]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
sysfs: Avoid if and return on the same line
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
106 #define IMSM_DISK_FILLERS 3
107 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
108 };
109
110 /* map selector for map managment
111 */
112 #define MAP_0 0
113 #define MAP_1 1
114 #define MAP_X -1
115
116 /* RAID map configuration infos. */
117 struct imsm_map {
118 __u32 pba_of_lba0_lo; /* start address of partition */
119 __u32 blocks_per_member_lo;/* blocks per member */
120 __u32 num_data_stripes_lo; /* number of data stripes */
121 __u16 blocks_per_strip;
122 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
123 #define IMSM_T_STATE_NORMAL 0
124 #define IMSM_T_STATE_UNINITIALIZED 1
125 #define IMSM_T_STATE_DEGRADED 2
126 #define IMSM_T_STATE_FAILED 3
127 __u8 raid_level;
128 #define IMSM_T_RAID0 0
129 #define IMSM_T_RAID1 1
130 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
131 __u8 num_members; /* number of member disks */
132 __u8 num_domains; /* number of parity domains */
133 __u8 failed_disk_num; /* valid only when state is degraded */
134 __u8 ddf;
135 __u32 pba_of_lba0_hi;
136 __u32 blocks_per_member_hi;
137 __u32 num_data_stripes_hi;
138 __u32 filler[4]; /* expansion area */
139 #define IMSM_ORD_REBUILD (1 << 24)
140 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
141 * top byte contains some flags
142 */
143 } __attribute__ ((packed));
144
145 struct imsm_vol {
146 __u32 curr_migr_unit;
147 __u32 checkpoint_id; /* id to access curr_migr_unit */
148 __u8 migr_state; /* Normal or Migrating */
149 #define MIGR_INIT 0
150 #define MIGR_REBUILD 1
151 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
152 #define MIGR_GEN_MIGR 3
153 #define MIGR_STATE_CHANGE 4
154 #define MIGR_REPAIR 5
155 __u8 migr_type; /* Initializing, Rebuilding, ... */
156 __u8 dirty;
157 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
158 __u16 verify_errors; /* number of mismatches */
159 __u16 bad_blocks; /* number of bad blocks during verify */
160 __u32 filler[4];
161 struct imsm_map map[1];
162 /* here comes another one if migr_state */
163 } __attribute__ ((packed));
164
165 struct imsm_dev {
166 __u8 volume[MAX_RAID_SERIAL_LEN];
167 __u32 size_low;
168 __u32 size_high;
169 #define DEV_BOOTABLE __cpu_to_le32(0x01)
170 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
171 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
172 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
173 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
174 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
175 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
176 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
177 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
178 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
179 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
180 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
181 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
182 __u32 status; /* Persistent RaidDev status */
183 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
184 __u8 migr_priority;
185 __u8 num_sub_vols;
186 __u8 tid;
187 __u8 cng_master_disk;
188 __u16 cache_policy;
189 __u8 cng_state;
190 __u8 cng_sub_state;
191 #define IMSM_DEV_FILLERS 10
192 __u32 filler[IMSM_DEV_FILLERS];
193 struct imsm_vol vol;
194 } __attribute__ ((packed));
195
196 struct imsm_super {
197 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
198 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
199 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
200 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
201 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
202 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
203 __u32 attributes; /* 0x34 - 0x37 */
204 __u8 num_disks; /* 0x38 Number of configured disks */
205 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
206 __u8 error_log_pos; /* 0x3A */
207 __u8 fill[1]; /* 0x3B */
208 __u32 cache_size; /* 0x3c - 0x40 in mb */
209 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
210 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
211 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
212 #define IMSM_FILLERS 35
213 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
214 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
215 /* here comes imsm_dev[num_raid_devs] */
216 /* here comes BBM logs */
217 } __attribute__ ((packed));
218
219 #define BBM_LOG_MAX_ENTRIES 254
220
221 struct bbm_log_entry {
222 __u64 defective_block_start;
223 #define UNREADABLE 0xFFFFFFFF
224 __u32 spare_block_offset;
225 __u16 remapped_marked_count;
226 __u16 disk_ordinal;
227 } __attribute__ ((__packed__));
228
229 struct bbm_log {
230 __u32 signature; /* 0xABADB10C */
231 __u32 entry_count;
232 __u32 reserved_spare_block_count; /* 0 */
233 __u32 reserved; /* 0xFFFF */
234 __u64 first_spare_lba;
235 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
236 } __attribute__ ((__packed__));
237
238 #ifndef MDASSEMBLE
239 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
240 #endif
241
242 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
243
244 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
245
246 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
247 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
248 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
249 */
250
251 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
252 * be recovered using srcMap */
253 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
254 * already been migrated and must
255 * be recovered from checkpoint area */
256 struct migr_record {
257 __u32 rec_status; /* Status used to determine how to restart
258 * migration in case it aborts
259 * in some fashion */
260 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
261 __u32 family_num; /* Family number of MPB
262 * containing the RaidDev
263 * that is migrating */
264 __u32 ascending_migr; /* True if migrating in increasing
265 * order of lbas */
266 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
267 __u32 dest_depth_per_unit; /* Num member blocks each destMap
268 * member disk
269 * advances per unit-of-operation */
270 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
271 __u32 dest_1st_member_lba; /* First member lba on first
272 * stripe of destination */
273 __u32 num_migr_units; /* Total num migration units-of-op */
274 __u32 post_migr_vol_cap; /* Size of volume after
275 * migration completes */
276 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
277 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
278 * migration ckpt record was read from
279 * (for recovered migrations) */
280 } __attribute__ ((__packed__));
281
282 struct md_list {
283 /* usage marker:
284 * 1: load metadata
285 * 2: metadata does not match
286 * 4: already checked
287 */
288 int used;
289 char *devname;
290 int found;
291 int container;
292 dev_t st_rdev;
293 struct md_list *next;
294 };
295
296 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
297
298 static __u8 migr_type(struct imsm_dev *dev)
299 {
300 if (dev->vol.migr_type == MIGR_VERIFY &&
301 dev->status & DEV_VERIFY_AND_FIX)
302 return MIGR_REPAIR;
303 else
304 return dev->vol.migr_type;
305 }
306
307 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
308 {
309 /* for compatibility with older oroms convert MIGR_REPAIR, into
310 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
311 */
312 if (migr_type == MIGR_REPAIR) {
313 dev->vol.migr_type = MIGR_VERIFY;
314 dev->status |= DEV_VERIFY_AND_FIX;
315 } else {
316 dev->vol.migr_type = migr_type;
317 dev->status &= ~DEV_VERIFY_AND_FIX;
318 }
319 }
320
321 static unsigned int sector_count(__u32 bytes)
322 {
323 return ROUND_UP(bytes, 512) / 512;
324 }
325
326 static unsigned int mpb_sectors(struct imsm_super *mpb)
327 {
328 return sector_count(__le32_to_cpu(mpb->mpb_size));
329 }
330
331 struct intel_dev {
332 struct imsm_dev *dev;
333 struct intel_dev *next;
334 unsigned index;
335 };
336
337 struct intel_hba {
338 enum sys_dev_type type;
339 char *path;
340 char *pci_id;
341 struct intel_hba *next;
342 };
343
344 enum action {
345 DISK_REMOVE = 1,
346 DISK_ADD
347 };
348 /* internal representation of IMSM metadata */
349 struct intel_super {
350 union {
351 void *buf; /* O_DIRECT buffer for reading/writing metadata */
352 struct imsm_super *anchor; /* immovable parameters */
353 };
354 union {
355 void *migr_rec_buf; /* buffer for I/O operations */
356 struct migr_record *migr_rec; /* migration record */
357 };
358 int clean_migration_record_by_mdmon; /* when reshape is switched to next
359 array, it indicates that mdmon is allowed to clean migration
360 record */
361 size_t len; /* size of the 'buf' allocation */
362 void *next_buf; /* for realloc'ing buf from the manager */
363 size_t next_len;
364 int updates_pending; /* count of pending updates for mdmon */
365 int current_vol; /* index of raid device undergoing creation */
366 unsigned long long create_offset; /* common start for 'current_vol' */
367 __u32 random; /* random data for seeding new family numbers */
368 struct intel_dev *devlist;
369 struct dl {
370 struct dl *next;
371 int index;
372 __u8 serial[MAX_RAID_SERIAL_LEN];
373 int major, minor;
374 char *devname;
375 struct imsm_disk disk;
376 int fd;
377 int extent_cnt;
378 struct extent *e; /* for determining freespace @ create */
379 int raiddisk; /* slot to fill in autolayout */
380 enum action action;
381 } *disks, *current_disk;
382 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
383 active */
384 struct dl *missing; /* disks removed while we weren't looking */
385 struct bbm_log *bbm_log;
386 struct intel_hba *hba; /* device path of the raid controller for this metadata */
387 const struct imsm_orom *orom; /* platform firmware support */
388 struct intel_super *next; /* (temp) list for disambiguating family_num */
389 };
390
391 struct intel_disk {
392 struct imsm_disk disk;
393 #define IMSM_UNKNOWN_OWNER (-1)
394 int owner;
395 struct intel_disk *next;
396 };
397
398 struct extent {
399 unsigned long long start, size;
400 };
401
402 /* definitions of reshape process types */
403 enum imsm_reshape_type {
404 CH_TAKEOVER,
405 CH_MIGRATION,
406 CH_ARRAY_SIZE,
407 };
408
409 /* definition of messages passed to imsm_process_update */
410 enum imsm_update_type {
411 update_activate_spare,
412 update_create_array,
413 update_kill_array,
414 update_rename_array,
415 update_add_remove_disk,
416 update_reshape_container_disks,
417 update_reshape_migration,
418 update_takeover,
419 update_general_migration_checkpoint,
420 update_size_change,
421 };
422
423 struct imsm_update_activate_spare {
424 enum imsm_update_type type;
425 struct dl *dl;
426 int slot;
427 int array;
428 struct imsm_update_activate_spare *next;
429 };
430
431 struct geo_params {
432 char devnm[32];
433 char *dev_name;
434 unsigned long long size;
435 int level;
436 int layout;
437 int chunksize;
438 int raid_disks;
439 };
440
441 enum takeover_direction {
442 R10_TO_R0,
443 R0_TO_R10
444 };
445 struct imsm_update_takeover {
446 enum imsm_update_type type;
447 int subarray;
448 enum takeover_direction direction;
449 };
450
451 struct imsm_update_reshape {
452 enum imsm_update_type type;
453 int old_raid_disks;
454 int new_raid_disks;
455
456 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
457 };
458
459 struct imsm_update_reshape_migration {
460 enum imsm_update_type type;
461 int old_raid_disks;
462 int new_raid_disks;
463 /* fields for array migration changes
464 */
465 int subdev;
466 int new_level;
467 int new_layout;
468 int new_chunksize;
469
470 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
471 };
472
473 struct imsm_update_size_change {
474 enum imsm_update_type type;
475 int subdev;
476 long long new_size;
477 };
478
479 struct imsm_update_general_migration_checkpoint {
480 enum imsm_update_type type;
481 __u32 curr_migr_unit;
482 };
483
484 struct disk_info {
485 __u8 serial[MAX_RAID_SERIAL_LEN];
486 };
487
488 struct imsm_update_create_array {
489 enum imsm_update_type type;
490 int dev_idx;
491 struct imsm_dev dev;
492 };
493
494 struct imsm_update_kill_array {
495 enum imsm_update_type type;
496 int dev_idx;
497 };
498
499 struct imsm_update_rename_array {
500 enum imsm_update_type type;
501 __u8 name[MAX_RAID_SERIAL_LEN];
502 int dev_idx;
503 };
504
505 struct imsm_update_add_remove_disk {
506 enum imsm_update_type type;
507 };
508
509 static const char *_sys_dev_type[] = {
510 [SYS_DEV_UNKNOWN] = "Unknown",
511 [SYS_DEV_SAS] = "SAS",
512 [SYS_DEV_SATA] = "SATA",
513 [SYS_DEV_NVME] = "NVMe",
514 [SYS_DEV_VMD] = "VMD"
515 };
516
517 const char *get_sys_dev_type(enum sys_dev_type type)
518 {
519 if (type >= SYS_DEV_MAX)
520 type = SYS_DEV_UNKNOWN;
521
522 return _sys_dev_type[type];
523 }
524
525 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
526 {
527 struct intel_hba *result = xmalloc(sizeof(*result));
528
529 result->type = device->type;
530 result->path = xstrdup(device->path);
531 result->next = NULL;
532 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
533 result->pci_id++;
534
535 return result;
536 }
537
538 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
539 {
540 struct intel_hba *result;
541
542 for (result = hba; result; result = result->next) {
543 if (result->type == device->type && strcmp(result->path, device->path) == 0)
544 break;
545 }
546 return result;
547 }
548
549 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
550 {
551 struct intel_hba *hba;
552
553 /* check if disk attached to Intel HBA */
554 hba = find_intel_hba(super->hba, device);
555 if (hba != NULL)
556 return 1;
557 /* Check if HBA is already attached to super */
558 if (super->hba == NULL) {
559 super->hba = alloc_intel_hba(device);
560 return 1;
561 }
562
563 hba = super->hba;
564 /* Intel metadata allows for all disks attached to the same type HBA.
565 * Do not support HBA types mixing
566 */
567 if (device->type != hba->type)
568 return 2;
569
570 /* Always forbid spanning between VMD domains (seen as different controllers by mdadm) */
571 if (device->type == SYS_DEV_VMD && !path_attached_to_hba(device->path, hba->path))
572 return 2;
573
574 /* Multiple same type HBAs can be used if they share the same OROM */
575 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
576
577 if (device_orom != super->orom)
578 return 2;
579
580 while (hba->next)
581 hba = hba->next;
582
583 hba->next = alloc_intel_hba(device);
584 return 1;
585 }
586
587 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
588 {
589 struct sys_dev *list, *elem;
590 char *disk_path;
591
592 if ((list = find_intel_devices()) == NULL)
593 return 0;
594
595 if (fd < 0)
596 disk_path = (char *) devname;
597 else
598 disk_path = diskfd_to_devpath(fd);
599
600 if (!disk_path)
601 return 0;
602
603 for (elem = list; elem; elem = elem->next)
604 if (path_attached_to_hba(disk_path, elem->path))
605 return elem;
606
607 if (disk_path != devname)
608 free(disk_path);
609
610 return NULL;
611 }
612
613 static int find_intel_hba_capability(int fd, struct intel_super *super,
614 char *devname);
615
616 static struct supertype *match_metadata_desc_imsm(char *arg)
617 {
618 struct supertype *st;
619
620 if (strcmp(arg, "imsm") != 0 &&
621 strcmp(arg, "default") != 0
622 )
623 return NULL;
624
625 st = xcalloc(1, sizeof(*st));
626 st->ss = &super_imsm;
627 st->max_devs = IMSM_MAX_DEVICES;
628 st->minor_version = 0;
629 st->sb = NULL;
630 return st;
631 }
632
633 #ifndef MDASSEMBLE
634 static __u8 *get_imsm_version(struct imsm_super *mpb)
635 {
636 return &mpb->sig[MPB_SIG_LEN];
637 }
638 #endif
639
640 /* retrieve a disk directly from the anchor when the anchor is known to be
641 * up-to-date, currently only at load time
642 */
643 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
644 {
645 if (index >= mpb->num_disks)
646 return NULL;
647 return &mpb->disk[index];
648 }
649
650 /* retrieve the disk description based on a index of the disk
651 * in the sub-array
652 */
653 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
654 {
655 struct dl *d;
656
657 for (d = super->disks; d; d = d->next)
658 if (d->index == index)
659 return d;
660
661 return NULL;
662 }
663 /* retrieve a disk from the parsed metadata */
664 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
665 {
666 struct dl *dl;
667
668 dl = get_imsm_dl_disk(super, index);
669 if (dl)
670 return &dl->disk;
671
672 return NULL;
673 }
674
675 /* generate a checksum directly from the anchor when the anchor is known to be
676 * up-to-date, currently only at load or write_super after coalescing
677 */
678 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
679 {
680 __u32 end = mpb->mpb_size / sizeof(end);
681 __u32 *p = (__u32 *) mpb;
682 __u32 sum = 0;
683
684 while (end--) {
685 sum += __le32_to_cpu(*p);
686 p++;
687 }
688
689 return sum - __le32_to_cpu(mpb->check_sum);
690 }
691
692 static size_t sizeof_imsm_map(struct imsm_map *map)
693 {
694 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
695 }
696
697 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
698 {
699 /* A device can have 2 maps if it is in the middle of a migration.
700 * If second_map is:
701 * MAP_0 - we return the first map
702 * MAP_1 - we return the second map if it exists, else NULL
703 * MAP_X - we return the second map if it exists, else the first
704 */
705 struct imsm_map *map = &dev->vol.map[0];
706 struct imsm_map *map2 = NULL;
707
708 if (dev->vol.migr_state)
709 map2 = (void *)map + sizeof_imsm_map(map);
710
711 switch (second_map) {
712 case MAP_0:
713 break;
714 case MAP_1:
715 map = map2;
716 break;
717 case MAP_X:
718 if (map2)
719 map = map2;
720 break;
721 default:
722 map = NULL;
723 }
724 return map;
725
726 }
727
728 /* return the size of the device.
729 * migr_state increases the returned size if map[0] were to be duplicated
730 */
731 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
732 {
733 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
734 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
735
736 /* migrating means an additional map */
737 if (dev->vol.migr_state)
738 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
739 else if (migr_state)
740 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
741
742 return size;
743 }
744
745 #ifndef MDASSEMBLE
746 /* retrieve disk serial number list from a metadata update */
747 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
748 {
749 void *u = update;
750 struct disk_info *inf;
751
752 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
753 sizeof_imsm_dev(&update->dev, 0);
754
755 return inf;
756 }
757 #endif
758
759 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
760 {
761 int offset;
762 int i;
763 void *_mpb = mpb;
764
765 if (index >= mpb->num_raid_devs)
766 return NULL;
767
768 /* devices start after all disks */
769 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
770
771 for (i = 0; i <= index; i++)
772 if (i == index)
773 return _mpb + offset;
774 else
775 offset += sizeof_imsm_dev(_mpb + offset, 0);
776
777 return NULL;
778 }
779
780 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
781 {
782 struct intel_dev *dv;
783
784 if (index >= super->anchor->num_raid_devs)
785 return NULL;
786 for (dv = super->devlist; dv; dv = dv->next)
787 if (dv->index == index)
788 return dv->dev;
789 return NULL;
790 }
791
792 /*
793 * for second_map:
794 * == MAP_0 get first map
795 * == MAP_1 get second map
796 * == MAP_X than get map according to the current migr_state
797 */
798 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
799 int slot,
800 int second_map)
801 {
802 struct imsm_map *map;
803
804 map = get_imsm_map(dev, second_map);
805
806 /* top byte identifies disk under rebuild */
807 return __le32_to_cpu(map->disk_ord_tbl[slot]);
808 }
809
810 #define ord_to_idx(ord) (((ord) << 8) >> 8)
811 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
812 {
813 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
814
815 return ord_to_idx(ord);
816 }
817
818 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
819 {
820 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
821 }
822
823 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
824 {
825 int slot;
826 __u32 ord;
827
828 for (slot = 0; slot < map->num_members; slot++) {
829 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
830 if (ord_to_idx(ord) == idx)
831 return slot;
832 }
833
834 return -1;
835 }
836
837 static int get_imsm_raid_level(struct imsm_map *map)
838 {
839 if (map->raid_level == 1) {
840 if (map->num_members == 2)
841 return 1;
842 else
843 return 10;
844 }
845
846 return map->raid_level;
847 }
848
849 static int cmp_extent(const void *av, const void *bv)
850 {
851 const struct extent *a = av;
852 const struct extent *b = bv;
853 if (a->start < b->start)
854 return -1;
855 if (a->start > b->start)
856 return 1;
857 return 0;
858 }
859
860 static int count_memberships(struct dl *dl, struct intel_super *super)
861 {
862 int memberships = 0;
863 int i;
864
865 for (i = 0; i < super->anchor->num_raid_devs; i++) {
866 struct imsm_dev *dev = get_imsm_dev(super, i);
867 struct imsm_map *map = get_imsm_map(dev, MAP_0);
868
869 if (get_imsm_disk_slot(map, dl->index) >= 0)
870 memberships++;
871 }
872
873 return memberships;
874 }
875
876 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
877
878 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
879 {
880 if (lo == 0 || hi == 0)
881 return 1;
882 *lo = __le32_to_cpu((unsigned)n);
883 *hi = __le32_to_cpu((unsigned)(n >> 32));
884 return 0;
885 }
886
887 static unsigned long long join_u32(__u32 lo, __u32 hi)
888 {
889 return (unsigned long long)__le32_to_cpu(lo) |
890 (((unsigned long long)__le32_to_cpu(hi)) << 32);
891 }
892
893 static unsigned long long total_blocks(struct imsm_disk *disk)
894 {
895 if (disk == NULL)
896 return 0;
897 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
898 }
899
900 static unsigned long long pba_of_lba0(struct imsm_map *map)
901 {
902 if (map == NULL)
903 return 0;
904 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
905 }
906
907 static unsigned long long blocks_per_member(struct imsm_map *map)
908 {
909 if (map == NULL)
910 return 0;
911 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
912 }
913
914 #ifndef MDASSEMBLE
915 static unsigned long long num_data_stripes(struct imsm_map *map)
916 {
917 if (map == NULL)
918 return 0;
919 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
920 }
921
922 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
923 {
924 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
925 }
926 #endif
927
928 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
929 {
930 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
931 }
932
933 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
934 {
935 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
936 }
937
938 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
939 {
940 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
941 }
942
943 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
944 {
945 /* find a list of used extents on the given physical device */
946 struct extent *rv, *e;
947 int i;
948 int memberships = count_memberships(dl, super);
949 __u32 reservation;
950
951 /* trim the reserved area for spares, so they can join any array
952 * regardless of whether the OROM has assigned sectors from the
953 * IMSM_RESERVED_SECTORS region
954 */
955 if (dl->index == -1)
956 reservation = imsm_min_reserved_sectors(super);
957 else
958 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
959
960 rv = xcalloc(sizeof(struct extent), (memberships + 1));
961 e = rv;
962
963 for (i = 0; i < super->anchor->num_raid_devs; i++) {
964 struct imsm_dev *dev = get_imsm_dev(super, i);
965 struct imsm_map *map = get_imsm_map(dev, MAP_0);
966
967 if (get_imsm_disk_slot(map, dl->index) >= 0) {
968 e->start = pba_of_lba0(map);
969 e->size = blocks_per_member(map);
970 e++;
971 }
972 }
973 qsort(rv, memberships, sizeof(*rv), cmp_extent);
974
975 /* determine the start of the metadata
976 * when no raid devices are defined use the default
977 * ...otherwise allow the metadata to truncate the value
978 * as is the case with older versions of imsm
979 */
980 if (memberships) {
981 struct extent *last = &rv[memberships - 1];
982 unsigned long long remainder;
983
984 remainder = total_blocks(&dl->disk) - (last->start + last->size);
985 /* round down to 1k block to satisfy precision of the kernel
986 * 'size' interface
987 */
988 remainder &= ~1UL;
989 /* make sure remainder is still sane */
990 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
991 remainder = ROUND_UP(super->len, 512) >> 9;
992 if (reservation > remainder)
993 reservation = remainder;
994 }
995 e->start = total_blocks(&dl->disk) - reservation;
996 e->size = 0;
997 return rv;
998 }
999
1000 /* try to determine how much space is reserved for metadata from
1001 * the last get_extents() entry, otherwise fallback to the
1002 * default
1003 */
1004 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1005 {
1006 struct extent *e;
1007 int i;
1008 __u32 rv;
1009
1010 /* for spares just return a minimal reservation which will grow
1011 * once the spare is picked up by an array
1012 */
1013 if (dl->index == -1)
1014 return MPB_SECTOR_CNT;
1015
1016 e = get_extents(super, dl);
1017 if (!e)
1018 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1019
1020 /* scroll to last entry */
1021 for (i = 0; e[i].size; i++)
1022 continue;
1023
1024 rv = total_blocks(&dl->disk) - e[i].start;
1025
1026 free(e);
1027
1028 return rv;
1029 }
1030
1031 static int is_spare(struct imsm_disk *disk)
1032 {
1033 return (disk->status & SPARE_DISK) == SPARE_DISK;
1034 }
1035
1036 static int is_configured(struct imsm_disk *disk)
1037 {
1038 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1039 }
1040
1041 static int is_failed(struct imsm_disk *disk)
1042 {
1043 return (disk->status & FAILED_DISK) == FAILED_DISK;
1044 }
1045
1046 /* try to determine how much space is reserved for metadata from
1047 * the last get_extents() entry on the smallest active disk,
1048 * otherwise fallback to the default
1049 */
1050 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1051 {
1052 struct extent *e;
1053 int i;
1054 unsigned long long min_active;
1055 __u32 remainder;
1056 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1057 struct dl *dl, *dl_min = NULL;
1058
1059 if (!super)
1060 return rv;
1061
1062 min_active = 0;
1063 for (dl = super->disks; dl; dl = dl->next) {
1064 if (dl->index < 0)
1065 continue;
1066 unsigned long long blocks = total_blocks(&dl->disk);
1067 if (blocks < min_active || min_active == 0) {
1068 dl_min = dl;
1069 min_active = blocks;
1070 }
1071 }
1072 if (!dl_min)
1073 return rv;
1074
1075 /* find last lba used by subarrays on the smallest active disk */
1076 e = get_extents(super, dl_min);
1077 if (!e)
1078 return rv;
1079 for (i = 0; e[i].size; i++)
1080 continue;
1081
1082 remainder = min_active - e[i].start;
1083 free(e);
1084
1085 /* to give priority to recovery we should not require full
1086 IMSM_RESERVED_SECTORS from the spare */
1087 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1088
1089 /* if real reservation is smaller use that value */
1090 return (remainder < rv) ? remainder : rv;
1091 }
1092
1093 /* Return minimum size of a spare that can be used in this array*/
1094 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1095 {
1096 struct intel_super *super = st->sb;
1097 struct dl *dl;
1098 struct extent *e;
1099 int i;
1100 unsigned long long rv = 0;
1101
1102 if (!super)
1103 return rv;
1104 /* find first active disk in array */
1105 dl = super->disks;
1106 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1107 dl = dl->next;
1108 if (!dl)
1109 return rv;
1110 /* find last lba used by subarrays */
1111 e = get_extents(super, dl);
1112 if (!e)
1113 return rv;
1114 for (i = 0; e[i].size; i++)
1115 continue;
1116 if (i > 0)
1117 rv = e[i-1].start + e[i-1].size;
1118 free(e);
1119
1120 /* add the amount of space needed for metadata */
1121 rv = rv + imsm_min_reserved_sectors(super);
1122
1123 return rv * 512;
1124 }
1125
1126 static int is_gen_migration(struct imsm_dev *dev);
1127
1128 #ifndef MDASSEMBLE
1129 static __u64 blocks_per_migr_unit(struct intel_super *super,
1130 struct imsm_dev *dev);
1131
1132 static void print_imsm_dev(struct intel_super *super,
1133 struct imsm_dev *dev,
1134 char *uuid,
1135 int disk_idx)
1136 {
1137 __u64 sz;
1138 int slot, i;
1139 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1140 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1141 __u32 ord;
1142
1143 printf("\n");
1144 printf("[%.16s]:\n", dev->volume);
1145 printf(" UUID : %s\n", uuid);
1146 printf(" RAID Level : %d", get_imsm_raid_level(map));
1147 if (map2)
1148 printf(" <-- %d", get_imsm_raid_level(map2));
1149 printf("\n");
1150 printf(" Members : %d", map->num_members);
1151 if (map2)
1152 printf(" <-- %d", map2->num_members);
1153 printf("\n");
1154 printf(" Slots : [");
1155 for (i = 0; i < map->num_members; i++) {
1156 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1157 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1158 }
1159 printf("]");
1160 if (map2) {
1161 printf(" <-- [");
1162 for (i = 0; i < map2->num_members; i++) {
1163 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1164 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1165 }
1166 printf("]");
1167 }
1168 printf("\n");
1169 printf(" Failed disk : ");
1170 if (map->failed_disk_num == 0xff)
1171 printf("none");
1172 else
1173 printf("%i", map->failed_disk_num);
1174 printf("\n");
1175 slot = get_imsm_disk_slot(map, disk_idx);
1176 if (slot >= 0) {
1177 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1178 printf(" This Slot : %d%s\n", slot,
1179 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1180 } else
1181 printf(" This Slot : ?\n");
1182 sz = __le32_to_cpu(dev->size_high);
1183 sz <<= 32;
1184 sz += __le32_to_cpu(dev->size_low);
1185 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1186 human_size(sz * 512));
1187 sz = blocks_per_member(map);
1188 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1189 human_size(sz * 512));
1190 printf(" Sector Offset : %llu\n",
1191 pba_of_lba0(map));
1192 printf(" Num Stripes : %llu\n",
1193 num_data_stripes(map));
1194 printf(" Chunk Size : %u KiB",
1195 __le16_to_cpu(map->blocks_per_strip) / 2);
1196 if (map2)
1197 printf(" <-- %u KiB",
1198 __le16_to_cpu(map2->blocks_per_strip) / 2);
1199 printf("\n");
1200 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1201 printf(" Migrate State : ");
1202 if (dev->vol.migr_state) {
1203 if (migr_type(dev) == MIGR_INIT)
1204 printf("initialize\n");
1205 else if (migr_type(dev) == MIGR_REBUILD)
1206 printf("rebuild\n");
1207 else if (migr_type(dev) == MIGR_VERIFY)
1208 printf("check\n");
1209 else if (migr_type(dev) == MIGR_GEN_MIGR)
1210 printf("general migration\n");
1211 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1212 printf("state change\n");
1213 else if (migr_type(dev) == MIGR_REPAIR)
1214 printf("repair\n");
1215 else
1216 printf("<unknown:%d>\n", migr_type(dev));
1217 } else
1218 printf("idle\n");
1219 printf(" Map State : %s", map_state_str[map->map_state]);
1220 if (dev->vol.migr_state) {
1221 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1222
1223 printf(" <-- %s", map_state_str[map->map_state]);
1224 printf("\n Checkpoint : %u ",
1225 __le32_to_cpu(dev->vol.curr_migr_unit));
1226 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
1227 printf("(N/A)");
1228 else
1229 printf("(%llu)", (unsigned long long)
1230 blocks_per_migr_unit(super, dev));
1231 }
1232 printf("\n");
1233 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1234 }
1235
1236 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1237 {
1238 char str[MAX_RAID_SERIAL_LEN + 1];
1239 __u64 sz;
1240
1241 if (index < -1 || !disk)
1242 return;
1243
1244 printf("\n");
1245 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1246 if (index >= 0)
1247 printf(" Disk%02d Serial : %s\n", index, str);
1248 else
1249 printf(" Disk Serial : %s\n", str);
1250 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1251 is_configured(disk) ? " active" : "",
1252 is_failed(disk) ? " failed" : "");
1253 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1254 sz = total_blocks(disk) - reserved;
1255 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1256 human_size(sz * 512));
1257 }
1258
1259 void examine_migr_rec_imsm(struct intel_super *super)
1260 {
1261 struct migr_record *migr_rec = super->migr_rec;
1262 struct imsm_super *mpb = super->anchor;
1263 int i;
1264
1265 for (i = 0; i < mpb->num_raid_devs; i++) {
1266 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1267 struct imsm_map *map;
1268 int slot = -1;
1269
1270 if (is_gen_migration(dev) == 0)
1271 continue;
1272
1273 printf("\nMigration Record Information:");
1274
1275 /* first map under migration */
1276 map = get_imsm_map(dev, MAP_0);
1277 if (map)
1278 slot = get_imsm_disk_slot(map, super->disks->index);
1279 if ((map == NULL) || (slot > 1) || (slot < 0)) {
1280 printf(" Empty\n ");
1281 printf("Examine one of first two disks in array\n");
1282 break;
1283 }
1284 printf("\n Status : ");
1285 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1286 printf("Normal\n");
1287 else
1288 printf("Contains Data\n");
1289 printf(" Current Unit : %u\n",
1290 __le32_to_cpu(migr_rec->curr_migr_unit));
1291 printf(" Family : %u\n",
1292 __le32_to_cpu(migr_rec->family_num));
1293 printf(" Ascending : %u\n",
1294 __le32_to_cpu(migr_rec->ascending_migr));
1295 printf(" Blocks Per Unit : %u\n",
1296 __le32_to_cpu(migr_rec->blocks_per_unit));
1297 printf(" Dest. Depth Per Unit : %u\n",
1298 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1299 printf(" Checkpoint Area pba : %u\n",
1300 __le32_to_cpu(migr_rec->ckpt_area_pba));
1301 printf(" First member lba : %u\n",
1302 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1303 printf(" Total Number of Units : %u\n",
1304 __le32_to_cpu(migr_rec->num_migr_units));
1305 printf(" Size of volume : %u\n",
1306 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1307 printf(" Expansion space for LBA64 : %u\n",
1308 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1309 printf(" Record was read from : %u\n",
1310 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1311
1312 break;
1313 }
1314 }
1315 #endif /* MDASSEMBLE */
1316 /*******************************************************************************
1317 * function: imsm_check_attributes
1318 * Description: Function checks if features represented by attributes flags
1319 * are supported by mdadm.
1320 * Parameters:
1321 * attributes - Attributes read from metadata
1322 * Returns:
1323 * 0 - passed attributes contains unsupported features flags
1324 * 1 - all features are supported
1325 ******************************************************************************/
1326 static int imsm_check_attributes(__u32 attributes)
1327 {
1328 int ret_val = 1;
1329 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1330
1331 not_supported &= ~MPB_ATTRIB_IGNORED;
1332
1333 not_supported &= attributes;
1334 if (not_supported) {
1335 pr_err("(IMSM): Unsupported attributes : %x\n",
1336 (unsigned)__le32_to_cpu(not_supported));
1337 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1338 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1339 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1340 }
1341 if (not_supported & MPB_ATTRIB_2TB) {
1342 dprintf("\t\tMPB_ATTRIB_2TB\n");
1343 not_supported ^= MPB_ATTRIB_2TB;
1344 }
1345 if (not_supported & MPB_ATTRIB_RAID0) {
1346 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1347 not_supported ^= MPB_ATTRIB_RAID0;
1348 }
1349 if (not_supported & MPB_ATTRIB_RAID1) {
1350 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1351 not_supported ^= MPB_ATTRIB_RAID1;
1352 }
1353 if (not_supported & MPB_ATTRIB_RAID10) {
1354 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1355 not_supported ^= MPB_ATTRIB_RAID10;
1356 }
1357 if (not_supported & MPB_ATTRIB_RAID1E) {
1358 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1359 not_supported ^= MPB_ATTRIB_RAID1E;
1360 }
1361 if (not_supported & MPB_ATTRIB_RAID5) {
1362 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1363 not_supported ^= MPB_ATTRIB_RAID5;
1364 }
1365 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1366 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1367 not_supported ^= MPB_ATTRIB_RAIDCNG;
1368 }
1369 if (not_supported & MPB_ATTRIB_BBM) {
1370 dprintf("\t\tMPB_ATTRIB_BBM\n");
1371 not_supported ^= MPB_ATTRIB_BBM;
1372 }
1373 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1374 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1375 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1376 }
1377 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1378 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1379 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1380 }
1381 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1382 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1383 not_supported ^= MPB_ATTRIB_2TB_DISK;
1384 }
1385 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1386 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1387 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1388 }
1389 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1390 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1391 not_supported ^= MPB_ATTRIB_NEVER_USE;
1392 }
1393
1394 if (not_supported)
1395 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
1396
1397 ret_val = 0;
1398 }
1399
1400 return ret_val;
1401 }
1402
1403 #ifndef MDASSEMBLE
1404 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1405
1406 static void examine_super_imsm(struct supertype *st, char *homehost)
1407 {
1408 struct intel_super *super = st->sb;
1409 struct imsm_super *mpb = super->anchor;
1410 char str[MAX_SIGNATURE_LENGTH];
1411 int i;
1412 struct mdinfo info;
1413 char nbuf[64];
1414 __u32 sum;
1415 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1416 struct dl *dl;
1417
1418 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1419 printf(" Magic : %s\n", str);
1420 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1421 printf(" Version : %s\n", get_imsm_version(mpb));
1422 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1423 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1424 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1425 printf(" Attributes : ");
1426 if (imsm_check_attributes(mpb->attributes))
1427 printf("All supported\n");
1428 else
1429 printf("not supported\n");
1430 getinfo_super_imsm(st, &info, NULL);
1431 fname_from_uuid(st, &info, nbuf, ':');
1432 printf(" UUID : %s\n", nbuf + 5);
1433 sum = __le32_to_cpu(mpb->check_sum);
1434 printf(" Checksum : %08x %s\n", sum,
1435 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1436 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1437 printf(" Disks : %d\n", mpb->num_disks);
1438 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1439 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1440 if (super->bbm_log) {
1441 struct bbm_log *log = super->bbm_log;
1442
1443 printf("\n");
1444 printf("Bad Block Management Log:\n");
1445 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1446 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1447 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1448 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1449 printf(" First Spare : %llx\n",
1450 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1451 }
1452 for (i = 0; i < mpb->num_raid_devs; i++) {
1453 struct mdinfo info;
1454 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1455
1456 super->current_vol = i;
1457 getinfo_super_imsm(st, &info, NULL);
1458 fname_from_uuid(st, &info, nbuf, ':');
1459 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1460 }
1461 for (i = 0; i < mpb->num_disks; i++) {
1462 if (i == super->disks->index)
1463 continue;
1464 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1465 }
1466
1467 for (dl = super->disks; dl; dl = dl->next)
1468 if (dl->index == -1)
1469 print_imsm_disk(&dl->disk, -1, reserved);
1470
1471 examine_migr_rec_imsm(super);
1472 }
1473
1474 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1475 {
1476 /* We just write a generic IMSM ARRAY entry */
1477 struct mdinfo info;
1478 char nbuf[64];
1479 struct intel_super *super = st->sb;
1480
1481 if (!super->anchor->num_raid_devs) {
1482 printf("ARRAY metadata=imsm\n");
1483 return;
1484 }
1485
1486 getinfo_super_imsm(st, &info, NULL);
1487 fname_from_uuid(st, &info, nbuf, ':');
1488 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1489 }
1490
1491 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1492 {
1493 /* We just write a generic IMSM ARRAY entry */
1494 struct mdinfo info;
1495 char nbuf[64];
1496 char nbuf1[64];
1497 struct intel_super *super = st->sb;
1498 int i;
1499
1500 if (!super->anchor->num_raid_devs)
1501 return;
1502
1503 getinfo_super_imsm(st, &info, NULL);
1504 fname_from_uuid(st, &info, nbuf, ':');
1505 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1506 struct imsm_dev *dev = get_imsm_dev(super, i);
1507
1508 super->current_vol = i;
1509 getinfo_super_imsm(st, &info, NULL);
1510 fname_from_uuid(st, &info, nbuf1, ':');
1511 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1512 dev->volume, nbuf + 5, i, nbuf1 + 5);
1513 }
1514 }
1515
1516 static void export_examine_super_imsm(struct supertype *st)
1517 {
1518 struct intel_super *super = st->sb;
1519 struct imsm_super *mpb = super->anchor;
1520 struct mdinfo info;
1521 char nbuf[64];
1522
1523 getinfo_super_imsm(st, &info, NULL);
1524 fname_from_uuid(st, &info, nbuf, ':');
1525 printf("MD_METADATA=imsm\n");
1526 printf("MD_LEVEL=container\n");
1527 printf("MD_UUID=%s\n", nbuf+5);
1528 printf("MD_DEVICES=%u\n", mpb->num_disks);
1529 }
1530
1531 static int copy_metadata_imsm(struct supertype *st, int from, int to)
1532 {
1533 /* The second last 512byte sector of the device contains
1534 * the "struct imsm_super" metadata.
1535 * This contains mpb_size which is the size in bytes of the
1536 * extended metadata. This is located immediately before
1537 * the imsm_super.
1538 * We want to read all that, plus the last sector which
1539 * may contain a migration record, and write it all
1540 * to the target.
1541 */
1542 void *buf;
1543 unsigned long long dsize, offset;
1544 int sectors;
1545 struct imsm_super *sb;
1546 int written = 0;
1547
1548 if (posix_memalign(&buf, 4096, 4096) != 0)
1549 return 1;
1550
1551 if (!get_dev_size(from, NULL, &dsize))
1552 goto err;
1553
1554 if (lseek64(from, dsize-1024, 0) < 0)
1555 goto err;
1556 if (read(from, buf, 512) != 512)
1557 goto err;
1558 sb = buf;
1559 if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
1560 goto err;
1561
1562 sectors = mpb_sectors(sb) + 2;
1563 offset = dsize - sectors * 512;
1564 if (lseek64(from, offset, 0) < 0 ||
1565 lseek64(to, offset, 0) < 0)
1566 goto err;
1567 while (written < sectors * 512) {
1568 int n = sectors*512 - written;
1569 if (n > 4096)
1570 n = 4096;
1571 if (read(from, buf, n) != n)
1572 goto err;
1573 if (write(to, buf, n) != n)
1574 goto err;
1575 written += n;
1576 }
1577 free(buf);
1578 return 0;
1579 err:
1580 free(buf);
1581 return 1;
1582 }
1583
1584 static void detail_super_imsm(struct supertype *st, char *homehost)
1585 {
1586 struct mdinfo info;
1587 char nbuf[64];
1588
1589 getinfo_super_imsm(st, &info, NULL);
1590 fname_from_uuid(st, &info, nbuf, ':');
1591 printf("\n UUID : %s\n", nbuf + 5);
1592 }
1593
1594 static void brief_detail_super_imsm(struct supertype *st)
1595 {
1596 struct mdinfo info;
1597 char nbuf[64];
1598 getinfo_super_imsm(st, &info, NULL);
1599 fname_from_uuid(st, &info, nbuf, ':');
1600 printf(" UUID=%s", nbuf + 5);
1601 }
1602
1603 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1604 static void fd2devname(int fd, char *name);
1605
1606 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1607 {
1608 /* dump an unsorted list of devices attached to AHCI Intel storage
1609 * controller, as well as non-connected ports
1610 */
1611 int hba_len = strlen(hba_path) + 1;
1612 struct dirent *ent;
1613 DIR *dir;
1614 char *path = NULL;
1615 int err = 0;
1616 unsigned long port_mask = (1 << port_count) - 1;
1617
1618 if (port_count > (int)sizeof(port_mask) * 8) {
1619 if (verbose > 0)
1620 pr_err("port_count %d out of range\n", port_count);
1621 return 2;
1622 }
1623
1624 /* scroll through /sys/dev/block looking for devices attached to
1625 * this hba
1626 */
1627 dir = opendir("/sys/dev/block");
1628 if (!dir)
1629 return 1;
1630
1631 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1632 int fd;
1633 char model[64];
1634 char vendor[64];
1635 char buf[1024];
1636 int major, minor;
1637 char *device;
1638 char *c;
1639 int port;
1640 int type;
1641
1642 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1643 continue;
1644 path = devt_to_devpath(makedev(major, minor));
1645 if (!path)
1646 continue;
1647 if (!path_attached_to_hba(path, hba_path)) {
1648 free(path);
1649 path = NULL;
1650 continue;
1651 }
1652
1653 /* retrieve the scsi device type */
1654 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1655 if (verbose > 0)
1656 pr_err("failed to allocate 'device'\n");
1657 err = 2;
1658 break;
1659 }
1660 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1661 if (load_sys(device, buf, sizeof(buf)) != 0) {
1662 if (verbose > 0)
1663 pr_err("failed to read device type for %s\n",
1664 path);
1665 err = 2;
1666 free(device);
1667 break;
1668 }
1669 type = strtoul(buf, NULL, 10);
1670
1671 /* if it's not a disk print the vendor and model */
1672 if (!(type == 0 || type == 7 || type == 14)) {
1673 vendor[0] = '\0';
1674 model[0] = '\0';
1675 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1676 if (load_sys(device, buf, sizeof(buf)) == 0) {
1677 strncpy(vendor, buf, sizeof(vendor));
1678 vendor[sizeof(vendor) - 1] = '\0';
1679 c = (char *) &vendor[sizeof(vendor) - 1];
1680 while (isspace(*c) || *c == '\0')
1681 *c-- = '\0';
1682
1683 }
1684 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1685 if (load_sys(device, buf, sizeof(buf)) == 0) {
1686 strncpy(model, buf, sizeof(model));
1687 model[sizeof(model) - 1] = '\0';
1688 c = (char *) &model[sizeof(model) - 1];
1689 while (isspace(*c) || *c == '\0')
1690 *c-- = '\0';
1691 }
1692
1693 if (vendor[0] && model[0])
1694 sprintf(buf, "%.64s %.64s", vendor, model);
1695 else
1696 switch (type) { /* numbers from hald/linux/device.c */
1697 case 1: sprintf(buf, "tape"); break;
1698 case 2: sprintf(buf, "printer"); break;
1699 case 3: sprintf(buf, "processor"); break;
1700 case 4:
1701 case 5: sprintf(buf, "cdrom"); break;
1702 case 6: sprintf(buf, "scanner"); break;
1703 case 8: sprintf(buf, "media_changer"); break;
1704 case 9: sprintf(buf, "comm"); break;
1705 case 12: sprintf(buf, "raid"); break;
1706 default: sprintf(buf, "unknown");
1707 }
1708 } else
1709 buf[0] = '\0';
1710 free(device);
1711
1712 /* chop device path to 'host%d' and calculate the port number */
1713 c = strchr(&path[hba_len], '/');
1714 if (!c) {
1715 if (verbose > 0)
1716 pr_err("%s - invalid path name\n", path + hba_len);
1717 err = 2;
1718 break;
1719 }
1720 *c = '\0';
1721 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
1722 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
1723 port -= host_base;
1724 else {
1725 if (verbose > 0) {
1726 *c = '/'; /* repair the full string */
1727 pr_err("failed to determine port number for %s\n",
1728 path);
1729 }
1730 err = 2;
1731 break;
1732 }
1733
1734 /* mark this port as used */
1735 port_mask &= ~(1 << port);
1736
1737 /* print out the device information */
1738 if (buf[0]) {
1739 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1740 continue;
1741 }
1742
1743 fd = dev_open(ent->d_name, O_RDONLY);
1744 if (fd < 0)
1745 printf(" Port%d : - disk info unavailable -\n", port);
1746 else {
1747 fd2devname(fd, buf);
1748 printf(" Port%d : %s", port, buf);
1749 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1750 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1751 else
1752 printf(" ()\n");
1753 close(fd);
1754 }
1755 free(path);
1756 path = NULL;
1757 }
1758 if (path)
1759 free(path);
1760 if (dir)
1761 closedir(dir);
1762 if (err == 0) {
1763 int i;
1764
1765 for (i = 0; i < port_count; i++)
1766 if (port_mask & (1 << i))
1767 printf(" Port%d : - no device attached -\n", i);
1768 }
1769
1770 return err;
1771 }
1772
1773 static int print_vmd_attached_devs(struct sys_dev *hba)
1774 {
1775 struct dirent *ent;
1776 DIR *dir;
1777 char path[292];
1778 char link[256];
1779 char *c, *rp;
1780
1781 if (hba->type != SYS_DEV_VMD)
1782 return 1;
1783
1784 /* scroll through /sys/dev/block looking for devices attached to
1785 * this hba
1786 */
1787 dir = opendir("/sys/bus/pci/drivers/nvme");
1788 if (!dir)
1789 return 1;
1790
1791 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1792 int n;
1793
1794 /* is 'ent' a device? check that the 'subsystem' link exists and
1795 * that its target matches 'bus'
1796 */
1797 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
1798 ent->d_name);
1799 n = readlink(path, link, sizeof(link));
1800 if (n < 0 || n >= (int)sizeof(link))
1801 continue;
1802 link[n] = '\0';
1803 c = strrchr(link, '/');
1804 if (!c)
1805 continue;
1806 if (strncmp("pci", c+1, strlen("pci")) != 0)
1807 continue;
1808
1809 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
1810 /* if not a intel NVMe - skip it*/
1811 if (devpath_to_vendor(path) != 0x8086)
1812 continue;
1813
1814 rp = realpath(path, NULL);
1815 if (!rp)
1816 continue;
1817
1818 if (path_attached_to_hba(rp, hba->path)) {
1819 printf(" NVMe under VMD : %s\n", rp);
1820 }
1821 free(rp);
1822 }
1823
1824 closedir(dir);
1825 return 0;
1826 }
1827
1828 static void print_found_intel_controllers(struct sys_dev *elem)
1829 {
1830 for (; elem; elem = elem->next) {
1831 pr_err("found Intel(R) ");
1832 if (elem->type == SYS_DEV_SATA)
1833 fprintf(stderr, "SATA ");
1834 else if (elem->type == SYS_DEV_SAS)
1835 fprintf(stderr, "SAS ");
1836 else if (elem->type == SYS_DEV_NVME)
1837 fprintf(stderr, "NVMe ");
1838
1839 if (elem->type == SYS_DEV_VMD)
1840 fprintf(stderr, "VMD domain");
1841 else
1842 fprintf(stderr, "RAID controller");
1843
1844 if (elem->pci_id)
1845 fprintf(stderr, " at %s", elem->pci_id);
1846 fprintf(stderr, ".\n");
1847 }
1848 fflush(stderr);
1849 }
1850
1851 static int ahci_get_port_count(const char *hba_path, int *port_count)
1852 {
1853 struct dirent *ent;
1854 DIR *dir;
1855 int host_base = -1;
1856
1857 *port_count = 0;
1858 if ((dir = opendir(hba_path)) == NULL)
1859 return -1;
1860
1861 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1862 int host;
1863
1864 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
1865 ((sscanf(ent->d_name, "host%d", &host) != 1)))
1866 continue;
1867 if (*port_count == 0)
1868 host_base = host;
1869 else if (host < host_base)
1870 host_base = host;
1871
1872 if (host + 1 > *port_count + host_base)
1873 *port_count = host + 1 - host_base;
1874 }
1875 closedir(dir);
1876 return host_base;
1877 }
1878
1879 static void print_imsm_capability(const struct imsm_orom *orom)
1880 {
1881 printf(" Platform : Intel(R) ");
1882 if (orom->capabilities == 0 && orom->driver_features == 0)
1883 printf("Matrix Storage Manager\n");
1884 else
1885 printf("Rapid Storage Technology%s\n",
1886 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
1887 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
1888 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
1889 orom->minor_ver, orom->hotfix_ver, orom->build);
1890 printf(" RAID Levels :%s%s%s%s%s\n",
1891 imsm_orom_has_raid0(orom) ? " raid0" : "",
1892 imsm_orom_has_raid1(orom) ? " raid1" : "",
1893 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1894 imsm_orom_has_raid10(orom) ? " raid10" : "",
1895 imsm_orom_has_raid5(orom) ? " raid5" : "");
1896 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1897 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1898 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1899 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1900 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1901 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1902 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1903 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1904 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1905 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1906 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1907 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1908 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1909 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1910 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1911 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1912 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1913 printf(" 2TB volumes :%s supported\n",
1914 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
1915 printf(" 2TB disks :%s supported\n",
1916 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
1917 printf(" Max Disks : %d\n", orom->tds);
1918 printf(" Max Volumes : %d per array, %d per %s\n",
1919 orom->vpa, orom->vphba,
1920 imsm_orom_is_nvme(orom) ? "platform" : "controller");
1921 return;
1922 }
1923
1924 static void print_imsm_capability_export(const struct imsm_orom *orom)
1925 {
1926 printf("MD_FIRMWARE_TYPE=imsm\n");
1927 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
1928 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1929 orom->hotfix_ver, orom->build);
1930 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
1931 imsm_orom_has_raid0(orom) ? "raid0 " : "",
1932 imsm_orom_has_raid1(orom) ? "raid1 " : "",
1933 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
1934 imsm_orom_has_raid5(orom) ? "raid10 " : "",
1935 imsm_orom_has_raid10(orom) ? "raid5 " : "");
1936 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1937 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
1938 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
1939 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
1940 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
1941 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
1942 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
1943 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
1944 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
1945 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
1946 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
1947 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
1948 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
1949 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
1950 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
1951 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
1952 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
1953 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
1954 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
1955 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
1956 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
1957 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
1958 }
1959
1960 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
1961 {
1962 /* There are two components to imsm platform support, the ahci SATA
1963 * controller and the option-rom. To find the SATA controller we
1964 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1965 * controller with the Intel vendor id is present. This approach
1966 * allows mdadm to leverage the kernel's ahci detection logic, with the
1967 * caveat that if ahci.ko is not loaded mdadm will not be able to
1968 * detect platform raid capabilities. The option-rom resides in a
1969 * platform "Adapter ROM". We scan for its signature to retrieve the
1970 * platform capabilities. If raid support is disabled in the BIOS the
1971 * option-rom capability structure will not be available.
1972 */
1973 struct sys_dev *list, *hba;
1974 int host_base = 0;
1975 int port_count = 0;
1976 int result=1;
1977
1978 if (enumerate_only) {
1979 if (check_env("IMSM_NO_PLATFORM"))
1980 return 0;
1981 list = find_intel_devices();
1982 if (!list)
1983 return 2;
1984 for (hba = list; hba; hba = hba->next) {
1985 if (find_imsm_capability(hba)) {
1986 result = 0;
1987 break;
1988 }
1989 else
1990 result = 2;
1991 }
1992 return result;
1993 }
1994
1995 list = find_intel_devices();
1996 if (!list) {
1997 if (verbose > 0)
1998 pr_err("no active Intel(R) RAID controller found.\n");
1999 return 2;
2000 } else if (verbose > 0)
2001 print_found_intel_controllers(list);
2002
2003 for (hba = list; hba; hba = hba->next) {
2004 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
2005 continue;
2006 if (!find_imsm_capability(hba)) {
2007 char buf[PATH_MAX];
2008 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
2009 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2010 get_sys_dev_type(hba->type));
2011 continue;
2012 }
2013 result = 0;
2014 }
2015
2016 if (controller_path && result == 1) {
2017 pr_err("no active Intel(R) RAID controller found under %s\n",
2018 controller_path);
2019 return result;
2020 }
2021
2022 const struct orom_entry *entry;
2023
2024 for (entry = orom_entries; entry; entry = entry->next) {
2025 if (entry->type == SYS_DEV_VMD) {
2026 for (hba = list; hba; hba = hba->next) {
2027 if (hba->type == SYS_DEV_VMD) {
2028 char buf[PATH_MAX];
2029 print_imsm_capability(&entry->orom);
2030 printf(" I/O Controller : %s (%s)\n",
2031 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
2032 if (print_vmd_attached_devs(hba)) {
2033 if (verbose > 0)
2034 pr_err("failed to get devices attached to VMD domain.\n");
2035 result |= 2;
2036 }
2037 printf("\n");
2038 }
2039 }
2040 continue;
2041 }
2042
2043 print_imsm_capability(&entry->orom);
2044 if (entry->type == SYS_DEV_NVME) {
2045 for (hba = list; hba; hba = hba->next) {
2046 if (hba->type == SYS_DEV_NVME)
2047 printf(" NVMe Device : %s\n", hba->path);
2048 }
2049 printf("\n");
2050 continue;
2051 }
2052
2053 struct devid_list *devid;
2054 for (devid = entry->devid_list; devid; devid = devid->next) {
2055 hba = device_by_id(devid->devid);
2056 if (!hba)
2057 continue;
2058
2059 printf(" I/O Controller : %s (%s)\n",
2060 hba->path, get_sys_dev_type(hba->type));
2061 if (hba->type == SYS_DEV_SATA) {
2062 host_base = ahci_get_port_count(hba->path, &port_count);
2063 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2064 if (verbose > 0)
2065 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
2066 result |= 2;
2067 }
2068 }
2069 }
2070 printf("\n");
2071 }
2072
2073 return result;
2074 }
2075
2076 static int export_detail_platform_imsm(int verbose, char *controller_path)
2077 {
2078 struct sys_dev *list, *hba;
2079 int result=1;
2080
2081 list = find_intel_devices();
2082 if (!list) {
2083 if (verbose > 0)
2084 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2085 result = 2;
2086 return result;
2087 }
2088
2089 for (hba = list; hba; hba = hba->next) {
2090 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2091 continue;
2092 if (!find_imsm_capability(hba) && verbose > 0) {
2093 char buf[PATH_MAX];
2094 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2095 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2096 }
2097 else
2098 result = 0;
2099 }
2100
2101 const struct orom_entry *entry;
2102
2103 for (entry = orom_entries; entry; entry = entry->next) {
2104 if (entry->type == SYS_DEV_VMD) {
2105 for (hba = list; hba; hba = hba->next)
2106 print_imsm_capability_export(&entry->orom);
2107 continue;
2108 }
2109 print_imsm_capability_export(&entry->orom);
2110 }
2111
2112 return result;
2113 }
2114
2115 #endif
2116
2117 static int match_home_imsm(struct supertype *st, char *homehost)
2118 {
2119 /* the imsm metadata format does not specify any host
2120 * identification information. We return -1 since we can never
2121 * confirm nor deny whether a given array is "meant" for this
2122 * host. We rely on compare_super and the 'family_num' fields to
2123 * exclude member disks that do not belong, and we rely on
2124 * mdadm.conf to specify the arrays that should be assembled.
2125 * Auto-assembly may still pick up "foreign" arrays.
2126 */
2127
2128 return -1;
2129 }
2130
2131 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2132 {
2133 /* The uuid returned here is used for:
2134 * uuid to put into bitmap file (Create, Grow)
2135 * uuid for backup header when saving critical section (Grow)
2136 * comparing uuids when re-adding a device into an array
2137 * In these cases the uuid required is that of the data-array,
2138 * not the device-set.
2139 * uuid to recognise same set when adding a missing device back
2140 * to an array. This is a uuid for the device-set.
2141 *
2142 * For each of these we can make do with a truncated
2143 * or hashed uuid rather than the original, as long as
2144 * everyone agrees.
2145 * In each case the uuid required is that of the data-array,
2146 * not the device-set.
2147 */
2148 /* imsm does not track uuid's so we synthesis one using sha1 on
2149 * - The signature (Which is constant for all imsm array, but no matter)
2150 * - the orig_family_num of the container
2151 * - the index number of the volume
2152 * - the 'serial' number of the volume.
2153 * Hopefully these are all constant.
2154 */
2155 struct intel_super *super = st->sb;
2156
2157 char buf[20];
2158 struct sha1_ctx ctx;
2159 struct imsm_dev *dev = NULL;
2160 __u32 family_num;
2161
2162 /* some mdadm versions failed to set ->orig_family_num, in which
2163 * case fall back to ->family_num. orig_family_num will be
2164 * fixed up with the first metadata update.
2165 */
2166 family_num = super->anchor->orig_family_num;
2167 if (family_num == 0)
2168 family_num = super->anchor->family_num;
2169 sha1_init_ctx(&ctx);
2170 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2171 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2172 if (super->current_vol >= 0)
2173 dev = get_imsm_dev(super, super->current_vol);
2174 if (dev) {
2175 __u32 vol = super->current_vol;
2176 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2177 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2178 }
2179 sha1_finish_ctx(&ctx, buf);
2180 memcpy(uuid, buf, 4*4);
2181 }
2182
2183 #if 0
2184 static void
2185 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
2186 {
2187 __u8 *v = get_imsm_version(mpb);
2188 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2189 char major[] = { 0, 0, 0 };
2190 char minor[] = { 0 ,0, 0 };
2191 char patch[] = { 0, 0, 0 };
2192 char *ver_parse[] = { major, minor, patch };
2193 int i, j;
2194
2195 i = j = 0;
2196 while (*v != '\0' && v < end) {
2197 if (*v != '.' && j < 2)
2198 ver_parse[i][j++] = *v;
2199 else {
2200 i++;
2201 j = 0;
2202 }
2203 v++;
2204 }
2205
2206 *m = strtol(minor, NULL, 0);
2207 *p = strtol(patch, NULL, 0);
2208 }
2209 #endif
2210
2211 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2212 {
2213 /* migr_strip_size when repairing or initializing parity */
2214 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2215 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2216
2217 switch (get_imsm_raid_level(map)) {
2218 case 5:
2219 case 10:
2220 return chunk;
2221 default:
2222 return 128*1024 >> 9;
2223 }
2224 }
2225
2226 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2227 {
2228 /* migr_strip_size when rebuilding a degraded disk, no idea why
2229 * this is different than migr_strip_size_resync(), but it's good
2230 * to be compatible
2231 */
2232 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2233 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2234
2235 switch (get_imsm_raid_level(map)) {
2236 case 1:
2237 case 10:
2238 if (map->num_members % map->num_domains == 0)
2239 return 128*1024 >> 9;
2240 else
2241 return chunk;
2242 case 5:
2243 return max((__u32) 64*1024 >> 9, chunk);
2244 default:
2245 return 128*1024 >> 9;
2246 }
2247 }
2248
2249 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2250 {
2251 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2252 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2253 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2254 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2255
2256 return max((__u32) 1, hi_chunk / lo_chunk);
2257 }
2258
2259 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2260 {
2261 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2262 int level = get_imsm_raid_level(lo);
2263
2264 if (level == 1 || level == 10) {
2265 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2266
2267 return hi->num_domains;
2268 } else
2269 return num_stripes_per_unit_resync(dev);
2270 }
2271
2272 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2273 {
2274 /* named 'imsm_' because raid0, raid1 and raid10
2275 * counter-intuitively have the same number of data disks
2276 */
2277 struct imsm_map *map = get_imsm_map(dev, second_map);
2278
2279 switch (get_imsm_raid_level(map)) {
2280 case 0:
2281 return map->num_members;
2282 break;
2283 case 1:
2284 case 10:
2285 return map->num_members/2;
2286 case 5:
2287 return map->num_members - 1;
2288 default:
2289 dprintf("unsupported raid level\n");
2290 return 0;
2291 }
2292 }
2293
2294 static __u32 parity_segment_depth(struct imsm_dev *dev)
2295 {
2296 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2297 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2298
2299 switch(get_imsm_raid_level(map)) {
2300 case 1:
2301 case 10:
2302 return chunk * map->num_domains;
2303 case 5:
2304 return chunk * map->num_members;
2305 default:
2306 return chunk;
2307 }
2308 }
2309
2310 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2311 {
2312 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2313 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2314 __u32 strip = block / chunk;
2315
2316 switch (get_imsm_raid_level(map)) {
2317 case 1:
2318 case 10: {
2319 __u32 vol_strip = (strip * map->num_domains) + 1;
2320 __u32 vol_stripe = vol_strip / map->num_members;
2321
2322 return vol_stripe * chunk + block % chunk;
2323 } case 5: {
2324 __u32 stripe = strip / (map->num_members - 1);
2325
2326 return stripe * chunk + block % chunk;
2327 }
2328 default:
2329 return 0;
2330 }
2331 }
2332
2333 static __u64 blocks_per_migr_unit(struct intel_super *super,
2334 struct imsm_dev *dev)
2335 {
2336 /* calculate the conversion factor between per member 'blocks'
2337 * (md/{resync,rebuild}_start) and imsm migration units, return
2338 * 0 for the 'not migrating' and 'unsupported migration' cases
2339 */
2340 if (!dev->vol.migr_state)
2341 return 0;
2342
2343 switch (migr_type(dev)) {
2344 case MIGR_GEN_MIGR: {
2345 struct migr_record *migr_rec = super->migr_rec;
2346 return __le32_to_cpu(migr_rec->blocks_per_unit);
2347 }
2348 case MIGR_VERIFY:
2349 case MIGR_REPAIR:
2350 case MIGR_INIT: {
2351 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2352 __u32 stripes_per_unit;
2353 __u32 blocks_per_unit;
2354 __u32 parity_depth;
2355 __u32 migr_chunk;
2356 __u32 block_map;
2357 __u32 block_rel;
2358 __u32 segment;
2359 __u32 stripe;
2360 __u8 disks;
2361
2362 /* yes, this is really the translation of migr_units to
2363 * per-member blocks in the 'resync' case
2364 */
2365 stripes_per_unit = num_stripes_per_unit_resync(dev);
2366 migr_chunk = migr_strip_blocks_resync(dev);
2367 disks = imsm_num_data_members(dev, MAP_0);
2368 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2369 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2370 segment = blocks_per_unit / stripe;
2371 block_rel = blocks_per_unit - segment * stripe;
2372 parity_depth = parity_segment_depth(dev);
2373 block_map = map_migr_block(dev, block_rel);
2374 return block_map + parity_depth * segment;
2375 }
2376 case MIGR_REBUILD: {
2377 __u32 stripes_per_unit;
2378 __u32 migr_chunk;
2379
2380 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2381 migr_chunk = migr_strip_blocks_rebuild(dev);
2382 return migr_chunk * stripes_per_unit;
2383 }
2384 case MIGR_STATE_CHANGE:
2385 default:
2386 return 0;
2387 }
2388 }
2389
2390 static int imsm_level_to_layout(int level)
2391 {
2392 switch (level) {
2393 case 0:
2394 case 1:
2395 return 0;
2396 case 5:
2397 case 6:
2398 return ALGORITHM_LEFT_ASYMMETRIC;
2399 case 10:
2400 return 0x102;
2401 }
2402 return UnSet;
2403 }
2404
2405 /*******************************************************************************
2406 * Function: read_imsm_migr_rec
2407 * Description: Function reads imsm migration record from last sector of disk
2408 * Parameters:
2409 * fd : disk descriptor
2410 * super : metadata info
2411 * Returns:
2412 * 0 : success,
2413 * -1 : fail
2414 ******************************************************************************/
2415 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2416 {
2417 int ret_val = -1;
2418 unsigned long long dsize;
2419
2420 get_dev_size(fd, NULL, &dsize);
2421 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2422 pr_err("Cannot seek to anchor block: %s\n",
2423 strerror(errno));
2424 goto out;
2425 }
2426 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2427 MIGR_REC_BUF_SIZE) {
2428 pr_err("Cannot read migr record block: %s\n",
2429 strerror(errno));
2430 goto out;
2431 }
2432 ret_val = 0;
2433
2434 out:
2435 return ret_val;
2436 }
2437
2438 static struct imsm_dev *imsm_get_device_during_migration(
2439 struct intel_super *super)
2440 {
2441
2442 struct intel_dev *dv;
2443
2444 for (dv = super->devlist; dv; dv = dv->next) {
2445 if (is_gen_migration(dv->dev))
2446 return dv->dev;
2447 }
2448 return NULL;
2449 }
2450
2451 /*******************************************************************************
2452 * Function: load_imsm_migr_rec
2453 * Description: Function reads imsm migration record (it is stored at the last
2454 * sector of disk)
2455 * Parameters:
2456 * super : imsm internal array info
2457 * info : general array info
2458 * Returns:
2459 * 0 : success
2460 * -1 : fail
2461 * -2 : no migration in progress
2462 ******************************************************************************/
2463 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2464 {
2465 struct mdinfo *sd;
2466 struct dl *dl;
2467 char nm[30];
2468 int retval = -1;
2469 int fd = -1;
2470 struct imsm_dev *dev;
2471 struct imsm_map *map;
2472 int slot = -1;
2473
2474 /* find map under migration */
2475 dev = imsm_get_device_during_migration(super);
2476 /* nothing to load,no migration in progress?
2477 */
2478 if (dev == NULL)
2479 return -2;
2480 map = get_imsm_map(dev, MAP_0);
2481
2482 if (info) {
2483 for (sd = info->devs ; sd ; sd = sd->next) {
2484 /* skip spare and failed disks
2485 */
2486 if (sd->disk.raid_disk < 0)
2487 continue;
2488 /* read only from one of the first two slots */
2489 if (map)
2490 slot = get_imsm_disk_slot(map,
2491 sd->disk.raid_disk);
2492 if ((map == NULL) || (slot > 1) || (slot < 0))
2493 continue;
2494
2495 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2496 fd = dev_open(nm, O_RDONLY);
2497 if (fd >= 0)
2498 break;
2499 }
2500 }
2501 if (fd < 0) {
2502 for (dl = super->disks; dl; dl = dl->next) {
2503 /* skip spare and failed disks
2504 */
2505 if (dl->index < 0)
2506 continue;
2507 /* read only from one of the first two slots */
2508 if (map)
2509 slot = get_imsm_disk_slot(map, dl->index);
2510 if ((map == NULL) || (slot > 1) || (slot < 0))
2511 continue;
2512 sprintf(nm, "%d:%d", dl->major, dl->minor);
2513 fd = dev_open(nm, O_RDONLY);
2514 if (fd >= 0)
2515 break;
2516 }
2517 }
2518 if (fd < 0)
2519 goto out;
2520 retval = read_imsm_migr_rec(fd, super);
2521
2522 out:
2523 if (fd >= 0)
2524 close(fd);
2525 return retval;
2526 }
2527
2528 #ifndef MDASSEMBLE
2529 /*******************************************************************************
2530 * function: imsm_create_metadata_checkpoint_update
2531 * Description: It creates update for checkpoint change.
2532 * Parameters:
2533 * super : imsm internal array info
2534 * u : pointer to prepared update
2535 * Returns:
2536 * Uptate length.
2537 * If length is equal to 0, input pointer u contains no update
2538 ******************************************************************************/
2539 static int imsm_create_metadata_checkpoint_update(
2540 struct intel_super *super,
2541 struct imsm_update_general_migration_checkpoint **u)
2542 {
2543
2544 int update_memory_size = 0;
2545
2546 dprintf("(enter)\n");
2547
2548 if (u == NULL)
2549 return 0;
2550 *u = NULL;
2551
2552 /* size of all update data without anchor */
2553 update_memory_size =
2554 sizeof(struct imsm_update_general_migration_checkpoint);
2555
2556 *u = xcalloc(1, update_memory_size);
2557 if (*u == NULL) {
2558 dprintf("error: cannot get memory\n");
2559 return 0;
2560 }
2561 (*u)->type = update_general_migration_checkpoint;
2562 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2563 dprintf("prepared for %u\n", (*u)->curr_migr_unit);
2564
2565 return update_memory_size;
2566 }
2567
2568 static void imsm_update_metadata_locally(struct supertype *st,
2569 void *buf, int len);
2570
2571 /*******************************************************************************
2572 * Function: write_imsm_migr_rec
2573 * Description: Function writes imsm migration record
2574 * (at the last sector of disk)
2575 * Parameters:
2576 * super : imsm internal array info
2577 * Returns:
2578 * 0 : success
2579 * -1 : if fail
2580 ******************************************************************************/
2581 static int write_imsm_migr_rec(struct supertype *st)
2582 {
2583 struct intel_super *super = st->sb;
2584 unsigned long long dsize;
2585 char nm[30];
2586 int fd = -1;
2587 int retval = -1;
2588 struct dl *sd;
2589 int len;
2590 struct imsm_update_general_migration_checkpoint *u;
2591 struct imsm_dev *dev;
2592 struct imsm_map *map;
2593
2594 /* find map under migration */
2595 dev = imsm_get_device_during_migration(super);
2596 /* if no migration, write buffer anyway to clear migr_record
2597 * on disk based on first available device
2598 */
2599 if (dev == NULL)
2600 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2601 super->current_vol);
2602
2603 map = get_imsm_map(dev, MAP_0);
2604
2605 for (sd = super->disks ; sd ; sd = sd->next) {
2606 int slot = -1;
2607
2608 /* skip failed and spare devices */
2609 if (sd->index < 0)
2610 continue;
2611 /* write to 2 first slots only */
2612 if (map)
2613 slot = get_imsm_disk_slot(map, sd->index);
2614 if ((map == NULL) || (slot > 1) || (slot < 0))
2615 continue;
2616
2617 sprintf(nm, "%d:%d", sd->major, sd->minor);
2618 fd = dev_open(nm, O_RDWR);
2619 if (fd < 0)
2620 continue;
2621 get_dev_size(fd, NULL, &dsize);
2622 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2623 pr_err("Cannot seek to anchor block: %s\n",
2624 strerror(errno));
2625 goto out;
2626 }
2627 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2628 MIGR_REC_BUF_SIZE) {
2629 pr_err("Cannot write migr record block: %s\n",
2630 strerror(errno));
2631 goto out;
2632 }
2633 close(fd);
2634 fd = -1;
2635 }
2636 /* update checkpoint information in metadata */
2637 len = imsm_create_metadata_checkpoint_update(super, &u);
2638
2639 if (len <= 0) {
2640 dprintf("imsm: Cannot prepare update\n");
2641 goto out;
2642 }
2643 /* update metadata locally */
2644 imsm_update_metadata_locally(st, u, len);
2645 /* and possibly remotely */
2646 if (st->update_tail) {
2647 append_metadata_update(st, u, len);
2648 /* during reshape we do all work inside metadata handler
2649 * manage_reshape(), so metadata update has to be triggered
2650 * insida it
2651 */
2652 flush_metadata_updates(st);
2653 st->update_tail = &st->updates;
2654 } else
2655 free(u);
2656
2657 retval = 0;
2658 out:
2659 if (fd >= 0)
2660 close(fd);
2661 return retval;
2662 }
2663 #endif /* MDASSEMBLE */
2664
2665 /* spare/missing disks activations are not allowe when
2666 * array/container performs reshape operation, because
2667 * all arrays in container works on the same disks set
2668 */
2669 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2670 {
2671 int rv = 0;
2672 struct intel_dev *i_dev;
2673 struct imsm_dev *dev;
2674
2675 /* check whole container
2676 */
2677 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2678 dev = i_dev->dev;
2679 if (is_gen_migration(dev)) {
2680 /* No repair during any migration in container
2681 */
2682 rv = 1;
2683 break;
2684 }
2685 }
2686 return rv;
2687 }
2688 static unsigned long long imsm_component_size_aligment_check(int level,
2689 int chunk_size,
2690 unsigned long long component_size)
2691 {
2692 unsigned int component_size_alligment;
2693
2694 /* check component size aligment
2695 */
2696 component_size_alligment = component_size % (chunk_size/512);
2697
2698 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
2699 level, chunk_size, component_size,
2700 component_size_alligment);
2701
2702 if (component_size_alligment && (level != 1) && (level != UnSet)) {
2703 dprintf("imsm: reported component size alligned from %llu ",
2704 component_size);
2705 component_size -= component_size_alligment;
2706 dprintf_cont("to %llu (%i).\n",
2707 component_size, component_size_alligment);
2708 }
2709
2710 return component_size;
2711 }
2712
2713 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2714 {
2715 struct intel_super *super = st->sb;
2716 struct migr_record *migr_rec = super->migr_rec;
2717 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2718 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2719 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2720 struct imsm_map *map_to_analyse = map;
2721 struct dl *dl;
2722 int map_disks = info->array.raid_disks;
2723
2724 memset(info, 0, sizeof(*info));
2725 if (prev_map)
2726 map_to_analyse = prev_map;
2727
2728 dl = super->current_disk;
2729
2730 info->container_member = super->current_vol;
2731 info->array.raid_disks = map->num_members;
2732 info->array.level = get_imsm_raid_level(map_to_analyse);
2733 info->array.layout = imsm_level_to_layout(info->array.level);
2734 info->array.md_minor = -1;
2735 info->array.ctime = 0;
2736 info->array.utime = 0;
2737 info->array.chunk_size =
2738 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2739 info->array.state = !dev->vol.dirty;
2740 info->custom_array_size = __le32_to_cpu(dev->size_high);
2741 info->custom_array_size <<= 32;
2742 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2743 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2744
2745 if (is_gen_migration(dev)) {
2746 info->reshape_active = 1;
2747 info->new_level = get_imsm_raid_level(map);
2748 info->new_layout = imsm_level_to_layout(info->new_level);
2749 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2750 info->delta_disks = map->num_members - prev_map->num_members;
2751 if (info->delta_disks) {
2752 /* this needs to be applied to every array
2753 * in the container.
2754 */
2755 info->reshape_active = CONTAINER_RESHAPE;
2756 }
2757 /* We shape information that we give to md might have to be
2758 * modify to cope with md's requirement for reshaping arrays.
2759 * For example, when reshaping a RAID0, md requires it to be
2760 * presented as a degraded RAID4.
2761 * Also if a RAID0 is migrating to a RAID5 we need to specify
2762 * the array as already being RAID5, but the 'before' layout
2763 * is a RAID4-like layout.
2764 */
2765 switch (info->array.level) {
2766 case 0:
2767 switch(info->new_level) {
2768 case 0:
2769 /* conversion is happening as RAID4 */
2770 info->array.level = 4;
2771 info->array.raid_disks += 1;
2772 break;
2773 case 5:
2774 /* conversion is happening as RAID5 */
2775 info->array.level = 5;
2776 info->array.layout = ALGORITHM_PARITY_N;
2777 info->delta_disks -= 1;
2778 break;
2779 default:
2780 /* FIXME error message */
2781 info->array.level = UnSet;
2782 break;
2783 }
2784 break;
2785 }
2786 } else {
2787 info->new_level = UnSet;
2788 info->new_layout = UnSet;
2789 info->new_chunk = info->array.chunk_size;
2790 info->delta_disks = 0;
2791 }
2792
2793 if (dl) {
2794 info->disk.major = dl->major;
2795 info->disk.minor = dl->minor;
2796 info->disk.number = dl->index;
2797 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2798 dl->index);
2799 }
2800
2801 info->data_offset = pba_of_lba0(map_to_analyse);
2802 info->component_size = blocks_per_member(map_to_analyse);
2803
2804 info->component_size = imsm_component_size_aligment_check(
2805 info->array.level,
2806 info->array.chunk_size,
2807 info->component_size);
2808
2809 memset(info->uuid, 0, sizeof(info->uuid));
2810 info->recovery_start = MaxSector;
2811
2812 info->reshape_progress = 0;
2813 info->resync_start = MaxSector;
2814 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2815 dev->vol.dirty) &&
2816 imsm_reshape_blocks_arrays_changes(super) == 0) {
2817 info->resync_start = 0;
2818 }
2819 if (dev->vol.migr_state) {
2820 switch (migr_type(dev)) {
2821 case MIGR_REPAIR:
2822 case MIGR_INIT: {
2823 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2824 dev);
2825 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2826
2827 info->resync_start = blocks_per_unit * units;
2828 break;
2829 }
2830 case MIGR_GEN_MIGR: {
2831 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2832 dev);
2833 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2834 unsigned long long array_blocks;
2835 int used_disks;
2836
2837 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2838 (units <
2839 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2840 (super->migr_rec->rec_status ==
2841 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2842 units++;
2843
2844 info->reshape_progress = blocks_per_unit * units;
2845
2846 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
2847 (unsigned long long)units,
2848 (unsigned long long)blocks_per_unit,
2849 info->reshape_progress);
2850
2851 used_disks = imsm_num_data_members(dev, MAP_1);
2852 if (used_disks > 0) {
2853 array_blocks = blocks_per_member(map) *
2854 used_disks;
2855 /* round array size down to closest MB
2856 */
2857 info->custom_array_size = (array_blocks
2858 >> SECT_PER_MB_SHIFT)
2859 << SECT_PER_MB_SHIFT;
2860 }
2861 }
2862 case MIGR_VERIFY:
2863 /* we could emulate the checkpointing of
2864 * 'sync_action=check' migrations, but for now
2865 * we just immediately complete them
2866 */
2867 case MIGR_REBUILD:
2868 /* this is handled by container_content_imsm() */
2869 case MIGR_STATE_CHANGE:
2870 /* FIXME handle other migrations */
2871 default:
2872 /* we are not dirty, so... */
2873 info->resync_start = MaxSector;
2874 }
2875 }
2876
2877 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2878 info->name[MAX_RAID_SERIAL_LEN] = 0;
2879
2880 info->array.major_version = -1;
2881 info->array.minor_version = -2;
2882 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
2883 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2884 uuid_from_super_imsm(st, info->uuid);
2885
2886 if (dmap) {
2887 int i, j;
2888 for (i=0; i<map_disks; i++) {
2889 dmap[i] = 0;
2890 if (i < info->array.raid_disks) {
2891 struct imsm_disk *dsk;
2892 j = get_imsm_disk_idx(dev, i, MAP_X);
2893 dsk = get_imsm_disk(super, j);
2894 if (dsk && (dsk->status & CONFIGURED_DISK))
2895 dmap[i] = 1;
2896 }
2897 }
2898 }
2899 }
2900
2901 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2902 int failed, int look_in_map);
2903
2904 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2905 int look_in_map);
2906
2907 #ifndef MDASSEMBLE
2908 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2909 {
2910 if (is_gen_migration(dev)) {
2911 int failed;
2912 __u8 map_state;
2913 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2914
2915 failed = imsm_count_failed(super, dev, MAP_1);
2916 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2917 if (map2->map_state != map_state) {
2918 map2->map_state = map_state;
2919 super->updates_pending++;
2920 }
2921 }
2922 }
2923 #endif
2924
2925 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2926 {
2927 struct dl *d;
2928
2929 for (d = super->missing; d; d = d->next)
2930 if (d->index == index)
2931 return &d->disk;
2932 return NULL;
2933 }
2934
2935 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2936 {
2937 struct intel_super *super = st->sb;
2938 struct imsm_disk *disk;
2939 int map_disks = info->array.raid_disks;
2940 int max_enough = -1;
2941 int i;
2942 struct imsm_super *mpb;
2943
2944 if (super->current_vol >= 0) {
2945 getinfo_super_imsm_volume(st, info, map);
2946 return;
2947 }
2948 memset(info, 0, sizeof(*info));
2949
2950 /* Set raid_disks to zero so that Assemble will always pull in valid
2951 * spares
2952 */
2953 info->array.raid_disks = 0;
2954 info->array.level = LEVEL_CONTAINER;
2955 info->array.layout = 0;
2956 info->array.md_minor = -1;
2957 info->array.ctime = 0; /* N/A for imsm */
2958 info->array.utime = 0;
2959 info->array.chunk_size = 0;
2960
2961 info->disk.major = 0;
2962 info->disk.minor = 0;
2963 info->disk.raid_disk = -1;
2964 info->reshape_active = 0;
2965 info->array.major_version = -1;
2966 info->array.minor_version = -2;
2967 strcpy(info->text_version, "imsm");
2968 info->safe_mode_delay = 0;
2969 info->disk.number = -1;
2970 info->disk.state = 0;
2971 info->name[0] = 0;
2972 info->recovery_start = MaxSector;
2973 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2974
2975 /* do we have the all the insync disks that we expect? */
2976 mpb = super->anchor;
2977
2978 for (i = 0; i < mpb->num_raid_devs; i++) {
2979 struct imsm_dev *dev = get_imsm_dev(super, i);
2980 int failed, enough, j, missing = 0;
2981 struct imsm_map *map;
2982 __u8 state;
2983
2984 failed = imsm_count_failed(super, dev, MAP_0);
2985 state = imsm_check_degraded(super, dev, failed, MAP_0);
2986 map = get_imsm_map(dev, MAP_0);
2987
2988 /* any newly missing disks?
2989 * (catches single-degraded vs double-degraded)
2990 */
2991 for (j = 0; j < map->num_members; j++) {
2992 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2993 __u32 idx = ord_to_idx(ord);
2994
2995 if (!(ord & IMSM_ORD_REBUILD) &&
2996 get_imsm_missing(super, idx)) {
2997 missing = 1;
2998 break;
2999 }
3000 }
3001
3002 if (state == IMSM_T_STATE_FAILED)
3003 enough = -1;
3004 else if (state == IMSM_T_STATE_DEGRADED &&
3005 (state != map->map_state || missing))
3006 enough = 0;
3007 else /* we're normal, or already degraded */
3008 enough = 1;
3009 if (is_gen_migration(dev) && missing) {
3010 /* during general migration we need all disks
3011 * that process is running on.
3012 * No new missing disk is allowed.
3013 */
3014 max_enough = -1;
3015 enough = -1;
3016 /* no more checks necessary
3017 */
3018 break;
3019 }
3020 /* in the missing/failed disk case check to see
3021 * if at least one array is runnable
3022 */
3023 max_enough = max(max_enough, enough);
3024 }
3025 dprintf("enough: %d\n", max_enough);
3026 info->container_enough = max_enough;
3027
3028 if (super->disks) {
3029 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3030
3031 disk = &super->disks->disk;
3032 info->data_offset = total_blocks(&super->disks->disk) - reserved;
3033 info->component_size = reserved;
3034 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
3035 /* we don't change info->disk.raid_disk here because
3036 * this state will be finalized in mdmon after we have
3037 * found the 'most fresh' version of the metadata
3038 */
3039 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3040 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3041 }
3042
3043 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3044 * ->compare_super may have updated the 'num_raid_devs' field for spares
3045 */
3046 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
3047 uuid_from_super_imsm(st, info->uuid);
3048 else
3049 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
3050
3051 /* I don't know how to compute 'map' on imsm, so use safe default */
3052 if (map) {
3053 int i;
3054 for (i = 0; i < map_disks; i++)
3055 map[i] = 1;
3056 }
3057
3058 }
3059
3060 /* allocates memory and fills disk in mdinfo structure
3061 * for each disk in array */
3062 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3063 {
3064 struct mdinfo *mddev;
3065 struct intel_super *super = st->sb;
3066 struct imsm_disk *disk;
3067 int count = 0;
3068 struct dl *dl;
3069 if (!super || !super->disks)
3070 return NULL;
3071 dl = super->disks;
3072 mddev = xcalloc(1, sizeof(*mddev));
3073 while (dl) {
3074 struct mdinfo *tmp;
3075 disk = &dl->disk;
3076 tmp = xcalloc(1, sizeof(*tmp));
3077 if (mddev->devs)
3078 tmp->next = mddev->devs;
3079 mddev->devs = tmp;
3080 tmp->disk.number = count++;
3081 tmp->disk.major = dl->major;
3082 tmp->disk.minor = dl->minor;
3083 tmp->disk.state = is_configured(disk) ?
3084 (1 << MD_DISK_ACTIVE) : 0;
3085 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3086 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3087 tmp->disk.raid_disk = -1;
3088 dl = dl->next;
3089 }
3090 return mddev;
3091 }
3092
3093 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3094 char *update, char *devname, int verbose,
3095 int uuid_set, char *homehost)
3096 {
3097 /* For 'assemble' and 'force' we need to return non-zero if any
3098 * change was made. For others, the return value is ignored.
3099 * Update options are:
3100 * force-one : This device looks a bit old but needs to be included,
3101 * update age info appropriately.
3102 * assemble: clear any 'faulty' flag to allow this device to
3103 * be assembled.
3104 * force-array: Array is degraded but being forced, mark it clean
3105 * if that will be needed to assemble it.
3106 *
3107 * newdev: not used ????
3108 * grow: Array has gained a new device - this is currently for
3109 * linear only
3110 * resync: mark as dirty so a resync will happen.
3111 * name: update the name - preserving the homehost
3112 * uuid: Change the uuid of the array to match watch is given
3113 *
3114 * Following are not relevant for this imsm:
3115 * sparc2.2 : update from old dodgey metadata
3116 * super-minor: change the preferred_minor number
3117 * summaries: update redundant counters.
3118 * homehost: update the recorded homehost
3119 * _reshape_progress: record new reshape_progress position.
3120 */
3121 int rv = 1;
3122 struct intel_super *super = st->sb;
3123 struct imsm_super *mpb;
3124
3125 /* we can only update container info */
3126 if (!super || super->current_vol >= 0 || !super->anchor)
3127 return 1;
3128
3129 mpb = super->anchor;
3130
3131 if (strcmp(update, "uuid") == 0) {
3132 /* We take this to mean that the family_num should be updated.
3133 * However that is much smaller than the uuid so we cannot really
3134 * allow an explicit uuid to be given. And it is hard to reliably
3135 * know if one was.
3136 * So if !uuid_set we know the current uuid is random and just used
3137 * the first 'int' and copy it to the other 3 positions.
3138 * Otherwise we require the 4 'int's to be the same as would be the
3139 * case if we are using a random uuid. So an explicit uuid will be
3140 * accepted as long as all for ints are the same... which shouldn't hurt
3141 */
3142 if (!uuid_set) {
3143 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
3144 rv = 0;
3145 } else {
3146 if (info->uuid[0] != info->uuid[1] ||
3147 info->uuid[1] != info->uuid[2] ||
3148 info->uuid[2] != info->uuid[3])
3149 rv = -1;
3150 else
3151 rv = 0;
3152 }
3153 if (rv == 0)
3154 mpb->orig_family_num = info->uuid[0];
3155 } else if (strcmp(update, "assemble") == 0)
3156 rv = 0;
3157 else
3158 rv = -1;
3159
3160 /* successful update? recompute checksum */
3161 if (rv == 0)
3162 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
3163
3164 return rv;
3165 }
3166
3167 static size_t disks_to_mpb_size(int disks)
3168 {
3169 size_t size;
3170
3171 size = sizeof(struct imsm_super);
3172 size += (disks - 1) * sizeof(struct imsm_disk);
3173 size += 2 * sizeof(struct imsm_dev);
3174 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3175 size += (4 - 2) * sizeof(struct imsm_map);
3176 /* 4 possible disk_ord_tbl's */
3177 size += 4 * (disks - 1) * sizeof(__u32);
3178
3179 return size;
3180 }
3181
3182 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3183 unsigned long long data_offset)
3184 {
3185 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3186 return 0;
3187
3188 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
3189 }
3190
3191 static void free_devlist(struct intel_super *super)
3192 {
3193 struct intel_dev *dv;
3194
3195 while (super->devlist) {
3196 dv = super->devlist->next;
3197 free(super->devlist->dev);
3198 free(super->devlist);
3199 super->devlist = dv;
3200 }
3201 }
3202
3203 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3204 {
3205 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3206 }
3207
3208 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3209 {
3210 /*
3211 * return:
3212 * 0 same, or first was empty, and second was copied
3213 * 1 second had wrong number
3214 * 2 wrong uuid
3215 * 3 wrong other info
3216 */
3217 struct intel_super *first = st->sb;
3218 struct intel_super *sec = tst->sb;
3219
3220 if (!first) {
3221 st->sb = tst->sb;
3222 tst->sb = NULL;
3223 return 0;
3224 }
3225 /* in platform dependent environment test if the disks
3226 * use the same Intel hba
3227 * If not on Intel hba at all, allow anything.
3228 */
3229 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3230 if (first->hba->type != sec->hba->type) {
3231 fprintf(stderr,
3232 "HBAs of devices do not match %s != %s\n",
3233 get_sys_dev_type(first->hba->type),
3234 get_sys_dev_type(sec->hba->type));
3235 return 3;
3236 }
3237 if (first->orom != sec->orom) {
3238 fprintf(stderr,
3239 "HBAs of devices do not match %s != %s\n",
3240 first->hba->pci_id, sec->hba->pci_id);
3241 return 3;
3242 }
3243 }
3244
3245 /* if an anchor does not have num_raid_devs set then it is a free
3246 * floating spare
3247 */
3248 if (first->anchor->num_raid_devs > 0 &&
3249 sec->anchor->num_raid_devs > 0) {
3250 /* Determine if these disks might ever have been
3251 * related. Further disambiguation can only take place
3252 * in load_super_imsm_all
3253 */
3254 __u32 first_family = first->anchor->orig_family_num;
3255 __u32 sec_family = sec->anchor->orig_family_num;
3256
3257 if (memcmp(first->anchor->sig, sec->anchor->sig,
3258 MAX_SIGNATURE_LENGTH) != 0)
3259 return 3;
3260
3261 if (first_family == 0)
3262 first_family = first->anchor->family_num;
3263 if (sec_family == 0)
3264 sec_family = sec->anchor->family_num;
3265
3266 if (first_family != sec_family)
3267 return 3;
3268
3269 }
3270
3271 /* if 'first' is a spare promote it to a populated mpb with sec's
3272 * family number
3273 */
3274 if (first->anchor->num_raid_devs == 0 &&
3275 sec->anchor->num_raid_devs > 0) {
3276 int i;
3277 struct intel_dev *dv;
3278 struct imsm_dev *dev;
3279
3280 /* we need to copy raid device info from sec if an allocation
3281 * fails here we don't associate the spare
3282 */
3283 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3284 dv = xmalloc(sizeof(*dv));
3285 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3286 dv->dev = dev;
3287 dv->index = i;
3288 dv->next = first->devlist;
3289 first->devlist = dv;
3290 }
3291 if (i < sec->anchor->num_raid_devs) {
3292 /* allocation failure */
3293 free_devlist(first);
3294 pr_err("imsm: failed to associate spare\n");
3295 return 3;
3296 }
3297 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3298 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3299 first->anchor->family_num = sec->anchor->family_num;
3300 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3301 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3302 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3303 }
3304
3305 return 0;
3306 }
3307
3308 static void fd2devname(int fd, char *name)
3309 {
3310 struct stat st;
3311 char path[256];
3312 char dname[PATH_MAX];
3313 char *nm;
3314 int rv;
3315
3316 name[0] = '\0';
3317 if (fstat(fd, &st) != 0)
3318 return;
3319 sprintf(path, "/sys/dev/block/%d:%d",
3320 major(st.st_rdev), minor(st.st_rdev));
3321
3322 rv = readlink(path, dname, sizeof(dname)-1);
3323 if (rv <= 0)
3324 return;
3325
3326 dname[rv] = '\0';
3327 nm = strrchr(dname, '/');
3328 if (nm) {
3329 nm++;
3330 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3331 }
3332 }
3333
3334 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3335
3336 static int imsm_read_serial(int fd, char *devname,
3337 __u8 serial[MAX_RAID_SERIAL_LEN])
3338 {
3339 unsigned char scsi_serial[255];
3340 int rv;
3341 int rsp_len;
3342 int len;
3343 char *dest;
3344 char *src;
3345 char *rsp_buf;
3346 int i;
3347
3348 memset(scsi_serial, 0, sizeof(scsi_serial));
3349
3350 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3351
3352 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3353 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3354 fd2devname(fd, (char *) serial);
3355 return 0;
3356 }
3357
3358 if (rv != 0) {
3359 if (devname)
3360 pr_err("Failed to retrieve serial for %s\n",
3361 devname);
3362 return rv;
3363 }
3364
3365 rsp_len = scsi_serial[3];
3366 if (!rsp_len) {
3367 if (devname)
3368 pr_err("Failed to retrieve serial for %s\n",
3369 devname);
3370 return 2;
3371 }
3372 rsp_buf = (char *) &scsi_serial[4];
3373
3374 /* trim all whitespace and non-printable characters and convert
3375 * ':' to ';'
3376 */
3377 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3378 src = &rsp_buf[i];
3379 if (*src > 0x20) {
3380 /* ':' is reserved for use in placeholder serial
3381 * numbers for missing disks
3382 */
3383 if (*src == ':')
3384 *dest++ = ';';
3385 else
3386 *dest++ = *src;
3387 }
3388 }
3389 len = dest - rsp_buf;
3390 dest = rsp_buf;
3391
3392 /* truncate leading characters */
3393 if (len > MAX_RAID_SERIAL_LEN) {
3394 dest += len - MAX_RAID_SERIAL_LEN;
3395 len = MAX_RAID_SERIAL_LEN;
3396 }
3397
3398 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3399 memcpy(serial, dest, len);
3400
3401 return 0;
3402 }
3403
3404 static int serialcmp(__u8 *s1, __u8 *s2)
3405 {
3406 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3407 }
3408
3409 static void serialcpy(__u8 *dest, __u8 *src)
3410 {
3411 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3412 }
3413
3414 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3415 {
3416 struct dl *dl;
3417
3418 for (dl = super->disks; dl; dl = dl->next)
3419 if (serialcmp(dl->serial, serial) == 0)
3420 break;
3421
3422 return dl;
3423 }
3424
3425 static struct imsm_disk *
3426 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3427 {
3428 int i;
3429
3430 for (i = 0; i < mpb->num_disks; i++) {
3431 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3432
3433 if (serialcmp(disk->serial, serial) == 0) {
3434 if (idx)
3435 *idx = i;
3436 return disk;
3437 }
3438 }
3439
3440 return NULL;
3441 }
3442
3443 static int
3444 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3445 {
3446 struct imsm_disk *disk;
3447 struct dl *dl;
3448 struct stat stb;
3449 int rv;
3450 char name[40];
3451 __u8 serial[MAX_RAID_SERIAL_LEN];
3452
3453 rv = imsm_read_serial(fd, devname, serial);
3454
3455 if (rv != 0)
3456 return 2;
3457
3458 dl = xcalloc(1, sizeof(*dl));
3459
3460 fstat(fd, &stb);
3461 dl->major = major(stb.st_rdev);
3462 dl->minor = minor(stb.st_rdev);
3463 dl->next = super->disks;
3464 dl->fd = keep_fd ? fd : -1;
3465 assert(super->disks == NULL);
3466 super->disks = dl;
3467 serialcpy(dl->serial, serial);
3468 dl->index = -2;
3469 dl->e = NULL;
3470 fd2devname(fd, name);
3471 if (devname)
3472 dl->devname = xstrdup(devname);
3473 else
3474 dl->devname = xstrdup(name);
3475
3476 /* look up this disk's index in the current anchor */
3477 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3478 if (disk) {
3479 dl->disk = *disk;
3480 /* only set index on disks that are a member of a
3481 * populated contianer, i.e. one with raid_devs
3482 */
3483 if (is_failed(&dl->disk))
3484 dl->index = -2;
3485 else if (is_spare(&dl->disk))
3486 dl->index = -1;
3487 }
3488
3489 return 0;
3490 }
3491
3492 #ifndef MDASSEMBLE
3493 /* When migrating map0 contains the 'destination' state while map1
3494 * contains the current state. When not migrating map0 contains the
3495 * current state. This routine assumes that map[0].map_state is set to
3496 * the current array state before being called.
3497 *
3498 * Migration is indicated by one of the following states
3499 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3500 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3501 * map1state=unitialized)
3502 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3503 * map1state=normal)
3504 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3505 * map1state=degraded)
3506 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3507 * map1state=normal)
3508 */
3509 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3510 __u8 to_state, int migr_type)
3511 {
3512 struct imsm_map *dest;
3513 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3514
3515 dev->vol.migr_state = 1;
3516 set_migr_type(dev, migr_type);
3517 dev->vol.curr_migr_unit = 0;
3518 dest = get_imsm_map(dev, MAP_1);
3519
3520 /* duplicate and then set the target end state in map[0] */
3521 memcpy(dest, src, sizeof_imsm_map(src));
3522 if ((migr_type == MIGR_REBUILD) ||
3523 (migr_type == MIGR_GEN_MIGR)) {
3524 __u32 ord;
3525 int i;
3526
3527 for (i = 0; i < src->num_members; i++) {
3528 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3529 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3530 }
3531 }
3532
3533 if (migr_type == MIGR_GEN_MIGR)
3534 /* Clear migration record */
3535 memset(super->migr_rec, 0, sizeof(struct migr_record));
3536
3537 src->map_state = to_state;
3538 }
3539
3540 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3541 __u8 map_state)
3542 {
3543 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3544 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3545 MAP_0 : MAP_1);
3546 int i, j;
3547
3548 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3549 * completed in the last migration.
3550 *
3551 * FIXME add support for raid-level-migration
3552 */
3553 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3554 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3555 /* when final map state is other than expected
3556 * merge maps (not for migration)
3557 */
3558 int failed;
3559
3560 for (i = 0; i < prev->num_members; i++)
3561 for (j = 0; j < map->num_members; j++)
3562 /* during online capacity expansion
3563 * disks position can be changed
3564 * if takeover is used
3565 */
3566 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3567 ord_to_idx(prev->disk_ord_tbl[i])) {
3568 map->disk_ord_tbl[j] |=
3569 prev->disk_ord_tbl[i];
3570 break;
3571 }
3572 failed = imsm_count_failed(super, dev, MAP_0);
3573 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3574 }
3575
3576 dev->vol.migr_state = 0;
3577 set_migr_type(dev, 0);
3578 dev->vol.curr_migr_unit = 0;
3579 map->map_state = map_state;
3580 }
3581 #endif
3582
3583 static int parse_raid_devices(struct intel_super *super)
3584 {
3585 int i;
3586 struct imsm_dev *dev_new;
3587 size_t len, len_migr;
3588 size_t max_len = 0;
3589 size_t space_needed = 0;
3590 struct imsm_super *mpb = super->anchor;
3591
3592 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3593 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3594 struct intel_dev *dv;
3595
3596 len = sizeof_imsm_dev(dev_iter, 0);
3597 len_migr = sizeof_imsm_dev(dev_iter, 1);
3598 if (len_migr > len)
3599 space_needed += len_migr - len;
3600
3601 dv = xmalloc(sizeof(*dv));
3602 if (max_len < len_migr)
3603 max_len = len_migr;
3604 if (max_len > len_migr)
3605 space_needed += max_len - len_migr;
3606 dev_new = xmalloc(max_len);
3607 imsm_copy_dev(dev_new, dev_iter);
3608 dv->dev = dev_new;
3609 dv->index = i;
3610 dv->next = super->devlist;
3611 super->devlist = dv;
3612 }
3613
3614 /* ensure that super->buf is large enough when all raid devices
3615 * are migrating
3616 */
3617 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3618 void *buf;
3619
3620 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3621 if (posix_memalign(&buf, 512, len) != 0)
3622 return 1;
3623
3624 memcpy(buf, super->buf, super->len);
3625 memset(buf + super->len, 0, len - super->len);
3626 free(super->buf);
3627 super->buf = buf;
3628 super->len = len;
3629 }
3630
3631 return 0;
3632 }
3633
3634 /* retrieve a pointer to the bbm log which starts after all raid devices */
3635 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3636 {
3637 void *ptr = NULL;
3638
3639 if (__le32_to_cpu(mpb->bbm_log_size)) {
3640 ptr = mpb;
3641 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3642 }
3643
3644 return ptr;
3645 }
3646
3647 /*******************************************************************************
3648 * Function: check_mpb_migr_compatibility
3649 * Description: Function checks for unsupported migration features:
3650 * - migration optimization area (pba_of_lba0)
3651 * - descending reshape (ascending_migr)
3652 * Parameters:
3653 * super : imsm metadata information
3654 * Returns:
3655 * 0 : migration is compatible
3656 * -1 : migration is not compatible
3657 ******************************************************************************/
3658 int check_mpb_migr_compatibility(struct intel_super *super)
3659 {
3660 struct imsm_map *map0, *map1;
3661 struct migr_record *migr_rec = super->migr_rec;
3662 int i;
3663
3664 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3665 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3666
3667 if (dev_iter &&
3668 dev_iter->vol.migr_state == 1 &&
3669 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3670 /* This device is migrating */
3671 map0 = get_imsm_map(dev_iter, MAP_0);
3672 map1 = get_imsm_map(dev_iter, MAP_1);
3673 if (pba_of_lba0(map0) != pba_of_lba0(map1))
3674 /* migration optimization area was used */
3675 return -1;
3676 if (migr_rec->ascending_migr == 0
3677 && migr_rec->dest_depth_per_unit > 0)
3678 /* descending reshape not supported yet */
3679 return -1;
3680 }
3681 }
3682 return 0;
3683 }
3684
3685 static void __free_imsm(struct intel_super *super, int free_disks);
3686
3687 /* load_imsm_mpb - read matrix metadata
3688 * allocates super->mpb to be freed by free_imsm
3689 */
3690 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3691 {
3692 unsigned long long dsize;
3693 unsigned long long sectors;
3694 struct stat;
3695 struct imsm_super *anchor;
3696 __u32 check_sum;
3697
3698 get_dev_size(fd, NULL, &dsize);
3699 if (dsize < 1024) {
3700 if (devname)
3701 pr_err("%s: device to small for imsm\n",
3702 devname);
3703 return 1;
3704 }
3705
3706 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3707 if (devname)
3708 pr_err("Cannot seek to anchor block on %s: %s\n",
3709 devname, strerror(errno));
3710 return 1;
3711 }
3712
3713 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3714 if (devname)
3715 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
3716 return 1;
3717 }
3718 if (read(fd, anchor, 512) != 512) {
3719 if (devname)
3720 pr_err("Cannot read anchor block on %s: %s\n",
3721 devname, strerror(errno));
3722 free(anchor);
3723 return 1;
3724 }
3725
3726 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3727 if (devname)
3728 pr_err("no IMSM anchor on %s\n", devname);
3729 free(anchor);
3730 return 2;
3731 }
3732
3733 __free_imsm(super, 0);
3734 /* reload capability and hba */
3735
3736 /* capability and hba must be updated with new super allocation */
3737 find_intel_hba_capability(fd, super, devname);
3738 super->len = ROUND_UP(anchor->mpb_size, 512);
3739 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3740 if (devname)
3741 pr_err("unable to allocate %zu byte mpb buffer\n",
3742 super->len);
3743 free(anchor);
3744 return 2;
3745 }
3746 memcpy(super->buf, anchor, 512);
3747
3748 sectors = mpb_sectors(anchor) - 1;
3749 free(anchor);
3750
3751 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3752 pr_err("could not allocate migr_rec buffer\n");
3753 free(super->buf);
3754 return 2;
3755 }
3756 super->clean_migration_record_by_mdmon = 0;
3757
3758 if (!sectors) {
3759 check_sum = __gen_imsm_checksum(super->anchor);
3760 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3761 if (devname)
3762 pr_err("IMSM checksum %x != %x on %s\n",
3763 check_sum,
3764 __le32_to_cpu(super->anchor->check_sum),
3765 devname);
3766 return 2;
3767 }
3768
3769 return 0;
3770 }
3771
3772 /* read the extended mpb */
3773 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3774 if (devname)
3775 pr_err("Cannot seek to extended mpb on %s: %s\n",
3776 devname, strerror(errno));
3777 return 1;
3778 }
3779
3780 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3781 if (devname)
3782 pr_err("Cannot read extended mpb on %s: %s\n",
3783 devname, strerror(errno));
3784 return 2;
3785 }
3786
3787 check_sum = __gen_imsm_checksum(super->anchor);
3788 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3789 if (devname)
3790 pr_err("IMSM checksum %x != %x on %s\n",
3791 check_sum, __le32_to_cpu(super->anchor->check_sum),
3792 devname);
3793 return 3;
3794 }
3795
3796 /* FIXME the BBM log is disk specific so we cannot use this global
3797 * buffer for all disks. Ok for now since we only look at the global
3798 * bbm_log_size parameter to gate assembly
3799 */
3800 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3801
3802 return 0;
3803 }
3804
3805 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3806
3807 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
3808 static void clear_hi(struct intel_super *super)
3809 {
3810 struct imsm_super *mpb = super->anchor;
3811 int i, n;
3812 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
3813 return;
3814 for (i = 0; i < mpb->num_disks; ++i) {
3815 struct imsm_disk *disk = &mpb->disk[i];
3816 disk->total_blocks_hi = 0;
3817 }
3818 for (i = 0; i < mpb->num_raid_devs; ++i) {
3819 struct imsm_dev *dev = get_imsm_dev(super, i);
3820 if (!dev)
3821 return;
3822 for (n = 0; n < 2; ++n) {
3823 struct imsm_map *map = get_imsm_map(dev, n);
3824 if (!map)
3825 continue;
3826 map->pba_of_lba0_hi = 0;
3827 map->blocks_per_member_hi = 0;
3828 map->num_data_stripes_hi = 0;
3829 }
3830 }
3831 }
3832
3833 static int
3834 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3835 {
3836 int err;
3837
3838 err = load_imsm_mpb(fd, super, devname);
3839 if (err)
3840 return err;
3841 err = load_imsm_disk(fd, super, devname, keep_fd);
3842 if (err)
3843 return err;
3844 err = parse_raid_devices(super);
3845 clear_hi(super);
3846 return err;
3847 }
3848
3849 static void __free_imsm_disk(struct dl *d)
3850 {
3851 if (d->fd >= 0)
3852 close(d->fd);
3853 if (d->devname)
3854 free(d->devname);
3855 if (d->e)
3856 free(d->e);
3857 free(d);
3858
3859 }
3860
3861 static void free_imsm_disks(struct intel_super *super)
3862 {
3863 struct dl *d;
3864
3865 while (super->disks) {
3866 d = super->disks;
3867 super->disks = d->next;
3868 __free_imsm_disk(d);
3869 }
3870 while (super->disk_mgmt_list) {
3871 d = super->disk_mgmt_list;
3872 super->disk_mgmt_list = d->next;
3873 __free_imsm_disk(d);
3874 }
3875 while (super->missing) {
3876 d = super->missing;
3877 super->missing = d->next;
3878 __free_imsm_disk(d);
3879 }
3880
3881 }
3882
3883 /* free all the pieces hanging off of a super pointer */
3884 static void __free_imsm(struct intel_super *super, int free_disks)
3885 {
3886 struct intel_hba *elem, *next;
3887
3888 if (super->buf) {
3889 free(super->buf);
3890 super->buf = NULL;
3891 }
3892 /* unlink capability description */
3893 super->orom = NULL;
3894 if (super->migr_rec_buf) {
3895 free(super->migr_rec_buf);
3896 super->migr_rec_buf = NULL;
3897 }
3898 if (free_disks)
3899 free_imsm_disks(super);
3900 free_devlist(super);
3901 elem = super->hba;
3902 while (elem) {
3903 if (elem->path)
3904 free((void *)elem->path);
3905 next = elem->next;
3906 free(elem);
3907 elem = next;
3908 }
3909 super->hba = NULL;
3910 }
3911
3912 static void free_imsm(struct intel_super *super)
3913 {
3914 __free_imsm(super, 1);
3915 free(super);
3916 }
3917
3918 static void free_super_imsm(struct supertype *st)
3919 {
3920 struct intel_super *super = st->sb;
3921
3922 if (!super)
3923 return;
3924
3925 free_imsm(super);
3926 st->sb = NULL;
3927 }
3928
3929 static struct intel_super *alloc_super(void)
3930 {
3931 struct intel_super *super = xcalloc(1, sizeof(*super));
3932
3933 super->current_vol = -1;
3934 super->create_offset = ~((unsigned long long) 0);
3935 return super;
3936 }
3937
3938 /*
3939 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3940 */
3941 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3942 {
3943 struct sys_dev *hba_name;
3944 int rv = 0;
3945
3946 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3947 super->orom = NULL;
3948 super->hba = NULL;
3949 return 0;
3950 }
3951 hba_name = find_disk_attached_hba(fd, NULL);
3952 if (!hba_name) {
3953 if (devname)
3954 pr_err("%s is not attached to Intel(R) RAID controller.\n",
3955 devname);
3956 return 1;
3957 }
3958 rv = attach_hba_to_super(super, hba_name);
3959 if (rv == 2) {
3960 if (devname) {
3961 struct intel_hba *hba = super->hba;
3962
3963 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
3964 " but the container is assigned to Intel(R) %s %s (",
3965 devname,
3966 get_sys_dev_type(hba_name->type),
3967 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
3968 hba_name->pci_id ? : "Err!",
3969 get_sys_dev_type(super->hba->type),
3970 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
3971
3972 while (hba) {
3973 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3974 if (hba->next)
3975 fprintf(stderr, ", ");
3976 hba = hba->next;
3977 }
3978 fprintf(stderr, ").\n"
3979 " Mixing devices attached to different %s is not allowed.\n",
3980 hba_name->type == SYS_DEV_VMD ? "VMD domains" : "controllers");
3981 }
3982 return 2;
3983 }
3984 super->orom = find_imsm_capability(hba_name);
3985 if (!super->orom)
3986 return 3;
3987
3988 return 0;
3989 }
3990
3991 /* find_missing - helper routine for load_super_imsm_all that identifies
3992 * disks that have disappeared from the system. This routine relies on
3993 * the mpb being uptodate, which it is at load time.
3994 */
3995 static int find_missing(struct intel_super *super)
3996 {
3997 int i;
3998 struct imsm_super *mpb = super->anchor;
3999 struct dl *dl;
4000 struct imsm_disk *disk;
4001
4002 for (i = 0; i < mpb->num_disks; i++) {
4003 disk = __get_imsm_disk(mpb, i);
4004 dl = serial_to_dl(disk->serial, super);
4005 if (dl)
4006 continue;
4007
4008 dl = xmalloc(sizeof(*dl));
4009 dl->major = 0;
4010 dl->minor = 0;
4011 dl->fd = -1;
4012 dl->devname = xstrdup("missing");
4013 dl->index = i;
4014 serialcpy(dl->serial, disk->serial);
4015 dl->disk = *disk;
4016 dl->e = NULL;
4017 dl->next = super->missing;
4018 super->missing = dl;
4019 }
4020
4021 return 0;
4022 }
4023
4024 #ifndef MDASSEMBLE
4025 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4026 {
4027 struct intel_disk *idisk = disk_list;
4028
4029 while (idisk) {
4030 if (serialcmp(idisk->disk.serial, serial) == 0)
4031 break;
4032 idisk = idisk->next;
4033 }
4034
4035 return idisk;
4036 }
4037
4038 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4039 struct intel_super *super,
4040 struct intel_disk **disk_list)
4041 {
4042 struct imsm_disk *d = &super->disks->disk;
4043 struct imsm_super *mpb = super->anchor;
4044 int i, j;
4045
4046 for (i = 0; i < tbl_size; i++) {
4047 struct imsm_super *tbl_mpb = table[i]->anchor;
4048 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4049
4050 if (tbl_mpb->family_num == mpb->family_num) {
4051 if (tbl_mpb->check_sum == mpb->check_sum) {
4052 dprintf("mpb from %d:%d matches %d:%d\n",
4053 super->disks->major,
4054 super->disks->minor,
4055 table[i]->disks->major,
4056 table[i]->disks->minor);
4057 break;
4058 }
4059
4060 if (((is_configured(d) && !is_configured(tbl_d)) ||
4061 is_configured(d) == is_configured(tbl_d)) &&
4062 tbl_mpb->generation_num < mpb->generation_num) {
4063 /* current version of the mpb is a
4064 * better candidate than the one in
4065 * super_table, but copy over "cross
4066 * generational" status
4067 */
4068 struct intel_disk *idisk;
4069
4070 dprintf("mpb from %d:%d replaces %d:%d\n",
4071 super->disks->major,
4072 super->disks->minor,
4073 table[i]->disks->major,
4074 table[i]->disks->minor);
4075
4076 idisk = disk_list_get(tbl_d->serial, *disk_list);
4077 if (idisk && is_failed(&idisk->disk))
4078 tbl_d->status |= FAILED_DISK;
4079 break;
4080 } else {
4081 struct intel_disk *idisk;
4082 struct imsm_disk *disk;
4083
4084 /* tbl_mpb is more up to date, but copy
4085 * over cross generational status before
4086 * returning
4087 */
4088 disk = __serial_to_disk(d->serial, mpb, NULL);
4089 if (disk && is_failed(disk))
4090 d->status |= FAILED_DISK;
4091
4092 idisk = disk_list_get(d->serial, *disk_list);
4093 if (idisk) {
4094 idisk->owner = i;
4095 if (disk && is_configured(disk))
4096 idisk->disk.status |= CONFIGURED_DISK;
4097 }
4098
4099 dprintf("mpb from %d:%d prefer %d:%d\n",
4100 super->disks->major,
4101 super->disks->minor,
4102 table[i]->disks->major,
4103 table[i]->disks->minor);
4104
4105 return tbl_size;
4106 }
4107 }
4108 }
4109
4110 if (i >= tbl_size)
4111 table[tbl_size++] = super;
4112 else
4113 table[i] = super;
4114
4115 /* update/extend the merged list of imsm_disk records */
4116 for (j = 0; j < mpb->num_disks; j++) {
4117 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4118 struct intel_disk *idisk;
4119
4120 idisk = disk_list_get(disk->serial, *disk_list);
4121 if (idisk) {
4122 idisk->disk.status |= disk->status;
4123 if (is_configured(&idisk->disk) ||
4124 is_failed(&idisk->disk))
4125 idisk->disk.status &= ~(SPARE_DISK);
4126 } else {
4127 idisk = xcalloc(1, sizeof(*idisk));
4128 idisk->owner = IMSM_UNKNOWN_OWNER;
4129 idisk->disk = *disk;
4130 idisk->next = *disk_list;
4131 *disk_list = idisk;
4132 }
4133
4134 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4135 idisk->owner = i;
4136 }
4137
4138 return tbl_size;
4139 }
4140
4141 static struct intel_super *
4142 validate_members(struct intel_super *super, struct intel_disk *disk_list,
4143 const int owner)
4144 {
4145 struct imsm_super *mpb = super->anchor;
4146 int ok_count = 0;
4147 int i;
4148
4149 for (i = 0; i < mpb->num_disks; i++) {
4150 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4151 struct intel_disk *idisk;
4152
4153 idisk = disk_list_get(disk->serial, disk_list);
4154 if (idisk) {
4155 if (idisk->owner == owner ||
4156 idisk->owner == IMSM_UNKNOWN_OWNER)
4157 ok_count++;
4158 else
4159 dprintf("'%.16s' owner %d != %d\n",
4160 disk->serial, idisk->owner,
4161 owner);
4162 } else {
4163 dprintf("unknown disk %x [%d]: %.16s\n",
4164 __le32_to_cpu(mpb->family_num), i,
4165 disk->serial);
4166 break;
4167 }
4168 }
4169
4170 if (ok_count == mpb->num_disks)
4171 return super;
4172 return NULL;
4173 }
4174
4175 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4176 {
4177 struct intel_super *s;
4178
4179 for (s = super_list; s; s = s->next) {
4180 if (family_num != s->anchor->family_num)
4181 continue;
4182 pr_err("Conflict, offlining family %#x on '%s'\n",
4183 __le32_to_cpu(family_num), s->disks->devname);
4184 }
4185 }
4186
4187 static struct intel_super *
4188 imsm_thunderdome(struct intel_super **super_list, int len)
4189 {
4190 struct intel_super *super_table[len];
4191 struct intel_disk *disk_list = NULL;
4192 struct intel_super *champion, *spare;
4193 struct intel_super *s, **del;
4194 int tbl_size = 0;
4195 int conflict;
4196 int i;
4197
4198 memset(super_table, 0, sizeof(super_table));
4199 for (s = *super_list; s; s = s->next)
4200 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4201
4202 for (i = 0; i < tbl_size; i++) {
4203 struct imsm_disk *d;
4204 struct intel_disk *idisk;
4205 struct imsm_super *mpb = super_table[i]->anchor;
4206
4207 s = super_table[i];
4208 d = &s->disks->disk;
4209
4210 /* 'd' must appear in merged disk list for its
4211 * configuration to be valid
4212 */
4213 idisk = disk_list_get(d->serial, disk_list);
4214 if (idisk && idisk->owner == i)
4215 s = validate_members(s, disk_list, i);
4216 else
4217 s = NULL;
4218
4219 if (!s)
4220 dprintf("marking family: %#x from %d:%d offline\n",
4221 mpb->family_num,
4222 super_table[i]->disks->major,
4223 super_table[i]->disks->minor);
4224 super_table[i] = s;
4225 }
4226
4227 /* This is where the mdadm implementation differs from the Windows
4228 * driver which has no strict concept of a container. We can only
4229 * assemble one family from a container, so when returning a prodigal
4230 * array member to this system the code will not be able to disambiguate
4231 * the container contents that should be assembled ("foreign" versus
4232 * "local"). It requires user intervention to set the orig_family_num
4233 * to a new value to establish a new container. The Windows driver in
4234 * this situation fixes up the volume name in place and manages the
4235 * foreign array as an independent entity.
4236 */
4237 s = NULL;
4238 spare = NULL;
4239 conflict = 0;
4240 for (i = 0; i < tbl_size; i++) {
4241 struct intel_super *tbl_ent = super_table[i];
4242 int is_spare = 0;
4243
4244 if (!tbl_ent)
4245 continue;
4246
4247 if (tbl_ent->anchor->num_raid_devs == 0) {
4248 spare = tbl_ent;
4249 is_spare = 1;
4250 }
4251
4252 if (s && !is_spare) {
4253 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4254 conflict++;
4255 } else if (!s && !is_spare)
4256 s = tbl_ent;
4257 }
4258
4259 if (!s)
4260 s = spare;
4261 if (!s) {
4262 champion = NULL;
4263 goto out;
4264 }
4265 champion = s;
4266
4267 if (conflict)
4268 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
4269 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4270
4271 /* collect all dl's onto 'champion', and update them to
4272 * champion's version of the status
4273 */
4274 for (s = *super_list; s; s = s->next) {
4275 struct imsm_super *mpb = champion->anchor;
4276 struct dl *dl = s->disks;
4277
4278 if (s == champion)
4279 continue;
4280
4281 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4282
4283 for (i = 0; i < mpb->num_disks; i++) {
4284 struct imsm_disk *disk;
4285
4286 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4287 if (disk) {
4288 dl->disk = *disk;
4289 /* only set index on disks that are a member of
4290 * a populated contianer, i.e. one with
4291 * raid_devs
4292 */
4293 if (is_failed(&dl->disk))
4294 dl->index = -2;
4295 else if (is_spare(&dl->disk))
4296 dl->index = -1;
4297 break;
4298 }
4299 }
4300
4301 if (i >= mpb->num_disks) {
4302 struct intel_disk *idisk;
4303
4304 idisk = disk_list_get(dl->serial, disk_list);
4305 if (idisk && is_spare(&idisk->disk) &&
4306 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4307 dl->index = -1;
4308 else {
4309 dl->index = -2;
4310 continue;
4311 }
4312 }
4313
4314 dl->next = champion->disks;
4315 champion->disks = dl;
4316 s->disks = NULL;
4317 }
4318
4319 /* delete 'champion' from super_list */
4320 for (del = super_list; *del; ) {
4321 if (*del == champion) {
4322 *del = (*del)->next;
4323 break;
4324 } else
4325 del = &(*del)->next;
4326 }
4327 champion->next = NULL;
4328
4329 out:
4330 while (disk_list) {
4331 struct intel_disk *idisk = disk_list;
4332
4333 disk_list = disk_list->next;
4334 free(idisk);
4335 }
4336
4337 return champion;
4338 }
4339
4340 static int
4341 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4342 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4343 int major, int minor, int keep_fd);
4344 static int
4345 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4346 int *max, int keep_fd);
4347
4348 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4349 char *devname, struct md_list *devlist,
4350 int keep_fd)
4351 {
4352 struct intel_super *super_list = NULL;
4353 struct intel_super *super = NULL;
4354 int err = 0;
4355 int i = 0;
4356
4357 if (fd >= 0)
4358 /* 'fd' is an opened container */
4359 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4360 else
4361 /* get super block from devlist devices */
4362 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4363 if (err)
4364 goto error;
4365 /* all mpbs enter, maybe one leaves */
4366 super = imsm_thunderdome(&super_list, i);
4367 if (!super) {
4368 err = 1;
4369 goto error;
4370 }
4371
4372 if (find_missing(super) != 0) {
4373 free_imsm(super);
4374 err = 2;
4375 goto error;
4376 }
4377
4378 /* load migration record */
4379 err = load_imsm_migr_rec(super, NULL);
4380 if (err == -1) {
4381 /* migration is in progress,
4382 * but migr_rec cannot be loaded,
4383 */
4384 err = 4;
4385 goto error;
4386 }
4387
4388 /* Check migration compatibility */
4389 if ((err == 0) && (check_mpb_migr_compatibility(super) != 0)) {
4390 pr_err("Unsupported migration detected");
4391 if (devname)
4392 fprintf(stderr, " on %s\n", devname);
4393 else
4394 fprintf(stderr, " (IMSM).\n");
4395
4396 err = 5;
4397 goto error;
4398 }
4399
4400 err = 0;
4401
4402 error:
4403 while (super_list) {
4404 struct intel_super *s = super_list;
4405
4406 super_list = super_list->next;
4407 free_imsm(s);
4408 }
4409
4410 if (err)
4411 return err;
4412
4413 *sbp = super;
4414 if (fd >= 0)
4415 strcpy(st->container_devnm, fd2devnm(fd));
4416 else
4417 st->container_devnm[0] = 0;
4418 if (err == 0 && st->ss == NULL) {
4419 st->ss = &super_imsm;
4420 st->minor_version = 0;
4421 st->max_devs = IMSM_MAX_DEVICES;
4422 }
4423 return 0;
4424 }
4425
4426 static int
4427 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4428 int *max, int keep_fd)
4429 {
4430 struct md_list *tmpdev;
4431 int err = 0;
4432 int i = 0;
4433
4434 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4435 if (tmpdev->used != 1)
4436 continue;
4437 if (tmpdev->container == 1) {
4438 int lmax = 0;
4439 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4440 if (fd < 0) {
4441 pr_err("cannot open device %s: %s\n",
4442 tmpdev->devname, strerror(errno));
4443 err = 8;
4444 goto error;
4445 }
4446 err = get_sra_super_block(fd, super_list,
4447 tmpdev->devname, &lmax,
4448 keep_fd);
4449 i += lmax;
4450 close(fd);
4451 if (err) {
4452 err = 7;
4453 goto error;
4454 }
4455 } else {
4456 int major = major(tmpdev->st_rdev);
4457 int minor = minor(tmpdev->st_rdev);
4458 err = get_super_block(super_list,
4459 NULL,
4460 tmpdev->devname,
4461 major, minor,
4462 keep_fd);
4463 i++;
4464 if (err) {
4465 err = 6;
4466 goto error;
4467 }
4468 }
4469 }
4470 error:
4471 *max = i;
4472 return err;
4473 }
4474
4475 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4476 int major, int minor, int keep_fd)
4477 {
4478 struct intel_super *s;
4479 char nm[32];
4480 int dfd = -1;
4481 int err = 0;
4482 int retry;
4483
4484 s = alloc_super();
4485 if (!s) {
4486 err = 1;
4487 goto error;
4488 }
4489
4490 sprintf(nm, "%d:%d", major, minor);
4491 dfd = dev_open(nm, O_RDWR);
4492 if (dfd < 0) {
4493 err = 2;
4494 goto error;
4495 }
4496
4497 find_intel_hba_capability(dfd, s, devname);
4498 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4499
4500 /* retry the load if we might have raced against mdmon */
4501 if (err == 3 && devnm && mdmon_running(devnm))
4502 for (retry = 0; retry < 3; retry++) {
4503 usleep(3000);
4504 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4505 if (err != 3)
4506 break;
4507 }
4508 error:
4509 if (!err) {
4510 s->next = *super_list;
4511 *super_list = s;
4512 } else {
4513 if (s)
4514 free(s);
4515 if (dfd >= 0)
4516 close(dfd);
4517 }
4518 if ((dfd >= 0) && (!keep_fd))
4519 close(dfd);
4520 return err;
4521
4522 }
4523
4524 static int
4525 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4526 {
4527 struct mdinfo *sra;
4528 char *devnm;
4529 struct mdinfo *sd;
4530 int err = 0;
4531 int i = 0;
4532 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4533 if (!sra)
4534 return 1;
4535
4536 if (sra->array.major_version != -1 ||
4537 sra->array.minor_version != -2 ||
4538 strcmp(sra->text_version, "imsm") != 0) {
4539 err = 1;
4540 goto error;
4541 }
4542 /* load all mpbs */
4543 devnm = fd2devnm(fd);
4544 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4545 if (get_super_block(super_list, devnm, devname,
4546 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4547 err = 7;
4548 goto error;
4549 }
4550 }
4551 error:
4552 sysfs_free(sra);
4553 *max = i;
4554 return err;
4555 }
4556
4557 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4558 {
4559 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
4560 }
4561 #endif
4562
4563 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4564 {
4565 struct intel_super *super;
4566 int rv;
4567 int retry;
4568
4569 if (test_partition(fd))
4570 /* IMSM not allowed on partitions */
4571 return 1;
4572
4573 free_super_imsm(st);
4574
4575 super = alloc_super();
4576 /* Load hba and capabilities if they exist.
4577 * But do not preclude loading metadata in case capabilities or hba are
4578 * non-compliant and ignore_hw_compat is set.
4579 */
4580 rv = find_intel_hba_capability(fd, super, devname);
4581 /* no orom/efi or non-intel hba of the disk */
4582 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4583 if (devname)
4584 pr_err("No OROM/EFI properties for %s\n", devname);
4585 free_imsm(super);
4586 return 2;
4587 }
4588 rv = load_and_parse_mpb(fd, super, devname, 0);
4589
4590 /* retry the load if we might have raced against mdmon */
4591 if (rv == 3) {
4592 struct mdstat_ent *mdstat = NULL;
4593 char *name = fd2kname(fd);
4594
4595 if (name)
4596 mdstat = mdstat_by_component(name);
4597
4598 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
4599 for (retry = 0; retry < 3; retry++) {
4600 usleep(3000);
4601 rv = load_and_parse_mpb(fd, super, devname, 0);
4602 if (rv != 3)
4603 break;
4604 }
4605 }
4606
4607 free_mdstat(mdstat);
4608 }
4609
4610 if (rv) {
4611 if (devname)
4612 pr_err("Failed to load all information sections on %s\n", devname);
4613 free_imsm(super);
4614 return rv;
4615 }
4616
4617 st->sb = super;
4618 if (st->ss == NULL) {
4619 st->ss = &super_imsm;
4620 st->minor_version = 0;
4621 st->max_devs = IMSM_MAX_DEVICES;
4622 }
4623
4624 /* load migration record */
4625 if (load_imsm_migr_rec(super, NULL) == 0) {
4626 /* Check for unsupported migration features */
4627 if (check_mpb_migr_compatibility(super) != 0) {
4628 pr_err("Unsupported migration detected");
4629 if (devname)
4630 fprintf(stderr, " on %s\n", devname);
4631 else
4632 fprintf(stderr, " (IMSM).\n");
4633 return 3;
4634 }
4635 }
4636
4637 return 0;
4638 }
4639
4640 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4641 {
4642 if (info->level == 1)
4643 return 128;
4644 return info->chunk_size >> 9;
4645 }
4646
4647 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4648 unsigned long long size)
4649 {
4650 if (info->level == 1)
4651 return size * 2;
4652 else
4653 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4654 }
4655
4656 static void imsm_update_version_info(struct intel_super *super)
4657 {
4658 /* update the version and attributes */
4659 struct imsm_super *mpb = super->anchor;
4660 char *version;
4661 struct imsm_dev *dev;
4662 struct imsm_map *map;
4663 int i;
4664
4665 for (i = 0; i < mpb->num_raid_devs; i++) {
4666 dev = get_imsm_dev(super, i);
4667 map = get_imsm_map(dev, MAP_0);
4668 if (__le32_to_cpu(dev->size_high) > 0)
4669 mpb->attributes |= MPB_ATTRIB_2TB;
4670
4671 /* FIXME detect when an array spans a port multiplier */
4672 #if 0
4673 mpb->attributes |= MPB_ATTRIB_PM;
4674 #endif
4675
4676 if (mpb->num_raid_devs > 1 ||
4677 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4678 version = MPB_VERSION_ATTRIBS;
4679 switch (get_imsm_raid_level(map)) {
4680 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4681 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4682 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4683 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4684 }
4685 } else {
4686 if (map->num_members >= 5)
4687 version = MPB_VERSION_5OR6_DISK_ARRAY;
4688 else if (dev->status == DEV_CLONE_N_GO)
4689 version = MPB_VERSION_CNG;
4690 else if (get_imsm_raid_level(map) == 5)
4691 version = MPB_VERSION_RAID5;
4692 else if (map->num_members >= 3)
4693 version = MPB_VERSION_3OR4_DISK_ARRAY;
4694 else if (get_imsm_raid_level(map) == 1)
4695 version = MPB_VERSION_RAID1;
4696 else
4697 version = MPB_VERSION_RAID0;
4698 }
4699 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4700 }
4701 }
4702
4703 static int check_name(struct intel_super *super, char *name, int quiet)
4704 {
4705 struct imsm_super *mpb = super->anchor;
4706 char *reason = NULL;
4707 int i;
4708
4709 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4710 reason = "must be 16 characters or less";
4711
4712 for (i = 0; i < mpb->num_raid_devs; i++) {
4713 struct imsm_dev *dev = get_imsm_dev(super, i);
4714
4715 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4716 reason = "already exists";
4717 break;
4718 }
4719 }
4720
4721 if (reason && !quiet)
4722 pr_err("imsm volume name %s\n", reason);
4723
4724 return !reason;
4725 }
4726
4727 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4728 unsigned long long size, char *name,
4729 char *homehost, int *uuid,
4730 long long data_offset)
4731 {
4732 /* We are creating a volume inside a pre-existing container.
4733 * so st->sb is already set.
4734 */
4735 struct intel_super *super = st->sb;
4736 struct imsm_super *mpb = super->anchor;
4737 struct intel_dev *dv;
4738 struct imsm_dev *dev;
4739 struct imsm_vol *vol;
4740 struct imsm_map *map;
4741 int idx = mpb->num_raid_devs;
4742 int i;
4743 unsigned long long array_blocks;
4744 size_t size_old, size_new;
4745 unsigned long long num_data_stripes;
4746
4747 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4748 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
4749 return 0;
4750 }
4751
4752 /* ensure the mpb is large enough for the new data */
4753 size_old = __le32_to_cpu(mpb->mpb_size);
4754 size_new = disks_to_mpb_size(info->nr_disks);
4755 if (size_new > size_old) {
4756 void *mpb_new;
4757 size_t size_round = ROUND_UP(size_new, 512);
4758
4759 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4760 pr_err("could not allocate new mpb\n");
4761 return 0;
4762 }
4763 if (posix_memalign(&super->migr_rec_buf, 512,
4764 MIGR_REC_BUF_SIZE) != 0) {
4765 pr_err("could not allocate migr_rec buffer\n");
4766 free(super->buf);
4767 free(super);
4768 free(mpb_new);
4769 return 0;
4770 }
4771 memcpy(mpb_new, mpb, size_old);
4772 free(mpb);
4773 mpb = mpb_new;
4774 super->anchor = mpb_new;
4775 mpb->mpb_size = __cpu_to_le32(size_new);
4776 memset(mpb_new + size_old, 0, size_round - size_old);
4777 }
4778 super->current_vol = idx;
4779
4780 /* handle 'failed_disks' by either:
4781 * a) create dummy disk entries in the table if this the first
4782 * volume in the array. We add them here as this is the only
4783 * opportunity to add them. add_to_super_imsm_volume()
4784 * handles the non-failed disks and continues incrementing
4785 * mpb->num_disks.
4786 * b) validate that 'failed_disks' matches the current number
4787 * of missing disks if the container is populated
4788 */
4789 if (super->current_vol == 0) {
4790 mpb->num_disks = 0;
4791 for (i = 0; i < info->failed_disks; i++) {
4792 struct imsm_disk *disk;
4793
4794 mpb->num_disks++;
4795 disk = __get_imsm_disk(mpb, i);
4796 disk->status = CONFIGURED_DISK | FAILED_DISK;
4797 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4798 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4799 "missing:%d", i);
4800 }
4801 find_missing(super);
4802 } else {
4803 int missing = 0;
4804 struct dl *d;
4805
4806 for (d = super->missing; d; d = d->next)
4807 missing++;
4808 if (info->failed_disks > missing) {
4809 pr_err("unable to add 'missing' disk to container\n");
4810 return 0;
4811 }
4812 }
4813
4814 if (!check_name(super, name, 0))
4815 return 0;
4816 dv = xmalloc(sizeof(*dv));
4817 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4818 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4819 array_blocks = calc_array_size(info->level, info->raid_disks,
4820 info->layout, info->chunk_size,
4821 size * 2);
4822 /* round array size down to closest MB */
4823 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4824
4825 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4826 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4827 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4828 vol = &dev->vol;
4829 vol->migr_state = 0;
4830 set_migr_type(dev, MIGR_INIT);
4831 vol->dirty = !info->state;
4832 vol->curr_migr_unit = 0;
4833 map = get_imsm_map(dev, MAP_0);
4834 set_pba_of_lba0(map, super->create_offset);
4835 set_blocks_per_member(map, info_to_blocks_per_member(info, size));
4836 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4837 map->failed_disk_num = ~0;
4838 if (info->level > 0)
4839 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
4840 : IMSM_T_STATE_UNINITIALIZED);
4841 else
4842 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4843 IMSM_T_STATE_NORMAL;
4844 map->ddf = 1;
4845
4846 if (info->level == 1 && info->raid_disks > 2) {
4847 free(dev);
4848 free(dv);
4849 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
4850 return 0;
4851 }
4852
4853 map->raid_level = info->level;
4854 if (info->level == 10) {
4855 map->raid_level = 1;
4856 map->num_domains = info->raid_disks / 2;
4857 } else if (info->level == 1)
4858 map->num_domains = info->raid_disks;
4859 else
4860 map->num_domains = 1;
4861
4862 /* info->size is only int so use the 'size' parameter instead */
4863 num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4864 num_data_stripes /= map->num_domains;
4865 set_num_data_stripes(map, num_data_stripes);
4866
4867 map->num_members = info->raid_disks;
4868 for (i = 0; i < map->num_members; i++) {
4869 /* initialized in add_to_super */
4870 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4871 }
4872 mpb->num_raid_devs++;
4873
4874 dv->dev = dev;
4875 dv->index = super->current_vol;
4876 dv->next = super->devlist;
4877 super->devlist = dv;
4878
4879 imsm_update_version_info(super);
4880
4881 return 1;
4882 }
4883
4884 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4885 unsigned long long size, char *name,
4886 char *homehost, int *uuid,
4887 unsigned long long data_offset)
4888 {
4889 /* This is primarily called by Create when creating a new array.
4890 * We will then get add_to_super called for each component, and then
4891 * write_init_super called to write it out to each device.
4892 * For IMSM, Create can create on fresh devices or on a pre-existing
4893 * array.
4894 * To create on a pre-existing array a different method will be called.
4895 * This one is just for fresh drives.
4896 */
4897 struct intel_super *super;
4898 struct imsm_super *mpb;
4899 size_t mpb_size;
4900 char *version;
4901
4902 if (data_offset != INVALID_SECTORS) {
4903 pr_err("data-offset not supported by imsm\n");
4904 return 0;
4905 }
4906
4907 if (st->sb)
4908 return init_super_imsm_volume(st, info, size, name, homehost, uuid,
4909 data_offset);
4910
4911 if (info)
4912 mpb_size = disks_to_mpb_size(info->nr_disks);
4913 else
4914 mpb_size = 512;
4915
4916 super = alloc_super();
4917 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4918 free(super);
4919 super = NULL;
4920 }
4921 if (!super) {
4922 pr_err("could not allocate superblock\n");
4923 return 0;
4924 }
4925 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
4926 pr_err("could not allocate migr_rec buffer\n");
4927 free(super->buf);
4928 free(super);
4929 return 0;
4930 }
4931 memset(super->buf, 0, mpb_size);
4932 mpb = super->buf;
4933 mpb->mpb_size = __cpu_to_le32(mpb_size);
4934 st->sb = super;
4935
4936 if (info == NULL) {
4937 /* zeroing superblock */
4938 return 0;
4939 }
4940
4941 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4942
4943 version = (char *) mpb->sig;
4944 strcpy(version, MPB_SIGNATURE);
4945 version += strlen(MPB_SIGNATURE);
4946 strcpy(version, MPB_VERSION_RAID0);
4947
4948 return 1;
4949 }
4950
4951 #ifndef MDASSEMBLE
4952 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4953 int fd, char *devname)
4954 {
4955 struct intel_super *super = st->sb;
4956 struct imsm_super *mpb = super->anchor;
4957 struct imsm_disk *_disk;
4958 struct imsm_dev *dev;
4959 struct imsm_map *map;
4960 struct dl *dl, *df;
4961 int slot;
4962
4963 dev = get_imsm_dev(super, super->current_vol);
4964 map = get_imsm_map(dev, MAP_0);
4965
4966 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4967 pr_err("%s: Cannot add spare devices to IMSM volume\n",
4968 devname);
4969 return 1;
4970 }
4971
4972 if (fd == -1) {
4973 /* we're doing autolayout so grab the pre-marked (in
4974 * validate_geometry) raid_disk
4975 */
4976 for (dl = super->disks; dl; dl = dl->next)
4977 if (dl->raiddisk == dk->raid_disk)
4978 break;
4979 } else {
4980 for (dl = super->disks; dl ; dl = dl->next)
4981 if (dl->major == dk->major &&
4982 dl->minor == dk->minor)
4983 break;
4984 }
4985
4986 if (!dl) {
4987 pr_err("%s is not a member of the same container\n", devname);
4988 return 1;
4989 }
4990
4991 /* add a pristine spare to the metadata */
4992 if (dl->index < 0) {
4993 dl->index = super->anchor->num_disks;
4994 super->anchor->num_disks++;
4995 }
4996 /* Check the device has not already been added */
4997 slot = get_imsm_disk_slot(map, dl->index);
4998 if (slot >= 0 &&
4999 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
5000 pr_err("%s has been included in this array twice\n",
5001 devname);
5002 return 1;
5003 }
5004 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
5005 dl->disk.status = CONFIGURED_DISK;
5006
5007 /* update size of 'missing' disks to be at least as large as the
5008 * largest acitve member (we only have dummy missing disks when
5009 * creating the first volume)
5010 */
5011 if (super->current_vol == 0) {
5012 for (df = super->missing; df; df = df->next) {
5013 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5014 set_total_blocks(&df->disk, total_blocks(&dl->disk));
5015 _disk = __get_imsm_disk(mpb, df->index);
5016 *_disk = df->disk;
5017 }
5018 }
5019
5020 /* refresh unset/failed slots to point to valid 'missing' entries */
5021 for (df = super->missing; df; df = df->next)
5022 for (slot = 0; slot < mpb->num_disks; slot++) {
5023 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5024
5025 if ((ord & IMSM_ORD_REBUILD) == 0)
5026 continue;
5027 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
5028 if (is_gen_migration(dev)) {
5029 struct imsm_map *map2 = get_imsm_map(dev,
5030 MAP_1);
5031 int slot2 = get_imsm_disk_slot(map2, df->index);
5032 if ((slot2 < map2->num_members) &&
5033 (slot2 >= 0)) {
5034 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
5035 slot2,
5036 MAP_1);
5037 if ((unsigned)df->index ==
5038 ord_to_idx(ord2))
5039 set_imsm_ord_tbl_ent(map2,
5040 slot2,
5041 df->index |
5042 IMSM_ORD_REBUILD);
5043 }
5044 }
5045 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5046 break;
5047 }
5048
5049 /* if we are creating the first raid device update the family number */
5050 if (super->current_vol == 0) {
5051 __u32 sum;
5052 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
5053
5054 _disk = __get_imsm_disk(mpb, dl->index);
5055 if (!_dev || !_disk) {
5056 pr_err("BUG mpb setup error\n");
5057 return 1;
5058 }
5059 *_dev = *dev;
5060 *_disk = dl->disk;
5061 sum = random32();
5062 sum += __gen_imsm_checksum(mpb);
5063 mpb->family_num = __cpu_to_le32(sum);
5064 mpb->orig_family_num = mpb->family_num;
5065 }
5066 super->current_disk = dl;
5067 return 0;
5068 }
5069
5070 /* mark_spare()
5071 * Function marks disk as spare and restores disk serial
5072 * in case it was previously marked as failed by takeover operation
5073 * reruns:
5074 * -1 : critical error
5075 * 0 : disk is marked as spare but serial is not set
5076 * 1 : success
5077 */
5078 int mark_spare(struct dl *disk)
5079 {
5080 __u8 serial[MAX_RAID_SERIAL_LEN];
5081 int ret_val = -1;
5082
5083 if (!disk)
5084 return ret_val;
5085
5086 ret_val = 0;
5087 if (!imsm_read_serial(disk->fd, NULL, serial)) {
5088 /* Restore disk serial number, because takeover marks disk
5089 * as failed and adds to serial ':0' before it becomes
5090 * a spare disk.
5091 */
5092 serialcpy(disk->serial, serial);
5093 serialcpy(disk->disk.serial, serial);
5094 ret_val = 1;
5095 }
5096 disk->disk.status = SPARE_DISK;
5097 disk->index = -1;
5098
5099 return ret_val;
5100 }
5101
5102 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
5103 int fd, char *devname,
5104 unsigned long long data_offset)
5105 {
5106 struct intel_super *super = st->sb;
5107 struct dl *dd;
5108 unsigned long long size;
5109 __u32 id;
5110 int rv;
5111 struct stat stb;
5112
5113 /* If we are on an RAID enabled platform check that the disk is
5114 * attached to the raid controller.
5115 * We do not need to test disks attachment for container based additions,
5116 * they shall be already tested when container was created/assembled.
5117 */
5118 rv = find_intel_hba_capability(fd, super, devname);
5119 /* no orom/efi or non-intel hba of the disk */
5120 if (rv != 0) {
5121 dprintf("capability: %p fd: %d ret: %d\n",
5122 super->orom, fd, rv);
5123 return 1;
5124 }
5125
5126 if (super->current_vol >= 0)
5127 return add_to_super_imsm_volume(st, dk, fd, devname);
5128
5129 fstat(fd, &stb);
5130 dd = xcalloc(sizeof(*dd), 1);
5131 dd->major = major(stb.st_rdev);
5132 dd->minor = minor(stb.st_rdev);
5133 dd->devname = devname ? xstrdup(devname) : NULL;
5134 dd->fd = fd;
5135 dd->e = NULL;
5136 dd->action = DISK_ADD;
5137 rv = imsm_read_serial(fd, devname, dd->serial);
5138 if (rv) {
5139 pr_err("failed to retrieve scsi serial, aborting\n");
5140 free(dd);
5141 abort();
5142 }
5143
5144 get_dev_size(fd, NULL, &size);
5145 /* clear migr_rec when adding disk to container */
5146 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5147 if (lseek64(fd, size - MIGR_REC_POSITION, SEEK_SET) >= 0) {
5148 if (write(fd, super->migr_rec_buf,
5149 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5150 perror("Write migr_rec failed");
5151 }
5152
5153 size /= 512;
5154 serialcpy(dd->disk.serial, dd->serial);
5155 set_total_blocks(&dd->disk, size);
5156 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5157 struct imsm_super *mpb = super->anchor;
5158 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5159 }
5160 mark_spare(dd);
5161 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
5162 dd->disk.scsi_id = __cpu_to_le32(id);
5163 else
5164 dd->disk.scsi_id = __cpu_to_le32(0);
5165
5166 if (st->update_tail) {
5167 dd->next = super->disk_mgmt_list;
5168 super->disk_mgmt_list = dd;
5169 } else {
5170 dd->next = super->disks;
5171 super->disks = dd;
5172 super->updates_pending++;
5173 }
5174
5175 return 0;
5176 }
5177
5178 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5179 {
5180 struct intel_super *super = st->sb;
5181 struct dl *dd;
5182
5183 /* remove from super works only in mdmon - for communication
5184 * manager - monitor. Check if communication memory buffer
5185 * is prepared.
5186 */
5187 if (!st->update_tail) {
5188 pr_err("shall be used in mdmon context only\n");
5189 return 1;
5190 }
5191 dd = xcalloc(1, sizeof(*dd));
5192 dd->major = dk->major;
5193 dd->minor = dk->minor;
5194 dd->fd = -1;
5195 mark_spare(dd);
5196 dd->action = DISK_REMOVE;
5197
5198 dd->next = super->disk_mgmt_list;
5199 super->disk_mgmt_list = dd;
5200
5201 return 0;
5202 }
5203
5204 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5205
5206 static union {
5207 char buf[512];
5208 struct imsm_super anchor;
5209 } spare_record __attribute__ ((aligned(512)));
5210
5211 /* spare records have their own family number and do not have any defined raid
5212 * devices
5213 */
5214 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5215 {
5216 struct imsm_super *mpb = super->anchor;
5217 struct imsm_super *spare = &spare_record.anchor;
5218 __u32 sum;
5219 struct dl *d;
5220
5221 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5222 spare->generation_num = __cpu_to_le32(1UL);
5223 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5224 spare->num_disks = 1;
5225 spare->num_raid_devs = 0;
5226 spare->cache_size = mpb->cache_size;
5227 spare->pwr_cycle_count = __cpu_to_le32(1);
5228
5229 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5230 MPB_SIGNATURE MPB_VERSION_RAID0);
5231
5232 for (d = super->disks; d; d = d->next) {
5233 if (d->index != -1)
5234 continue;
5235
5236 spare->disk[0] = d->disk;
5237 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5238 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5239
5240 sum = __gen_imsm_checksum(spare);
5241 spare->family_num = __cpu_to_le32(sum);
5242 spare->orig_family_num = 0;
5243 sum = __gen_imsm_checksum(spare);
5244 spare->check_sum = __cpu_to_le32(sum);
5245
5246 if (store_imsm_mpb(d->fd, spare)) {
5247 pr_err("failed for device %d:%d %s\n",
5248 d->major, d->minor, strerror(errno));
5249 return 1;
5250 }
5251 if (doclose) {
5252 close(d->fd);
5253 d->fd = -1;
5254 }
5255 }
5256
5257 return 0;
5258 }
5259
5260 static int write_super_imsm(struct supertype *st, int doclose)
5261 {
5262 struct intel_super *super = st->sb;
5263 struct imsm_super *mpb = super->anchor;
5264 struct dl *d;
5265 __u32 generation;
5266 __u32 sum;
5267 int spares = 0;
5268 int i;
5269 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5270 int num_disks = 0;
5271 int clear_migration_record = 1;
5272
5273 /* 'generation' is incremented everytime the metadata is written */
5274 generation = __le32_to_cpu(mpb->generation_num);
5275 generation++;
5276 mpb->generation_num = __cpu_to_le32(generation);
5277
5278 /* fix up cases where previous mdadm releases failed to set
5279 * orig_family_num
5280 */
5281 if (mpb->orig_family_num == 0)
5282 mpb->orig_family_num = mpb->family_num;
5283
5284 for (d = super->disks; d; d = d->next) {
5285 if (d->index == -1)
5286 spares++;
5287 else {
5288 mpb->disk[d->index] = d->disk;
5289 num_disks++;
5290 }
5291 }
5292 for (d = super->missing; d; d = d->next) {
5293 mpb->disk[d->index] = d->disk;
5294 num_disks++;
5295 }
5296 mpb->num_disks = num_disks;
5297 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5298
5299 for (i = 0; i < mpb->num_raid_devs; i++) {
5300 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5301 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5302 if (dev && dev2) {
5303 imsm_copy_dev(dev, dev2);
5304 mpb_size += sizeof_imsm_dev(dev, 0);
5305 }
5306 if (is_gen_migration(dev2))
5307 clear_migration_record = 0;
5308 }
5309 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5310 mpb->mpb_size = __cpu_to_le32(mpb_size);
5311
5312 /* recalculate checksum */
5313 sum = __gen_imsm_checksum(mpb);
5314 mpb->check_sum = __cpu_to_le32(sum);
5315
5316 if (super->clean_migration_record_by_mdmon) {
5317 clear_migration_record = 1;
5318 super->clean_migration_record_by_mdmon = 0;
5319 }
5320 if (clear_migration_record)
5321 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5322
5323 /* write the mpb for disks that compose raid devices */
5324 for (d = super->disks; d ; d = d->next) {
5325 if (d->index < 0 || is_failed(&d->disk))
5326 continue;
5327
5328 if (clear_migration_record) {
5329 unsigned long long dsize;
5330
5331 get_dev_size(d->fd, NULL, &dsize);
5332 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
5333 if (write(d->fd, super->migr_rec_buf,
5334 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5335 perror("Write migr_rec failed");
5336 }
5337 }
5338
5339 if (store_imsm_mpb(d->fd, mpb))
5340 fprintf(stderr,
5341 "failed for device %d:%d (fd: %d)%s\n",
5342 d->major, d->minor,
5343 d->fd, strerror(errno));
5344
5345 if (doclose) {
5346 close(d->fd);
5347 d->fd = -1;
5348 }
5349 }
5350
5351 if (spares)
5352 return write_super_imsm_spares(super, doclose);
5353
5354 return 0;
5355 }
5356
5357 static int create_array(struct supertype *st, int dev_idx)
5358 {
5359 size_t len;
5360 struct imsm_update_create_array *u;
5361 struct intel_super *super = st->sb;
5362 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5363 struct imsm_map *map = get_imsm_map(dev, MAP_0);
5364 struct disk_info *inf;
5365 struct imsm_disk *disk;
5366 int i;
5367
5368 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5369 sizeof(*inf) * map->num_members;
5370 u = xmalloc(len);
5371 u->type = update_create_array;
5372 u->dev_idx = dev_idx;
5373 imsm_copy_dev(&u->dev, dev);
5374 inf = get_disk_info(u);
5375 for (i = 0; i < map->num_members; i++) {
5376 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5377
5378 disk = get_imsm_disk(super, idx);
5379 if (!disk)
5380 disk = get_imsm_missing(super, idx);
5381 serialcpy(inf[i].serial, disk->serial);
5382 }
5383 append_metadata_update(st, u, len);
5384
5385 return 0;
5386 }
5387
5388 static int mgmt_disk(struct supertype *st)
5389 {
5390 struct intel_super *super = st->sb;
5391 size_t len;
5392 struct imsm_update_add_remove_disk *u;
5393
5394 if (!super->disk_mgmt_list)
5395 return 0;
5396
5397 len = sizeof(*u);
5398 u = xmalloc(len);
5399 u->type = update_add_remove_disk;
5400 append_metadata_update(st, u, len);
5401
5402 return 0;
5403 }
5404
5405 static int write_init_super_imsm(struct supertype *st)
5406 {
5407 struct intel_super *super = st->sb;
5408 int current_vol = super->current_vol;
5409
5410 /* we are done with current_vol reset it to point st at the container */
5411 super->current_vol = -1;
5412
5413 if (st->update_tail) {
5414 /* queue the recently created array / added disk
5415 * as a metadata update */
5416 int rv;
5417
5418 /* determine if we are creating a volume or adding a disk */
5419 if (current_vol < 0) {
5420 /* in the mgmt (add/remove) disk case we are running
5421 * in mdmon context, so don't close fd's
5422 */
5423 return mgmt_disk(st);
5424 } else
5425 rv = create_array(st, current_vol);
5426
5427 return rv;
5428 } else {
5429 struct dl *d;
5430 for (d = super->disks; d; d = d->next)
5431 Kill(d->devname, NULL, 0, -1, 1);
5432 return write_super_imsm(st, 1);
5433 }
5434 }
5435 #endif
5436
5437 static int store_super_imsm(struct supertype *st, int fd)
5438 {
5439 struct intel_super *super = st->sb;
5440 struct imsm_super *mpb = super ? super->anchor : NULL;
5441
5442 if (!mpb)
5443 return 1;
5444
5445 #ifndef MDASSEMBLE
5446 return store_imsm_mpb(fd, mpb);
5447 #else
5448 return 1;
5449 #endif
5450 }
5451
5452 static int imsm_bbm_log_size(struct imsm_super *mpb)
5453 {
5454 return __le32_to_cpu(mpb->bbm_log_size);
5455 }
5456
5457 #ifndef MDASSEMBLE
5458 static int validate_geometry_imsm_container(struct supertype *st, int level,
5459 int layout, int raiddisks, int chunk,
5460 unsigned long long size,
5461 unsigned long long data_offset,
5462 char *dev,
5463 unsigned long long *freesize,
5464 int verbose)
5465 {
5466 int fd;
5467 unsigned long long ldsize;
5468 struct intel_super *super;
5469 int rv = 0;
5470
5471 if (level != LEVEL_CONTAINER)
5472 return 0;
5473 if (!dev)
5474 return 1;
5475
5476 fd = open(dev, O_RDONLY|O_EXCL, 0);
5477 if (fd < 0) {
5478 if (verbose > 0)
5479 pr_err("imsm: Cannot open %s: %s\n",
5480 dev, strerror(errno));
5481 return 0;
5482 }
5483 if (!get_dev_size(fd, dev, &ldsize)) {
5484 close(fd);
5485 return 0;
5486 }
5487
5488 /* capabilities retrieve could be possible
5489 * note that there is no fd for the disks in array.
5490 */
5491 super = alloc_super();
5492 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
5493 if (rv != 0) {
5494 #if DEBUG
5495 char str[256];
5496 fd2devname(fd, str);
5497 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5498 fd, str, super->orom, rv, raiddisks);
5499 #endif
5500 /* no orom/efi or non-intel hba of the disk */
5501 close(fd);
5502 free_imsm(super);
5503 return 0;
5504 }
5505 close(fd);
5506 if (super->orom) {
5507 if (raiddisks > super->orom->tds) {
5508 if (verbose)
5509 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
5510 raiddisks, super->orom->tds);
5511 free_imsm(super);
5512 return 0;
5513 }
5514 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
5515 (ldsize >> 9) >> 32 > 0) {
5516 if (verbose)
5517 pr_err("%s exceeds maximum platform supported size\n", dev);
5518 free_imsm(super);
5519 return 0;
5520 }
5521 }
5522
5523 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
5524 free_imsm(super);
5525
5526 return 1;
5527 }
5528
5529 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5530 {
5531 const unsigned long long base_start = e[*idx].start;
5532 unsigned long long end = base_start + e[*idx].size;
5533 int i;
5534
5535 if (base_start == end)
5536 return 0;
5537
5538 *idx = *idx + 1;
5539 for (i = *idx; i < num_extents; i++) {
5540 /* extend overlapping extents */
5541 if (e[i].start >= base_start &&
5542 e[i].start <= end) {
5543 if (e[i].size == 0)
5544 return 0;
5545 if (e[i].start + e[i].size > end)
5546 end = e[i].start + e[i].size;
5547 } else if (e[i].start > end) {
5548 *idx = i;
5549 break;
5550 }
5551 }
5552
5553 return end - base_start;
5554 }
5555
5556 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5557 {
5558 /* build a composite disk with all known extents and generate a new
5559 * 'maxsize' given the "all disks in an array must share a common start
5560 * offset" constraint
5561 */
5562 struct extent *e = xcalloc(sum_extents, sizeof(*e));
5563 struct dl *dl;
5564 int i, j;
5565 int start_extent;
5566 unsigned long long pos;
5567 unsigned long long start = 0;
5568 unsigned long long maxsize;
5569 unsigned long reserve;
5570
5571 /* coalesce and sort all extents. also, check to see if we need to
5572 * reserve space between member arrays
5573 */
5574 j = 0;
5575 for (dl = super->disks; dl; dl = dl->next) {
5576 if (!dl->e)
5577 continue;
5578 for (i = 0; i < dl->extent_cnt; i++)
5579 e[j++] = dl->e[i];
5580 }
5581 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5582
5583 /* merge extents */
5584 i = 0;
5585 j = 0;
5586 while (i < sum_extents) {
5587 e[j].start = e[i].start;
5588 e[j].size = find_size(e, &i, sum_extents);
5589 j++;
5590 if (e[j-1].size == 0)
5591 break;
5592 }
5593
5594 pos = 0;
5595 maxsize = 0;
5596 start_extent = 0;
5597 i = 0;
5598 do {
5599 unsigned long long esize;
5600
5601 esize = e[i].start - pos;
5602 if (esize >= maxsize) {
5603 maxsize = esize;
5604 start = pos;
5605 start_extent = i;
5606 }
5607 pos = e[i].start + e[i].size;
5608 i++;
5609 } while (e[i-1].size);
5610 free(e);
5611
5612 if (maxsize == 0)
5613 return 0;
5614
5615 /* FIXME assumes volume at offset 0 is the first volume in a
5616 * container
5617 */
5618 if (start_extent > 0)
5619 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5620 else
5621 reserve = 0;
5622
5623 if (maxsize < reserve)
5624 return 0;
5625
5626 super->create_offset = ~((unsigned long long) 0);
5627 if (start + reserve > super->create_offset)
5628 return 0; /* start overflows create_offset */
5629 super->create_offset = start + reserve;
5630
5631 return maxsize - reserve;
5632 }
5633
5634 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5635 {
5636 if (level < 0 || level == 6 || level == 4)
5637 return 0;
5638
5639 /* if we have an orom prevent invalid raid levels */
5640 if (orom)
5641 switch (level) {
5642 case 0: return imsm_orom_has_raid0(orom);
5643 case 1:
5644 if (raiddisks > 2)
5645 return imsm_orom_has_raid1e(orom);
5646 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5647 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5648 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5649 }
5650 else
5651 return 1; /* not on an Intel RAID platform so anything goes */
5652
5653 return 0;
5654 }
5655
5656 static int
5657 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5658 int dpa, int verbose)
5659 {
5660 struct mdstat_ent *mdstat = mdstat_read(0, 0);
5661 struct mdstat_ent *memb;
5662 int count = 0;
5663 int num = 0;
5664 struct md_list *dv;
5665 int found;
5666
5667 for (memb = mdstat ; memb ; memb = memb->next) {
5668 if (memb->metadata_version &&
5669 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
5670 (strcmp(&memb->metadata_version[9], name) == 0) &&
5671 !is_subarray(memb->metadata_version+9) &&
5672 memb->members) {
5673 struct dev_member *dev = memb->members;
5674 int fd = -1;
5675 while(dev && (fd < 0)) {
5676 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
5677 num = sprintf(path, "%s%s", "/dev/", dev->name);
5678 if (num > 0)
5679 fd = open(path, O_RDONLY, 0);
5680 if ((num <= 0) || (fd < 0)) {
5681 pr_vrb(": Cannot open %s: %s\n",
5682 dev->name, strerror(errno));
5683 }
5684 free(path);
5685 dev = dev->next;
5686 }
5687 found = 0;
5688 if ((fd >= 0) && disk_attached_to_hba(fd, hba)) {
5689 struct mdstat_ent *vol;
5690 for (vol = mdstat ; vol ; vol = vol->next) {
5691 if ((vol->active > 0) &&
5692 vol->metadata_version &&
5693 is_container_member(vol, memb->devnm)) {
5694 found++;
5695 count++;
5696 }
5697 }
5698 if (*devlist && (found < dpa)) {
5699 dv = xcalloc(1, sizeof(*dv));
5700 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
5701 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
5702 dv->found = found;
5703 dv->used = 0;
5704 dv->next = *devlist;
5705 *devlist = dv;
5706 }
5707 }
5708 if (fd >= 0)
5709 close(fd);
5710 }
5711 }
5712 free_mdstat(mdstat);
5713 return count;
5714 }
5715
5716 #ifdef DEBUG_LOOP
5717 static struct md_list*
5718 get_loop_devices(void)
5719 {
5720 int i;
5721 struct md_list *devlist = NULL;
5722 struct md_list *dv;
5723
5724 for(i = 0; i < 12; i++) {
5725 dv = xcalloc(1, sizeof(*dv));
5726 dv->devname = xmalloc(40);
5727 sprintf(dv->devname, "/dev/loop%d", i);
5728 dv->next = devlist;
5729 devlist = dv;
5730 }
5731 return devlist;
5732 }
5733 #endif
5734
5735 static struct md_list*
5736 get_devices(const char *hba_path)
5737 {
5738 struct md_list *devlist = NULL;
5739 struct md_list *dv;
5740 struct dirent *ent;
5741 DIR *dir;
5742 int err = 0;
5743
5744 #if DEBUG_LOOP
5745 devlist = get_loop_devices();
5746 return devlist;
5747 #endif
5748 /* scroll through /sys/dev/block looking for devices attached to
5749 * this hba
5750 */
5751 dir = opendir("/sys/dev/block");
5752 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5753 int fd;
5754 char buf[1024];
5755 int major, minor;
5756 char *path = NULL;
5757 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5758 continue;
5759 path = devt_to_devpath(makedev(major, minor));
5760 if (!path)
5761 continue;
5762 if (!path_attached_to_hba(path, hba_path)) {
5763 free(path);
5764 path = NULL;
5765 continue;
5766 }
5767 free(path);
5768 path = NULL;
5769 fd = dev_open(ent->d_name, O_RDONLY);
5770 if (fd >= 0) {
5771 fd2devname(fd, buf);
5772 close(fd);
5773 } else {
5774 pr_err("cannot open device: %s\n",
5775 ent->d_name);
5776 continue;
5777 }
5778
5779 dv = xcalloc(1, sizeof(*dv));
5780 dv->devname = xstrdup(buf);
5781 dv->next = devlist;
5782 devlist = dv;
5783 }
5784 if (err) {
5785 while(devlist) {
5786 dv = devlist;
5787 devlist = devlist->next;
5788 free(dv->devname);
5789 free(dv);
5790 }
5791 }
5792 closedir(dir);
5793 return devlist;
5794 }
5795
5796 static int
5797 count_volumes_list(struct md_list *devlist, char *homehost,
5798 int verbose, int *found)
5799 {
5800 struct md_list *tmpdev;
5801 int count = 0;
5802 struct supertype *st;
5803
5804 /* first walk the list of devices to find a consistent set
5805 * that match the criterea, if that is possible.
5806 * We flag the ones we like with 'used'.
5807 */
5808 *found = 0;
5809 st = match_metadata_desc_imsm("imsm");
5810 if (st == NULL) {
5811 pr_vrb(": cannot allocate memory for imsm supertype\n");
5812 return 0;
5813 }
5814
5815 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5816 char *devname = tmpdev->devname;
5817 struct stat stb;
5818 struct supertype *tst;
5819 int dfd;
5820 if (tmpdev->used > 1)
5821 continue;
5822 tst = dup_super(st);
5823 if (tst == NULL) {
5824 pr_vrb(": cannot allocate memory for imsm supertype\n");
5825 goto err_1;
5826 }
5827 tmpdev->container = 0;
5828 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5829 if (dfd < 0) {
5830 dprintf("cannot open device %s: %s\n",
5831 devname, strerror(errno));
5832 tmpdev->used = 2;
5833 } else if (fstat(dfd, &stb)< 0) {
5834 /* Impossible! */
5835 dprintf("fstat failed for %s: %s\n",
5836 devname, strerror(errno));
5837 tmpdev->used = 2;
5838 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
5839 dprintf("%s is not a block device.\n",
5840 devname);
5841 tmpdev->used = 2;
5842 } else if (must_be_container(dfd)) {
5843 struct supertype *cst;
5844 cst = super_by_fd(dfd, NULL);
5845 if (cst == NULL) {
5846 dprintf("cannot recognize container type %s\n",
5847 devname);
5848 tmpdev->used = 2;
5849 } else if (tst->ss != st->ss) {
5850 dprintf("non-imsm container - ignore it: %s\n",
5851 devname);
5852 tmpdev->used = 2;
5853 } else if (!tst->ss->load_container ||
5854 tst->ss->load_container(tst, dfd, NULL))
5855 tmpdev->used = 2;
5856 else {
5857 tmpdev->container = 1;
5858 }
5859 if (cst)
5860 cst->ss->free_super(cst);
5861 } else {
5862 tmpdev->st_rdev = stb.st_rdev;
5863 if (tst->ss->load_super(tst,dfd, NULL)) {
5864 dprintf("no RAID superblock on %s\n",
5865 devname);
5866 tmpdev->used = 2;
5867 } else if (tst->ss->compare_super == NULL) {
5868 dprintf("Cannot assemble %s metadata on %s\n",
5869 tst->ss->name, devname);
5870 tmpdev->used = 2;
5871 }
5872 }
5873 if (dfd >= 0)
5874 close(dfd);
5875 if (tmpdev->used == 2 || tmpdev->used == 4) {
5876 /* Ignore unrecognised devices during auto-assembly */
5877 goto loop;
5878 }
5879 else {
5880 struct mdinfo info;
5881 tst->ss->getinfo_super(tst, &info, NULL);
5882
5883 if (st->minor_version == -1)
5884 st->minor_version = tst->minor_version;
5885
5886 if (memcmp(info.uuid, uuid_zero,
5887 sizeof(int[4])) == 0) {
5888 /* this is a floating spare. It cannot define
5889 * an array unless there are no more arrays of
5890 * this type to be found. It can be included
5891 * in an array of this type though.
5892 */
5893 tmpdev->used = 3;
5894 goto loop;
5895 }
5896
5897 if (st->ss != tst->ss ||
5898 st->minor_version != tst->minor_version ||
5899 st->ss->compare_super(st, tst) != 0) {
5900 /* Some mismatch. If exactly one array matches this host,
5901 * we can resolve on that one.
5902 * Or, if we are auto assembling, we just ignore the second
5903 * for now.
5904 */
5905 dprintf("superblock on %s doesn't match others - assembly aborted\n",
5906 devname);
5907 goto loop;
5908 }
5909 tmpdev->used = 1;
5910 *found = 1;
5911 dprintf("found: devname: %s\n", devname);
5912 }
5913 loop:
5914 if (tst)
5915 tst->ss->free_super(tst);
5916 }
5917 if (*found != 0) {
5918 int err;
5919 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
5920 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
5921 for (iter = head; iter; iter = iter->next) {
5922 dprintf("content->text_version: %s vol\n",
5923 iter->text_version);
5924 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
5925 /* do not assemble arrays with unsupported
5926 configurations */
5927 dprintf("Cannot activate member %s.\n",
5928 iter->text_version);
5929 } else
5930 count++;
5931 }
5932 sysfs_free(head);
5933
5934 } else {
5935 dprintf("No valid super block on device list: err: %d %p\n",
5936 err, st->sb);
5937 }
5938 } else {
5939 dprintf("no more devices to examine\n");
5940 }
5941
5942 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5943 if ((tmpdev->used == 1) && (tmpdev->found)) {
5944 if (count) {
5945 if (count < tmpdev->found)
5946 count = 0;
5947 else
5948 count -= tmpdev->found;
5949 }
5950 }
5951 if (tmpdev->used == 1)
5952 tmpdev->used = 4;
5953 }
5954 err_1:
5955 if (st)
5956 st->ss->free_super(st);
5957 return count;
5958 }
5959
5960 static int
5961 count_volumes(struct intel_hba *hba, int dpa, int verbose)
5962 {
5963 struct sys_dev *idev, *intel_devices = find_intel_devices();
5964 int count = 0;
5965 const struct orom_entry *entry;
5966 struct devid_list *dv, *devid_list;
5967
5968 if (!hba || !hba->path)
5969 return 0;
5970
5971 for (idev = intel_devices; idev; idev = idev->next) {
5972 if (strstr(idev->path, hba->path))
5973 break;
5974 }
5975
5976 if (!idev || !idev->dev_id)
5977 return 0;
5978
5979 entry = get_orom_entry_by_device_id(idev->dev_id);
5980
5981 if (!entry || !entry->devid_list)
5982 return 0;
5983
5984 devid_list = entry->devid_list;
5985 for (dv = devid_list; dv; dv = dv->next) {
5986 struct md_list *devlist;
5987 struct sys_dev *device = device_by_id(dv->devid);
5988 char *hba_path;
5989 int found = 0;
5990
5991 if (device)
5992 hba_path = device->path;
5993 else
5994 return 0;
5995
5996 /* VMD has one orom entry for all domain, but spanning is not allowed.
5997 * VMD arrays should be counted per domain (controller), so skip
5998 * domains that are not the given one.
5999 */
6000 if ((hba->type == SYS_DEV_VMD) &&
6001 (strncmp(device->path, hba->path, strlen(device->path)) != 0))
6002 continue;
6003
6004 devlist = get_devices(hba_path);
6005 /* if no intel devices return zero volumes */
6006 if (devlist == NULL)
6007 return 0;
6008
6009 count += active_arrays_by_format("imsm", hba_path, &devlist, dpa, verbose);
6010 dprintf("path: %s active arrays: %d\n", hba_path, count);
6011 if (devlist == NULL)
6012 return 0;
6013 do {
6014 found = 0;
6015 count += count_volumes_list(devlist,
6016 NULL,
6017 verbose,
6018 &found);
6019 dprintf("found %d count: %d\n", found, count);
6020 } while (found);
6021
6022 dprintf("path: %s total number of volumes: %d\n", hba_path, count);
6023
6024 while (devlist) {
6025 struct md_list *dv = devlist;
6026 devlist = devlist->next;
6027 free(dv->devname);
6028 free(dv);
6029 }
6030 }
6031 return count;
6032 }
6033
6034 static int imsm_default_chunk(const struct imsm_orom *orom)
6035 {
6036 /* up to 512 if the plaform supports it, otherwise the platform max.
6037 * 128 if no platform detected
6038 */
6039 int fs = max(7, orom ? fls(orom->sss) : 0);
6040
6041 return min(512, (1 << fs));
6042 }
6043
6044 static int
6045 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
6046 int raiddisks, int *chunk, unsigned long long size, int verbose)
6047 {
6048 /* check/set platform and metadata limits/defaults */
6049 if (super->orom && raiddisks > super->orom->dpa) {
6050 pr_vrb(": platform supports a maximum of %d disks per array\n",
6051 super->orom->dpa);
6052 return 0;
6053 }
6054
6055 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
6056 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6057 pr_vrb(": platform does not support raid%d with %d disk%s\n",
6058 level, raiddisks, raiddisks > 1 ? "s" : "");
6059 return 0;
6060 }
6061
6062 if (*chunk == 0 || *chunk == UnSet)
6063 *chunk = imsm_default_chunk(super->orom);
6064
6065 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
6066 pr_vrb(": platform does not support a chunk size of: %d\n", *chunk);
6067 return 0;
6068 }
6069
6070 if (layout != imsm_level_to_layout(level)) {
6071 if (level == 5)
6072 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
6073 else if (level == 10)
6074 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
6075 else
6076 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
6077 layout, level);
6078 return 0;
6079 }
6080
6081 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
6082 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
6083 pr_vrb(": platform does not support a volume size over 2TB\n");
6084 return 0;
6085 }
6086
6087 return 1;
6088 }
6089
6090 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
6091 * FIX ME add ahci details
6092 */
6093 static int validate_geometry_imsm_volume(struct supertype *st, int level,
6094 int layout, int raiddisks, int *chunk,
6095 unsigned long long size,
6096 unsigned long long data_offset,
6097 char *dev,
6098 unsigned long long *freesize,
6099 int verbose)
6100 {
6101 struct stat stb;
6102 struct intel_super *super = st->sb;
6103 struct imsm_super *mpb;
6104 struct dl *dl;
6105 unsigned long long pos = 0;
6106 unsigned long long maxsize;
6107 struct extent *e;
6108 int i;
6109
6110 /* We must have the container info already read in. */
6111 if (!super)
6112 return 0;
6113
6114 mpb = super->anchor;
6115
6116 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
6117 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
6118 return 0;
6119 }
6120 if (!dev) {
6121 /* General test: make sure there is space for
6122 * 'raiddisks' device extents of size 'size' at a given
6123 * offset
6124 */
6125 unsigned long long minsize = size;
6126 unsigned long long start_offset = MaxSector;
6127 int dcnt = 0;
6128 if (minsize == 0)
6129 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
6130 for (dl = super->disks; dl ; dl = dl->next) {
6131 int found = 0;
6132
6133 pos = 0;
6134 i = 0;
6135 e = get_extents(super, dl);
6136 if (!e) continue;
6137 do {
6138 unsigned long long esize;
6139 esize = e[i].start - pos;
6140 if (esize >= minsize)
6141 found = 1;
6142 if (found && start_offset == MaxSector) {
6143 start_offset = pos;
6144 break;
6145 } else if (found && pos != start_offset) {
6146 found = 0;
6147 break;
6148 }
6149 pos = e[i].start + e[i].size;
6150 i++;
6151 } while (e[i-1].size);
6152 if (found)
6153 dcnt++;
6154 free(e);
6155 }
6156 if (dcnt < raiddisks) {
6157 if (verbose)
6158 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
6159 dcnt, raiddisks);
6160 return 0;
6161 }
6162 return 1;
6163 }
6164
6165 /* This device must be a member of the set */
6166 if (stat(dev, &stb) < 0)
6167 return 0;
6168 if ((S_IFMT & stb.st_mode) != S_IFBLK)
6169 return 0;
6170 for (dl = super->disks ; dl ; dl = dl->next) {
6171 if (dl->major == (int)major(stb.st_rdev) &&
6172 dl->minor == (int)minor(stb.st_rdev))
6173 break;
6174 }
6175 if (!dl) {
6176 if (verbose)
6177 pr_err("%s is not in the same imsm set\n", dev);
6178 return 0;
6179 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6180 /* If a volume is present then the current creation attempt
6181 * cannot incorporate new spares because the orom may not
6182 * understand this configuration (all member disks must be
6183 * members of each array in the container).
6184 */
6185 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
6186 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6187 return 0;
6188 } else if (super->orom && mpb->num_raid_devs > 0 &&
6189 mpb->num_disks != raiddisks) {
6190 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6191 return 0;
6192 }
6193
6194 /* retrieve the largest free space block */
6195 e = get_extents(super, dl);
6196 maxsize = 0;
6197 i = 0;
6198 if (e) {
6199 do {
6200 unsigned long long esize;
6201
6202 esize = e[i].start - pos;
6203 if (esize >= maxsize)
6204 maxsize = esize;
6205 pos = e[i].start + e[i].size;
6206 i++;
6207 } while (e[i-1].size);
6208 dl->e = e;
6209 dl->extent_cnt = i;
6210 } else {
6211 if (verbose)
6212 pr_err("unable to determine free space for: %s\n",
6213 dev);
6214 return 0;
6215 }
6216 if (maxsize < size) {
6217 if (verbose)
6218 pr_err("%s not enough space (%llu < %llu)\n",
6219 dev, maxsize, size);
6220 return 0;
6221 }
6222
6223 /* count total number of extents for merge */
6224 i = 0;
6225 for (dl = super->disks; dl; dl = dl->next)
6226 if (dl->e)
6227 i += dl->extent_cnt;
6228
6229 maxsize = merge_extents(super, i);
6230
6231 if (!check_env("IMSM_NO_PLATFORM") &&
6232 mpb->num_raid_devs > 0 && size && size != maxsize) {
6233 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6234 return 0;
6235 }
6236
6237 if (maxsize < size || maxsize == 0) {
6238 if (verbose) {
6239 if (maxsize == 0)
6240 pr_err("no free space left on device. Aborting...\n");
6241 else
6242 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
6243 maxsize, size);
6244 }
6245 return 0;
6246 }
6247
6248 *freesize = maxsize;
6249
6250 if (super->orom) {
6251 int count = count_volumes(super->hba,
6252 super->orom->dpa, verbose);
6253 if (super->orom->vphba <= count) {
6254 pr_vrb(": platform does not support more than %d raid volumes.\n",
6255 super->orom->vphba);
6256 return 0;
6257 }
6258 }
6259 return 1;
6260 }
6261
6262 static int imsm_get_free_size(struct supertype *st, int raiddisks,
6263 unsigned long long size, int chunk,
6264 unsigned long long *freesize)
6265 {
6266 struct intel_super *super = st->sb;
6267 struct imsm_super *mpb = super->anchor;
6268 struct dl *dl;
6269 int i;
6270 int extent_cnt;
6271 struct extent *e;
6272 unsigned long long maxsize;
6273 unsigned long long minsize;
6274 int cnt;
6275 int used;
6276
6277 /* find the largest common start free region of the possible disks */
6278 used = 0;
6279 extent_cnt = 0;
6280 cnt = 0;
6281 for (dl = super->disks; dl; dl = dl->next) {
6282 dl->raiddisk = -1;
6283
6284 if (dl->index >= 0)
6285 used++;
6286
6287 /* don't activate new spares if we are orom constrained
6288 * and there is already a volume active in the container
6289 */
6290 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6291 continue;
6292
6293 e = get_extents(super, dl);
6294 if (!e)
6295 continue;
6296 for (i = 1; e[i-1].size; i++)
6297 ;
6298 dl->e = e;
6299 dl->extent_cnt = i;
6300 extent_cnt += i;
6301 cnt++;
6302 }
6303
6304 maxsize = merge_extents(super, extent_cnt);
6305 minsize = size;
6306 if (size == 0)
6307 /* chunk is in K */
6308 minsize = chunk * 2;
6309
6310 if (cnt < raiddisks ||
6311 (super->orom && used && used != raiddisks) ||
6312 maxsize < minsize ||
6313 maxsize == 0) {
6314 pr_err("not enough devices with space to create array.\n");
6315 return 0; /* No enough free spaces large enough */
6316 }
6317
6318 if (size == 0) {
6319 size = maxsize;
6320 if (chunk) {
6321 size /= 2 * chunk;
6322 size *= 2 * chunk;
6323 }
6324 maxsize = size;
6325 }
6326 if (!check_env("IMSM_NO_PLATFORM") &&
6327 mpb->num_raid_devs > 0 && size && size != maxsize) {
6328 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6329 return 0;
6330 }
6331 cnt = 0;
6332 for (dl = super->disks; dl; dl = dl->next)
6333 if (dl->e)
6334 dl->raiddisk = cnt++;
6335
6336 *freesize = size;
6337
6338 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
6339
6340 return 1;
6341 }
6342
6343 static int reserve_space(struct supertype *st, int raiddisks,
6344 unsigned long long size, int chunk,
6345 unsigned long long *freesize)
6346 {
6347 struct intel_super *super = st->sb;
6348 struct dl *dl;
6349 int cnt;
6350 int rv = 0;
6351
6352 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
6353 if (rv) {
6354 cnt = 0;
6355 for (dl = super->disks; dl; dl = dl->next)
6356 if (dl->e)
6357 dl->raiddisk = cnt++;
6358 rv = 1;
6359 }
6360
6361 return rv;
6362 }
6363
6364 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
6365 int raiddisks, int *chunk, unsigned long long size,
6366 unsigned long long data_offset,
6367 char *dev, unsigned long long *freesize,
6368 int verbose)
6369 {
6370 int fd, cfd;
6371 struct mdinfo *sra;
6372 int is_member = 0;
6373
6374 /* load capability
6375 * if given unused devices create a container
6376 * if given given devices in a container create a member volume
6377 */
6378 if (level == LEVEL_CONTAINER) {
6379 /* Must be a fresh device to add to a container */
6380 return validate_geometry_imsm_container(st, level, layout,
6381 raiddisks,
6382 *chunk,
6383 size, data_offset,
6384 dev, freesize,
6385 verbose);
6386 }
6387
6388 if (!dev) {
6389 if (st->sb) {
6390 struct intel_super *super = st->sb;
6391 if (!validate_geometry_imsm_orom(st->sb, level, layout,
6392 raiddisks, chunk, size,
6393 verbose))
6394 return 0;
6395 /* we are being asked to automatically layout a
6396 * new volume based on the current contents of
6397 * the container. If the the parameters can be
6398 * satisfied reserve_space will record the disks,
6399 * start offset, and size of the volume to be
6400 * created. add_to_super and getinfo_super
6401 * detect when autolayout is in progress.
6402 */
6403 /* assuming that freesize is always given when array is
6404 created */
6405 if (super->orom && freesize) {
6406 int count;
6407 count = count_volumes(super->hba,
6408 super->orom->dpa, verbose);
6409 if (super->orom->vphba <= count) {
6410 pr_vrb(": platform does not support more than %d raid volumes.\n",
6411 super->orom->vphba);
6412 return 0;
6413 }
6414 }
6415 if (freesize)
6416 return reserve_space(st, raiddisks, size,
6417 *chunk, freesize);
6418 }
6419 return 1;
6420 }
6421 if (st->sb) {
6422 /* creating in a given container */
6423 return validate_geometry_imsm_volume(st, level, layout,
6424 raiddisks, chunk, size,
6425 data_offset,
6426 dev, freesize, verbose);
6427 }
6428
6429 /* This device needs to be a device in an 'imsm' container */
6430 fd = open(dev, O_RDONLY|O_EXCL, 0);
6431 if (fd >= 0) {
6432 if (verbose)
6433 pr_err("Cannot create this array on device %s\n",
6434 dev);
6435 close(fd);
6436 return 0;
6437 }
6438 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6439 if (verbose)
6440 pr_err("Cannot open %s: %s\n",
6441 dev, strerror(errno));
6442 return 0;
6443 }
6444 /* Well, it is in use by someone, maybe an 'imsm' container. */
6445 cfd = open_container(fd);
6446 close(fd);
6447 if (cfd < 0) {
6448 if (verbose)
6449 pr_err("Cannot use %s: It is busy\n",
6450 dev);
6451 return 0;
6452 }
6453 sra = sysfs_read(cfd, NULL, GET_VERSION);
6454 if (sra && sra->array.major_version == -1 &&
6455 strcmp(sra->text_version, "imsm") == 0)
6456 is_member = 1;
6457 sysfs_free(sra);
6458 if (is_member) {
6459 /* This is a member of a imsm container. Load the container
6460 * and try to create a volume
6461 */
6462 struct intel_super *super;
6463
6464 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
6465 st->sb = super;
6466 strcpy(st->container_devnm, fd2devnm(cfd));
6467 close(cfd);
6468 return validate_geometry_imsm_volume(st, level, layout,
6469 raiddisks, chunk,
6470 size, data_offset, dev,
6471 freesize, 1)
6472 ? 1 : -1;
6473 }
6474 }
6475
6476 if (verbose)
6477 pr_err("failed container membership check\n");
6478
6479 close(cfd);
6480 return 0;
6481 }
6482
6483 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
6484 {
6485 struct intel_super *super = st->sb;
6486
6487 if (level && *level == UnSet)
6488 *level = LEVEL_CONTAINER;
6489
6490 if (level && layout && *layout == UnSet)
6491 *layout = imsm_level_to_layout(*level);
6492
6493 if (chunk && (*chunk == UnSet || *chunk == 0))
6494 *chunk = imsm_default_chunk(super->orom);
6495 }
6496
6497 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6498
6499 static int kill_subarray_imsm(struct supertype *st)
6500 {
6501 /* remove the subarray currently referenced by ->current_vol */
6502 __u8 i;
6503 struct intel_dev **dp;
6504 struct intel_super *super = st->sb;
6505 __u8 current_vol = super->current_vol;
6506 struct imsm_super *mpb = super->anchor;
6507
6508 if (super->current_vol < 0)
6509 return 2;
6510 super->current_vol = -1; /* invalidate subarray cursor */
6511
6512 /* block deletions that would change the uuid of active subarrays
6513 *
6514 * FIXME when immutable ids are available, but note that we'll
6515 * also need to fixup the invalidated/active subarray indexes in
6516 * mdstat
6517 */
6518 for (i = 0; i < mpb->num_raid_devs; i++) {
6519 char subarray[4];
6520
6521 if (i < current_vol)
6522 continue;
6523 sprintf(subarray, "%u", i);
6524 if (is_subarray_active(subarray, st->devnm)) {
6525 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6526 current_vol, i);
6527
6528 return 2;
6529 }
6530 }
6531
6532 if (st->update_tail) {
6533 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
6534
6535 u->type = update_kill_array;
6536 u->dev_idx = current_vol;
6537 append_metadata_update(st, u, sizeof(*u));
6538
6539 return 0;
6540 }
6541
6542 for (dp = &super->devlist; *dp;)
6543 if ((*dp)->index == current_vol) {
6544 *dp = (*dp)->next;
6545 } else {
6546 handle_missing(super, (*dp)->dev);
6547 if ((*dp)->index > current_vol)
6548 (*dp)->index--;
6549 dp = &(*dp)->next;
6550 }
6551
6552 /* no more raid devices, all active components are now spares,
6553 * but of course failed are still failed
6554 */
6555 if (--mpb->num_raid_devs == 0) {
6556 struct dl *d;
6557
6558 for (d = super->disks; d; d = d->next)
6559 if (d->index > -2)
6560 mark_spare(d);
6561 }
6562
6563 super->updates_pending++;
6564
6565 return 0;
6566 }
6567
6568 static int update_subarray_imsm(struct supertype *st, char *subarray,
6569 char *update, struct mddev_ident *ident)
6570 {
6571 /* update the subarray currently referenced by ->current_vol */
6572 struct intel_super *super = st->sb;
6573 struct imsm_super *mpb = super->anchor;
6574
6575 if (strcmp(update, "name") == 0) {
6576 char *name = ident->name;
6577 char *ep;
6578 int vol;
6579
6580 if (is_subarray_active(subarray, st->devnm)) {
6581 pr_err("Unable to update name of active subarray\n");
6582 return 2;
6583 }
6584
6585 if (!check_name(super, name, 0))
6586 return 2;
6587
6588 vol = strtoul(subarray, &ep, 10);
6589 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6590 return 2;
6591
6592 if (st->update_tail) {
6593 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
6594
6595 u->type = update_rename_array;
6596 u->dev_idx = vol;
6597 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6598 append_metadata_update(st, u, sizeof(*u));
6599 } else {
6600 struct imsm_dev *dev;
6601 int i;
6602
6603 dev = get_imsm_dev(super, vol);
6604 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6605 for (i = 0; i < mpb->num_raid_devs; i++) {
6606 dev = get_imsm_dev(super, i);
6607 handle_missing(super, dev);
6608 }
6609 super->updates_pending++;
6610 }
6611 } else
6612 return 2;
6613
6614 return 0;
6615 }
6616 #endif /* MDASSEMBLE */
6617
6618 static int is_gen_migration(struct imsm_dev *dev)
6619 {
6620 if (dev == NULL)
6621 return 0;
6622
6623 if (!dev->vol.migr_state)
6624 return 0;
6625
6626 if (migr_type(dev) == MIGR_GEN_MIGR)
6627 return 1;
6628
6629 return 0;
6630 }
6631
6632 static int is_rebuilding(struct imsm_dev *dev)
6633 {
6634 struct imsm_map *migr_map;
6635
6636 if (!dev->vol.migr_state)
6637 return 0;
6638
6639 if (migr_type(dev) != MIGR_REBUILD)
6640 return 0;
6641
6642 migr_map = get_imsm_map(dev, MAP_1);
6643
6644 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6645 return 1;
6646 else
6647 return 0;
6648 }
6649
6650 #ifndef MDASSEMBLE
6651 static int is_initializing(struct imsm_dev *dev)
6652 {
6653 struct imsm_map *migr_map;
6654
6655 if (!dev->vol.migr_state)
6656 return 0;
6657
6658 if (migr_type(dev) != MIGR_INIT)
6659 return 0;
6660
6661 migr_map = get_imsm_map(dev, MAP_1);
6662
6663 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6664 return 1;
6665
6666 return 0;
6667 }
6668 #endif
6669
6670 static void update_recovery_start(struct intel_super *super,
6671 struct imsm_dev *dev,
6672 struct mdinfo *array)
6673 {
6674 struct mdinfo *rebuild = NULL;
6675 struct mdinfo *d;
6676 __u32 units;
6677
6678 if (!is_rebuilding(dev))
6679 return;
6680
6681 /* Find the rebuild target, but punt on the dual rebuild case */
6682 for (d = array->devs; d; d = d->next)
6683 if (d->recovery_start == 0) {
6684 if (rebuild)
6685 return;
6686 rebuild = d;
6687 }
6688
6689 if (!rebuild) {
6690 /* (?) none of the disks are marked with
6691 * IMSM_ORD_REBUILD, so assume they are missing and the
6692 * disk_ord_tbl was not correctly updated
6693 */
6694 dprintf("failed to locate out-of-sync disk\n");
6695 return;
6696 }
6697
6698 units = __le32_to_cpu(dev->vol.curr_migr_unit);
6699 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
6700 }
6701
6702 #ifndef MDASSEMBLE
6703 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
6704 #endif
6705
6706 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
6707 {
6708 /* Given a container loaded by load_super_imsm_all,
6709 * extract information about all the arrays into
6710 * an mdinfo tree.
6711 * If 'subarray' is given, just extract info about that array.
6712 *
6713 * For each imsm_dev create an mdinfo, fill it in,
6714 * then look for matching devices in super->disks
6715 * and create appropriate device mdinfo.
6716 */
6717 struct intel_super *super = st->sb;
6718 struct imsm_super *mpb = super->anchor;
6719 struct mdinfo *rest = NULL;
6720 unsigned int i;
6721 int sb_errors = 0;
6722 struct dl *d;
6723 int spare_disks = 0;
6724
6725 /* do not assemble arrays when not all attributes are supported */
6726 if (imsm_check_attributes(mpb->attributes) == 0) {
6727 sb_errors = 1;
6728 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
6729 }
6730
6731 /* check for bad blocks */
6732 if (imsm_bbm_log_size(super->anchor)) {
6733 pr_err("BBM log found in IMSM metadata.Arrays activation is blocked.\n");
6734 sb_errors = 1;
6735 }
6736
6737 /* count spare devices, not used in maps
6738 */
6739 for (d = super->disks; d; d = d->next)
6740 if (d->index == -1)
6741 spare_disks++;
6742
6743 for (i = 0; i < mpb->num_raid_devs; i++) {
6744 struct imsm_dev *dev;
6745 struct imsm_map *map;
6746 struct imsm_map *map2;
6747 struct mdinfo *this;
6748 int slot;
6749 #ifndef MDASSEMBLE
6750 int chunk;
6751 #endif
6752 char *ep;
6753
6754 if (subarray &&
6755 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6756 continue;
6757
6758 dev = get_imsm_dev(super, i);
6759 map = get_imsm_map(dev, MAP_0);
6760 map2 = get_imsm_map(dev, MAP_1);
6761
6762 /* do not publish arrays that are in the middle of an
6763 * unsupported migration
6764 */
6765 if (dev->vol.migr_state &&
6766 (migr_type(dev) == MIGR_STATE_CHANGE)) {
6767 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
6768 dev->volume);
6769 continue;
6770 }
6771 /* do not publish arrays that are not support by controller's
6772 * OROM/EFI
6773 */
6774
6775 this = xmalloc(sizeof(*this));
6776
6777 super->current_vol = i;
6778 getinfo_super_imsm_volume(st, this, NULL);
6779 this->next = rest;
6780 #ifndef MDASSEMBLE
6781 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
6782 /* mdadm does not support all metadata features- set the bit in all arrays state */
6783 if (!validate_geometry_imsm_orom(super,
6784 get_imsm_raid_level(map), /* RAID level */
6785 imsm_level_to_layout(get_imsm_raid_level(map)),
6786 map->num_members, /* raid disks */
6787 &chunk, join_u32(dev->size_low, dev->size_high),
6788 1 /* verbose */)) {
6789 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
6790 dev->volume);
6791 this->array.state |=
6792 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6793 (1<<MD_SB_BLOCK_VOLUME);
6794 }
6795 #endif
6796
6797 /* if array has bad blocks, set suitable bit in all arrays state */
6798 if (sb_errors)
6799 this->array.state |=
6800 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6801 (1<<MD_SB_BLOCK_VOLUME);
6802
6803 for (slot = 0 ; slot < map->num_members; slot++) {
6804 unsigned long long recovery_start;
6805 struct mdinfo *info_d;
6806 struct dl *d;
6807 int idx;
6808 int skip;
6809 __u32 ord;
6810
6811 skip = 0;
6812 idx = get_imsm_disk_idx(dev, slot, MAP_0);
6813 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
6814 for (d = super->disks; d ; d = d->next)
6815 if (d->index == idx)
6816 break;
6817
6818 recovery_start = MaxSector;
6819 if (d == NULL)
6820 skip = 1;
6821 if (d && is_failed(&d->disk))
6822 skip = 1;
6823 if (ord & IMSM_ORD_REBUILD)
6824 recovery_start = 0;
6825
6826 /*
6827 * if we skip some disks the array will be assmebled degraded;
6828 * reset resync start to avoid a dirty-degraded
6829 * situation when performing the intial sync
6830 *
6831 * FIXME handle dirty degraded
6832 */
6833 if ((skip || recovery_start == 0) && !dev->vol.dirty)
6834 this->resync_start = MaxSector;
6835 if (skip)
6836 continue;
6837
6838 info_d = xcalloc(1, sizeof(*info_d));
6839 info_d->next = this->devs;
6840 this->devs = info_d;
6841
6842 info_d->disk.number = d->index;
6843 info_d->disk.major = d->major;
6844 info_d->disk.minor = d->minor;
6845 info_d->disk.raid_disk = slot;
6846 info_d->recovery_start = recovery_start;
6847 if (map2) {
6848 if (slot < map2->num_members)
6849 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6850 else
6851 this->array.spare_disks++;
6852 } else {
6853 if (slot < map->num_members)
6854 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6855 else
6856 this->array.spare_disks++;
6857 }
6858 if (info_d->recovery_start == MaxSector)
6859 this->array.working_disks++;
6860
6861 info_d->events = __le32_to_cpu(mpb->generation_num);
6862 info_d->data_offset = pba_of_lba0(map);
6863 info_d->component_size = blocks_per_member(map);
6864 }
6865 /* now that the disk list is up-to-date fixup recovery_start */
6866 update_recovery_start(super, dev, this);
6867 this->array.spare_disks += spare_disks;
6868
6869 #ifndef MDASSEMBLE
6870 /* check for reshape */
6871 if (this->reshape_active == 1)
6872 recover_backup_imsm(st, this);
6873 #endif
6874 rest = this;
6875 }
6876
6877 return rest;
6878 }
6879
6880 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6881 int failed, int look_in_map)
6882 {
6883 struct imsm_map *map;
6884
6885 map = get_imsm_map(dev, look_in_map);
6886
6887 if (!failed)
6888 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6889 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6890
6891 switch (get_imsm_raid_level(map)) {
6892 case 0:
6893 return IMSM_T_STATE_FAILED;
6894 break;
6895 case 1:
6896 if (failed < map->num_members)
6897 return IMSM_T_STATE_DEGRADED;
6898 else
6899 return IMSM_T_STATE_FAILED;
6900 break;
6901 case 10:
6902 {
6903 /**
6904 * check to see if any mirrors have failed, otherwise we
6905 * are degraded. Even numbered slots are mirrored on
6906 * slot+1
6907 */
6908 int i;
6909 /* gcc -Os complains that this is unused */
6910 int insync = insync;
6911
6912 for (i = 0; i < map->num_members; i++) {
6913 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6914 int idx = ord_to_idx(ord);
6915 struct imsm_disk *disk;
6916
6917 /* reset the potential in-sync count on even-numbered
6918 * slots. num_copies is always 2 for imsm raid10
6919 */
6920 if ((i & 1) == 0)
6921 insync = 2;
6922
6923 disk = get_imsm_disk(super, idx);
6924 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6925 insync--;
6926
6927 /* no in-sync disks left in this mirror the
6928 * array has failed
6929 */
6930 if (insync == 0)
6931 return IMSM_T_STATE_FAILED;
6932 }
6933
6934 return IMSM_T_STATE_DEGRADED;
6935 }
6936 case 5:
6937 if (failed < 2)
6938 return IMSM_T_STATE_DEGRADED;
6939 else
6940 return IMSM_T_STATE_FAILED;
6941 break;
6942 default:
6943 break;
6944 }
6945
6946 return map->map_state;
6947 }
6948
6949 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6950 int look_in_map)
6951 {
6952 int i;
6953 int failed = 0;
6954 struct imsm_disk *disk;
6955 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6956 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6957 struct imsm_map *map_for_loop;
6958 __u32 ord;
6959 int idx;
6960 int idx_1;
6961
6962 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6963 * disks that are being rebuilt. New failures are recorded to
6964 * map[0]. So we look through all the disks we started with and
6965 * see if any failures are still present, or if any new ones
6966 * have arrived
6967 */
6968 map_for_loop = map;
6969 if (prev && (map->num_members < prev->num_members))
6970 map_for_loop = prev;
6971
6972 for (i = 0; i < map_for_loop->num_members; i++) {
6973 idx_1 = -255;
6974 /* when MAP_X is passed both maps failures are counted
6975 */
6976 if (prev &&
6977 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6978 (i < prev->num_members)) {
6979 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6980 idx_1 = ord_to_idx(ord);
6981
6982 disk = get_imsm_disk(super, idx_1);
6983 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6984 failed++;
6985 }
6986 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6987 (i < map->num_members)) {
6988 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6989 idx = ord_to_idx(ord);
6990
6991 if (idx != idx_1) {
6992 disk = get_imsm_disk(super, idx);
6993 if (!disk || is_failed(disk) ||
6994 ord & IMSM_ORD_REBUILD)
6995 failed++;
6996 }
6997 }
6998 }
6999
7000 return failed;
7001 }
7002
7003 #ifndef MDASSEMBLE
7004 static int imsm_open_new(struct supertype *c, struct active_array *a,
7005 char *inst)
7006 {
7007 struct intel_super *super = c->sb;
7008 struct imsm_super *mpb = super->anchor;
7009
7010 if (atoi(inst) >= mpb->num_raid_devs) {
7011 pr_err("subarry index %d, out of range\n", atoi(inst));
7012 return -ENODEV;
7013 }
7014
7015 dprintf("imsm: open_new %s\n", inst);
7016 a->info.container_member = atoi(inst);
7017 return 0;
7018 }
7019
7020 static int is_resyncing(struct imsm_dev *dev)
7021 {
7022 struct imsm_map *migr_map;
7023
7024 if (!dev->vol.migr_state)
7025 return 0;
7026
7027 if (migr_type(dev) == MIGR_INIT ||
7028 migr_type(dev) == MIGR_REPAIR)
7029 return 1;
7030
7031 if (migr_type(dev) == MIGR_GEN_MIGR)
7032 return 0;
7033
7034 migr_map = get_imsm_map(dev, MAP_1);
7035
7036 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
7037 (dev->vol.migr_type != MIGR_GEN_MIGR))
7038 return 1;
7039 else
7040 return 0;
7041 }
7042
7043 /* return true if we recorded new information */
7044 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7045 {
7046 __u32 ord;
7047 int slot;
7048 struct imsm_map *map;
7049 char buf[MAX_RAID_SERIAL_LEN+3];
7050 unsigned int len, shift = 0;
7051
7052 /* new failures are always set in map[0] */
7053 map = get_imsm_map(dev, MAP_0);
7054
7055 slot = get_imsm_disk_slot(map, idx);
7056 if (slot < 0)
7057 return 0;
7058
7059 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
7060 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
7061 return 0;
7062
7063 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
7064 buf[MAX_RAID_SERIAL_LEN] = '\000';
7065 strcat(buf, ":0");
7066 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
7067 shift = len - MAX_RAID_SERIAL_LEN + 1;
7068 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
7069
7070 disk->status |= FAILED_DISK;
7071 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
7072 /* mark failures in second map if second map exists and this disk
7073 * in this slot.
7074 * This is valid for migration, initialization and rebuild
7075 */
7076 if (dev->vol.migr_state) {
7077 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
7078 int slot2 = get_imsm_disk_slot(map2, idx);
7079
7080 if ((slot2 < map2->num_members) &&
7081 (slot2 >= 0))
7082 set_imsm_ord_tbl_ent(map2, slot2,
7083 idx | IMSM_ORD_REBUILD);
7084 }
7085 if (map->failed_disk_num == 0xff)
7086 map->failed_disk_num = slot;
7087 return 1;
7088 }
7089
7090 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7091 {
7092 mark_failure(dev, disk, idx);
7093
7094 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
7095 return;
7096
7097 disk->scsi_id = __cpu_to_le32(~(__u32)0);
7098 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
7099 }
7100
7101 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
7102 {
7103 struct dl *dl;
7104
7105 if (!super->missing)
7106 return;
7107
7108 /* When orom adds replacement for missing disk it does
7109 * not remove entry of missing disk, but just updates map with
7110 * new added disk. So it is not enough just to test if there is
7111 * any missing disk, we have to look if there are any failed disks
7112 * in map to stop migration */
7113
7114 dprintf("imsm: mark missing\n");
7115 /* end process for initialization and rebuild only
7116 */
7117 if (is_gen_migration(dev) == 0) {
7118 __u8 map_state;
7119 int failed;
7120
7121 failed = imsm_count_failed(super, dev, MAP_0);
7122 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7123
7124 if (failed)
7125 end_migration(dev, super, map_state);
7126 }
7127 for (dl = super->missing; dl; dl = dl->next)
7128 mark_missing(dev, &dl->disk, dl->index);
7129 super->updates_pending++;
7130 }
7131
7132 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7133 long long new_size)
7134 {
7135 int used_disks = imsm_num_data_members(dev, MAP_0);
7136 unsigned long long array_blocks;
7137 struct imsm_map *map;
7138
7139 if (used_disks == 0) {
7140 /* when problems occures
7141 * return current array_blocks value
7142 */
7143 array_blocks = __le32_to_cpu(dev->size_high);
7144 array_blocks = array_blocks << 32;
7145 array_blocks += __le32_to_cpu(dev->size_low);
7146
7147 return array_blocks;
7148 }
7149
7150 /* set array size in metadata
7151 */
7152 if (new_size <= 0) {
7153 /* OLCE size change is caused by added disks
7154 */
7155 map = get_imsm_map(dev, MAP_0);
7156 array_blocks = blocks_per_member(map) * used_disks;
7157 } else {
7158 /* Online Volume Size Change
7159 * Using available free space
7160 */
7161 array_blocks = new_size;
7162 }
7163
7164 /* round array size down to closest MB
7165 */
7166 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
7167 dev->size_low = __cpu_to_le32((__u32)array_blocks);
7168 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7169
7170 return array_blocks;
7171 }
7172
7173 static void imsm_set_disk(struct active_array *a, int n, int state);
7174
7175 static void imsm_progress_container_reshape(struct intel_super *super)
7176 {
7177 /* if no device has a migr_state, but some device has a
7178 * different number of members than the previous device, start
7179 * changing the number of devices in this device to match
7180 * previous.
7181 */
7182 struct imsm_super *mpb = super->anchor;
7183 int prev_disks = -1;
7184 int i;
7185 int copy_map_size;
7186
7187 for (i = 0; i < mpb->num_raid_devs; i++) {
7188 struct imsm_dev *dev = get_imsm_dev(super, i);
7189 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7190 struct imsm_map *map2;
7191 int prev_num_members;
7192
7193 if (dev->vol.migr_state)
7194 return;
7195
7196 if (prev_disks == -1)
7197 prev_disks = map->num_members;
7198 if (prev_disks == map->num_members)
7199 continue;
7200
7201 /* OK, this array needs to enter reshape mode.
7202 * i.e it needs a migr_state
7203 */
7204
7205 copy_map_size = sizeof_imsm_map(map);
7206 prev_num_members = map->num_members;
7207 map->num_members = prev_disks;
7208 dev->vol.migr_state = 1;
7209 dev->vol.curr_migr_unit = 0;
7210 set_migr_type(dev, MIGR_GEN_MIGR);
7211 for (i = prev_num_members;
7212 i < map->num_members; i++)
7213 set_imsm_ord_tbl_ent(map, i, i);
7214 map2 = get_imsm_map(dev, MAP_1);
7215 /* Copy the current map */
7216 memcpy(map2, map, copy_map_size);
7217 map2->num_members = prev_num_members;
7218
7219 imsm_set_array_size(dev, -1);
7220 super->clean_migration_record_by_mdmon = 1;
7221 super->updates_pending++;
7222 }
7223 }
7224
7225 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
7226 * states are handled in imsm_set_disk() with one exception, when a
7227 * resync is stopped due to a new failure this routine will set the
7228 * 'degraded' state for the array.
7229 */
7230 static int imsm_set_array_state(struct active_array *a, int consistent)
7231 {
7232 int inst = a->info.container_member;
7233 struct intel_super *super = a->container->sb;
7234 struct imsm_dev *dev = get_imsm_dev(super, inst);
7235 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7236 int failed = imsm_count_failed(super, dev, MAP_0);
7237 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7238 __u32 blocks_per_unit;
7239
7240 if (dev->vol.migr_state &&
7241 dev->vol.migr_type == MIGR_GEN_MIGR) {
7242 /* array state change is blocked due to reshape action
7243 * We might need to
7244 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7245 * - finish the reshape (if last_checkpoint is big and action != reshape)
7246 * - update curr_migr_unit
7247 */
7248 if (a->curr_action == reshape) {
7249 /* still reshaping, maybe update curr_migr_unit */
7250 goto mark_checkpoint;
7251 } else {
7252 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7253 /* for some reason we aborted the reshape.
7254 *
7255 * disable automatic metadata rollback
7256 * user action is required to recover process
7257 */
7258 if (0) {
7259 struct imsm_map *map2 =
7260 get_imsm_map(dev, MAP_1);
7261 dev->vol.migr_state = 0;
7262 set_migr_type(dev, 0);
7263 dev->vol.curr_migr_unit = 0;
7264 memcpy(map, map2,
7265 sizeof_imsm_map(map2));
7266 super->updates_pending++;
7267 }
7268 }
7269 if (a->last_checkpoint >= a->info.component_size) {
7270 unsigned long long array_blocks;
7271 int used_disks;
7272 struct mdinfo *mdi;
7273
7274 used_disks = imsm_num_data_members(dev, MAP_0);
7275 if (used_disks > 0) {
7276 array_blocks =
7277 blocks_per_member(map) *
7278 used_disks;
7279 /* round array size down to closest MB
7280 */
7281 array_blocks = (array_blocks
7282 >> SECT_PER_MB_SHIFT)
7283 << SECT_PER_MB_SHIFT;
7284 a->info.custom_array_size = array_blocks;
7285 /* encourage manager to update array
7286 * size
7287 */
7288
7289 a->check_reshape = 1;
7290 }
7291 /* finalize online capacity expansion/reshape */
7292 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7293 imsm_set_disk(a,
7294 mdi->disk.raid_disk,
7295 mdi->curr_state);
7296
7297 imsm_progress_container_reshape(super);
7298 }
7299 }
7300 }
7301
7302 /* before we activate this array handle any missing disks */
7303 if (consistent == 2)
7304 handle_missing(super, dev);
7305
7306 if (consistent == 2 &&
7307 (!is_resync_complete(&a->info) ||
7308 map_state != IMSM_T_STATE_NORMAL ||
7309 dev->vol.migr_state))
7310 consistent = 0;
7311
7312 if (is_resync_complete(&a->info)) {
7313 /* complete intialization / resync,
7314 * recovery and interrupted recovery is completed in
7315 * ->set_disk
7316 */
7317 if (is_resyncing(dev)) {
7318 dprintf("imsm: mark resync done\n");
7319 end_migration(dev, super, map_state);
7320 super->updates_pending++;
7321 a->last_checkpoint = 0;
7322 }
7323 } else if ((!is_resyncing(dev) && !failed) &&
7324 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
7325 /* mark the start of the init process if nothing is failed */
7326 dprintf("imsm: mark resync start\n");
7327 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
7328 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
7329 else
7330 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
7331 super->updates_pending++;
7332 }
7333
7334 mark_checkpoint:
7335 /* skip checkpointing for general migration,
7336 * it is controlled in mdadm
7337 */
7338 if (is_gen_migration(dev))
7339 goto skip_mark_checkpoint;
7340
7341 /* check if we can update curr_migr_unit from resync_start, recovery_start */
7342 blocks_per_unit = blocks_per_migr_unit(super, dev);
7343 if (blocks_per_unit) {
7344 __u32 units32;
7345 __u64 units;
7346
7347 units = a->last_checkpoint / blocks_per_unit;
7348 units32 = units;
7349
7350 /* check that we did not overflow 32-bits, and that
7351 * curr_migr_unit needs updating
7352 */
7353 if (units32 == units &&
7354 units32 != 0 &&
7355 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7356 dprintf("imsm: mark checkpoint (%u)\n", units32);
7357 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7358 super->updates_pending++;
7359 }
7360 }
7361
7362 skip_mark_checkpoint:
7363 /* mark dirty / clean */
7364 if (dev->vol.dirty != !consistent) {
7365 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
7366 if (consistent)
7367 dev->vol.dirty = 0;
7368 else
7369 dev->vol.dirty = 1;
7370 super->updates_pending++;
7371 }
7372
7373 return consistent;
7374 }
7375
7376 static void imsm_set_disk(struct active_array *a, int n, int state)
7377 {
7378 int inst = a->info.container_member;
7379 struct intel_super *super = a->container->sb;
7380 struct imsm_dev *dev = get_imsm_dev(super, inst);
7381 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7382 struct imsm_disk *disk;
7383 struct mdinfo *mdi;
7384 int recovery_not_finished = 0;
7385 int failed;
7386 __u32 ord;
7387 __u8 map_state;
7388
7389 if (n > map->num_members)
7390 pr_err("imsm: set_disk %d out of range 0..%d\n",
7391 n, map->num_members - 1);
7392
7393 if (n < 0)
7394 return;
7395
7396 dprintf("imsm: set_disk %d:%x\n", n, state);
7397
7398 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
7399 disk = get_imsm_disk(super, ord_to_idx(ord));
7400
7401 /* check for new failures */
7402 if (state & DS_FAULTY) {
7403 if (mark_failure(dev, disk, ord_to_idx(ord)))
7404 super->updates_pending++;
7405 }
7406
7407 /* check if in_sync */
7408 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
7409 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7410
7411 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
7412 super->updates_pending++;
7413 }
7414
7415 failed = imsm_count_failed(super, dev, MAP_0);
7416 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7417
7418 /* check if recovery complete, newly degraded, or failed */
7419 dprintf("imsm: Detected transition to state ");
7420 switch (map_state) {
7421 case IMSM_T_STATE_NORMAL: /* transition to normal state */
7422 dprintf("normal: ");
7423 if (is_rebuilding(dev)) {
7424 dprintf_cont("while rebuilding");
7425 /* check if recovery is really finished */
7426 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
7427 if (mdi->recovery_start != MaxSector) {
7428 recovery_not_finished = 1;
7429 break;
7430 }
7431 if (recovery_not_finished) {
7432 dprintf_cont("\n");
7433 dprintf("Rebuild has not finished yet, state not changed");
7434 if (a->last_checkpoint < mdi->recovery_start) {
7435 a->last_checkpoint = mdi->recovery_start;
7436 super->updates_pending++;
7437 }
7438 break;
7439 }
7440 end_migration(dev, super, map_state);
7441 map = get_imsm_map(dev, MAP_0);
7442 map->failed_disk_num = ~0;
7443 super->updates_pending++;
7444 a->last_checkpoint = 0;
7445 break;
7446 }
7447 if (is_gen_migration(dev)) {
7448 dprintf_cont("while general migration");
7449 if (a->last_checkpoint >= a->info.component_size)
7450 end_migration(dev, super, map_state);
7451 else
7452 map->map_state = map_state;
7453 map = get_imsm_map(dev, MAP_0);
7454 map->failed_disk_num = ~0;
7455 super->updates_pending++;
7456 break;
7457 }
7458 break;
7459 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
7460 dprintf_cont("degraded: ");
7461 if ((map->map_state != map_state) &&
7462 !dev->vol.migr_state) {
7463 dprintf_cont("mark degraded");
7464 map->map_state = map_state;
7465 super->updates_pending++;
7466 a->last_checkpoint = 0;
7467 break;
7468 }
7469 if (is_rebuilding(dev)) {
7470 dprintf_cont("while rebuilding.");
7471 if (map->map_state != map_state) {
7472 dprintf_cont(" Map state change");
7473 end_migration(dev, super, map_state);
7474 super->updates_pending++;
7475 }
7476 break;
7477 }
7478 if (is_gen_migration(dev)) {
7479 dprintf_cont("while general migration");
7480 if (a->last_checkpoint >= a->info.component_size)
7481 end_migration(dev, super, map_state);
7482 else {
7483 map->map_state = map_state;
7484 manage_second_map(super, dev);
7485 }
7486 super->updates_pending++;
7487 break;
7488 }
7489 if (is_initializing(dev)) {
7490 dprintf_cont("while initialization.");
7491 map->map_state = map_state;
7492 super->updates_pending++;
7493 break;
7494 }
7495 break;
7496 case IMSM_T_STATE_FAILED: /* transition to failed state */
7497 dprintf_cont("failed: ");
7498 if (is_gen_migration(dev)) {
7499 dprintf_cont("while general migration");
7500 map->map_state = map_state;
7501 super->updates_pending++;
7502 break;
7503 }
7504 if (map->map_state != map_state) {
7505 dprintf_cont("mark failed");
7506 end_migration(dev, super, map_state);
7507 super->updates_pending++;
7508 a->last_checkpoint = 0;
7509 break;
7510 }
7511 break;
7512 default:
7513 dprintf_cont("state %i\n", map_state);
7514 }
7515 dprintf_cont("\n");
7516 }
7517
7518 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
7519 {
7520 void *buf = mpb;
7521 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7522 unsigned long long dsize;
7523 unsigned long long sectors;
7524
7525 get_dev_size(fd, NULL, &dsize);
7526
7527 if (mpb_size > 512) {
7528 /* -1 to account for anchor */
7529 sectors = mpb_sectors(mpb) - 1;
7530
7531 /* write the extended mpb to the sectors preceeding the anchor */
7532 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
7533 return 1;
7534
7535 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
7536 != 512 * sectors)
7537 return 1;
7538 }
7539
7540 /* first block is stored on second to last sector of the disk */
7541 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
7542 return 1;
7543
7544 if (write(fd, buf, 512) != 512)
7545 return 1;
7546
7547 return 0;
7548 }
7549
7550 static void imsm_sync_metadata(struct supertype *container)
7551 {
7552 struct intel_super *super = container->sb;
7553
7554 dprintf("sync metadata: %d\n", super->updates_pending);
7555 if (!super->updates_pending)
7556 return;
7557
7558 write_super_imsm(container, 0);
7559
7560 super->updates_pending = 0;
7561 }
7562
7563 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7564 {
7565 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7566 int i = get_imsm_disk_idx(dev, idx, MAP_X);
7567 struct dl *dl;
7568
7569 for (dl = super->disks; dl; dl = dl->next)
7570 if (dl->index == i)
7571 break;
7572
7573 if (dl && is_failed(&dl->disk))
7574 dl = NULL;
7575
7576 if (dl)
7577 dprintf("found %x:%x\n", dl->major, dl->minor);
7578
7579 return dl;
7580 }
7581
7582 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
7583 struct active_array *a, int activate_new,
7584 struct mdinfo *additional_test_list)
7585 {
7586 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7587 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
7588 struct imsm_super *mpb = super->anchor;
7589 struct imsm_map *map;
7590 unsigned long long pos;
7591 struct mdinfo *d;
7592 struct extent *ex;
7593 int i, j;
7594 int found;
7595 __u32 array_start = 0;
7596 __u32 array_end = 0;
7597 struct dl *dl;
7598 struct mdinfo *test_list;
7599
7600 for (dl = super->disks; dl; dl = dl->next) {
7601 /* If in this array, skip */
7602 for (d = a->info.devs ; d ; d = d->next)
7603 if (d->state_fd >= 0 &&
7604 d->disk.major == dl->major &&
7605 d->disk.minor == dl->minor) {
7606 dprintf("%x:%x already in array\n",
7607 dl->major, dl->minor);
7608 break;
7609 }
7610 if (d)
7611 continue;
7612 test_list = additional_test_list;
7613 while (test_list) {
7614 if (test_list->disk.major == dl->major &&
7615 test_list->disk.minor == dl->minor) {
7616 dprintf("%x:%x already in additional test list\n",
7617 dl->major, dl->minor);
7618 break;
7619 }
7620 test_list = test_list->next;
7621 }
7622 if (test_list)
7623 continue;
7624
7625 /* skip in use or failed drives */
7626 if (is_failed(&dl->disk) || idx == dl->index ||
7627 dl->index == -2) {
7628 dprintf("%x:%x status (failed: %d index: %d)\n",
7629 dl->major, dl->minor, is_failed(&dl->disk), idx);
7630 continue;
7631 }
7632
7633 /* skip pure spares when we are looking for partially
7634 * assimilated drives
7635 */
7636 if (dl->index == -1 && !activate_new)
7637 continue;
7638
7639 /* Does this unused device have the requisite free space?
7640 * It needs to be able to cover all member volumes
7641 */
7642 ex = get_extents(super, dl);
7643 if (!ex) {
7644 dprintf("cannot get extents\n");
7645 continue;
7646 }
7647 for (i = 0; i < mpb->num_raid_devs; i++) {
7648 dev = get_imsm_dev(super, i);
7649 map = get_imsm_map(dev, MAP_0);
7650
7651 /* check if this disk is already a member of
7652 * this array
7653 */
7654 if (get_imsm_disk_slot(map, dl->index) >= 0)
7655 continue;
7656
7657 found = 0;
7658 j = 0;
7659 pos = 0;
7660 array_start = pba_of_lba0(map);
7661 array_end = array_start +
7662 blocks_per_member(map) - 1;
7663
7664 do {
7665 /* check that we can start at pba_of_lba0 with
7666 * blocks_per_member of space
7667 */
7668 if (array_start >= pos && array_end < ex[j].start) {
7669 found = 1;
7670 break;
7671 }
7672 pos = ex[j].start + ex[j].size;
7673 j++;
7674 } while (ex[j-1].size);
7675
7676 if (!found)
7677 break;
7678 }
7679
7680 free(ex);
7681 if (i < mpb->num_raid_devs) {
7682 dprintf("%x:%x does not have %u to %u available\n",
7683 dl->major, dl->minor, array_start, array_end);
7684 /* No room */
7685 continue;
7686 }
7687 return dl;
7688 }
7689
7690 return dl;
7691 }
7692
7693 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7694 {
7695 struct imsm_dev *dev2;
7696 struct imsm_map *map;
7697 struct dl *idisk;
7698 int slot;
7699 int idx;
7700 __u8 state;
7701
7702 dev2 = get_imsm_dev(cont->sb, dev_idx);
7703 if (dev2) {
7704 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
7705 if (state == IMSM_T_STATE_FAILED) {
7706 map = get_imsm_map(dev2, MAP_0);
7707 if (!map)
7708 return 1;
7709 for (slot = 0; slot < map->num_members; slot++) {
7710 /*
7711 * Check if failed disks are deleted from intel
7712 * disk list or are marked to be deleted
7713 */
7714 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
7715 idisk = get_imsm_dl_disk(cont->sb, idx);
7716 /*
7717 * Do not rebuild the array if failed disks
7718 * from failed sub-array are not removed from
7719 * container.
7720 */
7721 if (idisk &&
7722 is_failed(&idisk->disk) &&
7723 (idisk->action != DISK_REMOVE))
7724 return 0;
7725 }
7726 }
7727 }
7728 return 1;
7729 }
7730
7731 static struct mdinfo *imsm_activate_spare(struct active_array *a,
7732 struct metadata_update **updates)
7733 {
7734 /**
7735 * Find a device with unused free space and use it to replace a
7736 * failed/vacant region in an array. We replace failed regions one a
7737 * array at a time. The result is that a new spare disk will be added
7738 * to the first failed array and after the monitor has finished
7739 * propagating failures the remainder will be consumed.
7740 *
7741 * FIXME add a capability for mdmon to request spares from another
7742 * container.
7743 */
7744
7745 struct intel_super *super = a->container->sb;
7746 int inst = a->info.container_member;
7747 struct imsm_dev *dev = get_imsm_dev(super, inst);
7748 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7749 int failed = a->info.array.raid_disks;
7750 struct mdinfo *rv = NULL;
7751 struct mdinfo *d;
7752 struct mdinfo *di;
7753 struct metadata_update *mu;
7754 struct dl *dl;
7755 struct imsm_update_activate_spare *u;
7756 int num_spares = 0;
7757 int i;
7758 int allowed;
7759
7760 for (d = a->info.devs ; d ; d = d->next) {
7761 if ((d->curr_state & DS_FAULTY) &&
7762 d->state_fd >= 0)
7763 /* wait for Removal to happen */
7764 return NULL;
7765 if (d->state_fd >= 0)
7766 failed--;
7767 }
7768
7769 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7770 inst, failed, a->info.array.raid_disks, a->info.array.level);
7771
7772 if (imsm_reshape_blocks_arrays_changes(super))
7773 return NULL;
7774
7775 /* Cannot activate another spare if rebuild is in progress already
7776 */
7777 if (is_rebuilding(dev)) {
7778 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
7779 return NULL;
7780 }
7781
7782 if (a->info.array.level == 4)
7783 /* No repair for takeovered array
7784 * imsm doesn't support raid4
7785 */
7786 return NULL;
7787
7788 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7789 IMSM_T_STATE_DEGRADED)
7790 return NULL;
7791
7792 /*
7793 * If there are any failed disks check state of the other volume.
7794 * Block rebuild if the another one is failed until failed disks
7795 * are removed from container.
7796 */
7797 if (failed) {
7798 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
7799 MAX_RAID_SERIAL_LEN, dev->volume);
7800 /* check if states of the other volumes allow for rebuild */
7801 for (i = 0; i < super->anchor->num_raid_devs; i++) {
7802 if (i != inst) {
7803 allowed = imsm_rebuild_allowed(a->container,
7804 i, failed);
7805 if (!allowed)
7806 return NULL;
7807 }
7808 }
7809 }
7810
7811 /* For each slot, if it is not working, find a spare */
7812 for (i = 0; i < a->info.array.raid_disks; i++) {
7813 for (d = a->info.devs ; d ; d = d->next)
7814 if (d->disk.raid_disk == i)
7815 break;
7816 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7817 if (d && (d->state_fd >= 0))
7818 continue;
7819
7820 /*
7821 * OK, this device needs recovery. Try to re-add the
7822 * previous occupant of this slot, if this fails see if
7823 * we can continue the assimilation of a spare that was
7824 * partially assimilated, finally try to activate a new
7825 * spare.
7826 */
7827 dl = imsm_readd(super, i, a);
7828 if (!dl)
7829 dl = imsm_add_spare(super, i, a, 0, rv);
7830 if (!dl)
7831 dl = imsm_add_spare(super, i, a, 1, rv);
7832 if (!dl)
7833 continue;
7834
7835 /* found a usable disk with enough space */
7836 di = xcalloc(1, sizeof(*di));
7837
7838 /* dl->index will be -1 in the case we are activating a
7839 * pristine spare. imsm_process_update() will create a
7840 * new index in this case. Once a disk is found to be
7841 * failed in all member arrays it is kicked from the
7842 * metadata
7843 */
7844 di->disk.number = dl->index;
7845
7846 /* (ab)use di->devs to store a pointer to the device
7847 * we chose
7848 */
7849 di->devs = (struct mdinfo *) dl;
7850
7851 di->disk.raid_disk = i;
7852 di->disk.major = dl->major;
7853 di->disk.minor = dl->minor;
7854 di->disk.state = 0;
7855 di->recovery_start = 0;
7856 di->data_offset = pba_of_lba0(map);
7857 di->component_size = a->info.component_size;
7858 di->container_member = inst;
7859 super->random = random32();
7860 di->next = rv;
7861 rv = di;
7862 num_spares++;
7863 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7864 i, di->data_offset);
7865 }
7866
7867 if (!rv)
7868 /* No spares found */
7869 return rv;
7870 /* Now 'rv' has a list of devices to return.
7871 * Create a metadata_update record to update the
7872 * disk_ord_tbl for the array
7873 */
7874 mu = xmalloc(sizeof(*mu));
7875 mu->buf = xcalloc(num_spares,
7876 sizeof(struct imsm_update_activate_spare));
7877 mu->space = NULL;
7878 mu->space_list = NULL;
7879 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7880 mu->next = *updates;
7881 u = (struct imsm_update_activate_spare *) mu->buf;
7882
7883 for (di = rv ; di ; di = di->next) {
7884 u->type = update_activate_spare;
7885 u->dl = (struct dl *) di->devs;
7886 di->devs = NULL;
7887 u->slot = di->disk.raid_disk;
7888 u->array = inst;
7889 u->next = u + 1;
7890 u++;
7891 }
7892 (u-1)->next = NULL;
7893 *updates = mu;
7894
7895 return rv;
7896 }
7897
7898 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7899 {
7900 struct imsm_dev *dev = get_imsm_dev(super, idx);
7901 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7902 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7903 struct disk_info *inf = get_disk_info(u);
7904 struct imsm_disk *disk;
7905 int i;
7906 int j;
7907
7908 for (i = 0; i < map->num_members; i++) {
7909 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7910 for (j = 0; j < new_map->num_members; j++)
7911 if (serialcmp(disk->serial, inf[j].serial) == 0)
7912 return 1;
7913 }
7914
7915 return 0;
7916 }
7917
7918 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7919 {
7920 struct dl *dl;
7921
7922 for (dl = super->disks; dl; dl = dl->next)
7923 if ((dl->major == major) && (dl->minor == minor))
7924 return dl;
7925 return NULL;
7926 }
7927
7928 static int remove_disk_super(struct intel_super *super, int major, int minor)
7929 {
7930 struct dl *prev;
7931 struct dl *dl;
7932
7933 prev = NULL;
7934 for (dl = super->disks; dl; dl = dl->next) {
7935 if ((dl->major == major) && (dl->minor == minor)) {
7936 /* remove */
7937 if (prev)
7938 prev->next = dl->next;
7939 else
7940 super->disks = dl->next;
7941 dl->next = NULL;
7942 __free_imsm_disk(dl);
7943 dprintf("removed %x:%x\n", major, minor);
7944 break;
7945 }
7946 prev = dl;
7947 }
7948 return 0;
7949 }
7950
7951 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7952
7953 static int add_remove_disk_update(struct intel_super *super)
7954 {
7955 int check_degraded = 0;
7956 struct dl *disk;
7957
7958 /* add/remove some spares to/from the metadata/contrainer */
7959 while (super->disk_mgmt_list) {
7960 struct dl *disk_cfg;
7961
7962 disk_cfg = super->disk_mgmt_list;
7963 super->disk_mgmt_list = disk_cfg->next;
7964 disk_cfg->next = NULL;
7965
7966 if (disk_cfg->action == DISK_ADD) {
7967 disk_cfg->next = super->disks;
7968 super->disks = disk_cfg;
7969 check_degraded = 1;
7970 dprintf("added %x:%x\n",
7971 disk_cfg->major, disk_cfg->minor);
7972 } else if (disk_cfg->action == DISK_REMOVE) {
7973 dprintf("Disk remove action processed: %x.%x\n",
7974 disk_cfg->major, disk_cfg->minor);
7975 disk = get_disk_super(super,
7976 disk_cfg->major,
7977 disk_cfg->minor);
7978 if (disk) {
7979 /* store action status */
7980 disk->action = DISK_REMOVE;
7981 /* remove spare disks only */
7982 if (disk->index == -1) {
7983 remove_disk_super(super,
7984 disk_cfg->major,
7985 disk_cfg->minor);
7986 }
7987 }
7988 /* release allocate disk structure */
7989 __free_imsm_disk(disk_cfg);
7990 }
7991 }
7992 return check_degraded;
7993 }
7994
7995 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7996 struct intel_super *super,
7997 void ***space_list)
7998 {
7999 struct intel_dev *id;
8000 void **tofree = NULL;
8001 int ret_val = 0;
8002
8003 dprintf("(enter)\n");
8004 if ((u->subdev < 0) ||
8005 (u->subdev > 1)) {
8006 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8007 return ret_val;
8008 }
8009 if ((space_list == NULL) || (*space_list == NULL)) {
8010 dprintf("imsm: Error: Memory is not allocated\n");
8011 return ret_val;
8012 }
8013
8014 for (id = super->devlist ; id; id = id->next) {
8015 if (id->index == (unsigned)u->subdev) {
8016 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8017 struct imsm_map *map;
8018 struct imsm_dev *new_dev =
8019 (struct imsm_dev *)*space_list;
8020 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8021 int to_state;
8022 struct dl *new_disk;
8023
8024 if (new_dev == NULL)
8025 return ret_val;
8026 *space_list = **space_list;
8027 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
8028 map = get_imsm_map(new_dev, MAP_0);
8029 if (migr_map) {
8030 dprintf("imsm: Error: migration in progress");
8031 return ret_val;
8032 }
8033
8034 to_state = map->map_state;
8035 if ((u->new_level == 5) && (map->raid_level == 0)) {
8036 map->num_members++;
8037 /* this should not happen */
8038 if (u->new_disks[0] < 0) {
8039 map->failed_disk_num =
8040 map->num_members - 1;
8041 to_state = IMSM_T_STATE_DEGRADED;
8042 } else
8043 to_state = IMSM_T_STATE_NORMAL;
8044 }
8045 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
8046 if (u->new_level > -1)
8047 map->raid_level = u->new_level;
8048 migr_map = get_imsm_map(new_dev, MAP_1);
8049 if ((u->new_level == 5) &&
8050 (migr_map->raid_level == 0)) {
8051 int ord = map->num_members - 1;
8052 migr_map->num_members--;
8053 if (u->new_disks[0] < 0)
8054 ord |= IMSM_ORD_REBUILD;
8055 set_imsm_ord_tbl_ent(map,
8056 map->num_members - 1,
8057 ord);
8058 }
8059 id->dev = new_dev;
8060 tofree = (void **)dev;
8061
8062 /* update chunk size
8063 */
8064 if (u->new_chunksize > 0)
8065 map->blocks_per_strip =
8066 __cpu_to_le16(u->new_chunksize * 2);
8067
8068 /* add disk
8069 */
8070 if ((u->new_level != 5) ||
8071 (migr_map->raid_level != 0) ||
8072 (migr_map->raid_level == map->raid_level))
8073 goto skip_disk_add;
8074
8075 if (u->new_disks[0] >= 0) {
8076 /* use passes spare
8077 */
8078 new_disk = get_disk_super(super,
8079 major(u->new_disks[0]),
8080 minor(u->new_disks[0]));
8081 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8082 major(u->new_disks[0]),
8083 minor(u->new_disks[0]),
8084 new_disk, new_disk->index);
8085 if (new_disk == NULL)
8086 goto error_disk_add;
8087
8088 new_disk->index = map->num_members - 1;
8089 /* slot to fill in autolayout
8090 */
8091 new_disk->raiddisk = new_disk->index;
8092 new_disk->disk.status |= CONFIGURED_DISK;
8093 new_disk->disk.status &= ~SPARE_DISK;
8094 } else
8095 goto error_disk_add;
8096
8097 skip_disk_add:
8098 *tofree = *space_list;
8099 /* calculate new size
8100 */
8101 imsm_set_array_size(new_dev, -1);
8102
8103 ret_val = 1;
8104 }
8105 }
8106
8107 if (tofree)
8108 *space_list = tofree;
8109 return ret_val;
8110
8111 error_disk_add:
8112 dprintf("Error: imsm: Cannot find disk.\n");
8113 return ret_val;
8114 }
8115
8116 static int apply_size_change_update(struct imsm_update_size_change *u,
8117 struct intel_super *super)
8118 {
8119 struct intel_dev *id;
8120 int ret_val = 0;
8121
8122 dprintf("(enter)\n");
8123 if ((u->subdev < 0) ||
8124 (u->subdev > 1)) {
8125 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8126 return ret_val;
8127 }
8128
8129 for (id = super->devlist ; id; id = id->next) {
8130 if (id->index == (unsigned)u->subdev) {
8131 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8132 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8133 int used_disks = imsm_num_data_members(dev, MAP_0);
8134 unsigned long long blocks_per_member;
8135
8136 /* calculate new size
8137 */
8138 blocks_per_member = u->new_size / used_disks;
8139 dprintf("(size: %llu, blocks per member: %llu)\n",
8140 u->new_size, blocks_per_member);
8141 set_blocks_per_member(map, blocks_per_member);
8142 imsm_set_array_size(dev, u->new_size);
8143
8144 ret_val = 1;
8145 break;
8146 }
8147 }
8148
8149 return ret_val;
8150 }
8151
8152 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
8153 struct intel_super *super,
8154 struct active_array *active_array)
8155 {
8156 struct imsm_super *mpb = super->anchor;
8157 struct imsm_dev *dev = get_imsm_dev(super, u->array);
8158 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8159 struct imsm_map *migr_map;
8160 struct active_array *a;
8161 struct imsm_disk *disk;
8162 __u8 to_state;
8163 struct dl *dl;
8164 unsigned int found;
8165 int failed;
8166 int victim;
8167 int i;
8168 int second_map_created = 0;
8169
8170 for (; u; u = u->next) {
8171 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
8172
8173 if (victim < 0)
8174 return 0;
8175
8176 for (dl = super->disks; dl; dl = dl->next)
8177 if (dl == u->dl)
8178 break;
8179
8180 if (!dl) {
8181 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
8182 u->dl->index);
8183 return 0;
8184 }
8185
8186 /* count failures (excluding rebuilds and the victim)
8187 * to determine map[0] state
8188 */
8189 failed = 0;
8190 for (i = 0; i < map->num_members; i++) {
8191 if (i == u->slot)
8192 continue;
8193 disk = get_imsm_disk(super,
8194 get_imsm_disk_idx(dev, i, MAP_X));
8195 if (!disk || is_failed(disk))
8196 failed++;
8197 }
8198
8199 /* adding a pristine spare, assign a new index */
8200 if (dl->index < 0) {
8201 dl->index = super->anchor->num_disks;
8202 super->anchor->num_disks++;
8203 }
8204 disk = &dl->disk;
8205 disk->status |= CONFIGURED_DISK;
8206 disk->status &= ~SPARE_DISK;
8207
8208 /* mark rebuild */
8209 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
8210 if (!second_map_created) {
8211 second_map_created = 1;
8212 map->map_state = IMSM_T_STATE_DEGRADED;
8213 migrate(dev, super, to_state, MIGR_REBUILD);
8214 } else
8215 map->map_state = to_state;
8216 migr_map = get_imsm_map(dev, MAP_1);
8217 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8218 set_imsm_ord_tbl_ent(migr_map, u->slot,
8219 dl->index | IMSM_ORD_REBUILD);
8220
8221 /* update the family_num to mark a new container
8222 * generation, being careful to record the existing
8223 * family_num in orig_family_num to clean up after
8224 * earlier mdadm versions that neglected to set it.
8225 */
8226 if (mpb->orig_family_num == 0)
8227 mpb->orig_family_num = mpb->family_num;
8228 mpb->family_num += super->random;
8229
8230 /* count arrays using the victim in the metadata */
8231 found = 0;
8232 for (a = active_array; a ; a = a->next) {
8233 dev = get_imsm_dev(super, a->info.container_member);
8234 map = get_imsm_map(dev, MAP_0);
8235
8236 if (get_imsm_disk_slot(map, victim) >= 0)
8237 found++;
8238 }
8239
8240 /* delete the victim if it is no longer being
8241 * utilized anywhere
8242 */
8243 if (!found) {
8244 struct dl **dlp;
8245
8246 /* We know that 'manager' isn't touching anything,
8247 * so it is safe to delete
8248 */
8249 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
8250 if ((*dlp)->index == victim)
8251 break;
8252
8253 /* victim may be on the missing list */
8254 if (!*dlp)
8255 for (dlp = &super->missing; *dlp;
8256 dlp = &(*dlp)->next)
8257 if ((*dlp)->index == victim)
8258 break;
8259 imsm_delete(super, dlp, victim);
8260 }
8261 }
8262
8263 return 1;
8264 }
8265
8266 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8267 struct intel_super *super,
8268 void ***space_list)
8269 {
8270 struct dl *new_disk;
8271 struct intel_dev *id;
8272 int i;
8273 int delta_disks = u->new_raid_disks - u->old_raid_disks;
8274 int disk_count = u->old_raid_disks;
8275 void **tofree = NULL;
8276 int devices_to_reshape = 1;
8277 struct imsm_super *mpb = super->anchor;
8278 int ret_val = 0;
8279 unsigned int dev_id;
8280
8281 dprintf("(enter)\n");
8282
8283 /* enable spares to use in array */
8284 for (i = 0; i < delta_disks; i++) {
8285 new_disk = get_disk_super(super,
8286 major(u->new_disks[i]),
8287 minor(u->new_disks[i]));
8288 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8289 major(u->new_disks[i]), minor(u->new_disks[i]),
8290 new_disk, new_disk->index);
8291 if ((new_disk == NULL) ||
8292 ((new_disk->index >= 0) &&
8293 (new_disk->index < u->old_raid_disks)))
8294 goto update_reshape_exit;
8295 new_disk->index = disk_count++;
8296 /* slot to fill in autolayout
8297 */
8298 new_disk->raiddisk = new_disk->index;
8299 new_disk->disk.status |=
8300 CONFIGURED_DISK;
8301 new_disk->disk.status &= ~SPARE_DISK;
8302 }
8303
8304 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8305 mpb->num_raid_devs);
8306 /* manage changes in volume
8307 */
8308 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
8309 void **sp = *space_list;
8310 struct imsm_dev *newdev;
8311 struct imsm_map *newmap, *oldmap;
8312
8313 for (id = super->devlist ; id; id = id->next) {
8314 if (id->index == dev_id)
8315 break;
8316 }
8317 if (id == NULL)
8318 break;
8319 if (!sp)
8320 continue;
8321 *space_list = *sp;
8322 newdev = (void*)sp;
8323 /* Copy the dev, but not (all of) the map */
8324 memcpy(newdev, id->dev, sizeof(*newdev));
8325 oldmap = get_imsm_map(id->dev, MAP_0);
8326 newmap = get_imsm_map(newdev, MAP_0);
8327 /* Copy the current map */
8328 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8329 /* update one device only
8330 */
8331 if (devices_to_reshape) {
8332 dprintf("imsm: modifying subdev: %i\n",
8333 id->index);
8334 devices_to_reshape--;
8335 newdev->vol.migr_state = 1;
8336 newdev->vol.curr_migr_unit = 0;
8337 set_migr_type(newdev, MIGR_GEN_MIGR);
8338 newmap->num_members = u->new_raid_disks;
8339 for (i = 0; i < delta_disks; i++) {
8340 set_imsm_ord_tbl_ent(newmap,
8341 u->old_raid_disks + i,
8342 u->old_raid_disks + i);
8343 }
8344 /* New map is correct, now need to save old map
8345 */
8346 newmap = get_imsm_map(newdev, MAP_1);
8347 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8348
8349 imsm_set_array_size(newdev, -1);
8350 }
8351
8352 sp = (void **)id->dev;
8353 id->dev = newdev;
8354 *sp = tofree;
8355 tofree = sp;
8356
8357 /* Clear migration record */
8358 memset(super->migr_rec, 0, sizeof(struct migr_record));
8359 }
8360 if (tofree)
8361 *space_list = tofree;
8362 ret_val = 1;
8363
8364 update_reshape_exit:
8365
8366 return ret_val;
8367 }
8368
8369 static int apply_takeover_update(struct imsm_update_takeover *u,
8370 struct intel_super *super,
8371 void ***space_list)
8372 {
8373 struct imsm_dev *dev = NULL;
8374 struct intel_dev *dv;
8375 struct imsm_dev *dev_new;
8376 struct imsm_map *map;
8377 struct dl *dm, *du;
8378 int i;
8379
8380 for (dv = super->devlist; dv; dv = dv->next)
8381 if (dv->index == (unsigned int)u->subarray) {
8382 dev = dv->dev;
8383 break;
8384 }
8385
8386 if (dev == NULL)
8387 return 0;
8388
8389 map = get_imsm_map(dev, MAP_0);
8390
8391 if (u->direction == R10_TO_R0) {
8392 /* Number of failed disks must be half of initial disk number */
8393 if (imsm_count_failed(super, dev, MAP_0) !=
8394 (map->num_members / 2))
8395 return 0;
8396
8397 /* iterate through devices to mark removed disks as spare */
8398 for (dm = super->disks; dm; dm = dm->next) {
8399 if (dm->disk.status & FAILED_DISK) {
8400 int idx = dm->index;
8401 /* update indexes on the disk list */
8402 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
8403 the index values will end up being correct.... NB */
8404 for (du = super->disks; du; du = du->next)
8405 if (du->index > idx)
8406 du->index--;
8407 /* mark as spare disk */
8408 mark_spare(dm);
8409 }
8410 }
8411 /* update map */
8412 map->num_members = map->num_members / 2;
8413 map->map_state = IMSM_T_STATE_NORMAL;
8414 map->num_domains = 1;
8415 map->raid_level = 0;
8416 map->failed_disk_num = -1;
8417 }
8418
8419 if (u->direction == R0_TO_R10) {
8420 void **space;
8421 /* update slots in current disk list */
8422 for (dm = super->disks; dm; dm = dm->next) {
8423 if (dm->index >= 0)
8424 dm->index *= 2;
8425 }
8426 /* create new *missing* disks */
8427 for (i = 0; i < map->num_members; i++) {
8428 space = *space_list;
8429 if (!space)
8430 continue;
8431 *space_list = *space;
8432 du = (void *)space;
8433 memcpy(du, super->disks, sizeof(*du));
8434 du->fd = -1;
8435 du->minor = 0;
8436 du->major = 0;
8437 du->index = (i * 2) + 1;
8438 sprintf((char *)du->disk.serial,
8439 " MISSING_%d", du->index);
8440 sprintf((char *)du->serial,
8441 "MISSING_%d", du->index);
8442 du->next = super->missing;
8443 super->missing = du;
8444 }
8445 /* create new dev and map */
8446 space = *space_list;
8447 if (!space)
8448 return 0;
8449 *space_list = *space;
8450 dev_new = (void *)space;
8451 memcpy(dev_new, dev, sizeof(*dev));
8452 /* update new map */
8453 map = get_imsm_map(dev_new, MAP_0);
8454 map->num_members = map->num_members * 2;
8455 map->map_state = IMSM_T_STATE_DEGRADED;
8456 map->num_domains = 2;
8457 map->raid_level = 1;
8458 /* replace dev<->dev_new */
8459 dv->dev = dev_new;
8460 }
8461 /* update disk order table */
8462 for (du = super->disks; du; du = du->next)
8463 if (du->index >= 0)
8464 set_imsm_ord_tbl_ent(map, du->index, du->index);
8465 for (du = super->missing; du; du = du->next)
8466 if (du->index >= 0) {
8467 set_imsm_ord_tbl_ent(map, du->index, du->index);
8468 mark_missing(dv->dev, &du->disk, du->index);
8469 }
8470
8471 return 1;
8472 }
8473
8474 static void imsm_process_update(struct supertype *st,
8475 struct metadata_update *update)
8476 {
8477 /**
8478 * crack open the metadata_update envelope to find the update record
8479 * update can be one of:
8480 * update_reshape_container_disks - all the arrays in the container
8481 * are being reshaped to have more devices. We need to mark
8482 * the arrays for general migration and convert selected spares
8483 * into active devices.
8484 * update_activate_spare - a spare device has replaced a failed
8485 * device in an array, update the disk_ord_tbl. If this disk is
8486 * present in all member arrays then also clear the SPARE_DISK
8487 * flag
8488 * update_create_array
8489 * update_kill_array
8490 * update_rename_array
8491 * update_add_remove_disk
8492 */
8493 struct intel_super *super = st->sb;
8494 struct imsm_super *mpb;
8495 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8496
8497 /* update requires a larger buf but the allocation failed */
8498 if (super->next_len && !super->next_buf) {
8499 super->next_len = 0;
8500 return;
8501 }
8502
8503 if (super->next_buf) {
8504 memcpy(super->next_buf, super->buf, super->len);
8505 free(super->buf);
8506 super->len = super->next_len;
8507 super->buf = super->next_buf;
8508
8509 super->next_len = 0;
8510 super->next_buf = NULL;
8511 }
8512
8513 mpb = super->anchor;
8514
8515 switch (type) {
8516 case update_general_migration_checkpoint: {
8517 struct intel_dev *id;
8518 struct imsm_update_general_migration_checkpoint *u =
8519 (void *)update->buf;
8520
8521 dprintf("called for update_general_migration_checkpoint\n");
8522
8523 /* find device under general migration */
8524 for (id = super->devlist ; id; id = id->next) {
8525 if (is_gen_migration(id->dev)) {
8526 id->dev->vol.curr_migr_unit =
8527 __cpu_to_le32(u->curr_migr_unit);
8528 super->updates_pending++;
8529 }
8530 }
8531 break;
8532 }
8533 case update_takeover: {
8534 struct imsm_update_takeover *u = (void *)update->buf;
8535 if (apply_takeover_update(u, super, &update->space_list)) {
8536 imsm_update_version_info(super);
8537 super->updates_pending++;
8538 }
8539 break;
8540 }
8541
8542 case update_reshape_container_disks: {
8543 struct imsm_update_reshape *u = (void *)update->buf;
8544 if (apply_reshape_container_disks_update(
8545 u, super, &update->space_list))
8546 super->updates_pending++;
8547 break;
8548 }
8549 case update_reshape_migration: {
8550 struct imsm_update_reshape_migration *u = (void *)update->buf;
8551 if (apply_reshape_migration_update(
8552 u, super, &update->space_list))
8553 super->updates_pending++;
8554 break;
8555 }
8556 case update_size_change: {
8557 struct imsm_update_size_change *u = (void *)update->buf;
8558 if (apply_size_change_update(u, super))
8559 super->updates_pending++;
8560 break;
8561 }
8562 case update_activate_spare: {
8563 struct imsm_update_activate_spare *u = (void *) update->buf;
8564 if (apply_update_activate_spare(u, super, st->arrays))
8565 super->updates_pending++;
8566 break;
8567 }
8568 case update_create_array: {
8569 /* someone wants to create a new array, we need to be aware of
8570 * a few races/collisions:
8571 * 1/ 'Create' called by two separate instances of mdadm
8572 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8573 * devices that have since been assimilated via
8574 * activate_spare.
8575 * In the event this update can not be carried out mdadm will
8576 * (FIX ME) notice that its update did not take hold.
8577 */
8578 struct imsm_update_create_array *u = (void *) update->buf;
8579 struct intel_dev *dv;
8580 struct imsm_dev *dev;
8581 struct imsm_map *map, *new_map;
8582 unsigned long long start, end;
8583 unsigned long long new_start, new_end;
8584 int i;
8585 struct disk_info *inf;
8586 struct dl *dl;
8587
8588 /* handle racing creates: first come first serve */
8589 if (u->dev_idx < mpb->num_raid_devs) {
8590 dprintf("subarray %d already defined\n", u->dev_idx);
8591 goto create_error;
8592 }
8593
8594 /* check update is next in sequence */
8595 if (u->dev_idx != mpb->num_raid_devs) {
8596 dprintf("can not create array %d expected index %d\n",
8597 u->dev_idx, mpb->num_raid_devs);
8598 goto create_error;
8599 }
8600
8601 new_map = get_imsm_map(&u->dev, MAP_0);
8602 new_start = pba_of_lba0(new_map);
8603 new_end = new_start + blocks_per_member(new_map);
8604 inf = get_disk_info(u);
8605
8606 /* handle activate_spare versus create race:
8607 * check to make sure that overlapping arrays do not include
8608 * overalpping disks
8609 */
8610 for (i = 0; i < mpb->num_raid_devs; i++) {
8611 dev = get_imsm_dev(super, i);
8612 map = get_imsm_map(dev, MAP_0);
8613 start = pba_of_lba0(map);
8614 end = start + blocks_per_member(map);
8615 if ((new_start >= start && new_start <= end) ||
8616 (start >= new_start && start <= new_end))
8617 /* overlap */;
8618 else
8619 continue;
8620
8621 if (disks_overlap(super, i, u)) {
8622 dprintf("arrays overlap\n");
8623 goto create_error;
8624 }
8625 }
8626
8627 /* check that prepare update was successful */
8628 if (!update->space) {
8629 dprintf("prepare update failed\n");
8630 goto create_error;
8631 }
8632
8633 /* check that all disks are still active before committing
8634 * changes. FIXME: could we instead handle this by creating a
8635 * degraded array? That's probably not what the user expects,
8636 * so better to drop this update on the floor.
8637 */
8638 for (i = 0; i < new_map->num_members; i++) {
8639 dl = serial_to_dl(inf[i].serial, super);
8640 if (!dl) {
8641 dprintf("disk disappeared\n");
8642 goto create_error;
8643 }
8644 }
8645
8646 super->updates_pending++;
8647
8648 /* convert spares to members and fixup ord_tbl */
8649 for (i = 0; i < new_map->num_members; i++) {
8650 dl = serial_to_dl(inf[i].serial, super);
8651 if (dl->index == -1) {
8652 dl->index = mpb->num_disks;
8653 mpb->num_disks++;
8654 dl->disk.status |= CONFIGURED_DISK;
8655 dl->disk.status &= ~SPARE_DISK;
8656 }
8657 set_imsm_ord_tbl_ent(new_map, i, dl->index);
8658 }
8659
8660 dv = update->space;
8661 dev = dv->dev;
8662 update->space = NULL;
8663 imsm_copy_dev(dev, &u->dev);
8664 dv->index = u->dev_idx;
8665 dv->next = super->devlist;
8666 super->devlist = dv;
8667 mpb->num_raid_devs++;
8668
8669 imsm_update_version_info(super);
8670 break;
8671 create_error:
8672 /* mdmon knows how to release update->space, but not
8673 * ((struct intel_dev *) update->space)->dev
8674 */
8675 if (update->space) {
8676 dv = update->space;
8677 free(dv->dev);
8678 }
8679 break;
8680 }
8681 case update_kill_array: {
8682 struct imsm_update_kill_array *u = (void *) update->buf;
8683 int victim = u->dev_idx;
8684 struct active_array *a;
8685 struct intel_dev **dp;
8686 struct imsm_dev *dev;
8687
8688 /* sanity check that we are not affecting the uuid of
8689 * active arrays, or deleting an active array
8690 *
8691 * FIXME when immutable ids are available, but note that
8692 * we'll also need to fixup the invalidated/active
8693 * subarray indexes in mdstat
8694 */
8695 for (a = st->arrays; a; a = a->next)
8696 if (a->info.container_member >= victim)
8697 break;
8698 /* by definition if mdmon is running at least one array
8699 * is active in the container, so checking
8700 * mpb->num_raid_devs is just extra paranoia
8701 */
8702 dev = get_imsm_dev(super, victim);
8703 if (a || !dev || mpb->num_raid_devs == 1) {
8704 dprintf("failed to delete subarray-%d\n", victim);
8705 break;
8706 }
8707
8708 for (dp = &super->devlist; *dp;)
8709 if ((*dp)->index == (unsigned)super->current_vol) {
8710 *dp = (*dp)->next;
8711 } else {
8712 if ((*dp)->index > (unsigned)victim)
8713 (*dp)->index--;
8714 dp = &(*dp)->next;
8715 }
8716 mpb->num_raid_devs--;
8717 super->updates_pending++;
8718 break;
8719 }
8720 case update_rename_array: {
8721 struct imsm_update_rename_array *u = (void *) update->buf;
8722 char name[MAX_RAID_SERIAL_LEN+1];
8723 int target = u->dev_idx;
8724 struct active_array *a;
8725 struct imsm_dev *dev;
8726
8727 /* sanity check that we are not affecting the uuid of
8728 * an active array
8729 */
8730 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8731 name[MAX_RAID_SERIAL_LEN] = '\0';
8732 for (a = st->arrays; a; a = a->next)
8733 if (a->info.container_member == target)
8734 break;
8735 dev = get_imsm_dev(super, u->dev_idx);
8736 if (a || !dev || !check_name(super, name, 1)) {
8737 dprintf("failed to rename subarray-%d\n", target);
8738 break;
8739 }
8740
8741 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
8742 super->updates_pending++;
8743 break;
8744 }
8745 case update_add_remove_disk: {
8746 /* we may be able to repair some arrays if disks are
8747 * being added, check the status of add_remove_disk
8748 * if discs has been added.
8749 */
8750 if (add_remove_disk_update(super)) {
8751 struct active_array *a;
8752
8753 super->updates_pending++;
8754 for (a = st->arrays; a; a = a->next)
8755 a->check_degraded = 1;
8756 }
8757 break;
8758 }
8759 default:
8760 pr_err("error: unsuported process update type:(type: %d)\n", type);
8761 }
8762 }
8763
8764 static struct mdinfo *get_spares_for_grow(struct supertype *st);
8765
8766 static int imsm_prepare_update(struct supertype *st,
8767 struct metadata_update *update)
8768 {
8769 /**
8770 * Allocate space to hold new disk entries, raid-device entries or a new
8771 * mpb if necessary. The manager synchronously waits for updates to
8772 * complete in the monitor, so new mpb buffers allocated here can be
8773 * integrated by the monitor thread without worrying about live pointers
8774 * in the manager thread.
8775 */
8776 enum imsm_update_type type;
8777 struct intel_super *super = st->sb;
8778 struct imsm_super *mpb = super->anchor;
8779 size_t buf_len;
8780 size_t len = 0;
8781
8782 if (update->len < (int)sizeof(type))
8783 return 0;
8784
8785 type = *(enum imsm_update_type *) update->buf;
8786
8787 switch (type) {
8788 case update_general_migration_checkpoint:
8789 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
8790 return 0;
8791 dprintf("called for update_general_migration_checkpoint\n");
8792 break;
8793 case update_takeover: {
8794 struct imsm_update_takeover *u = (void *)update->buf;
8795 if (update->len < (int)sizeof(*u))
8796 return 0;
8797 if (u->direction == R0_TO_R10) {
8798 void **tail = (void **)&update->space_list;
8799 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
8800 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8801 int num_members = map->num_members;
8802 void *space;
8803 int size, i;
8804 /* allocate memory for added disks */
8805 for (i = 0; i < num_members; i++) {
8806 size = sizeof(struct dl);
8807 space = xmalloc(size);
8808 *tail = space;
8809 tail = space;
8810 *tail = NULL;
8811 }
8812 /* allocate memory for new device */
8813 size = sizeof_imsm_dev(super->devlist->dev, 0) +
8814 (num_members * sizeof(__u32));
8815 space = xmalloc(size);
8816 *tail = space;
8817 tail = space;
8818 *tail = NULL;
8819 len = disks_to_mpb_size(num_members * 2);
8820 }
8821
8822 break;
8823 }
8824 case update_reshape_container_disks: {
8825 /* Every raid device in the container is about to
8826 * gain some more devices, and we will enter a
8827 * reconfiguration.
8828 * So each 'imsm_map' will be bigger, and the imsm_vol
8829 * will now hold 2 of them.
8830 * Thus we need new 'struct imsm_dev' allocations sized
8831 * as sizeof_imsm_dev but with more devices in both maps.
8832 */
8833 struct imsm_update_reshape *u = (void *)update->buf;
8834 struct intel_dev *dl;
8835 void **space_tail = (void**)&update->space_list;
8836
8837 if (update->len < (int)sizeof(*u))
8838 return 0;
8839
8840 dprintf("for update_reshape\n");
8841
8842 for (dl = super->devlist; dl; dl = dl->next) {
8843 int size = sizeof_imsm_dev(dl->dev, 1);
8844 void *s;
8845 if (u->new_raid_disks > u->old_raid_disks)
8846 size += sizeof(__u32)*2*
8847 (u->new_raid_disks - u->old_raid_disks);
8848 s = xmalloc(size);
8849 *space_tail = s;
8850 space_tail = s;
8851 *space_tail = NULL;
8852 }
8853
8854 len = disks_to_mpb_size(u->new_raid_disks);
8855 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8856 break;
8857 }
8858 case update_reshape_migration: {
8859 /* for migration level 0->5 we need to add disks
8860 * so the same as for container operation we will copy
8861 * device to the bigger location.
8862 * in memory prepared device and new disk area are prepared
8863 * for usage in process update
8864 */
8865 struct imsm_update_reshape_migration *u = (void *)update->buf;
8866 struct intel_dev *id;
8867 void **space_tail = (void **)&update->space_list;
8868 int size;
8869 void *s;
8870 int current_level = -1;
8871
8872 if (update->len < (int)sizeof(*u))
8873 return 0;
8874
8875 dprintf("for update_reshape\n");
8876
8877 /* add space for bigger array in update
8878 */
8879 for (id = super->devlist; id; id = id->next) {
8880 if (id->index == (unsigned)u->subdev) {
8881 size = sizeof_imsm_dev(id->dev, 1);
8882 if (u->new_raid_disks > u->old_raid_disks)
8883 size += sizeof(__u32)*2*
8884 (u->new_raid_disks - u->old_raid_disks);
8885 s = xmalloc(size);
8886 *space_tail = s;
8887 space_tail = s;
8888 *space_tail = NULL;
8889 break;
8890 }
8891 }
8892 if (update->space_list == NULL)
8893 break;
8894
8895 /* add space for disk in update
8896 */
8897 size = sizeof(struct dl);
8898 s = xmalloc(size);
8899 *space_tail = s;
8900 space_tail = s;
8901 *space_tail = NULL;
8902
8903 /* add spare device to update
8904 */
8905 for (id = super->devlist ; id; id = id->next)
8906 if (id->index == (unsigned)u->subdev) {
8907 struct imsm_dev *dev;
8908 struct imsm_map *map;
8909
8910 dev = get_imsm_dev(super, u->subdev);
8911 map = get_imsm_map(dev, MAP_0);
8912 current_level = map->raid_level;
8913 break;
8914 }
8915 if ((u->new_level == 5) && (u->new_level != current_level)) {
8916 struct mdinfo *spares;
8917
8918 spares = get_spares_for_grow(st);
8919 if (spares) {
8920 struct dl *dl;
8921 struct mdinfo *dev;
8922
8923 dev = spares->devs;
8924 if (dev) {
8925 u->new_disks[0] =
8926 makedev(dev->disk.major,
8927 dev->disk.minor);
8928 dl = get_disk_super(super,
8929 dev->disk.major,
8930 dev->disk.minor);
8931 dl->index = u->old_raid_disks;
8932 dev = dev->next;
8933 }
8934 sysfs_free(spares);
8935 }
8936 }
8937 len = disks_to_mpb_size(u->new_raid_disks);
8938 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8939 break;
8940 }
8941 case update_size_change: {
8942 if (update->len < (int)sizeof(struct imsm_update_size_change))
8943 return 0;
8944 break;
8945 }
8946 case update_activate_spare: {
8947 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
8948 return 0;
8949 break;
8950 }
8951 case update_create_array: {
8952 struct imsm_update_create_array *u = (void *) update->buf;
8953 struct intel_dev *dv;
8954 struct imsm_dev *dev = &u->dev;
8955 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8956 struct dl *dl;
8957 struct disk_info *inf;
8958 int i;
8959 int activate = 0;
8960
8961 if (update->len < (int)sizeof(*u))
8962 return 0;
8963
8964 inf = get_disk_info(u);
8965 len = sizeof_imsm_dev(dev, 1);
8966 /* allocate a new super->devlist entry */
8967 dv = xmalloc(sizeof(*dv));
8968 dv->dev = xmalloc(len);
8969 update->space = dv;
8970
8971 /* count how many spares will be converted to members */
8972 for (i = 0; i < map->num_members; i++) {
8973 dl = serial_to_dl(inf[i].serial, super);
8974 if (!dl) {
8975 /* hmm maybe it failed?, nothing we can do about
8976 * it here
8977 */
8978 continue;
8979 }
8980 if (count_memberships(dl, super) == 0)
8981 activate++;
8982 }
8983 len += activate * sizeof(struct imsm_disk);
8984 break;
8985 }
8986 case update_kill_array: {
8987 if (update->len < (int)sizeof(struct imsm_update_kill_array))
8988 return 0;
8989 break;
8990 }
8991 case update_rename_array: {
8992 if (update->len < (int)sizeof(struct imsm_update_rename_array))
8993 return 0;
8994 break;
8995 }
8996 case update_add_remove_disk:
8997 /* no update->len needed */
8998 break;
8999 default:
9000 return 0;
9001 }
9002
9003 /* check if we need a larger metadata buffer */
9004 if (super->next_buf)
9005 buf_len = super->next_len;
9006 else
9007 buf_len = super->len;
9008
9009 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
9010 /* ok we need a larger buf than what is currently allocated
9011 * if this allocation fails process_update will notice that
9012 * ->next_len is set and ->next_buf is NULL
9013 */
9014 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
9015 if (super->next_buf)
9016 free(super->next_buf);
9017
9018 super->next_len = buf_len;
9019 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
9020 memset(super->next_buf, 0, buf_len);
9021 else
9022 super->next_buf = NULL;
9023 }
9024 return 1;
9025 }
9026
9027 /* must be called while manager is quiesced */
9028 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
9029 {
9030 struct imsm_super *mpb = super->anchor;
9031 struct dl *iter;
9032 struct imsm_dev *dev;
9033 struct imsm_map *map;
9034 int i, j, num_members;
9035 __u32 ord;
9036
9037 dprintf("deleting device[%d] from imsm_super\n", index);
9038
9039 /* shift all indexes down one */
9040 for (iter = super->disks; iter; iter = iter->next)
9041 if (iter->index > (int)index)
9042 iter->index--;
9043 for (iter = super->missing; iter; iter = iter->next)
9044 if (iter->index > (int)index)
9045 iter->index--;
9046
9047 for (i = 0; i < mpb->num_raid_devs; i++) {
9048 dev = get_imsm_dev(super, i);
9049 map = get_imsm_map(dev, MAP_0);
9050 num_members = map->num_members;
9051 for (j = 0; j < num_members; j++) {
9052 /* update ord entries being careful not to propagate
9053 * ord-flags to the first map
9054 */
9055 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
9056
9057 if (ord_to_idx(ord) <= index)
9058 continue;
9059
9060 map = get_imsm_map(dev, MAP_0);
9061 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
9062 map = get_imsm_map(dev, MAP_1);
9063 if (map)
9064 set_imsm_ord_tbl_ent(map, j, ord - 1);
9065 }
9066 }
9067
9068 mpb->num_disks--;
9069 super->updates_pending++;
9070 if (*dlp) {
9071 struct dl *dl = *dlp;
9072
9073 *dlp = (*dlp)->next;
9074 __free_imsm_disk(dl);
9075 }
9076 }
9077 #endif /* MDASSEMBLE */
9078
9079 static void close_targets(int *targets, int new_disks)
9080 {
9081 int i;
9082
9083 if (!targets)
9084 return;
9085
9086 for (i = 0; i < new_disks; i++) {
9087 if (targets[i] >= 0) {
9088 close(targets[i]);
9089 targets[i] = -1;
9090 }
9091 }
9092 }
9093
9094 static int imsm_get_allowed_degradation(int level, int raid_disks,
9095 struct intel_super *super,
9096 struct imsm_dev *dev)
9097 {
9098 switch (level) {
9099 case 1:
9100 case 10:{
9101 int ret_val = 0;
9102 struct imsm_map *map;
9103 int i;
9104
9105 ret_val = raid_disks/2;
9106 /* check map if all disks pairs not failed
9107 * in both maps
9108 */
9109 map = get_imsm_map(dev, MAP_0);
9110 for (i = 0; i < ret_val; i++) {
9111 int degradation = 0;
9112 if (get_imsm_disk(super, i) == NULL)
9113 degradation++;
9114 if (get_imsm_disk(super, i + 1) == NULL)
9115 degradation++;
9116 if (degradation == 2)
9117 return 0;
9118 }
9119 map = get_imsm_map(dev, MAP_1);
9120 /* if there is no second map
9121 * result can be returned
9122 */
9123 if (map == NULL)
9124 return ret_val;
9125 /* check degradation in second map
9126 */
9127 for (i = 0; i < ret_val; i++) {
9128 int degradation = 0;
9129 if (get_imsm_disk(super, i) == NULL)
9130 degradation++;
9131 if (get_imsm_disk(super, i + 1) == NULL)
9132 degradation++;
9133 if (degradation == 2)
9134 return 0;
9135 }
9136 return ret_val;
9137 }
9138 case 5:
9139 return 1;
9140 case 6:
9141 return 2;
9142 default:
9143 return 0;
9144 }
9145 }
9146
9147 /*******************************************************************************
9148 * Function: open_backup_targets
9149 * Description: Function opens file descriptors for all devices given in
9150 * info->devs
9151 * Parameters:
9152 * info : general array info
9153 * raid_disks : number of disks
9154 * raid_fds : table of device's file descriptors
9155 * super : intel super for raid10 degradation check
9156 * dev : intel device for raid10 degradation check
9157 * Returns:
9158 * 0 : success
9159 * -1 : fail
9160 ******************************************************************************/
9161 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
9162 struct intel_super *super, struct imsm_dev *dev)
9163 {
9164 struct mdinfo *sd;
9165 int i;
9166 int opened = 0;
9167
9168 for (i = 0; i < raid_disks; i++)
9169 raid_fds[i] = -1;
9170
9171 for (sd = info->devs ; sd ; sd = sd->next) {
9172 char *dn;
9173
9174 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
9175 dprintf("disk is faulty!!\n");
9176 continue;
9177 }
9178
9179 if ((sd->disk.raid_disk >= raid_disks) ||
9180 (sd->disk.raid_disk < 0))
9181 continue;
9182
9183 dn = map_dev(sd->disk.major,
9184 sd->disk.minor, 1);
9185 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
9186 if (raid_fds[sd->disk.raid_disk] < 0) {
9187 pr_err("cannot open component\n");
9188 continue;
9189 }
9190 opened++;
9191 }
9192 /* check if maximum array degradation level is not exceeded
9193 */
9194 if ((raid_disks - opened) >
9195 imsm_get_allowed_degradation(info->new_level,
9196 raid_disks,
9197 super, dev)) {
9198 pr_err("Not enough disks can be opened.\n");
9199 close_targets(raid_fds, raid_disks);
9200 return -2;
9201 }
9202 return 0;
9203 }
9204
9205 /*******************************************************************************
9206 * Function: validate_container_imsm
9207 * Description: This routine validates container after assemble,
9208 * eg. if devices in container are under the same controller.
9209 *
9210 * Parameters:
9211 * info : linked list with info about devices used in array
9212 * Returns:
9213 * 1 : HBA mismatch
9214 * 0 : Success
9215 ******************************************************************************/
9216 int validate_container_imsm(struct mdinfo *info)
9217 {
9218 if (check_env("IMSM_NO_PLATFORM"))
9219 return 0;
9220
9221 struct sys_dev *idev;
9222 struct sys_dev *hba = NULL;
9223 struct sys_dev *intel_devices = find_intel_devices();
9224 char *dev_path = devt_to_devpath(makedev(info->disk.major,
9225 info->disk.minor));
9226
9227 for (idev = intel_devices; idev; idev = idev->next) {
9228 if (dev_path && strstr(dev_path, idev->path)) {
9229 hba = idev;
9230 break;
9231 }
9232 }
9233 if (dev_path)
9234 free(dev_path);
9235
9236 if (!hba) {
9237 pr_err("WARNING - Cannot detect HBA for device %s!\n",
9238 devid2kname(makedev(info->disk.major, info->disk.minor)));
9239 return 1;
9240 }
9241
9242 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
9243 struct mdinfo *dev;
9244
9245 for (dev = info->next; dev; dev = dev->next) {
9246 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
9247
9248 struct sys_dev *hba2 = NULL;
9249 for (idev = intel_devices; idev; idev = idev->next) {
9250 if (dev_path && strstr(dev_path, idev->path)) {
9251 hba2 = idev;
9252 break;
9253 }
9254 }
9255 if (dev_path)
9256 free(dev_path);
9257
9258 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
9259 get_orom_by_device_id(hba2->dev_id);
9260
9261 if (hba2 && hba->type != hba2->type) {
9262 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
9263 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
9264 return 1;
9265 }
9266
9267 if ((orom != orom2) || ((hba->type == SYS_DEV_VMD) && (hba != hba2))) {
9268 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
9269 " This operation is not supported and can lead to data loss.\n");
9270 return 1;
9271 }
9272
9273 if (!orom) {
9274 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
9275 " This operation is not supported and can lead to data loss.\n");
9276 return 1;
9277 }
9278 }
9279
9280 return 0;
9281 }
9282 #ifndef MDASSEMBLE
9283 /*******************************************************************************
9284 * Function: init_migr_record_imsm
9285 * Description: Function inits imsm migration record
9286 * Parameters:
9287 * super : imsm internal array info
9288 * dev : device under migration
9289 * info : general array info to find the smallest device
9290 * Returns:
9291 * none
9292 ******************************************************************************/
9293 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
9294 struct mdinfo *info)
9295 {
9296 struct intel_super *super = st->sb;
9297 struct migr_record *migr_rec = super->migr_rec;
9298 int new_data_disks;
9299 unsigned long long dsize, dev_sectors;
9300 long long unsigned min_dev_sectors = -1LLU;
9301 struct mdinfo *sd;
9302 char nm[30];
9303 int fd;
9304 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9305 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
9306 unsigned long long num_migr_units;
9307 unsigned long long array_blocks;
9308
9309 memset(migr_rec, 0, sizeof(struct migr_record));
9310 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9311
9312 /* only ascending reshape supported now */
9313 migr_rec->ascending_migr = __cpu_to_le32(1);
9314
9315 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9316 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9317 migr_rec->dest_depth_per_unit *=
9318 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9319 new_data_disks = imsm_num_data_members(dev, MAP_0);
9320 migr_rec->blocks_per_unit =
9321 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9322 migr_rec->dest_depth_per_unit =
9323 __cpu_to_le32(migr_rec->dest_depth_per_unit);
9324 array_blocks = info->component_size * new_data_disks;
9325 num_migr_units =
9326 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9327
9328 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9329 num_migr_units++;
9330 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9331
9332 migr_rec->post_migr_vol_cap = dev->size_low;
9333 migr_rec->post_migr_vol_cap_hi = dev->size_high;
9334
9335 /* Find the smallest dev */
9336 for (sd = info->devs ; sd ; sd = sd->next) {
9337 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9338 fd = dev_open(nm, O_RDONLY);
9339 if (fd < 0)
9340 continue;
9341 get_dev_size(fd, NULL, &dsize);
9342 dev_sectors = dsize / 512;
9343 if (dev_sectors < min_dev_sectors)
9344 min_dev_sectors = dev_sectors;
9345 close(fd);
9346 }
9347 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9348 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9349
9350 write_imsm_migr_rec(st);
9351
9352 return;
9353 }
9354
9355 /*******************************************************************************
9356 * Function: save_backup_imsm
9357 * Description: Function saves critical data stripes to Migration Copy Area
9358 * and updates the current migration unit status.
9359 * Use restore_stripes() to form a destination stripe,
9360 * and to write it to the Copy Area.
9361 * Parameters:
9362 * st : supertype information
9363 * dev : imsm device that backup is saved for
9364 * info : general array info
9365 * buf : input buffer
9366 * length : length of data to backup (blocks_per_unit)
9367 * Returns:
9368 * 0 : success
9369 *, -1 : fail
9370 ******************************************************************************/
9371 int save_backup_imsm(struct supertype *st,
9372 struct imsm_dev *dev,
9373 struct mdinfo *info,
9374 void *buf,
9375 int length)
9376 {
9377 int rv = -1;
9378 struct intel_super *super = st->sb;
9379 unsigned long long *target_offsets;
9380 int *targets;
9381 int i;
9382 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9383 int new_disks = map_dest->num_members;
9384 int dest_layout = 0;
9385 int dest_chunk;
9386 unsigned long long start;
9387 int data_disks = imsm_num_data_members(dev, MAP_0);
9388
9389 targets = xmalloc(new_disks * sizeof(int));
9390
9391 for (i = 0; i < new_disks; i++)
9392 targets[i] = -1;
9393
9394 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
9395
9396 start = info->reshape_progress * 512;
9397 for (i = 0; i < new_disks; i++) {
9398 target_offsets[i] = (unsigned long long)
9399 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
9400 /* move back copy area adderss, it will be moved forward
9401 * in restore_stripes() using start input variable
9402 */
9403 target_offsets[i] -= start/data_disks;
9404 }
9405
9406 if (open_backup_targets(info, new_disks, targets,
9407 super, dev))
9408 goto abort;
9409
9410 dest_layout = imsm_level_to_layout(map_dest->raid_level);
9411 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9412
9413 if (restore_stripes(targets, /* list of dest devices */
9414 target_offsets, /* migration record offsets */
9415 new_disks,
9416 dest_chunk,
9417 map_dest->raid_level,
9418 dest_layout,
9419 -1, /* source backup file descriptor */
9420 0, /* input buf offset
9421 * always 0 buf is already offseted */
9422 start,
9423 length,
9424 buf) != 0) {
9425 pr_err("Error restoring stripes\n");
9426 goto abort;
9427 }
9428
9429 rv = 0;
9430
9431 abort:
9432 if (targets) {
9433 close_targets(targets, new_disks);
9434 free(targets);
9435 }
9436 free(target_offsets);
9437
9438 return rv;
9439 }
9440
9441 /*******************************************************************************
9442 * Function: save_checkpoint_imsm
9443 * Description: Function called for current unit status update
9444 * in the migration record. It writes it to disk.
9445 * Parameters:
9446 * super : imsm internal array info
9447 * info : general array info
9448 * Returns:
9449 * 0: success
9450 * 1: failure
9451 * 2: failure, means no valid migration record
9452 * / no general migration in progress /
9453 ******************************************************************************/
9454 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9455 {
9456 struct intel_super *super = st->sb;
9457 unsigned long long blocks_per_unit;
9458 unsigned long long curr_migr_unit;
9459
9460 if (load_imsm_migr_rec(super, info) != 0) {
9461 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
9462 return 1;
9463 }
9464
9465 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9466 if (blocks_per_unit == 0) {
9467 dprintf("imsm: no migration in progress.\n");
9468 return 2;
9469 }
9470 curr_migr_unit = info->reshape_progress / blocks_per_unit;
9471 /* check if array is alligned to copy area
9472 * if it is not alligned, add one to current migration unit value
9473 * this can happend on array reshape finish only
9474 */
9475 if (info->reshape_progress % blocks_per_unit)
9476 curr_migr_unit++;
9477
9478 super->migr_rec->curr_migr_unit =
9479 __cpu_to_le32(curr_migr_unit);
9480 super->migr_rec->rec_status = __cpu_to_le32(state);
9481 super->migr_rec->dest_1st_member_lba =
9482 __cpu_to_le32(curr_migr_unit *
9483 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
9484 if (write_imsm_migr_rec(st) < 0) {
9485 dprintf("imsm: Cannot write migration record outside backup area\n");
9486 return 1;
9487 }
9488
9489 return 0;
9490 }
9491
9492 /*******************************************************************************
9493 * Function: recover_backup_imsm
9494 * Description: Function recovers critical data from the Migration Copy Area
9495 * while assembling an array.
9496 * Parameters:
9497 * super : imsm internal array info
9498 * info : general array info
9499 * Returns:
9500 * 0 : success (or there is no data to recover)
9501 * 1 : fail
9502 ******************************************************************************/
9503 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9504 {
9505 struct intel_super *super = st->sb;
9506 struct migr_record *migr_rec = super->migr_rec;
9507 struct imsm_map *map_dest;
9508 struct intel_dev *id = NULL;
9509 unsigned long long read_offset;
9510 unsigned long long write_offset;
9511 unsigned unit_len;
9512 int *targets = NULL;
9513 int new_disks, i, err;
9514 char *buf = NULL;
9515 int retval = 1;
9516 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9517 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
9518 char buffer[20];
9519 int skipped_disks = 0;
9520
9521 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9522 if (err < 1)
9523 return 1;
9524
9525 /* recover data only during assemblation */
9526 if (strncmp(buffer, "inactive", 8) != 0)
9527 return 0;
9528 /* no data to recover */
9529 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9530 return 0;
9531 if (curr_migr_unit >= num_migr_units)
9532 return 1;
9533
9534 /* find device during reshape */
9535 for (id = super->devlist; id; id = id->next)
9536 if (is_gen_migration(id->dev))
9537 break;
9538 if (id == NULL)
9539 return 1;
9540
9541 map_dest = get_imsm_map(id->dev, MAP_0);
9542 new_disks = map_dest->num_members;
9543
9544 read_offset = (unsigned long long)
9545 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9546
9547 write_offset = ((unsigned long long)
9548 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
9549 pba_of_lba0(map_dest)) * 512;
9550
9551 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9552 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
9553 goto abort;
9554 targets = xcalloc(new_disks, sizeof(int));
9555
9556 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
9557 pr_err("Cannot open some devices belonging to array.\n");
9558 goto abort;
9559 }
9560
9561 for (i = 0; i < new_disks; i++) {
9562 if (targets[i] < 0) {
9563 skipped_disks++;
9564 continue;
9565 }
9566 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
9567 pr_err("Cannot seek to block: %s\n",
9568 strerror(errno));
9569 skipped_disks++;
9570 continue;
9571 }
9572 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
9573 pr_err("Cannot read copy area block: %s\n",
9574 strerror(errno));
9575 skipped_disks++;
9576 continue;
9577 }
9578 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
9579 pr_err("Cannot seek to block: %s\n",
9580 strerror(errno));
9581 skipped_disks++;
9582 continue;
9583 }
9584 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
9585 pr_err("Cannot restore block: %s\n",
9586 strerror(errno));
9587 skipped_disks++;
9588 continue;
9589 }
9590 }
9591
9592 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9593 new_disks,
9594 super,
9595 id->dev)) {
9596 pr_err("Cannot restore data from backup. Too many failed disks\n");
9597 goto abort;
9598 }
9599
9600 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9601 /* ignore error == 2, this can mean end of reshape here
9602 */
9603 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
9604 } else
9605 retval = 0;
9606
9607 abort:
9608 if (targets) {
9609 for (i = 0; i < new_disks; i++)
9610 if (targets[i])
9611 close(targets[i]);
9612 free(targets);
9613 }
9614 free(buf);
9615 return retval;
9616 }
9617
9618 static char disk_by_path[] = "/dev/disk/by-path/";
9619
9620 static const char *imsm_get_disk_controller_domain(const char *path)
9621 {
9622 char disk_path[PATH_MAX];
9623 char *drv=NULL;
9624 struct stat st;
9625
9626 strcpy(disk_path, disk_by_path);
9627 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9628 if (stat(disk_path, &st) == 0) {
9629 struct sys_dev* hba;
9630 char *path;
9631
9632 path = devt_to_devpath(st.st_rdev);
9633 if (path == NULL)
9634 return "unknown";
9635 hba = find_disk_attached_hba(-1, path);
9636 if (hba && hba->type == SYS_DEV_SAS)
9637 drv = "isci";
9638 else if (hba && hba->type == SYS_DEV_SATA)
9639 drv = "ahci";
9640 else
9641 drv = "unknown";
9642 dprintf("path: %s hba: %s attached: %s\n",
9643 path, (hba) ? hba->path : "NULL", drv);
9644 free(path);
9645 }
9646 return drv;
9647 }
9648
9649 static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
9650 {
9651 static char devnm[32];
9652 char subdev_name[20];
9653 struct mdstat_ent *mdstat;
9654
9655 sprintf(subdev_name, "%d", subdev);
9656 mdstat = mdstat_by_subdev(subdev_name, container);
9657 if (!mdstat)
9658 return NULL;
9659
9660 strcpy(devnm, mdstat->devnm);
9661 free_mdstat(mdstat);
9662 return devnm;
9663 }
9664
9665 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9666 struct geo_params *geo,
9667 int *old_raid_disks,
9668 int direction)
9669 {
9670 /* currently we only support increasing the number of devices
9671 * for a container. This increases the number of device for each
9672 * member array. They must all be RAID0 or RAID5.
9673 */
9674 int ret_val = 0;
9675 struct mdinfo *info, *member;
9676 int devices_that_can_grow = 0;
9677
9678 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
9679
9680 if (geo->size > 0 ||
9681 geo->level != UnSet ||
9682 geo->layout != UnSet ||
9683 geo->chunksize != 0 ||
9684 geo->raid_disks == UnSet) {
9685 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
9686 return ret_val;
9687 }
9688
9689 if (direction == ROLLBACK_METADATA_CHANGES) {
9690 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
9691 return ret_val;
9692 }
9693
9694 info = container_content_imsm(st, NULL);
9695 for (member = info; member; member = member->next) {
9696 char *result;
9697
9698 dprintf("imsm: checking device_num: %i\n",
9699 member->container_member);
9700
9701 if (geo->raid_disks <= member->array.raid_disks) {
9702 /* we work on container for Online Capacity Expansion
9703 * only so raid_disks has to grow
9704 */
9705 dprintf("imsm: for container operation raid disks increase is required\n");
9706 break;
9707 }
9708
9709 if ((info->array.level != 0) &&
9710 (info->array.level != 5)) {
9711 /* we cannot use this container with other raid level
9712 */
9713 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
9714 info->array.level);
9715 break;
9716 } else {
9717 /* check for platform support
9718 * for this raid level configuration
9719 */
9720 struct intel_super *super = st->sb;
9721 if (!is_raid_level_supported(super->orom,
9722 member->array.level,
9723 geo->raid_disks)) {
9724 dprintf("platform does not support raid%d with %d disk%s\n",
9725 info->array.level,
9726 geo->raid_disks,
9727 geo->raid_disks > 1 ? "s" : "");
9728 break;
9729 }
9730 /* check if component size is aligned to chunk size
9731 */
9732 if (info->component_size %
9733 (info->array.chunk_size/512)) {
9734 dprintf("Component size is not aligned to chunk size\n");
9735 break;
9736 }
9737 }
9738
9739 if (*old_raid_disks &&
9740 info->array.raid_disks != *old_raid_disks)
9741 break;
9742 *old_raid_disks = info->array.raid_disks;
9743
9744 /* All raid5 and raid0 volumes in container
9745 * have to be ready for Online Capacity Expansion
9746 * so they need to be assembled. We have already
9747 * checked that no recovery etc is happening.
9748 */
9749 result = imsm_find_array_devnm_by_subdev(member->container_member,
9750 st->container_devnm);
9751 if (result == NULL) {
9752 dprintf("imsm: cannot find array\n");
9753 break;
9754 }
9755 devices_that_can_grow++;
9756 }
9757 sysfs_free(info);
9758 if (!member && devices_that_can_grow)
9759 ret_val = 1;
9760
9761 if (ret_val)
9762 dprintf("Container operation allowed\n");
9763 else
9764 dprintf("Error: %i\n", ret_val);
9765
9766 return ret_val;
9767 }
9768
9769 /* Function: get_spares_for_grow
9770 * Description: Allocates memory and creates list of spare devices
9771 * avaliable in container. Checks if spare drive size is acceptable.
9772 * Parameters: Pointer to the supertype structure
9773 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
9774 * NULL if fail
9775 */
9776 static struct mdinfo *get_spares_for_grow(struct supertype *st)
9777 {
9778 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
9779 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
9780 }
9781
9782 /******************************************************************************
9783 * function: imsm_create_metadata_update_for_reshape
9784 * Function creates update for whole IMSM container.
9785 *
9786 ******************************************************************************/
9787 static int imsm_create_metadata_update_for_reshape(
9788 struct supertype *st,
9789 struct geo_params *geo,
9790 int old_raid_disks,
9791 struct imsm_update_reshape **updatep)
9792 {
9793 struct intel_super *super = st->sb;
9794 struct imsm_super *mpb = super->anchor;
9795 int update_memory_size;
9796 struct imsm_update_reshape *u;
9797 struct mdinfo *spares;
9798 int i;
9799 int delta_disks;
9800 struct mdinfo *dev;
9801
9802 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
9803
9804 delta_disks = geo->raid_disks - old_raid_disks;
9805
9806 /* size of all update data without anchor */
9807 update_memory_size = sizeof(struct imsm_update_reshape);
9808
9809 /* now add space for spare disks that we need to add. */
9810 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9811
9812 u = xcalloc(1, update_memory_size);
9813 u->type = update_reshape_container_disks;
9814 u->old_raid_disks = old_raid_disks;
9815 u->new_raid_disks = geo->raid_disks;
9816
9817 /* now get spare disks list
9818 */
9819 spares = get_spares_for_grow(st);
9820
9821 if (spares == NULL
9822 || delta_disks > spares->array.spare_disks) {
9823 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
9824 i = -1;
9825 goto abort;
9826 }
9827
9828 /* we have got spares
9829 * update disk list in imsm_disk list table in anchor
9830 */
9831 dprintf("imsm: %i spares are available.\n\n",
9832 spares->array.spare_disks);
9833
9834 dev = spares->devs;
9835 for (i = 0; i < delta_disks; i++) {
9836 struct dl *dl;
9837
9838 if (dev == NULL)
9839 break;
9840 u->new_disks[i] = makedev(dev->disk.major,
9841 dev->disk.minor);
9842 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
9843 dl->index = mpb->num_disks;
9844 mpb->num_disks++;
9845 dev = dev->next;
9846 }
9847
9848 abort:
9849 /* free spares
9850 */
9851 sysfs_free(spares);
9852
9853 dprintf("imsm: reshape update preparation :");
9854 if (i == delta_disks) {
9855 dprintf_cont(" OK\n");
9856 *updatep = u;
9857 return update_memory_size;
9858 }
9859 free(u);
9860 dprintf_cont(" Error\n");
9861
9862 return 0;
9863 }
9864
9865 /******************************************************************************
9866 * function: imsm_create_metadata_update_for_size_change()
9867 * Creates update for IMSM array for array size change.
9868 *
9869 ******************************************************************************/
9870 static int imsm_create_metadata_update_for_size_change(
9871 struct supertype *st,
9872 struct geo_params *geo,
9873 struct imsm_update_size_change **updatep)
9874 {
9875 struct intel_super *super = st->sb;
9876 int update_memory_size;
9877 struct imsm_update_size_change *u;
9878
9879 dprintf("(enter) New size = %llu\n", geo->size);
9880
9881 /* size of all update data without anchor */
9882 update_memory_size = sizeof(struct imsm_update_size_change);
9883
9884 u = xcalloc(1, update_memory_size);
9885 u->type = update_size_change;
9886 u->subdev = super->current_vol;
9887 u->new_size = geo->size;
9888
9889 dprintf("imsm: reshape update preparation : OK\n");
9890 *updatep = u;
9891
9892 return update_memory_size;
9893 }
9894
9895 /******************************************************************************
9896 * function: imsm_create_metadata_update_for_migration()
9897 * Creates update for IMSM array.
9898 *
9899 ******************************************************************************/
9900 static int imsm_create_metadata_update_for_migration(
9901 struct supertype *st,
9902 struct geo_params *geo,
9903 struct imsm_update_reshape_migration **updatep)
9904 {
9905 struct intel_super *super = st->sb;
9906 int update_memory_size;
9907 struct imsm_update_reshape_migration *u;
9908 struct imsm_dev *dev;
9909 int previous_level = -1;
9910
9911 dprintf("(enter) New Level = %i\n", geo->level);
9912
9913 /* size of all update data without anchor */
9914 update_memory_size = sizeof(struct imsm_update_reshape_migration);
9915
9916 u = xcalloc(1, update_memory_size);
9917 u->type = update_reshape_migration;
9918 u->subdev = super->current_vol;
9919 u->new_level = geo->level;
9920 u->new_layout = geo->layout;
9921 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
9922 u->new_disks[0] = -1;
9923 u->new_chunksize = -1;
9924
9925 dev = get_imsm_dev(super, u->subdev);
9926 if (dev) {
9927 struct imsm_map *map;
9928
9929 map = get_imsm_map(dev, MAP_0);
9930 if (map) {
9931 int current_chunk_size =
9932 __le16_to_cpu(map->blocks_per_strip) / 2;
9933
9934 if (geo->chunksize != current_chunk_size) {
9935 u->new_chunksize = geo->chunksize / 1024;
9936 dprintf("imsm: chunk size change from %i to %i\n",
9937 current_chunk_size, u->new_chunksize);
9938 }
9939 previous_level = map->raid_level;
9940 }
9941 }
9942 if ((geo->level == 5) && (previous_level == 0)) {
9943 struct mdinfo *spares = NULL;
9944
9945 u->new_raid_disks++;
9946 spares = get_spares_for_grow(st);
9947 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9948 free(u);
9949 sysfs_free(spares);
9950 update_memory_size = 0;
9951 dprintf("error: cannot get spare device for requested migration");
9952 return 0;
9953 }
9954 sysfs_free(spares);
9955 }
9956 dprintf("imsm: reshape update preparation : OK\n");
9957 *updatep = u;
9958
9959 return update_memory_size;
9960 }
9961
9962 static void imsm_update_metadata_locally(struct supertype *st,
9963 void *buf, int len)
9964 {
9965 struct metadata_update mu;
9966
9967 mu.buf = buf;
9968 mu.len = len;
9969 mu.space = NULL;
9970 mu.space_list = NULL;
9971 mu.next = NULL;
9972 if (imsm_prepare_update(st, &mu))
9973 imsm_process_update(st, &mu);
9974
9975 while (mu.space_list) {
9976 void **space = mu.space_list;
9977 mu.space_list = *space;
9978 free(space);
9979 }
9980 }
9981
9982 /***************************************************************************
9983 * Function: imsm_analyze_change
9984 * Description: Function analyze change for single volume
9985 * and validate if transition is supported
9986 * Parameters: Geometry parameters, supertype structure,
9987 * metadata change direction (apply/rollback)
9988 * Returns: Operation type code on success, -1 if fail
9989 ****************************************************************************/
9990 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9991 struct geo_params *geo,
9992 int direction)
9993 {
9994 struct mdinfo info;
9995 int change = -1;
9996 int check_devs = 0;
9997 int chunk;
9998 /* number of added/removed disks in operation result */
9999 int devNumChange = 0;
10000 /* imsm compatible layout value for array geometry verification */
10001 int imsm_layout = -1;
10002 int data_disks;
10003 struct imsm_dev *dev;
10004 struct intel_super *super;
10005 unsigned long long current_size;
10006 unsigned long long free_size;
10007 unsigned long long max_size;
10008 int rv;
10009
10010 getinfo_super_imsm_volume(st, &info, NULL);
10011 if ((geo->level != info.array.level) &&
10012 (geo->level >= 0) &&
10013 (geo->level != UnSet)) {
10014 switch (info.array.level) {
10015 case 0:
10016 if (geo->level == 5) {
10017 change = CH_MIGRATION;
10018 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
10019 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
10020 change = -1;
10021 goto analyse_change_exit;
10022 }
10023 imsm_layout = geo->layout;
10024 check_devs = 1;
10025 devNumChange = 1; /* parity disk added */
10026 } else if (geo->level == 10) {
10027 change = CH_TAKEOVER;
10028 check_devs = 1;
10029 devNumChange = 2; /* two mirrors added */
10030 imsm_layout = 0x102; /* imsm supported layout */
10031 }
10032 break;
10033 case 1:
10034 case 10:
10035 if (geo->level == 0) {
10036 change = CH_TAKEOVER;
10037 check_devs = 1;
10038 devNumChange = -(geo->raid_disks/2);
10039 imsm_layout = 0; /* imsm raid0 layout */
10040 }
10041 break;
10042 }
10043 if (change == -1) {
10044 pr_err("Error. Level Migration from %d to %d not supported!\n",
10045 info.array.level, geo->level);
10046 goto analyse_change_exit;
10047 }
10048 } else
10049 geo->level = info.array.level;
10050
10051 if ((geo->layout != info.array.layout)
10052 && ((geo->layout != UnSet) && (geo->layout != -1))) {
10053 change = CH_MIGRATION;
10054 if ((info.array.layout == 0)
10055 && (info.array.level == 5)
10056 && (geo->layout == 5)) {
10057 /* reshape 5 -> 4 */
10058 } else if ((info.array.layout == 5)
10059 && (info.array.level == 5)
10060 && (geo->layout == 0)) {
10061 /* reshape 4 -> 5 */
10062 geo->layout = 0;
10063 geo->level = 5;
10064 } else {
10065 pr_err("Error. Layout Migration from %d to %d not supported!\n",
10066 info.array.layout, geo->layout);
10067 change = -1;
10068 goto analyse_change_exit;
10069 }
10070 } else {
10071 geo->layout = info.array.layout;
10072 if (imsm_layout == -1)
10073 imsm_layout = info.array.layout;
10074 }
10075
10076 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
10077 && (geo->chunksize != info.array.chunk_size))
10078 change = CH_MIGRATION;
10079 else
10080 geo->chunksize = info.array.chunk_size;
10081
10082 chunk = geo->chunksize / 1024;
10083
10084 super = st->sb;
10085 dev = get_imsm_dev(super, super->current_vol);
10086 data_disks = imsm_num_data_members(dev , MAP_0);
10087 /* compute current size per disk member
10088 */
10089 current_size = info.custom_array_size / data_disks;
10090
10091 if ((geo->size > 0) && (geo->size != MAX_SIZE)) {
10092 /* align component size
10093 */
10094 geo->size = imsm_component_size_aligment_check(
10095 get_imsm_raid_level(dev->vol.map),
10096 chunk * 1024,
10097 geo->size * 2);
10098 if (geo->size == 0) {
10099 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
10100 current_size);
10101 goto analyse_change_exit;
10102 }
10103 }
10104
10105 if ((current_size != geo->size) && (geo->size > 0)) {
10106 if (change != -1) {
10107 pr_err("Error. Size change should be the only one at a time.\n");
10108 change = -1;
10109 goto analyse_change_exit;
10110 }
10111 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
10112 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
10113 super->current_vol, st->devnm);
10114 goto analyse_change_exit;
10115 }
10116 /* check the maximum available size
10117 */
10118 rv = imsm_get_free_size(st, dev->vol.map->num_members,
10119 0, chunk, &free_size);
10120 if (rv == 0)
10121 /* Cannot find maximum available space
10122 */
10123 max_size = 0;
10124 else {
10125 max_size = free_size + current_size;
10126 /* align component size
10127 */
10128 max_size = imsm_component_size_aligment_check(
10129 get_imsm_raid_level(dev->vol.map),
10130 chunk * 1024,
10131 max_size);
10132 }
10133 if (geo->size == MAX_SIZE) {
10134 /* requested size change to the maximum available size
10135 */
10136 if (max_size == 0) {
10137 pr_err("Error. Cannot find maximum available space.\n");
10138 change = -1;
10139 goto analyse_change_exit;
10140 } else
10141 geo->size = max_size;
10142 }
10143
10144 if ((direction == ROLLBACK_METADATA_CHANGES)) {
10145 /* accept size for rollback only
10146 */
10147 } else {
10148 /* round size due to metadata compatibility
10149 */
10150 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
10151 << SECT_PER_MB_SHIFT;
10152 dprintf("Prepare update for size change to %llu\n",
10153 geo->size );
10154 if (current_size >= geo->size) {
10155 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
10156 current_size, geo->size);
10157 goto analyse_change_exit;
10158 }
10159 if (max_size && geo->size > max_size) {
10160 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
10161 max_size, geo->size);
10162 goto analyse_change_exit;
10163 }
10164 }
10165 geo->size *= data_disks;
10166 geo->raid_disks = dev->vol.map->num_members;
10167 change = CH_ARRAY_SIZE;
10168 }
10169 if (!validate_geometry_imsm(st,
10170 geo->level,
10171 imsm_layout,
10172 geo->raid_disks + devNumChange,
10173 &chunk,
10174 geo->size, INVALID_SECTORS,
10175 0, 0, 1))
10176 change = -1;
10177
10178 if (check_devs) {
10179 struct intel_super *super = st->sb;
10180 struct imsm_super *mpb = super->anchor;
10181
10182 if (mpb->num_raid_devs > 1) {
10183 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
10184 geo->dev_name);
10185 change = -1;
10186 }
10187 }
10188
10189 analyse_change_exit:
10190 if ((direction == ROLLBACK_METADATA_CHANGES) &&
10191 ((change == CH_MIGRATION) || (change == CH_TAKEOVER))) {
10192 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
10193 change = -1;
10194 }
10195 return change;
10196 }
10197
10198 int imsm_takeover(struct supertype *st, struct geo_params *geo)
10199 {
10200 struct intel_super *super = st->sb;
10201 struct imsm_update_takeover *u;
10202
10203 u = xmalloc(sizeof(struct imsm_update_takeover));
10204
10205 u->type = update_takeover;
10206 u->subarray = super->current_vol;
10207
10208 /* 10->0 transition */
10209 if (geo->level == 0)
10210 u->direction = R10_TO_R0;
10211
10212 /* 0->10 transition */
10213 if (geo->level == 10)
10214 u->direction = R0_TO_R10;
10215
10216 /* update metadata locally */
10217 imsm_update_metadata_locally(st, u,
10218 sizeof(struct imsm_update_takeover));
10219 /* and possibly remotely */
10220 if (st->update_tail)
10221 append_metadata_update(st, u,
10222 sizeof(struct imsm_update_takeover));
10223 else
10224 free(u);
10225
10226 return 0;
10227 }
10228
10229 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
10230 int level,
10231 int layout, int chunksize, int raid_disks,
10232 int delta_disks, char *backup, char *dev,
10233 int direction, int verbose)
10234 {
10235 int ret_val = 1;
10236 struct geo_params geo;
10237
10238 dprintf("(enter)\n");
10239
10240 memset(&geo, 0, sizeof(struct geo_params));
10241
10242 geo.dev_name = dev;
10243 strcpy(geo.devnm, st->devnm);
10244 geo.size = size;
10245 geo.level = level;
10246 geo.layout = layout;
10247 geo.chunksize = chunksize;
10248 geo.raid_disks = raid_disks;
10249 if (delta_disks != UnSet)
10250 geo.raid_disks += delta_disks;
10251
10252 dprintf("for level : %i\n", geo.level);
10253 dprintf("for raid_disks : %i\n", geo.raid_disks);
10254
10255 if (experimental() == 0)
10256 return ret_val;
10257
10258 if (strcmp(st->container_devnm, st->devnm) == 0) {
10259 /* On container level we can only increase number of devices. */
10260 dprintf("imsm: info: Container operation\n");
10261 int old_raid_disks = 0;
10262
10263 if (imsm_reshape_is_allowed_on_container(
10264 st, &geo, &old_raid_disks, direction)) {
10265 struct imsm_update_reshape *u = NULL;
10266 int len;
10267
10268 len = imsm_create_metadata_update_for_reshape(
10269 st, &geo, old_raid_disks, &u);
10270
10271 if (len <= 0) {
10272 dprintf("imsm: Cannot prepare update\n");
10273 goto exit_imsm_reshape_super;
10274 }
10275
10276 ret_val = 0;
10277 /* update metadata locally */
10278 imsm_update_metadata_locally(st, u, len);
10279 /* and possibly remotely */
10280 if (st->update_tail)
10281 append_metadata_update(st, u, len);
10282 else
10283 free(u);
10284
10285 } else {
10286 pr_err("(imsm) Operation is not allowed on this container\n");
10287 }
10288 } else {
10289 /* On volume level we support following operations
10290 * - takeover: raid10 -> raid0; raid0 -> raid10
10291 * - chunk size migration
10292 * - migration: raid5 -> raid0; raid0 -> raid5
10293 */
10294 struct intel_super *super = st->sb;
10295 struct intel_dev *dev = super->devlist;
10296 int change;
10297 dprintf("imsm: info: Volume operation\n");
10298 /* find requested device */
10299 while (dev) {
10300 char *devnm =
10301 imsm_find_array_devnm_by_subdev(
10302 dev->index, st->container_devnm);
10303 if (devnm && strcmp(devnm, geo.devnm) == 0)
10304 break;
10305 dev = dev->next;
10306 }
10307 if (dev == NULL) {
10308 pr_err("Cannot find %s (%s) subarray\n",
10309 geo.dev_name, geo.devnm);
10310 goto exit_imsm_reshape_super;
10311 }
10312 super->current_vol = dev->index;
10313 change = imsm_analyze_change(st, &geo, direction);
10314 switch (change) {
10315 case CH_TAKEOVER:
10316 ret_val = imsm_takeover(st, &geo);
10317 break;
10318 case CH_MIGRATION: {
10319 struct imsm_update_reshape_migration *u = NULL;
10320 int len =
10321 imsm_create_metadata_update_for_migration(
10322 st, &geo, &u);
10323 if (len < 1) {
10324 dprintf("imsm: Cannot prepare update\n");
10325 break;
10326 }
10327 ret_val = 0;
10328 /* update metadata locally */
10329 imsm_update_metadata_locally(st, u, len);
10330 /* and possibly remotely */
10331 if (st->update_tail)
10332 append_metadata_update(st, u, len);
10333 else
10334 free(u);
10335 }
10336 break;
10337 case CH_ARRAY_SIZE: {
10338 struct imsm_update_size_change *u = NULL;
10339 int len =
10340 imsm_create_metadata_update_for_size_change(
10341 st, &geo, &u);
10342 if (len < 1) {
10343 dprintf("imsm: Cannot prepare update\n");
10344 break;
10345 }
10346 ret_val = 0;
10347 /* update metadata locally */
10348 imsm_update_metadata_locally(st, u, len);
10349 /* and possibly remotely */
10350 if (st->update_tail)
10351 append_metadata_update(st, u, len);
10352 else
10353 free(u);
10354 }
10355 break;
10356 default:
10357 ret_val = 1;
10358 }
10359 }
10360
10361 exit_imsm_reshape_super:
10362 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
10363 return ret_val;
10364 }
10365
10366 #define COMPLETED_OK 0
10367 #define COMPLETED_NONE 1
10368 #define COMPLETED_DELAYED 2
10369
10370 static int read_completed(int fd, unsigned long long *val)
10371 {
10372 int ret;
10373 char buf[50];
10374
10375 ret = sysfs_fd_get_str(fd, buf, 50);
10376 if (ret < 0)
10377 return ret;
10378
10379 ret = COMPLETED_OK;
10380 if (strncmp(buf, "none", 4) == 0) {
10381 ret = COMPLETED_NONE;
10382 } else if (strncmp(buf, "delayed", 7) == 0) {
10383 ret = COMPLETED_DELAYED;
10384 } else {
10385 char *ep;
10386 *val = strtoull(buf, &ep, 0);
10387 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
10388 ret = -1;
10389 }
10390 return ret;
10391 }
10392
10393 /*******************************************************************************
10394 * Function: wait_for_reshape_imsm
10395 * Description: Function writes new sync_max value and waits until
10396 * reshape process reach new position
10397 * Parameters:
10398 * sra : general array info
10399 * ndata : number of disks in new array's layout
10400 * Returns:
10401 * 0 : success,
10402 * 1 : there is no reshape in progress,
10403 * -1 : fail
10404 ******************************************************************************/
10405 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
10406 {
10407 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
10408 int retry = 3;
10409 unsigned long long completed;
10410 /* to_complete : new sync_max position */
10411 unsigned long long to_complete = sra->reshape_progress;
10412 unsigned long long position_to_set = to_complete / ndata;
10413
10414 if (fd < 0) {
10415 dprintf("cannot open reshape_position\n");
10416 return 1;
10417 }
10418
10419 do {
10420 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10421 if (!retry) {
10422 dprintf("cannot read reshape_position (no reshape in progres)\n");
10423 close(fd);
10424 return 1;
10425 }
10426 usleep(30000);
10427 } else
10428 break;
10429 } while (retry--);
10430
10431 if (completed > position_to_set) {
10432 dprintf("wrong next position to set %llu (%llu)\n",
10433 to_complete, position_to_set);
10434 close(fd);
10435 return -1;
10436 }
10437 dprintf("Position set: %llu\n", position_to_set);
10438 if (sysfs_set_num(sra, NULL, "sync_max",
10439 position_to_set) != 0) {
10440 dprintf("cannot set reshape position to %llu\n",
10441 position_to_set);
10442 close(fd);
10443 return -1;
10444 }
10445
10446 do {
10447 int rc;
10448 char action[20];
10449 int timeout = 3000;
10450
10451 sysfs_wait(fd, &timeout);
10452 if (sysfs_get_str(sra, NULL, "sync_action",
10453 action, 20) > 0 &&
10454 strncmp(action, "reshape", 7) != 0) {
10455 if (strncmp(action, "idle", 4) == 0)
10456 break;
10457 close(fd);
10458 return -1;
10459 }
10460
10461 rc = read_completed(fd, &completed);
10462 if (rc < 0) {
10463 dprintf("cannot read reshape_position (in loop)\n");
10464 close(fd);
10465 return 1;
10466 } else if (rc == COMPLETED_NONE)
10467 break;
10468 } while (completed < position_to_set);
10469
10470 close(fd);
10471 return 0;
10472 }
10473
10474 /*******************************************************************************
10475 * Function: check_degradation_change
10476 * Description: Check that array hasn't become failed.
10477 * Parameters:
10478 * info : for sysfs access
10479 * sources : source disks descriptors
10480 * degraded: previous degradation level
10481 * Returns:
10482 * degradation level
10483 ******************************************************************************/
10484 int check_degradation_change(struct mdinfo *info,
10485 int *sources,
10486 int degraded)
10487 {
10488 unsigned long long new_degraded;
10489 int rv;
10490
10491 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10492 if ((rv == -1) || (new_degraded != (unsigned long long)degraded)) {
10493 /* check each device to ensure it is still working */
10494 struct mdinfo *sd;
10495 new_degraded = 0;
10496 for (sd = info->devs ; sd ; sd = sd->next) {
10497 if (sd->disk.state & (1<<MD_DISK_FAULTY))
10498 continue;
10499 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10500 char sbuf[20];
10501 if (sysfs_get_str(info,
10502 sd, "state", sbuf, 20) < 0 ||
10503 strstr(sbuf, "faulty") ||
10504 strstr(sbuf, "in_sync") == NULL) {
10505 /* this device is dead */
10506 sd->disk.state = (1<<MD_DISK_FAULTY);
10507 if (sd->disk.raid_disk >= 0 &&
10508 sources[sd->disk.raid_disk] >= 0) {
10509 close(sources[
10510 sd->disk.raid_disk]);
10511 sources[sd->disk.raid_disk] =
10512 -1;
10513 }
10514 new_degraded++;
10515 }
10516 }
10517 }
10518 }
10519
10520 return new_degraded;
10521 }
10522
10523 /*******************************************************************************
10524 * Function: imsm_manage_reshape
10525 * Description: Function finds array under reshape and it manages reshape
10526 * process. It creates stripes backups (if required) and sets
10527 * checkpoints.
10528 * Parameters:
10529 * afd : Backup handle (nattive) - not used
10530 * sra : general array info
10531 * reshape : reshape parameters - not used
10532 * st : supertype structure
10533 * blocks : size of critical section [blocks]
10534 * fds : table of source device descriptor
10535 * offsets : start of array (offest per devices)
10536 * dests : not used
10537 * destfd : table of destination device descriptor
10538 * destoffsets : table of destination offsets (per device)
10539 * Returns:
10540 * 1 : success, reshape is done
10541 * 0 : fail
10542 ******************************************************************************/
10543 static int imsm_manage_reshape(
10544 int afd, struct mdinfo *sra, struct reshape *reshape,
10545 struct supertype *st, unsigned long backup_blocks,
10546 int *fds, unsigned long long *offsets,
10547 int dests, int *destfd, unsigned long long *destoffsets)
10548 {
10549 int ret_val = 0;
10550 struct intel_super *super = st->sb;
10551 struct intel_dev *dv;
10552 struct imsm_dev *dev = NULL;
10553 struct imsm_map *map_src;
10554 int migr_vol_qan = 0;
10555 int ndata, odata; /* [bytes] */
10556 int chunk; /* [bytes] */
10557 struct migr_record *migr_rec;
10558 char *buf = NULL;
10559 unsigned int buf_size; /* [bytes] */
10560 unsigned long long max_position; /* array size [bytes] */
10561 unsigned long long next_step; /* [blocks]/[bytes] */
10562 unsigned long long old_data_stripe_length;
10563 unsigned long long start_src; /* [bytes] */
10564 unsigned long long start; /* [bytes] */
10565 unsigned long long start_buf_shift; /* [bytes] */
10566 int degraded = 0;
10567 int source_layout = 0;
10568
10569 if (!sra)
10570 return ret_val;
10571
10572 if (!fds || !offsets)
10573 goto abort;
10574
10575 /* Find volume during the reshape */
10576 for (dv = super->devlist; dv; dv = dv->next) {
10577 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10578 && dv->dev->vol.migr_state == 1) {
10579 dev = dv->dev;
10580 migr_vol_qan++;
10581 }
10582 }
10583 /* Only one volume can migrate at the same time */
10584 if (migr_vol_qan != 1) {
10585 pr_err(": %s", migr_vol_qan ?
10586 "Number of migrating volumes greater than 1\n" :
10587 "There is no volume during migrationg\n");
10588 goto abort;
10589 }
10590
10591 map_src = get_imsm_map(dev, MAP_1);
10592 if (map_src == NULL)
10593 goto abort;
10594
10595 ndata = imsm_num_data_members(dev, MAP_0);
10596 odata = imsm_num_data_members(dev, MAP_1);
10597
10598 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10599 old_data_stripe_length = odata * chunk;
10600
10601 migr_rec = super->migr_rec;
10602
10603 /* initialize migration record for start condition */
10604 if (sra->reshape_progress == 0)
10605 init_migr_record_imsm(st, dev, sra);
10606 else {
10607 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
10608 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
10609 goto abort;
10610 }
10611 /* Save checkpoint to update migration record for current
10612 * reshape position (in md). It can be farther than current
10613 * reshape position in metadata.
10614 */
10615 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10616 /* ignore error == 2, this can mean end of reshape here
10617 */
10618 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
10619 goto abort;
10620 }
10621 }
10622
10623 /* size for data */
10624 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10625 /* extend buffer size for parity disk */
10626 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10627 /* add space for stripe aligment */
10628 buf_size += old_data_stripe_length;
10629 if (posix_memalign((void **)&buf, 4096, buf_size)) {
10630 dprintf("imsm: Cannot allocate checpoint buffer\n");
10631 goto abort;
10632 }
10633
10634 max_position = sra->component_size * ndata;
10635 source_layout = imsm_level_to_layout(map_src->raid_level);
10636
10637 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10638 __le32_to_cpu(migr_rec->num_migr_units)) {
10639 /* current reshape position [blocks] */
10640 unsigned long long current_position =
10641 __le32_to_cpu(migr_rec->blocks_per_unit)
10642 * __le32_to_cpu(migr_rec->curr_migr_unit);
10643 unsigned long long border;
10644
10645 /* Check that array hasn't become failed.
10646 */
10647 degraded = check_degradation_change(sra, fds, degraded);
10648 if (degraded > 1) {
10649 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
10650 goto abort;
10651 }
10652
10653 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10654
10655 if ((current_position + next_step) > max_position)
10656 next_step = max_position - current_position;
10657
10658 start = current_position * 512;
10659
10660 /* align reading start to old geometry */
10661 start_buf_shift = start % old_data_stripe_length;
10662 start_src = start - start_buf_shift;
10663
10664 border = (start_src / odata) - (start / ndata);
10665 border /= 512;
10666 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10667 /* save critical stripes to buf
10668 * start - start address of current unit
10669 * to backup [bytes]
10670 * start_src - start address of current unit
10671 * to backup alligned to source array
10672 * [bytes]
10673 */
10674 unsigned long long next_step_filler;
10675 unsigned long long copy_length = next_step * 512;
10676
10677 /* allign copy area length to stripe in old geometry */
10678 next_step_filler = ((copy_length + start_buf_shift)
10679 % old_data_stripe_length);
10680 if (next_step_filler)
10681 next_step_filler = (old_data_stripe_length
10682 - next_step_filler);
10683 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
10684 start, start_src, copy_length,
10685 start_buf_shift, next_step_filler);
10686
10687 if (save_stripes(fds, offsets, map_src->num_members,
10688 chunk, map_src->raid_level,
10689 source_layout, 0, NULL, start_src,
10690 copy_length +
10691 next_step_filler + start_buf_shift,
10692 buf)) {
10693 dprintf("imsm: Cannot save stripes to buffer\n");
10694 goto abort;
10695 }
10696 /* Convert data to destination format and store it
10697 * in backup general migration area
10698 */
10699 if (save_backup_imsm(st, dev, sra,
10700 buf + start_buf_shift, copy_length)) {
10701 dprintf("imsm: Cannot save stripes to target devices\n");
10702 goto abort;
10703 }
10704 if (save_checkpoint_imsm(st, sra,
10705 UNIT_SRC_IN_CP_AREA)) {
10706 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
10707 goto abort;
10708 }
10709 } else {
10710 /* set next step to use whole border area */
10711 border /= next_step;
10712 if (border > 1)
10713 next_step *= border;
10714 }
10715 /* When data backed up, checkpoint stored,
10716 * kick the kernel to reshape unit of data
10717 */
10718 next_step = next_step + sra->reshape_progress;
10719 /* limit next step to array max position */
10720 if (next_step > max_position)
10721 next_step = max_position;
10722 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10723 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
10724 sra->reshape_progress = next_step;
10725
10726 /* wait until reshape finish */
10727 if (wait_for_reshape_imsm(sra, ndata)) {
10728 dprintf("wait_for_reshape_imsm returned error!\n");
10729 goto abort;
10730 }
10731 if (sigterm)
10732 goto abort;
10733
10734 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10735 /* ignore error == 2, this can mean end of reshape here
10736 */
10737 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
10738 goto abort;
10739 }
10740
10741 }
10742
10743 /* clear migr_rec on disks after successful migration */
10744 struct dl *d;
10745
10746 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
10747 for (d = super->disks; d; d = d->next) {
10748 if (d->index < 0 || is_failed(&d->disk))
10749 continue;
10750 unsigned long long dsize;
10751
10752 get_dev_size(d->fd, NULL, &dsize);
10753 if (lseek64(d->fd, dsize - MIGR_REC_POSITION,
10754 SEEK_SET) >= 0) {
10755 if (write(d->fd, super->migr_rec_buf,
10756 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
10757 perror("Write migr_rec failed");
10758 }
10759 }
10760
10761 /* return '1' if done */
10762 ret_val = 1;
10763 abort:
10764 free(buf);
10765 /* See Grow.c: abort_reshape() for further explanation */
10766 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
10767 sysfs_set_num(sra, NULL, "suspend_hi", 0);
10768 sysfs_set_num(sra, NULL, "suspend_lo", 0);
10769
10770 return ret_val;
10771 }
10772
10773 #endif /* MDASSEMBLE */
10774
10775 struct superswitch super_imsm = {
10776 #ifndef MDASSEMBLE
10777 .examine_super = examine_super_imsm,
10778 .brief_examine_super = brief_examine_super_imsm,
10779 .brief_examine_subarrays = brief_examine_subarrays_imsm,
10780 .export_examine_super = export_examine_super_imsm,
10781 .detail_super = detail_super_imsm,
10782 .brief_detail_super = brief_detail_super_imsm,
10783 .write_init_super = write_init_super_imsm,
10784 .validate_geometry = validate_geometry_imsm,
10785 .add_to_super = add_to_super_imsm,
10786 .remove_from_super = remove_from_super_imsm,
10787 .detail_platform = detail_platform_imsm,
10788 .export_detail_platform = export_detail_platform_imsm,
10789 .kill_subarray = kill_subarray_imsm,
10790 .update_subarray = update_subarray_imsm,
10791 .load_container = load_container_imsm,
10792 .default_geometry = default_geometry_imsm,
10793 .get_disk_controller_domain = imsm_get_disk_controller_domain,
10794 .reshape_super = imsm_reshape_super,
10795 .manage_reshape = imsm_manage_reshape,
10796 .recover_backup = recover_backup_imsm,
10797 .copy_metadata = copy_metadata_imsm,
10798 #endif
10799 .match_home = match_home_imsm,
10800 .uuid_from_super= uuid_from_super_imsm,
10801 .getinfo_super = getinfo_super_imsm,
10802 .getinfo_super_disks = getinfo_super_disks_imsm,
10803 .update_super = update_super_imsm,
10804
10805 .avail_size = avail_size_imsm,
10806 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
10807
10808 .compare_super = compare_super_imsm,
10809
10810 .load_super = load_super_imsm,
10811 .init_super = init_super_imsm,
10812 .store_super = store_super_imsm,
10813 .free_super = free_super_imsm,
10814 .match_metadata_desc = match_metadata_desc_imsm,
10815 .container_content = container_content_imsm,
10816 .validate_container = validate_container_imsm,
10817
10818 .external = 1,
10819 .name = "imsm",
10820
10821 #ifndef MDASSEMBLE
10822 /* for mdmon */
10823 .open_new = imsm_open_new,
10824 .set_array_state= imsm_set_array_state,
10825 .set_disk = imsm_set_disk,
10826 .sync_metadata = imsm_sync_metadata,
10827 .activate_spare = imsm_activate_spare,
10828 .process_update = imsm_process_update,
10829 .prepare_update = imsm_prepare_update,
10830 #endif /* MDASSEMBLE */
10831 };