, nbuf + 5, super->disks->index);
865 }
866 for (i = 0; i < mpb->num_disks; i++) {
867 if (i == super->disks->index)
868 continue;
869 print_imsm_disk(mpb, i, reserved);
870 }
871 for (dl = super->disks ; dl; dl = dl->next) {
872 struct imsm_disk *disk;
873 char str[MAX_RAID_SERIAL_LEN + 1];
874 __u64 sz;
875
876 if (dl->index >= 0)
877 continue;
878
879 disk = &dl->disk;
880 printf("\n");
881 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
882 printf(" Disk Serial : %s\n", str);
883 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
884 is_configured(disk) ? " active" : "",
885 is_failed(disk) ? " failed" : "");
886 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
887 sz = __le32_to_cpu(disk->total_blocks) - reserved;
888 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
889 human_size(sz * 512));
890 }
891 }
892
893 static void brief_examine_super_imsm(struct supertype *st, int verbose)
894 {
895 /* We just write a generic IMSM ARRAY entry */
896 struct mdinfo info;
897 char nbuf[64];
898 struct intel_super *super = st->sb;
899
900 if (!super->anchor->num_raid_devs) {
901 printf("ARRAY metadata=imsm\n");
902 return;
903 }
904
905 getinfo_super_imsm(st, &info, NULL);
906 fname_from_uuid(st, &info, nbuf, ':');
907 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
908 }
909
910 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
911 {
912 /* We just write a generic IMSM ARRAY entry */
913 struct mdinfo info;
914 char nbuf[64];
915 char nbuf1[64];
916 struct intel_super *super = st->sb;
917 int i;
918
919 if (!super->anchor->num_raid_devs)
920 return;
921
922 getinfo_super_imsm(st, &info, NULL);
923 fname_from_uuid(st, &info, nbuf, ':');
924 for (i = 0; i < super->anchor->num_raid_devs; i++) {
925 struct imsm_dev *dev = get_imsm_dev(super, i);
926
927 super->current_vol = i;
928 getinfo_super_imsm(st, &info, NULL);
929 fname_from_uuid(st, &info, nbuf1, ':');
930 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
931 dev->volume, nbuf + 5, i, nbuf1 + 5);
932 }
933 }
934
935 static void export_examine_super_imsm(struct supertype *st)
936 {
937 struct intel_super *super = st->sb;
938 struct imsm_super *mpb = super->anchor;
939 struct mdinfo info;
940 char nbuf[64];
941
942 getinfo_super_imsm(st, &info, NULL);
943 fname_from_uuid(st, &info, nbuf, ':');
944 printf("MD_METADATA=imsm\n");
945 printf("MD_LEVEL=container\n");
946 printf("MD_UUID=%s\n", nbuf+5);
947 printf("MD_DEVICES=%u\n", mpb->num_disks);
948 }
949
950 static void detail_super_imsm(struct supertype *st, char *homehost)
951 {
952 struct mdinfo info;
953 char nbuf[64];
954
955 getinfo_super_imsm(st, &info, NULL);
956 fname_from_uuid(st, &info, nbuf, ':');
957 printf("\n UUID : %s\n", nbuf + 5);
958 }
959
960 static void brief_detail_super_imsm(struct supertype *st)
961 {
962 struct mdinfo info;
963 char nbuf[64];
964 getinfo_super_imsm(st, &info, NULL);
965 fname_from_uuid(st, &info, nbuf, ':');
966 printf(" UUID=%s", nbuf + 5);
967 }
968
969 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
970 static void fd2devname(int fd, char *name);
971
972 static int imsm_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
973 {
974 /* dump an unsorted list of devices attached to ahci, as well as
975 * non-connected ports
976 */
977 int hba_len = strlen(hba_path) + 1;
978 struct dirent *ent;
979 DIR *dir;
980 char *path = NULL;
981 int err = 0;
982 unsigned long port_mask = (1 << port_count) - 1;
983
984 if (port_count > (int)sizeof(port_mask) * 8) {
985 if (verbose)
986 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
987 return 2;
988 }
989
990 /* scroll through /sys/dev/block looking for devices attached to
991 * this hba
992 */
993 dir = opendir("/sys/dev/block");
994 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
995 int fd;
996 char model[64];
997 char vendor[64];
998 char buf[1024];
999 int major, minor;
1000 char *device;
1001 char *c;
1002 int port;
1003 int type;
1004
1005 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1006 continue;
1007 path = devt_to_devpath(makedev(major, minor));
1008 if (!path)
1009 continue;
1010 if (!path_attached_to_hba(path, hba_path)) {
1011 free(path);
1012 path = NULL;
1013 continue;
1014 }
1015
1016 /* retrieve the scsi device type */
1017 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1018 if (verbose)
1019 fprintf(stderr, Name ": failed to allocate 'device'\n");
1020 err = 2;
1021 break;
1022 }
1023 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1024 if (load_sys(device, buf) != 0) {
1025 if (verbose)
1026 fprintf(stderr, Name ": failed to read device type for %s\n",
1027 path);
1028 err = 2;
1029 free(device);
1030 break;
1031 }
1032 type = strtoul(buf, NULL, 10);
1033
1034 /* if it's not a disk print the vendor and model */
1035 if (!(type == 0 || type == 7 || type == 14)) {
1036 vendor[0] = '\0';
1037 model[0] = '\0';
1038 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1039 if (load_sys(device, buf) == 0) {
1040 strncpy(vendor, buf, sizeof(vendor));
1041 vendor[sizeof(vendor) - 1] = '\0';
1042 c = (char *) &vendor[sizeof(vendor) - 1];
1043 while (isspace(*c) || *c == '\0')
1044 *c-- = '\0';
1045
1046 }
1047 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1048 if (load_sys(device, buf) == 0) {
1049 strncpy(model, buf, sizeof(model));
1050 model[sizeof(model) - 1] = '\0';
1051 c = (char *) &model[sizeof(model) - 1];
1052 while (isspace(*c) || *c == '\0')
1053 *c-- = '\0';
1054 }
1055
1056 if (vendor[0] && model[0])
1057 sprintf(buf, "%.64s %.64s", vendor, model);
1058 else
1059 switch (type) { /* numbers from hald/linux/device.c */
1060 case 1: sprintf(buf, "tape"); break;
1061 case 2: sprintf(buf, "printer"); break;
1062 case 3: sprintf(buf, "processor"); break;
1063 case 4:
1064 case 5: sprintf(buf, "cdrom"); break;
1065 case 6: sprintf(buf, "scanner"); break;
1066 case 8: sprintf(buf, "media_changer"); break;
1067 case 9: sprintf(buf, "comm"); break;
1068 case 12: sprintf(buf, "raid"); break;
1069 default: sprintf(buf, "unknown");
1070 }
1071 } else
1072 buf[0] = '\0';
1073 free(device);
1074
1075 /* chop device path to 'host%d' and calculate the port number */
1076 c = strchr(&path[hba_len], '/');
1077 if (!c) {
1078 if (verbose)
1079 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1080 err = 2;
1081 break;
1082 }
1083 *c = '\0';
1084 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1085 port -= host_base;
1086 else {
1087 if (verbose) {
1088 *c = '/'; /* repair the full string */
1089 fprintf(stderr, Name ": failed to determine port number for %s\n",
1090 path);
1091 }
1092 err = 2;
1093 break;
1094 }
1095
1096 /* mark this port as used */
1097 port_mask &= ~(1 << port);
1098
1099 /* print out the device information */
1100 if (buf[0]) {
1101 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1102 continue;
1103 }
1104
1105 fd = dev_open(ent->d_name, O_RDONLY);
1106 if (fd < 0)
1107 printf(" Port%d : - disk info unavailable -\n", port);
1108 else {
1109 fd2devname(fd, buf);
1110 printf(" Port%d : %s", port, buf);
1111 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1112 printf(" (%s)\n", buf);
1113 else
1114 printf("()\n");
1115 }
1116 close(fd);
1117 free(path);
1118 path = NULL;
1119 }
1120 if (path)
1121 free(path);
1122 if (dir)
1123 closedir(dir);
1124 if (err == 0) {
1125 int i;
1126
1127 for (i = 0; i < port_count; i++)
1128 if (port_mask & (1 << i))
1129 printf(" Port%d : - no device attached -\n", i);
1130 }
1131
1132 return err;
1133 }
1134
1135 static int detail_platform_imsm(int verbose, int enumerate_only)
1136 {
1137 /* There are two components to imsm platform support, the ahci SATA
1138 * controller and the option-rom. To find the SATA controller we
1139 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1140 * controller with the Intel vendor id is present. This approach
1141 * allows mdadm to leverage the kernel's ahci detection logic, with the
1142 * caveat that if ahci.ko is not loaded mdadm will not be able to
1143 * detect platform raid capabilities. The option-rom resides in a
1144 * platform "Adapter ROM". We scan for its signature to retrieve the
1145 * platform capabilities. If raid support is disabled in the BIOS the
1146 * option-rom capability structure will not be available.
1147 */
1148 const struct imsm_orom *orom;
1149 struct sys_dev *list, *hba;
1150 DIR *dir;
1151 struct dirent *ent;
1152 const char *hba_path;
1153 int host_base = 0;
1154 int port_count = 0;
1155
1156 if (enumerate_only) {
1157 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1158 return 0;
1159 return 2;
1160 }
1161
1162 list = find_driver_devices("pci", "ahci");
1163 for (hba = list; hba; hba = hba->next)
1164 if (devpath_to_vendor(hba->path) == 0x8086)
1165 break;
1166
1167 if (!hba) {
1168 if (verbose)
1169 fprintf(stderr, Name ": unable to find active ahci controller\n");
1170 free_sys_dev(&list);
1171 return 2;
1172 } else if (verbose)
1173 fprintf(stderr, Name ": found Intel SATA AHCI Controller\n");
1174 hba_path = hba->path;
1175 hba->path = NULL;
1176 free_sys_dev(&list);
1177
1178 orom = find_imsm_orom();
1179 if (!orom) {
1180 if (verbose)
1181 fprintf(stderr, Name ": imsm option-rom not found\n");
1182 return 2;
1183 }
1184
1185 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1186 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1187 orom->hotfix_ver, orom->build);
1188 printf(" RAID Levels :%s%s%s%s%s\n",
1189 imsm_orom_has_raid0(orom) ? " raid0" : "",
1190 imsm_orom_has_raid1(orom) ? " raid1" : "",
1191 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1192 imsm_orom_has_raid10(orom) ? " raid10" : "",
1193 imsm_orom_has_raid5(orom) ? " raid5" : "");
1194 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1195 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1196 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1197 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1198 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1199 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1200 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1201 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1202 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1203 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1204 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1205 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1206 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1207 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1208 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1209 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1210 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1211 printf(" Max Disks : %d\n", orom->tds);
1212 printf(" Max Volumes : %d\n", orom->vpa);
1213 printf(" I/O Controller : %s\n", hba_path);
1214
1215 /* find the smallest scsi host number to determine a port number base */
1216 dir = opendir(hba_path);
1217 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1218 int host;
1219
1220 if (sscanf(ent->d_name, "host%d", &host) != 1)
1221 continue;
1222 if (port_count == 0)
1223 host_base = host;
1224 else if (host < host_base)
1225 host_base = host;
1226
1227 if (host + 1 > port_count + host_base)
1228 port_count = host + 1 - host_base;
1229
1230 }
1231 if (dir)
1232 closedir(dir);
1233
1234 if (!port_count || imsm_enumerate_ports(hba_path, port_count,
1235 host_base, verbose) != 0) {
1236 if (verbose)
1237 fprintf(stderr, Name ": failed to enumerate ports\n");
1238 return 2;
1239 }
1240
1241 return 0;
1242 }
1243 #endif
1244
1245 static int match_home_imsm(struct supertype *st, char *homehost)
1246 {
1247 /* the imsm metadata format does not specify any host
1248 * identification information. We return -1 since we can never
1249 * confirm nor deny whether a given array is "meant" for this
1250 * host. We rely on compare_super and the 'family_num' fields to
1251 * exclude member disks that do not belong, and we rely on
1252 * mdadm.conf to specify the arrays that should be assembled.
1253 * Auto-assembly may still pick up "foreign" arrays.
1254 */
1255
1256 return -1;
1257 }
1258
1259 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1260 {
1261 /* The uuid returned here is used for:
1262 * uuid to put into bitmap file (Create, Grow)
1263 * uuid for backup header when saving critical section (Grow)
1264 * comparing uuids when re-adding a device into an array
1265 * In these cases the uuid required is that of the data-array,
1266 * not the device-set.
1267 * uuid to recognise same set when adding a missing device back
1268 * to an array. This is a uuid for the device-set.
1269 *
1270 * For each of these we can make do with a truncated
1271 * or hashed uuid rather than the original, as long as
1272 * everyone agrees.
1273 * In each case the uuid required is that of the data-array,
1274 * not the device-set.
1275 */
1276 /* imsm does not track uuid's so we synthesis one using sha1 on
1277 * - The signature (Which is constant for all imsm array, but no matter)
1278 * - the orig_family_num of the container
1279 * - the index number of the volume
1280 * - the 'serial' number of the volume.
1281 * Hopefully these are all constant.
1282 */
1283 struct intel_super *super = st->sb;
1284
1285 char buf[20];
1286 struct sha1_ctx ctx;
1287 struct imsm_dev *dev = NULL;
1288 __u32 family_num;
1289
1290 /* some mdadm versions failed to set ->orig_family_num, in which
1291 * case fall back to ->family_num. orig_family_num will be
1292 * fixed up with the first metadata update.
1293 */
1294 family_num = super->anchor->orig_family_num;
1295 if (family_num == 0)
1296 family_num = super->anchor->family_num;
1297 sha1_init_ctx(&ctx);
1298 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1299 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1300 if (super->current_vol >= 0)
1301 dev = get_imsm_dev(super, super->current_vol);
1302 if (dev) {
1303 __u32 vol = super->current_vol;
1304 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1305 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1306 }
1307 sha1_finish_ctx(&ctx, buf);
1308 memcpy(uuid, buf, 4*4);
1309 }
1310
1311 #if 0
1312 static void
1313 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1314 {
1315 __u8 *v = get_imsm_version(mpb);
1316 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1317 char major[] = { 0, 0, 0 };
1318 char minor[] = { 0 ,0, 0 };
1319 char patch[] = { 0, 0, 0 };
1320 char *ver_parse[] = { major, minor, patch };
1321 int i, j;
1322
1323 i = j = 0;
1324 while (*v != '\0' && v < end) {
1325 if (*v != '.' && j < 2)
1326 ver_parse[i][j++] = *v;
1327 else {
1328 i++;
1329 j = 0;
1330 }
1331 v++;
1332 }
1333
1334 *m = strtol(minor, NULL, 0);
1335 *p = strtol(patch, NULL, 0);
1336 }
1337 #endif
1338
1339 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1340 {
1341 /* migr_strip_size when repairing or initializing parity */
1342 struct imsm_map *map = get_imsm_map(dev, 0);
1343 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1344
1345 switch (get_imsm_raid_level(map)) {
1346 case 5:
1347 case 10:
1348 return chunk;
1349 default:
1350 return 128*1024 >> 9;
1351 }
1352 }
1353
1354 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1355 {
1356 /* migr_strip_size when rebuilding a degraded disk, no idea why
1357 * this is different than migr_strip_size_resync(), but it's good
1358 * to be compatible
1359 */
1360 struct imsm_map *map = get_imsm_map(dev, 1);
1361 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1362
1363 switch (get_imsm_raid_level(map)) {
1364 case 1:
1365 case 10:
1366 if (map->num_members % map->num_domains == 0)
1367 return 128*1024 >> 9;
1368 else
1369 return chunk;
1370 case 5:
1371 return max((__u32) 64*1024 >> 9, chunk);
1372 default:
1373 return 128*1024 >> 9;
1374 }
1375 }
1376
1377 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1378 {
1379 struct imsm_map *lo = get_imsm_map(dev, 0);
1380 struct imsm_map *hi = get_imsm_map(dev, 1);
1381 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1382 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1383
1384 return max((__u32) 1, hi_chunk / lo_chunk);
1385 }
1386
1387 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1388 {
1389 struct imsm_map *lo = get_imsm_map(dev, 0);
1390 int level = get_imsm_raid_level(lo);
1391
1392 if (level == 1 || level == 10) {
1393 struct imsm_map *hi = get_imsm_map(dev, 1);
1394
1395 return hi->num_domains;
1396 } else
1397 return num_stripes_per_unit_resync(dev);
1398 }
1399
1400 static __u8 imsm_num_data_members(struct imsm_dev *dev)
1401 {
1402 /* named 'imsm_' because raid0, raid1 and raid10
1403 * counter-intuitively have the same number of data disks
1404 */
1405 struct imsm_map *map = get_imsm_map(dev, 0);
1406
1407 switch (get_imsm_raid_level(map)) {
1408 case 0:
1409 case 1:
1410 case 10:
1411 return map->num_members;
1412 case 5:
1413 return map->num_members - 1;
1414 default:
1415 dprintf("%s: unsupported raid level\n", __func__);
1416 return 0;
1417 }
1418 }
1419
1420 static __u32 parity_segment_depth(struct imsm_dev *dev)
1421 {
1422 struct imsm_map *map = get_imsm_map(dev, 0);
1423 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1424
1425 switch(get_imsm_raid_level(map)) {
1426 case 1:
1427 case 10:
1428 return chunk * map->num_domains;
1429 case 5:
1430 return chunk * map->num_members;
1431 default:
1432 return chunk;
1433 }
1434 }
1435
1436 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1437 {
1438 struct imsm_map *map = get_imsm_map(dev, 1);
1439 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1440 __u32 strip = block / chunk;
1441
1442 switch (get_imsm_raid_level(map)) {
1443 case 1:
1444 case 10: {
1445 __u32 vol_strip = (strip * map->num_domains) + 1;
1446 __u32 vol_stripe = vol_strip / map->num_members;
1447
1448 return vol_stripe * chunk + block % chunk;
1449 } case 5: {
1450 __u32 stripe = strip / (map->num_members - 1);
1451
1452 return stripe * chunk + block % chunk;
1453 }
1454 default:
1455 return 0;
1456 }
1457 }
1458
1459 static __u64 blocks_per_migr_unit(struct imsm_dev *dev)
1460 {
1461 /* calculate the conversion factor between per member 'blocks'
1462 * (md/{resync,rebuild}_start) and imsm migration units, return
1463 * 0 for the 'not migrating' and 'unsupported migration' cases
1464 */
1465 if (!dev->vol.migr_state)
1466 return 0;
1467
1468 switch (migr_type(dev)) {
1469 case MIGR_VERIFY:
1470 case MIGR_REPAIR:
1471 case MIGR_INIT: {
1472 struct imsm_map *map = get_imsm_map(dev, 0);
1473 __u32 stripes_per_unit;
1474 __u32 blocks_per_unit;
1475 __u32 parity_depth;
1476 __u32 migr_chunk;
1477 __u32 block_map;
1478 __u32 block_rel;
1479 __u32 segment;
1480 __u32 stripe;
1481 __u8 disks;
1482
1483 /* yes, this is really the translation of migr_units to
1484 * per-member blocks in the 'resync' case
1485 */
1486 stripes_per_unit = num_stripes_per_unit_resync(dev);
1487 migr_chunk = migr_strip_blocks_resync(dev);
1488 disks = imsm_num_data_members(dev);
1489 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1490 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1491 segment = blocks_per_unit / stripe;
1492 block_rel = blocks_per_unit - segment * stripe;
1493 parity_depth = parity_segment_depth(dev);
1494 block_map = map_migr_block(dev, block_rel);
1495 return block_map + parity_depth * segment;
1496 }
1497 case MIGR_REBUILD: {
1498 __u32 stripes_per_unit;
1499 __u32 migr_chunk;
1500
1501 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1502 migr_chunk = migr_strip_blocks_rebuild(dev);
1503 return migr_chunk * stripes_per_unit;
1504 }
1505 case MIGR_GEN_MIGR:
1506 case MIGR_STATE_CHANGE:
1507 default:
1508 return 0;
1509 }
1510 }
1511
1512 static int imsm_level_to_layout(int level)
1513 {
1514 switch (level) {
1515 case 0:
1516 case 1:
1517 return 0;
1518 case 5:
1519 case 6:
1520 return ALGORITHM_LEFT_ASYMMETRIC;
1521 case 10:
1522 return 0x102;
1523 }
1524 return UnSet;
1525 }
1526
1527 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
1528 {
1529 struct intel_super *super = st->sb;
1530 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1531 struct imsm_map *map = get_imsm_map(dev, 0);
1532 struct dl *dl;
1533 char *devname;
1534 int map_disks = info->array.raid_disks;
1535
1536 for (dl = super->disks; dl; dl = dl->next)
1537 if (dl->raiddisk == info->disk.raid_disk)
1538 break;
1539 info->container_member = super->current_vol;
1540 info->array.raid_disks = map->num_members;
1541 info->array.level = get_imsm_raid_level(map);
1542 info->array.layout = imsm_level_to_layout(info->array.level);
1543 info->array.md_minor = -1;
1544 info->array.ctime = 0;
1545 info->array.utime = 0;
1546 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1547 info->array.state = !dev->vol.dirty;
1548 info->custom_array_size = __le32_to_cpu(dev->size_high);
1549 info->custom_array_size <<= 32;
1550 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1551
1552 info->disk.major = 0;
1553 info->disk.minor = 0;
1554 if (dl) {
1555 info->disk.major = dl->major;
1556 info->disk.minor = dl->minor;
1557 }
1558
1559 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
1560 info->component_size = __le32_to_cpu(map->blocks_per_member);
1561 memset(info->uuid, 0, sizeof(info->uuid));
1562 info->recovery_start = MaxSector;
1563 info->reshape_active = 0;
1564
1565 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty) {
1566 info->resync_start = 0;
1567 } else if (dev->vol.migr_state) {
1568 switch (migr_type(dev)) {
1569 case MIGR_REPAIR:
1570 case MIGR_INIT: {
1571 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1572 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1573
1574 info->resync_start = blocks_per_unit * units;
1575 break;
1576 }
1577 case MIGR_VERIFY:
1578 /* we could emulate the checkpointing of
1579 * 'sync_action=check' migrations, but for now
1580 * we just immediately complete them
1581 */
1582 case MIGR_REBUILD:
1583 /* this is handled by container_content_imsm() */
1584 case MIGR_GEN_MIGR:
1585 case MIGR_STATE_CHANGE:
1586 /* FIXME handle other migrations */
1587 default:
1588 /* we are not dirty, so... */
1589 info->resync_start = MaxSector;
1590 }
1591 } else
1592 info->resync_start = MaxSector;
1593
1594 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1595 info->name[MAX_RAID_SERIAL_LEN] = 0;
1596
1597 info->array.major_version = -1;
1598 info->array.minor_version = -2;
1599 devname = devnum2devname(st->container_dev);
1600 *info->text_version = '\0';
1601 if (devname)
1602 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
1603 free(devname);
1604 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1605 uuid_from_super_imsm(st, info->uuid);
1606
1607 if (dmap) {
1608 int i, j;
1609 for (i=0; i<map_disks; i++) {
1610 dmap[i] = 0;
1611 if (i < info->array.raid_disks) {
1612 struct imsm_disk *dsk;
1613 j = get_imsm_disk_idx(dev, i);
1614 dsk = get_imsm_disk(super, j);
1615 if (dsk && (dsk->status & CONFIGURED_DISK))
1616 dmap[i] = 1;
1617 }
1618 }
1619 }
1620 }
1621
1622 /* check the config file to see if we can return a real uuid for this spare */
1623 static void fixup_container_spare_uuid(struct mdinfo *inf)
1624 {
1625 struct mddev_ident *array_list;
1626
1627 if (inf->array.level != LEVEL_CONTAINER ||
1628 memcmp(inf->uuid, uuid_match_any, sizeof(int[4])) != 0)
1629 return;
1630
1631 array_list = conf_get_ident(NULL);
1632
1633 for (; array_list; array_list = array_list->next) {
1634 if (array_list->uuid_set) {
1635 struct supertype *_sst; /* spare supertype */
1636 struct supertype *_cst; /* container supertype */
1637
1638 _cst = array_list->st;
1639 if (_cst)
1640 _sst = _cst->ss->match_metadata_desc(inf->text_version);
1641 else
1642 _sst = NULL;
1643
1644 if (_sst) {
1645 memcpy(inf->uuid, array_list->uuid, sizeof(int[4]));
1646 free(_sst);
1647 break;
1648 }
1649 }
1650 }
1651 }
1652
1653
1654 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
1655 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
1656
1657 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
1658 {
1659 struct dl *d;
1660
1661 for (d = super->missing; d; d = d->next)
1662 if (d->index == index)
1663 return &d->disk;
1664 return NULL;
1665 }
1666
1667 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
1668 {
1669 struct intel_super *super = st->sb;
1670 struct imsm_disk *disk;
1671 int map_disks = info->array.raid_disks;
1672 int max_enough = -1;
1673 int i;
1674 struct imsm_super *mpb;
1675
1676 if (super->current_vol >= 0) {
1677 getinfo_super_imsm_volume(st, info, map);
1678 return;
1679 }
1680
1681 /* Set raid_disks to zero so that Assemble will always pull in valid
1682 * spares
1683 */
1684 info->array.raid_disks = 0;
1685 info->array.level = LEVEL_CONTAINER;
1686 info->array.layout = 0;
1687 info->array.md_minor = -1;
1688 info->array.ctime = 0; /* N/A for imsm */
1689 info->array.utime = 0;
1690 info->array.chunk_size = 0;
1691
1692 info->disk.major = 0;
1693 info->disk.minor = 0;
1694 info->disk.raid_disk = -1;
1695 info->reshape_active = 0;
1696 info->array.major_version = -1;
1697 info->array.minor_version = -2;
1698 strcpy(info->text_version, "imsm");
1699 info->safe_mode_delay = 0;
1700 info->disk.number = -1;
1701 info->disk.state = 0;
1702 info->name[0] = 0;
1703 info->recovery_start = MaxSector;
1704
1705 /* do we have the all the insync disks that we expect? */
1706 mpb = super->anchor;
1707
1708 for (i = 0; i < mpb->num_raid_devs; i++) {
1709 struct imsm_dev *dev = get_imsm_dev(super, i);
1710 int failed, enough, j, missing = 0;
1711 struct imsm_map *map;
1712 __u8 state;
1713
1714 failed = imsm_count_failed(super, dev);
1715 state = imsm_check_degraded(super, dev, failed);
1716 map = get_imsm_map(dev, dev->vol.migr_state);
1717
1718 /* any newly missing disks?
1719 * (catches single-degraded vs double-degraded)
1720 */
1721 for (j = 0; j < map->num_members; j++) {
1722 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
1723 __u32 idx = ord_to_idx(ord);
1724
1725 if (!(ord & IMSM_ORD_REBUILD) &&
1726 get_imsm_missing(super, idx)) {
1727 missing = 1;
1728 break;
1729 }
1730 }
1731
1732 if (state == IMSM_T_STATE_FAILED)
1733 enough = -1;
1734 else if (state == IMSM_T_STATE_DEGRADED &&
1735 (state != map->map_state || missing))
1736 enough = 0;
1737 else /* we're normal, or already degraded */
1738 enough = 1;
1739
1740 /* in the missing/failed disk case check to see
1741 * if at least one array is runnable
1742 */
1743 max_enough = max(max_enough, enough);
1744 }
1745 dprintf("%s: enough: %d\n", __func__, max_enough);
1746 info->container_enough = max_enough;
1747
1748 if (super->disks) {
1749 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1750
1751 disk = &super->disks->disk;
1752 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1753 info->component_size = reserved;
1754 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
1755 /* we don't change info->disk.raid_disk here because
1756 * this state will be finalized in mdmon after we have
1757 * found the 'most fresh' version of the metadata
1758 */
1759 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
1760 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
1761 }
1762
1763 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1764 * ->compare_super may have updated the 'num_raid_devs' field for spares
1765 */
1766 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
1767 uuid_from_super_imsm(st, info->uuid);
1768 else {
1769 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
1770 fixup_container_spare_uuid(info);
1771 }
1772
1773 /* I don't know how to compute 'map' on imsm, so use safe default */
1774 if (map) {
1775 int i;
1776 for (i = 0; i < map_disks; i++)
1777 map[i] = 1;
1778 }
1779
1780 }
1781
1782 /* allocates memory and fills disk in mdinfo structure
1783 * for each disk in array */
1784 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
1785 {
1786 struct mdinfo *mddev = NULL;
1787 struct intel_super *super = st->sb;
1788 struct imsm_disk *disk;
1789 int count = 0;
1790 struct dl *dl;
1791 if (!super || !super->disks)
1792 return NULL;
1793 dl = super->disks;
1794 mddev = malloc(sizeof(*mddev));
1795 if (!mddev) {
1796 fprintf(stderr, Name ": Failed to allocate memory.\n");
1797 return NULL;
1798 }
1799 memset(mddev, 0, sizeof(*mddev));
1800 while (dl) {
1801 struct mdinfo *tmp;
1802 disk = &dl->disk;
1803 tmp = malloc(sizeof(*tmp));
1804 if (!tmp) {
1805 fprintf(stderr, Name ": Failed to allocate memory.\n");
1806 if (mddev)
1807 sysfs_free(mddev);
1808 return NULL;
1809 }
1810 memset(tmp, 0, sizeof(*tmp));
1811 if (mddev->devs)
1812 tmp->next = mddev->devs;
1813 mddev->devs = tmp;
1814 tmp->disk.number = count++;
1815 tmp->disk.major = dl->major;
1816 tmp->disk.minor = dl->minor;
1817 tmp->disk.state = is_configured(disk) ?
1818 (1 << MD_DISK_ACTIVE) : 0;
1819 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
1820 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
1821 tmp->disk.raid_disk = -1;
1822 dl = dl->next;
1823 }
1824 return mddev;
1825 }
1826
1827 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
1828 char *update, char *devname, int verbose,
1829 int uuid_set, char *homehost)
1830 {
1831 /* For 'assemble' and 'force' we need to return non-zero if any
1832 * change was made. For others, the return value is ignored.
1833 * Update options are:
1834 * force-one : This device looks a bit old but needs to be included,
1835 * update age info appropriately.
1836 * assemble: clear any 'faulty' flag to allow this device to
1837 * be assembled.
1838 * force-array: Array is degraded but being forced, mark it clean
1839 * if that will be needed to assemble it.
1840 *
1841 * newdev: not used ????
1842 * grow: Array has gained a new device - this is currently for
1843 * linear only
1844 * resync: mark as dirty so a resync will happen.
1845 * name: update the name - preserving the homehost
1846 * uuid: Change the uuid of the array to match watch is given
1847 *
1848 * Following are not relevant for this imsm:
1849 * sparc2.2 : update from old dodgey metadata
1850 * super-minor: change the preferred_minor number
1851 * summaries: update redundant counters.
1852 * homehost: update the recorded homehost
1853 * _reshape_progress: record new reshape_progress position.
1854 */
1855 int rv = 1;
1856 struct intel_super *super = st->sb;
1857 struct imsm_super *mpb;
1858
1859 /* we can only update container info */
1860 if (!super || super->current_vol >= 0 || !super->anchor)
1861 return 1;
1862
1863 mpb = super->anchor;
1864
1865 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1866 rv = -1;
1867 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
1868 mpb->orig_family_num = *((__u32 *) info->update_private);
1869 rv = 0;
1870 } else if (strcmp(update, "uuid") == 0) {
1871 __u32 *new_family = malloc(sizeof(*new_family));
1872
1873 /* update orig_family_number with the incoming random
1874 * data, report the new effective uuid, and store the
1875 * new orig_family_num for future updates.
1876 */
1877 if (new_family) {
1878 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
1879 uuid_from_super_imsm(st, info->uuid);
1880 *new_family = mpb->orig_family_num;
1881 info->update_private = new_family;
1882 rv = 0;
1883 }
1884 } else if (strcmp(update, "assemble") == 0)
1885 rv = 0;
1886 else
1887 rv = -1;
1888
1889 /* successful update? recompute checksum */
1890 if (rv == 0)
1891 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
1892
1893 return rv;
1894 }
1895
1896 static size_t disks_to_mpb_size(int disks)
1897 {
1898 size_t size;
1899
1900 size = sizeof(struct imsm_super);
1901 size += (disks - 1) * sizeof(struct imsm_disk);
1902 size += 2 * sizeof(struct imsm_dev);
1903 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
1904 size += (4 - 2) * sizeof(struct imsm_map);
1905 /* 4 possible disk_ord_tbl's */
1906 size += 4 * (disks - 1) * sizeof(__u32);
1907
1908 return size;
1909 }
1910
1911 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
1912 {
1913 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
1914 return 0;
1915
1916 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
1917 }
1918
1919 static void free_devlist(struct intel_super *super)
1920 {
1921 struct intel_dev *dv;
1922
1923 while (super->devlist) {
1924 dv = super->devlist->next;
1925 free(super->devlist->dev);
1926 free(super->devlist);
1927 super->devlist = dv;
1928 }
1929 }
1930
1931 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1932 {
1933 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1934 }
1935
1936 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
1937 {
1938 /*
1939 * return:
1940 * 0 same, or first was empty, and second was copied
1941 * 1 second had wrong number
1942 * 2 wrong uuid
1943 * 3 wrong other info
1944 */
1945 struct intel_super *first = st->sb;
1946 struct intel_super *sec = tst->sb;
1947
1948 if (!first) {
1949 st->sb = tst->sb;
1950 tst->sb = NULL;
1951 return 0;
1952 }
1953
1954 /* if an anchor does not have num_raid_devs set then it is a free
1955 * floating spare
1956 */
1957 if (first->anchor->num_raid_devs > 0 &&
1958 sec->anchor->num_raid_devs > 0) {
1959 /* Determine if these disks might ever have been
1960 * related. Further disambiguation can only take place
1961 * in load_super_imsm_all
1962 */
1963 __u32 first_family = first->anchor->orig_family_num;
1964 __u32 sec_family = sec->anchor->orig_family_num;
1965
1966 if (memcmp(first->anchor->sig, sec->anchor->sig,
1967 MAX_SIGNATURE_LENGTH) != 0)
1968 return 3;
1969
1970 if (first_family == 0)
1971 first_family = first->anchor->family_num;
1972 if (sec_family == 0)
1973 sec_family = sec->anchor->family_num;
1974
1975 if (first_family != sec_family)
1976 return 3;
1977
1978 }
1979
1980
1981 /* if 'first' is a spare promote it to a populated mpb with sec's
1982 * family number
1983 */
1984 if (first->anchor->num_raid_devs == 0 &&
1985 sec->anchor->num_raid_devs > 0) {
1986 int i;
1987 struct intel_dev *dv;
1988 struct imsm_dev *dev;
1989
1990 /* we need to copy raid device info from sec if an allocation
1991 * fails here we don't associate the spare
1992 */
1993 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
1994 dv = malloc(sizeof(*dv));
1995 if (!dv)
1996 break;
1997 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
1998 if (!dev) {
1999 free(dv);
2000 break;
2001 }
2002 dv->dev = dev;
2003 dv->index = i;
2004 dv->next = first->devlist;
2005 first->devlist = dv;
2006 }
2007 if (i < sec->anchor->num_raid_devs) {
2008 /* allocation failure */
2009 free_devlist(first);
2010 fprintf(stderr, "imsm: failed to associate spare\n");
2011 return 3;
2012 }
2013 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2014 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2015 first->anchor->family_num = sec->anchor->family_num;
2016 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2017 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2018 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2019 }
2020
2021 return 0;
2022 }
2023
2024 static void fd2devname(int fd, char *name)
2025 {
2026 struct stat st;
2027 char path[256];
2028 char dname[PATH_MAX];
2029 char *nm;
2030 int rv;
2031
2032 name[0] = '\0';
2033 if (fstat(fd, &st) != 0)
2034 return;
2035 sprintf(path, "/sys/dev/block/%d:%d",
2036 major(st.st_rdev), minor(st.st_rdev));
2037
2038 rv = readlink(path, dname, sizeof(dname));
2039 if (rv <= 0)
2040 return;
2041
2042 dname[rv] = '\0';
2043 nm = strrchr(dname, '/');
2044 nm++;
2045 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2046 }
2047
2048 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2049
2050 static int imsm_read_serial(int fd, char *devname,
2051 __u8 serial[MAX_RAID_SERIAL_LEN])
2052 {
2053 unsigned char scsi_serial[255];
2054 int rv;
2055 int rsp_len;
2056 int len;
2057 char *dest;
2058 char *src;
2059 char *rsp_buf;
2060 int i;
2061
2062 memset(scsi_serial, 0, sizeof(scsi_serial));
2063
2064 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2065
2066 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2067 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2068 fd2devname(fd, (char *) serial);
2069 return 0;
2070 }
2071
2072 if (rv != 0) {
2073 if (devname)
2074 fprintf(stderr,
2075 Name ": Failed to retrieve serial for %s\n",
2076 devname);
2077 return rv;
2078 }
2079
2080 rsp_len = scsi_serial[3];
2081 if (!rsp_len) {
2082 if (devname)
2083 fprintf(stderr,
2084 Name ": Failed to retrieve serial for %s\n",
2085 devname);
2086 return 2;
2087 }
2088 rsp_buf = (char *) &scsi_serial[4];
2089
2090 /* trim all whitespace and non-printable characters and convert
2091 * ':' to ';'
2092 */
2093 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2094 src = &rsp_buf[i];
2095 if (*src > 0x20) {
2096 /* ':' is reserved for use in placeholder serial
2097 * numbers for missing disks
2098 */
2099 if (*src == ':')
2100 *dest++ = ';';
2101 else
2102 *dest++ = *src;
2103 }
2104 }
2105 len = dest - rsp_buf;
2106 dest = rsp_buf;
2107
2108 /* truncate leading characters */
2109 if (len > MAX_RAID_SERIAL_LEN) {
2110 dest += len - MAX_RAID_SERIAL_LEN;
2111 len = MAX_RAID_SERIAL_LEN;
2112 }
2113
2114 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2115 memcpy(serial, dest, len);
2116
2117 return 0;
2118 }
2119
2120 static int serialcmp(__u8 *s1, __u8 *s2)
2121 {
2122 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2123 }
2124
2125 static void serialcpy(__u8 *dest, __u8 *src)
2126 {
2127 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2128 }
2129
2130 #ifndef MDASSEMBLE
2131 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2132 {
2133 struct dl *dl;
2134
2135 for (dl = super->disks; dl; dl = dl->next)
2136 if (serialcmp(dl->serial, serial) == 0)
2137 break;
2138
2139 return dl;
2140 }
2141 #endif
2142
2143 static struct imsm_disk *
2144 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2145 {
2146 int i;
2147
2148 for (i = 0; i < mpb->num_disks; i++) {
2149 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2150
2151 if (serialcmp(disk->serial, serial) == 0) {
2152 if (idx)
2153 *idx = i;
2154 return disk;
2155 }
2156 }
2157
2158 return NULL;
2159 }
2160
2161 static int
2162 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2163 {
2164 struct imsm_disk *disk;
2165 struct dl *dl;
2166 struct stat stb;
2167 int rv;
2168 char name[40];
2169 __u8 serial[MAX_RAID_SERIAL_LEN];
2170
2171 rv = imsm_read_serial(fd, devname, serial);
2172
2173 if (rv != 0)
2174 return 2;
2175
2176 dl = calloc(1, sizeof(*dl));
2177 if (!dl) {
2178 if (devname)
2179 fprintf(stderr,
2180 Name ": failed to allocate disk buffer for %s\n",
2181 devname);
2182 return 2;
2183 }
2184
2185 fstat(fd, &stb);
2186 dl->major = major(stb.st_rdev);
2187 dl->minor = minor(stb.st_rdev);
2188 dl->next = super->disks;
2189 dl->fd = keep_fd ? fd : -1;
2190 assert(super->disks == NULL);
2191 super->disks = dl;
2192 serialcpy(dl->serial, serial);
2193 dl->index = -2;
2194 dl->e = NULL;
2195 fd2devname(fd, name);
2196 if (devname)
2197 dl->devname = strdup(devname);
2198 else
2199 dl->devname = strdup(name);
2200
2201 /* look up this disk's index in the current anchor */
2202 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2203 if (disk) {
2204 dl->disk = *disk;
2205 /* only set index on disks that are a member of a
2206 * populated contianer, i.e. one with raid_devs
2207 */
2208 if (is_failed(&dl->disk))
2209 dl->index = -2;
2210 else if (is_spare(&dl->disk))
2211 dl->index = -1;
2212 }
2213
2214 return 0;
2215 }
2216
2217 #ifndef MDASSEMBLE
2218 /* When migrating map0 contains the 'destination' state while map1
2219 * contains the current state. When not migrating map0 contains the
2220 * current state. This routine assumes that map[0].map_state is set to
2221 * the current array state before being called.
2222 *
2223 * Migration is indicated by one of the following states
2224 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
2225 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
2226 * map1state=unitialized)
2227 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
2228 * map1state=normal)
2229 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
2230 * map1state=degraded)
2231 */
2232 static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
2233 {
2234 struct imsm_map *dest;
2235 struct imsm_map *src = get_imsm_map(dev, 0);
2236
2237 dev->vol.migr_state = 1;
2238 set_migr_type(dev, migr_type);
2239 dev->vol.curr_migr_unit = 0;
2240 dest = get_imsm_map(dev, 1);
2241
2242 /* duplicate and then set the target end state in map[0] */
2243 memcpy(dest, src, sizeof_imsm_map(src));
2244 if ((migr_type == MIGR_REBUILD) ||
2245 (migr_type == MIGR_GEN_MIGR)) {
2246 __u32 ord;
2247 int i;
2248
2249 for (i = 0; i < src->num_members; i++) {
2250 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2251 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2252 }
2253 }
2254
2255 src->map_state = to_state;
2256 }
2257
2258 static void end_migration(struct imsm_dev *dev, __u8 map_state)
2259 {
2260 struct imsm_map *map = get_imsm_map(dev, 0);
2261 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
2262 int i, j;
2263
2264 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2265 * completed in the last migration.
2266 *
2267 * FIXME add support for raid-level-migration
2268 */
2269 for (i = 0; i < prev->num_members; i++)
2270 for (j = 0; j < map->num_members; j++)
2271 /* during online capacity expansion
2272 * disks position can be changed if takeover is used
2273 */
2274 if (ord_to_idx(map->disk_ord_tbl[j]) ==
2275 ord_to_idx(prev->disk_ord_tbl[i])) {
2276 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
2277 break;
2278 }
2279
2280 dev->vol.migr_state = 0;
2281 dev->vol.migr_type = 0;
2282 dev->vol.curr_migr_unit = 0;
2283 map->map_state = map_state;
2284 }
2285 #endif
2286
2287 static int parse_raid_devices(struct intel_super *super)
2288 {
2289 int i;
2290 struct imsm_dev *dev_new;
2291 size_t len, len_migr;
2292 size_t space_needed = 0;
2293 struct imsm_super *mpb = super->anchor;
2294
2295 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2296 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2297 struct intel_dev *dv;
2298
2299 len = sizeof_imsm_dev(dev_iter, 0);
2300 len_migr = sizeof_imsm_dev(dev_iter, 1);
2301 if (len_migr > len)
2302 space_needed += len_migr - len;
2303
2304 dv = malloc(sizeof(*dv));
2305 if (!dv)
2306 return 1;
2307 dev_new = malloc(len_migr);
2308 if (!dev_new) {
2309 free(dv);
2310 return 1;
2311 }
2312 imsm_copy_dev(dev_new, dev_iter);
2313 dv->dev = dev_new;
2314 dv->index = i;
2315 dv->next = super->devlist;
2316 super->devlist = dv;
2317 }
2318
2319 /* ensure that super->buf is large enough when all raid devices
2320 * are migrating
2321 */
2322 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2323 void *buf;
2324
2325 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2326 if (posix_memalign(&buf, 512, len) != 0)
2327 return 1;
2328
2329 memcpy(buf, super->buf, super->len);
2330 memset(buf + super->len, 0, len - super->len);
2331 free(super->buf);
2332 super->buf = buf;
2333 super->len = len;
2334 }
2335
2336 return 0;
2337 }
2338
2339 /* retrieve a pointer to the bbm log which starts after all raid devices */
2340 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2341 {
2342 void *ptr = NULL;
2343
2344 if (__le32_to_cpu(mpb->bbm_log_size)) {
2345 ptr = mpb;
2346 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2347 }
2348
2349 return ptr;
2350 }
2351
2352 static void __free_imsm(struct intel_super *super, int free_disks);
2353
2354 /* load_imsm_mpb - read matrix metadata
2355 * allocates super->mpb to be freed by free_super
2356 */
2357 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
2358 {
2359 unsigned long long dsize;
2360 unsigned long long sectors;
2361 struct stat;
2362 struct imsm_super *anchor;
2363 __u32 check_sum;
2364
2365 get_dev_size(fd, NULL, &dsize);
2366 if (dsize < 1024) {
2367 if (devname)
2368 fprintf(stderr,
2369 Name ": %s: device to small for imsm\n",
2370 devname);
2371 return 1;
2372 }
2373
2374 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
2375 if (devname)
2376 fprintf(stderr,
2377 Name ": Cannot seek to anchor block on %s: %s\n",
2378 devname, strerror(errno));
2379 return 1;
2380 }
2381
2382 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
2383 if (devname)
2384 fprintf(stderr,
2385 Name ": Failed to allocate imsm anchor buffer"
2386 " on %s\n", devname);
2387 return 1;
2388 }
2389 if (read(fd, anchor, 512) != 512) {
2390 if (devname)
2391 fprintf(stderr,
2392 Name ": Cannot read anchor block on %s: %s\n",
2393 devname, strerror(errno));
2394 free(anchor);
2395 return 1;
2396 }
2397
2398 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
2399 if (devname)
2400 fprintf(stderr,
2401 Name ": no IMSM anchor on %s\n", devname);
2402 free(anchor);
2403 return 2;
2404 }
2405
2406 __free_imsm(super, 0);
2407 super->len = ROUND_UP(anchor->mpb_size, 512);
2408 if (posix_memalign(&super->buf, 512, super->len) != 0) {
2409 if (devname)
2410 fprintf(stderr,
2411 Name ": unable to allocate %zu byte mpb buffer\n",
2412 super->len);
2413 free(anchor);
2414 return 2;
2415 }
2416 memcpy(super->buf, anchor, 512);
2417
2418 sectors = mpb_sectors(anchor) - 1;
2419 free(anchor);
2420 if (!sectors) {
2421 check_sum = __gen_imsm_checksum(super->anchor);
2422 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2423 if (devname)
2424 fprintf(stderr,
2425 Name ": IMSM checksum %x != %x on %s\n",
2426 check_sum,
2427 __le32_to_cpu(super->anchor->check_sum),
2428 devname);
2429 return 2;
2430 }
2431
2432 return 0;
2433 }
2434
2435 /* read the extended mpb */
2436 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
2437 if (devname)
2438 fprintf(stderr,
2439 Name ": Cannot seek to extended mpb on %s: %s\n",
2440 devname, strerror(errno));
2441 return 1;
2442 }
2443
2444 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
2445 if (devname)
2446 fprintf(stderr,
2447 Name ": Cannot read extended mpb on %s: %s\n",
2448 devname, strerror(errno));
2449 return 2;
2450 }
2451
2452 check_sum = __gen_imsm_checksum(super->anchor);
2453 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2454 if (devname)
2455 fprintf(stderr,
2456 Name ": IMSM checksum %x != %x on %s\n",
2457 check_sum, __le32_to_cpu(super->anchor->check_sum),
2458 devname);
2459 return 3;
2460 }
2461
2462 /* FIXME the BBM log is disk specific so we cannot use this global
2463 * buffer for all disks. Ok for now since we only look at the global
2464 * bbm_log_size parameter to gate assembly
2465 */
2466 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2467
2468 return 0;
2469 }
2470
2471 static int
2472 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2473 {
2474 int err;
2475
2476 err = load_imsm_mpb(fd, super, devname);
2477 if (err)
2478 return err;
2479 err = load_imsm_disk(fd, super, devname, keep_fd);
2480 if (err)
2481 return err;
2482 err = parse_raid_devices(super);
2483
2484 return err;
2485 }
2486
2487 static void __free_imsm_disk(struct dl *d)
2488 {
2489 if (d->fd >= 0)
2490 close(d->fd);
2491 if (d->devname)
2492 free(d->devname);
2493 if (d->e)
2494 free(d->e);
2495 free(d);
2496
2497 }
2498
2499 static void free_imsm_disks(struct intel_super *super)
2500 {
2501 struct dl *d;
2502
2503 while (super->disks) {
2504 d = super->disks;
2505 super->disks = d->next;
2506 __free_imsm_disk(d);
2507 }
2508 while (super->missing) {
2509 d = super->missing;
2510 super->missing = d->next;
2511 __free_imsm_disk(d);
2512 }
2513
2514 }
2515
2516 /* free all the pieces hanging off of a super pointer */
2517 static void __free_imsm(struct intel_super *super, int free_disks)
2518 {
2519 if (super->buf) {
2520 free(super->buf);
2521 super->buf = NULL;
2522 }
2523 if (free_disks)
2524 free_imsm_disks(super);
2525 free_devlist(super);
2526 if (super->hba) {
2527 free((void *) super->hba);
2528 super->hba = NULL;
2529 }
2530 }
2531
2532 static void free_imsm(struct intel_super *super)
2533 {
2534 __free_imsm(super, 1);
2535 free(super);
2536 }
2537
2538 static void free_super_imsm(struct supertype *st)
2539 {
2540 struct intel_super *super = st->sb;
2541
2542 if (!super)
2543 return;
2544
2545 free_imsm(super);
2546 st->sb = NULL;
2547 }
2548
2549 static struct intel_super *alloc_super(void)
2550 {
2551 struct intel_super *super = malloc(sizeof(*super));
2552
2553 if (super) {
2554 memset(super, 0, sizeof(*super));
2555 super->current_vol = -1;
2556 super->create_offset = ~((__u32 ) 0);
2557 if (!check_env("IMSM_NO_PLATFORM"))
2558 super->orom = find_imsm_orom();
2559 if (super->orom && !check_env("IMSM_TEST_OROM")) {
2560 struct sys_dev *list, *ent;
2561
2562 /* find the first intel ahci controller */
2563 list = find_driver_devices("pci", "ahci");
2564 for (ent = list; ent; ent = ent->next)
2565 if (devpath_to_vendor(ent->path) == 0x8086)
2566 break;
2567 if (ent) {
2568 super->hba = ent->path;
2569 ent->path = NULL;
2570 }
2571 free_sys_dev(&list);
2572 }
2573 }
2574
2575 return super;
2576 }
2577
2578 #ifndef MDASSEMBLE
2579 /* find_missing - helper routine for load_super_imsm_all that identifies
2580 * disks that have disappeared from the system. This routine relies on
2581 * the mpb being uptodate, which it is at load time.
2582 */
2583 static int find_missing(struct intel_super *super)
2584 {
2585 int i;
2586 struct imsm_super *mpb = super->anchor;
2587 struct dl *dl;
2588 struct imsm_disk *disk;
2589
2590 for (i = 0; i < mpb->num_disks; i++) {
2591 disk = __get_imsm_disk(mpb, i);
2592 dl = serial_to_dl(disk->serial, super);
2593 if (dl)
2594 continue;
2595
2596 dl = malloc(sizeof(*dl));
2597 if (!dl)
2598 return 1;
2599 dl->major = 0;
2600 dl->minor = 0;
2601 dl->fd = -1;
2602 dl->devname = strdup("missing");
2603 dl->index = i;
2604 serialcpy(dl->serial, disk->serial);
2605 dl->disk = *disk;
2606 dl->e = NULL;
2607 dl->next = super->missing;
2608 super->missing = dl;
2609 }
2610
2611 return 0;
2612 }
2613
2614 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2615 {
2616 struct intel_disk *idisk = disk_list;
2617
2618 while (idisk) {
2619 if (serialcmp(idisk->disk.serial, serial) == 0)
2620 break;
2621 idisk = idisk->next;
2622 }
2623
2624 return idisk;
2625 }
2626
2627 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2628 struct intel_super *super,
2629 struct intel_disk **disk_list)
2630 {
2631 struct imsm_disk *d = &super->disks->disk;
2632 struct imsm_super *mpb = super->anchor;
2633 int i, j;
2634
2635 for (i = 0; i < tbl_size; i++) {
2636 struct imsm_super *tbl_mpb = table[i]->anchor;
2637 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2638
2639 if (tbl_mpb->family_num == mpb->family_num) {
2640 if (tbl_mpb->check_sum == mpb->check_sum) {
2641 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2642 __func__, super->disks->major,
2643 super->disks->minor,
2644 table[i]->disks->major,
2645 table[i]->disks->minor);
2646 break;
2647 }
2648
2649 if (((is_configured(d) && !is_configured(tbl_d)) ||
2650 is_configured(d) == is_configured(tbl_d)) &&
2651 tbl_mpb->generation_num < mpb->generation_num) {
2652 /* current version of the mpb is a
2653 * better candidate than the one in
2654 * super_table, but copy over "cross
2655 * generational" status
2656 */
2657 struct intel_disk *idisk;
2658
2659 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2660 __func__, super->disks->major,
2661 super->disks->minor,
2662 table[i]->disks->major,
2663 table[i]->disks->minor);
2664
2665 idisk = disk_list_get(tbl_d->serial, *disk_list);
2666 if (idisk && is_failed(&idisk->disk))
2667 tbl_d->status |= FAILED_DISK;
2668 break;
2669 } else {
2670 struct intel_disk *idisk;
2671 struct imsm_disk *disk;
2672
2673 /* tbl_mpb is more up to date, but copy
2674 * over cross generational status before
2675 * returning
2676 */
2677 disk = __serial_to_disk(d->serial, mpb, NULL);
2678 if (disk && is_failed(disk))
2679 d->status |= FAILED_DISK;
2680
2681 idisk = disk_list_get(d->serial, *disk_list);
2682 if (idisk) {
2683 idisk->owner = i;
2684 if (disk && is_configured(disk))
2685 idisk->disk.status |= CONFIGURED_DISK;
2686 }
2687
2688 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
2689 __func__, super->disks->major,
2690 super->disks->minor,
2691 table[i]->disks->major,
2692 table[i]->disks->minor);
2693
2694 return tbl_size;
2695 }
2696 }
2697 }
2698
2699 if (i >= tbl_size)
2700 table[tbl_size++] = super;
2701 else
2702 table[i] = super;
2703
2704 /* update/extend the merged list of imsm_disk records */
2705 for (j = 0; j < mpb->num_disks; j++) {
2706 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
2707 struct intel_disk *idisk;
2708
2709 idisk = disk_list_get(disk->serial, *disk_list);
2710 if (idisk) {
2711 idisk->disk.status |= disk->status;
2712 if (is_configured(&idisk->disk) ||
2713 is_failed(&idisk->disk))
2714 idisk->disk.status &= ~(SPARE_DISK);
2715 } else {
2716 idisk = calloc(1, sizeof(*idisk));
2717 if (!idisk)
2718 return -1;
2719 idisk->owner = IMSM_UNKNOWN_OWNER;
2720 idisk->disk = *disk;
2721 idisk->next = *disk_list;
2722 *disk_list = idisk;
2723 }
2724
2725 if (serialcmp(idisk->disk.serial, d->serial) == 0)
2726 idisk->owner = i;
2727 }
2728
2729 return tbl_size;
2730 }
2731
2732 static struct intel_super *
2733 validate_members(struct intel_super *super, struct intel_disk *disk_list,
2734 const int owner)
2735 {
2736 struct imsm_super *mpb = super->anchor;
2737 int ok_count = 0;
2738 int i;
2739
2740 for (i = 0; i < mpb->num_disks; i++) {
2741 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2742 struct intel_disk *idisk;
2743
2744 idisk = disk_list_get(disk->serial, disk_list);
2745 if (idisk) {
2746 if (idisk->owner == owner ||
2747 idisk->owner == IMSM_UNKNOWN_OWNER)
2748 ok_count++;
2749 else
2750 dprintf("%s: '%.16s' owner %d != %d\n",
2751 __func__, disk->serial, idisk->owner,
2752 owner);
2753 } else {
2754 dprintf("%s: unknown disk %x [%d]: %.16s\n",
2755 __func__, __le32_to_cpu(mpb->family_num), i,
2756 disk->serial);
2757 break;
2758 }
2759 }
2760
2761 if (ok_count == mpb->num_disks)
2762 return super;
2763 return NULL;
2764 }
2765
2766 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
2767 {
2768 struct intel_super *s;
2769
2770 for (s = super_list; s; s = s->next) {
2771 if (family_num != s->anchor->family_num)
2772 continue;
2773 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
2774 __le32_to_cpu(family_num), s->disks->devname);
2775 }
2776 }
2777
2778 static struct intel_super *
2779 imsm_thunderdome(struct intel_super **super_list, int len)
2780 {
2781 struct intel_super *super_table[len];
2782 struct intel_disk *disk_list = NULL;
2783 struct intel_super *champion, *spare;
2784 struct intel_super *s, **del;
2785 int tbl_size = 0;
2786 int conflict;
2787 int i;
2788
2789 memset(super_table, 0, sizeof(super_table));
2790 for (s = *super_list; s; s = s->next)
2791 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
2792
2793 for (i = 0; i < tbl_size; i++) {
2794 struct imsm_disk *d;
2795 struct intel_disk *idisk;
2796 struct imsm_super *mpb = super_table[i]->anchor;
2797
2798 s = super_table[i];
2799 d = &s->disks->disk;
2800
2801 /* 'd' must appear in merged disk list for its
2802 * configuration to be valid
2803 */
2804 idisk = disk_list_get(d->serial, disk_list);
2805 if (idisk && idisk->owner == i)
2806 s = validate_members(s, disk_list, i);
2807 else
2808 s = NULL;
2809
2810 if (!s)
2811 dprintf("%s: marking family: %#x from %d:%d offline\n",
2812 __func__, mpb->family_num,
2813 super_table[i]->disks->major,
2814 super_table[i]->disks->minor);
2815 super_table[i] = s;
2816 }
2817
2818 /* This is where the mdadm implementation differs from the Windows
2819 * driver which has no strict concept of a container. We can only
2820 * assemble one family from a container, so when returning a prodigal
2821 * array member to this system the code will not be able to disambiguate
2822 * the container contents that should be assembled ("foreign" versus
2823 * "local"). It requires user intervention to set the orig_family_num
2824 * to a new value to establish a new container. The Windows driver in
2825 * this situation fixes up the volume name in place and manages the
2826 * foreign array as an independent entity.
2827 */
2828 s = NULL;
2829 spare = NULL;
2830 conflict = 0;
2831 for (i = 0; i < tbl_size; i++) {
2832 struct intel_super *tbl_ent = super_table[i];
2833 int is_spare = 0;
2834
2835 if (!tbl_ent)
2836 continue;
2837
2838 if (tbl_ent->anchor->num_raid_devs == 0) {
2839 spare = tbl_ent;
2840 is_spare = 1;
2841 }
2842
2843 if (s && !is_spare) {
2844 show_conflicts(tbl_ent->anchor->family_num, *super_list);
2845 conflict++;
2846 } else if (!s && !is_spare)
2847 s = tbl_ent;
2848 }
2849
2850 if (!s)
2851 s = spare;
2852 if (!s) {
2853 champion = NULL;
2854 goto out;
2855 }
2856 champion = s;
2857
2858 if (conflict)
2859 fprintf(stderr, "Chose family %#x on '%s', "
2860 "assemble conflicts to new container with '--update=uuid'\n",
2861 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
2862
2863 /* collect all dl's onto 'champion', and update them to
2864 * champion's version of the status
2865 */
2866 for (s = *super_list; s; s = s->next) {
2867 struct imsm_super *mpb = champion->anchor;
2868 struct dl *dl = s->disks;
2869
2870 if (s == champion)
2871 continue;
2872
2873 for (i = 0; i < mpb->num_disks; i++) {
2874 struct imsm_disk *disk;
2875
2876 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
2877 if (disk) {
2878 dl->disk = *disk;
2879 /* only set index on disks that are a member of
2880 * a populated contianer, i.e. one with
2881 * raid_devs
2882 */
2883 if (is_failed(&dl->disk))
2884 dl->index = -2;
2885 else if (is_spare(&dl->disk))
2886 dl->index = -1;
2887 break;
2888 }
2889 }
2890
2891 if (i >= mpb->num_disks) {
2892 struct intel_disk *idisk;
2893
2894 idisk = disk_list_get(dl->serial, disk_list);
2895 if (idisk && is_spare(&idisk->disk) &&
2896 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
2897 dl->index = -1;
2898 else {
2899 dl->index = -2;
2900 continue;
2901 }
2902 }
2903
2904 dl->next = champion->disks;
2905 champion->disks = dl;
2906 s->disks = NULL;
2907 }
2908
2909 /* delete 'champion' from super_list */
2910 for (del = super_list; *del; ) {
2911 if (*del == champion) {
2912 *del = (*del)->next;
2913 break;
2914 } else
2915 del = &(*del)->next;
2916 }
2917 champion->next = NULL;
2918
2919 out:
2920 while (disk_list) {
2921 struct intel_disk *idisk = disk_list;
2922
2923 disk_list = disk_list->next;
2924 free(idisk);
2925 }
2926
2927 return champion;
2928 }
2929
2930 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
2931 char *devname)
2932 {
2933 struct mdinfo *sra;
2934 struct intel_super *super_list = NULL;
2935 struct intel_super *super = NULL;
2936 int devnum = fd2devnum(fd);
2937 struct mdinfo *sd;
2938 int retry;
2939 int err = 0;
2940 int i;
2941
2942 /* check if 'fd' an opened container */
2943 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
2944 if (!sra)
2945 return 1;
2946
2947 if (sra->array.major_version != -1 ||
2948 sra->array.minor_version != -2 ||
2949 strcmp(sra->text_version, "imsm") != 0) {
2950 err = 1;
2951 goto error;
2952 }
2953 /* load all mpbs */
2954 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
2955 struct intel_super *s = alloc_super();
2956 char nm[32];
2957 int dfd;
2958
2959 err = 1;
2960 if (!s)
2961 goto error;
2962 s->next = super_list;
2963 super_list = s;
2964
2965 err = 2;
2966 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2967 dfd = dev_open(nm, O_RDWR);
2968 if (dfd < 0)
2969 goto error;
2970
2971 err = load_and_parse_mpb(dfd, s, NULL, 1);
2972
2973 /* retry the load if we might have raced against mdmon */
2974 if (err == 3 && mdmon_running(devnum))
2975 for (retry = 0; retry < 3; retry++) {
2976 usleep(3000);
2977 err = load_and_parse_mpb(dfd, s, NULL, 1);
2978 if (err != 3)
2979 break;
2980 }
2981 if (err)
2982 goto error;
2983 }
2984
2985 /* all mpbs enter, maybe one leaves */
2986 super = imsm_thunderdome(&super_list, i);
2987 if (!super) {
2988 err = 1;
2989 goto error;
2990 }
2991
2992 if (find_missing(super) != 0) {
2993 free_imsm(super);
2994 err = 2;
2995 goto error;
2996 }
2997 err = 0;
2998
2999 error:
3000 while (super_list) {
3001 struct intel_super *s = super_list;
3002
3003 super_list = super_list->next;
3004 free_imsm(s);
3005 }
3006 sysfs_free(sra);
3007
3008 if (err)
3009 return err;
3010
3011 *sbp = super;
3012 st->container_dev = devnum;
3013 if (err == 0 && st->ss == NULL) {
3014 st->ss = &super_imsm;
3015 st->minor_version = 0;
3016 st->max_devs = IMSM_MAX_DEVICES;
3017 }
3018 return 0;
3019 }
3020
3021 static int load_container_imsm(struct supertype *st, int fd, char *devname)
3022 {
3023 return load_super_imsm_all(st, fd, &st->sb, devname);
3024 }
3025 #endif
3026
3027 static int load_super_imsm(struct supertype *st, int fd, char *devname)
3028 {
3029 struct intel_super *super;
3030 int rv;
3031
3032 #ifndef MDASSEMBLE
3033 if (load_super_imsm_all(st, fd, &st->sb, devname) == 0)
3034 return 0;
3035 #endif
3036
3037 if (test_partition(fd))
3038 /* IMSM not allowed on partitions */
3039 return 1;
3040
3041 free_super_imsm(st);
3042
3043 super = alloc_super();
3044 if (!super) {
3045 fprintf(stderr,
3046 Name ": malloc of %zu failed.\n",
3047 sizeof(*super));
3048 return 1;
3049 }
3050
3051 rv = load_and_parse_mpb(fd, super, devname, 0);
3052
3053 if (rv) {
3054 if (devname)
3055 fprintf(stderr,
3056 Name ": Failed to load all information "
3057 "sections on %s\n", devname);
3058 free_imsm(super);
3059 return rv;
3060 }
3061
3062 st->sb = super;
3063 if (st->ss == NULL) {
3064 st->ss = &super_imsm;
3065 st->minor_version = 0;
3066 st->max_devs = IMSM_MAX_DEVICES;
3067 }
3068 return 0;
3069 }
3070
3071 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3072 {
3073 if (info->level == 1)
3074 return 128;
3075 return info->chunk_size >> 9;
3076 }
3077
3078 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
3079 {
3080 __u32 num_stripes;
3081
3082 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
3083 num_stripes /= num_domains;
3084
3085 return num_stripes;
3086 }
3087
3088 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
3089 {
3090 if (info->level == 1)
3091 return info->size * 2;
3092 else
3093 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
3094 }
3095
3096 static void imsm_update_version_info(struct intel_super *super)
3097 {
3098 /* update the version and attributes */
3099 struct imsm_super *mpb = super->anchor;
3100 char *version;
3101 struct imsm_dev *dev;
3102 struct imsm_map *map;
3103 int i;
3104
3105 for (i = 0; i < mpb->num_raid_devs; i++) {
3106 dev = get_imsm_dev(super, i);
3107 map = get_imsm_map(dev, 0);
3108 if (__le32_to_cpu(dev->size_high) > 0)
3109 mpb->attributes |= MPB_ATTRIB_2TB;
3110
3111 /* FIXME detect when an array spans a port multiplier */
3112 #if 0
3113 mpb->attributes |= MPB_ATTRIB_PM;
3114 #endif
3115
3116 if (mpb->num_raid_devs > 1 ||
3117 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
3118 version = MPB_VERSION_ATTRIBS;
3119 switch (get_imsm_raid_level(map)) {
3120 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
3121 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
3122 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
3123 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
3124 }
3125 } else {
3126 if (map->num_members >= 5)
3127 version = MPB_VERSION_5OR6_DISK_ARRAY;
3128 else if (dev->status == DEV_CLONE_N_GO)
3129 version = MPB_VERSION_CNG;
3130 else if (get_imsm_raid_level(map) == 5)
3131 version = MPB_VERSION_RAID5;
3132 else if (map->num_members >= 3)
3133 version = MPB_VERSION_3OR4_DISK_ARRAY;
3134 else if (get_imsm_raid_level(map) == 1)
3135 version = MPB_VERSION_RAID1;
3136 else
3137 version = MPB_VERSION_RAID0;
3138 }
3139 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
3140 }
3141 }
3142
3143 static int check_name(struct intel_super *super, char *name, int quiet)
3144 {
3145 struct imsm_super *mpb = super->anchor;
3146 char *reason = NULL;
3147 int i;
3148
3149 if (strlen(name) > MAX_RAID_SERIAL_LEN)
3150 reason = "must be 16 characters or less";
3151
3152 for (i = 0; i < mpb->num_raid_devs; i++) {
3153 struct imsm_dev *dev = get_imsm_dev(super, i);
3154
3155 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
3156 reason = "already exists";
3157 break;
3158 }
3159 }
3160
3161 if (reason && !quiet)
3162 fprintf(stderr, Name ": imsm volume name %s\n", reason);
3163
3164 return !reason;
3165 }
3166
3167 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
3168 unsigned long long size, char *name,
3169 char *homehost, int *uuid)
3170 {
3171 /* We are creating a volume inside a pre-existing container.
3172 * so st->sb is already set.
3173 */
3174 struct intel_super *super = st->sb;
3175 struct imsm_super *mpb = super->anchor;
3176 struct intel_dev *dv;
3177 struct imsm_dev *dev;
3178 struct imsm_vol *vol;
3179 struct imsm_map *map;
3180 int idx = mpb->num_raid_devs;
3181 int i;
3182 unsigned long long array_blocks;
3183 size_t size_old, size_new;
3184 __u32 num_data_stripes;
3185
3186 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
3187 fprintf(stderr, Name": This imsm-container already has the "
3188 "maximum of %d volumes\n", super->orom->vpa);
3189 return 0;
3190 }
3191
3192 /* ensure the mpb is large enough for the new data */
3193 size_old = __le32_to_cpu(mpb->mpb_size);
3194 size_new = disks_to_mpb_size(info->nr_disks);
3195 if (size_new > size_old) {
3196 void *mpb_new;
3197 size_t size_round = ROUND_UP(size_new, 512);
3198
3199 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
3200 fprintf(stderr, Name": could not allocate new mpb\n");
3201 return 0;
3202 }
3203 memcpy(mpb_new, mpb, size_old);
3204 free(mpb);
3205 mpb = mpb_new;
3206 super->anchor = mpb_new;
3207 mpb->mpb_size = __cpu_to_le32(size_new);
3208 memset(mpb_new + size_old, 0, size_round - size_old);
3209 }
3210 super->current_vol = idx;
3211 /* when creating the first raid device in this container set num_disks
3212 * to zero, i.e. delete this spare and add raid member devices in
3213 * add_to_super_imsm_volume()
3214 */
3215 if (super->current_vol == 0)
3216 mpb->num_disks = 0;
3217
3218 if (!check_name(super, name, 0))
3219 return 0;
3220 dv = malloc(sizeof(*dv));
3221 if (!dv) {
3222 fprintf(stderr, Name ": failed to allocate device list entry\n");
3223 return 0;
3224 }
3225 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
3226 if (!dev) {
3227 free(dv);
3228 fprintf(stderr, Name": could not allocate raid device\n");
3229 return 0;
3230 }
3231 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
3232 if (info->level == 1)
3233 array_blocks = info_to_blocks_per_member(info);
3234 else
3235 array_blocks = calc_array_size(info->level, info->raid_disks,
3236 info->layout, info->chunk_size,
3237 info->size*2);
3238 /* round array size down to closest MB */
3239 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
3240
3241 dev->size_low = __cpu_to_le32((__u32) array_blocks);
3242 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
3243 dev->status = __cpu_to_le32(0);
3244 dev->reserved_blocks = __cpu_to_le32(0);
3245 vol = &dev->vol;
3246 vol->migr_state = 0;
3247 set_migr_type(dev, MIGR_INIT);
3248 vol->dirty = 0;
3249 vol->curr_migr_unit = 0;
3250 map = get_imsm_map(dev, 0);
3251 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
3252 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
3253 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
3254 map->failed_disk_num = ~0;
3255 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
3256 IMSM_T_STATE_NORMAL;
3257 map->ddf = 1;
3258
3259 if (info->level == 1 && info->raid_disks > 2) {
3260 free(dev);
3261 free(dv);
3262 fprintf(stderr, Name": imsm does not support more than 2 disks"
3263 "in a raid1 volume\n");
3264 return 0;
3265 }
3266
3267 map->raid_level = info->level;
3268 if (info->level == 10) {
3269 map->raid_level = 1;
3270 map->num_domains = info->raid_disks / 2;
3271 } else if (info->level == 1)
3272 map->num_domains = info->raid_disks;
3273 else
3274 map->num_domains = 1;
3275
3276 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
3277 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
3278
3279 map->num_members = info->raid_disks;
3280 for (i = 0; i < map->num_members; i++) {
3281 /* initialized in add_to_super */
3282 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
3283 }
3284 mpb->num_raid_devs++;
3285
3286 dv->dev = dev;
3287 dv->index = super->current_vol;
3288 dv->next = super->devlist;
3289 super->devlist = dv;
3290
3291 imsm_update_version_info(super);
3292
3293 return 1;
3294 }
3295
3296 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
3297 unsigned long long size, char *name,
3298 char *homehost, int *uuid)
3299 {
3300 /* This is primarily called by Create when creating a new array.
3301 * We will then get add_to_super called for each component, and then
3302 * write_init_super called to write it out to each device.
3303 * For IMSM, Create can create on fresh devices or on a pre-existing
3304 * array.
3305 * To create on a pre-existing array a different method will be called.
3306 * This one is just for fresh drives.
3307 */
3308 struct intel_super *super;
3309 struct imsm_super *mpb;
3310 size_t mpb_size;
3311 char *version;
3312
3313 if (st->sb)
3314 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
3315
3316 if (info)
3317 mpb_size = disks_to_mpb_size(info->nr_disks);
3318 else
3319 mpb_size = 512;
3320
3321 super = alloc_super();
3322 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
3323 free(super);
3324 super = NULL;
3325 }
3326 if (!super) {
3327 fprintf(stderr, Name
3328 ": %s could not allocate superblock\n", __func__);
3329 return 0;
3330 }
3331 memset(super->buf, 0, mpb_size);
3332 mpb = super->buf;
3333 mpb->mpb_size = __cpu_to_le32(mpb_size);
3334 st->sb = super;
3335
3336 if (info == NULL) {
3337 /* zeroing superblock */
3338 return 0;
3339 }
3340
3341 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3342
3343 version = (char *) mpb->sig;
3344 strcpy(version, MPB_SIGNATURE);
3345 version += strlen(MPB_SIGNATURE);
3346 strcpy(version, MPB_VERSION_RAID0);
3347
3348 return 1;
3349 }
3350
3351 #ifndef MDASSEMBLE
3352 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
3353 int fd, char *devname)
3354 {
3355 struct intel_super *super = st->sb;
3356 struct imsm_super *mpb = super->anchor;
3357 struct dl *dl;
3358 struct imsm_dev *dev;
3359 struct imsm_map *map;
3360 int slot;
3361
3362 dev = get_imsm_dev(super, super->current_vol);
3363 map = get_imsm_map(dev, 0);
3364
3365 if (! (dk->state & (1<<MD_DISK_SYNC))) {
3366 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
3367 devname);
3368 return 1;
3369 }
3370
3371 if (fd == -1) {
3372 /* we're doing autolayout so grab the pre-marked (in
3373 * validate_geometry) raid_disk
3374 */
3375 for (dl = super->disks; dl; dl = dl->next)
3376 if (dl->raiddisk == dk->raid_disk)
3377 break;
3378 } else {
3379 for (dl = super->disks; dl ; dl = dl->next)
3380 if (dl->major == dk->major &&
3381 dl->minor == dk->minor)
3382 break;
3383 }
3384
3385 if (!dl) {
3386 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
3387 return 1;
3388 }
3389
3390 /* add a pristine spare to the metadata */
3391 if (dl->index < 0) {
3392 dl->index = super->anchor->num_disks;
3393 super->anchor->num_disks++;
3394 }
3395 /* Check the device has not already been added */
3396 slot = get_imsm_disk_slot(map, dl->index);
3397 if (slot >= 0 &&
3398 (get_imsm_ord_tbl_ent(dev, slot) & IMSM_ORD_REBUILD) == 0) {
3399 fprintf(stderr, Name ": %s has been included in this array twice\n",
3400 devname);
3401 return 1;
3402 }
3403 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
3404 dl->disk.status = CONFIGURED_DISK;
3405
3406 /* if we are creating the first raid device update the family number */
3407 if (super->current_vol == 0) {
3408 __u32 sum;
3409 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
3410 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
3411
3412 if (!_dev || !_disk) {
3413 fprintf(stderr, Name ": BUG mpb setup error\n");
3414 return 1;
3415 }
3416 *_dev = *dev;
3417 *_disk = dl->disk;
3418 sum = random32();
3419 sum += __gen_imsm_checksum(mpb);
3420 mpb->family_num = __cpu_to_le32(sum);
3421 mpb->orig_family_num = mpb->family_num;
3422 }
3423
3424 return 0;
3425 }
3426
3427 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
3428 int fd, char *devname)
3429 {
3430 struct intel_super *super = st->sb;
3431 struct dl *dd;
3432 unsigned long long size;
3433 __u32 id;
3434 int rv;
3435 struct stat stb;
3436
3437 /* if we are on an RAID enabled platform check that the disk is
3438 * attached to the raid controller
3439 */
3440 if (super->hba && !disk_attached_to_hba(fd, super->hba)) {
3441 fprintf(stderr,
3442 Name ": %s is not attached to the raid controller: %s\n",
3443 devname ? : "disk", super->hba);
3444 return 1;
3445 }
3446
3447 if (super->current_vol >= 0)
3448 return add_to_super_imsm_volume(st, dk, fd, devname);
3449
3450 fstat(fd, &stb);
3451 dd = malloc(sizeof(*dd));
3452 if (!dd) {
3453 fprintf(stderr,
3454 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3455 return 1;
3456 }
3457 memset(dd, 0, sizeof(*dd));
3458 dd->major = major(stb.st_rdev);
3459 dd->minor = minor(stb.st_rdev);
3460 dd->index = -1;
3461 dd->devname = devname ? strdup(devname) : NULL;
3462 dd->fd = fd;
3463 dd->e = NULL;
3464 dd->action = DISK_ADD;
3465 rv = imsm_read_serial(fd, devname, dd->serial);
3466 if (rv) {
3467 fprintf(stderr,
3468 Name ": failed to retrieve scsi serial, aborting\n");
3469 free(dd);
3470 abort();
3471 }
3472
3473 get_dev_size(fd, NULL, &size);
3474 size /= 512;
3475 serialcpy(dd->disk.serial, dd->serial);
3476 dd->disk.total_blocks = __cpu_to_le32(size);
3477 dd->disk.status = SPARE_DISK;
3478 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
3479 dd->disk.scsi_id = __cpu_to_le32(id);
3480 else
3481 dd->disk.scsi_id = __cpu_to_le32(0);
3482
3483 if (st->update_tail) {
3484 dd->next = super->disk_mgmt_list;
3485 super->disk_mgmt_list = dd;
3486 } else {
3487 dd->next = super->disks;
3488 super->disks = dd;
3489 }
3490
3491 return 0;
3492 }
3493
3494
3495 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
3496 {
3497 struct intel_super *super = st->sb;
3498 struct dl *dd;
3499
3500 /* remove from super works only in mdmon - for communication
3501 * manager - monitor. Check if communication memory buffer
3502 * is prepared.
3503 */
3504 if (!st->update_tail) {
3505 fprintf(stderr,
3506 Name ": %s shall be used in mdmon context only"
3507 "(line %d).\n", __func__, __LINE__);
3508 return 1;
3509 }
3510 dd = malloc(sizeof(*dd));
3511 if (!dd) {
3512 fprintf(stderr,
3513 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3514 return 1;
3515 }
3516 memset(dd, 0, sizeof(*dd));
3517 dd->major = dk->major;
3518 dd->minor = dk->minor;
3519 dd->index = -1;
3520 dd->fd = -1;
3521 dd->disk.status = SPARE_DISK;
3522 dd->action = DISK_REMOVE;
3523
3524 dd->next = super->disk_mgmt_list;
3525 super->disk_mgmt_list = dd;
3526
3527
3528 return 0;
3529 }
3530
3531 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3532
3533 static union {
3534 char buf[512];
3535 struct imsm_super anchor;
3536 } spare_record __attribute__ ((aligned(512)));
3537
3538 /* spare records have their own family number and do not have any defined raid
3539 * devices
3540 */
3541 static int write_super_imsm_spares(struct intel_super *super, int doclose)
3542 {
3543 struct imsm_super *mpb = super->anchor;
3544 struct imsm_super *spare = &spare_record.anchor;
3545 __u32 sum;
3546 struct dl *d;
3547
3548 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3549 spare->generation_num = __cpu_to_le32(1UL),
3550 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3551 spare->num_disks = 1,
3552 spare->num_raid_devs = 0,
3553 spare->cache_size = mpb->cache_size,
3554 spare->pwr_cycle_count = __cpu_to_le32(1),
3555
3556 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3557 MPB_SIGNATURE MPB_VERSION_RAID0);
3558
3559 for (d = super->disks; d; d = d->next) {
3560 if (d->index != -1)
3561 continue;
3562
3563 spare->disk[0] = d->disk;
3564 sum = __gen_imsm_checksum(spare);
3565 spare->family_num = __cpu_to_le32(sum);
3566 spare->orig_family_num = 0;
3567 sum = __gen_imsm_checksum(spare);
3568 spare->check_sum = __cpu_to_le32(sum);
3569
3570 if (store_imsm_mpb(d->fd, spare)) {
3571 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3572 __func__, d->major, d->minor, strerror(errno));
3573 return 1;
3574 }
3575 if (doclose) {
3576 close(d->fd);
3577 d->fd = -1;
3578 }
3579 }
3580
3581 return 0;
3582 }
3583
3584 static int write_super_imsm(struct supertype *st, int doclose)
3585 {
3586 struct intel_super *super = st->sb;
3587 struct imsm_super *mpb = super->anchor;
3588 struct dl *d;
3589 __u32 generation;
3590 __u32 sum;
3591 int spares = 0;
3592 int i;
3593 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
3594 int num_disks = 0;
3595
3596 /* 'generation' is incremented everytime the metadata is written */
3597 generation = __le32_to_cpu(mpb->generation_num);
3598 generation++;
3599 mpb->generation_num = __cpu_to_le32(generation);
3600
3601 /* fix up cases where previous mdadm releases failed to set
3602 * orig_family_num
3603 */
3604 if (mpb->orig_family_num == 0)
3605 mpb->orig_family_num = mpb->family_num;
3606
3607 for (d = super->disks; d; d = d->next) {
3608 if (d->index == -1)
3609 spares++;
3610 else {
3611 mpb->disk[d->index] = d->disk;
3612 num_disks++;
3613 }
3614 }
3615 for (d = super->missing; d; d = d->next) {
3616 mpb->disk[d->index] = d->disk;
3617 num_disks++;
3618 }
3619 mpb->num_disks = num_disks;
3620 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
3621
3622 for (i = 0; i < mpb->num_raid_devs; i++) {
3623 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3624 struct imsm_dev *dev2 = get_imsm_dev(super, i);
3625 if (dev && dev2) {
3626 imsm_copy_dev(dev, dev2);
3627 mpb_size += sizeof_imsm_dev(dev, 0);
3628 }
3629 }
3630 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3631 mpb->mpb_size = __cpu_to_le32(mpb_size);
3632
3633 /* recalculate checksum */
3634 sum = __gen_imsm_checksum(mpb);
3635 mpb->check_sum = __cpu_to_le32(sum);
3636
3637 /* write the mpb for disks that compose raid devices */
3638 for (d = super->disks; d ; d = d->next) {
3639 if (d->index < 0)
3640 continue;
3641 if (store_imsm_mpb(d->fd, mpb))
3642 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3643 __func__, d->major, d->minor, strerror(errno));
3644 if (doclose) {
3645 close(d->fd);
3646 d->fd = -1;
3647 }
3648 }
3649
3650 if (spares)
3651 return write_super_imsm_spares(super, doclose);
3652
3653 return 0;
3654 }
3655
3656
3657 static int create_array(struct supertype *st, int dev_idx)
3658 {
3659 size_t len;
3660 struct imsm_update_create_array *u;
3661 struct intel_super *super = st->sb;
3662 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3663 struct imsm_map *map = get_imsm_map(dev, 0);
3664 struct disk_info *inf;
3665 struct imsm_disk *disk;
3666 int i;
3667
3668 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
3669 sizeof(*inf) * map->num_members;
3670 u = malloc(len);
3671 if (!u) {
3672 fprintf(stderr, "%s: failed to allocate update buffer\n",
3673 __func__);
3674 return 1;
3675 }
3676
3677 u->type = update_create_array;
3678 u->dev_idx = dev_idx;
3679 imsm_copy_dev(&u->dev, dev);
3680 inf = get_disk_info(u);
3681 for (i = 0; i < map->num_members; i++) {
3682 int idx = get_imsm_disk_idx(dev, i);
3683
3684 disk = get_imsm_disk(super, idx);
3685 serialcpy(inf[i].serial, disk->serial);
3686 }
3687 append_metadata_update(st, u, len);
3688
3689 return 0;
3690 }
3691
3692 static int mgmt_disk(struct supertype *st)
3693 {
3694 struct intel_super *super = st->sb;
3695 size_t len;
3696 struct imsm_update_add_remove_disk *u;
3697
3698 if (!super->disk_mgmt_list)
3699 return 0;
3700
3701 len = sizeof(*u);
3702 u = malloc(len);
3703 if (!u) {
3704 fprintf(stderr, "%s: failed to allocate update buffer\n",
3705 __func__);
3706 return 1;
3707 }
3708
3709 u->type = update_add_remove_disk;
3710 append_metadata_update(st, u, len);
3711
3712 return 0;
3713 }
3714
3715 static int write_init_super_imsm(struct supertype *st)
3716 {
3717 struct intel_super *super = st->sb;
3718 int current_vol = super->current_vol;
3719
3720 /* we are done with current_vol reset it to point st at the container */
3721 super->current_vol = -1;
3722
3723 if (st->update_tail) {
3724 /* queue the recently created array / added disk
3725 * as a metadata update */
3726 struct dl *d;
3727 int rv;
3728
3729 /* determine if we are creating a volume or adding a disk */
3730 if (current_vol < 0) {
3731 /* in the mgmt (add/remove) disk case we are running
3732 * in mdmon context, so don't close fd's
3733 */
3734 return mgmt_disk(st);
3735 } else
3736 rv = create_array(st, current_vol);
3737
3738 for (d = super->disks; d ; d = d->next) {
3739 close(d->fd);
3740 d->fd = -1;
3741 }
3742
3743 return rv;
3744 } else {
3745 struct dl *d;
3746 for (d = super->disks; d; d = d->next)
3747 Kill(d->devname, NULL, 0, 1, 1);
3748 return write_super_imsm(st, 1);
3749 }
3750 }
3751 #endif
3752
3753 static int store_super_imsm(struct supertype *st, int fd)
3754 {
3755 struct intel_super *super = st->sb;
3756 struct imsm_super *mpb = super ? super->anchor : NULL;
3757
3758 if (!mpb)
3759 return 1;
3760
3761 #ifndef MDASSEMBLE
3762 return store_imsm_mpb(fd, mpb);
3763 #else
3764 return 1;
3765 #endif
3766 }
3767
3768 static int imsm_bbm_log_size(struct imsm_super *mpb)
3769 {
3770 return __le32_to_cpu(mpb->bbm_log_size);
3771 }
3772
3773 #ifndef MDASSEMBLE
3774 static int validate_geometry_imsm_container(struct supertype *st, int level,
3775 int layout, int raiddisks, int chunk,
3776 unsigned long long size, char *dev,
3777 unsigned long long *freesize,
3778 int verbose)
3779 {
3780 int fd;
3781 unsigned long long ldsize;
3782 const struct imsm_orom *orom;
3783
3784 if (level != LEVEL_CONTAINER)
3785 return 0;
3786 if (!dev)
3787 return 1;
3788
3789 if (check_env("IMSM_NO_PLATFORM"))
3790 orom = NULL;
3791 else
3792 orom = find_imsm_orom();
3793 if (orom && raiddisks > orom->tds) {
3794 if (verbose)
3795 fprintf(stderr, Name ": %d exceeds maximum number of"
3796 " platform supported disks: %d\n",
3797 raiddisks, orom->tds);
3798 return 0;
3799 }
3800
3801 fd = open(dev, O_RDONLY|O_EXCL, 0);
3802 if (fd < 0) {
3803 if (verbose)
3804 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
3805 dev, strerror(errno));
3806 return 0;
3807 }
3808 if (!get_dev_size(fd, dev, &ldsize)) {
3809 close(fd);
3810 return 0;
3811 }
3812 close(fd);
3813
3814 *freesize = avail_size_imsm(st, ldsize >> 9);
3815
3816 return 1;
3817 }
3818
3819 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
3820 {
3821 const unsigned long long base_start = e[*idx].start;
3822 unsigned long long end = base_start + e[*idx].size;
3823 int i;
3824
3825 if (base_start == end)
3826 return 0;
3827
3828 *idx = *idx + 1;
3829 for (i = *idx; i < num_extents; i++) {
3830 /* extend overlapping extents */
3831 if (e[i].start >= base_start &&
3832 e[i].start <= end) {
3833 if (e[i].size == 0)
3834 return 0;
3835 if (e[i].start + e[i].size > end)
3836 end = e[i].start + e[i].size;
3837 } else if (e[i].start > end) {
3838 *idx = i;
3839 break;
3840 }
3841 }
3842
3843 return end - base_start;
3844 }
3845
3846 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
3847 {
3848 /* build a composite disk with all known extents and generate a new
3849 * 'maxsize' given the "all disks in an array must share a common start
3850 * offset" constraint
3851 */
3852 struct extent *e = calloc(sum_extents, sizeof(*e));
3853 struct dl *dl;
3854 int i, j;
3855 int start_extent;
3856 unsigned long long pos;
3857 unsigned long long start = 0;
3858 unsigned long long maxsize;
3859 unsigned long reserve;
3860
3861 if (!e)
3862 return 0;
3863
3864 /* coalesce and sort all extents. also, check to see if we need to
3865 * reserve space between member arrays
3866 */
3867 j = 0;
3868 for (dl = super->disks; dl; dl = dl->next) {
3869 if (!dl->e)
3870 continue;
3871 for (i = 0; i < dl->extent_cnt; i++)
3872 e[j++] = dl->e[i];
3873 }
3874 qsort(e, sum_extents, sizeof(*e), cmp_extent);
3875
3876 /* merge extents */
3877 i = 0;
3878 j = 0;
3879 while (i < sum_extents) {
3880 e[j].start = e[i].start;
3881 e[j].size = find_size(e, &i, sum_extents);
3882 j++;
3883 if (e[j-1].size == 0)
3884 break;
3885 }
3886
3887 pos = 0;
3888 maxsize = 0;
3889 start_extent = 0;
3890 i = 0;
3891 do {
3892 unsigned long long esize;
3893
3894 esize = e[i].start - pos;
3895 if (esize >= maxsize) {
3896 maxsize = esize;
3897 start = pos;
3898 start_extent = i;
3899 }
3900 pos = e[i].start + e[i].size;
3901 i++;
3902 } while (e[i-1].size);
3903 free(e);
3904
3905 if (maxsize == 0)
3906 return 0;
3907
3908 /* FIXME assumes volume at offset 0 is the first volume in a
3909 * container
3910 */
3911 if (start_extent > 0)
3912 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
3913 else
3914 reserve = 0;
3915
3916 if (maxsize < reserve)
3917 return 0;
3918
3919 super->create_offset = ~((__u32) 0);
3920 if (start + reserve > super->create_offset)
3921 return 0; /* start overflows create_offset */
3922 super->create_offset = start + reserve;
3923
3924 return maxsize - reserve;
3925 }
3926
3927 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
3928 {
3929 if (level < 0 || level == 6 || level == 4)
3930 return 0;
3931
3932 /* if we have an orom prevent invalid raid levels */
3933 if (orom)
3934 switch (level) {
3935 case 0: return imsm_orom_has_raid0(orom);
3936 case 1:
3937 if (raiddisks > 2)
3938 return imsm_orom_has_raid1e(orom);
3939 return imsm_orom_has_raid1(orom) && raiddisks == 2;
3940 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
3941 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
3942 }
3943 else
3944 return 1; /* not on an Intel RAID platform so anything goes */
3945
3946 return 0;
3947 }
3948
3949 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
3950 static int
3951 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
3952 int raiddisks, int chunk, int verbose)
3953 {
3954 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
3955 pr_vrb(": platform does not support raid%d with %d disk%s\n",
3956 level, raiddisks, raiddisks > 1 ? "s" : "");
3957 return 0;
3958 }
3959 if (super->orom && level != 1 &&
3960 !imsm_orom_has_chunk(super->orom, chunk)) {
3961 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
3962 return 0;
3963 }
3964 if (layout != imsm_level_to_layout(level)) {
3965 if (level == 5)
3966 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
3967 else if (level == 10)
3968 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
3969 else
3970 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
3971 layout, level);
3972 return 0;
3973 }
3974
3975 return 1;
3976 }
3977
3978 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
3979 * FIX ME add ahci details
3980 */
3981 static int validate_geometry_imsm_volume(struct supertype *st, int level,
3982 int layout, int raiddisks, int chunk,
3983 unsigned long long size, char *dev,
3984 unsigned long long *freesize,
3985 int verbose)
3986 {
3987 struct stat stb;
3988 struct intel_super *super = st->sb;
3989 struct imsm_super *mpb = super->anchor;
3990 struct dl *dl;
3991 unsigned long long pos = 0;
3992 unsigned long long maxsize;
3993 struct extent *e;
3994 int i;
3995
3996 /* We must have the container info already read in. */
3997 if (!super)
3998 return 0;
3999
4000 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose))
4001 return 0;
4002
4003 if (!dev) {
4004 /* General test: make sure there is space for
4005 * 'raiddisks' device extents of size 'size' at a given
4006 * offset
4007 */
4008 unsigned long long minsize = size;
4009 unsigned long long start_offset = MaxSector;
4010 int dcnt = 0;
4011 if (minsize == 0)
4012 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
4013 for (dl = super->disks; dl ; dl = dl->next) {
4014 int found = 0;
4015
4016 pos = 0;
4017 i = 0;
4018 e = get_extents(super, dl);
4019 if (!e) continue;
4020 do {
4021 unsigned long long esize;
4022 esize = e[i].start - pos;
4023 if (esize >= minsize)
4024 found = 1;
4025 if (found && start_offset == MaxSector) {
4026 start_offset = pos;
4027 break;
4028 } else if (found && pos != start_offset) {
4029 found = 0;
4030 break;
4031 }
4032 pos = e[i].start + e[i].size;
4033 i++;
4034 } while (e[i-1].size);
4035 if (found)
4036 dcnt++;
4037 free(e);
4038 }
4039 if (dcnt < raiddisks) {
4040 if (verbose)
4041 fprintf(stderr, Name ": imsm: Not enough "
4042 "devices with space for this array "
4043 "(%d < %d)\n",
4044 dcnt, raiddisks);
4045 return 0;
4046 }
4047 return 1;
4048 }
4049
4050 /* This device must be a member of the set */
4051 if (stat(dev, &stb) < 0)
4052 return 0;
4053 if ((S_IFMT & stb.st_mode) != S_IFBLK)
4054 return 0;
4055 for (dl = super->disks ; dl ; dl = dl->next) {
4056 if (dl->major == (int)major(stb.st_rdev) &&
4057 dl->minor == (int)minor(stb.st_rdev))
4058 break;
4059 }
4060 if (!dl) {
4061 if (verbose)
4062 fprintf(stderr, Name ": %s is not in the "
4063 "same imsm set\n", dev);
4064 return 0;
4065 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
4066 /* If a volume is present then the current creation attempt
4067 * cannot incorporate new spares because the orom may not
4068 * understand this configuration (all member disks must be
4069 * members of each array in the container).
4070 */
4071 fprintf(stderr, Name ": %s is a spare and a volume"
4072 " is already defined for this container\n", dev);
4073 fprintf(stderr, Name ": The option-rom requires all member"
4074 " disks to be a member of all volumes\n");
4075 return 0;
4076 }
4077
4078 /* retrieve the largest free space block */
4079 e = get_extents(super, dl);
4080 maxsize = 0;
4081 i = 0;
4082 if (e) {
4083 do {
4084 unsigned long long esize;
4085
4086 esize = e[i].start - pos;
4087 if (esize >= maxsize)
4088 maxsize = esize;
4089 pos = e[i].start + e[i].size;
4090 i++;
4091 } while (e[i-1].size);
4092 dl->e = e;
4093 dl->extent_cnt = i;
4094 } else {
4095 if (verbose)
4096 fprintf(stderr, Name ": unable to determine free space for: %s\n",
4097 dev);
4098 return 0;
4099 }
4100 if (maxsize < size) {
4101 if (verbose)
4102 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
4103 dev, maxsize, size);
4104 return 0;
4105 }
4106
4107 /* count total number of extents for merge */
4108 i = 0;
4109 for (dl = super->disks; dl; dl = dl->next)
4110 if (dl->e)
4111 i += dl->extent_cnt;
4112
4113 maxsize = merge_extents(super, i);
4114 if (maxsize < size || maxsize == 0) {
4115 if (verbose)
4116 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
4117 maxsize, size);
4118 return 0;
4119 }
4120
4121 *freesize = maxsize;
4122
4123 return 1;
4124 }
4125
4126 static int reserve_space(struct supertype *st, int raiddisks,
4127 unsigned long long size, int chunk,
4128 unsigned long long *freesize)
4129 {
4130 struct intel_super *super = st->sb;
4131 struct imsm_super *mpb = super->anchor;
4132 struct dl *dl;
4133 int i;
4134 int extent_cnt;
4135 struct extent *e;
4136 unsigned long long maxsize;
4137 unsigned long long minsize;
4138 int cnt;
4139 int used;
4140
4141 /* find the largest common start free region of the possible disks */
4142 used = 0;
4143 extent_cnt = 0;
4144 cnt = 0;
4145 for (dl = super->disks; dl; dl = dl->next) {
4146 dl->raiddisk = -1;
4147
4148 if (dl->index >= 0)
4149 used++;
4150
4151 /* don't activate new spares if we are orom constrained
4152 * and there is already a volume active in the container
4153 */
4154 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
4155 continue;
4156
4157 e = get_extents(super, dl);
4158 if (!e)
4159 continue;
4160 for (i = 1; e[i-1].size; i++)
4161 ;
4162 dl->e = e;
4163 dl->extent_cnt = i;
4164 extent_cnt += i;
4165 cnt++;
4166 }
4167
4168 maxsize = merge_extents(super, extent_cnt);
4169 minsize = size;
4170 if (size == 0)
4171 minsize = chunk;
4172
4173 if (cnt < raiddisks ||
4174 (super->orom && used && used != raiddisks) ||
4175 maxsize < minsize ||
4176 maxsize == 0) {
4177 fprintf(stderr, Name ": not enough devices with space to create array.\n");
4178 return 0; /* No enough free spaces large enough */
4179 }
4180
4181 if (size == 0) {
4182 size = maxsize;
4183 if (chunk) {
4184 size /= chunk;
4185 size *= chunk;
4186 }
4187 }
4188
4189 cnt = 0;
4190 for (dl = super->disks; dl; dl = dl->next)
4191 if (dl->e)
4192 dl->raiddisk = cnt++;
4193
4194 *freesize = size;
4195
4196 return 1;
4197 }
4198
4199 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
4200 int raiddisks, int chunk, unsigned long long size,
4201 char *dev, unsigned long long *freesize,
4202 int verbose)
4203 {
4204 int fd, cfd;
4205 struct mdinfo *sra;
4206 int is_member = 0;
4207
4208 /* if given unused devices create a container
4209 * if given given devices in a container create a member volume
4210 */
4211 if (level == LEVEL_CONTAINER) {
4212 /* Must be a fresh device to add to a container */
4213 return validate_geometry_imsm_container(st, level, layout,
4214 raiddisks, chunk, size,
4215 dev, freesize,
4216 verbose);
4217 }
4218
4219 if (!dev) {
4220 if (st->sb && freesize) {
4221 /* we are being asked to automatically layout a
4222 * new volume based on the current contents of
4223 * the container. If the the parameters can be
4224 * satisfied reserve_space will record the disks,
4225 * start offset, and size of the volume to be
4226 * created. add_to_super and getinfo_super
4227 * detect when autolayout is in progress.
4228 */
4229 if (!validate_geometry_imsm_orom(st->sb, level, layout,
4230 raiddisks, chunk,
4231 verbose))
4232 return 0;
4233 return reserve_space(st, raiddisks, size, chunk, freesize);
4234 }
4235 return 1;
4236 }
4237 if (st->sb) {
4238 /* creating in a given container */
4239 return validate_geometry_imsm_volume(st, level, layout,
4240 raiddisks, chunk, size,
4241 dev, freesize, verbose);
4242 }
4243
4244 /* This device needs to be a device in an 'imsm' container */
4245 fd = open(dev, O_RDONLY|O_EXCL, 0);
4246 if (fd >= 0) {
4247 if (verbose)
4248 fprintf(stderr,
4249 Name ": Cannot create this array on device %s\n",
4250 dev);
4251 close(fd);
4252 return 0;
4253 }
4254 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
4255 if (verbose)
4256 fprintf(stderr, Name ": Cannot open %s: %s\n",
4257 dev, strerror(errno));
4258 return 0;
4259 }
4260 /* Well, it is in use by someone, maybe an 'imsm' container. */
4261 cfd = open_container(fd);
4262 close(fd);
4263 if (cfd < 0) {
4264 if (verbose)
4265 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
4266 dev);
4267 return 0;
4268 }
4269 sra = sysfs_read(cfd, 0, GET_VERSION);
4270 if (sra && sra->array.major_version == -1 &&
4271 strcmp(sra->text_version, "imsm") == 0)
4272 is_member = 1;
4273 sysfs_free(sra);
4274 if (is_member) {
4275 /* This is a member of a imsm container. Load the container
4276 * and try to create a volume
4277 */
4278 struct intel_super *super;
4279
4280 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
4281 st->sb = super;
4282 st->container_dev = fd2devnum(cfd);
4283 close(cfd);
4284 return validate_geometry_imsm_volume(st, level, layout,
4285 raiddisks, chunk,
4286 size, dev,
4287 freesize, verbose);
4288 }
4289 }
4290
4291 if (verbose)
4292 fprintf(stderr, Name ": failed container membership check\n");
4293
4294 close(cfd);
4295 return 0;
4296 }
4297
4298 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
4299 {
4300 struct intel_super *super = st->sb;
4301
4302 if (level && *level == UnSet)
4303 *level = LEVEL_CONTAINER;
4304
4305 if (level && layout && *layout == UnSet)
4306 *layout = imsm_level_to_layout(*level);
4307
4308 if (chunk && (*chunk == UnSet || *chunk == 0) &&
4309 super && super->orom)
4310 *chunk = imsm_orom_default_chunk(super->orom);
4311 }
4312
4313 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
4314
4315 static int kill_subarray_imsm(struct supertype *st)
4316 {
4317 /* remove the subarray currently referenced by ->current_vol */
4318 __u8 i;
4319 struct intel_dev **dp;
4320 struct intel_super *super = st->sb;
4321 __u8 current_vol = super->current_vol;
4322 struct imsm_super *mpb = super->anchor;
4323
4324 if (super->current_vol < 0)
4325 return 2;
4326 super->current_vol = -1; /* invalidate subarray cursor */
4327
4328 /* block deletions that would change the uuid of active subarrays
4329 *
4330 * FIXME when immutable ids are available, but note that we'll
4331 * also need to fixup the invalidated/active subarray indexes in
4332 * mdstat
4333 */
4334 for (i = 0; i < mpb->num_raid_devs; i++) {
4335 char subarray[4];
4336
4337 if (i < current_vol)
4338 continue;
4339 sprintf(subarray, "%u", i);
4340 if (is_subarray_active(subarray, st->devname)) {
4341 fprintf(stderr,
4342 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
4343 current_vol, i);
4344
4345 return 2;
4346 }
4347 }
4348
4349 if (st->update_tail) {
4350 struct imsm_update_kill_array *u = malloc(sizeof(*u));
4351
4352 if (!u)
4353 return 2;
4354 u->type = update_kill_array;
4355 u->dev_idx = current_vol;
4356 append_metadata_update(st, u, sizeof(*u));
4357
4358 return 0;
4359 }
4360
4361 for (dp = &super->devlist; *dp;)
4362 if ((*dp)->index == current_vol) {
4363 *dp = (*dp)->next;
4364 } else {
4365 handle_missing(super, (*dp)->dev);
4366 if ((*dp)->index > current_vol)
4367 (*dp)->index--;
4368 dp = &(*dp)->next;
4369 }
4370
4371 /* no more raid devices, all active components are now spares,
4372 * but of course failed are still failed
4373 */
4374 if (--mpb->num_raid_devs == 0) {
4375 struct dl *d;
4376
4377 for (d = super->disks; d; d = d->next)
4378 if (d->index > -2) {
4379 d->index = -1;
4380 d->disk.status = SPARE_DISK;
4381 }
4382 }
4383
4384 super->updates_pending++;
4385
4386 return 0;
4387 }
4388
4389 static int update_subarray_imsm(struct supertype *st, char *subarray,
4390 char *update, struct mddev_ident *ident)
4391 {
4392 /* update the subarray currently referenced by ->current_vol */
4393 struct intel_super *super = st->sb;
4394 struct imsm_super *mpb = super->anchor;
4395
4396 if (strcmp(update, "name") == 0) {
4397 char *name = ident->name;
4398 char *ep;
4399 int vol;
4400
4401 if (is_subarray_active(subarray, st->devname)) {
4402 fprintf(stderr,
4403 Name ": Unable to update name of active subarray\n");
4404 return 2;
4405 }
4406
4407 if (!check_name(super, name, 0))
4408 return 2;
4409
4410 vol = strtoul(subarray, &ep, 10);
4411 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
4412 return 2;
4413
4414 if (st->update_tail) {
4415 struct imsm_update_rename_array *u = malloc(sizeof(*u));
4416
4417 if (!u)
4418 return 2;
4419 u->type = update_rename_array;
4420 u->dev_idx = vol;
4421 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
4422 append_metadata_update(st, u, sizeof(*u));
4423 } else {
4424 struct imsm_dev *dev;
4425 int i;
4426
4427 dev = get_imsm_dev(super, vol);
4428 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
4429 for (i = 0; i < mpb->num_raid_devs; i++) {
4430 dev = get_imsm_dev(super, i);
4431 handle_missing(super, dev);
4432 }
4433 super->updates_pending++;
4434 }
4435 } else
4436 return 2;
4437
4438 return 0;
4439 }
4440 #endif /* MDASSEMBLE */
4441
4442 static int is_gen_migration(struct imsm_dev *dev)
4443 {
4444 if (!dev->vol.migr_state)
4445 return 0;
4446
4447 if (migr_type(dev) == MIGR_GEN_MIGR)
4448 return 1;
4449
4450 return 0;
4451 }
4452
4453 static int is_rebuilding(struct imsm_dev *dev)
4454 {
4455 struct imsm_map *migr_map;
4456
4457 if (!dev->vol.migr_state)
4458 return 0;
4459
4460 if (migr_type(dev) != MIGR_REBUILD)
4461 return 0;
4462
4463 migr_map = get_imsm_map(dev, 1);
4464
4465 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
4466 return 1;
4467 else
4468 return 0;
4469 }
4470
4471 static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array)
4472 {
4473 struct mdinfo *rebuild = NULL;
4474 struct mdinfo *d;
4475 __u32 units;
4476
4477 if (!is_rebuilding(dev))
4478 return;
4479
4480 /* Find the rebuild target, but punt on the dual rebuild case */
4481 for (d = array->devs; d; d = d->next)
4482 if (d->recovery_start == 0) {
4483 if (rebuild)
4484 return;
4485 rebuild = d;
4486 }
4487
4488 if (!rebuild) {
4489 /* (?) none of the disks are marked with
4490 * IMSM_ORD_REBUILD, so assume they are missing and the
4491 * disk_ord_tbl was not correctly updated
4492 */
4493 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
4494 return;
4495 }
4496
4497 units = __le32_to_cpu(dev->vol.curr_migr_unit);
4498 rebuild->recovery_start = units * blocks_per_migr_unit(dev);
4499 }
4500
4501
4502 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
4503 {
4504 /* Given a container loaded by load_super_imsm_all,
4505 * extract information about all the arrays into
4506 * an mdinfo tree.
4507 * If 'subarray' is given, just extract info about that array.
4508 *
4509 * For each imsm_dev create an mdinfo, fill it in,
4510 * then look for matching devices in super->disks
4511 * and create appropriate device mdinfo.
4512 */
4513 struct intel_super *super = st->sb;
4514 struct imsm_super *mpb = super->anchor;
4515 struct mdinfo *rest = NULL;
4516 unsigned int i;
4517
4518 /* do not assemble arrays that might have bad blocks */
4519 if (imsm_bbm_log_size(super->anchor)) {
4520 fprintf(stderr, Name ": BBM log found in metadata. "
4521 "Cannot activate array(s).\n");
4522 return NULL;
4523 }
4524
4525 for (i = 0; i < mpb->num_raid_devs; i++) {
4526 struct imsm_dev *dev;
4527 struct imsm_map *map;
4528 struct mdinfo *this;
4529 int slot;
4530 char *ep;
4531
4532 if (subarray &&
4533 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
4534 continue;
4535
4536 dev = get_imsm_dev(super, i);
4537 map = get_imsm_map(dev, 0);
4538
4539 /* do not publish arrays that are in the middle of an
4540 * unsupported migration
4541 */
4542 if (dev->vol.migr_state &&
4543 (migr_type(dev) == MIGR_STATE_CHANGE)) {
4544 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
4545 " unsupported migration in progress\n",
4546 dev->volume);
4547 continue;
4548 }
4549
4550 this = malloc(sizeof(*this));
4551 if (!this) {
4552 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
4553 sizeof(*this));
4554 break;
4555 }
4556 memset(this, 0, sizeof(*this));
4557 this->next = rest;
4558
4559 super->current_vol = i;
4560 getinfo_super_imsm_volume(st, this, NULL);
4561 for (slot = 0 ; slot < map->num_members; slot++) {
4562 unsigned long long recovery_start;
4563 struct mdinfo *info_d;
4564 struct dl *d;
4565 int idx;
4566 int skip;
4567 __u32 ord;
4568
4569 skip = 0;
4570 idx = get_imsm_disk_idx(dev, slot);
4571 ord = get_imsm_ord_tbl_ent(dev, slot);
4572 for (d = super->disks; d ; d = d->next)
4573 if (d->index == idx)
4574 break;
4575
4576 recovery_start = MaxSector;
4577 if (d == NULL)
4578 skip = 1;
4579 if (d && is_failed(&d->disk))
4580 skip = 1;
4581 if (ord & IMSM_ORD_REBUILD)
4582 recovery_start = 0;
4583
4584 /*
4585 * if we skip some disks the array will be assmebled degraded;
4586 * reset resync start to avoid a dirty-degraded
4587 * situation when performing the intial sync
4588 *
4589 * FIXME handle dirty degraded
4590 */
4591 if ((skip || recovery_start == 0) && !dev->vol.dirty)
4592 this->resync_start = MaxSector;
4593 if (skip)
4594 continue;
4595
4596 info_d = calloc(1, sizeof(*info_d));
4597 if (!info_d) {
4598 fprintf(stderr, Name ": failed to allocate disk"
4599 " for volume %.16s\n", dev->volume);
4600 info_d = this->devs;
4601 while (info_d) {
4602 struct mdinfo *d = info_d->next;
4603
4604 free(info_d);
4605 info_d = d;
4606 }
4607 free(this);
4608 this = rest;
4609 break;
4610 }
4611 info_d->next = this->devs;
4612 this->devs = info_d;
4613
4614 info_d->disk.number = d->index;
4615 info_d->disk.major = d->major;
4616 info_d->disk.minor = d->minor;
4617 info_d->disk.raid_disk = slot;
4618 info_d->recovery_start = recovery_start;
4619
4620 if (info_d->recovery_start == MaxSector)
4621 this->array.working_disks++;
4622
4623 info_d->events = __le32_to_cpu(mpb->generation_num);
4624 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
4625 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4626 }
4627 /* now that the disk list is up-to-date fixup recovery_start */
4628 update_recovery_start(dev, this);
4629 rest = this;
4630 }
4631
4632 return rest;
4633 }
4634
4635
4636 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
4637 {
4638 struct imsm_map *map = get_imsm_map(dev, 0);
4639
4640 if (!failed)
4641 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
4642 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
4643
4644 switch (get_imsm_raid_level(map)) {
4645 case 0:
4646 return IMSM_T_STATE_FAILED;
4647 break;
4648 case 1:
4649 if (failed < map->num_members)
4650 return IMSM_T_STATE_DEGRADED;
4651 else
4652 return IMSM_T_STATE_FAILED;
4653 break;
4654 case 10:
4655 {
4656 /**
4657 * check to see if any mirrors have failed, otherwise we
4658 * are degraded. Even numbered slots are mirrored on
4659 * slot+1
4660 */
4661 int i;
4662 /* gcc -Os complains that this is unused */
4663 int insync = insync;
4664
4665 for (i = 0; i < map->num_members; i++) {
4666 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
4667 int idx = ord_to_idx(ord);
4668 struct imsm_disk *disk;
4669
4670 /* reset the potential in-sync count on even-numbered
4671 * slots. num_copies is always 2 for imsm raid10
4672 */
4673 if ((i & 1) == 0)
4674 insync = 2;
4675
4676 disk = get_imsm_disk(super, idx);
4677 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4678 insync--;
4679
4680 /* no in-sync disks left in this mirror the
4681 * array has failed
4682 */
4683 if (insync == 0)
4684 return IMSM_T_STATE_FAILED;
4685 }
4686
4687 return IMSM_T_STATE_DEGRADED;
4688 }
4689 case 5:
4690 if (failed < 2)
4691 return IMSM_T_STATE_DEGRADED;
4692 else
4693 return IMSM_T_STATE_FAILED;
4694 break;
4695 default:
4696 break;
4697 }
4698
4699 return map->map_state;
4700 }
4701
4702 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
4703 {
4704 int i;
4705 int failed = 0;
4706 struct imsm_disk *disk;
4707 struct imsm_map *map = get_imsm_map(dev, 0);
4708 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
4709 __u32 ord;
4710 int idx;
4711
4712 /* at the beginning of migration we set IMSM_ORD_REBUILD on
4713 * disks that are being rebuilt. New failures are recorded to
4714 * map[0]. So we look through all the disks we started with and
4715 * see if any failures are still present, or if any new ones
4716 * have arrived
4717 *
4718 * FIXME add support for online capacity expansion and
4719 * raid-level-migration
4720 */
4721 for (i = 0; i < prev->num_members; i++) {
4722 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
4723 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
4724 idx = ord_to_idx(ord);
4725
4726 disk = get_imsm_disk(super, idx);
4727 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4728 failed++;
4729 }
4730
4731 return failed;
4732 }
4733
4734 #ifndef MDASSEMBLE
4735 static int imsm_open_new(struct supertype *c, struct active_array *a,
4736 char *inst)
4737 {
4738 struct intel_super *super = c->sb;
4739 struct imsm_super *mpb = super->anchor;
4740
4741 if (atoi(inst) >= mpb->num_raid_devs) {
4742 fprintf(stderr, "%s: subarry index %d, out of range\n",
4743 __func__, atoi(inst));
4744 return -ENODEV;
4745 }
4746
4747 dprintf("imsm: open_new %s\n", inst);
4748 a->info.container_member = atoi(inst);
4749 return 0;
4750 }
4751
4752 static int is_resyncing(struct imsm_dev *dev)
4753 {
4754 struct imsm_map *migr_map;
4755
4756 if (!dev->vol.migr_state)
4757 return 0;
4758
4759 if (migr_type(dev) == MIGR_INIT ||
4760 migr_type(dev) == MIGR_REPAIR)
4761 return 1;
4762
4763 migr_map = get_imsm_map(dev, 1);
4764
4765 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
4766 return 1;
4767 else
4768 return 0;
4769 }
4770
4771 /* return true if we recorded new information */
4772 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
4773 {
4774 __u32 ord;
4775 int slot;
4776 struct imsm_map *map;
4777
4778 /* new failures are always set in map[0] */
4779 map = get_imsm_map(dev, 0);
4780
4781 slot = get_imsm_disk_slot(map, idx);
4782 if (slot < 0)
4783 return 0;
4784
4785 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
4786 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
4787 return 0;
4788
4789 disk->status |= FAILED_DISK;
4790 disk->status &= ~CONFIGURED_DISK;
4791 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
4792 if (map->failed_disk_num == 0xff)
4793 map->failed_disk_num = slot;
4794 return 1;
4795 }
4796
4797 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
4798 {
4799 mark_failure(dev, disk, idx);
4800
4801 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
4802 return;
4803
4804 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4805 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
4806 }
4807
4808 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
4809 {
4810 __u8 map_state;
4811 struct dl *dl;
4812 int failed;
4813
4814 if (!super->missing)
4815 return;
4816 failed = imsm_count_failed(super, dev);
4817 map_state = imsm_check_degraded(super, dev, failed);
4818
4819 dprintf("imsm: mark missing\n");
4820 end_migration(dev, map_state);
4821 for (dl = super->missing; dl; dl = dl->next)
4822 mark_missing(dev, &dl->disk, dl->index);
4823 super->updates_pending++;
4824 }
4825
4826 static void imsm_set_disk(struct active_array *a, int n, int state);
4827
4828 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
4829 * states are handled in imsm_set_disk() with one exception, when a
4830 * resync is stopped due to a new failure this routine will set the
4831 * 'degraded' state for the array.
4832 */
4833 static int imsm_set_array_state(struct active_array *a, int consistent)
4834 {
4835 int inst = a->info.container_member;
4836 struct intel_super *super = a->container->sb;
4837 struct imsm_dev *dev = get_imsm_dev(super, inst);
4838 struct imsm_map *map = get_imsm_map(dev, 0);
4839 int failed = imsm_count_failed(super, dev);
4840 __u8 map_state = imsm_check_degraded(super, dev, failed);
4841 __u32 blocks_per_unit;
4842
4843 /* before we activate this array handle any missing disks */
4844 if (consistent == 2)
4845 handle_missing(super, dev);
4846
4847 if (consistent == 2 &&
4848 (!is_resync_complete(&a->info) ||
4849 map_state != IMSM_T_STATE_NORMAL ||
4850 dev->vol.migr_state))
4851 consistent = 0;
4852
4853 if (is_resync_complete(&a->info)) {
4854 /* complete intialization / resync,
4855 * recovery and interrupted recovery is completed in
4856 * ->set_disk
4857 */
4858 if (is_resyncing(dev)) {
4859 dprintf("imsm: mark resync done\n");
4860 end_migration(dev, map_state);
4861 super->updates_pending++;
4862 a->last_checkpoint = 0;
4863 }
4864 } else if (!is_resyncing(dev) && !failed) {
4865 /* mark the start of the init process if nothing is failed */
4866 dprintf("imsm: mark resync start\n");
4867 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
4868 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
4869 else
4870 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
4871 super->updates_pending++;
4872 }
4873
4874 /* check if we can update curr_migr_unit from resync_start, recovery_start */
4875 blocks_per_unit = blocks_per_migr_unit(dev);
4876 if (blocks_per_unit) {
4877 __u32 units32;
4878 __u64 units;
4879
4880 units = a->last_checkpoint / blocks_per_unit;
4881 units32 = units;
4882
4883 /* check that we did not overflow 32-bits, and that
4884 * curr_migr_unit needs updating
4885 */
4886 if (units32 == units &&
4887 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
4888 dprintf("imsm: mark checkpoint (%u)\n", units32);
4889 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
4890 super->updates_pending++;
4891 }
4892 }
4893
4894 /* mark dirty / clean */
4895 if (dev->vol.dirty != !consistent) {
4896 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
4897 if (consistent)
4898 dev->vol.dirty = 0;
4899 else
4900 dev->vol.dirty = 1;
4901 super->updates_pending++;
4902 }
4903
4904 /* finalize online capacity expansion/reshape */
4905 if ((a->curr_action != reshape) &&
4906 (a->prev_action == reshape)) {
4907 struct mdinfo *mdi;
4908
4909 for (mdi = a->info.devs; mdi; mdi = mdi->next)
4910 imsm_set_disk(a, mdi->disk.raid_disk, mdi->curr_state);
4911 }
4912
4913 return consistent;
4914 }
4915
4916 static void imsm_set_disk(struct active_array *a, int n, int state)
4917 {
4918 int inst = a->info.container_member;
4919 struct intel_super *super = a->container->sb;
4920 struct imsm_dev *dev = get_imsm_dev(super, inst);
4921 struct imsm_map *map = get_imsm_map(dev, 0);
4922 struct imsm_disk *disk;
4923 int failed;
4924 __u32 ord;
4925 __u8 map_state;
4926
4927 if (n > map->num_members)
4928 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
4929 n, map->num_members - 1);
4930
4931 if (n < 0)
4932 return;
4933
4934 dprintf("imsm: set_disk %d:%x\n", n, state);
4935
4936 ord = get_imsm_ord_tbl_ent(dev, n);
4937 disk = get_imsm_disk(super, ord_to_idx(ord));
4938
4939 /* check for new failures */
4940 if (state & DS_FAULTY) {
4941 if (mark_failure(dev, disk, ord_to_idx(ord)))
4942 super->updates_pending++;
4943 }
4944
4945 /* check if in_sync */
4946 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
4947 struct imsm_map *migr_map = get_imsm_map(dev, 1);
4948
4949 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
4950 super->updates_pending++;
4951 }
4952
4953 failed = imsm_count_failed(super, dev);
4954 map_state = imsm_check_degraded(super, dev, failed);
4955
4956 /* check if recovery complete, newly degraded, or failed */
4957 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
4958 end_migration(dev, map_state);
4959 map = get_imsm_map(dev, 0);
4960 map->failed_disk_num = ~0;
4961 super->updates_pending++;
4962 a->last_checkpoint = 0;
4963 } else if (map_state == IMSM_T_STATE_DEGRADED &&
4964 map->map_state != map_state &&
4965 !dev->vol.migr_state) {
4966 dprintf("imsm: mark degraded\n");
4967 map->map_state = map_state;
4968 super->updates_pending++;
4969 a->last_checkpoint = 0;
4970 } else if (map_state == IMSM_T_STATE_FAILED &&
4971 map->map_state != map_state) {
4972 dprintf("imsm: mark failed\n");
4973 end_migration(dev, map_state);
4974 super->updates_pending++;
4975 a->last_checkpoint = 0;
4976 } else if (is_gen_migration(dev)) {
4977 dprintf("imsm: Detected General Migration in state: ");
4978 if (map_state == IMSM_T_STATE_NORMAL) {
4979 end_migration(dev, map_state);
4980 map = get_imsm_map(dev, 0);
4981 map->failed_disk_num = ~0;
4982 dprintf("normal\n");
4983 } else {
4984 if (map_state == IMSM_T_STATE_DEGRADED) {
4985 printf("degraded\n");
4986 end_migration(dev, map_state);
4987 } else {
4988 dprintf("failed\n");
4989 }
4990 map->map_state = map_state;
4991 }
4992 super->updates_pending++;
4993 }
4994 }
4995
4996 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
4997 {
4998 void *buf = mpb;
4999 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
5000 unsigned long long dsize;
5001 unsigned long long sectors;
5002
5003 get_dev_size(fd, NULL, &dsize);
5004
5005 if (mpb_size > 512) {
5006 /* -1 to account for anchor */
5007 sectors = mpb_sectors(mpb) - 1;
5008
5009 /* write the extended mpb to the sectors preceeding the anchor */
5010 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
5011 return 1;
5012
5013 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
5014 != 512 * sectors)
5015 return 1;
5016 }
5017
5018 /* first block is stored on second to last sector of the disk */
5019 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
5020 return 1;
5021
5022 if (write(fd, buf, 512) != 512)
5023 return 1;
5024
5025 return 0;
5026 }
5027
5028 static void imsm_sync_metadata(struct supertype *container)
5029 {
5030 struct intel_super *super = container->sb;
5031
5032 dprintf("sync metadata: %d\n", super->updates_pending);
5033 if (!super->updates_pending)
5034 return;
5035
5036 write_super_imsm(container, 0);
5037
5038 super->updates_pending = 0;
5039 }
5040
5041 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
5042 {
5043 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5044 int i = get_imsm_disk_idx(dev, idx);
5045 struct dl *dl;
5046
5047 for (dl = super->disks; dl; dl = dl->next)
5048 if (dl->index == i)
5049 break;
5050
5051 if (dl && is_failed(&dl->disk))
5052 dl = NULL;
5053
5054 if (dl)
5055 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
5056
5057 return dl;
5058 }
5059
5060 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
5061 struct active_array *a, int activate_new,
5062 struct mdinfo *additional_test_list)
5063 {
5064 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5065 int idx = get_imsm_disk_idx(dev, slot);
5066 struct imsm_super *mpb = super->anchor;
5067 struct imsm_map *map;
5068 unsigned long long pos;
5069 struct mdinfo *d;
5070 struct extent *ex;
5071 int i, j;
5072 int found;
5073 __u32 array_start = 0;
5074 __u32 array_end = 0;
5075 struct dl *dl;
5076 struct mdinfo *test_list;
5077
5078 for (dl = super->disks; dl; dl = dl->next) {
5079 /* If in this array, skip */
5080 for (d = a->info.devs ; d ; d = d->next)
5081 if (d->state_fd >= 0 &&
5082 d->disk.major == dl->major &&
5083 d->disk.minor == dl->minor) {
5084 dprintf("%x:%x already in array\n",
5085 dl->major, dl->minor);
5086 break;
5087 }
5088 if (d)
5089 continue;
5090 test_list = additional_test_list;
5091 while (test_list) {
5092 if (test_list->disk.major == dl->major &&
5093 test_list->disk.minor == dl->minor) {
5094 dprintf("%x:%x already in additional test list\n",
5095 dl->major, dl->minor);
5096 break;
5097 }
5098 test_list = test_list->next;
5099 }
5100 if (test_list)
5101 continue;
5102
5103 /* skip in use or failed drives */
5104 if (is_failed(&dl->disk) || idx == dl->index ||
5105 dl->index == -2) {
5106 dprintf("%x:%x status (failed: %d index: %d)\n",
5107 dl->major, dl->minor, is_failed(&dl->disk), idx);
5108 continue;
5109 }
5110
5111 /* skip pure spares when we are looking for partially
5112 * assimilated drives
5113 */
5114 if (dl->index == -1 && !activate_new)
5115 continue;
5116
5117 /* Does this unused device have the requisite free space?
5118 * It needs to be able to cover all member volumes
5119 */
5120 ex = get_extents(super, dl);
5121 if (!ex) {
5122 dprintf("cannot get extents\n");
5123 continue;
5124 }
5125 for (i = 0; i < mpb->num_raid_devs; i++) {
5126 dev = get_imsm_dev(super, i);
5127 map = get_imsm_map(dev, 0);
5128
5129 /* check if this disk is already a member of
5130 * this array
5131 */
5132 if (get_imsm_disk_slot(map, dl->index) >= 0)
5133 continue;
5134
5135 found = 0;
5136 j = 0;
5137 pos = 0;
5138 array_start = __le32_to_cpu(map->pba_of_lba0);
5139 array_end = array_start +
5140 __le32_to_cpu(map->blocks_per_member) - 1;
5141
5142 do {
5143 /* check that we can start at pba_of_lba0 with
5144 * blocks_per_member of space
5145 */
5146 if (array_start >= pos && array_end < ex[j].start) {
5147 found = 1;
5148 break;
5149 }
5150 pos = ex[j].start + ex[j].size;
5151 j++;
5152 } while (ex[j-1].size);
5153
5154 if (!found)
5155 break;
5156 }
5157
5158 free(ex);
5159 if (i < mpb->num_raid_devs) {
5160 dprintf("%x:%x does not have %u to %u available\n",
5161 dl->major, dl->minor, array_start, array_end);
5162 /* No room */
5163 continue;
5164 }
5165 return dl;
5166 }
5167
5168 return dl;
5169 }
5170
5171
5172 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
5173 {
5174 struct imsm_dev *dev2;
5175 struct imsm_map *map;
5176 struct dl *idisk;
5177 int slot;
5178 int idx;
5179 __u8 state;
5180
5181 dev2 = get_imsm_dev(cont->sb, dev_idx);
5182 if (dev2) {
5183 state = imsm_check_degraded(cont->sb, dev2, failed);
5184 if (state == IMSM_T_STATE_FAILED) {
5185 map = get_imsm_map(dev2, 0);
5186 if (!map)
5187 return 1;
5188 for (slot = 0; slot < map->num_members; slot++) {
5189 /*
5190 * Check if failed disks are deleted from intel
5191 * disk list or are marked to be deleted
5192 */
5193 idx = get_imsm_disk_idx(dev2, slot);
5194 idisk = get_imsm_dl_disk(cont->sb, idx);
5195 /*
5196 * Do not rebuild the array if failed disks
5197 * from failed sub-array are not removed from
5198 * container.
5199 */
5200 if (idisk &&
5201 is_failed(&idisk->disk) &&
5202 (idisk->action != DISK_REMOVE))
5203 return 0;
5204 }
5205 }
5206 }
5207 return 1;
5208 }
5209
5210 static struct mdinfo *imsm_activate_spare(struct active_array *a,
5211 struct metadata_update **updates)
5212 {
5213 /**
5214 * Find a device with unused free space and use it to replace a
5215 * failed/vacant region in an array. We replace failed regions one a
5216 * array at a time. The result is that a new spare disk will be added
5217 * to the first failed array and after the monitor has finished
5218 * propagating failures the remainder will be consumed.
5219 *
5220 * FIXME add a capability for mdmon to request spares from another
5221 * container.
5222 */
5223
5224 struct intel_super *super = a->container->sb;
5225 int inst = a->info.container_member;
5226 struct imsm_dev *dev = get_imsm_dev(super, inst);
5227 struct imsm_map *map = get_imsm_map(dev, 0);
5228 int failed = a->info.array.raid_disks;
5229 struct mdinfo *rv = NULL;
5230 struct mdinfo *d;
5231 struct mdinfo *di;
5232 struct metadata_update *mu;
5233 struct dl *dl;
5234 struct imsm_update_activate_spare *u;
5235 int num_spares = 0;
5236 int i;
5237 int allowed;
5238
5239 for (d = a->info.devs ; d ; d = d->next) {
5240 if ((d->curr_state & DS_FAULTY) &&
5241 d->state_fd >= 0)
5242 /* wait for Removal to happen */
5243 return NULL;
5244 if (d->state_fd >= 0)
5245 failed--;
5246 }
5247
5248 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
5249 inst, failed, a->info.array.raid_disks, a->info.array.level);
5250 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
5251 return NULL;
5252
5253 /*
5254 * If there are any failed disks check state of the other volume.
5255 * Block rebuild if the another one is failed until failed disks
5256 * are removed from container.
5257 */
5258 if (failed) {
5259 dprintf("found failed disks in %s, check if there another"
5260 "failed sub-array.\n",
5261 dev->volume);
5262 /* check if states of the other volumes allow for rebuild */
5263 for (i = 0; i < super->anchor->num_raid_devs; i++) {
5264 if (i != inst) {
5265 allowed = imsm_rebuild_allowed(a->container,
5266 i, failed);
5267 if (!allowed)
5268 return NULL;
5269 }
5270 }
5271 }
5272
5273 /* For each slot, if it is not working, find a spare */
5274 for (i = 0; i < a->info.array.raid_disks; i++) {
5275 for (d = a->info.devs ; d ; d = d->next)
5276 if (d->disk.raid_disk == i)
5277 break;
5278 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
5279 if (d && (d->state_fd >= 0))
5280 continue;
5281
5282 /*
5283 * OK, this device needs recovery. Try to re-add the
5284 * previous occupant of this slot, if this fails see if
5285 * we can continue the assimilation of a spare that was
5286 * partially assimilated, finally try to activate a new
5287 * spare.
5288 */
5289 dl = imsm_readd(super, i, a);
5290 if (!dl)
5291 dl = imsm_add_spare(super, i, a, 0, NULL);
5292 if (!dl)
5293 dl = imsm_add_spare(super, i, a, 1, NULL);
5294 if (!dl)
5295 continue;
5296
5297 /* found a usable disk with enough space */
5298 di = malloc(sizeof(*di));
5299 if (!di)
5300 continue;
5301 memset(di, 0, sizeof(*di));
5302
5303 /* dl->index will be -1 in the case we are activating a
5304 * pristine spare. imsm_process_update() will create a
5305 * new index in this case. Once a disk is found to be
5306 * failed in all member arrays it is kicked from the
5307 * metadata
5308 */
5309 di->disk.number = dl->index;
5310
5311 /* (ab)use di->devs to store a pointer to the device
5312 * we chose
5313 */
5314 di->devs = (struct mdinfo *) dl;
5315
5316 di->disk.raid_disk = i;
5317 di->disk.major = dl->major;
5318 di->disk.minor = dl->minor;
5319 di->disk.state = 0;
5320 di->recovery_start = 0;
5321 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
5322 di->component_size = a->info.component_size;
5323 di->container_member = inst;
5324 super->random = random32();
5325 di->next = rv;
5326 rv = di;
5327 num_spares++;
5328 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
5329 i, di->data_offset);
5330
5331 break;
5332 }
5333
5334 if (!rv)
5335 /* No spares found */
5336 return rv;
5337 /* Now 'rv' has a list of devices to return.
5338 * Create a metadata_update record to update the
5339 * disk_ord_tbl for the array
5340 */
5341 mu = malloc(sizeof(*mu));
5342 if (mu) {
5343 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
5344 if (mu->buf == NULL) {
5345 free(mu);
5346 mu = NULL;
5347 }
5348 }
5349 if (!mu) {
5350 while (rv) {
5351 struct mdinfo *n = rv->next;
5352
5353 free(rv);
5354 rv = n;
5355 }
5356 return NULL;
5357 }
5358
5359 mu->space = NULL;
5360 mu->space_list = NULL;
5361 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
5362 mu->next = *updates;
5363 u = (struct imsm_update_activate_spare *) mu->buf;
5364
5365 for (di = rv ; di ; di = di->next) {
5366 u->type = update_activate_spare;
5367 u->dl = (struct dl *) di->devs;
5368 di->devs = NULL;
5369 u->slot = di->disk.raid_disk;
5370 u->array = inst;
5371 u->next = u + 1;
5372 u++;
5373 }
5374 (u-1)->next = NULL;
5375 *updates = mu;
5376
5377 return rv;
5378 }
5379
5380 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
5381 {
5382 struct imsm_dev *dev = get_imsm_dev(super, idx);
5383 struct imsm_map *map = get_imsm_map(dev, 0);
5384 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
5385 struct disk_info *inf = get_disk_info(u);
5386 struct imsm_disk *disk;
5387 int i;
5388 int j;
5389
5390 for (i = 0; i < map->num_members; i++) {
5391 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
5392 for (j = 0; j < new_map->num_members; j++)
5393 if (serialcmp(disk->serial, inf[j].serial) == 0)
5394 return 1;
5395 }
5396
5397 return 0;
5398 }
5399
5400
5401 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
5402 {
5403 struct dl *dl = NULL;
5404 for (dl = super->disks; dl; dl = dl->next)
5405 if ((dl->major == major) && (dl->minor == minor))
5406 return dl;
5407 return NULL;
5408 }
5409
5410 static int remove_disk_super(struct intel_super *super, int major, int minor)
5411 {
5412 struct dl *prev = NULL;
5413 struct dl *dl;
5414
5415 prev = NULL;
5416 for (dl = super->disks; dl; dl = dl->next) {
5417 if ((dl->major == major) && (dl->minor == minor)) {
5418 /* remove */
5419 if (prev)
5420 prev->next = dl->next;
5421 else
5422 super->disks = dl->next;
5423 dl->next = NULL;
5424 __free_imsm_disk(dl);
5425 dprintf("%s: removed %x:%x\n",
5426 __func__, major, minor);
5427 break;
5428 }
5429 prev = dl;
5430 }
5431 return 0;
5432 }
5433
5434 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
5435
5436 static int add_remove_disk_update(struct intel_super *super)
5437 {
5438 int check_degraded = 0;
5439 struct dl *disk = NULL;
5440 /* add/remove some spares to/from the metadata/contrainer */
5441 while (super->disk_mgmt_list) {
5442 struct dl *disk_cfg;
5443
5444 disk_cfg = super->disk_mgmt_list;
5445 super->disk_mgmt_list = disk_cfg->next;
5446 disk_cfg->next = NULL;
5447
5448 if (disk_cfg->action == DISK_ADD) {
5449 disk_cfg->next = super->disks;
5450 super->disks = disk_cfg;
5451 check_degraded = 1;
5452 dprintf("%s: added %x:%x\n",
5453 __func__, disk_cfg->major,
5454 disk_cfg->minor);
5455 } else if (disk_cfg->action == DISK_REMOVE) {
5456 dprintf("Disk remove action processed: %x.%x\n",
5457 disk_cfg->major, disk_cfg->minor);
5458 disk = get_disk_super(super,
5459 disk_cfg->major,
5460 disk_cfg->minor);
5461 if (disk) {
5462 /* store action status */
5463 disk->action = DISK_REMOVE;
5464 /* remove spare disks only */
5465 if (disk->index == -1) {
5466 remove_disk_super(super,
5467 disk_cfg->major,
5468 disk_cfg->minor);
5469 }
5470 }
5471 /* release allocate disk structure */
5472 __free_imsm_disk(disk_cfg);
5473 }
5474 }
5475 return check_degraded;
5476 }
5477
5478 static void imsm_process_update(struct supertype *st,
5479 struct metadata_update *update)
5480 {
5481 /**
5482 * crack open the metadata_update envelope to find the update record
5483 * update can be one of:
5484 * update_activate_spare - a spare device has replaced a failed
5485 * device in an array, update the disk_ord_tbl. If this disk is
5486 * present in all member arrays then also clear the SPARE_DISK
5487 * flag
5488 */
5489 struct intel_super *super = st->sb;
5490 struct imsm_super *mpb;
5491 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
5492
5493 /* update requires a larger buf but the allocation failed */
5494 if (super->next_len && !super->next_buf) {
5495 super->next_len = 0;
5496 return;
5497 }
5498
5499 if (super->next_buf) {
5500 memcpy(super->next_buf, super->buf, super->len);
5501 free(super->buf);
5502 super->len = super->next_len;
5503 super->buf = super->next_buf;
5504
5505 super->next_len = 0;
5506 super->next_buf = NULL;
5507 }
5508
5509 mpb = super->anchor;
5510
5511 switch (type) {
5512 case update_reshape_container_disks: {
5513 break;
5514 }
5515 case update_activate_spare: {
5516 struct imsm_update_activate_spare *u = (void *) update->buf;
5517 struct imsm_dev *dev = get_imsm_dev(super, u->array);
5518 struct imsm_map *map = get_imsm_map(dev, 0);
5519 struct imsm_map *migr_map;
5520 struct active_array *a;
5521 struct imsm_disk *disk;
5522 __u8 to_state;
5523 struct dl *dl;
5524 unsigned int found;
5525 int failed;
5526 int victim = get_imsm_disk_idx(dev, u->slot);
5527 int i;
5528
5529 for (dl = super->disks; dl; dl = dl->next)
5530 if (dl == u->dl)
5531 break;
5532
5533 if (!dl) {
5534 fprintf(stderr, "error: imsm_activate_spare passed "
5535 "an unknown disk (index: %d)\n",
5536 u->dl->index);
5537 return;
5538 }
5539
5540 super->updates_pending++;
5541
5542 /* count failures (excluding rebuilds and the victim)
5543 * to determine map[0] state
5544 */
5545 failed = 0;
5546 for (i = 0; i < map->num_members; i++) {
5547 if (i == u->slot)
5548 continue;
5549 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
5550 if (!disk || is_failed(disk))
5551 failed++;
5552 }
5553
5554 /* adding a pristine spare, assign a new index */
5555 if (dl->index < 0) {
5556 dl->index = super->anchor->num_disks;
5557 super->anchor->num_disks++;
5558 }
5559 disk = &dl->disk;
5560 disk->status |= CONFIGURED_DISK;
5561 disk->status &= ~SPARE_DISK;
5562
5563 /* mark rebuild */
5564 to_state = imsm_check_degraded(super, dev, failed);
5565 map->map_state = IMSM_T_STATE_DEGRADED;
5566 migrate(dev, to_state, MIGR_REBUILD);
5567 migr_map = get_imsm_map(dev, 1);
5568 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
5569 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
5570
5571 /* update the family_num to mark a new container
5572 * generation, being careful to record the existing
5573 * family_num in orig_family_num to clean up after
5574 * earlier mdadm versions that neglected to set it.
5575 */
5576 if (mpb->orig_family_num == 0)
5577 mpb->orig_family_num = mpb->family_num;
5578 mpb->family_num += super->random;
5579
5580 /* count arrays using the victim in the metadata */
5581 found = 0;
5582 for (a = st->arrays; a ; a = a->next) {
5583 dev = get_imsm_dev(super, a->info.container_member);
5584 map = get_imsm_map(dev, 0);
5585
5586 if (get_imsm_disk_slot(map, victim) >= 0)
5587 found++;
5588 }
5589
5590 /* delete the victim if it is no longer being
5591 * utilized anywhere
5592 */
5593 if (!found) {
5594 struct dl **dlp;
5595
5596 /* We know that 'manager' isn't touching anything,
5597 * so it is safe to delete
5598 */
5599 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
5600 if ((*dlp)->index == victim)
5601 break;
5602
5603 /* victim may be on the missing list */
5604 if (!*dlp)
5605 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
5606 if ((*dlp)->index == victim)
5607 break;
5608 imsm_delete(super, dlp, victim);
5609 }
5610 break;
5611 }
5612 case update_create_array: {
5613 /* someone wants to create a new array, we need to be aware of
5614 * a few races/collisions:
5615 * 1/ 'Create' called by two separate instances of mdadm
5616 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
5617 * devices that have since been assimilated via
5618 * activate_spare.
5619 * In the event this update can not be carried out mdadm will
5620 * (FIX ME) notice that its update did not take hold.
5621 */
5622 struct imsm_update_create_array *u = (void *) update->buf;
5623 struct intel_dev *dv;
5624 struct imsm_dev *dev;
5625 struct imsm_map *map, *new_map;
5626 unsigned long long start, end;
5627 unsigned long long new_start, new_end;
5628 int i;
5629 struct disk_info *inf;
5630 struct dl *dl;
5631
5632 /* handle racing creates: first come first serve */
5633 if (u->dev_idx < mpb->num_raid_devs) {
5634 dprintf("%s: subarray %d already defined\n",
5635 __func__, u->dev_idx);
5636 goto create_error;
5637 }
5638
5639 /* check update is next in sequence */
5640 if (u->dev_idx != mpb->num_raid_devs) {
5641 dprintf("%s: can not create array %d expected index %d\n",
5642 __func__, u->dev_idx, mpb->num_raid_devs);
5643 goto create_error;
5644 }
5645
5646 new_map = get_imsm_map(&u->dev, 0);
5647 new_start = __le32_to_cpu(new_map->pba_of_lba0);
5648 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
5649 inf = get_disk_info(u);
5650
5651 /* handle activate_spare versus create race:
5652 * check to make sure that overlapping arrays do not include
5653 * overalpping disks
5654 */
5655 for (i = 0; i < mpb->num_raid_devs; i++) {
5656 dev = get_imsm_dev(super, i);
5657 map = get_imsm_map(dev, 0);
5658 start = __le32_to_cpu(map->pba_of_lba0);
5659 end = start + __le32_to_cpu(map->blocks_per_member);
5660 if ((new_start >= start && new_start <= end) ||
5661 (start >= new_start && start <= new_end))
5662 /* overlap */;
5663 else
5664 continue;
5665
5666 if (disks_overlap(super, i, u)) {
5667 dprintf("%s: arrays overlap\n", __func__);
5668 goto create_error;
5669 }
5670 }
5671
5672 /* check that prepare update was successful */
5673 if (!update->space) {
5674 dprintf("%s: prepare update failed\n", __func__);
5675 goto create_error;
5676 }
5677
5678 /* check that all disks are still active before committing
5679 * changes. FIXME: could we instead handle this by creating a
5680 * degraded array? That's probably not what the user expects,
5681 * so better to drop this update on the floor.
5682 */
5683 for (i = 0; i < new_map->num_members; i++) {
5684 dl = serial_to_dl(inf[i].serial, super);
5685 if (!dl) {
5686 dprintf("%s: disk disappeared\n", __func__);
5687 goto create_error;
5688 }
5689 }
5690
5691 super->updates_pending++;
5692
5693 /* convert spares to members and fixup ord_tbl */
5694 for (i = 0; i < new_map->num_members; i++) {
5695 dl = serial_to_dl(inf[i].serial, super);
5696 if (dl->index == -1) {
5697 dl->index = mpb->num_disks;
5698 mpb->num_disks++;
5699 dl->disk.status |= CONFIGURED_DISK;
5700 dl->disk.status &= ~SPARE_DISK;
5701 }
5702 set_imsm_ord_tbl_ent(new_map, i, dl->index);
5703 }
5704
5705 dv = update->space;
5706 dev = dv->dev;
5707 update->space = NULL;
5708 imsm_copy_dev(dev, &u->dev);
5709 dv->index = u->dev_idx;
5710 dv->next = super->devlist;
5711 super->devlist = dv;
5712 mpb->num_raid_devs++;
5713
5714 imsm_update_version_info(super);
5715 break;
5716 create_error:
5717 /* mdmon knows how to release update->space, but not
5718 * ((struct intel_dev *) update->space)->dev
5719 */
5720 if (update->space) {
5721 dv = update->space;
5722 free(dv->dev);
5723 }
5724 break;
5725 }
5726 case update_kill_array: {
5727 struct imsm_update_kill_array *u = (void *) update->buf;
5728 int victim = u->dev_idx;
5729 struct active_array *a;
5730 struct intel_dev **dp;
5731 struct imsm_dev *dev;
5732
5733 /* sanity check that we are not affecting the uuid of
5734 * active arrays, or deleting an active array
5735 *
5736 * FIXME when immutable ids are available, but note that
5737 * we'll also need to fixup the invalidated/active
5738 * subarray indexes in mdstat
5739 */
5740 for (a = st->arrays; a; a = a->next)
5741 if (a->info.container_member >= victim)
5742 break;
5743 /* by definition if mdmon is running at least one array
5744 * is active in the container, so checking
5745 * mpb->num_raid_devs is just extra paranoia
5746 */
5747 dev = get_imsm_dev(super, victim);
5748 if (a || !dev || mpb->num_raid_devs == 1) {
5749 dprintf("failed to delete subarray-%d\n", victim);
5750 break;
5751 }
5752
5753 for (dp = &super->devlist; *dp;)
5754 if ((*dp)->index == (unsigned)super->current_vol) {
5755 *dp = (*dp)->next;
5756 } else {
5757 if ((*dp)->index > (unsigned)victim)
5758 (*dp)->index--;
5759 dp = &(*dp)->next;
5760 }
5761 mpb->num_raid_devs--;
5762 super->updates_pending++;
5763 break;
5764 }
5765 case update_rename_array: {
5766 struct imsm_update_rename_array *u = (void *) update->buf;
5767 char name[MAX_RAID_SERIAL_LEN+1];
5768 int target = u->dev_idx;
5769 struct active_array *a;
5770 struct imsm_dev *dev;
5771
5772 /* sanity check that we are not affecting the uuid of
5773 * an active array
5774 */
5775 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
5776 name[MAX_RAID_SERIAL_LEN] = '\0';
5777 for (a = st->arrays; a; a = a->next)
5778 if (a->info.container_member == target)
5779 break;
5780 dev = get_imsm_dev(super, u->dev_idx);
5781 if (a || !dev || !check_name(super, name, 1)) {
5782 dprintf("failed to rename subarray-%d\n", target);
5783 break;
5784 }
5785
5786 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5787 super->updates_pending++;
5788 break;
5789 }
5790 case update_add_remove_disk: {
5791 /* we may be able to repair some arrays if disks are
5792 * being added, check teh status of add_remove_disk
5793 * if discs has been added.
5794 */
5795 if (add_remove_disk_update(super)) {
5796 struct active_array *a;
5797
5798 super->updates_pending++;
5799 for (a = st->arrays; a; a = a->next)
5800 a->check_degraded = 1;
5801 }
5802 break;
5803 }
5804 default:
5805 fprintf(stderr, "error: unsuported process update type:"
5806 "(type: %d)\n", type);
5807 }
5808 }
5809
5810 static void imsm_prepare_update(struct supertype *st,
5811 struct metadata_update *update)
5812 {
5813 /**
5814 * Allocate space to hold new disk entries, raid-device entries or a new
5815 * mpb if necessary. The manager synchronously waits for updates to
5816 * complete in the monitor, so new mpb buffers allocated here can be
5817 * integrated by the monitor thread without worrying about live pointers
5818 * in the manager thread.
5819 */
5820 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
5821 struct intel_super *super = st->sb;
5822 struct imsm_super *mpb = super->anchor;
5823 size_t buf_len;
5824 size_t len = 0;
5825
5826 switch (type) {
5827 case update_reshape_container_disks: {
5828 break;
5829 }
5830 case update_create_array: {
5831 struct imsm_update_create_array *u = (void *) update->buf;
5832 struct intel_dev *dv;
5833 struct imsm_dev *dev = &u->dev;
5834 struct imsm_map *map = get_imsm_map(dev, 0);
5835 struct dl *dl;
5836 struct disk_info *inf;
5837 int i;
5838 int activate = 0;
5839
5840 inf = get_disk_info(u);
5841 len = sizeof_imsm_dev(dev, 1);
5842 /* allocate a new super->devlist entry */
5843 dv = malloc(sizeof(*dv));
5844 if (dv) {
5845 dv->dev = malloc(len);
5846 if (dv->dev)
5847 update->space = dv;
5848 else {
5849 free(dv);
5850 update->space = NULL;
5851 }
5852 }
5853
5854 /* count how many spares will be converted to members */
5855 for (i = 0; i < map->num_members; i++) {
5856 dl = serial_to_dl(inf[i].serial, super);
5857 if (!dl) {
5858 /* hmm maybe it failed?, nothing we can do about
5859 * it here
5860 */
5861 continue;
5862 }
5863 if (count_memberships(dl, super) == 0)
5864 activate++;
5865 }
5866 len += activate * sizeof(struct imsm_disk);
5867 break;
5868 default:
5869 break;
5870 }
5871 }
5872
5873 /* check if we need a larger metadata buffer */
5874 if (super->next_buf)
5875 buf_len = super->next_len;
5876 else
5877 buf_len = super->len;
5878
5879 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
5880 /* ok we need a larger buf than what is currently allocated
5881 * if this allocation fails process_update will notice that
5882 * ->next_len is set and ->next_buf is NULL
5883 */
5884 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
5885 if (super->next_buf)
5886 free(super->next_buf);
5887
5888 super->next_len = buf_len;
5889 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
5890 memset(super->next_buf, 0, buf_len);
5891 else
5892 super->next_buf = NULL;
5893 }
5894 }
5895
5896 /* must be called while manager is quiesced */
5897 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
5898 {
5899 struct imsm_super *mpb = super->anchor;
5900 struct dl *iter;
5901 struct imsm_dev *dev;
5902 struct imsm_map *map;
5903 int i, j, num_members;
5904 __u32 ord;
5905
5906 dprintf("%s: deleting device[%d] from imsm_super\n",
5907 __func__, index);
5908
5909 /* shift all indexes down one */
5910 for (iter = super->disks; iter; iter = iter->next)
5911 if (iter->index > (int)index)
5912 iter->index--;
5913 for (iter = super->missing; iter; iter = iter->next)
5914 if (iter->index > (int)index)
5915 iter->index--;
5916
5917 for (i = 0; i < mpb->num_raid_devs; i++) {
5918 dev = get_imsm_dev(super, i);
5919 map = get_imsm_map(dev, 0);
5920 num_members = map->num_members;
5921 for (j = 0; j < num_members; j++) {
5922 /* update ord entries being careful not to propagate
5923 * ord-flags to the first map
5924 */
5925 ord = get_imsm_ord_tbl_ent(dev, j);
5926
5927 if (ord_to_idx(ord) <= index)
5928 continue;
5929
5930 map = get_imsm_map(dev, 0);
5931 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
5932 map = get_imsm_map(dev, 1);
5933 if (map)
5934 set_imsm_ord_tbl_ent(map, j, ord - 1);
5935 }
5936 }
5937
5938 mpb->num_disks--;
5939 super->updates_pending++;
5940 if (*dlp) {
5941 struct dl *dl = *dlp;
5942
5943 *dlp = (*dlp)->next;
5944 __free_imsm_disk(dl);
5945 }
5946 }
5947 #endif /* MDASSEMBLE */
5948
5949 static char disk_by_path[] = "/dev/disk/by-path/";
5950
5951 static const char *imsm_get_disk_controller_domain(const char *path)
5952 {
5953 struct sys_dev *list, *hba = NULL;
5954 char disk_path[PATH_MAX];
5955 int ahci = 0;
5956 char *dpath = NULL;
5957
5958 list = find_driver_devices("pci", "ahci");
5959 for (hba = list; hba; hba = hba->next)
5960 if (devpath_to_vendor(hba->path) == 0x8086)
5961 break;
5962
5963 if (hba) {
5964 struct stat st;
5965
5966 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
5967 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
5968 if (stat(disk_path, &st) == 0) {
5969 dpath = devt_to_devpath(st.st_rdev);
5970 if (dpath)
5971 ahci = path_attached_to_hba(dpath, hba->path);
5972 }
5973 }
5974 dprintf("path: %s(%s) hba: %s attached: %d\n",
5975 path, dpath, (hba) ? hba->path : "NULL", ahci);
5976 free_sys_dev(&list);
5977 if (ahci)
5978 return "ahci";
5979 else
5980 return NULL;
5981 }
5982
5983 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
5984 {
5985 char subdev_name[20];
5986 struct mdstat_ent *mdstat;
5987
5988 sprintf(subdev_name, "%d", subdev);
5989 mdstat = mdstat_by_subdev(subdev_name, container);
5990 if (!mdstat)
5991 return -1;
5992
5993 *minor = mdstat->devnum;
5994 free_mdstat(mdstat);
5995 return 0;
5996 }
5997
5998 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
5999 struct geo_params *geo,
6000 int *old_raid_disks)
6001 {
6002 int ret_val = 0;
6003 struct mdinfo *info, *member;
6004 int devices_that_can_grow = 0;
6005
6006 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
6007 "st->devnum = (%i)\n",
6008 st->devnum);
6009
6010 if (geo->size != -1 ||
6011 geo->level != UnSet ||
6012 geo->layout != UnSet ||
6013 geo->chunksize != 0 ||
6014 geo->raid_disks == UnSet) {
6015 dprintf("imsm: Container operation is allowed for "
6016 "raid disks number change only.\n");
6017 return ret_val;
6018 }
6019
6020 info = container_content_imsm(st, NULL);
6021 for (member = info; member; member = member->next) {
6022 int result;
6023 int minor;
6024
6025 dprintf("imsm: checking device_num: %i\n",
6026 member->container_member);
6027
6028 if (geo->raid_disks < member->array.raid_disks) {
6029 /* we work on container for Online Capacity Expansion
6030 * only so raid_disks has to grow
6031 */
6032 dprintf("imsm: for container operation raid disks "
6033 "increase is required\n");
6034 break;
6035 }
6036
6037 if ((info->array.level != 0) &&
6038 (info->array.level != 5)) {
6039 /* we cannot use this container with other raid level
6040 */
6041 dprintf("imsm: for container operation wrong"\
6042 " raid level (%i) detected\n",
6043 info->array.level);
6044 break;
6045 } else {
6046 /* check for platform support
6047 * for this raid level configuration
6048 */
6049 struct intel_super *super = st->sb;
6050 if (!is_raid_level_supported(super->orom,
6051 member->array.level,
6052 geo->raid_disks)) {
6053 dprintf("platform does not support raid%d with"\
6054 " %d disk%s\n",
6055 info->array.level,
6056 geo->raid_disks,
6057 geo->raid_disks > 1 ? "s" : "");
6058 break;
6059 }
6060 }
6061
6062 if (*old_raid_disks &&
6063 info->array.raid_disks != *old_raid_disks)
6064 break;
6065 *old_raid_disks = info->array.raid_disks;
6066
6067 /* All raid5 and raid0 volumes in container
6068 * have to be ready for Online Capacity Expansion
6069 * so they need to be assembled. We have already
6070 * checked that no recovery etc is happening.
6071 */
6072 result = imsm_find_array_minor_by_subdev(member->container_member,
6073 st->container_dev,
6074 &minor);
6075 if (result < 0) {
6076 dprintf("imsm: cannot find array\n");
6077 break;
6078 }
6079 devices_that_can_grow++;
6080 }
6081 sysfs_free(info);
6082 if (!member && devices_that_can_grow)
6083 ret_val = 1;
6084
6085 if (ret_val)
6086 dprintf("\tContainer operation allowed\n");
6087 else
6088 dprintf("\tError: %i\n", ret_val);
6089
6090 return ret_val;
6091 }
6092
6093 /* Function: get_spares_for_grow
6094 * Description: Allocates memory and creates list of spare devices
6095 * avaliable in container. Checks if spare drive size is acceptable.
6096 * Parameters: Pointer to the supertype structure
6097 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
6098 * NULL if fail
6099 */
6100 static struct mdinfo *get_spares_for_grow(struct supertype *st)
6101 {
6102 dev_t dev = 0;
6103 struct mdinfo *disks, *d, **dp;
6104 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
6105
6106 /* get list of alldisks in container */
6107 disks = getinfo_super_disks_imsm(st);
6108
6109 if (!disks)
6110 return NULL;
6111 /* find spare devices on the list */
6112 dp = &disks->devs;
6113 disks->array.spare_disks = 0;
6114 while (*dp) {
6115 int found = 0;
6116 d = *dp;
6117 if (d->disk.state == 0) {
6118 /* check if size is acceptable */
6119 unsigned long long dev_size;
6120 dev = makedev(d->disk.major,d->disk.minor);
6121 if (min_size &&
6122 dev_size_from_id(dev, &dev_size) &&
6123 dev_size >= min_size) {
6124 dev = 0;
6125 found = 1;
6126 }
6127 }
6128 if (found) {
6129 dp = &d->next;
6130 disks->array.spare_disks++;
6131 } else {
6132 *dp = d->next;
6133 d->next = NULL;
6134 sysfs_free(d);
6135 }
6136 }
6137 return disks;
6138 }
6139
6140 /******************************************************************************
6141 * function: imsm_create_metadata_update_for_reshape
6142 * Function creates update for whole IMSM container.
6143 *
6144 ******************************************************************************/
6145 static int imsm_create_metadata_update_for_reshape(
6146 struct supertype *st,
6147 struct geo_params *geo,
6148 int old_raid_disks,
6149 struct imsm_update_reshape **updatep)
6150 {
6151 struct intel_super *super = st->sb;
6152 struct imsm_super *mpb = super->anchor;
6153 int update_memory_size = 0;
6154 struct imsm_update_reshape *u = NULL;
6155 struct mdinfo *spares = NULL;
6156 int i;
6157 int delta_disks = 0;
6158
6159 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
6160 geo->raid_disks);
6161
6162 delta_disks = geo->raid_disks - old_raid_disks;
6163
6164 /* size of all update data without anchor */
6165 update_memory_size = sizeof(struct imsm_update_reshape);
6166
6167 /* now add space for spare disks that we need to add. */
6168 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
6169
6170 u = calloc(1, update_memory_size);
6171 if (u == NULL) {
6172 dprintf("error: "
6173 "cannot get memory for imsm_update_reshape update\n");
6174 return 0;
6175 }
6176 u->type = update_reshape_container_disks;
6177 u->old_raid_disks = old_raid_disks;
6178 u->new_raid_disks = geo->raid_disks;
6179
6180 /* now get spare disks list
6181 */
6182 spares = get_spares_for_grow(st);
6183
6184 if (spares == NULL
6185 || delta_disks > spares->array.spare_disks) {
6186 dprintf("imsm: ERROR: Cannot get spare devices.\n");
6187 goto abort;
6188 }
6189
6190 /* we have got spares
6191 * update disk list in imsm_disk list table in anchor
6192 */
6193 dprintf("imsm: %i spares are available.\n\n",
6194 spares->array.spare_disks);
6195
6196 for (i = 0; i < delta_disks; i++) {
6197 struct mdinfo *dev = spares->devs;
6198 struct dl *dl;
6199
6200 u->new_disks[i] = makedev(dev->disk.major,
6201 dev->disk.minor);
6202 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
6203 dl->index = mpb->num_disks++;
6204 }
6205 /* Now update the metadata so that container_content will find
6206 * the new devices
6207 */
6208 for (i = 0; i < mpb->num_raid_devs; i++) {
6209 int d;
6210 struct imsm_dev *dev = get_imsm_dev(super, i);
6211 struct imsm_map *map = get_imsm_map(dev, 0);
6212 map->num_members = geo->raid_disks;
6213 for (d = 0; d < delta_disks; d++) {
6214 set_imsm_ord_tbl_ent(map, old_raid_disks + d,
6215 mpb->num_disks - delta_disks + d);
6216 }
6217 }
6218
6219 abort:
6220 /* free spares
6221 */
6222 sysfs_free(spares);
6223
6224 if (i == delta_disks) {
6225 *updatep = u;
6226 return update_memory_size;
6227 }
6228 free(u);
6229
6230 return 0;
6231 }
6232
6233
6234 static int imsm_reshape_super(struct supertype *st, long long size, int level,
6235 int layout, int chunksize, int raid_disks,
6236 char *backup, char *dev, int verbouse)
6237 {
6238 /* currently we only support increasing the number of devices
6239 * for a container. This increases the number of device for each
6240 * member array. They must all be RAID0 or RAID5.
6241 */
6242
6243 int ret_val = 1;
6244 struct geo_params geo;
6245
6246 dprintf("imsm: reshape_super called.\n");
6247
6248 memset(&geo, sizeof(struct geo_params), 0);
6249
6250 geo.dev_name = dev;
6251 geo.size = size;
6252 geo.level = level;
6253 geo.layout = layout;
6254 geo.chunksize = chunksize;
6255 geo.raid_disks = raid_disks;
6256
6257 dprintf("\tfor level : %i\n", geo.level);
6258 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
6259
6260 if (experimental() == 0)
6261 return ret_val;
6262
6263 /* verify reshape conditions
6264 * on container level we can only increase number of devices. */
6265 if (st->container_dev == st->devnum) {
6266 /* check for delta_disks > 0
6267 *and supported raid levels 0 and 5 only in container */
6268 int old_raid_disks = 0;
6269 if (imsm_reshape_is_allowed_on_container(
6270 st, &geo, &old_raid_disks)) {
6271 struct imsm_update_reshape *u = NULL;
6272 int len;
6273
6274 len = imsm_create_metadata_update_for_reshape(
6275 st, &geo, old_raid_disks, &u);
6276
6277 if (len) {
6278 ret_val = 0;
6279 append_metadata_update(st, u, len);
6280 } else
6281 dprintf("imsm: Cannot prepare "\
6282 "update\n");
6283 } else
6284 dprintf("imsm: Operation is not allowed "\
6285 "on this container\n");
6286 } else
6287 dprintf("imsm: not a container operation\n");
6288
6289 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
6290 return ret_val;
6291 }
6292
6293 struct superswitch super_imsm = {
6294 #ifndef MDASSEMBLE
6295 .examine_super = examine_super_imsm,
6296 .brief_examine_super = brief_examine_super_imsm,
6297 .brief_examine_subarrays = brief_examine_subarrays_imsm,
6298 .export_examine_super = export_examine_super_imsm,
6299 .detail_super = detail_super_imsm,
6300 .brief_detail_super = brief_detail_super_imsm,
6301 .write_init_super = write_init_super_imsm,
6302 .validate_geometry = validate_geometry_imsm,
6303 .add_to_super = add_to_super_imsm,
6304 .remove_from_super = remove_from_super_imsm,
6305 .detail_platform = detail_platform_imsm,
6306 .kill_subarray = kill_subarray_imsm,
6307 .update_subarray = update_subarray_imsm,
6308 .load_container = load_container_imsm,
6309 #endif
6310 .match_home = match_home_imsm,
6311 .uuid_from_super= uuid_from_super_imsm,
6312 .getinfo_super = getinfo_super_imsm,
6313 .getinfo_super_disks = getinfo_super_disks_imsm,
6314 .update_super = update_super_imsm,
6315
6316 .avail_size = avail_size_imsm,
6317 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
6318
6319 .compare_super = compare_super_imsm,
6320
6321 .load_super = load_super_imsm,
6322 .init_super = init_super_imsm,
6323 .store_super = store_super_imsm,
6324 .free_super = free_super_imsm,
6325 .match_metadata_desc = match_metadata_desc_imsm,
6326 .container_content = container_content_imsm,
6327 .default_geometry = default_geometry_imsm,
6328 .get_disk_controller_domain = imsm_get_disk_controller_domain,
6329 .reshape_super = imsm_reshape_super,
6330
6331 .external = 1,
6332 .name = "imsm",
6333
6334 #ifndef MDASSEMBLE
6335 /* for mdmon */
6336 .open_new = imsm_open_new,
6337 .set_array_state= imsm_set_array_state,
6338 .set_disk = imsm_set_disk,
6339 .sync_metadata = imsm_sync_metadata,
6340 .activate_spare = imsm_activate_spare,
6341 .process_update = imsm_process_update,
6342 .prepare_update = imsm_prepare_update,
6343 #endif /* MDASSEMBLE */
6344 };