]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
c4196ea1ec685735aabf0d89db4f618627ab9ad8
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE | \
85 MPB_ATTRIB_BBM)
86
87 /* Define attributes that are unused but not harmful */
88 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
89
90 #define MPB_SECTOR_CNT 2210
91 #define IMSM_RESERVED_SECTORS 4096
92 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
93 #define SECT_PER_MB_SHIFT 11
94 #define MAX_SECTOR_SIZE 4096
95
96 /* Disk configuration info. */
97 #define IMSM_MAX_DEVICES 255
98 struct imsm_disk {
99 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
100 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
101 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
102 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
103 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
104 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
105 #define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
106 __u32 status; /* 0xF0 - 0xF3 */
107 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
108 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
109 #define IMSM_DISK_FILLERS 3
110 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
111 };
112
113 /* map selector for map managment
114 */
115 #define MAP_0 0
116 #define MAP_1 1
117 #define MAP_X -1
118
119 /* RAID map configuration infos. */
120 struct imsm_map {
121 __u32 pba_of_lba0_lo; /* start address of partition */
122 __u32 blocks_per_member_lo;/* blocks per member */
123 __u32 num_data_stripes_lo; /* number of data stripes */
124 __u16 blocks_per_strip;
125 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
126 #define IMSM_T_STATE_NORMAL 0
127 #define IMSM_T_STATE_UNINITIALIZED 1
128 #define IMSM_T_STATE_DEGRADED 2
129 #define IMSM_T_STATE_FAILED 3
130 __u8 raid_level;
131 #define IMSM_T_RAID0 0
132 #define IMSM_T_RAID1 1
133 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
134 __u8 num_members; /* number of member disks */
135 __u8 num_domains; /* number of parity domains */
136 __u8 failed_disk_num; /* valid only when state is degraded */
137 __u8 ddf;
138 __u32 pba_of_lba0_hi;
139 __u32 blocks_per_member_hi;
140 __u32 num_data_stripes_hi;
141 __u32 filler[4]; /* expansion area */
142 #define IMSM_ORD_REBUILD (1 << 24)
143 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
144 * top byte contains some flags
145 */
146 } __attribute__ ((packed));
147
148 struct imsm_vol {
149 __u32 curr_migr_unit;
150 __u32 checkpoint_id; /* id to access curr_migr_unit */
151 __u8 migr_state; /* Normal or Migrating */
152 #define MIGR_INIT 0
153 #define MIGR_REBUILD 1
154 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
155 #define MIGR_GEN_MIGR 3
156 #define MIGR_STATE_CHANGE 4
157 #define MIGR_REPAIR 5
158 __u8 migr_type; /* Initializing, Rebuilding, ... */
159 #define RAIDVOL_CLEAN 0
160 #define RAIDVOL_DIRTY 1
161 #define RAIDVOL_DSRECORD_VALID 2
162 __u8 dirty;
163 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
164 __u16 verify_errors; /* number of mismatches */
165 __u16 bad_blocks; /* number of bad blocks during verify */
166 __u32 filler[4];
167 struct imsm_map map[1];
168 /* here comes another one if migr_state */
169 } __attribute__ ((packed));
170
171 struct imsm_dev {
172 __u8 volume[MAX_RAID_SERIAL_LEN];
173 __u32 size_low;
174 __u32 size_high;
175 #define DEV_BOOTABLE __cpu_to_le32(0x01)
176 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
177 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
178 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
179 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
180 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
181 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
182 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
183 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
184 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
185 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
186 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
187 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
188 __u32 status; /* Persistent RaidDev status */
189 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
190 __u8 migr_priority;
191 __u8 num_sub_vols;
192 __u8 tid;
193 __u8 cng_master_disk;
194 __u16 cache_policy;
195 __u8 cng_state;
196 __u8 cng_sub_state;
197 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
198
199 /* NVM_EN */
200 __u8 nv_cache_mode;
201 __u8 nv_cache_flags;
202
203 /* Unique Volume Id of the NvCache Volume associated with this volume */
204 __u32 nvc_vol_orig_family_num;
205 __u16 nvc_vol_raid_dev_num;
206
207 #define RWH_OFF 0
208 #define RWH_DISTRIBUTED 1
209 #define RWH_JOURNALING_DRIVE 2
210 __u8 rwh_policy; /* Raid Write Hole Policy */
211 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
212 __u8 filler1;
213
214 #define IMSM_DEV_FILLERS 3
215 __u32 filler[IMSM_DEV_FILLERS];
216 struct imsm_vol vol;
217 } __attribute__ ((packed));
218
219 struct imsm_super {
220 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
221 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
222 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
223 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
224 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
225 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
226 __u32 attributes; /* 0x34 - 0x37 */
227 __u8 num_disks; /* 0x38 Number of configured disks */
228 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
229 __u8 error_log_pos; /* 0x3A */
230 __u8 fill[1]; /* 0x3B */
231 __u32 cache_size; /* 0x3c - 0x40 in mb */
232 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
233 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
234 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
235 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
236 * volume IDs for raid_dev created in this array
237 * (starts at 1)
238 */
239 __u16 filler1; /* 0x4E - 0x4F */
240 #define IMSM_FILLERS 34
241 __u32 filler[IMSM_FILLERS]; /* 0x50 - 0xD7 RAID_MPB_FILLERS */
242 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
243 /* here comes imsm_dev[num_raid_devs] */
244 /* here comes BBM logs */
245 } __attribute__ ((packed));
246
247 #define BBM_LOG_MAX_ENTRIES 254
248 #define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
249 #define BBM_LOG_SIGNATURE 0xabadb10c
250
251 struct bbm_log_block_addr {
252 __u16 w1;
253 __u32 dw1;
254 } __attribute__ ((__packed__));
255
256 struct bbm_log_entry {
257 __u8 marked_count; /* Number of blocks marked - 1 */
258 __u8 disk_ordinal; /* Disk entry within the imsm_super */
259 struct bbm_log_block_addr defective_block_start;
260 } __attribute__ ((__packed__));
261
262 struct bbm_log {
263 __u32 signature; /* 0xABADB10C */
264 __u32 entry_count;
265 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
266 } __attribute__ ((__packed__));
267
268 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
269
270 #define BLOCKS_PER_KB (1024/512)
271
272 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
273
274 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
275
276 #define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
277 #define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
278 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
279 */
280
281 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
282 * be recovered using srcMap */
283 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
284 * already been migrated and must
285 * be recovered from checkpoint area */
286
287 #define PPL_ENTRY_SPACE (128 * 1024) /* Size of the PPL, without the header */
288
289 struct migr_record {
290 __u32 rec_status; /* Status used to determine how to restart
291 * migration in case it aborts
292 * in some fashion */
293 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
294 __u32 family_num; /* Family number of MPB
295 * containing the RaidDev
296 * that is migrating */
297 __u32 ascending_migr; /* True if migrating in increasing
298 * order of lbas */
299 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
300 __u32 dest_depth_per_unit; /* Num member blocks each destMap
301 * member disk
302 * advances per unit-of-operation */
303 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
304 __u32 dest_1st_member_lba; /* First member lba on first
305 * stripe of destination */
306 __u32 num_migr_units; /* Total num migration units-of-op */
307 __u32 post_migr_vol_cap; /* Size of volume after
308 * migration completes */
309 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
310 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
311 * migration ckpt record was read from
312 * (for recovered migrations) */
313 } __attribute__ ((__packed__));
314
315 struct md_list {
316 /* usage marker:
317 * 1: load metadata
318 * 2: metadata does not match
319 * 4: already checked
320 */
321 int used;
322 char *devname;
323 int found;
324 int container;
325 dev_t st_rdev;
326 struct md_list *next;
327 };
328
329 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
330
331 static __u8 migr_type(struct imsm_dev *dev)
332 {
333 if (dev->vol.migr_type == MIGR_VERIFY &&
334 dev->status & DEV_VERIFY_AND_FIX)
335 return MIGR_REPAIR;
336 else
337 return dev->vol.migr_type;
338 }
339
340 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
341 {
342 /* for compatibility with older oroms convert MIGR_REPAIR, into
343 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
344 */
345 if (migr_type == MIGR_REPAIR) {
346 dev->vol.migr_type = MIGR_VERIFY;
347 dev->status |= DEV_VERIFY_AND_FIX;
348 } else {
349 dev->vol.migr_type = migr_type;
350 dev->status &= ~DEV_VERIFY_AND_FIX;
351 }
352 }
353
354 static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
355 {
356 return ROUND_UP(bytes, sector_size) / sector_size;
357 }
358
359 static unsigned int mpb_sectors(struct imsm_super *mpb,
360 unsigned int sector_size)
361 {
362 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
363 }
364
365 struct intel_dev {
366 struct imsm_dev *dev;
367 struct intel_dev *next;
368 unsigned index;
369 };
370
371 struct intel_hba {
372 enum sys_dev_type type;
373 char *path;
374 char *pci_id;
375 struct intel_hba *next;
376 };
377
378 enum action {
379 DISK_REMOVE = 1,
380 DISK_ADD
381 };
382 /* internal representation of IMSM metadata */
383 struct intel_super {
384 union {
385 void *buf; /* O_DIRECT buffer for reading/writing metadata */
386 struct imsm_super *anchor; /* immovable parameters */
387 };
388 union {
389 void *migr_rec_buf; /* buffer for I/O operations */
390 struct migr_record *migr_rec; /* migration record */
391 };
392 int clean_migration_record_by_mdmon; /* when reshape is switched to next
393 array, it indicates that mdmon is allowed to clean migration
394 record */
395 size_t len; /* size of the 'buf' allocation */
396 size_t extra_space; /* extra space in 'buf' that is not used yet */
397 void *next_buf; /* for realloc'ing buf from the manager */
398 size_t next_len;
399 int updates_pending; /* count of pending updates for mdmon */
400 int current_vol; /* index of raid device undergoing creation */
401 unsigned long long create_offset; /* common start for 'current_vol' */
402 __u32 random; /* random data for seeding new family numbers */
403 struct intel_dev *devlist;
404 unsigned int sector_size; /* sector size of used member drives */
405 struct dl {
406 struct dl *next;
407 int index;
408 __u8 serial[MAX_RAID_SERIAL_LEN];
409 int major, minor;
410 char *devname;
411 struct imsm_disk disk;
412 int fd;
413 int extent_cnt;
414 struct extent *e; /* for determining freespace @ create */
415 int raiddisk; /* slot to fill in autolayout */
416 enum action action;
417 } *disks, *current_disk;
418 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
419 active */
420 struct dl *missing; /* disks removed while we weren't looking */
421 struct bbm_log *bbm_log;
422 struct intel_hba *hba; /* device path of the raid controller for this metadata */
423 const struct imsm_orom *orom; /* platform firmware support */
424 struct intel_super *next; /* (temp) list for disambiguating family_num */
425 struct md_bb bb; /* memory for get_bad_blocks call */
426 };
427
428 struct intel_disk {
429 struct imsm_disk disk;
430 #define IMSM_UNKNOWN_OWNER (-1)
431 int owner;
432 struct intel_disk *next;
433 };
434
435 struct extent {
436 unsigned long long start, size;
437 };
438
439 /* definitions of reshape process types */
440 enum imsm_reshape_type {
441 CH_TAKEOVER,
442 CH_MIGRATION,
443 CH_ARRAY_SIZE,
444 };
445
446 /* definition of messages passed to imsm_process_update */
447 enum imsm_update_type {
448 update_activate_spare,
449 update_create_array,
450 update_kill_array,
451 update_rename_array,
452 update_add_remove_disk,
453 update_reshape_container_disks,
454 update_reshape_migration,
455 update_takeover,
456 update_general_migration_checkpoint,
457 update_size_change,
458 update_prealloc_badblocks_mem,
459 update_rwh_policy,
460 };
461
462 struct imsm_update_activate_spare {
463 enum imsm_update_type type;
464 struct dl *dl;
465 int slot;
466 int array;
467 struct imsm_update_activate_spare *next;
468 };
469
470 struct geo_params {
471 char devnm[32];
472 char *dev_name;
473 unsigned long long size;
474 int level;
475 int layout;
476 int chunksize;
477 int raid_disks;
478 };
479
480 enum takeover_direction {
481 R10_TO_R0,
482 R0_TO_R10
483 };
484 struct imsm_update_takeover {
485 enum imsm_update_type type;
486 int subarray;
487 enum takeover_direction direction;
488 };
489
490 struct imsm_update_reshape {
491 enum imsm_update_type type;
492 int old_raid_disks;
493 int new_raid_disks;
494
495 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
496 };
497
498 struct imsm_update_reshape_migration {
499 enum imsm_update_type type;
500 int old_raid_disks;
501 int new_raid_disks;
502 /* fields for array migration changes
503 */
504 int subdev;
505 int new_level;
506 int new_layout;
507 int new_chunksize;
508
509 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
510 };
511
512 struct imsm_update_size_change {
513 enum imsm_update_type type;
514 int subdev;
515 long long new_size;
516 };
517
518 struct imsm_update_general_migration_checkpoint {
519 enum imsm_update_type type;
520 __u32 curr_migr_unit;
521 };
522
523 struct disk_info {
524 __u8 serial[MAX_RAID_SERIAL_LEN];
525 };
526
527 struct imsm_update_create_array {
528 enum imsm_update_type type;
529 int dev_idx;
530 struct imsm_dev dev;
531 };
532
533 struct imsm_update_kill_array {
534 enum imsm_update_type type;
535 int dev_idx;
536 };
537
538 struct imsm_update_rename_array {
539 enum imsm_update_type type;
540 __u8 name[MAX_RAID_SERIAL_LEN];
541 int dev_idx;
542 };
543
544 struct imsm_update_add_remove_disk {
545 enum imsm_update_type type;
546 };
547
548 struct imsm_update_prealloc_bb_mem {
549 enum imsm_update_type type;
550 };
551
552 struct imsm_update_rwh_policy {
553 enum imsm_update_type type;
554 int new_policy;
555 int dev_idx;
556 };
557
558 static const char *_sys_dev_type[] = {
559 [SYS_DEV_UNKNOWN] = "Unknown",
560 [SYS_DEV_SAS] = "SAS",
561 [SYS_DEV_SATA] = "SATA",
562 [SYS_DEV_NVME] = "NVMe",
563 [SYS_DEV_VMD] = "VMD"
564 };
565
566 const char *get_sys_dev_type(enum sys_dev_type type)
567 {
568 if (type >= SYS_DEV_MAX)
569 type = SYS_DEV_UNKNOWN;
570
571 return _sys_dev_type[type];
572 }
573
574 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
575 {
576 struct intel_hba *result = xmalloc(sizeof(*result));
577
578 result->type = device->type;
579 result->path = xstrdup(device->path);
580 result->next = NULL;
581 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
582 result->pci_id++;
583
584 return result;
585 }
586
587 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
588 {
589 struct intel_hba *result;
590
591 for (result = hba; result; result = result->next) {
592 if (result->type == device->type && strcmp(result->path, device->path) == 0)
593 break;
594 }
595 return result;
596 }
597
598 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
599 {
600 struct intel_hba *hba;
601
602 /* check if disk attached to Intel HBA */
603 hba = find_intel_hba(super->hba, device);
604 if (hba != NULL)
605 return 1;
606 /* Check if HBA is already attached to super */
607 if (super->hba == NULL) {
608 super->hba = alloc_intel_hba(device);
609 return 1;
610 }
611
612 hba = super->hba;
613 /* Intel metadata allows for all disks attached to the same type HBA.
614 * Do not support HBA types mixing
615 */
616 if (device->type != hba->type)
617 return 2;
618
619 /* Multiple same type HBAs can be used if they share the same OROM */
620 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
621
622 if (device_orom != super->orom)
623 return 2;
624
625 while (hba->next)
626 hba = hba->next;
627
628 hba->next = alloc_intel_hba(device);
629 return 1;
630 }
631
632 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
633 {
634 struct sys_dev *list, *elem;
635 char *disk_path;
636
637 if ((list = find_intel_devices()) == NULL)
638 return 0;
639
640 if (fd < 0)
641 disk_path = (char *) devname;
642 else
643 disk_path = diskfd_to_devpath(fd);
644
645 if (!disk_path)
646 return 0;
647
648 for (elem = list; elem; elem = elem->next)
649 if (path_attached_to_hba(disk_path, elem->path))
650 return elem;
651
652 if (disk_path != devname)
653 free(disk_path);
654
655 return NULL;
656 }
657
658 static int find_intel_hba_capability(int fd, struct intel_super *super,
659 char *devname);
660
661 static struct supertype *match_metadata_desc_imsm(char *arg)
662 {
663 struct supertype *st;
664
665 if (strcmp(arg, "imsm") != 0 &&
666 strcmp(arg, "default") != 0
667 )
668 return NULL;
669
670 st = xcalloc(1, sizeof(*st));
671 st->ss = &super_imsm;
672 st->max_devs = IMSM_MAX_DEVICES;
673 st->minor_version = 0;
674 st->sb = NULL;
675 return st;
676 }
677
678 static __u8 *get_imsm_version(struct imsm_super *mpb)
679 {
680 return &mpb->sig[MPB_SIG_LEN];
681 }
682
683 /* retrieve a disk directly from the anchor when the anchor is known to be
684 * up-to-date, currently only at load time
685 */
686 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
687 {
688 if (index >= mpb->num_disks)
689 return NULL;
690 return &mpb->disk[index];
691 }
692
693 /* retrieve the disk description based on a index of the disk
694 * in the sub-array
695 */
696 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
697 {
698 struct dl *d;
699
700 for (d = super->disks; d; d = d->next)
701 if (d->index == index)
702 return d;
703
704 return NULL;
705 }
706 /* retrieve a disk from the parsed metadata */
707 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
708 {
709 struct dl *dl;
710
711 dl = get_imsm_dl_disk(super, index);
712 if (dl)
713 return &dl->disk;
714
715 return NULL;
716 }
717
718 /* generate a checksum directly from the anchor when the anchor is known to be
719 * up-to-date, currently only at load or write_super after coalescing
720 */
721 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
722 {
723 __u32 end = mpb->mpb_size / sizeof(end);
724 __u32 *p = (__u32 *) mpb;
725 __u32 sum = 0;
726
727 while (end--) {
728 sum += __le32_to_cpu(*p);
729 p++;
730 }
731
732 return sum - __le32_to_cpu(mpb->check_sum);
733 }
734
735 static size_t sizeof_imsm_map(struct imsm_map *map)
736 {
737 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
738 }
739
740 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
741 {
742 /* A device can have 2 maps if it is in the middle of a migration.
743 * If second_map is:
744 * MAP_0 - we return the first map
745 * MAP_1 - we return the second map if it exists, else NULL
746 * MAP_X - we return the second map if it exists, else the first
747 */
748 struct imsm_map *map = &dev->vol.map[0];
749 struct imsm_map *map2 = NULL;
750
751 if (dev->vol.migr_state)
752 map2 = (void *)map + sizeof_imsm_map(map);
753
754 switch (second_map) {
755 case MAP_0:
756 break;
757 case MAP_1:
758 map = map2;
759 break;
760 case MAP_X:
761 if (map2)
762 map = map2;
763 break;
764 default:
765 map = NULL;
766 }
767 return map;
768
769 }
770
771 /* return the size of the device.
772 * migr_state increases the returned size if map[0] were to be duplicated
773 */
774 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
775 {
776 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
777 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
778
779 /* migrating means an additional map */
780 if (dev->vol.migr_state)
781 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
782 else if (migr_state)
783 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
784
785 return size;
786 }
787
788 /* retrieve disk serial number list from a metadata update */
789 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
790 {
791 void *u = update;
792 struct disk_info *inf;
793
794 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
795 sizeof_imsm_dev(&update->dev, 0);
796
797 return inf;
798 }
799
800 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
801 {
802 int offset;
803 int i;
804 void *_mpb = mpb;
805
806 if (index >= mpb->num_raid_devs)
807 return NULL;
808
809 /* devices start after all disks */
810 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
811
812 for (i = 0; i <= index; i++)
813 if (i == index)
814 return _mpb + offset;
815 else
816 offset += sizeof_imsm_dev(_mpb + offset, 0);
817
818 return NULL;
819 }
820
821 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
822 {
823 struct intel_dev *dv;
824
825 if (index >= super->anchor->num_raid_devs)
826 return NULL;
827 for (dv = super->devlist; dv; dv = dv->next)
828 if (dv->index == index)
829 return dv->dev;
830 return NULL;
831 }
832
833 static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
834 *addr)
835 {
836 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
837 __le16_to_cpu(addr->w1));
838 }
839
840 static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
841 {
842 struct bbm_log_block_addr addr;
843
844 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
845 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
846 return addr;
847 }
848
849 /* get size of the bbm log */
850 static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
851 {
852 if (!log || log->entry_count == 0)
853 return 0;
854
855 return sizeof(log->signature) +
856 sizeof(log->entry_count) +
857 log->entry_count * sizeof(struct bbm_log_entry);
858 }
859
860 /* check if bad block is not partially stored in bbm log */
861 static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
862 long long sector, const int length, __u32 *pos)
863 {
864 __u32 i;
865
866 for (i = *pos; i < log->entry_count; i++) {
867 struct bbm_log_entry *entry = &log->marked_block_entries[i];
868 unsigned long long bb_start;
869 unsigned long long bb_end;
870
871 bb_start = __le48_to_cpu(&entry->defective_block_start);
872 bb_end = bb_start + (entry->marked_count + 1);
873
874 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
875 (bb_end <= sector + length)) {
876 *pos = i;
877 return 1;
878 }
879 }
880 return 0;
881 }
882
883 /* record new bad block in bbm log */
884 static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
885 long long sector, int length)
886 {
887 int new_bb = 0;
888 __u32 pos = 0;
889 struct bbm_log_entry *entry = NULL;
890
891 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
892 struct bbm_log_entry *e = &log->marked_block_entries[pos];
893
894 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
895 (__le48_to_cpu(&e->defective_block_start) == sector)) {
896 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
897 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
898 pos = pos + 1;
899 continue;
900 }
901 entry = e;
902 break;
903 }
904
905 if (entry) {
906 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
907 BBM_LOG_MAX_LBA_ENTRY_VAL;
908 entry->defective_block_start = __cpu_to_le48(sector);
909 entry->marked_count = cnt - 1;
910 if (cnt == length)
911 return 1;
912 sector += cnt;
913 length -= cnt;
914 }
915
916 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
917 BBM_LOG_MAX_LBA_ENTRY_VAL;
918 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
919 return 0;
920
921 while (length > 0) {
922 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
923 BBM_LOG_MAX_LBA_ENTRY_VAL;
924 struct bbm_log_entry *entry =
925 &log->marked_block_entries[log->entry_count];
926
927 entry->defective_block_start = __cpu_to_le48(sector);
928 entry->marked_count = cnt - 1;
929 entry->disk_ordinal = idx;
930
931 sector += cnt;
932 length -= cnt;
933
934 log->entry_count++;
935 }
936
937 return new_bb;
938 }
939
940 /* clear all bad blocks for given disk */
941 static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
942 {
943 __u32 i = 0;
944
945 while (i < log->entry_count) {
946 struct bbm_log_entry *entries = log->marked_block_entries;
947
948 if (entries[i].disk_ordinal == idx) {
949 if (i < log->entry_count - 1)
950 entries[i] = entries[log->entry_count - 1];
951 log->entry_count--;
952 } else {
953 i++;
954 }
955 }
956 }
957
958 /* clear given bad block */
959 static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
960 long long sector, const int length) {
961 __u32 i = 0;
962
963 while (i < log->entry_count) {
964 struct bbm_log_entry *entries = log->marked_block_entries;
965
966 if ((entries[i].disk_ordinal == idx) &&
967 (__le48_to_cpu(&entries[i].defective_block_start) ==
968 sector) && (entries[i].marked_count + 1 == length)) {
969 if (i < log->entry_count - 1)
970 entries[i] = entries[log->entry_count - 1];
971 log->entry_count--;
972 break;
973 }
974 i++;
975 }
976
977 return 1;
978 }
979
980 /* allocate and load BBM log from metadata */
981 static int load_bbm_log(struct intel_super *super)
982 {
983 struct imsm_super *mpb = super->anchor;
984 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
985
986 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
987 if (!super->bbm_log)
988 return 1;
989
990 if (bbm_log_size) {
991 struct bbm_log *log = (void *)mpb +
992 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
993
994 __u32 entry_count;
995
996 if (bbm_log_size < sizeof(log->signature) +
997 sizeof(log->entry_count))
998 return 2;
999
1000 entry_count = __le32_to_cpu(log->entry_count);
1001 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1002 (entry_count > BBM_LOG_MAX_ENTRIES))
1003 return 3;
1004
1005 if (bbm_log_size !=
1006 sizeof(log->signature) + sizeof(log->entry_count) +
1007 entry_count * sizeof(struct bbm_log_entry))
1008 return 4;
1009
1010 memcpy(super->bbm_log, log, bbm_log_size);
1011 } else {
1012 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1013 super->bbm_log->entry_count = 0;
1014 }
1015
1016 return 0;
1017 }
1018
1019 /* checks if bad block is within volume boundaries */
1020 static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1021 const unsigned long long start_sector,
1022 const unsigned long long size)
1023 {
1024 unsigned long long bb_start;
1025 unsigned long long bb_end;
1026
1027 bb_start = __le48_to_cpu(&entry->defective_block_start);
1028 bb_end = bb_start + (entry->marked_count + 1);
1029
1030 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1031 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1032 return 1;
1033
1034 return 0;
1035 }
1036
1037 /* get list of bad blocks on a drive for a volume */
1038 static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1039 const unsigned long long start_sector,
1040 const unsigned long long size,
1041 struct md_bb *bbs)
1042 {
1043 __u32 count = 0;
1044 __u32 i;
1045
1046 for (i = 0; i < log->entry_count; i++) {
1047 const struct bbm_log_entry *ent =
1048 &log->marked_block_entries[i];
1049 struct md_bb_entry *bb;
1050
1051 if ((ent->disk_ordinal == idx) &&
1052 is_bad_block_in_volume(ent, start_sector, size)) {
1053
1054 if (!bbs->entries) {
1055 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1056 sizeof(*bb));
1057 if (!bbs->entries)
1058 break;
1059 }
1060
1061 bb = &bbs->entries[count++];
1062 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1063 bb->length = ent->marked_count + 1;
1064 }
1065 }
1066 bbs->count = count;
1067 }
1068
1069 /*
1070 * for second_map:
1071 * == MAP_0 get first map
1072 * == MAP_1 get second map
1073 * == MAP_X than get map according to the current migr_state
1074 */
1075 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1076 int slot,
1077 int second_map)
1078 {
1079 struct imsm_map *map;
1080
1081 map = get_imsm_map(dev, second_map);
1082
1083 /* top byte identifies disk under rebuild */
1084 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1085 }
1086
1087 #define ord_to_idx(ord) (((ord) << 8) >> 8)
1088 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
1089 {
1090 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
1091
1092 return ord_to_idx(ord);
1093 }
1094
1095 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1096 {
1097 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1098 }
1099
1100 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
1101 {
1102 int slot;
1103 __u32 ord;
1104
1105 for (slot = 0; slot < map->num_members; slot++) {
1106 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1107 if (ord_to_idx(ord) == idx)
1108 return slot;
1109 }
1110
1111 return -1;
1112 }
1113
1114 static int get_imsm_raid_level(struct imsm_map *map)
1115 {
1116 if (map->raid_level == 1) {
1117 if (map->num_members == 2)
1118 return 1;
1119 else
1120 return 10;
1121 }
1122
1123 return map->raid_level;
1124 }
1125
1126 static int cmp_extent(const void *av, const void *bv)
1127 {
1128 const struct extent *a = av;
1129 const struct extent *b = bv;
1130 if (a->start < b->start)
1131 return -1;
1132 if (a->start > b->start)
1133 return 1;
1134 return 0;
1135 }
1136
1137 static int count_memberships(struct dl *dl, struct intel_super *super)
1138 {
1139 int memberships = 0;
1140 int i;
1141
1142 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1143 struct imsm_dev *dev = get_imsm_dev(super, i);
1144 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1145
1146 if (get_imsm_disk_slot(map, dl->index) >= 0)
1147 memberships++;
1148 }
1149
1150 return memberships;
1151 }
1152
1153 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1154
1155 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
1156 {
1157 if (lo == 0 || hi == 0)
1158 return 1;
1159 *lo = __le32_to_cpu((unsigned)n);
1160 *hi = __le32_to_cpu((unsigned)(n >> 32));
1161 return 0;
1162 }
1163
1164 static unsigned long long join_u32(__u32 lo, __u32 hi)
1165 {
1166 return (unsigned long long)__le32_to_cpu(lo) |
1167 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1168 }
1169
1170 static unsigned long long total_blocks(struct imsm_disk *disk)
1171 {
1172 if (disk == NULL)
1173 return 0;
1174 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1175 }
1176
1177 static unsigned long long pba_of_lba0(struct imsm_map *map)
1178 {
1179 if (map == NULL)
1180 return 0;
1181 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1182 }
1183
1184 static unsigned long long blocks_per_member(struct imsm_map *map)
1185 {
1186 if (map == NULL)
1187 return 0;
1188 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1189 }
1190
1191 static unsigned long long num_data_stripes(struct imsm_map *map)
1192 {
1193 if (map == NULL)
1194 return 0;
1195 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1196 }
1197
1198 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1199 {
1200 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1201 }
1202
1203 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1204 {
1205 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1206 }
1207
1208 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1209 {
1210 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1211 }
1212
1213 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1214 {
1215 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1216 }
1217
1218 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
1219 {
1220 /* find a list of used extents on the given physical device */
1221 struct extent *rv, *e;
1222 int i;
1223 int memberships = count_memberships(dl, super);
1224 __u32 reservation;
1225
1226 /* trim the reserved area for spares, so they can join any array
1227 * regardless of whether the OROM has assigned sectors from the
1228 * IMSM_RESERVED_SECTORS region
1229 */
1230 if (dl->index == -1)
1231 reservation = imsm_min_reserved_sectors(super);
1232 else
1233 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1234
1235 rv = xcalloc(sizeof(struct extent), (memberships + 1));
1236 e = rv;
1237
1238 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1239 struct imsm_dev *dev = get_imsm_dev(super, i);
1240 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1241
1242 if (get_imsm_disk_slot(map, dl->index) >= 0) {
1243 e->start = pba_of_lba0(map);
1244 e->size = blocks_per_member(map);
1245 e++;
1246 }
1247 }
1248 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1249
1250 /* determine the start of the metadata
1251 * when no raid devices are defined use the default
1252 * ...otherwise allow the metadata to truncate the value
1253 * as is the case with older versions of imsm
1254 */
1255 if (memberships) {
1256 struct extent *last = &rv[memberships - 1];
1257 unsigned long long remainder;
1258
1259 remainder = total_blocks(&dl->disk) - (last->start + last->size);
1260 /* round down to 1k block to satisfy precision of the kernel
1261 * 'size' interface
1262 */
1263 remainder &= ~1UL;
1264 /* make sure remainder is still sane */
1265 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
1266 remainder = ROUND_UP(super->len, 512) >> 9;
1267 if (reservation > remainder)
1268 reservation = remainder;
1269 }
1270 e->start = total_blocks(&dl->disk) - reservation;
1271 e->size = 0;
1272 return rv;
1273 }
1274
1275 /* try to determine how much space is reserved for metadata from
1276 * the last get_extents() entry, otherwise fallback to the
1277 * default
1278 */
1279 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1280 {
1281 struct extent *e;
1282 int i;
1283 __u32 rv;
1284
1285 /* for spares just return a minimal reservation which will grow
1286 * once the spare is picked up by an array
1287 */
1288 if (dl->index == -1)
1289 return MPB_SECTOR_CNT;
1290
1291 e = get_extents(super, dl);
1292 if (!e)
1293 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1294
1295 /* scroll to last entry */
1296 for (i = 0; e[i].size; i++)
1297 continue;
1298
1299 rv = total_blocks(&dl->disk) - e[i].start;
1300
1301 free(e);
1302
1303 return rv;
1304 }
1305
1306 static int is_spare(struct imsm_disk *disk)
1307 {
1308 return (disk->status & SPARE_DISK) == SPARE_DISK;
1309 }
1310
1311 static int is_configured(struct imsm_disk *disk)
1312 {
1313 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1314 }
1315
1316 static int is_failed(struct imsm_disk *disk)
1317 {
1318 return (disk->status & FAILED_DISK) == FAILED_DISK;
1319 }
1320
1321 static int is_journal(struct imsm_disk *disk)
1322 {
1323 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1324 }
1325
1326 /* round array size down to closest MB and ensure it splits evenly
1327 * between members
1328 */
1329 static unsigned long long round_size_to_mb(unsigned long long size, unsigned int
1330 disk_count)
1331 {
1332 size /= disk_count;
1333 size = (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1334 size *= disk_count;
1335
1336 return size;
1337 }
1338
1339 /* try to determine how much space is reserved for metadata from
1340 * the last get_extents() entry on the smallest active disk,
1341 * otherwise fallback to the default
1342 */
1343 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1344 {
1345 struct extent *e;
1346 int i;
1347 unsigned long long min_active;
1348 __u32 remainder;
1349 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1350 struct dl *dl, *dl_min = NULL;
1351
1352 if (!super)
1353 return rv;
1354
1355 min_active = 0;
1356 for (dl = super->disks; dl; dl = dl->next) {
1357 if (dl->index < 0)
1358 continue;
1359 unsigned long long blocks = total_blocks(&dl->disk);
1360 if (blocks < min_active || min_active == 0) {
1361 dl_min = dl;
1362 min_active = blocks;
1363 }
1364 }
1365 if (!dl_min)
1366 return rv;
1367
1368 /* find last lba used by subarrays on the smallest active disk */
1369 e = get_extents(super, dl_min);
1370 if (!e)
1371 return rv;
1372 for (i = 0; e[i].size; i++)
1373 continue;
1374
1375 remainder = min_active - e[i].start;
1376 free(e);
1377
1378 /* to give priority to recovery we should not require full
1379 IMSM_RESERVED_SECTORS from the spare */
1380 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1381
1382 /* if real reservation is smaller use that value */
1383 return (remainder < rv) ? remainder : rv;
1384 }
1385
1386 /* Return minimum size of a spare that can be used in this array*/
1387 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1388 {
1389 struct intel_super *super = st->sb;
1390 struct dl *dl;
1391 struct extent *e;
1392 int i;
1393 unsigned long long rv = 0;
1394
1395 if (!super)
1396 return rv;
1397 /* find first active disk in array */
1398 dl = super->disks;
1399 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1400 dl = dl->next;
1401 if (!dl)
1402 return rv;
1403 /* find last lba used by subarrays */
1404 e = get_extents(super, dl);
1405 if (!e)
1406 return rv;
1407 for (i = 0; e[i].size; i++)
1408 continue;
1409 if (i > 0)
1410 rv = e[i-1].start + e[i-1].size;
1411 free(e);
1412
1413 /* add the amount of space needed for metadata */
1414 rv = rv + imsm_min_reserved_sectors(super);
1415
1416 return rv * 512;
1417 }
1418
1419 static int is_gen_migration(struct imsm_dev *dev);
1420
1421 #define IMSM_4K_DIV 8
1422
1423 static __u64 blocks_per_migr_unit(struct intel_super *super,
1424 struct imsm_dev *dev);
1425
1426 static void print_imsm_dev(struct intel_super *super,
1427 struct imsm_dev *dev,
1428 char *uuid,
1429 int disk_idx)
1430 {
1431 __u64 sz;
1432 int slot, i;
1433 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1434 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1435 __u32 ord;
1436
1437 printf("\n");
1438 printf("[%.16s]:\n", dev->volume);
1439 printf(" UUID : %s\n", uuid);
1440 printf(" RAID Level : %d", get_imsm_raid_level(map));
1441 if (map2)
1442 printf(" <-- %d", get_imsm_raid_level(map2));
1443 printf("\n");
1444 printf(" Members : %d", map->num_members);
1445 if (map2)
1446 printf(" <-- %d", map2->num_members);
1447 printf("\n");
1448 printf(" Slots : [");
1449 for (i = 0; i < map->num_members; i++) {
1450 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1451 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1452 }
1453 printf("]");
1454 if (map2) {
1455 printf(" <-- [");
1456 for (i = 0; i < map2->num_members; i++) {
1457 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1458 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1459 }
1460 printf("]");
1461 }
1462 printf("\n");
1463 printf(" Failed disk : ");
1464 if (map->failed_disk_num == 0xff)
1465 printf("none");
1466 else
1467 printf("%i", map->failed_disk_num);
1468 printf("\n");
1469 slot = get_imsm_disk_slot(map, disk_idx);
1470 if (slot >= 0) {
1471 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1472 printf(" This Slot : %d%s\n", slot,
1473 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1474 } else
1475 printf(" This Slot : ?\n");
1476 sz = __le32_to_cpu(dev->size_high);
1477 sz <<= 32;
1478 sz += __le32_to_cpu(dev->size_low);
1479 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1480 human_size(sz * 512));
1481 sz = blocks_per_member(map);
1482 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1483 human_size(sz * 512));
1484 printf(" Sector Offset : %llu\n",
1485 pba_of_lba0(map));
1486 printf(" Num Stripes : %llu\n",
1487 num_data_stripes(map));
1488 printf(" Chunk Size : %u KiB",
1489 __le16_to_cpu(map->blocks_per_strip) / 2);
1490 if (map2)
1491 printf(" <-- %u KiB",
1492 __le16_to_cpu(map2->blocks_per_strip) / 2);
1493 printf("\n");
1494 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1495 printf(" Migrate State : ");
1496 if (dev->vol.migr_state) {
1497 if (migr_type(dev) == MIGR_INIT)
1498 printf("initialize\n");
1499 else if (migr_type(dev) == MIGR_REBUILD)
1500 printf("rebuild\n");
1501 else if (migr_type(dev) == MIGR_VERIFY)
1502 printf("check\n");
1503 else if (migr_type(dev) == MIGR_GEN_MIGR)
1504 printf("general migration\n");
1505 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1506 printf("state change\n");
1507 else if (migr_type(dev) == MIGR_REPAIR)
1508 printf("repair\n");
1509 else
1510 printf("<unknown:%d>\n", migr_type(dev));
1511 } else
1512 printf("idle\n");
1513 printf(" Map State : %s", map_state_str[map->map_state]);
1514 if (dev->vol.migr_state) {
1515 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1516
1517 printf(" <-- %s", map_state_str[map->map_state]);
1518 printf("\n Checkpoint : %u ",
1519 __le32_to_cpu(dev->vol.curr_migr_unit));
1520 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
1521 printf("(N/A)");
1522 else
1523 printf("(%llu)", (unsigned long long)
1524 blocks_per_migr_unit(super, dev));
1525 }
1526 printf("\n");
1527 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1528 "dirty" : "clean");
1529 printf(" RWH Policy : ");
1530 if (dev->rwh_policy == RWH_OFF)
1531 printf("off\n");
1532 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1533 printf("PPL distributed\n");
1534 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1535 printf("PPL journaling drive\n");
1536 else
1537 printf("<unknown:%d>\n", dev->rwh_policy);
1538 }
1539
1540 static void print_imsm_disk(struct imsm_disk *disk,
1541 int index,
1542 __u32 reserved,
1543 unsigned int sector_size) {
1544 char str[MAX_RAID_SERIAL_LEN + 1];
1545 __u64 sz;
1546
1547 if (index < -1 || !disk)
1548 return;
1549
1550 printf("\n");
1551 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1552 if (index >= 0)
1553 printf(" Disk%02d Serial : %s\n", index, str);
1554 else
1555 printf(" Disk Serial : %s\n", str);
1556 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1557 is_configured(disk) ? " active" : "",
1558 is_failed(disk) ? " failed" : "",
1559 is_journal(disk) ? " journal" : "");
1560 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1561 sz = total_blocks(disk) - reserved;
1562 printf(" Usable Size : %llu%s\n",
1563 (unsigned long long)sz * 512 / sector_size,
1564 human_size(sz * 512));
1565 }
1566
1567 void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1568 {
1569 struct migr_record *migr_rec = super->migr_rec;
1570
1571 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
1572 migr_rec->ckpt_area_pba /= IMSM_4K_DIV;
1573 migr_rec->dest_1st_member_lba /= IMSM_4K_DIV;
1574 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1575 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1576 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1577 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
1578 }
1579
1580 void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1581 {
1582 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1583 }
1584
1585 void convert_to_4k(struct intel_super *super)
1586 {
1587 struct imsm_super *mpb = super->anchor;
1588 struct imsm_disk *disk;
1589 int i;
1590 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1591
1592 for (i = 0; i < mpb->num_disks ; i++) {
1593 disk = __get_imsm_disk(mpb, i);
1594 /* disk */
1595 convert_to_4k_imsm_disk(disk);
1596 }
1597 for (i = 0; i < mpb->num_raid_devs; i++) {
1598 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1599 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1600 /* dev */
1601 split_ull((join_u32(dev->size_low, dev->size_high)/IMSM_4K_DIV),
1602 &dev->size_low, &dev->size_high);
1603 dev->vol.curr_migr_unit /= IMSM_4K_DIV;
1604
1605 /* map0 */
1606 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1607 map->blocks_per_strip /= IMSM_4K_DIV;
1608 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1609
1610 if (dev->vol.migr_state) {
1611 /* map1 */
1612 map = get_imsm_map(dev, MAP_1);
1613 set_blocks_per_member(map,
1614 blocks_per_member(map)/IMSM_4K_DIV);
1615 map->blocks_per_strip /= IMSM_4K_DIV;
1616 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1617 }
1618 }
1619 if (bbm_log_size) {
1620 struct bbm_log *log = (void *)mpb +
1621 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1622 __u32 i;
1623
1624 for (i = 0; i < log->entry_count; i++) {
1625 struct bbm_log_entry *entry =
1626 &log->marked_block_entries[i];
1627
1628 __u8 count = entry->marked_count + 1;
1629 unsigned long long sector =
1630 __le48_to_cpu(&entry->defective_block_start);
1631
1632 entry->defective_block_start =
1633 __cpu_to_le48(sector/IMSM_4K_DIV);
1634 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
1635 }
1636 }
1637
1638 mpb->check_sum = __gen_imsm_checksum(mpb);
1639 }
1640
1641 void examine_migr_rec_imsm(struct intel_super *super)
1642 {
1643 struct migr_record *migr_rec = super->migr_rec;
1644 struct imsm_super *mpb = super->anchor;
1645 int i;
1646
1647 for (i = 0; i < mpb->num_raid_devs; i++) {
1648 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1649 struct imsm_map *map;
1650 int slot = -1;
1651
1652 if (is_gen_migration(dev) == 0)
1653 continue;
1654
1655 printf("\nMigration Record Information:");
1656
1657 /* first map under migration */
1658 map = get_imsm_map(dev, MAP_0);
1659 if (map)
1660 slot = get_imsm_disk_slot(map, super->disks->index);
1661 if (map == NULL || slot > 1 || slot < 0) {
1662 printf(" Empty\n ");
1663 printf("Examine one of first two disks in array\n");
1664 break;
1665 }
1666 printf("\n Status : ");
1667 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1668 printf("Normal\n");
1669 else
1670 printf("Contains Data\n");
1671 printf(" Current Unit : %u\n",
1672 __le32_to_cpu(migr_rec->curr_migr_unit));
1673 printf(" Family : %u\n",
1674 __le32_to_cpu(migr_rec->family_num));
1675 printf(" Ascending : %u\n",
1676 __le32_to_cpu(migr_rec->ascending_migr));
1677 printf(" Blocks Per Unit : %u\n",
1678 __le32_to_cpu(migr_rec->blocks_per_unit));
1679 printf(" Dest. Depth Per Unit : %u\n",
1680 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1681 printf(" Checkpoint Area pba : %u\n",
1682 __le32_to_cpu(migr_rec->ckpt_area_pba));
1683 printf(" First member lba : %u\n",
1684 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1685 printf(" Total Number of Units : %u\n",
1686 __le32_to_cpu(migr_rec->num_migr_units));
1687 printf(" Size of volume : %u\n",
1688 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1689 printf(" Expansion space for LBA64 : %u\n",
1690 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1691 printf(" Record was read from : %u\n",
1692 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1693
1694 break;
1695 }
1696 }
1697
1698 void convert_from_4k_imsm_migr_rec(struct intel_super *super)
1699 {
1700 struct migr_record *migr_rec = super->migr_rec;
1701
1702 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
1703 migr_rec->ckpt_area_pba *= IMSM_4K_DIV;
1704 migr_rec->dest_1st_member_lba *= IMSM_4K_DIV;
1705 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
1706 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1707 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
1708 &migr_rec->post_migr_vol_cap,
1709 &migr_rec->post_migr_vol_cap_hi);
1710 }
1711
1712 void convert_from_4k(struct intel_super *super)
1713 {
1714 struct imsm_super *mpb = super->anchor;
1715 struct imsm_disk *disk;
1716 int i;
1717 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1718
1719 for (i = 0; i < mpb->num_disks ; i++) {
1720 disk = __get_imsm_disk(mpb, i);
1721 /* disk */
1722 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
1723 }
1724
1725 for (i = 0; i < mpb->num_raid_devs; i++) {
1726 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1727 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1728 /* dev */
1729 split_ull((join_u32(dev->size_low, dev->size_high)*IMSM_4K_DIV),
1730 &dev->size_low, &dev->size_high);
1731 dev->vol.curr_migr_unit *= IMSM_4K_DIV;
1732
1733 /* map0 */
1734 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
1735 map->blocks_per_strip *= IMSM_4K_DIV;
1736 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1737
1738 if (dev->vol.migr_state) {
1739 /* map1 */
1740 map = get_imsm_map(dev, MAP_1);
1741 set_blocks_per_member(map,
1742 blocks_per_member(map)*IMSM_4K_DIV);
1743 map->blocks_per_strip *= IMSM_4K_DIV;
1744 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
1745 }
1746 }
1747 if (bbm_log_size) {
1748 struct bbm_log *log = (void *)mpb +
1749 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1750 __u32 i;
1751
1752 for (i = 0; i < log->entry_count; i++) {
1753 struct bbm_log_entry *entry =
1754 &log->marked_block_entries[i];
1755
1756 __u8 count = entry->marked_count + 1;
1757 unsigned long long sector =
1758 __le48_to_cpu(&entry->defective_block_start);
1759
1760 entry->defective_block_start =
1761 __cpu_to_le48(sector*IMSM_4K_DIV);
1762 entry->marked_count = count*IMSM_4K_DIV - 1;
1763 }
1764 }
1765
1766 mpb->check_sum = __gen_imsm_checksum(mpb);
1767 }
1768
1769 /*******************************************************************************
1770 * function: imsm_check_attributes
1771 * Description: Function checks if features represented by attributes flags
1772 * are supported by mdadm.
1773 * Parameters:
1774 * attributes - Attributes read from metadata
1775 * Returns:
1776 * 0 - passed attributes contains unsupported features flags
1777 * 1 - all features are supported
1778 ******************************************************************************/
1779 static int imsm_check_attributes(__u32 attributes)
1780 {
1781 int ret_val = 1;
1782 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1783
1784 not_supported &= ~MPB_ATTRIB_IGNORED;
1785
1786 not_supported &= attributes;
1787 if (not_supported) {
1788 pr_err("(IMSM): Unsupported attributes : %x\n",
1789 (unsigned)__le32_to_cpu(not_supported));
1790 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1791 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1792 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1793 }
1794 if (not_supported & MPB_ATTRIB_2TB) {
1795 dprintf("\t\tMPB_ATTRIB_2TB\n");
1796 not_supported ^= MPB_ATTRIB_2TB;
1797 }
1798 if (not_supported & MPB_ATTRIB_RAID0) {
1799 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1800 not_supported ^= MPB_ATTRIB_RAID0;
1801 }
1802 if (not_supported & MPB_ATTRIB_RAID1) {
1803 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1804 not_supported ^= MPB_ATTRIB_RAID1;
1805 }
1806 if (not_supported & MPB_ATTRIB_RAID10) {
1807 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1808 not_supported ^= MPB_ATTRIB_RAID10;
1809 }
1810 if (not_supported & MPB_ATTRIB_RAID1E) {
1811 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1812 not_supported ^= MPB_ATTRIB_RAID1E;
1813 }
1814 if (not_supported & MPB_ATTRIB_RAID5) {
1815 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1816 not_supported ^= MPB_ATTRIB_RAID5;
1817 }
1818 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1819 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1820 not_supported ^= MPB_ATTRIB_RAIDCNG;
1821 }
1822 if (not_supported & MPB_ATTRIB_BBM) {
1823 dprintf("\t\tMPB_ATTRIB_BBM\n");
1824 not_supported ^= MPB_ATTRIB_BBM;
1825 }
1826 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1827 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1828 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1829 }
1830 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1831 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1832 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1833 }
1834 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1835 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1836 not_supported ^= MPB_ATTRIB_2TB_DISK;
1837 }
1838 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1839 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1840 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1841 }
1842 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1843 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1844 not_supported ^= MPB_ATTRIB_NEVER_USE;
1845 }
1846
1847 if (not_supported)
1848 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
1849
1850 ret_val = 0;
1851 }
1852
1853 return ret_val;
1854 }
1855
1856 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1857
1858 static void examine_super_imsm(struct supertype *st, char *homehost)
1859 {
1860 struct intel_super *super = st->sb;
1861 struct imsm_super *mpb = super->anchor;
1862 char str[MAX_SIGNATURE_LENGTH];
1863 int i;
1864 struct mdinfo info;
1865 char nbuf[64];
1866 __u32 sum;
1867 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1868 struct dl *dl;
1869
1870 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
1871 str[MPB_SIG_LEN-1] = '\0';
1872 printf(" Magic : %s\n", str);
1873 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1874 printf(" Version : %s\n", get_imsm_version(mpb));
1875 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1876 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1877 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1878 printf(" Attributes : ");
1879 if (imsm_check_attributes(mpb->attributes))
1880 printf("All supported\n");
1881 else
1882 printf("not supported\n");
1883 getinfo_super_imsm(st, &info, NULL);
1884 fname_from_uuid(st, &info, nbuf, ':');
1885 printf(" UUID : %s\n", nbuf + 5);
1886 sum = __le32_to_cpu(mpb->check_sum);
1887 printf(" Checksum : %08x %s\n", sum,
1888 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1889 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
1890 printf(" Disks : %d\n", mpb->num_disks);
1891 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1892 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
1893 super->disks->index, reserved, super->sector_size);
1894 if (get_imsm_bbm_log_size(super->bbm_log)) {
1895 struct bbm_log *log = super->bbm_log;
1896
1897 printf("\n");
1898 printf("Bad Block Management Log:\n");
1899 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1900 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1901 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1902 }
1903 for (i = 0; i < mpb->num_raid_devs; i++) {
1904 struct mdinfo info;
1905 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1906
1907 super->current_vol = i;
1908 getinfo_super_imsm(st, &info, NULL);
1909 fname_from_uuid(st, &info, nbuf, ':');
1910 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1911 }
1912 for (i = 0; i < mpb->num_disks; i++) {
1913 if (i == super->disks->index)
1914 continue;
1915 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
1916 super->sector_size);
1917 }
1918
1919 for (dl = super->disks; dl; dl = dl->next)
1920 if (dl->index == -1)
1921 print_imsm_disk(&dl->disk, -1, reserved,
1922 super->sector_size);
1923
1924 examine_migr_rec_imsm(super);
1925 }
1926
1927 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1928 {
1929 /* We just write a generic IMSM ARRAY entry */
1930 struct mdinfo info;
1931 char nbuf[64];
1932 struct intel_super *super = st->sb;
1933
1934 if (!super->anchor->num_raid_devs) {
1935 printf("ARRAY metadata=imsm\n");
1936 return;
1937 }
1938
1939 getinfo_super_imsm(st, &info, NULL);
1940 fname_from_uuid(st, &info, nbuf, ':');
1941 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1942 }
1943
1944 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1945 {
1946 /* We just write a generic IMSM ARRAY entry */
1947 struct mdinfo info;
1948 char nbuf[64];
1949 char nbuf1[64];
1950 struct intel_super *super = st->sb;
1951 int i;
1952
1953 if (!super->anchor->num_raid_devs)
1954 return;
1955
1956 getinfo_super_imsm(st, &info, NULL);
1957 fname_from_uuid(st, &info, nbuf, ':');
1958 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1959 struct imsm_dev *dev = get_imsm_dev(super, i);
1960
1961 super->current_vol = i;
1962 getinfo_super_imsm(st, &info, NULL);
1963 fname_from_uuid(st, &info, nbuf1, ':');
1964 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1965 dev->volume, nbuf + 5, i, nbuf1 + 5);
1966 }
1967 }
1968
1969 static void export_examine_super_imsm(struct supertype *st)
1970 {
1971 struct intel_super *super = st->sb;
1972 struct imsm_super *mpb = super->anchor;
1973 struct mdinfo info;
1974 char nbuf[64];
1975
1976 getinfo_super_imsm(st, &info, NULL);
1977 fname_from_uuid(st, &info, nbuf, ':');
1978 printf("MD_METADATA=imsm\n");
1979 printf("MD_LEVEL=container\n");
1980 printf("MD_UUID=%s\n", nbuf+5);
1981 printf("MD_DEVICES=%u\n", mpb->num_disks);
1982 }
1983
1984 static int copy_metadata_imsm(struct supertype *st, int from, int to)
1985 {
1986 /* The second last sector of the device contains
1987 * the "struct imsm_super" metadata.
1988 * This contains mpb_size which is the size in bytes of the
1989 * extended metadata. This is located immediately before
1990 * the imsm_super.
1991 * We want to read all that, plus the last sector which
1992 * may contain a migration record, and write it all
1993 * to the target.
1994 */
1995 void *buf;
1996 unsigned long long dsize, offset;
1997 int sectors;
1998 struct imsm_super *sb;
1999 struct intel_super *super = st->sb;
2000 unsigned int sector_size = super->sector_size;
2001 unsigned int written = 0;
2002
2003 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE) != 0)
2004 return 1;
2005
2006 if (!get_dev_size(from, NULL, &dsize))
2007 goto err;
2008
2009 if (lseek64(from, dsize-(2*sector_size), 0) < 0)
2010 goto err;
2011 if ((unsigned int)read(from, buf, sector_size) != sector_size)
2012 goto err;
2013 sb = buf;
2014 if (strncmp((char*)sb->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0)
2015 goto err;
2016
2017 sectors = mpb_sectors(sb, sector_size) + 2;
2018 offset = dsize - sectors * sector_size;
2019 if (lseek64(from, offset, 0) < 0 ||
2020 lseek64(to, offset, 0) < 0)
2021 goto err;
2022 while (written < sectors * sector_size) {
2023 int n = sectors*sector_size - written;
2024 if (n > 4096)
2025 n = 4096;
2026 if (read(from, buf, n) != n)
2027 goto err;
2028 if (write(to, buf, n) != n)
2029 goto err;
2030 written += n;
2031 }
2032 free(buf);
2033 return 0;
2034 err:
2035 free(buf);
2036 return 1;
2037 }
2038
2039 static void detail_super_imsm(struct supertype *st, char *homehost)
2040 {
2041 struct mdinfo info;
2042 char nbuf[64];
2043
2044 getinfo_super_imsm(st, &info, NULL);
2045 fname_from_uuid(st, &info, nbuf, ':');
2046 printf("\n UUID : %s\n", nbuf + 5);
2047 }
2048
2049 static void brief_detail_super_imsm(struct supertype *st)
2050 {
2051 struct mdinfo info;
2052 char nbuf[64];
2053 getinfo_super_imsm(st, &info, NULL);
2054 fname_from_uuid(st, &info, nbuf, ':');
2055 printf(" UUID=%s", nbuf + 5);
2056 }
2057
2058 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
2059 static void fd2devname(int fd, char *name);
2060
2061 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
2062 {
2063 /* dump an unsorted list of devices attached to AHCI Intel storage
2064 * controller, as well as non-connected ports
2065 */
2066 int hba_len = strlen(hba_path) + 1;
2067 struct dirent *ent;
2068 DIR *dir;
2069 char *path = NULL;
2070 int err = 0;
2071 unsigned long port_mask = (1 << port_count) - 1;
2072
2073 if (port_count > (int)sizeof(port_mask) * 8) {
2074 if (verbose > 0)
2075 pr_err("port_count %d out of range\n", port_count);
2076 return 2;
2077 }
2078
2079 /* scroll through /sys/dev/block looking for devices attached to
2080 * this hba
2081 */
2082 dir = opendir("/sys/dev/block");
2083 if (!dir)
2084 return 1;
2085
2086 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2087 int fd;
2088 char model[64];
2089 char vendor[64];
2090 char buf[1024];
2091 int major, minor;
2092 char *device;
2093 char *c;
2094 int port;
2095 int type;
2096
2097 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2098 continue;
2099 path = devt_to_devpath(makedev(major, minor));
2100 if (!path)
2101 continue;
2102 if (!path_attached_to_hba(path, hba_path)) {
2103 free(path);
2104 path = NULL;
2105 continue;
2106 }
2107
2108 /* retrieve the scsi device type */
2109 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
2110 if (verbose > 0)
2111 pr_err("failed to allocate 'device'\n");
2112 err = 2;
2113 break;
2114 }
2115 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
2116 if (load_sys(device, buf, sizeof(buf)) != 0) {
2117 if (verbose > 0)
2118 pr_err("failed to read device type for %s\n",
2119 path);
2120 err = 2;
2121 free(device);
2122 break;
2123 }
2124 type = strtoul(buf, NULL, 10);
2125
2126 /* if it's not a disk print the vendor and model */
2127 if (!(type == 0 || type == 7 || type == 14)) {
2128 vendor[0] = '\0';
2129 model[0] = '\0';
2130 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
2131 if (load_sys(device, buf, sizeof(buf)) == 0) {
2132 strncpy(vendor, buf, sizeof(vendor));
2133 vendor[sizeof(vendor) - 1] = '\0';
2134 c = (char *) &vendor[sizeof(vendor) - 1];
2135 while (isspace(*c) || *c == '\0')
2136 *c-- = '\0';
2137
2138 }
2139 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
2140 if (load_sys(device, buf, sizeof(buf)) == 0) {
2141 strncpy(model, buf, sizeof(model));
2142 model[sizeof(model) - 1] = '\0';
2143 c = (char *) &model[sizeof(model) - 1];
2144 while (isspace(*c) || *c == '\0')
2145 *c-- = '\0';
2146 }
2147
2148 if (vendor[0] && model[0])
2149 sprintf(buf, "%.64s %.64s", vendor, model);
2150 else
2151 switch (type) { /* numbers from hald/linux/device.c */
2152 case 1: sprintf(buf, "tape"); break;
2153 case 2: sprintf(buf, "printer"); break;
2154 case 3: sprintf(buf, "processor"); break;
2155 case 4:
2156 case 5: sprintf(buf, "cdrom"); break;
2157 case 6: sprintf(buf, "scanner"); break;
2158 case 8: sprintf(buf, "media_changer"); break;
2159 case 9: sprintf(buf, "comm"); break;
2160 case 12: sprintf(buf, "raid"); break;
2161 default: sprintf(buf, "unknown");
2162 }
2163 } else
2164 buf[0] = '\0';
2165 free(device);
2166
2167 /* chop device path to 'host%d' and calculate the port number */
2168 c = strchr(&path[hba_len], '/');
2169 if (!c) {
2170 if (verbose > 0)
2171 pr_err("%s - invalid path name\n", path + hba_len);
2172 err = 2;
2173 break;
2174 }
2175 *c = '\0';
2176 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2177 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
2178 port -= host_base;
2179 else {
2180 if (verbose > 0) {
2181 *c = '/'; /* repair the full string */
2182 pr_err("failed to determine port number for %s\n",
2183 path);
2184 }
2185 err = 2;
2186 break;
2187 }
2188
2189 /* mark this port as used */
2190 port_mask &= ~(1 << port);
2191
2192 /* print out the device information */
2193 if (buf[0]) {
2194 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2195 continue;
2196 }
2197
2198 fd = dev_open(ent->d_name, O_RDONLY);
2199 if (fd < 0)
2200 printf(" Port%d : - disk info unavailable -\n", port);
2201 else {
2202 fd2devname(fd, buf);
2203 printf(" Port%d : %s", port, buf);
2204 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
2205 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
2206 else
2207 printf(" ()\n");
2208 close(fd);
2209 }
2210 free(path);
2211 path = NULL;
2212 }
2213 if (path)
2214 free(path);
2215 if (dir)
2216 closedir(dir);
2217 if (err == 0) {
2218 int i;
2219
2220 for (i = 0; i < port_count; i++)
2221 if (port_mask & (1 << i))
2222 printf(" Port%d : - no device attached -\n", i);
2223 }
2224
2225 return err;
2226 }
2227
2228 static int print_vmd_attached_devs(struct sys_dev *hba)
2229 {
2230 struct dirent *ent;
2231 DIR *dir;
2232 char path[292];
2233 char link[256];
2234 char *c, *rp;
2235
2236 if (hba->type != SYS_DEV_VMD)
2237 return 1;
2238
2239 /* scroll through /sys/dev/block looking for devices attached to
2240 * this hba
2241 */
2242 dir = opendir("/sys/bus/pci/drivers/nvme");
2243 if (!dir)
2244 return 1;
2245
2246 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2247 int n;
2248
2249 /* is 'ent' a device? check that the 'subsystem' link exists and
2250 * that its target matches 'bus'
2251 */
2252 sprintf(path, "/sys/bus/pci/drivers/nvme/%s/subsystem",
2253 ent->d_name);
2254 n = readlink(path, link, sizeof(link));
2255 if (n < 0 || n >= (int)sizeof(link))
2256 continue;
2257 link[n] = '\0';
2258 c = strrchr(link, '/');
2259 if (!c)
2260 continue;
2261 if (strncmp("pci", c+1, strlen("pci")) != 0)
2262 continue;
2263
2264 sprintf(path, "/sys/bus/pci/drivers/nvme/%s", ent->d_name);
2265
2266 rp = realpath(path, NULL);
2267 if (!rp)
2268 continue;
2269
2270 if (path_attached_to_hba(rp, hba->path)) {
2271 printf(" NVMe under VMD : %s\n", rp);
2272 }
2273 free(rp);
2274 }
2275
2276 closedir(dir);
2277 return 0;
2278 }
2279
2280 static void print_found_intel_controllers(struct sys_dev *elem)
2281 {
2282 for (; elem; elem = elem->next) {
2283 pr_err("found Intel(R) ");
2284 if (elem->type == SYS_DEV_SATA)
2285 fprintf(stderr, "SATA ");
2286 else if (elem->type == SYS_DEV_SAS)
2287 fprintf(stderr, "SAS ");
2288 else if (elem->type == SYS_DEV_NVME)
2289 fprintf(stderr, "NVMe ");
2290
2291 if (elem->type == SYS_DEV_VMD)
2292 fprintf(stderr, "VMD domain");
2293 else
2294 fprintf(stderr, "RAID controller");
2295
2296 if (elem->pci_id)
2297 fprintf(stderr, " at %s", elem->pci_id);
2298 fprintf(stderr, ".\n");
2299 }
2300 fflush(stderr);
2301 }
2302
2303 static int ahci_get_port_count(const char *hba_path, int *port_count)
2304 {
2305 struct dirent *ent;
2306 DIR *dir;
2307 int host_base = -1;
2308
2309 *port_count = 0;
2310 if ((dir = opendir(hba_path)) == NULL)
2311 return -1;
2312
2313 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2314 int host;
2315
2316 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2317 ((sscanf(ent->d_name, "host%d", &host) != 1)))
2318 continue;
2319 if (*port_count == 0)
2320 host_base = host;
2321 else if (host < host_base)
2322 host_base = host;
2323
2324 if (host + 1 > *port_count + host_base)
2325 *port_count = host + 1 - host_base;
2326 }
2327 closedir(dir);
2328 return host_base;
2329 }
2330
2331 static void print_imsm_capability(const struct imsm_orom *orom)
2332 {
2333 printf(" Platform : Intel(R) ");
2334 if (orom->capabilities == 0 && orom->driver_features == 0)
2335 printf("Matrix Storage Manager\n");
2336 else
2337 printf("Rapid Storage Technology%s\n",
2338 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2339 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2340 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2341 orom->minor_ver, orom->hotfix_ver, orom->build);
2342 printf(" RAID Levels :%s%s%s%s%s\n",
2343 imsm_orom_has_raid0(orom) ? " raid0" : "",
2344 imsm_orom_has_raid1(orom) ? " raid1" : "",
2345 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2346 imsm_orom_has_raid10(orom) ? " raid10" : "",
2347 imsm_orom_has_raid5(orom) ? " raid5" : "");
2348 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2349 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2350 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2351 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2352 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2353 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2354 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2355 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2356 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2357 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2358 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2359 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2360 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2361 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2362 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2363 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2364 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
2365 printf(" 2TB volumes :%s supported\n",
2366 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2367 printf(" 2TB disks :%s supported\n",
2368 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
2369 printf(" Max Disks : %d\n", orom->tds);
2370 printf(" Max Volumes : %d per array, %d per %s\n",
2371 orom->vpa, orom->vphba,
2372 imsm_orom_is_nvme(orom) ? "platform" : "controller");
2373 return;
2374 }
2375
2376 static void print_imsm_capability_export(const struct imsm_orom *orom)
2377 {
2378 printf("MD_FIRMWARE_TYPE=imsm\n");
2379 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2380 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2381 orom->hotfix_ver, orom->build);
2382 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2383 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2384 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2385 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2386 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2387 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2388 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2389 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2390 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2391 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2392 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2393 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2394 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2395 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2396 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2397 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2398 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2399 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2400 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2401 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2402 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2403 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2404 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2405 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2406 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2407 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2408 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2409 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2410 }
2411
2412 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
2413 {
2414 /* There are two components to imsm platform support, the ahci SATA
2415 * controller and the option-rom. To find the SATA controller we
2416 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2417 * controller with the Intel vendor id is present. This approach
2418 * allows mdadm to leverage the kernel's ahci detection logic, with the
2419 * caveat that if ahci.ko is not loaded mdadm will not be able to
2420 * detect platform raid capabilities. The option-rom resides in a
2421 * platform "Adapter ROM". We scan for its signature to retrieve the
2422 * platform capabilities. If raid support is disabled in the BIOS the
2423 * option-rom capability structure will not be available.
2424 */
2425 struct sys_dev *list, *hba;
2426 int host_base = 0;
2427 int port_count = 0;
2428 int result=1;
2429
2430 if (enumerate_only) {
2431 if (check_env("IMSM_NO_PLATFORM"))
2432 return 0;
2433 list = find_intel_devices();
2434 if (!list)
2435 return 2;
2436 for (hba = list; hba; hba = hba->next) {
2437 if (find_imsm_capability(hba)) {
2438 result = 0;
2439 break;
2440 }
2441 else
2442 result = 2;
2443 }
2444 return result;
2445 }
2446
2447 list = find_intel_devices();
2448 if (!list) {
2449 if (verbose > 0)
2450 pr_err("no active Intel(R) RAID controller found.\n");
2451 return 2;
2452 } else if (verbose > 0)
2453 print_found_intel_controllers(list);
2454
2455 for (hba = list; hba; hba = hba->next) {
2456 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
2457 continue;
2458 if (!find_imsm_capability(hba)) {
2459 char buf[PATH_MAX];
2460 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
2461 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path,
2462 get_sys_dev_type(hba->type));
2463 continue;
2464 }
2465 result = 0;
2466 }
2467
2468 if (controller_path && result == 1) {
2469 pr_err("no active Intel(R) RAID controller found under %s\n",
2470 controller_path);
2471 return result;
2472 }
2473
2474 const struct orom_entry *entry;
2475
2476 for (entry = orom_entries; entry; entry = entry->next) {
2477 if (entry->type == SYS_DEV_VMD) {
2478 print_imsm_capability(&entry->orom);
2479 printf(" 3rd party NVMe :%s supported\n",
2480 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
2481 for (hba = list; hba; hba = hba->next) {
2482 if (hba->type == SYS_DEV_VMD) {
2483 char buf[PATH_MAX];
2484 printf(" I/O Controller : %s (%s)\n",
2485 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
2486 if (print_vmd_attached_devs(hba)) {
2487 if (verbose > 0)
2488 pr_err("failed to get devices attached to VMD domain.\n");
2489 result |= 2;
2490 }
2491 }
2492 }
2493 printf("\n");
2494 continue;
2495 }
2496
2497 print_imsm_capability(&entry->orom);
2498 if (entry->type == SYS_DEV_NVME) {
2499 for (hba = list; hba; hba = hba->next) {
2500 if (hba->type == SYS_DEV_NVME)
2501 printf(" NVMe Device : %s\n", hba->path);
2502 }
2503 printf("\n");
2504 continue;
2505 }
2506
2507 struct devid_list *devid;
2508 for (devid = entry->devid_list; devid; devid = devid->next) {
2509 hba = device_by_id(devid->devid);
2510 if (!hba)
2511 continue;
2512
2513 printf(" I/O Controller : %s (%s)\n",
2514 hba->path, get_sys_dev_type(hba->type));
2515 if (hba->type == SYS_DEV_SATA) {
2516 host_base = ahci_get_port_count(hba->path, &port_count);
2517 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2518 if (verbose > 0)
2519 pr_err("failed to enumerate ports on SATA controller at %s.\n", hba->pci_id);
2520 result |= 2;
2521 }
2522 }
2523 }
2524 printf("\n");
2525 }
2526
2527 return result;
2528 }
2529
2530 static int export_detail_platform_imsm(int verbose, char *controller_path)
2531 {
2532 struct sys_dev *list, *hba;
2533 int result=1;
2534
2535 list = find_intel_devices();
2536 if (!list) {
2537 if (verbose > 0)
2538 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2539 result = 2;
2540 return result;
2541 }
2542
2543 for (hba = list; hba; hba = hba->next) {
2544 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2545 continue;
2546 if (!find_imsm_capability(hba) && verbose > 0) {
2547 char buf[PATH_MAX];
2548 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2549 hba->type == SYS_DEV_VMD ? vmd_domain_to_controller(hba, buf) : hba->path);
2550 }
2551 else
2552 result = 0;
2553 }
2554
2555 const struct orom_entry *entry;
2556
2557 for (entry = orom_entries; entry; entry = entry->next) {
2558 if (entry->type == SYS_DEV_VMD) {
2559 for (hba = list; hba; hba = hba->next)
2560 print_imsm_capability_export(&entry->orom);
2561 continue;
2562 }
2563 print_imsm_capability_export(&entry->orom);
2564 }
2565
2566 return result;
2567 }
2568
2569 static int match_home_imsm(struct supertype *st, char *homehost)
2570 {
2571 /* the imsm metadata format does not specify any host
2572 * identification information. We return -1 since we can never
2573 * confirm nor deny whether a given array is "meant" for this
2574 * host. We rely on compare_super and the 'family_num' fields to
2575 * exclude member disks that do not belong, and we rely on
2576 * mdadm.conf to specify the arrays that should be assembled.
2577 * Auto-assembly may still pick up "foreign" arrays.
2578 */
2579
2580 return -1;
2581 }
2582
2583 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2584 {
2585 /* The uuid returned here is used for:
2586 * uuid to put into bitmap file (Create, Grow)
2587 * uuid for backup header when saving critical section (Grow)
2588 * comparing uuids when re-adding a device into an array
2589 * In these cases the uuid required is that of the data-array,
2590 * not the device-set.
2591 * uuid to recognise same set when adding a missing device back
2592 * to an array. This is a uuid for the device-set.
2593 *
2594 * For each of these we can make do with a truncated
2595 * or hashed uuid rather than the original, as long as
2596 * everyone agrees.
2597 * In each case the uuid required is that of the data-array,
2598 * not the device-set.
2599 */
2600 /* imsm does not track uuid's so we synthesis one using sha1 on
2601 * - The signature (Which is constant for all imsm array, but no matter)
2602 * - the orig_family_num of the container
2603 * - the index number of the volume
2604 * - the 'serial' number of the volume.
2605 * Hopefully these are all constant.
2606 */
2607 struct intel_super *super = st->sb;
2608
2609 char buf[20];
2610 struct sha1_ctx ctx;
2611 struct imsm_dev *dev = NULL;
2612 __u32 family_num;
2613
2614 /* some mdadm versions failed to set ->orig_family_num, in which
2615 * case fall back to ->family_num. orig_family_num will be
2616 * fixed up with the first metadata update.
2617 */
2618 family_num = super->anchor->orig_family_num;
2619 if (family_num == 0)
2620 family_num = super->anchor->family_num;
2621 sha1_init_ctx(&ctx);
2622 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2623 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2624 if (super->current_vol >= 0)
2625 dev = get_imsm_dev(super, super->current_vol);
2626 if (dev) {
2627 __u32 vol = super->current_vol;
2628 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2629 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2630 }
2631 sha1_finish_ctx(&ctx, buf);
2632 memcpy(uuid, buf, 4*4);
2633 }
2634
2635 #if 0
2636 static void
2637 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
2638 {
2639 __u8 *v = get_imsm_version(mpb);
2640 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2641 char major[] = { 0, 0, 0 };
2642 char minor[] = { 0 ,0, 0 };
2643 char patch[] = { 0, 0, 0 };
2644 char *ver_parse[] = { major, minor, patch };
2645 int i, j;
2646
2647 i = j = 0;
2648 while (*v != '\0' && v < end) {
2649 if (*v != '.' && j < 2)
2650 ver_parse[i][j++] = *v;
2651 else {
2652 i++;
2653 j = 0;
2654 }
2655 v++;
2656 }
2657
2658 *m = strtol(minor, NULL, 0);
2659 *p = strtol(patch, NULL, 0);
2660 }
2661 #endif
2662
2663 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2664 {
2665 /* migr_strip_size when repairing or initializing parity */
2666 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2667 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2668
2669 switch (get_imsm_raid_level(map)) {
2670 case 5:
2671 case 10:
2672 return chunk;
2673 default:
2674 return 128*1024 >> 9;
2675 }
2676 }
2677
2678 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2679 {
2680 /* migr_strip_size when rebuilding a degraded disk, no idea why
2681 * this is different than migr_strip_size_resync(), but it's good
2682 * to be compatible
2683 */
2684 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2685 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2686
2687 switch (get_imsm_raid_level(map)) {
2688 case 1:
2689 case 10:
2690 if (map->num_members % map->num_domains == 0)
2691 return 128*1024 >> 9;
2692 else
2693 return chunk;
2694 case 5:
2695 return max((__u32) 64*1024 >> 9, chunk);
2696 default:
2697 return 128*1024 >> 9;
2698 }
2699 }
2700
2701 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2702 {
2703 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2704 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2705 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2706 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2707
2708 return max((__u32) 1, hi_chunk / lo_chunk);
2709 }
2710
2711 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2712 {
2713 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2714 int level = get_imsm_raid_level(lo);
2715
2716 if (level == 1 || level == 10) {
2717 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2718
2719 return hi->num_domains;
2720 } else
2721 return num_stripes_per_unit_resync(dev);
2722 }
2723
2724 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2725 {
2726 /* named 'imsm_' because raid0, raid1 and raid10
2727 * counter-intuitively have the same number of data disks
2728 */
2729 struct imsm_map *map = get_imsm_map(dev, second_map);
2730
2731 switch (get_imsm_raid_level(map)) {
2732 case 0:
2733 return map->num_members;
2734 break;
2735 case 1:
2736 case 10:
2737 return map->num_members/2;
2738 case 5:
2739 return map->num_members - 1;
2740 default:
2741 dprintf("unsupported raid level\n");
2742 return 0;
2743 }
2744 }
2745
2746 static __u32 parity_segment_depth(struct imsm_dev *dev)
2747 {
2748 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2749 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2750
2751 switch(get_imsm_raid_level(map)) {
2752 case 1:
2753 case 10:
2754 return chunk * map->num_domains;
2755 case 5:
2756 return chunk * map->num_members;
2757 default:
2758 return chunk;
2759 }
2760 }
2761
2762 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2763 {
2764 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2765 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2766 __u32 strip = block / chunk;
2767
2768 switch (get_imsm_raid_level(map)) {
2769 case 1:
2770 case 10: {
2771 __u32 vol_strip = (strip * map->num_domains) + 1;
2772 __u32 vol_stripe = vol_strip / map->num_members;
2773
2774 return vol_stripe * chunk + block % chunk;
2775 } case 5: {
2776 __u32 stripe = strip / (map->num_members - 1);
2777
2778 return stripe * chunk + block % chunk;
2779 }
2780 default:
2781 return 0;
2782 }
2783 }
2784
2785 static __u64 blocks_per_migr_unit(struct intel_super *super,
2786 struct imsm_dev *dev)
2787 {
2788 /* calculate the conversion factor between per member 'blocks'
2789 * (md/{resync,rebuild}_start) and imsm migration units, return
2790 * 0 for the 'not migrating' and 'unsupported migration' cases
2791 */
2792 if (!dev->vol.migr_state)
2793 return 0;
2794
2795 switch (migr_type(dev)) {
2796 case MIGR_GEN_MIGR: {
2797 struct migr_record *migr_rec = super->migr_rec;
2798 return __le32_to_cpu(migr_rec->blocks_per_unit);
2799 }
2800 case MIGR_VERIFY:
2801 case MIGR_REPAIR:
2802 case MIGR_INIT: {
2803 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2804 __u32 stripes_per_unit;
2805 __u32 blocks_per_unit;
2806 __u32 parity_depth;
2807 __u32 migr_chunk;
2808 __u32 block_map;
2809 __u32 block_rel;
2810 __u32 segment;
2811 __u32 stripe;
2812 __u8 disks;
2813
2814 /* yes, this is really the translation of migr_units to
2815 * per-member blocks in the 'resync' case
2816 */
2817 stripes_per_unit = num_stripes_per_unit_resync(dev);
2818 migr_chunk = migr_strip_blocks_resync(dev);
2819 disks = imsm_num_data_members(dev, MAP_0);
2820 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2821 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2822 segment = blocks_per_unit / stripe;
2823 block_rel = blocks_per_unit - segment * stripe;
2824 parity_depth = parity_segment_depth(dev);
2825 block_map = map_migr_block(dev, block_rel);
2826 return block_map + parity_depth * segment;
2827 }
2828 case MIGR_REBUILD: {
2829 __u32 stripes_per_unit;
2830 __u32 migr_chunk;
2831
2832 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2833 migr_chunk = migr_strip_blocks_rebuild(dev);
2834 return migr_chunk * stripes_per_unit;
2835 }
2836 case MIGR_STATE_CHANGE:
2837 default:
2838 return 0;
2839 }
2840 }
2841
2842 static int imsm_level_to_layout(int level)
2843 {
2844 switch (level) {
2845 case 0:
2846 case 1:
2847 return 0;
2848 case 5:
2849 case 6:
2850 return ALGORITHM_LEFT_ASYMMETRIC;
2851 case 10:
2852 return 0x102;
2853 }
2854 return UnSet;
2855 }
2856
2857 /*******************************************************************************
2858 * Function: read_imsm_migr_rec
2859 * Description: Function reads imsm migration record from last sector of disk
2860 * Parameters:
2861 * fd : disk descriptor
2862 * super : metadata info
2863 * Returns:
2864 * 0 : success,
2865 * -1 : fail
2866 ******************************************************************************/
2867 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2868 {
2869 int ret_val = -1;
2870 unsigned int sector_size = super->sector_size;
2871 unsigned long long dsize;
2872
2873 get_dev_size(fd, NULL, &dsize);
2874 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
2875 SEEK_SET) < 0) {
2876 pr_err("Cannot seek to anchor block: %s\n",
2877 strerror(errno));
2878 goto out;
2879 }
2880 if ((unsigned int)read(fd, super->migr_rec_buf,
2881 MIGR_REC_BUF_SECTORS*sector_size) !=
2882 MIGR_REC_BUF_SECTORS*sector_size) {
2883 pr_err("Cannot read migr record block: %s\n",
2884 strerror(errno));
2885 goto out;
2886 }
2887 ret_val = 0;
2888 if (sector_size == 4096)
2889 convert_from_4k_imsm_migr_rec(super);
2890
2891 out:
2892 return ret_val;
2893 }
2894
2895 static struct imsm_dev *imsm_get_device_during_migration(
2896 struct intel_super *super)
2897 {
2898
2899 struct intel_dev *dv;
2900
2901 for (dv = super->devlist; dv; dv = dv->next) {
2902 if (is_gen_migration(dv->dev))
2903 return dv->dev;
2904 }
2905 return NULL;
2906 }
2907
2908 /*******************************************************************************
2909 * Function: load_imsm_migr_rec
2910 * Description: Function reads imsm migration record (it is stored at the last
2911 * sector of disk)
2912 * Parameters:
2913 * super : imsm internal array info
2914 * info : general array info
2915 * Returns:
2916 * 0 : success
2917 * -1 : fail
2918 * -2 : no migration in progress
2919 ******************************************************************************/
2920 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2921 {
2922 struct mdinfo *sd;
2923 struct dl *dl;
2924 char nm[30];
2925 int retval = -1;
2926 int fd = -1;
2927 struct imsm_dev *dev;
2928 struct imsm_map *map;
2929 int slot = -1;
2930
2931 /* find map under migration */
2932 dev = imsm_get_device_during_migration(super);
2933 /* nothing to load,no migration in progress?
2934 */
2935 if (dev == NULL)
2936 return -2;
2937
2938 if (info) {
2939 for (sd = info->devs ; sd ; sd = sd->next) {
2940 /* read only from one of the first two slots */
2941 if ((sd->disk.raid_disk < 0) ||
2942 (sd->disk.raid_disk > 1))
2943 continue;
2944
2945 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2946 fd = dev_open(nm, O_RDONLY);
2947 if (fd >= 0)
2948 break;
2949 }
2950 }
2951 if (fd < 0) {
2952 map = get_imsm_map(dev, MAP_0);
2953 for (dl = super->disks; dl; dl = dl->next) {
2954 /* skip spare and failed disks
2955 */
2956 if (dl->index < 0)
2957 continue;
2958 /* read only from one of the first two slots */
2959 if (map)
2960 slot = get_imsm_disk_slot(map, dl->index);
2961 if (map == NULL || slot > 1 || slot < 0)
2962 continue;
2963 sprintf(nm, "%d:%d", dl->major, dl->minor);
2964 fd = dev_open(nm, O_RDONLY);
2965 if (fd >= 0)
2966 break;
2967 }
2968 }
2969 if (fd < 0)
2970 goto out;
2971 retval = read_imsm_migr_rec(fd, super);
2972
2973 out:
2974 if (fd >= 0)
2975 close(fd);
2976 return retval;
2977 }
2978
2979 /*******************************************************************************
2980 * function: imsm_create_metadata_checkpoint_update
2981 * Description: It creates update for checkpoint change.
2982 * Parameters:
2983 * super : imsm internal array info
2984 * u : pointer to prepared update
2985 * Returns:
2986 * Uptate length.
2987 * If length is equal to 0, input pointer u contains no update
2988 ******************************************************************************/
2989 static int imsm_create_metadata_checkpoint_update(
2990 struct intel_super *super,
2991 struct imsm_update_general_migration_checkpoint **u)
2992 {
2993
2994 int update_memory_size = 0;
2995
2996 dprintf("(enter)\n");
2997
2998 if (u == NULL)
2999 return 0;
3000 *u = NULL;
3001
3002 /* size of all update data without anchor */
3003 update_memory_size =
3004 sizeof(struct imsm_update_general_migration_checkpoint);
3005
3006 *u = xcalloc(1, update_memory_size);
3007 if (*u == NULL) {
3008 dprintf("error: cannot get memory\n");
3009 return 0;
3010 }
3011 (*u)->type = update_general_migration_checkpoint;
3012 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
3013 dprintf("prepared for %u\n", (*u)->curr_migr_unit);
3014
3015 return update_memory_size;
3016 }
3017
3018 static void imsm_update_metadata_locally(struct supertype *st,
3019 void *buf, int len);
3020
3021 /*******************************************************************************
3022 * Function: write_imsm_migr_rec
3023 * Description: Function writes imsm migration record
3024 * (at the last sector of disk)
3025 * Parameters:
3026 * super : imsm internal array info
3027 * Returns:
3028 * 0 : success
3029 * -1 : if fail
3030 ******************************************************************************/
3031 static int write_imsm_migr_rec(struct supertype *st)
3032 {
3033 struct intel_super *super = st->sb;
3034 unsigned int sector_size = super->sector_size;
3035 unsigned long long dsize;
3036 char nm[30];
3037 int fd = -1;
3038 int retval = -1;
3039 struct dl *sd;
3040 int len;
3041 struct imsm_update_general_migration_checkpoint *u;
3042 struct imsm_dev *dev;
3043 struct imsm_map *map;
3044
3045 /* find map under migration */
3046 dev = imsm_get_device_during_migration(super);
3047 /* if no migration, write buffer anyway to clear migr_record
3048 * on disk based on first available device
3049 */
3050 if (dev == NULL)
3051 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3052 super->current_vol);
3053
3054 map = get_imsm_map(dev, MAP_0);
3055
3056 if (sector_size == 4096)
3057 convert_to_4k_imsm_migr_rec(super);
3058 for (sd = super->disks ; sd ; sd = sd->next) {
3059 int slot = -1;
3060
3061 /* skip failed and spare devices */
3062 if (sd->index < 0)
3063 continue;
3064 /* write to 2 first slots only */
3065 if (map)
3066 slot = get_imsm_disk_slot(map, sd->index);
3067 if (map == NULL || slot > 1 || slot < 0)
3068 continue;
3069
3070 sprintf(nm, "%d:%d", sd->major, sd->minor);
3071 fd = dev_open(nm, O_RDWR);
3072 if (fd < 0)
3073 continue;
3074 get_dev_size(fd, NULL, &dsize);
3075 if (lseek64(fd, dsize - (MIGR_REC_SECTOR_POSITION*sector_size),
3076 SEEK_SET) < 0) {
3077 pr_err("Cannot seek to anchor block: %s\n",
3078 strerror(errno));
3079 goto out;
3080 }
3081 if ((unsigned int)write(fd, super->migr_rec_buf,
3082 MIGR_REC_BUF_SECTORS*sector_size) !=
3083 MIGR_REC_BUF_SECTORS*sector_size) {
3084 pr_err("Cannot write migr record block: %s\n",
3085 strerror(errno));
3086 goto out;
3087 }
3088 close(fd);
3089 fd = -1;
3090 }
3091 if (sector_size == 4096)
3092 convert_from_4k_imsm_migr_rec(super);
3093 /* update checkpoint information in metadata */
3094 len = imsm_create_metadata_checkpoint_update(super, &u);
3095 if (len <= 0) {
3096 dprintf("imsm: Cannot prepare update\n");
3097 goto out;
3098 }
3099 /* update metadata locally */
3100 imsm_update_metadata_locally(st, u, len);
3101 /* and possibly remotely */
3102 if (st->update_tail) {
3103 append_metadata_update(st, u, len);
3104 /* during reshape we do all work inside metadata handler
3105 * manage_reshape(), so metadata update has to be triggered
3106 * insida it
3107 */
3108 flush_metadata_updates(st);
3109 st->update_tail = &st->updates;
3110 } else
3111 free(u);
3112
3113 retval = 0;
3114 out:
3115 if (fd >= 0)
3116 close(fd);
3117 return retval;
3118 }
3119
3120 /* spare/missing disks activations are not allowe when
3121 * array/container performs reshape operation, because
3122 * all arrays in container works on the same disks set
3123 */
3124 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3125 {
3126 int rv = 0;
3127 struct intel_dev *i_dev;
3128 struct imsm_dev *dev;
3129
3130 /* check whole container
3131 */
3132 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3133 dev = i_dev->dev;
3134 if (is_gen_migration(dev)) {
3135 /* No repair during any migration in container
3136 */
3137 rv = 1;
3138 break;
3139 }
3140 }
3141 return rv;
3142 }
3143 static unsigned long long imsm_component_size_aligment_check(int level,
3144 int chunk_size,
3145 unsigned int sector_size,
3146 unsigned long long component_size)
3147 {
3148 unsigned int component_size_alligment;
3149
3150 /* check component size aligment
3151 */
3152 component_size_alligment = component_size % (chunk_size/sector_size);
3153
3154 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alligment = %u\n",
3155 level, chunk_size, component_size,
3156 component_size_alligment);
3157
3158 if (component_size_alligment && (level != 1) && (level != UnSet)) {
3159 dprintf("imsm: reported component size alligned from %llu ",
3160 component_size);
3161 component_size -= component_size_alligment;
3162 dprintf_cont("to %llu (%i).\n",
3163 component_size, component_size_alligment);
3164 }
3165
3166 return component_size;
3167 }
3168
3169 static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3170 {
3171 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3172 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3173
3174 return pba_of_lba0(map) +
3175 (num_data_stripes(map) * map->blocks_per_strip);
3176 }
3177
3178 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
3179 {
3180 struct intel_super *super = st->sb;
3181 struct migr_record *migr_rec = super->migr_rec;
3182 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
3183 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3184 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
3185 struct imsm_map *map_to_analyse = map;
3186 struct dl *dl;
3187 int map_disks = info->array.raid_disks;
3188
3189 memset(info, 0, sizeof(*info));
3190 if (prev_map)
3191 map_to_analyse = prev_map;
3192
3193 dl = super->current_disk;
3194
3195 info->container_member = super->current_vol;
3196 info->array.raid_disks = map->num_members;
3197 info->array.level = get_imsm_raid_level(map_to_analyse);
3198 info->array.layout = imsm_level_to_layout(info->array.level);
3199 info->array.md_minor = -1;
3200 info->array.ctime = 0;
3201 info->array.utime = 0;
3202 info->array.chunk_size =
3203 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
3204 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
3205 info->custom_array_size = __le32_to_cpu(dev->size_high);
3206 info->custom_array_size <<= 32;
3207 info->custom_array_size |= __le32_to_cpu(dev->size_low);
3208 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3209
3210 if (is_gen_migration(dev)) {
3211 info->reshape_active = 1;
3212 info->new_level = get_imsm_raid_level(map);
3213 info->new_layout = imsm_level_to_layout(info->new_level);
3214 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3215 info->delta_disks = map->num_members - prev_map->num_members;
3216 if (info->delta_disks) {
3217 /* this needs to be applied to every array
3218 * in the container.
3219 */
3220 info->reshape_active = CONTAINER_RESHAPE;
3221 }
3222 /* We shape information that we give to md might have to be
3223 * modify to cope with md's requirement for reshaping arrays.
3224 * For example, when reshaping a RAID0, md requires it to be
3225 * presented as a degraded RAID4.
3226 * Also if a RAID0 is migrating to a RAID5 we need to specify
3227 * the array as already being RAID5, but the 'before' layout
3228 * is a RAID4-like layout.
3229 */
3230 switch (info->array.level) {
3231 case 0:
3232 switch(info->new_level) {
3233 case 0:
3234 /* conversion is happening as RAID4 */
3235 info->array.level = 4;
3236 info->array.raid_disks += 1;
3237 break;
3238 case 5:
3239 /* conversion is happening as RAID5 */
3240 info->array.level = 5;
3241 info->array.layout = ALGORITHM_PARITY_N;
3242 info->delta_disks -= 1;
3243 break;
3244 default:
3245 /* FIXME error message */
3246 info->array.level = UnSet;
3247 break;
3248 }
3249 break;
3250 }
3251 } else {
3252 info->new_level = UnSet;
3253 info->new_layout = UnSet;
3254 info->new_chunk = info->array.chunk_size;
3255 info->delta_disks = 0;
3256 }
3257
3258 if (dl) {
3259 info->disk.major = dl->major;
3260 info->disk.minor = dl->minor;
3261 info->disk.number = dl->index;
3262 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3263 dl->index);
3264 }
3265
3266 info->data_offset = pba_of_lba0(map_to_analyse);
3267
3268 if (info->array.level == 5) {
3269 info->component_size = num_data_stripes(map_to_analyse) *
3270 map_to_analyse->blocks_per_strip;
3271 } else {
3272 info->component_size = blocks_per_member(map_to_analyse);
3273 }
3274
3275 info->component_size = imsm_component_size_aligment_check(
3276 info->array.level,
3277 info->array.chunk_size,
3278 super->sector_size,
3279 info->component_size);
3280 info->bb.supported = 1;
3281
3282 memset(info->uuid, 0, sizeof(info->uuid));
3283 info->recovery_start = MaxSector;
3284
3285 if (info->array.level == 5 && dev->rwh_policy == RWH_DISTRIBUTED) {
3286 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3287 info->ppl_sector = get_ppl_sector(super, super->current_vol);
3288 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE) >> 9;
3289 } else if (info->array.level <= 0) {
3290 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3291 } else {
3292 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3293 }
3294
3295 info->reshape_progress = 0;
3296 info->resync_start = MaxSector;
3297 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
3298 !(info->array.state & 1)) &&
3299 imsm_reshape_blocks_arrays_changes(super) == 0) {
3300 info->resync_start = 0;
3301 }
3302 if (dev->vol.migr_state) {
3303 switch (migr_type(dev)) {
3304 case MIGR_REPAIR:
3305 case MIGR_INIT: {
3306 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3307 dev);
3308 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
3309
3310 info->resync_start = blocks_per_unit * units;
3311 break;
3312 }
3313 case MIGR_GEN_MIGR: {
3314 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3315 dev);
3316 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
3317 unsigned long long array_blocks;
3318 int used_disks;
3319
3320 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3321 (units <
3322 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
3323 (super->migr_rec->rec_status ==
3324 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3325 units++;
3326
3327 info->reshape_progress = blocks_per_unit * units;
3328
3329 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
3330 (unsigned long long)units,
3331 (unsigned long long)blocks_per_unit,
3332 info->reshape_progress);
3333
3334 used_disks = imsm_num_data_members(dev, MAP_1);
3335 if (used_disks > 0) {
3336 array_blocks = blocks_per_member(map) *
3337 used_disks;
3338 info->custom_array_size =
3339 round_size_to_mb(array_blocks,
3340 used_disks);
3341
3342 }
3343 }
3344 case MIGR_VERIFY:
3345 /* we could emulate the checkpointing of
3346 * 'sync_action=check' migrations, but for now
3347 * we just immediately complete them
3348 */
3349 case MIGR_REBUILD:
3350 /* this is handled by container_content_imsm() */
3351 case MIGR_STATE_CHANGE:
3352 /* FIXME handle other migrations */
3353 default:
3354 /* we are not dirty, so... */
3355 info->resync_start = MaxSector;
3356 }
3357 }
3358
3359 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3360 info->name[MAX_RAID_SERIAL_LEN] = 0;
3361
3362 info->array.major_version = -1;
3363 info->array.minor_version = -2;
3364 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
3365 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
3366 uuid_from_super_imsm(st, info->uuid);
3367
3368 if (dmap) {
3369 int i, j;
3370 for (i=0; i<map_disks; i++) {
3371 dmap[i] = 0;
3372 if (i < info->array.raid_disks) {
3373 struct imsm_disk *dsk;
3374 j = get_imsm_disk_idx(dev, i, MAP_X);
3375 dsk = get_imsm_disk(super, j);
3376 if (dsk && (dsk->status & CONFIGURED_DISK))
3377 dmap[i] = 1;
3378 }
3379 }
3380 }
3381 }
3382
3383 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3384 int failed, int look_in_map);
3385
3386 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3387 int look_in_map);
3388
3389 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3390 {
3391 if (is_gen_migration(dev)) {
3392 int failed;
3393 __u8 map_state;
3394 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3395
3396 failed = imsm_count_failed(super, dev, MAP_1);
3397 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3398 if (map2->map_state != map_state) {
3399 map2->map_state = map_state;
3400 super->updates_pending++;
3401 }
3402 }
3403 }
3404
3405 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3406 {
3407 struct dl *d;
3408
3409 for (d = super->missing; d; d = d->next)
3410 if (d->index == index)
3411 return &d->disk;
3412 return NULL;
3413 }
3414
3415 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
3416 {
3417 struct intel_super *super = st->sb;
3418 struct imsm_disk *disk;
3419 int map_disks = info->array.raid_disks;
3420 int max_enough = -1;
3421 int i;
3422 struct imsm_super *mpb;
3423
3424 if (super->current_vol >= 0) {
3425 getinfo_super_imsm_volume(st, info, map);
3426 return;
3427 }
3428 memset(info, 0, sizeof(*info));
3429
3430 /* Set raid_disks to zero so that Assemble will always pull in valid
3431 * spares
3432 */
3433 info->array.raid_disks = 0;
3434 info->array.level = LEVEL_CONTAINER;
3435 info->array.layout = 0;
3436 info->array.md_minor = -1;
3437 info->array.ctime = 0; /* N/A for imsm */
3438 info->array.utime = 0;
3439 info->array.chunk_size = 0;
3440
3441 info->disk.major = 0;
3442 info->disk.minor = 0;
3443 info->disk.raid_disk = -1;
3444 info->reshape_active = 0;
3445 info->array.major_version = -1;
3446 info->array.minor_version = -2;
3447 strcpy(info->text_version, "imsm");
3448 info->safe_mode_delay = 0;
3449 info->disk.number = -1;
3450 info->disk.state = 0;
3451 info->name[0] = 0;
3452 info->recovery_start = MaxSector;
3453 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3454 info->bb.supported = 1;
3455
3456 /* do we have the all the insync disks that we expect? */
3457 mpb = super->anchor;
3458 info->events = __le32_to_cpu(mpb->generation_num);
3459
3460 for (i = 0; i < mpb->num_raid_devs; i++) {
3461 struct imsm_dev *dev = get_imsm_dev(super, i);
3462 int failed, enough, j, missing = 0;
3463 struct imsm_map *map;
3464 __u8 state;
3465
3466 failed = imsm_count_failed(super, dev, MAP_0);
3467 state = imsm_check_degraded(super, dev, failed, MAP_0);
3468 map = get_imsm_map(dev, MAP_0);
3469
3470 /* any newly missing disks?
3471 * (catches single-degraded vs double-degraded)
3472 */
3473 for (j = 0; j < map->num_members; j++) {
3474 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
3475 __u32 idx = ord_to_idx(ord);
3476
3477 if (!(ord & IMSM_ORD_REBUILD) &&
3478 get_imsm_missing(super, idx)) {
3479 missing = 1;
3480 break;
3481 }
3482 }
3483
3484 if (state == IMSM_T_STATE_FAILED)
3485 enough = -1;
3486 else if (state == IMSM_T_STATE_DEGRADED &&
3487 (state != map->map_state || missing))
3488 enough = 0;
3489 else /* we're normal, or already degraded */
3490 enough = 1;
3491 if (is_gen_migration(dev) && missing) {
3492 /* during general migration we need all disks
3493 * that process is running on.
3494 * No new missing disk is allowed.
3495 */
3496 max_enough = -1;
3497 enough = -1;
3498 /* no more checks necessary
3499 */
3500 break;
3501 }
3502 /* in the missing/failed disk case check to see
3503 * if at least one array is runnable
3504 */
3505 max_enough = max(max_enough, enough);
3506 }
3507 dprintf("enough: %d\n", max_enough);
3508 info->container_enough = max_enough;
3509
3510 if (super->disks) {
3511 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3512
3513 disk = &super->disks->disk;
3514 info->data_offset = total_blocks(&super->disks->disk) - reserved;
3515 info->component_size = reserved;
3516 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
3517 /* we don't change info->disk.raid_disk here because
3518 * this state will be finalized in mdmon after we have
3519 * found the 'most fresh' version of the metadata
3520 */
3521 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3522 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3523 0 : (1 << MD_DISK_SYNC);
3524 }
3525
3526 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3527 * ->compare_super may have updated the 'num_raid_devs' field for spares
3528 */
3529 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
3530 uuid_from_super_imsm(st, info->uuid);
3531 else
3532 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
3533
3534 /* I don't know how to compute 'map' on imsm, so use safe default */
3535 if (map) {
3536 int i;
3537 for (i = 0; i < map_disks; i++)
3538 map[i] = 1;
3539 }
3540
3541 }
3542
3543 /* allocates memory and fills disk in mdinfo structure
3544 * for each disk in array */
3545 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3546 {
3547 struct mdinfo *mddev;
3548 struct intel_super *super = st->sb;
3549 struct imsm_disk *disk;
3550 int count = 0;
3551 struct dl *dl;
3552 if (!super || !super->disks)
3553 return NULL;
3554 dl = super->disks;
3555 mddev = xcalloc(1, sizeof(*mddev));
3556 while (dl) {
3557 struct mdinfo *tmp;
3558 disk = &dl->disk;
3559 tmp = xcalloc(1, sizeof(*tmp));
3560 if (mddev->devs)
3561 tmp->next = mddev->devs;
3562 mddev->devs = tmp;
3563 tmp->disk.number = count++;
3564 tmp->disk.major = dl->major;
3565 tmp->disk.minor = dl->minor;
3566 tmp->disk.state = is_configured(disk) ?
3567 (1 << MD_DISK_ACTIVE) : 0;
3568 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3569 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3570 tmp->disk.raid_disk = -1;
3571 dl = dl->next;
3572 }
3573 return mddev;
3574 }
3575
3576 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3577 char *update, char *devname, int verbose,
3578 int uuid_set, char *homehost)
3579 {
3580 /* For 'assemble' and 'force' we need to return non-zero if any
3581 * change was made. For others, the return value is ignored.
3582 * Update options are:
3583 * force-one : This device looks a bit old but needs to be included,
3584 * update age info appropriately.
3585 * assemble: clear any 'faulty' flag to allow this device to
3586 * be assembled.
3587 * force-array: Array is degraded but being forced, mark it clean
3588 * if that will be needed to assemble it.
3589 *
3590 * newdev: not used ????
3591 * grow: Array has gained a new device - this is currently for
3592 * linear only
3593 * resync: mark as dirty so a resync will happen.
3594 * name: update the name - preserving the homehost
3595 * uuid: Change the uuid of the array to match watch is given
3596 *
3597 * Following are not relevant for this imsm:
3598 * sparc2.2 : update from old dodgey metadata
3599 * super-minor: change the preferred_minor number
3600 * summaries: update redundant counters.
3601 * homehost: update the recorded homehost
3602 * _reshape_progress: record new reshape_progress position.
3603 */
3604 int rv = 1;
3605 struct intel_super *super = st->sb;
3606 struct imsm_super *mpb;
3607
3608 /* we can only update container info */
3609 if (!super || super->current_vol >= 0 || !super->anchor)
3610 return 1;
3611
3612 mpb = super->anchor;
3613
3614 if (strcmp(update, "uuid") == 0) {
3615 /* We take this to mean that the family_num should be updated.
3616 * However that is much smaller than the uuid so we cannot really
3617 * allow an explicit uuid to be given. And it is hard to reliably
3618 * know if one was.
3619 * So if !uuid_set we know the current uuid is random and just used
3620 * the first 'int' and copy it to the other 3 positions.
3621 * Otherwise we require the 4 'int's to be the same as would be the
3622 * case if we are using a random uuid. So an explicit uuid will be
3623 * accepted as long as all for ints are the same... which shouldn't hurt
3624 */
3625 if (!uuid_set) {
3626 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
3627 rv = 0;
3628 } else {
3629 if (info->uuid[0] != info->uuid[1] ||
3630 info->uuid[1] != info->uuid[2] ||
3631 info->uuid[2] != info->uuid[3])
3632 rv = -1;
3633 else
3634 rv = 0;
3635 }
3636 if (rv == 0)
3637 mpb->orig_family_num = info->uuid[0];
3638 } else if (strcmp(update, "assemble") == 0)
3639 rv = 0;
3640 else
3641 rv = -1;
3642
3643 /* successful update? recompute checksum */
3644 if (rv == 0)
3645 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
3646
3647 return rv;
3648 }
3649
3650 static size_t disks_to_mpb_size(int disks)
3651 {
3652 size_t size;
3653
3654 size = sizeof(struct imsm_super);
3655 size += (disks - 1) * sizeof(struct imsm_disk);
3656 size += 2 * sizeof(struct imsm_dev);
3657 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3658 size += (4 - 2) * sizeof(struct imsm_map);
3659 /* 4 possible disk_ord_tbl's */
3660 size += 4 * (disks - 1) * sizeof(__u32);
3661 /* maximum bbm log */
3662 size += sizeof(struct bbm_log);
3663
3664 return size;
3665 }
3666
3667 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3668 unsigned long long data_offset)
3669 {
3670 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3671 return 0;
3672
3673 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
3674 }
3675
3676 static void free_devlist(struct intel_super *super)
3677 {
3678 struct intel_dev *dv;
3679
3680 while (super->devlist) {
3681 dv = super->devlist->next;
3682 free(super->devlist->dev);
3683 free(super->devlist);
3684 super->devlist = dv;
3685 }
3686 }
3687
3688 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3689 {
3690 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3691 }
3692
3693 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3694 {
3695 /*
3696 * return:
3697 * 0 same, or first was empty, and second was copied
3698 * 1 second had wrong number
3699 * 2 wrong uuid
3700 * 3 wrong other info
3701 */
3702 struct intel_super *first = st->sb;
3703 struct intel_super *sec = tst->sb;
3704
3705 if (!first) {
3706 st->sb = tst->sb;
3707 tst->sb = NULL;
3708 return 0;
3709 }
3710 /* in platform dependent environment test if the disks
3711 * use the same Intel hba
3712 * If not on Intel hba at all, allow anything.
3713 */
3714 if (!check_env("IMSM_NO_PLATFORM") && first->hba && sec->hba) {
3715 if (first->hba->type != sec->hba->type) {
3716 fprintf(stderr,
3717 "HBAs of devices do not match %s != %s\n",
3718 get_sys_dev_type(first->hba->type),
3719 get_sys_dev_type(sec->hba->type));
3720 return 3;
3721 }
3722 if (first->orom != sec->orom) {
3723 fprintf(stderr,
3724 "HBAs of devices do not match %s != %s\n",
3725 first->hba->pci_id, sec->hba->pci_id);
3726 return 3;
3727 }
3728 }
3729
3730 /* if an anchor does not have num_raid_devs set then it is a free
3731 * floating spare
3732 */
3733 if (first->anchor->num_raid_devs > 0 &&
3734 sec->anchor->num_raid_devs > 0) {
3735 /* Determine if these disks might ever have been
3736 * related. Further disambiguation can only take place
3737 * in load_super_imsm_all
3738 */
3739 __u32 first_family = first->anchor->orig_family_num;
3740 __u32 sec_family = sec->anchor->orig_family_num;
3741
3742 if (memcmp(first->anchor->sig, sec->anchor->sig,
3743 MAX_SIGNATURE_LENGTH) != 0)
3744 return 3;
3745
3746 if (first_family == 0)
3747 first_family = first->anchor->family_num;
3748 if (sec_family == 0)
3749 sec_family = sec->anchor->family_num;
3750
3751 if (first_family != sec_family)
3752 return 3;
3753
3754 }
3755
3756 /* if 'first' is a spare promote it to a populated mpb with sec's
3757 * family number
3758 */
3759 if (first->anchor->num_raid_devs == 0 &&
3760 sec->anchor->num_raid_devs > 0) {
3761 int i;
3762 struct intel_dev *dv;
3763 struct imsm_dev *dev;
3764
3765 /* we need to copy raid device info from sec if an allocation
3766 * fails here we don't associate the spare
3767 */
3768 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3769 dv = xmalloc(sizeof(*dv));
3770 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3771 dv->dev = dev;
3772 dv->index = i;
3773 dv->next = first->devlist;
3774 first->devlist = dv;
3775 }
3776 if (i < sec->anchor->num_raid_devs) {
3777 /* allocation failure */
3778 free_devlist(first);
3779 pr_err("imsm: failed to associate spare\n");
3780 return 3;
3781 }
3782 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3783 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3784 first->anchor->family_num = sec->anchor->family_num;
3785 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3786 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3787 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3788 }
3789
3790 return 0;
3791 }
3792
3793 static void fd2devname(int fd, char *name)
3794 {
3795 struct stat st;
3796 char path[256];
3797 char dname[PATH_MAX];
3798 char *nm;
3799 int rv;
3800
3801 name[0] = '\0';
3802 if (fstat(fd, &st) != 0)
3803 return;
3804 sprintf(path, "/sys/dev/block/%d:%d",
3805 major(st.st_rdev), minor(st.st_rdev));
3806
3807 rv = readlink(path, dname, sizeof(dname)-1);
3808 if (rv <= 0)
3809 return;
3810
3811 dname[rv] = '\0';
3812 nm = strrchr(dname, '/');
3813 if (nm) {
3814 nm++;
3815 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3816 }
3817 }
3818
3819 static int nvme_get_serial(int fd, void *buf, size_t buf_len)
3820 {
3821 char path[60];
3822 char *name = fd2kname(fd);
3823
3824 if (!name)
3825 return 1;
3826
3827 if (strncmp(name, "nvme", 4) != 0)
3828 return 1;
3829
3830 snprintf(path, sizeof(path) - 1, "/sys/block/%s/device/serial", name);
3831
3832 return load_sys(path, buf, buf_len);
3833 }
3834
3835 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3836
3837 static int imsm_read_serial(int fd, char *devname,
3838 __u8 serial[MAX_RAID_SERIAL_LEN])
3839 {
3840 char buf[50];
3841 int rv;
3842 int len;
3843 char *dest;
3844 char *src;
3845 unsigned int i;
3846
3847 memset(buf, 0, sizeof(buf));
3848
3849 rv = nvme_get_serial(fd, buf, sizeof(buf));
3850
3851 if (rv)
3852 rv = scsi_get_serial(fd, buf, sizeof(buf));
3853
3854 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3855 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3856 fd2devname(fd, (char *) serial);
3857 return 0;
3858 }
3859
3860 if (rv != 0) {
3861 if (devname)
3862 pr_err("Failed to retrieve serial for %s\n",
3863 devname);
3864 return rv;
3865 }
3866
3867 /* trim all whitespace and non-printable characters and convert
3868 * ':' to ';'
3869 */
3870 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
3871 src = &buf[i];
3872 if (*src > 0x20) {
3873 /* ':' is reserved for use in placeholder serial
3874 * numbers for missing disks
3875 */
3876 if (*src == ':')
3877 *dest++ = ';';
3878 else
3879 *dest++ = *src;
3880 }
3881 }
3882 len = dest - buf;
3883 dest = buf;
3884
3885 /* truncate leading characters */
3886 if (len > MAX_RAID_SERIAL_LEN) {
3887 dest += len - MAX_RAID_SERIAL_LEN;
3888 len = MAX_RAID_SERIAL_LEN;
3889 }
3890
3891 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3892 memcpy(serial, dest, len);
3893
3894 return 0;
3895 }
3896
3897 static int serialcmp(__u8 *s1, __u8 *s2)
3898 {
3899 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3900 }
3901
3902 static void serialcpy(__u8 *dest, __u8 *src)
3903 {
3904 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3905 }
3906
3907 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3908 {
3909 struct dl *dl;
3910
3911 for (dl = super->disks; dl; dl = dl->next)
3912 if (serialcmp(dl->serial, serial) == 0)
3913 break;
3914
3915 return dl;
3916 }
3917
3918 static struct imsm_disk *
3919 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3920 {
3921 int i;
3922
3923 for (i = 0; i < mpb->num_disks; i++) {
3924 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3925
3926 if (serialcmp(disk->serial, serial) == 0) {
3927 if (idx)
3928 *idx = i;
3929 return disk;
3930 }
3931 }
3932
3933 return NULL;
3934 }
3935
3936 static int
3937 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3938 {
3939 struct imsm_disk *disk;
3940 struct dl *dl;
3941 struct stat stb;
3942 int rv;
3943 char name[40];
3944 __u8 serial[MAX_RAID_SERIAL_LEN];
3945
3946 rv = imsm_read_serial(fd, devname, serial);
3947
3948 if (rv != 0)
3949 return 2;
3950
3951 dl = xcalloc(1, sizeof(*dl));
3952
3953 fstat(fd, &stb);
3954 dl->major = major(stb.st_rdev);
3955 dl->minor = minor(stb.st_rdev);
3956 dl->next = super->disks;
3957 dl->fd = keep_fd ? fd : -1;
3958 assert(super->disks == NULL);
3959 super->disks = dl;
3960 serialcpy(dl->serial, serial);
3961 dl->index = -2;
3962 dl->e = NULL;
3963 fd2devname(fd, name);
3964 if (devname)
3965 dl->devname = xstrdup(devname);
3966 else
3967 dl->devname = xstrdup(name);
3968
3969 /* look up this disk's index in the current anchor */
3970 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3971 if (disk) {
3972 dl->disk = *disk;
3973 /* only set index on disks that are a member of a
3974 * populated contianer, i.e. one with raid_devs
3975 */
3976 if (is_failed(&dl->disk))
3977 dl->index = -2;
3978 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
3979 dl->index = -1;
3980 }
3981
3982 return 0;
3983 }
3984
3985 /* When migrating map0 contains the 'destination' state while map1
3986 * contains the current state. When not migrating map0 contains the
3987 * current state. This routine assumes that map[0].map_state is set to
3988 * the current array state before being called.
3989 *
3990 * Migration is indicated by one of the following states
3991 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3992 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3993 * map1state=unitialized)
3994 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3995 * map1state=normal)
3996 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3997 * map1state=degraded)
3998 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3999 * map1state=normal)
4000 */
4001 static void migrate(struct imsm_dev *dev, struct intel_super *super,
4002 __u8 to_state, int migr_type)
4003 {
4004 struct imsm_map *dest;
4005 struct imsm_map *src = get_imsm_map(dev, MAP_0);
4006
4007 dev->vol.migr_state = 1;
4008 set_migr_type(dev, migr_type);
4009 dev->vol.curr_migr_unit = 0;
4010 dest = get_imsm_map(dev, MAP_1);
4011
4012 /* duplicate and then set the target end state in map[0] */
4013 memcpy(dest, src, sizeof_imsm_map(src));
4014 if (migr_type == MIGR_REBUILD || migr_type == MIGR_GEN_MIGR) {
4015 __u32 ord;
4016 int i;
4017
4018 for (i = 0; i < src->num_members; i++) {
4019 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4020 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4021 }
4022 }
4023
4024 if (migr_type == MIGR_GEN_MIGR)
4025 /* Clear migration record */
4026 memset(super->migr_rec, 0, sizeof(struct migr_record));
4027
4028 src->map_state = to_state;
4029 }
4030
4031 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4032 __u8 map_state)
4033 {
4034 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4035 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4036 MAP_0 : MAP_1);
4037 int i, j;
4038
4039 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4040 * completed in the last migration.
4041 *
4042 * FIXME add support for raid-level-migration
4043 */
4044 if (map_state != map->map_state && (is_gen_migration(dev) == 0) &&
4045 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
4046 /* when final map state is other than expected
4047 * merge maps (not for migration)
4048 */
4049 int failed;
4050
4051 for (i = 0; i < prev->num_members; i++)
4052 for (j = 0; j < map->num_members; j++)
4053 /* during online capacity expansion
4054 * disks position can be changed
4055 * if takeover is used
4056 */
4057 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4058 ord_to_idx(prev->disk_ord_tbl[i])) {
4059 map->disk_ord_tbl[j] |=
4060 prev->disk_ord_tbl[i];
4061 break;
4062 }
4063 failed = imsm_count_failed(super, dev, MAP_0);
4064 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4065 }
4066
4067 dev->vol.migr_state = 0;
4068 set_migr_type(dev, 0);
4069 dev->vol.curr_migr_unit = 0;
4070 map->map_state = map_state;
4071 }
4072
4073 static int parse_raid_devices(struct intel_super *super)
4074 {
4075 int i;
4076 struct imsm_dev *dev_new;
4077 size_t len, len_migr;
4078 size_t max_len = 0;
4079 size_t space_needed = 0;
4080 struct imsm_super *mpb = super->anchor;
4081
4082 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4083 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4084 struct intel_dev *dv;
4085
4086 len = sizeof_imsm_dev(dev_iter, 0);
4087 len_migr = sizeof_imsm_dev(dev_iter, 1);
4088 if (len_migr > len)
4089 space_needed += len_migr - len;
4090
4091 dv = xmalloc(sizeof(*dv));
4092 if (max_len < len_migr)
4093 max_len = len_migr;
4094 if (max_len > len_migr)
4095 space_needed += max_len - len_migr;
4096 dev_new = xmalloc(max_len);
4097 imsm_copy_dev(dev_new, dev_iter);
4098 dv->dev = dev_new;
4099 dv->index = i;
4100 dv->next = super->devlist;
4101 super->devlist = dv;
4102 }
4103
4104 /* ensure that super->buf is large enough when all raid devices
4105 * are migrating
4106 */
4107 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4108 void *buf;
4109
4110 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4111 super->sector_size);
4112 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4113 return 1;
4114
4115 memcpy(buf, super->buf, super->len);
4116 memset(buf + super->len, 0, len - super->len);
4117 free(super->buf);
4118 super->buf = buf;
4119 super->len = len;
4120 }
4121
4122 super->extra_space += space_needed;
4123
4124 return 0;
4125 }
4126
4127 /*******************************************************************************
4128 * Function: check_mpb_migr_compatibility
4129 * Description: Function checks for unsupported migration features:
4130 * - migration optimization area (pba_of_lba0)
4131 * - descending reshape (ascending_migr)
4132 * Parameters:
4133 * super : imsm metadata information
4134 * Returns:
4135 * 0 : migration is compatible
4136 * -1 : migration is not compatible
4137 ******************************************************************************/
4138 int check_mpb_migr_compatibility(struct intel_super *super)
4139 {
4140 struct imsm_map *map0, *map1;
4141 struct migr_record *migr_rec = super->migr_rec;
4142 int i;
4143
4144 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4145 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4146
4147 if (dev_iter &&
4148 dev_iter->vol.migr_state == 1 &&
4149 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4150 /* This device is migrating */
4151 map0 = get_imsm_map(dev_iter, MAP_0);
4152 map1 = get_imsm_map(dev_iter, MAP_1);
4153 if (pba_of_lba0(map0) != pba_of_lba0(map1))
4154 /* migration optimization area was used */
4155 return -1;
4156 if (migr_rec->ascending_migr == 0
4157 && migr_rec->dest_depth_per_unit > 0)
4158 /* descending reshape not supported yet */
4159 return -1;
4160 }
4161 }
4162 return 0;
4163 }
4164
4165 static void __free_imsm(struct intel_super *super, int free_disks);
4166
4167 /* load_imsm_mpb - read matrix metadata
4168 * allocates super->mpb to be freed by free_imsm
4169 */
4170 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4171 {
4172 unsigned long long dsize;
4173 unsigned long long sectors;
4174 unsigned int sector_size = super->sector_size;
4175 struct stat;
4176 struct imsm_super *anchor;
4177 __u32 check_sum;
4178
4179 get_dev_size(fd, NULL, &dsize);
4180 if (dsize < 2*sector_size) {
4181 if (devname)
4182 pr_err("%s: device to small for imsm\n",
4183 devname);
4184 return 1;
4185 }
4186
4187 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
4188 if (devname)
4189 pr_err("Cannot seek to anchor block on %s: %s\n",
4190 devname, strerror(errno));
4191 return 1;
4192 }
4193
4194 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
4195 if (devname)
4196 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
4197 return 1;
4198 }
4199 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
4200 if (devname)
4201 pr_err("Cannot read anchor block on %s: %s\n",
4202 devname, strerror(errno));
4203 free(anchor);
4204 return 1;
4205 }
4206
4207 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
4208 if (devname)
4209 pr_err("no IMSM anchor on %s\n", devname);
4210 free(anchor);
4211 return 2;
4212 }
4213
4214 __free_imsm(super, 0);
4215 /* reload capability and hba */
4216
4217 /* capability and hba must be updated with new super allocation */
4218 find_intel_hba_capability(fd, super, devname);
4219 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4220 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
4221 if (devname)
4222 pr_err("unable to allocate %zu byte mpb buffer\n",
4223 super->len);
4224 free(anchor);
4225 return 2;
4226 }
4227 memcpy(super->buf, anchor, sector_size);
4228
4229 sectors = mpb_sectors(anchor, sector_size) - 1;
4230 free(anchor);
4231
4232 if (posix_memalign(&super->migr_rec_buf, sector_size,
4233 MIGR_REC_BUF_SECTORS*sector_size) != 0) {
4234 pr_err("could not allocate migr_rec buffer\n");
4235 free(super->buf);
4236 return 2;
4237 }
4238 super->clean_migration_record_by_mdmon = 0;
4239
4240 if (!sectors) {
4241 check_sum = __gen_imsm_checksum(super->anchor);
4242 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4243 if (devname)
4244 pr_err("IMSM checksum %x != %x on %s\n",
4245 check_sum,
4246 __le32_to_cpu(super->anchor->check_sum),
4247 devname);
4248 return 2;
4249 }
4250
4251 return 0;
4252 }
4253
4254 /* read the extended mpb */
4255 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
4256 if (devname)
4257 pr_err("Cannot seek to extended mpb on %s: %s\n",
4258 devname, strerror(errno));
4259 return 1;
4260 }
4261
4262 if ((unsigned int)read(fd, super->buf + sector_size,
4263 super->len - sector_size) != super->len - sector_size) {
4264 if (devname)
4265 pr_err("Cannot read extended mpb on %s: %s\n",
4266 devname, strerror(errno));
4267 return 2;
4268 }
4269
4270 check_sum = __gen_imsm_checksum(super->anchor);
4271 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4272 if (devname)
4273 pr_err("IMSM checksum %x != %x on %s\n",
4274 check_sum, __le32_to_cpu(super->anchor->check_sum),
4275 devname);
4276 return 3;
4277 }
4278
4279 return 0;
4280 }
4281
4282 static int read_imsm_migr_rec(int fd, struct intel_super *super);
4283
4284 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4285 static void clear_hi(struct intel_super *super)
4286 {
4287 struct imsm_super *mpb = super->anchor;
4288 int i, n;
4289 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4290 return;
4291 for (i = 0; i < mpb->num_disks; ++i) {
4292 struct imsm_disk *disk = &mpb->disk[i];
4293 disk->total_blocks_hi = 0;
4294 }
4295 for (i = 0; i < mpb->num_raid_devs; ++i) {
4296 struct imsm_dev *dev = get_imsm_dev(super, i);
4297 if (!dev)
4298 return;
4299 for (n = 0; n < 2; ++n) {
4300 struct imsm_map *map = get_imsm_map(dev, n);
4301 if (!map)
4302 continue;
4303 map->pba_of_lba0_hi = 0;
4304 map->blocks_per_member_hi = 0;
4305 map->num_data_stripes_hi = 0;
4306 }
4307 }
4308 }
4309
4310 static int
4311 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4312 {
4313 int err;
4314
4315 err = load_imsm_mpb(fd, super, devname);
4316 if (err)
4317 return err;
4318 if (super->sector_size == 4096)
4319 convert_from_4k(super);
4320 err = load_imsm_disk(fd, super, devname, keep_fd);
4321 if (err)
4322 return err;
4323 err = parse_raid_devices(super);
4324 if (err)
4325 return err;
4326 err = load_bbm_log(super);
4327 clear_hi(super);
4328 return err;
4329 }
4330
4331 static void __free_imsm_disk(struct dl *d)
4332 {
4333 if (d->fd >= 0)
4334 close(d->fd);
4335 if (d->devname)
4336 free(d->devname);
4337 if (d->e)
4338 free(d->e);
4339 free(d);
4340
4341 }
4342
4343 static void free_imsm_disks(struct intel_super *super)
4344 {
4345 struct dl *d;
4346
4347 while (super->disks) {
4348 d = super->disks;
4349 super->disks = d->next;
4350 __free_imsm_disk(d);
4351 }
4352 while (super->disk_mgmt_list) {
4353 d = super->disk_mgmt_list;
4354 super->disk_mgmt_list = d->next;
4355 __free_imsm_disk(d);
4356 }
4357 while (super->missing) {
4358 d = super->missing;
4359 super->missing = d->next;
4360 __free_imsm_disk(d);
4361 }
4362
4363 }
4364
4365 /* free all the pieces hanging off of a super pointer */
4366 static void __free_imsm(struct intel_super *super, int free_disks)
4367 {
4368 struct intel_hba *elem, *next;
4369
4370 if (super->buf) {
4371 free(super->buf);
4372 super->buf = NULL;
4373 }
4374 /* unlink capability description */
4375 super->orom = NULL;
4376 if (super->migr_rec_buf) {
4377 free(super->migr_rec_buf);
4378 super->migr_rec_buf = NULL;
4379 }
4380 if (free_disks)
4381 free_imsm_disks(super);
4382 free_devlist(super);
4383 elem = super->hba;
4384 while (elem) {
4385 if (elem->path)
4386 free((void *)elem->path);
4387 next = elem->next;
4388 free(elem);
4389 elem = next;
4390 }
4391 if (super->bbm_log)
4392 free(super->bbm_log);
4393 super->hba = NULL;
4394 }
4395
4396 static void free_imsm(struct intel_super *super)
4397 {
4398 __free_imsm(super, 1);
4399 free(super->bb.entries);
4400 free(super);
4401 }
4402
4403 static void free_super_imsm(struct supertype *st)
4404 {
4405 struct intel_super *super = st->sb;
4406
4407 if (!super)
4408 return;
4409
4410 free_imsm(super);
4411 st->sb = NULL;
4412 }
4413
4414 static struct intel_super *alloc_super(void)
4415 {
4416 struct intel_super *super = xcalloc(1, sizeof(*super));
4417
4418 super->current_vol = -1;
4419 super->create_offset = ~((unsigned long long) 0);
4420
4421 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4422 sizeof(struct md_bb_entry));
4423 if (!super->bb.entries) {
4424 free(super);
4425 return NULL;
4426 }
4427
4428 return super;
4429 }
4430
4431 /*
4432 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4433 */
4434 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
4435 {
4436 struct sys_dev *hba_name;
4437 int rv = 0;
4438
4439 if (fd < 0 || check_env("IMSM_NO_PLATFORM")) {
4440 super->orom = NULL;
4441 super->hba = NULL;
4442 return 0;
4443 }
4444 hba_name = find_disk_attached_hba(fd, NULL);
4445 if (!hba_name) {
4446 if (devname)
4447 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4448 devname);
4449 return 1;
4450 }
4451 rv = attach_hba_to_super(super, hba_name);
4452 if (rv == 2) {
4453 if (devname) {
4454 struct intel_hba *hba = super->hba;
4455
4456 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4457 " but the container is assigned to Intel(R) %s %s (",
4458 devname,
4459 get_sys_dev_type(hba_name->type),
4460 hba_name->type == SYS_DEV_VMD ? "domain" : "RAID controller",
4461 hba_name->pci_id ? : "Err!",
4462 get_sys_dev_type(super->hba->type),
4463 hba->type == SYS_DEV_VMD ? "domain" : "RAID controller");
4464
4465 while (hba) {
4466 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4467 if (hba->next)
4468 fprintf(stderr, ", ");
4469 hba = hba->next;
4470 }
4471 fprintf(stderr, ").\n"
4472 " Mixing devices attached to different %s is not allowed.\n",
4473 hba_name->type == SYS_DEV_VMD ? "VMD domains" : "controllers");
4474 }
4475 return 2;
4476 }
4477 super->orom = find_imsm_capability(hba_name);
4478 if (!super->orom)
4479 return 3;
4480
4481 return 0;
4482 }
4483
4484 /* find_missing - helper routine for load_super_imsm_all that identifies
4485 * disks that have disappeared from the system. This routine relies on
4486 * the mpb being uptodate, which it is at load time.
4487 */
4488 static int find_missing(struct intel_super *super)
4489 {
4490 int i;
4491 struct imsm_super *mpb = super->anchor;
4492 struct dl *dl;
4493 struct imsm_disk *disk;
4494
4495 for (i = 0; i < mpb->num_disks; i++) {
4496 disk = __get_imsm_disk(mpb, i);
4497 dl = serial_to_dl(disk->serial, super);
4498 if (dl)
4499 continue;
4500
4501 dl = xmalloc(sizeof(*dl));
4502 dl->major = 0;
4503 dl->minor = 0;
4504 dl->fd = -1;
4505 dl->devname = xstrdup("missing");
4506 dl->index = i;
4507 serialcpy(dl->serial, disk->serial);
4508 dl->disk = *disk;
4509 dl->e = NULL;
4510 dl->next = super->missing;
4511 super->missing = dl;
4512 }
4513
4514 return 0;
4515 }
4516
4517 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4518 {
4519 struct intel_disk *idisk = disk_list;
4520
4521 while (idisk) {
4522 if (serialcmp(idisk->disk.serial, serial) == 0)
4523 break;
4524 idisk = idisk->next;
4525 }
4526
4527 return idisk;
4528 }
4529
4530 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4531 struct intel_super *super,
4532 struct intel_disk **disk_list)
4533 {
4534 struct imsm_disk *d = &super->disks->disk;
4535 struct imsm_super *mpb = super->anchor;
4536 int i, j;
4537
4538 for (i = 0; i < tbl_size; i++) {
4539 struct imsm_super *tbl_mpb = table[i]->anchor;
4540 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4541
4542 if (tbl_mpb->family_num == mpb->family_num) {
4543 if (tbl_mpb->check_sum == mpb->check_sum) {
4544 dprintf("mpb from %d:%d matches %d:%d\n",
4545 super->disks->major,
4546 super->disks->minor,
4547 table[i]->disks->major,
4548 table[i]->disks->minor);
4549 break;
4550 }
4551
4552 if (((is_configured(d) && !is_configured(tbl_d)) ||
4553 is_configured(d) == is_configured(tbl_d)) &&
4554 tbl_mpb->generation_num < mpb->generation_num) {
4555 /* current version of the mpb is a
4556 * better candidate than the one in
4557 * super_table, but copy over "cross
4558 * generational" status
4559 */
4560 struct intel_disk *idisk;
4561
4562 dprintf("mpb from %d:%d replaces %d:%d\n",
4563 super->disks->major,
4564 super->disks->minor,
4565 table[i]->disks->major,
4566 table[i]->disks->minor);
4567
4568 idisk = disk_list_get(tbl_d->serial, *disk_list);
4569 if (idisk && is_failed(&idisk->disk))
4570 tbl_d->status |= FAILED_DISK;
4571 break;
4572 } else {
4573 struct intel_disk *idisk;
4574 struct imsm_disk *disk;
4575
4576 /* tbl_mpb is more up to date, but copy
4577 * over cross generational status before
4578 * returning
4579 */
4580 disk = __serial_to_disk(d->serial, mpb, NULL);
4581 if (disk && is_failed(disk))
4582 d->status |= FAILED_DISK;
4583
4584 idisk = disk_list_get(d->serial, *disk_list);
4585 if (idisk) {
4586 idisk->owner = i;
4587 if (disk && is_configured(disk))
4588 idisk->disk.status |= CONFIGURED_DISK;
4589 }
4590
4591 dprintf("mpb from %d:%d prefer %d:%d\n",
4592 super->disks->major,
4593 super->disks->minor,
4594 table[i]->disks->major,
4595 table[i]->disks->minor);
4596
4597 return tbl_size;
4598 }
4599 }
4600 }
4601
4602 if (i >= tbl_size)
4603 table[tbl_size++] = super;
4604 else
4605 table[i] = super;
4606
4607 /* update/extend the merged list of imsm_disk records */
4608 for (j = 0; j < mpb->num_disks; j++) {
4609 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4610 struct intel_disk *idisk;
4611
4612 idisk = disk_list_get(disk->serial, *disk_list);
4613 if (idisk) {
4614 idisk->disk.status |= disk->status;
4615 if (is_configured(&idisk->disk) ||
4616 is_failed(&idisk->disk))
4617 idisk->disk.status &= ~(SPARE_DISK);
4618 } else {
4619 idisk = xcalloc(1, sizeof(*idisk));
4620 idisk->owner = IMSM_UNKNOWN_OWNER;
4621 idisk->disk = *disk;
4622 idisk->next = *disk_list;
4623 *disk_list = idisk;
4624 }
4625
4626 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4627 idisk->owner = i;
4628 }
4629
4630 return tbl_size;
4631 }
4632
4633 static struct intel_super *
4634 validate_members(struct intel_super *super, struct intel_disk *disk_list,
4635 const int owner)
4636 {
4637 struct imsm_super *mpb = super->anchor;
4638 int ok_count = 0;
4639 int i;
4640
4641 for (i = 0; i < mpb->num_disks; i++) {
4642 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4643 struct intel_disk *idisk;
4644
4645 idisk = disk_list_get(disk->serial, disk_list);
4646 if (idisk) {
4647 if (idisk->owner == owner ||
4648 idisk->owner == IMSM_UNKNOWN_OWNER)
4649 ok_count++;
4650 else
4651 dprintf("'%.16s' owner %d != %d\n",
4652 disk->serial, idisk->owner,
4653 owner);
4654 } else {
4655 dprintf("unknown disk %x [%d]: %.16s\n",
4656 __le32_to_cpu(mpb->family_num), i,
4657 disk->serial);
4658 break;
4659 }
4660 }
4661
4662 if (ok_count == mpb->num_disks)
4663 return super;
4664 return NULL;
4665 }
4666
4667 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4668 {
4669 struct intel_super *s;
4670
4671 for (s = super_list; s; s = s->next) {
4672 if (family_num != s->anchor->family_num)
4673 continue;
4674 pr_err("Conflict, offlining family %#x on '%s'\n",
4675 __le32_to_cpu(family_num), s->disks->devname);
4676 }
4677 }
4678
4679 static struct intel_super *
4680 imsm_thunderdome(struct intel_super **super_list, int len)
4681 {
4682 struct intel_super *super_table[len];
4683 struct intel_disk *disk_list = NULL;
4684 struct intel_super *champion, *spare;
4685 struct intel_super *s, **del;
4686 int tbl_size = 0;
4687 int conflict;
4688 int i;
4689
4690 memset(super_table, 0, sizeof(super_table));
4691 for (s = *super_list; s; s = s->next)
4692 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4693
4694 for (i = 0; i < tbl_size; i++) {
4695 struct imsm_disk *d;
4696 struct intel_disk *idisk;
4697 struct imsm_super *mpb = super_table[i]->anchor;
4698
4699 s = super_table[i];
4700 d = &s->disks->disk;
4701
4702 /* 'd' must appear in merged disk list for its
4703 * configuration to be valid
4704 */
4705 idisk = disk_list_get(d->serial, disk_list);
4706 if (idisk && idisk->owner == i)
4707 s = validate_members(s, disk_list, i);
4708 else
4709 s = NULL;
4710
4711 if (!s)
4712 dprintf("marking family: %#x from %d:%d offline\n",
4713 mpb->family_num,
4714 super_table[i]->disks->major,
4715 super_table[i]->disks->minor);
4716 super_table[i] = s;
4717 }
4718
4719 /* This is where the mdadm implementation differs from the Windows
4720 * driver which has no strict concept of a container. We can only
4721 * assemble one family from a container, so when returning a prodigal
4722 * array member to this system the code will not be able to disambiguate
4723 * the container contents that should be assembled ("foreign" versus
4724 * "local"). It requires user intervention to set the orig_family_num
4725 * to a new value to establish a new container. The Windows driver in
4726 * this situation fixes up the volume name in place and manages the
4727 * foreign array as an independent entity.
4728 */
4729 s = NULL;
4730 spare = NULL;
4731 conflict = 0;
4732 for (i = 0; i < tbl_size; i++) {
4733 struct intel_super *tbl_ent = super_table[i];
4734 int is_spare = 0;
4735
4736 if (!tbl_ent)
4737 continue;
4738
4739 if (tbl_ent->anchor->num_raid_devs == 0) {
4740 spare = tbl_ent;
4741 is_spare = 1;
4742 }
4743
4744 if (s && !is_spare) {
4745 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4746 conflict++;
4747 } else if (!s && !is_spare)
4748 s = tbl_ent;
4749 }
4750
4751 if (!s)
4752 s = spare;
4753 if (!s) {
4754 champion = NULL;
4755 goto out;
4756 }
4757 champion = s;
4758
4759 if (conflict)
4760 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
4761 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4762
4763 /* collect all dl's onto 'champion', and update them to
4764 * champion's version of the status
4765 */
4766 for (s = *super_list; s; s = s->next) {
4767 struct imsm_super *mpb = champion->anchor;
4768 struct dl *dl = s->disks;
4769
4770 if (s == champion)
4771 continue;
4772
4773 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4774
4775 for (i = 0; i < mpb->num_disks; i++) {
4776 struct imsm_disk *disk;
4777
4778 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4779 if (disk) {
4780 dl->disk = *disk;
4781 /* only set index on disks that are a member of
4782 * a populated contianer, i.e. one with
4783 * raid_devs
4784 */
4785 if (is_failed(&dl->disk))
4786 dl->index = -2;
4787 else if (is_spare(&dl->disk))
4788 dl->index = -1;
4789 break;
4790 }
4791 }
4792
4793 if (i >= mpb->num_disks) {
4794 struct intel_disk *idisk;
4795
4796 idisk = disk_list_get(dl->serial, disk_list);
4797 if (idisk && is_spare(&idisk->disk) &&
4798 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4799 dl->index = -1;
4800 else {
4801 dl->index = -2;
4802 continue;
4803 }
4804 }
4805
4806 dl->next = champion->disks;
4807 champion->disks = dl;
4808 s->disks = NULL;
4809 }
4810
4811 /* delete 'champion' from super_list */
4812 for (del = super_list; *del; ) {
4813 if (*del == champion) {
4814 *del = (*del)->next;
4815 break;
4816 } else
4817 del = &(*del)->next;
4818 }
4819 champion->next = NULL;
4820
4821 out:
4822 while (disk_list) {
4823 struct intel_disk *idisk = disk_list;
4824
4825 disk_list = disk_list->next;
4826 free(idisk);
4827 }
4828
4829 return champion;
4830 }
4831
4832 static int
4833 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4834 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4835 int major, int minor, int keep_fd);
4836 static int
4837 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4838 int *max, int keep_fd);
4839
4840 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4841 char *devname, struct md_list *devlist,
4842 int keep_fd)
4843 {
4844 struct intel_super *super_list = NULL;
4845 struct intel_super *super = NULL;
4846 int err = 0;
4847 int i = 0;
4848
4849 if (fd >= 0)
4850 /* 'fd' is an opened container */
4851 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4852 else
4853 /* get super block from devlist devices */
4854 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4855 if (err)
4856 goto error;
4857 /* all mpbs enter, maybe one leaves */
4858 super = imsm_thunderdome(&super_list, i);
4859 if (!super) {
4860 err = 1;
4861 goto error;
4862 }
4863
4864 if (find_missing(super) != 0) {
4865 free_imsm(super);
4866 err = 2;
4867 goto error;
4868 }
4869
4870 /* load migration record */
4871 err = load_imsm_migr_rec(super, NULL);
4872 if (err == -1) {
4873 /* migration is in progress,
4874 * but migr_rec cannot be loaded,
4875 */
4876 err = 4;
4877 goto error;
4878 }
4879
4880 /* Check migration compatibility */
4881 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
4882 pr_err("Unsupported migration detected");
4883 if (devname)
4884 fprintf(stderr, " on %s\n", devname);
4885 else
4886 fprintf(stderr, " (IMSM).\n");
4887
4888 err = 5;
4889 goto error;
4890 }
4891
4892 err = 0;
4893
4894 error:
4895 while (super_list) {
4896 struct intel_super *s = super_list;
4897
4898 super_list = super_list->next;
4899 free_imsm(s);
4900 }
4901
4902 if (err)
4903 return err;
4904
4905 *sbp = super;
4906 if (fd >= 0)
4907 strcpy(st->container_devnm, fd2devnm(fd));
4908 else
4909 st->container_devnm[0] = 0;
4910 if (err == 0 && st->ss == NULL) {
4911 st->ss = &super_imsm;
4912 st->minor_version = 0;
4913 st->max_devs = IMSM_MAX_DEVICES;
4914 }
4915 return 0;
4916 }
4917
4918 static int
4919 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4920 int *max, int keep_fd)
4921 {
4922 struct md_list *tmpdev;
4923 int err = 0;
4924 int i = 0;
4925
4926 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4927 if (tmpdev->used != 1)
4928 continue;
4929 if (tmpdev->container == 1) {
4930 int lmax = 0;
4931 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4932 if (fd < 0) {
4933 pr_err("cannot open device %s: %s\n",
4934 tmpdev->devname, strerror(errno));
4935 err = 8;
4936 goto error;
4937 }
4938 err = get_sra_super_block(fd, super_list,
4939 tmpdev->devname, &lmax,
4940 keep_fd);
4941 i += lmax;
4942 close(fd);
4943 if (err) {
4944 err = 7;
4945 goto error;
4946 }
4947 } else {
4948 int major = major(tmpdev->st_rdev);
4949 int minor = minor(tmpdev->st_rdev);
4950 err = get_super_block(super_list,
4951 NULL,
4952 tmpdev->devname,
4953 major, minor,
4954 keep_fd);
4955 i++;
4956 if (err) {
4957 err = 6;
4958 goto error;
4959 }
4960 }
4961 }
4962 error:
4963 *max = i;
4964 return err;
4965 }
4966
4967 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
4968 int major, int minor, int keep_fd)
4969 {
4970 struct intel_super *s;
4971 char nm[32];
4972 int dfd = -1;
4973 int err = 0;
4974 int retry;
4975
4976 s = alloc_super();
4977 if (!s) {
4978 err = 1;
4979 goto error;
4980 }
4981
4982 sprintf(nm, "%d:%d", major, minor);
4983 dfd = dev_open(nm, O_RDWR);
4984 if (dfd < 0) {
4985 err = 2;
4986 goto error;
4987 }
4988
4989 get_dev_sector_size(dfd, NULL, &s->sector_size);
4990 find_intel_hba_capability(dfd, s, devname);
4991 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4992
4993 /* retry the load if we might have raced against mdmon */
4994 if (err == 3 && devnm && mdmon_running(devnm))
4995 for (retry = 0; retry < 3; retry++) {
4996 usleep(3000);
4997 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4998 if (err != 3)
4999 break;
5000 }
5001 error:
5002 if (!err) {
5003 s->next = *super_list;
5004 *super_list = s;
5005 } else {
5006 if (s)
5007 free_imsm(s);
5008 if (dfd >= 0)
5009 close(dfd);
5010 }
5011 if (dfd >= 0 && !keep_fd)
5012 close(dfd);
5013 return err;
5014
5015 }
5016
5017 static int
5018 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5019 {
5020 struct mdinfo *sra;
5021 char *devnm;
5022 struct mdinfo *sd;
5023 int err = 0;
5024 int i = 0;
5025 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
5026 if (!sra)
5027 return 1;
5028
5029 if (sra->array.major_version != -1 ||
5030 sra->array.minor_version != -2 ||
5031 strcmp(sra->text_version, "imsm") != 0) {
5032 err = 1;
5033 goto error;
5034 }
5035 /* load all mpbs */
5036 devnm = fd2devnm(fd);
5037 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
5038 if (get_super_block(super_list, devnm, devname,
5039 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5040 err = 7;
5041 goto error;
5042 }
5043 }
5044 error:
5045 sysfs_free(sra);
5046 *max = i;
5047 return err;
5048 }
5049
5050 static int load_container_imsm(struct supertype *st, int fd, char *devname)
5051 {
5052 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
5053 }
5054
5055 static int load_super_imsm(struct supertype *st, int fd, char *devname)
5056 {
5057 struct intel_super *super;
5058 int rv;
5059 int retry;
5060
5061 if (test_partition(fd))
5062 /* IMSM not allowed on partitions */
5063 return 1;
5064
5065 free_super_imsm(st);
5066
5067 super = alloc_super();
5068 get_dev_sector_size(fd, NULL, &super->sector_size);
5069 if (!super)
5070 return 1;
5071 /* Load hba and capabilities if they exist.
5072 * But do not preclude loading metadata in case capabilities or hba are
5073 * non-compliant and ignore_hw_compat is set.
5074 */
5075 rv = find_intel_hba_capability(fd, super, devname);
5076 /* no orom/efi or non-intel hba of the disk */
5077 if (rv != 0 && st->ignore_hw_compat == 0) {
5078 if (devname)
5079 pr_err("No OROM/EFI properties for %s\n", devname);
5080 free_imsm(super);
5081 return 2;
5082 }
5083 rv = load_and_parse_mpb(fd, super, devname, 0);
5084
5085 /* retry the load if we might have raced against mdmon */
5086 if (rv == 3) {
5087 struct mdstat_ent *mdstat = NULL;
5088 char *name = fd2kname(fd);
5089
5090 if (name)
5091 mdstat = mdstat_by_component(name);
5092
5093 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5094 for (retry = 0; retry < 3; retry++) {
5095 usleep(3000);
5096 rv = load_and_parse_mpb(fd, super, devname, 0);
5097 if (rv != 3)
5098 break;
5099 }
5100 }
5101
5102 free_mdstat(mdstat);
5103 }
5104
5105 if (rv) {
5106 if (devname)
5107 pr_err("Failed to load all information sections on %s\n", devname);
5108 free_imsm(super);
5109 return rv;
5110 }
5111
5112 st->sb = super;
5113 if (st->ss == NULL) {
5114 st->ss = &super_imsm;
5115 st->minor_version = 0;
5116 st->max_devs = IMSM_MAX_DEVICES;
5117 }
5118
5119 /* load migration record */
5120 if (load_imsm_migr_rec(super, NULL) == 0) {
5121 /* Check for unsupported migration features */
5122 if (check_mpb_migr_compatibility(super) != 0) {
5123 pr_err("Unsupported migration detected");
5124 if (devname)
5125 fprintf(stderr, " on %s\n", devname);
5126 else
5127 fprintf(stderr, " (IMSM).\n");
5128 return 3;
5129 }
5130 }
5131
5132 return 0;
5133 }
5134
5135 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5136 {
5137 if (info->level == 1)
5138 return 128;
5139 return info->chunk_size >> 9;
5140 }
5141
5142 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5143 unsigned long long size)
5144 {
5145 if (info->level == 1)
5146 return size * 2;
5147 else
5148 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
5149 }
5150
5151 static void imsm_update_version_info(struct intel_super *super)
5152 {
5153 /* update the version and attributes */
5154 struct imsm_super *mpb = super->anchor;
5155 char *version;
5156 struct imsm_dev *dev;
5157 struct imsm_map *map;
5158 int i;
5159
5160 for (i = 0; i < mpb->num_raid_devs; i++) {
5161 dev = get_imsm_dev(super, i);
5162 map = get_imsm_map(dev, MAP_0);
5163 if (__le32_to_cpu(dev->size_high) > 0)
5164 mpb->attributes |= MPB_ATTRIB_2TB;
5165
5166 /* FIXME detect when an array spans a port multiplier */
5167 #if 0
5168 mpb->attributes |= MPB_ATTRIB_PM;
5169 #endif
5170
5171 if (mpb->num_raid_devs > 1 ||
5172 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5173 version = MPB_VERSION_ATTRIBS;
5174 switch (get_imsm_raid_level(map)) {
5175 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5176 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5177 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5178 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5179 }
5180 } else {
5181 if (map->num_members >= 5)
5182 version = MPB_VERSION_5OR6_DISK_ARRAY;
5183 else if (dev->status == DEV_CLONE_N_GO)
5184 version = MPB_VERSION_CNG;
5185 else if (get_imsm_raid_level(map) == 5)
5186 version = MPB_VERSION_RAID5;
5187 else if (map->num_members >= 3)
5188 version = MPB_VERSION_3OR4_DISK_ARRAY;
5189 else if (get_imsm_raid_level(map) == 1)
5190 version = MPB_VERSION_RAID1;
5191 else
5192 version = MPB_VERSION_RAID0;
5193 }
5194 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5195 }
5196 }
5197
5198 static int check_name(struct intel_super *super, char *name, int quiet)
5199 {
5200 struct imsm_super *mpb = super->anchor;
5201 char *reason = NULL;
5202 int i;
5203
5204 if (strlen(name) > MAX_RAID_SERIAL_LEN)
5205 reason = "must be 16 characters or less";
5206
5207 for (i = 0; i < mpb->num_raid_devs; i++) {
5208 struct imsm_dev *dev = get_imsm_dev(super, i);
5209
5210 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5211 reason = "already exists";
5212 break;
5213 }
5214 }
5215
5216 if (reason && !quiet)
5217 pr_err("imsm volume name %s\n", reason);
5218
5219 return !reason;
5220 }
5221
5222 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5223 struct shape *s, char *name,
5224 char *homehost, int *uuid,
5225 long long data_offset)
5226 {
5227 /* We are creating a volume inside a pre-existing container.
5228 * so st->sb is already set.
5229 */
5230 struct intel_super *super = st->sb;
5231 unsigned int sector_size = super->sector_size;
5232 struct imsm_super *mpb = super->anchor;
5233 struct intel_dev *dv;
5234 struct imsm_dev *dev;
5235 struct imsm_vol *vol;
5236 struct imsm_map *map;
5237 int idx = mpb->num_raid_devs;
5238 int i;
5239 unsigned long long array_blocks;
5240 size_t size_old, size_new;
5241 unsigned long long num_data_stripes;
5242 unsigned int data_disks;
5243 unsigned long long size_per_member;
5244
5245 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
5246 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
5247 return 0;
5248 }
5249
5250 /* ensure the mpb is large enough for the new data */
5251 size_old = __le32_to_cpu(mpb->mpb_size);
5252 size_new = disks_to_mpb_size(info->nr_disks);
5253 if (size_new > size_old) {
5254 void *mpb_new;
5255 size_t size_round = ROUND_UP(size_new, sector_size);
5256
5257 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
5258 pr_err("could not allocate new mpb\n");
5259 return 0;
5260 }
5261 if (posix_memalign(&super->migr_rec_buf, sector_size,
5262 MIGR_REC_BUF_SECTORS*sector_size) != 0) {
5263 pr_err("could not allocate migr_rec buffer\n");
5264 free(super->buf);
5265 free(super);
5266 free(mpb_new);
5267 return 0;
5268 }
5269 memcpy(mpb_new, mpb, size_old);
5270 free(mpb);
5271 mpb = mpb_new;
5272 super->anchor = mpb_new;
5273 mpb->mpb_size = __cpu_to_le32(size_new);
5274 memset(mpb_new + size_old, 0, size_round - size_old);
5275 super->len = size_round;
5276 }
5277 super->current_vol = idx;
5278
5279 /* handle 'failed_disks' by either:
5280 * a) create dummy disk entries in the table if this the first
5281 * volume in the array. We add them here as this is the only
5282 * opportunity to add them. add_to_super_imsm_volume()
5283 * handles the non-failed disks and continues incrementing
5284 * mpb->num_disks.
5285 * b) validate that 'failed_disks' matches the current number
5286 * of missing disks if the container is populated
5287 */
5288 if (super->current_vol == 0) {
5289 mpb->num_disks = 0;
5290 for (i = 0; i < info->failed_disks; i++) {
5291 struct imsm_disk *disk;
5292
5293 mpb->num_disks++;
5294 disk = __get_imsm_disk(mpb, i);
5295 disk->status = CONFIGURED_DISK | FAILED_DISK;
5296 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5297 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5298 "missing:%d", (__u8)i);
5299 }
5300 find_missing(super);
5301 } else {
5302 int missing = 0;
5303 struct dl *d;
5304
5305 for (d = super->missing; d; d = d->next)
5306 missing++;
5307 if (info->failed_disks > missing) {
5308 pr_err("unable to add 'missing' disk to container\n");
5309 return 0;
5310 }
5311 }
5312
5313 if (!check_name(super, name, 0))
5314 return 0;
5315 dv = xmalloc(sizeof(*dv));
5316 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
5317 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
5318 array_blocks = calc_array_size(info->level, info->raid_disks,
5319 info->layout, info->chunk_size,
5320 s->size * BLOCKS_PER_KB);
5321 data_disks = get_data_disks(info->level, info->layout,
5322 info->raid_disks);
5323 array_blocks = round_size_to_mb(array_blocks, data_disks);
5324 size_per_member = array_blocks / data_disks;
5325
5326 dev->size_low = __cpu_to_le32((__u32) array_blocks);
5327 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
5328 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
5329 vol = &dev->vol;
5330 vol->migr_state = 0;
5331 set_migr_type(dev, MIGR_INIT);
5332 vol->dirty = !info->state;
5333 vol->curr_migr_unit = 0;
5334 map = get_imsm_map(dev, MAP_0);
5335 set_pba_of_lba0(map, super->create_offset);
5336 set_blocks_per_member(map, info_to_blocks_per_member(info,
5337 size_per_member /
5338 BLOCKS_PER_KB));
5339 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
5340 map->failed_disk_num = ~0;
5341 if (info->level > 0)
5342 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5343 : IMSM_T_STATE_UNINITIALIZED);
5344 else
5345 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5346 IMSM_T_STATE_NORMAL;
5347 map->ddf = 1;
5348
5349 if (info->level == 1 && info->raid_disks > 2) {
5350 free(dev);
5351 free(dv);
5352 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
5353 return 0;
5354 }
5355
5356 map->raid_level = info->level;
5357 if (info->level == 10) {
5358 map->raid_level = 1;
5359 map->num_domains = info->raid_disks / 2;
5360 } else if (info->level == 1)
5361 map->num_domains = info->raid_disks;
5362 else
5363 map->num_domains = 1;
5364
5365 /* info->size is only int so use the 'size' parameter instead */
5366 num_data_stripes = size_per_member / info_to_blocks_per_strip(info);
5367 num_data_stripes /= map->num_domains;
5368 set_num_data_stripes(map, num_data_stripes);
5369
5370 map->num_members = info->raid_disks;
5371 for (i = 0; i < map->num_members; i++) {
5372 /* initialized in add_to_super */
5373 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
5374 }
5375 mpb->num_raid_devs++;
5376 mpb->num_raid_devs_created++;
5377 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
5378
5379 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
5380 dev->rwh_policy = RWH_OFF;
5381 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
5382 dev->rwh_policy = RWH_DISTRIBUTED;
5383 } else {
5384 free(dev);
5385 free(dv);
5386 pr_err("imsm does not support consistency policy %s\n",
5387 map_num(consistency_policies, s->consistency_policy));
5388 return 0;
5389 }
5390
5391 dv->dev = dev;
5392 dv->index = super->current_vol;
5393 dv->next = super->devlist;
5394 super->devlist = dv;
5395
5396 imsm_update_version_info(super);
5397
5398 return 1;
5399 }
5400
5401 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5402 struct shape *s, char *name,
5403 char *homehost, int *uuid,
5404 unsigned long long data_offset)
5405 {
5406 /* This is primarily called by Create when creating a new array.
5407 * We will then get add_to_super called for each component, and then
5408 * write_init_super called to write it out to each device.
5409 * For IMSM, Create can create on fresh devices or on a pre-existing
5410 * array.
5411 * To create on a pre-existing array a different method will be called.
5412 * This one is just for fresh drives.
5413 */
5414 struct intel_super *super;
5415 struct imsm_super *mpb;
5416 size_t mpb_size;
5417 char *version;
5418
5419 if (data_offset != INVALID_SECTORS) {
5420 pr_err("data-offset not supported by imsm\n");
5421 return 0;
5422 }
5423
5424 if (st->sb)
5425 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
5426 data_offset);
5427
5428 if (info)
5429 mpb_size = disks_to_mpb_size(info->nr_disks);
5430 else
5431 mpb_size = MAX_SECTOR_SIZE;
5432
5433 super = alloc_super();
5434 if (super &&
5435 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
5436 free_imsm(super);
5437 super = NULL;
5438 }
5439 if (!super) {
5440 pr_err("could not allocate superblock\n");
5441 return 0;
5442 }
5443 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5444 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
5445 pr_err("could not allocate migr_rec buffer\n");
5446 free(super->buf);
5447 free_imsm(super);
5448 return 0;
5449 }
5450 memset(super->buf, 0, mpb_size);
5451 mpb = super->buf;
5452 mpb->mpb_size = __cpu_to_le32(mpb_size);
5453 st->sb = super;
5454
5455 if (info == NULL) {
5456 /* zeroing superblock */
5457 return 0;
5458 }
5459
5460 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5461
5462 version = (char *) mpb->sig;
5463 strcpy(version, MPB_SIGNATURE);
5464 version += strlen(MPB_SIGNATURE);
5465 strcpy(version, MPB_VERSION_RAID0);
5466
5467 return 1;
5468 }
5469
5470 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
5471 int fd, char *devname)
5472 {
5473 struct intel_super *super = st->sb;
5474 struct imsm_super *mpb = super->anchor;
5475 struct imsm_disk *_disk;
5476 struct imsm_dev *dev;
5477 struct imsm_map *map;
5478 struct dl *dl, *df;
5479 int slot;
5480
5481 dev = get_imsm_dev(super, super->current_vol);
5482 map = get_imsm_map(dev, MAP_0);
5483
5484 if (! (dk->state & (1<<MD_DISK_SYNC))) {
5485 pr_err("%s: Cannot add spare devices to IMSM volume\n",
5486 devname);
5487 return 1;
5488 }
5489
5490 if (fd == -1) {
5491 /* we're doing autolayout so grab the pre-marked (in
5492 * validate_geometry) raid_disk
5493 */
5494 for (dl = super->disks; dl; dl = dl->next)
5495 if (dl->raiddisk == dk->raid_disk)
5496 break;
5497 } else {
5498 for (dl = super->disks; dl ; dl = dl->next)
5499 if (dl->major == dk->major &&
5500 dl->minor == dk->minor)
5501 break;
5502 }
5503
5504 if (!dl) {
5505 pr_err("%s is not a member of the same container\n", devname);
5506 return 1;
5507 }
5508
5509 /* add a pristine spare to the metadata */
5510 if (dl->index < 0) {
5511 dl->index = super->anchor->num_disks;
5512 super->anchor->num_disks++;
5513 }
5514 /* Check the device has not already been added */
5515 slot = get_imsm_disk_slot(map, dl->index);
5516 if (slot >= 0 &&
5517 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
5518 pr_err("%s has been included in this array twice\n",
5519 devname);
5520 return 1;
5521 }
5522 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
5523 dl->disk.status = CONFIGURED_DISK;
5524
5525 /* update size of 'missing' disks to be at least as large as the
5526 * largest acitve member (we only have dummy missing disks when
5527 * creating the first volume)
5528 */
5529 if (super->current_vol == 0) {
5530 for (df = super->missing; df; df = df->next) {
5531 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5532 set_total_blocks(&df->disk, total_blocks(&dl->disk));
5533 _disk = __get_imsm_disk(mpb, df->index);
5534 *_disk = df->disk;
5535 }
5536 }
5537
5538 /* refresh unset/failed slots to point to valid 'missing' entries */
5539 for (df = super->missing; df; df = df->next)
5540 for (slot = 0; slot < mpb->num_disks; slot++) {
5541 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5542
5543 if ((ord & IMSM_ORD_REBUILD) == 0)
5544 continue;
5545 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
5546 if (is_gen_migration(dev)) {
5547 struct imsm_map *map2 = get_imsm_map(dev,
5548 MAP_1);
5549 int slot2 = get_imsm_disk_slot(map2, df->index);
5550 if (slot2 < map2->num_members && slot2 >= 0) {
5551 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
5552 slot2,
5553 MAP_1);
5554 if ((unsigned)df->index ==
5555 ord_to_idx(ord2))
5556 set_imsm_ord_tbl_ent(map2,
5557 slot2,
5558 df->index |
5559 IMSM_ORD_REBUILD);
5560 }
5561 }
5562 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5563 break;
5564 }
5565
5566 /* if we are creating the first raid device update the family number */
5567 if (super->current_vol == 0) {
5568 __u32 sum;
5569 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
5570
5571 _disk = __get_imsm_disk(mpb, dl->index);
5572 if (!_dev || !_disk) {
5573 pr_err("BUG mpb setup error\n");
5574 return 1;
5575 }
5576 *_dev = *dev;
5577 *_disk = dl->disk;
5578 sum = random32();
5579 sum += __gen_imsm_checksum(mpb);
5580 mpb->family_num = __cpu_to_le32(sum);
5581 mpb->orig_family_num = mpb->family_num;
5582 }
5583 super->current_disk = dl;
5584 return 0;
5585 }
5586
5587 /* mark_spare()
5588 * Function marks disk as spare and restores disk serial
5589 * in case it was previously marked as failed by takeover operation
5590 * reruns:
5591 * -1 : critical error
5592 * 0 : disk is marked as spare but serial is not set
5593 * 1 : success
5594 */
5595 int mark_spare(struct dl *disk)
5596 {
5597 __u8 serial[MAX_RAID_SERIAL_LEN];
5598 int ret_val = -1;
5599
5600 if (!disk)
5601 return ret_val;
5602
5603 ret_val = 0;
5604 if (!imsm_read_serial(disk->fd, NULL, serial)) {
5605 /* Restore disk serial number, because takeover marks disk
5606 * as failed and adds to serial ':0' before it becomes
5607 * a spare disk.
5608 */
5609 serialcpy(disk->serial, serial);
5610 serialcpy(disk->disk.serial, serial);
5611 ret_val = 1;
5612 }
5613 disk->disk.status = SPARE_DISK;
5614 disk->index = -1;
5615
5616 return ret_val;
5617 }
5618
5619 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
5620 int fd, char *devname,
5621 unsigned long long data_offset)
5622 {
5623 struct intel_super *super = st->sb;
5624 struct dl *dd;
5625 unsigned long long size;
5626 unsigned int member_sector_size;
5627 __u32 id;
5628 int rv;
5629 struct stat stb;
5630
5631 /* If we are on an RAID enabled platform check that the disk is
5632 * attached to the raid controller.
5633 * We do not need to test disks attachment for container based additions,
5634 * they shall be already tested when container was created/assembled.
5635 */
5636 rv = find_intel_hba_capability(fd, super, devname);
5637 /* no orom/efi or non-intel hba of the disk */
5638 if (rv != 0) {
5639 dprintf("capability: %p fd: %d ret: %d\n",
5640 super->orom, fd, rv);
5641 return 1;
5642 }
5643
5644 if (super->current_vol >= 0)
5645 return add_to_super_imsm_volume(st, dk, fd, devname);
5646
5647 fstat(fd, &stb);
5648 dd = xcalloc(sizeof(*dd), 1);
5649 dd->major = major(stb.st_rdev);
5650 dd->minor = minor(stb.st_rdev);
5651 dd->devname = devname ? xstrdup(devname) : NULL;
5652 dd->fd = fd;
5653 dd->e = NULL;
5654 dd->action = DISK_ADD;
5655 rv = imsm_read_serial(fd, devname, dd->serial);
5656 if (rv) {
5657 pr_err("failed to retrieve scsi serial, aborting\n");
5658 if (dd->devname)
5659 free(dd->devname);
5660 free(dd);
5661 abort();
5662 }
5663 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
5664 (super->hba->type == SYS_DEV_VMD))) {
5665 int i;
5666 char *devpath = diskfd_to_devpath(fd);
5667 char controller_path[PATH_MAX];
5668
5669 if (!devpath) {
5670 pr_err("failed to get devpath, aborting\n");
5671 if (dd->devname)
5672 free(dd->devname);
5673 free(dd);
5674 return 1;
5675 }
5676
5677 snprintf(controller_path, PATH_MAX-1, "%s/device", devpath);
5678 free(devpath);
5679
5680 if (devpath_to_vendor(controller_path) == 0x8086) {
5681 /*
5682 * If Intel's NVMe drive has serial ended with
5683 * "-A","-B","-1" or "-2" it means that this is "x8"
5684 * device (double drive on single PCIe card).
5685 * User should be warned about potential data loss.
5686 */
5687 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
5688 /* Skip empty character at the end */
5689 if (dd->serial[i] == 0)
5690 continue;
5691
5692 if (((dd->serial[i] == 'A') ||
5693 (dd->serial[i] == 'B') ||
5694 (dd->serial[i] == '1') ||
5695 (dd->serial[i] == '2')) &&
5696 (dd->serial[i-1] == '-'))
5697 pr_err("\tThe action you are about to take may put your data at risk.\n"
5698 "\tPlease note that x8 devices may consist of two separate x4 devices "
5699 "located on a single PCIe port.\n"
5700 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
5701 break;
5702 }
5703 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
5704 !imsm_orom_has_tpv_support(super->orom)) {
5705 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
5706 "\tPlease refer to Intel(R) RSTe user guide.\n");
5707 free(dd->devname);
5708 free(dd);
5709 return 1;
5710 }
5711 }
5712
5713 get_dev_size(fd, NULL, &size);
5714 get_dev_sector_size(fd, NULL, &member_sector_size);
5715
5716 if (super->sector_size == 0) {
5717 /* this a first device, so sector_size is not set yet */
5718 super->sector_size = member_sector_size;
5719 } else if (member_sector_size != super->sector_size) {
5720 pr_err("Mixing between different sector size is forbidden, aborting...\n");
5721 if (dd->devname)
5722 free(dd->devname);
5723 free(dd);
5724 return 1;
5725 }
5726
5727 /* clear migr_rec when adding disk to container */
5728 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*super->sector_size);
5729 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*super->sector_size,
5730 SEEK_SET) >= 0) {
5731 if ((unsigned int)write(fd, super->migr_rec_buf,
5732 MIGR_REC_BUF_SECTORS*super->sector_size) !=
5733 MIGR_REC_BUF_SECTORS*super->sector_size)
5734 perror("Write migr_rec failed");
5735 }
5736
5737 size /= 512;
5738 serialcpy(dd->disk.serial, dd->serial);
5739 set_total_blocks(&dd->disk, size);
5740 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
5741 struct imsm_super *mpb = super->anchor;
5742 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
5743 }
5744 mark_spare(dd);
5745 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
5746 dd->disk.scsi_id = __cpu_to_le32(id);
5747 else
5748 dd->disk.scsi_id = __cpu_to_le32(0);
5749
5750 if (st->update_tail) {
5751 dd->next = super->disk_mgmt_list;
5752 super->disk_mgmt_list = dd;
5753 } else {
5754 dd->next = super->disks;
5755 super->disks = dd;
5756 super->updates_pending++;
5757 }
5758
5759 return 0;
5760 }
5761
5762 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5763 {
5764 struct intel_super *super = st->sb;
5765 struct dl *dd;
5766
5767 /* remove from super works only in mdmon - for communication
5768 * manager - monitor. Check if communication memory buffer
5769 * is prepared.
5770 */
5771 if (!st->update_tail) {
5772 pr_err("shall be used in mdmon context only\n");
5773 return 1;
5774 }
5775 dd = xcalloc(1, sizeof(*dd));
5776 dd->major = dk->major;
5777 dd->minor = dk->minor;
5778 dd->fd = -1;
5779 mark_spare(dd);
5780 dd->action = DISK_REMOVE;
5781
5782 dd->next = super->disk_mgmt_list;
5783 super->disk_mgmt_list = dd;
5784
5785 return 0;
5786 }
5787
5788 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5789
5790 static union {
5791 char buf[MAX_SECTOR_SIZE];
5792 struct imsm_super anchor;
5793 } spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
5794
5795 /* spare records have their own family number and do not have any defined raid
5796 * devices
5797 */
5798 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5799 {
5800 struct imsm_super *mpb = super->anchor;
5801 struct imsm_super *spare = &spare_record.anchor;
5802 __u32 sum;
5803 struct dl *d;
5804
5805 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
5806 spare->generation_num = __cpu_to_le32(1UL);
5807 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5808 spare->num_disks = 1;
5809 spare->num_raid_devs = 0;
5810 spare->cache_size = mpb->cache_size;
5811 spare->pwr_cycle_count = __cpu_to_le32(1);
5812
5813 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5814 MPB_SIGNATURE MPB_VERSION_RAID0);
5815
5816 for (d = super->disks; d; d = d->next) {
5817 if (d->index != -1)
5818 continue;
5819
5820 spare->disk[0] = d->disk;
5821 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5822 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5823
5824 if (super->sector_size == 4096)
5825 convert_to_4k_imsm_disk(&spare->disk[0]);
5826
5827 sum = __gen_imsm_checksum(spare);
5828 spare->family_num = __cpu_to_le32(sum);
5829 spare->orig_family_num = 0;
5830 sum = __gen_imsm_checksum(spare);
5831 spare->check_sum = __cpu_to_le32(sum);
5832
5833 if (store_imsm_mpb(d->fd, spare)) {
5834 pr_err("failed for device %d:%d %s\n",
5835 d->major, d->minor, strerror(errno));
5836 return 1;
5837 }
5838 if (doclose) {
5839 close(d->fd);
5840 d->fd = -1;
5841 }
5842 }
5843
5844 return 0;
5845 }
5846
5847 static int write_super_imsm(struct supertype *st, int doclose)
5848 {
5849 struct intel_super *super = st->sb;
5850 unsigned int sector_size = super->sector_size;
5851 struct imsm_super *mpb = super->anchor;
5852 struct dl *d;
5853 __u32 generation;
5854 __u32 sum;
5855 int spares = 0;
5856 int i;
5857 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5858 int num_disks = 0;
5859 int clear_migration_record = 1;
5860 __u32 bbm_log_size;
5861
5862 /* 'generation' is incremented everytime the metadata is written */
5863 generation = __le32_to_cpu(mpb->generation_num);
5864 generation++;
5865 mpb->generation_num = __cpu_to_le32(generation);
5866
5867 /* fix up cases where previous mdadm releases failed to set
5868 * orig_family_num
5869 */
5870 if (mpb->orig_family_num == 0)
5871 mpb->orig_family_num = mpb->family_num;
5872
5873 for (d = super->disks; d; d = d->next) {
5874 if (d->index == -1)
5875 spares++;
5876 else {
5877 mpb->disk[d->index] = d->disk;
5878 num_disks++;
5879 }
5880 }
5881 for (d = super->missing; d; d = d->next) {
5882 mpb->disk[d->index] = d->disk;
5883 num_disks++;
5884 }
5885 mpb->num_disks = num_disks;
5886 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5887
5888 for (i = 0; i < mpb->num_raid_devs; i++) {
5889 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5890 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5891 if (dev && dev2) {
5892 imsm_copy_dev(dev, dev2);
5893 mpb_size += sizeof_imsm_dev(dev, 0);
5894 }
5895 if (is_gen_migration(dev2))
5896 clear_migration_record = 0;
5897 }
5898
5899 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
5900
5901 if (bbm_log_size) {
5902 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
5903 mpb->attributes |= MPB_ATTRIB_BBM;
5904 } else
5905 mpb->attributes &= ~MPB_ATTRIB_BBM;
5906
5907 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
5908 mpb_size += bbm_log_size;
5909 mpb->mpb_size = __cpu_to_le32(mpb_size);
5910
5911 #ifdef DEBUG
5912 assert(super->len == 0 || mpb_size <= super->len);
5913 #endif
5914
5915 /* recalculate checksum */
5916 sum = __gen_imsm_checksum(mpb);
5917 mpb->check_sum = __cpu_to_le32(sum);
5918
5919 if (super->clean_migration_record_by_mdmon) {
5920 clear_migration_record = 1;
5921 super->clean_migration_record_by_mdmon = 0;
5922 }
5923 if (clear_migration_record)
5924 memset(super->migr_rec_buf, 0,
5925 MIGR_REC_BUF_SECTORS*sector_size);
5926
5927 if (sector_size == 4096)
5928 convert_to_4k(super);
5929
5930 /* write the mpb for disks that compose raid devices */
5931 for (d = super->disks; d ; d = d->next) {
5932 if (d->index < 0 || is_failed(&d->disk))
5933 continue;
5934
5935 if (clear_migration_record) {
5936 unsigned long long dsize;
5937
5938 get_dev_size(d->fd, NULL, &dsize);
5939 if (lseek64(d->fd, dsize - sector_size,
5940 SEEK_SET) >= 0) {
5941 if ((unsigned int)write(d->fd,
5942 super->migr_rec_buf,
5943 MIGR_REC_BUF_SECTORS*sector_size) !=
5944 MIGR_REC_BUF_SECTORS*sector_size)
5945 perror("Write migr_rec failed");
5946 }
5947 }
5948
5949 if (store_imsm_mpb(d->fd, mpb))
5950 fprintf(stderr,
5951 "failed for device %d:%d (fd: %d)%s\n",
5952 d->major, d->minor,
5953 d->fd, strerror(errno));
5954
5955 if (doclose) {
5956 close(d->fd);
5957 d->fd = -1;
5958 }
5959 }
5960
5961 if (spares)
5962 return write_super_imsm_spares(super, doclose);
5963
5964 return 0;
5965 }
5966
5967 static int create_array(struct supertype *st, int dev_idx)
5968 {
5969 size_t len;
5970 struct imsm_update_create_array *u;
5971 struct intel_super *super = st->sb;
5972 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5973 struct imsm_map *map = get_imsm_map(dev, MAP_0);
5974 struct disk_info *inf;
5975 struct imsm_disk *disk;
5976 int i;
5977
5978 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5979 sizeof(*inf) * map->num_members;
5980 u = xmalloc(len);
5981 u->type = update_create_array;
5982 u->dev_idx = dev_idx;
5983 imsm_copy_dev(&u->dev, dev);
5984 inf = get_disk_info(u);
5985 for (i = 0; i < map->num_members; i++) {
5986 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5987
5988 disk = get_imsm_disk(super, idx);
5989 if (!disk)
5990 disk = get_imsm_missing(super, idx);
5991 serialcpy(inf[i].serial, disk->serial);
5992 }
5993 append_metadata_update(st, u, len);
5994
5995 return 0;
5996 }
5997
5998 static int mgmt_disk(struct supertype *st)
5999 {
6000 struct intel_super *super = st->sb;
6001 size_t len;
6002 struct imsm_update_add_remove_disk *u;
6003
6004 if (!super->disk_mgmt_list)
6005 return 0;
6006
6007 len = sizeof(*u);
6008 u = xmalloc(len);
6009 u->type = update_add_remove_disk;
6010 append_metadata_update(st, u, len);
6011
6012 return 0;
6013 }
6014
6015 __u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6016
6017 static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6018 {
6019 struct intel_super *super = st->sb;
6020 void *buf;
6021 struct ppl_header *ppl_hdr;
6022 int ret;
6023
6024 ret = posix_memalign(&buf, 4096, PPL_HEADER_SIZE);
6025 if (ret) {
6026 pr_err("Failed to allocate PPL header buffer\n");
6027 return ret;
6028 }
6029
6030 memset(buf, 0, PPL_HEADER_SIZE);
6031 ppl_hdr = buf;
6032 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6033 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
6034 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6035
6036 if (lseek64(fd, info->ppl_sector * 512, SEEK_SET) < 0) {
6037 ret = errno;
6038 perror("Failed to seek to PPL header location");
6039 }
6040
6041 if (!ret && write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6042 ret = errno;
6043 perror("Write PPL header failed");
6044 }
6045
6046 if (!ret)
6047 fsync(fd);
6048
6049 free(buf);
6050 return ret;
6051 }
6052
6053 static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6054 struct mdinfo *disk)
6055 {
6056 struct intel_super *super = st->sb;
6057 struct dl *d;
6058 void *buf;
6059 int ret = 0;
6060 struct ppl_header *ppl_hdr;
6061 __u32 crc;
6062 struct imsm_dev *dev;
6063 struct imsm_map *map;
6064 __u32 idx;
6065
6066 if (disk->disk.raid_disk < 0)
6067 return 0;
6068
6069 if (posix_memalign(&buf, 4096, PPL_HEADER_SIZE)) {
6070 pr_err("Failed to allocate PPL header buffer\n");
6071 return -1;
6072 }
6073
6074 dev = get_imsm_dev(super, info->container_member);
6075 map = get_imsm_map(dev, MAP_X);
6076 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_X);
6077 d = get_imsm_dl_disk(super, idx);
6078
6079 if (!d || d->index < 0 || is_failed(&d->disk))
6080 goto out;
6081
6082 if (lseek64(d->fd, info->ppl_sector * 512, SEEK_SET) < 0) {
6083 perror("Failed to seek to PPL header location");
6084 ret = -1;
6085 goto out;
6086 }
6087
6088 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6089 perror("Read PPL header failed");
6090 ret = -1;
6091 goto out;
6092 }
6093
6094 ppl_hdr = buf;
6095
6096 crc = __le32_to_cpu(ppl_hdr->checksum);
6097 ppl_hdr->checksum = 0;
6098
6099 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6100 dprintf("Wrong PPL header checksum on %s\n",
6101 d->devname);
6102 ret = 1;
6103 }
6104
6105 if (!ret && (__le32_to_cpu(ppl_hdr->signature) !=
6106 super->anchor->orig_family_num)) {
6107 dprintf("Wrong PPL header signature on %s\n",
6108 d->devname);
6109 ret = 1;
6110 }
6111
6112 out:
6113 free(buf);
6114
6115 if (ret == 1 && map->map_state == IMSM_T_STATE_UNINITIALIZED)
6116 return st->ss->write_init_ppl(st, info, d->fd);
6117
6118 return ret;
6119 }
6120
6121 static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6122 {
6123 struct intel_super *super = st->sb;
6124 struct dl *d;
6125 int ret = 0;
6126
6127 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6128 info->array.level != 5)
6129 return 0;
6130
6131 for (d = super->disks; d ; d = d->next) {
6132 if (d->index < 0 || is_failed(&d->disk))
6133 continue;
6134
6135 ret = st->ss->write_init_ppl(st, info, d->fd);
6136 if (ret)
6137 break;
6138 }
6139
6140 return ret;
6141 }
6142
6143 static int write_init_super_imsm(struct supertype *st)
6144 {
6145 struct intel_super *super = st->sb;
6146 int current_vol = super->current_vol;
6147 int rv = 0;
6148 struct mdinfo info;
6149
6150 getinfo_super_imsm(st, &info, NULL);
6151
6152 /* we are done with current_vol reset it to point st at the container */
6153 super->current_vol = -1;
6154
6155 if (st->update_tail) {
6156 /* queue the recently created array / added disk
6157 * as a metadata update */
6158
6159 /* determine if we are creating a volume or adding a disk */
6160 if (current_vol < 0) {
6161 /* in the mgmt (add/remove) disk case we are running
6162 * in mdmon context, so don't close fd's
6163 */
6164 rv = mgmt_disk(st);
6165 } else {
6166 rv = write_init_ppl_imsm_all(st, &info);
6167 if (!rv)
6168 rv = create_array(st, current_vol);
6169 }
6170 } else {
6171 struct dl *d;
6172 for (d = super->disks; d; d = d->next)
6173 Kill(d->devname, NULL, 0, -1, 1);
6174 if (current_vol >= 0)
6175 rv = write_init_ppl_imsm_all(st, &info);
6176 if (!rv)
6177 rv = write_super_imsm(st, 1);
6178 }
6179
6180 return rv;
6181 }
6182
6183 static int store_super_imsm(struct supertype *st, int fd)
6184 {
6185 struct intel_super *super = st->sb;
6186 struct imsm_super *mpb = super ? super->anchor : NULL;
6187
6188 if (!mpb)
6189 return 1;
6190
6191 if (super->sector_size == 4096)
6192 convert_to_4k(super);
6193 return store_imsm_mpb(fd, mpb);
6194 }
6195
6196 static int validate_geometry_imsm_container(struct supertype *st, int level,
6197 int layout, int raiddisks, int chunk,
6198 unsigned long long size,
6199 unsigned long long data_offset,
6200 char *dev,
6201 unsigned long long *freesize,
6202 int verbose)
6203 {
6204 int fd;
6205 unsigned long long ldsize;
6206 struct intel_super *super;
6207 int rv = 0;
6208
6209 if (level != LEVEL_CONTAINER)
6210 return 0;
6211 if (!dev)
6212 return 1;
6213
6214 fd = open(dev, O_RDONLY|O_EXCL, 0);
6215 if (fd < 0) {
6216 if (verbose > 0)
6217 pr_err("imsm: Cannot open %s: %s\n",
6218 dev, strerror(errno));
6219 return 0;
6220 }
6221 if (!get_dev_size(fd, dev, &ldsize)) {
6222 close(fd);
6223 return 0;
6224 }
6225
6226 /* capabilities retrieve could be possible
6227 * note that there is no fd for the disks in array.
6228 */
6229 super = alloc_super();
6230 if (!super) {
6231 close(fd);
6232 return 0;
6233 }
6234 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
6235 close(fd);
6236 free_imsm(super);
6237 return 0;
6238 }
6239
6240 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
6241 if (rv != 0) {
6242 #if DEBUG
6243 char str[256];
6244 fd2devname(fd, str);
6245 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
6246 fd, str, super->orom, rv, raiddisks);
6247 #endif
6248 /* no orom/efi or non-intel hba of the disk */
6249 close(fd);
6250 free_imsm(super);
6251 return 0;
6252 }
6253 close(fd);
6254 if (super->orom) {
6255 if (raiddisks > super->orom->tds) {
6256 if (verbose)
6257 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
6258 raiddisks, super->orom->tds);
6259 free_imsm(super);
6260 return 0;
6261 }
6262 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6263 (ldsize >> 9) >> 32 > 0) {
6264 if (verbose)
6265 pr_err("%s exceeds maximum platform supported size\n", dev);
6266 free_imsm(super);
6267 return 0;
6268 }
6269 }
6270
6271 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
6272 free_imsm(super);
6273
6274 return 1;
6275 }
6276
6277 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6278 {
6279 const unsigned long long base_start = e[*idx].start;
6280 unsigned long long end = base_start + e[*idx].size;
6281 int i;
6282
6283 if (base_start == end)
6284 return 0;
6285
6286 *idx = *idx + 1;
6287 for (i = *idx; i < num_extents; i++) {
6288 /* extend overlapping extents */
6289 if (e[i].start >= base_start &&
6290 e[i].start <= end) {
6291 if (e[i].size == 0)
6292 return 0;
6293 if (e[i].start + e[i].size > end)
6294 end = e[i].start + e[i].size;
6295 } else if (e[i].start > end) {
6296 *idx = i;
6297 break;
6298 }
6299 }
6300
6301 return end - base_start;
6302 }
6303
6304 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
6305 {
6306 /* build a composite disk with all known extents and generate a new
6307 * 'maxsize' given the "all disks in an array must share a common start
6308 * offset" constraint
6309 */
6310 struct extent *e = xcalloc(sum_extents, sizeof(*e));
6311 struct dl *dl;
6312 int i, j;
6313 int start_extent;
6314 unsigned long long pos;
6315 unsigned long long start = 0;
6316 unsigned long long maxsize;
6317 unsigned long reserve;
6318
6319 /* coalesce and sort all extents. also, check to see if we need to
6320 * reserve space between member arrays
6321 */
6322 j = 0;
6323 for (dl = super->disks; dl; dl = dl->next) {
6324 if (!dl->e)
6325 continue;
6326 for (i = 0; i < dl->extent_cnt; i++)
6327 e[j++] = dl->e[i];
6328 }
6329 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6330
6331 /* merge extents */
6332 i = 0;
6333 j = 0;
6334 while (i < sum_extents) {
6335 e[j].start = e[i].start;
6336 e[j].size = find_size(e, &i, sum_extents);
6337 j++;
6338 if (e[j-1].size == 0)
6339 break;
6340 }
6341
6342 pos = 0;
6343 maxsize = 0;
6344 start_extent = 0;
6345 i = 0;
6346 do {
6347 unsigned long long esize;
6348
6349 esize = e[i].start - pos;
6350 if (esize >= maxsize) {
6351 maxsize = esize;
6352 start = pos;
6353 start_extent = i;
6354 }
6355 pos = e[i].start + e[i].size;
6356 i++;
6357 } while (e[i-1].size);
6358 free(e);
6359
6360 if (maxsize == 0)
6361 return 0;
6362
6363 /* FIXME assumes volume at offset 0 is the first volume in a
6364 * container
6365 */
6366 if (start_extent > 0)
6367 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
6368 else
6369 reserve = 0;
6370
6371 if (maxsize < reserve)
6372 return 0;
6373
6374 super->create_offset = ~((unsigned long long) 0);
6375 if (start + reserve > super->create_offset)
6376 return 0; /* start overflows create_offset */
6377 super->create_offset = start + reserve;
6378
6379 return maxsize - reserve;
6380 }
6381
6382 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6383 {
6384 if (level < 0 || level == 6 || level == 4)
6385 return 0;
6386
6387 /* if we have an orom prevent invalid raid levels */
6388 if (orom)
6389 switch (level) {
6390 case 0: return imsm_orom_has_raid0(orom);
6391 case 1:
6392 if (raiddisks > 2)
6393 return imsm_orom_has_raid1e(orom);
6394 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6395 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6396 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
6397 }
6398 else
6399 return 1; /* not on an Intel RAID platform so anything goes */
6400
6401 return 0;
6402 }
6403
6404 static int
6405 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6406 int dpa, int verbose)
6407 {
6408 struct mdstat_ent *mdstat = mdstat_read(0, 0);
6409 struct mdstat_ent *memb;
6410 int count = 0;
6411 int num = 0;
6412 struct md_list *dv;
6413 int found;
6414
6415 for (memb = mdstat ; memb ; memb = memb->next) {
6416 if (memb->metadata_version &&
6417 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
6418 (strcmp(&memb->metadata_version[9], name) == 0) &&
6419 !is_subarray(memb->metadata_version+9) &&
6420 memb->members) {
6421 struct dev_member *dev = memb->members;
6422 int fd = -1;
6423 while(dev && (fd < 0)) {
6424 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6425 num = sprintf(path, "%s%s", "/dev/", dev->name);
6426 if (num > 0)
6427 fd = open(path, O_RDONLY, 0);
6428 if (num <= 0 || fd < 0) {
6429 pr_vrb("Cannot open %s: %s\n",
6430 dev->name, strerror(errno));
6431 }
6432 free(path);
6433 dev = dev->next;
6434 }
6435 found = 0;
6436 if (fd >= 0 && disk_attached_to_hba(fd, hba)) {
6437 struct mdstat_ent *vol;
6438 for (vol = mdstat ; vol ; vol = vol->next) {
6439 if (vol->active > 0 &&
6440 vol->metadata_version &&
6441 is_container_member(vol, memb->devnm)) {
6442 found++;
6443 count++;
6444 }
6445 }
6446 if (*devlist && (found < dpa)) {
6447 dv = xcalloc(1, sizeof(*dv));
6448 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
6449 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
6450 dv->found = found;
6451 dv->used = 0;
6452 dv->next = *devlist;
6453 *devlist = dv;
6454 }
6455 }
6456 if (fd >= 0)
6457 close(fd);
6458 }
6459 }
6460 free_mdstat(mdstat);
6461 return count;
6462 }
6463
6464 #ifdef DEBUG_LOOP
6465 static struct md_list*
6466 get_loop_devices(void)
6467 {
6468 int i;
6469 struct md_list *devlist = NULL;
6470 struct md_list *dv;
6471
6472 for(i = 0; i < 12; i++) {
6473 dv = xcalloc(1, sizeof(*dv));
6474 dv->devname = xmalloc(40);
6475 sprintf(dv->devname, "/dev/loop%d", i);
6476 dv->next = devlist;
6477 devlist = dv;
6478 }
6479 return devlist;
6480 }
6481 #endif
6482
6483 static struct md_list*
6484 get_devices(const char *hba_path)
6485 {
6486 struct md_list *devlist = NULL;
6487 struct md_list *dv;
6488 struct dirent *ent;
6489 DIR *dir;
6490 int err = 0;
6491
6492 #if DEBUG_LOOP
6493 devlist = get_loop_devices();
6494 return devlist;
6495 #endif
6496 /* scroll through /sys/dev/block looking for devices attached to
6497 * this hba
6498 */
6499 dir = opendir("/sys/dev/block");
6500 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
6501 int fd;
6502 char buf[1024];
6503 int major, minor;
6504 char *path = NULL;
6505 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
6506 continue;
6507 path = devt_to_devpath(makedev(major, minor));
6508 if (!path)
6509 continue;
6510 if (!path_attached_to_hba(path, hba_path)) {
6511 free(path);
6512 path = NULL;
6513 continue;
6514 }
6515 free(path);
6516 path = NULL;
6517 fd = dev_open(ent->d_name, O_RDONLY);
6518 if (fd >= 0) {
6519 fd2devname(fd, buf);
6520 close(fd);
6521 } else {
6522 pr_err("cannot open device: %s\n",
6523 ent->d_name);
6524 continue;
6525 }
6526
6527 dv = xcalloc(1, sizeof(*dv));
6528 dv->devname = xstrdup(buf);
6529 dv->next = devlist;
6530 devlist = dv;
6531 }
6532 if (err) {
6533 while(devlist) {
6534 dv = devlist;
6535 devlist = devlist->next;
6536 free(dv->devname);
6537 free(dv);
6538 }
6539 }
6540 closedir(dir);
6541 return devlist;
6542 }
6543
6544 static int
6545 count_volumes_list(struct md_list *devlist, char *homehost,
6546 int verbose, int *found)
6547 {
6548 struct md_list *tmpdev;
6549 int count = 0;
6550 struct supertype *st;
6551
6552 /* first walk the list of devices to find a consistent set
6553 * that match the criterea, if that is possible.
6554 * We flag the ones we like with 'used'.
6555 */
6556 *found = 0;
6557 st = match_metadata_desc_imsm("imsm");
6558 if (st == NULL) {
6559 pr_vrb("cannot allocate memory for imsm supertype\n");
6560 return 0;
6561 }
6562
6563 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6564 char *devname = tmpdev->devname;
6565 dev_t rdev;
6566 struct supertype *tst;
6567 int dfd;
6568 if (tmpdev->used > 1)
6569 continue;
6570 tst = dup_super(st);
6571 if (tst == NULL) {
6572 pr_vrb("cannot allocate memory for imsm supertype\n");
6573 goto err_1;
6574 }
6575 tmpdev->container = 0;
6576 dfd = dev_open(devname, O_RDONLY|O_EXCL);
6577 if (dfd < 0) {
6578 dprintf("cannot open device %s: %s\n",
6579 devname, strerror(errno));
6580 tmpdev->used = 2;
6581 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
6582 tmpdev->used = 2;
6583 } else if (must_be_container(dfd)) {
6584 struct supertype *cst;
6585 cst = super_by_fd(dfd, NULL);
6586 if (cst == NULL) {
6587 dprintf("cannot recognize container type %s\n",
6588 devname);
6589 tmpdev->used = 2;
6590 } else if (tst->ss != st->ss) {
6591 dprintf("non-imsm container - ignore it: %s\n",
6592 devname);
6593 tmpdev->used = 2;
6594 } else if (!tst->ss->load_container ||
6595 tst->ss->load_container(tst, dfd, NULL))
6596 tmpdev->used = 2;
6597 else {
6598 tmpdev->container = 1;
6599 }
6600 if (cst)
6601 cst->ss->free_super(cst);
6602 } else {
6603 tmpdev->st_rdev = rdev;
6604 if (tst->ss->load_super(tst,dfd, NULL)) {
6605 dprintf("no RAID superblock on %s\n",
6606 devname);
6607 tmpdev->used = 2;
6608 } else if (tst->ss->compare_super == NULL) {
6609 dprintf("Cannot assemble %s metadata on %s\n",
6610 tst->ss->name, devname);
6611 tmpdev->used = 2;
6612 }
6613 }
6614 if (dfd >= 0)
6615 close(dfd);
6616 if (tmpdev->used == 2 || tmpdev->used == 4) {
6617 /* Ignore unrecognised devices during auto-assembly */
6618 goto loop;
6619 }
6620 else {
6621 struct mdinfo info;
6622 tst->ss->getinfo_super(tst, &info, NULL);
6623
6624 if (st->minor_version == -1)
6625 st->minor_version = tst->minor_version;
6626
6627 if (memcmp(info.uuid, uuid_zero,
6628 sizeof(int[4])) == 0) {
6629 /* this is a floating spare. It cannot define
6630 * an array unless there are no more arrays of
6631 * this type to be found. It can be included
6632 * in an array of this type though.
6633 */
6634 tmpdev->used = 3;
6635 goto loop;
6636 }
6637
6638 if (st->ss != tst->ss ||
6639 st->minor_version != tst->minor_version ||
6640 st->ss->compare_super(st, tst) != 0) {
6641 /* Some mismatch. If exactly one array matches this host,
6642 * we can resolve on that one.
6643 * Or, if we are auto assembling, we just ignore the second
6644 * for now.
6645 */
6646 dprintf("superblock on %s doesn't match others - assembly aborted\n",
6647 devname);
6648 goto loop;
6649 }
6650 tmpdev->used = 1;
6651 *found = 1;
6652 dprintf("found: devname: %s\n", devname);
6653 }
6654 loop:
6655 if (tst)
6656 tst->ss->free_super(tst);
6657 }
6658 if (*found != 0) {
6659 int err;
6660 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
6661 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
6662 for (iter = head; iter; iter = iter->next) {
6663 dprintf("content->text_version: %s vol\n",
6664 iter->text_version);
6665 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
6666 /* do not assemble arrays with unsupported
6667 configurations */
6668 dprintf("Cannot activate member %s.\n",
6669 iter->text_version);
6670 } else
6671 count++;
6672 }
6673 sysfs_free(head);
6674
6675 } else {
6676 dprintf("No valid super block on device list: err: %d %p\n",
6677 err, st->sb);
6678 }
6679 } else {
6680 dprintf("no more devices to examine\n");
6681 }
6682
6683 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
6684 if (tmpdev->used == 1 && tmpdev->found) {
6685 if (count) {
6686 if (count < tmpdev->found)
6687 count = 0;
6688 else
6689 count -= tmpdev->found;
6690 }
6691 }
6692 if (tmpdev->used == 1)
6693 tmpdev->used = 4;
6694 }
6695 err_1:
6696 if (st)
6697 st->ss->free_super(st);
6698 return count;
6699 }
6700
6701 static int __count_volumes(char *hba_path, int dpa, int verbose,
6702 int cmp_hba_path)
6703 {
6704 struct sys_dev *idev, *intel_devices = find_intel_devices();
6705 int count = 0;
6706 const struct orom_entry *entry;
6707 struct devid_list *dv, *devid_list;
6708
6709 if (!hba_path)
6710 return 0;
6711
6712 for (idev = intel_devices; idev; idev = idev->next) {
6713 if (strstr(idev->path, hba_path))
6714 break;
6715 }
6716
6717 if (!idev || !idev->dev_id)
6718 return 0;
6719
6720 entry = get_orom_entry_by_device_id(idev->dev_id);
6721
6722 if (!entry || !entry->devid_list)
6723 return 0;
6724
6725 devid_list = entry->devid_list;
6726 for (dv = devid_list; dv; dv = dv->next) {
6727 struct md_list *devlist;
6728 struct sys_dev *device = NULL;
6729 char *hpath;
6730 int found = 0;
6731
6732 if (cmp_hba_path)
6733 device = device_by_id_and_path(dv->devid, hba_path);
6734 else
6735 device = device_by_id(dv->devid);
6736
6737 if (device)
6738 hpath = device->path;
6739 else
6740 return 0;
6741
6742 devlist = get_devices(hpath);
6743 /* if no intel devices return zero volumes */
6744 if (devlist == NULL)
6745 return 0;
6746
6747 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
6748 verbose);
6749 dprintf("path: %s active arrays: %d\n", hpath, count);
6750 if (devlist == NULL)
6751 return 0;
6752 do {
6753 found = 0;
6754 count += count_volumes_list(devlist,
6755 NULL,
6756 verbose,
6757 &found);
6758 dprintf("found %d count: %d\n", found, count);
6759 } while (found);
6760
6761 dprintf("path: %s total number of volumes: %d\n", hpath, count);
6762
6763 while (devlist) {
6764 struct md_list *dv = devlist;
6765 devlist = devlist->next;
6766 free(dv->devname);
6767 free(dv);
6768 }
6769 }
6770 return count;
6771 }
6772
6773 static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
6774 {
6775 if (!hba)
6776 return 0;
6777 if (hba->type == SYS_DEV_VMD) {
6778 struct sys_dev *dev;
6779 int count = 0;
6780
6781 for (dev = find_intel_devices(); dev; dev = dev->next) {
6782 if (dev->type == SYS_DEV_VMD)
6783 count += __count_volumes(dev->path, dpa,
6784 verbose, 1);
6785 }
6786 return count;
6787 }
6788 return __count_volumes(hba->path, dpa, verbose, 0);
6789 }
6790
6791 static int imsm_default_chunk(const struct imsm_orom *orom)
6792 {
6793 /* up to 512 if the plaform supports it, otherwise the platform max.
6794 * 128 if no platform detected
6795 */
6796 int fs = max(7, orom ? fls(orom->sss) : 0);
6797
6798 return min(512, (1 << fs));
6799 }
6800
6801 static int
6802 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
6803 int raiddisks, int *chunk, unsigned long long size, int verbose)
6804 {
6805 /* check/set platform and metadata limits/defaults */
6806 if (super->orom && raiddisks > super->orom->dpa) {
6807 pr_vrb("platform supports a maximum of %d disks per array\n",
6808 super->orom->dpa);
6809 return 0;
6810 }
6811
6812 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
6813 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
6814 pr_vrb("platform does not support raid%d with %d disk%s\n",
6815 level, raiddisks, raiddisks > 1 ? "s" : "");
6816 return 0;
6817 }
6818
6819 if (*chunk == 0 || *chunk == UnSet)
6820 *chunk = imsm_default_chunk(super->orom);
6821
6822 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
6823 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
6824 return 0;
6825 }
6826
6827 if (layout != imsm_level_to_layout(level)) {
6828 if (level == 5)
6829 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
6830 else if (level == 10)
6831 pr_vrb("imsm raid 10 only supports the n2 layout\n");
6832 else
6833 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
6834 layout, level);
6835 return 0;
6836 }
6837
6838 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
6839 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
6840 pr_vrb("platform does not support a volume size over 2TB\n");
6841 return 0;
6842 }
6843
6844 return 1;
6845 }
6846
6847 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
6848 * FIX ME add ahci details
6849 */
6850 static int validate_geometry_imsm_volume(struct supertype *st, int level,
6851 int layout, int raiddisks, int *chunk,
6852 unsigned long long size,
6853 unsigned long long data_offset,
6854 char *dev,
6855 unsigned long long *freesize,
6856 int verbose)
6857 {
6858 struct stat stb;
6859 struct intel_super *super = st->sb;
6860 struct imsm_super *mpb;
6861 struct dl *dl;
6862 unsigned long long pos = 0;
6863 unsigned long long maxsize;
6864 struct extent *e;
6865 int i;
6866
6867 /* We must have the container info already read in. */
6868 if (!super)
6869 return 0;
6870
6871 mpb = super->anchor;
6872
6873 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
6874 pr_err("RAID gemetry validation failed. Cannot proceed with the action(s).\n");
6875 return 0;
6876 }
6877 if (!dev) {
6878 /* General test: make sure there is space for
6879 * 'raiddisks' device extents of size 'size' at a given
6880 * offset
6881 */
6882 unsigned long long minsize = size;
6883 unsigned long long start_offset = MaxSector;
6884 int dcnt = 0;
6885 if (minsize == 0)
6886 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
6887 for (dl = super->disks; dl ; dl = dl->next) {
6888 int found = 0;
6889
6890 pos = 0;
6891 i = 0;
6892 e = get_extents(super, dl);
6893 if (!e) continue;
6894 do {
6895 unsigned long long esize;
6896 esize = e[i].start - pos;
6897 if (esize >= minsize)
6898 found = 1;
6899 if (found && start_offset == MaxSector) {
6900 start_offset = pos;
6901 break;
6902 } else if (found && pos != start_offset) {
6903 found = 0;
6904 break;
6905 }
6906 pos = e[i].start + e[i].size;
6907 i++;
6908 } while (e[i-1].size);
6909 if (found)
6910 dcnt++;
6911 free(e);
6912 }
6913 if (dcnt < raiddisks) {
6914 if (verbose)
6915 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
6916 dcnt, raiddisks);
6917 return 0;
6918 }
6919 return 1;
6920 }
6921
6922 /* This device must be a member of the set */
6923 if (stat(dev, &stb) < 0)
6924 return 0;
6925 if ((S_IFMT & stb.st_mode) != S_IFBLK)
6926 return 0;
6927 for (dl = super->disks ; dl ; dl = dl->next) {
6928 if (dl->major == (int)major(stb.st_rdev) &&
6929 dl->minor == (int)minor(stb.st_rdev))
6930 break;
6931 }
6932 if (!dl) {
6933 if (verbose)
6934 pr_err("%s is not in the same imsm set\n", dev);
6935 return 0;
6936 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6937 /* If a volume is present then the current creation attempt
6938 * cannot incorporate new spares because the orom may not
6939 * understand this configuration (all member disks must be
6940 * members of each array in the container).
6941 */
6942 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
6943 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6944 return 0;
6945 } else if (super->orom && mpb->num_raid_devs > 0 &&
6946 mpb->num_disks != raiddisks) {
6947 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
6948 return 0;
6949 }
6950
6951 /* retrieve the largest free space block */
6952 e = get_extents(super, dl);
6953 maxsize = 0;
6954 i = 0;
6955 if (e) {
6956 do {
6957 unsigned long long esize;
6958
6959 esize = e[i].start - pos;
6960 if (esize >= maxsize)
6961 maxsize = esize;
6962 pos = e[i].start + e[i].size;
6963 i++;
6964 } while (e[i-1].size);
6965 dl->e = e;
6966 dl->extent_cnt = i;
6967 } else {
6968 if (verbose)
6969 pr_err("unable to determine free space for: %s\n",
6970 dev);
6971 return 0;
6972 }
6973 if (maxsize < size) {
6974 if (verbose)
6975 pr_err("%s not enough space (%llu < %llu)\n",
6976 dev, maxsize, size);
6977 return 0;
6978 }
6979
6980 /* count total number of extents for merge */
6981 i = 0;
6982 for (dl = super->disks; dl; dl = dl->next)
6983 if (dl->e)
6984 i += dl->extent_cnt;
6985
6986 maxsize = merge_extents(super, i);
6987
6988 if (!check_env("IMSM_NO_PLATFORM") &&
6989 mpb->num_raid_devs > 0 && size && size != maxsize) {
6990 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
6991 return 0;
6992 }
6993
6994 if (maxsize < size || maxsize == 0) {
6995 if (verbose) {
6996 if (maxsize == 0)
6997 pr_err("no free space left on device. Aborting...\n");
6998 else
6999 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
7000 maxsize, size);
7001 }
7002 return 0;
7003 }
7004
7005 *freesize = maxsize;
7006
7007 if (super->orom) {
7008 int count = count_volumes(super->hba,
7009 super->orom->dpa, verbose);
7010 if (super->orom->vphba <= count) {
7011 pr_vrb("platform does not support more than %d raid volumes.\n",
7012 super->orom->vphba);
7013 return 0;
7014 }
7015 }
7016 return 1;
7017 }
7018
7019 static int imsm_get_free_size(struct supertype *st, int raiddisks,
7020 unsigned long long size, int chunk,
7021 unsigned long long *freesize)
7022 {
7023 struct intel_super *super = st->sb;
7024 struct imsm_super *mpb = super->anchor;
7025 struct dl *dl;
7026 int i;
7027 int extent_cnt;
7028 struct extent *e;
7029 unsigned long long maxsize;
7030 unsigned long long minsize;
7031 int cnt;
7032 int used;
7033
7034 /* find the largest common start free region of the possible disks */
7035 used = 0;
7036 extent_cnt = 0;
7037 cnt = 0;
7038 for (dl = super->disks; dl; dl = dl->next) {
7039 dl->raiddisk = -1;
7040
7041 if (dl->index >= 0)
7042 used++;
7043
7044 /* don't activate new spares if we are orom constrained
7045 * and there is already a volume active in the container
7046 */
7047 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7048 continue;
7049
7050 e = get_extents(super, dl);
7051 if (!e)
7052 continue;
7053 for (i = 1; e[i-1].size; i++)
7054 ;
7055 dl->e = e;
7056 dl->extent_cnt = i;
7057 extent_cnt += i;
7058 cnt++;
7059 }
7060
7061 maxsize = merge_extents(super, extent_cnt);
7062 minsize = size;
7063 if (size == 0)
7064 /* chunk is in K */
7065 minsize = chunk * 2;
7066
7067 if (cnt < raiddisks ||
7068 (super->orom && used && used != raiddisks) ||
7069 maxsize < minsize ||
7070 maxsize == 0) {
7071 pr_err("not enough devices with space to create array.\n");
7072 return 0; /* No enough free spaces large enough */
7073 }
7074
7075 if (size == 0) {
7076 size = maxsize;
7077 if (chunk) {
7078 size /= 2 * chunk;
7079 size *= 2 * chunk;
7080 }
7081 maxsize = size;
7082 }
7083 if (!check_env("IMSM_NO_PLATFORM") &&
7084 mpb->num_raid_devs > 0 && size && size != maxsize) {
7085 pr_err("attempting to create a second volume with size less then remaining space. Aborting...\n");
7086 return 0;
7087 }
7088 cnt = 0;
7089 for (dl = super->disks; dl; dl = dl->next)
7090 if (dl->e)
7091 dl->raiddisk = cnt++;
7092
7093 *freesize = size;
7094
7095 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7096
7097 return 1;
7098 }
7099
7100 static int reserve_space(struct supertype *st, int raiddisks,
7101 unsigned long long size, int chunk,
7102 unsigned long long *freesize)
7103 {
7104 struct intel_super *super = st->sb;
7105 struct dl *dl;
7106 int cnt;
7107 int rv = 0;
7108
7109 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
7110 if (rv) {
7111 cnt = 0;
7112 for (dl = super->disks; dl; dl = dl->next)
7113 if (dl->e)
7114 dl->raiddisk = cnt++;
7115 rv = 1;
7116 }
7117
7118 return rv;
7119 }
7120
7121 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
7122 int raiddisks, int *chunk, unsigned long long size,
7123 unsigned long long data_offset,
7124 char *dev, unsigned long long *freesize,
7125 int consistency_policy, int verbose)
7126 {
7127 int fd, cfd;
7128 struct mdinfo *sra;
7129 int is_member = 0;
7130
7131 /* load capability
7132 * if given unused devices create a container
7133 * if given given devices in a container create a member volume
7134 */
7135 if (level == LEVEL_CONTAINER) {
7136 /* Must be a fresh device to add to a container */
7137 return validate_geometry_imsm_container(st, level, layout,
7138 raiddisks,
7139 *chunk,
7140 size, data_offset,
7141 dev, freesize,
7142 verbose);
7143 }
7144
7145 if (!dev) {
7146 if (st->sb) {
7147 struct intel_super *super = st->sb;
7148 if (!validate_geometry_imsm_orom(st->sb, level, layout,
7149 raiddisks, chunk, size,
7150 verbose))
7151 return 0;
7152 /* we are being asked to automatically layout a
7153 * new volume based on the current contents of
7154 * the container. If the the parameters can be
7155 * satisfied reserve_space will record the disks,
7156 * start offset, and size of the volume to be
7157 * created. add_to_super and getinfo_super
7158 * detect when autolayout is in progress.
7159 */
7160 /* assuming that freesize is always given when array is
7161 created */
7162 if (super->orom && freesize) {
7163 int count;
7164 count = count_volumes(super->hba,
7165 super->orom->dpa, verbose);
7166 if (super->orom->vphba <= count) {
7167 pr_vrb("platform does not support more than %d raid volumes.\n",
7168 super->orom->vphba);
7169 return 0;
7170 }
7171 }
7172 if (freesize)
7173 return reserve_space(st, raiddisks, size,
7174 *chunk, freesize);
7175 }
7176 return 1;
7177 }
7178 if (st->sb) {
7179 /* creating in a given container */
7180 return validate_geometry_imsm_volume(st, level, layout,
7181 raiddisks, chunk, size,
7182 data_offset,
7183 dev, freesize, verbose);
7184 }
7185
7186 /* This device needs to be a device in an 'imsm' container */
7187 fd = open(dev, O_RDONLY|O_EXCL, 0);
7188 if (fd >= 0) {
7189 if (verbose)
7190 pr_err("Cannot create this array on device %s\n",
7191 dev);
7192 close(fd);
7193 return 0;
7194 }
7195 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
7196 if (verbose)
7197 pr_err("Cannot open %s: %s\n",
7198 dev, strerror(errno));
7199 return 0;
7200 }
7201 /* Well, it is in use by someone, maybe an 'imsm' container. */
7202 cfd = open_container(fd);
7203 close(fd);
7204 if (cfd < 0) {
7205 if (verbose)
7206 pr_err("Cannot use %s: It is busy\n",
7207 dev);
7208 return 0;
7209 }
7210 sra = sysfs_read(cfd, NULL, GET_VERSION);
7211 if (sra && sra->array.major_version == -1 &&
7212 strcmp(sra->text_version, "imsm") == 0)
7213 is_member = 1;
7214 sysfs_free(sra);
7215 if (is_member) {
7216 /* This is a member of a imsm container. Load the container
7217 * and try to create a volume
7218 */
7219 struct intel_super *super;
7220
7221 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
7222 st->sb = super;
7223 strcpy(st->container_devnm, fd2devnm(cfd));
7224 close(cfd);
7225 return validate_geometry_imsm_volume(st, level, layout,
7226 raiddisks, chunk,
7227 size, data_offset, dev,
7228 freesize, 1)
7229 ? 1 : -1;
7230 }
7231 }
7232
7233 if (verbose)
7234 pr_err("failed container membership check\n");
7235
7236 close(cfd);
7237 return 0;
7238 }
7239
7240 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
7241 {
7242 struct intel_super *super = st->sb;
7243
7244 if (level && *level == UnSet)
7245 *level = LEVEL_CONTAINER;
7246
7247 if (level && layout && *layout == UnSet)
7248 *layout = imsm_level_to_layout(*level);
7249
7250 if (chunk && (*chunk == UnSet || *chunk == 0))
7251 *chunk = imsm_default_chunk(super->orom);
7252 }
7253
7254 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7255
7256 static int kill_subarray_imsm(struct supertype *st)
7257 {
7258 /* remove the subarray currently referenced by ->current_vol */
7259 __u8 i;
7260 struct intel_dev **dp;
7261 struct intel_super *super = st->sb;
7262 __u8 current_vol = super->current_vol;
7263 struct imsm_super *mpb = super->anchor;
7264
7265 if (super->current_vol < 0)
7266 return 2;
7267 super->current_vol = -1; /* invalidate subarray cursor */
7268
7269 /* block deletions that would change the uuid of active subarrays
7270 *
7271 * FIXME when immutable ids are available, but note that we'll
7272 * also need to fixup the invalidated/active subarray indexes in
7273 * mdstat
7274 */
7275 for (i = 0; i < mpb->num_raid_devs; i++) {
7276 char subarray[4];
7277
7278 if (i < current_vol)
7279 continue;
7280 sprintf(subarray, "%u", i);
7281 if (is_subarray_active(subarray, st->devnm)) {
7282 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7283 current_vol, i);
7284
7285 return 2;
7286 }
7287 }
7288
7289 if (st->update_tail) {
7290 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
7291
7292 u->type = update_kill_array;
7293 u->dev_idx = current_vol;
7294 append_metadata_update(st, u, sizeof(*u));
7295
7296 return 0;
7297 }
7298
7299 for (dp = &super->devlist; *dp;)
7300 if ((*dp)->index == current_vol) {
7301 *dp = (*dp)->next;
7302 } else {
7303 handle_missing(super, (*dp)->dev);
7304 if ((*dp)->index > current_vol)
7305 (*dp)->index--;
7306 dp = &(*dp)->next;
7307 }
7308
7309 /* no more raid devices, all active components are now spares,
7310 * but of course failed are still failed
7311 */
7312 if (--mpb->num_raid_devs == 0) {
7313 struct dl *d;
7314
7315 for (d = super->disks; d; d = d->next)
7316 if (d->index > -2)
7317 mark_spare(d);
7318 }
7319
7320 super->updates_pending++;
7321
7322 return 0;
7323 }
7324
7325 static int update_subarray_imsm(struct supertype *st, char *subarray,
7326 char *update, struct mddev_ident *ident)
7327 {
7328 /* update the subarray currently referenced by ->current_vol */
7329 struct intel_super *super = st->sb;
7330 struct imsm_super *mpb = super->anchor;
7331
7332 if (strcmp(update, "name") == 0) {
7333 char *name = ident->name;
7334 char *ep;
7335 int vol;
7336
7337 if (is_subarray_active(subarray, st->devnm)) {
7338 pr_err("Unable to update name of active subarray\n");
7339 return 2;
7340 }
7341
7342 if (!check_name(super, name, 0))
7343 return 2;
7344
7345 vol = strtoul(subarray, &ep, 10);
7346 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7347 return 2;
7348
7349 if (st->update_tail) {
7350 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
7351
7352 u->type = update_rename_array;
7353 u->dev_idx = vol;
7354 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7355 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
7356 append_metadata_update(st, u, sizeof(*u));
7357 } else {
7358 struct imsm_dev *dev;
7359 int i;
7360
7361 dev = get_imsm_dev(super, vol);
7362 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
7363 dev->volume[MAX_RAID_SERIAL_LEN-1] = '\0';
7364 for (i = 0; i < mpb->num_raid_devs; i++) {
7365 dev = get_imsm_dev(super, i);
7366 handle_missing(super, dev);
7367 }
7368 super->updates_pending++;
7369 }
7370 } else if (strcmp(update, "ppl") == 0 ||
7371 strcmp(update, "no-ppl") == 0) {
7372 int new_policy;
7373 char *ep;
7374 int vol = strtoul(subarray, &ep, 10);
7375
7376 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7377 return 2;
7378
7379 if (strcmp(update, "ppl") == 0)
7380 new_policy = RWH_DISTRIBUTED;
7381 else
7382 new_policy = RWH_OFF;
7383
7384 if (st->update_tail) {
7385 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
7386
7387 u->type = update_rwh_policy;
7388 u->dev_idx = vol;
7389 u->new_policy = new_policy;
7390 append_metadata_update(st, u, sizeof(*u));
7391 } else {
7392 struct imsm_dev *dev;
7393
7394 dev = get_imsm_dev(super, vol);
7395 dev->rwh_policy = new_policy;
7396 super->updates_pending++;
7397 }
7398 } else
7399 return 2;
7400
7401 return 0;
7402 }
7403
7404 static int is_gen_migration(struct imsm_dev *dev)
7405 {
7406 if (dev == NULL)
7407 return 0;
7408
7409 if (!dev->vol.migr_state)
7410 return 0;
7411
7412 if (migr_type(dev) == MIGR_GEN_MIGR)
7413 return 1;
7414
7415 return 0;
7416 }
7417
7418 static int is_rebuilding(struct imsm_dev *dev)
7419 {
7420 struct imsm_map *migr_map;
7421
7422 if (!dev->vol.migr_state)
7423 return 0;
7424
7425 if (migr_type(dev) != MIGR_REBUILD)
7426 return 0;
7427
7428 migr_map = get_imsm_map(dev, MAP_1);
7429
7430 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
7431 return 1;
7432 else
7433 return 0;
7434 }
7435
7436 static int is_initializing(struct imsm_dev *dev)
7437 {
7438 struct imsm_map *migr_map;
7439
7440 if (!dev->vol.migr_state)
7441 return 0;
7442
7443 if (migr_type(dev) != MIGR_INIT)
7444 return 0;
7445
7446 migr_map = get_imsm_map(dev, MAP_1);
7447
7448 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
7449 return 1;
7450
7451 return 0;
7452 }
7453
7454 static void update_recovery_start(struct intel_super *super,
7455 struct imsm_dev *dev,
7456 struct mdinfo *array)
7457 {
7458 struct mdinfo *rebuild = NULL;
7459 struct mdinfo *d;
7460 __u32 units;
7461
7462 if (!is_rebuilding(dev))
7463 return;
7464
7465 /* Find the rebuild target, but punt on the dual rebuild case */
7466 for (d = array->devs; d; d = d->next)
7467 if (d->recovery_start == 0) {
7468 if (rebuild)
7469 return;
7470 rebuild = d;
7471 }
7472
7473 if (!rebuild) {
7474 /* (?) none of the disks are marked with
7475 * IMSM_ORD_REBUILD, so assume they are missing and the
7476 * disk_ord_tbl was not correctly updated
7477 */
7478 dprintf("failed to locate out-of-sync disk\n");
7479 return;
7480 }
7481
7482 units = __le32_to_cpu(dev->vol.curr_migr_unit);
7483 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
7484 }
7485
7486 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
7487
7488 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
7489 {
7490 /* Given a container loaded by load_super_imsm_all,
7491 * extract information about all the arrays into
7492 * an mdinfo tree.
7493 * If 'subarray' is given, just extract info about that array.
7494 *
7495 * For each imsm_dev create an mdinfo, fill it in,
7496 * then look for matching devices in super->disks
7497 * and create appropriate device mdinfo.
7498 */
7499 struct intel_super *super = st->sb;
7500 struct imsm_super *mpb = super->anchor;
7501 struct mdinfo *rest = NULL;
7502 unsigned int i;
7503 int sb_errors = 0;
7504 struct dl *d;
7505 int spare_disks = 0;
7506
7507 /* do not assemble arrays when not all attributes are supported */
7508 if (imsm_check_attributes(mpb->attributes) == 0) {
7509 sb_errors = 1;
7510 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
7511 }
7512
7513 /* count spare devices, not used in maps
7514 */
7515 for (d = super->disks; d; d = d->next)
7516 if (d->index == -1)
7517 spare_disks++;
7518
7519 for (i = 0; i < mpb->num_raid_devs; i++) {
7520 struct imsm_dev *dev;
7521 struct imsm_map *map;
7522 struct imsm_map *map2;
7523 struct mdinfo *this;
7524 int slot;
7525 int chunk;
7526 char *ep;
7527
7528 if (subarray &&
7529 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
7530 continue;
7531
7532 dev = get_imsm_dev(super, i);
7533 map = get_imsm_map(dev, MAP_0);
7534 map2 = get_imsm_map(dev, MAP_1);
7535
7536 /* do not publish arrays that are in the middle of an
7537 * unsupported migration
7538 */
7539 if (dev->vol.migr_state &&
7540 (migr_type(dev) == MIGR_STATE_CHANGE)) {
7541 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
7542 dev->volume);
7543 continue;
7544 }
7545 /* do not publish arrays that are not support by controller's
7546 * OROM/EFI
7547 */
7548
7549 this = xmalloc(sizeof(*this));
7550
7551 super->current_vol = i;
7552 getinfo_super_imsm_volume(st, this, NULL);
7553 this->next = rest;
7554 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
7555 /* mdadm does not support all metadata features- set the bit in all arrays state */
7556 if (!validate_geometry_imsm_orom(super,
7557 get_imsm_raid_level(map), /* RAID level */
7558 imsm_level_to_layout(get_imsm_raid_level(map)),
7559 map->num_members, /* raid disks */
7560 &chunk, join_u32(dev->size_low, dev->size_high),
7561 1 /* verbose */)) {
7562 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
7563 dev->volume);
7564 this->array.state |=
7565 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7566 (1<<MD_SB_BLOCK_VOLUME);
7567 }
7568
7569 /* if array has bad blocks, set suitable bit in all arrays state */
7570 if (sb_errors)
7571 this->array.state |=
7572 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
7573 (1<<MD_SB_BLOCK_VOLUME);
7574
7575 for (slot = 0 ; slot < map->num_members; slot++) {
7576 unsigned long long recovery_start;
7577 struct mdinfo *info_d;
7578 struct dl *d;
7579 int idx;
7580 int skip;
7581 __u32 ord;
7582
7583 skip = 0;
7584 idx = get_imsm_disk_idx(dev, slot, MAP_0);
7585 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
7586 for (d = super->disks; d ; d = d->next)
7587 if (d->index == idx)
7588 break;
7589
7590 recovery_start = MaxSector;
7591 if (d == NULL)
7592 skip = 1;
7593 if (d && is_failed(&d->disk))
7594 skip = 1;
7595 if (ord & IMSM_ORD_REBUILD)
7596 recovery_start = 0;
7597
7598 /*
7599 * if we skip some disks the array will be assmebled degraded;
7600 * reset resync start to avoid a dirty-degraded
7601 * situation when performing the intial sync
7602 *
7603 * FIXME handle dirty degraded
7604 */
7605 if ((skip || recovery_start == 0) &&
7606 !(dev->vol.dirty & RAIDVOL_DIRTY))
7607 this->resync_start = MaxSector;
7608 if (skip)
7609 continue;
7610
7611 info_d = xcalloc(1, sizeof(*info_d));
7612 info_d->next = this->devs;
7613 this->devs = info_d;
7614
7615 info_d->disk.number = d->index;
7616 info_d->disk.major = d->major;
7617 info_d->disk.minor = d->minor;
7618 info_d->disk.raid_disk = slot;
7619 info_d->recovery_start = recovery_start;
7620 if (map2) {
7621 if (slot < map2->num_members)
7622 info_d->disk.state = (1 << MD_DISK_ACTIVE);
7623 else
7624 this->array.spare_disks++;
7625 } else {
7626 if (slot < map->num_members)
7627 info_d->disk.state = (1 << MD_DISK_ACTIVE);
7628 else
7629 this->array.spare_disks++;
7630 }
7631 if (info_d->recovery_start == MaxSector)
7632 this->array.working_disks++;
7633
7634 info_d->events = __le32_to_cpu(mpb->generation_num);
7635 info_d->data_offset = pba_of_lba0(map);
7636
7637 if (map->raid_level == 5) {
7638 info_d->component_size =
7639 num_data_stripes(map) *
7640 map->blocks_per_strip;
7641 info_d->ppl_sector = this->ppl_sector;
7642 info_d->ppl_size = this->ppl_size;
7643 } else {
7644 info_d->component_size = blocks_per_member(map);
7645 }
7646 info_d->consistency_policy = this->consistency_policy;
7647
7648 info_d->bb.supported = 1;
7649 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
7650 info_d->data_offset,
7651 info_d->component_size,
7652 &info_d->bb);
7653 }
7654 /* now that the disk list is up-to-date fixup recovery_start */
7655 update_recovery_start(super, dev, this);
7656 this->array.spare_disks += spare_disks;
7657
7658 /* check for reshape */
7659 if (this->reshape_active == 1)
7660 recover_backup_imsm(st, this);
7661 rest = this;
7662 }
7663
7664 return rest;
7665 }
7666
7667 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
7668 int failed, int look_in_map)
7669 {
7670 struct imsm_map *map;
7671
7672 map = get_imsm_map(dev, look_in_map);
7673
7674 if (!failed)
7675 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
7676 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
7677
7678 switch (get_imsm_raid_level(map)) {
7679 case 0:
7680 return IMSM_T_STATE_FAILED;
7681 break;
7682 case 1:
7683 if (failed < map->num_members)
7684 return IMSM_T_STATE_DEGRADED;
7685 else
7686 return IMSM_T_STATE_FAILED;
7687 break;
7688 case 10:
7689 {
7690 /**
7691 * check to see if any mirrors have failed, otherwise we
7692 * are degraded. Even numbered slots are mirrored on
7693 * slot+1
7694 */
7695 int i;
7696 /* gcc -Os complains that this is unused */
7697 int insync = insync;
7698
7699 for (i = 0; i < map->num_members; i++) {
7700 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
7701 int idx = ord_to_idx(ord);
7702 struct imsm_disk *disk;
7703
7704 /* reset the potential in-sync count on even-numbered
7705 * slots. num_copies is always 2 for imsm raid10
7706 */
7707 if ((i & 1) == 0)
7708 insync = 2;
7709
7710 disk = get_imsm_disk(super, idx);
7711 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7712 insync--;
7713
7714 /* no in-sync disks left in this mirror the
7715 * array has failed
7716 */
7717 if (insync == 0)
7718 return IMSM_T_STATE_FAILED;
7719 }
7720
7721 return IMSM_T_STATE_DEGRADED;
7722 }
7723 case 5:
7724 if (failed < 2)
7725 return IMSM_T_STATE_DEGRADED;
7726 else
7727 return IMSM_T_STATE_FAILED;
7728 break;
7729 default:
7730 break;
7731 }
7732
7733 return map->map_state;
7734 }
7735
7736 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
7737 int look_in_map)
7738 {
7739 int i;
7740 int failed = 0;
7741 struct imsm_disk *disk;
7742 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7743 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
7744 struct imsm_map *map_for_loop;
7745 __u32 ord;
7746 int idx;
7747 int idx_1;
7748
7749 /* at the beginning of migration we set IMSM_ORD_REBUILD on
7750 * disks that are being rebuilt. New failures are recorded to
7751 * map[0]. So we look through all the disks we started with and
7752 * see if any failures are still present, or if any new ones
7753 * have arrived
7754 */
7755 map_for_loop = map;
7756 if (prev && (map->num_members < prev->num_members))
7757 map_for_loop = prev;
7758
7759 for (i = 0; i < map_for_loop->num_members; i++) {
7760 idx_1 = -255;
7761 /* when MAP_X is passed both maps failures are counted
7762 */
7763 if (prev &&
7764 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
7765 i < prev->num_members) {
7766 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
7767 idx_1 = ord_to_idx(ord);
7768
7769 disk = get_imsm_disk(super, idx_1);
7770 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
7771 failed++;
7772 }
7773 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
7774 i < map->num_members) {
7775 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
7776 idx = ord_to_idx(ord);
7777
7778 if (idx != idx_1) {
7779 disk = get_imsm_disk(super, idx);
7780 if (!disk || is_failed(disk) ||
7781 ord & IMSM_ORD_REBUILD)
7782 failed++;
7783 }
7784 }
7785 }
7786
7787 return failed;
7788 }
7789
7790 static int imsm_open_new(struct supertype *c, struct active_array *a,
7791 char *inst)
7792 {
7793 struct intel_super *super = c->sb;
7794 struct imsm_super *mpb = super->anchor;
7795 struct imsm_update_prealloc_bb_mem u;
7796
7797 if (atoi(inst) >= mpb->num_raid_devs) {
7798 pr_err("subarry index %d, out of range\n", atoi(inst));
7799 return -ENODEV;
7800 }
7801
7802 dprintf("imsm: open_new %s\n", inst);
7803 a->info.container_member = atoi(inst);
7804
7805 u.type = update_prealloc_badblocks_mem;
7806 imsm_update_metadata_locally(c, &u, sizeof(u));
7807
7808 return 0;
7809 }
7810
7811 static int is_resyncing(struct imsm_dev *dev)
7812 {
7813 struct imsm_map *migr_map;
7814
7815 if (!dev->vol.migr_state)
7816 return 0;
7817
7818 if (migr_type(dev) == MIGR_INIT ||
7819 migr_type(dev) == MIGR_REPAIR)
7820 return 1;
7821
7822 if (migr_type(dev) == MIGR_GEN_MIGR)
7823 return 0;
7824
7825 migr_map = get_imsm_map(dev, MAP_1);
7826
7827 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
7828 dev->vol.migr_type != MIGR_GEN_MIGR)
7829 return 1;
7830 else
7831 return 0;
7832 }
7833
7834 /* return true if we recorded new information */
7835 static int mark_failure(struct intel_super *super,
7836 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7837 {
7838 __u32 ord;
7839 int slot;
7840 struct imsm_map *map;
7841 char buf[MAX_RAID_SERIAL_LEN+3];
7842 unsigned int len, shift = 0;
7843
7844 /* new failures are always set in map[0] */
7845 map = get_imsm_map(dev, MAP_0);
7846
7847 slot = get_imsm_disk_slot(map, idx);
7848 if (slot < 0)
7849 return 0;
7850
7851 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
7852 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
7853 return 0;
7854
7855 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
7856 buf[MAX_RAID_SERIAL_LEN] = '\000';
7857 strcat(buf, ":0");
7858 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
7859 shift = len - MAX_RAID_SERIAL_LEN + 1;
7860 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
7861
7862 disk->status |= FAILED_DISK;
7863 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
7864 /* mark failures in second map if second map exists and this disk
7865 * in this slot.
7866 * This is valid for migration, initialization and rebuild
7867 */
7868 if (dev->vol.migr_state) {
7869 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
7870 int slot2 = get_imsm_disk_slot(map2, idx);
7871
7872 if (slot2 < map2->num_members && slot2 >= 0)
7873 set_imsm_ord_tbl_ent(map2, slot2,
7874 idx | IMSM_ORD_REBUILD);
7875 }
7876 if (map->failed_disk_num == 0xff)
7877 map->failed_disk_num = slot;
7878
7879 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
7880
7881 return 1;
7882 }
7883
7884 static void mark_missing(struct intel_super *super,
7885 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
7886 {
7887 mark_failure(super, dev, disk, idx);
7888
7889 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
7890 return;
7891
7892 disk->scsi_id = __cpu_to_le32(~(__u32)0);
7893 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
7894 }
7895
7896 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
7897 {
7898 struct dl *dl;
7899
7900 if (!super->missing)
7901 return;
7902
7903 /* When orom adds replacement for missing disk it does
7904 * not remove entry of missing disk, but just updates map with
7905 * new added disk. So it is not enough just to test if there is
7906 * any missing disk, we have to look if there are any failed disks
7907 * in map to stop migration */
7908
7909 dprintf("imsm: mark missing\n");
7910 /* end process for initialization and rebuild only
7911 */
7912 if (is_gen_migration(dev) == 0) {
7913 __u8 map_state;
7914 int failed;
7915
7916 failed = imsm_count_failed(super, dev, MAP_0);
7917 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7918
7919 if (failed)
7920 end_migration(dev, super, map_state);
7921 }
7922 for (dl = super->missing; dl; dl = dl->next)
7923 mark_missing(super, dev, &dl->disk, dl->index);
7924 super->updates_pending++;
7925 }
7926
7927 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7928 long long new_size)
7929 {
7930 int used_disks = imsm_num_data_members(dev, MAP_0);
7931 unsigned long long array_blocks;
7932 struct imsm_map *map;
7933
7934 if (used_disks == 0) {
7935 /* when problems occures
7936 * return current array_blocks value
7937 */
7938 array_blocks = __le32_to_cpu(dev->size_high);
7939 array_blocks = array_blocks << 32;
7940 array_blocks += __le32_to_cpu(dev->size_low);
7941
7942 return array_blocks;
7943 }
7944
7945 /* set array size in metadata
7946 */
7947 if (new_size <= 0) {
7948 /* OLCE size change is caused by added disks
7949 */
7950 map = get_imsm_map(dev, MAP_0);
7951 array_blocks = blocks_per_member(map) * used_disks;
7952 } else {
7953 /* Online Volume Size Change
7954 * Using available free space
7955 */
7956 array_blocks = new_size;
7957 }
7958
7959 array_blocks = round_size_to_mb(array_blocks, used_disks);
7960 dev->size_low = __cpu_to_le32((__u32)array_blocks);
7961 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7962
7963 return array_blocks;
7964 }
7965
7966 static void imsm_set_disk(struct active_array *a, int n, int state);
7967
7968 static void imsm_progress_container_reshape(struct intel_super *super)
7969 {
7970 /* if no device has a migr_state, but some device has a
7971 * different number of members than the previous device, start
7972 * changing the number of devices in this device to match
7973 * previous.
7974 */
7975 struct imsm_super *mpb = super->anchor;
7976 int prev_disks = -1;
7977 int i;
7978 int copy_map_size;
7979
7980 for (i = 0; i < mpb->num_raid_devs; i++) {
7981 struct imsm_dev *dev = get_imsm_dev(super, i);
7982 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7983 struct imsm_map *map2;
7984 int prev_num_members;
7985
7986 if (dev->vol.migr_state)
7987 return;
7988
7989 if (prev_disks == -1)
7990 prev_disks = map->num_members;
7991 if (prev_disks == map->num_members)
7992 continue;
7993
7994 /* OK, this array needs to enter reshape mode.
7995 * i.e it needs a migr_state
7996 */
7997
7998 copy_map_size = sizeof_imsm_map(map);
7999 prev_num_members = map->num_members;
8000 map->num_members = prev_disks;
8001 dev->vol.migr_state = 1;
8002 dev->vol.curr_migr_unit = 0;
8003 set_migr_type(dev, MIGR_GEN_MIGR);
8004 for (i = prev_num_members;
8005 i < map->num_members; i++)
8006 set_imsm_ord_tbl_ent(map, i, i);
8007 map2 = get_imsm_map(dev, MAP_1);
8008 /* Copy the current map */
8009 memcpy(map2, map, copy_map_size);
8010 map2->num_members = prev_num_members;
8011
8012 imsm_set_array_size(dev, -1);
8013 super->clean_migration_record_by_mdmon = 1;
8014 super->updates_pending++;
8015 }
8016 }
8017
8018 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
8019 * states are handled in imsm_set_disk() with one exception, when a
8020 * resync is stopped due to a new failure this routine will set the
8021 * 'degraded' state for the array.
8022 */
8023 static int imsm_set_array_state(struct active_array *a, int consistent)
8024 {
8025 int inst = a->info.container_member;
8026 struct intel_super *super = a->container->sb;
8027 struct imsm_dev *dev = get_imsm_dev(super, inst);
8028 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8029 int failed = imsm_count_failed(super, dev, MAP_0);
8030 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
8031 __u32 blocks_per_unit;
8032
8033 if (dev->vol.migr_state &&
8034 dev->vol.migr_type == MIGR_GEN_MIGR) {
8035 /* array state change is blocked due to reshape action
8036 * We might need to
8037 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8038 * - finish the reshape (if last_checkpoint is big and action != reshape)
8039 * - update curr_migr_unit
8040 */
8041 if (a->curr_action == reshape) {
8042 /* still reshaping, maybe update curr_migr_unit */
8043 goto mark_checkpoint;
8044 } else {
8045 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
8046 /* for some reason we aborted the reshape.
8047 *
8048 * disable automatic metadata rollback
8049 * user action is required to recover process
8050 */
8051 if (0) {
8052 struct imsm_map *map2 =
8053 get_imsm_map(dev, MAP_1);
8054 dev->vol.migr_state = 0;
8055 set_migr_type(dev, 0);
8056 dev->vol.curr_migr_unit = 0;
8057 memcpy(map, map2,
8058 sizeof_imsm_map(map2));
8059 super->updates_pending++;
8060 }
8061 }
8062 if (a->last_checkpoint >= a->info.component_size) {
8063 unsigned long long array_blocks;
8064 int used_disks;
8065 struct mdinfo *mdi;
8066
8067 used_disks = imsm_num_data_members(dev, MAP_0);
8068 if (used_disks > 0) {
8069 array_blocks =
8070 blocks_per_member(map) *
8071 used_disks;
8072 array_blocks =
8073 round_size_to_mb(array_blocks,
8074 used_disks);
8075 a->info.custom_array_size = array_blocks;
8076 /* encourage manager to update array
8077 * size
8078 */
8079
8080 a->check_reshape = 1;
8081 }
8082 /* finalize online capacity expansion/reshape */
8083 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8084 imsm_set_disk(a,
8085 mdi->disk.raid_disk,
8086 mdi->curr_state);
8087
8088 imsm_progress_container_reshape(super);
8089 }
8090 }
8091 }
8092
8093 /* before we activate this array handle any missing disks */
8094 if (consistent == 2)
8095 handle_missing(super, dev);
8096
8097 if (consistent == 2 &&
8098 (!is_resync_complete(&a->info) ||
8099 map_state != IMSM_T_STATE_NORMAL ||
8100 dev->vol.migr_state))
8101 consistent = 0;
8102
8103 if (is_resync_complete(&a->info)) {
8104 /* complete intialization / resync,
8105 * recovery and interrupted recovery is completed in
8106 * ->set_disk
8107 */
8108 if (is_resyncing(dev)) {
8109 dprintf("imsm: mark resync done\n");
8110 end_migration(dev, super, map_state);
8111 super->updates_pending++;
8112 a->last_checkpoint = 0;
8113 }
8114 } else if ((!is_resyncing(dev) && !failed) &&
8115 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
8116 /* mark the start of the init process if nothing is failed */
8117 dprintf("imsm: mark resync start\n");
8118 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8119 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
8120 else
8121 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
8122 super->updates_pending++;
8123 }
8124
8125 mark_checkpoint:
8126 /* skip checkpointing for general migration,
8127 * it is controlled in mdadm
8128 */
8129 if (is_gen_migration(dev))
8130 goto skip_mark_checkpoint;
8131
8132 /* check if we can update curr_migr_unit from resync_start, recovery_start */
8133 blocks_per_unit = blocks_per_migr_unit(super, dev);
8134 if (blocks_per_unit) {
8135 __u32 units32;
8136 __u64 units;
8137
8138 units = a->last_checkpoint / blocks_per_unit;
8139 units32 = units;
8140
8141 /* check that we did not overflow 32-bits, and that
8142 * curr_migr_unit needs updating
8143 */
8144 if (units32 == units &&
8145 units32 != 0 &&
8146 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
8147 dprintf("imsm: mark checkpoint (%u)\n", units32);
8148 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
8149 super->updates_pending++;
8150 }
8151 }
8152
8153 skip_mark_checkpoint:
8154 /* mark dirty / clean */
8155 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8156 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
8157 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
8158 if (consistent) {
8159 dev->vol.dirty = RAIDVOL_CLEAN;
8160 } else {
8161 dev->vol.dirty = RAIDVOL_DIRTY;
8162 if (dev->rwh_policy == RWH_DISTRIBUTED)
8163 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8164 }
8165 super->updates_pending++;
8166 }
8167
8168 return consistent;
8169 }
8170
8171 static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8172 {
8173 int inst = a->info.container_member;
8174 struct intel_super *super = a->container->sb;
8175 struct imsm_dev *dev = get_imsm_dev(super, inst);
8176 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8177
8178 if (slot > map->num_members) {
8179 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8180 slot, map->num_members - 1);
8181 return -1;
8182 }
8183
8184 if (slot < 0)
8185 return -1;
8186
8187 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8188 }
8189
8190 static void imsm_set_disk(struct active_array *a, int n, int state)
8191 {
8192 int inst = a->info.container_member;
8193 struct intel_super *super = a->container->sb;
8194 struct imsm_dev *dev = get_imsm_dev(super, inst);
8195 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8196 struct imsm_disk *disk;
8197 struct mdinfo *mdi;
8198 int recovery_not_finished = 0;
8199 int failed;
8200 int ord;
8201 __u8 map_state;
8202
8203 ord = imsm_disk_slot_to_ord(a, n);
8204 if (ord < 0)
8205 return;
8206
8207 dprintf("imsm: set_disk %d:%x\n", n, state);
8208 disk = get_imsm_disk(super, ord_to_idx(ord));
8209
8210 /* check for new failures */
8211 if (state & DS_FAULTY) {
8212 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
8213 super->updates_pending++;
8214 }
8215
8216 /* check if in_sync */
8217 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
8218 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8219
8220 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
8221 super->updates_pending++;
8222 }
8223
8224 failed = imsm_count_failed(super, dev, MAP_0);
8225 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
8226
8227 /* check if recovery complete, newly degraded, or failed */
8228 dprintf("imsm: Detected transition to state ");
8229 switch (map_state) {
8230 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8231 dprintf("normal: ");
8232 if (is_rebuilding(dev)) {
8233 dprintf_cont("while rebuilding");
8234 /* check if recovery is really finished */
8235 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8236 if (mdi->recovery_start != MaxSector) {
8237 recovery_not_finished = 1;
8238 break;
8239 }
8240 if (recovery_not_finished) {
8241 dprintf_cont("\n");
8242 dprintf("Rebuild has not finished yet, state not changed");
8243 if (a->last_checkpoint < mdi->recovery_start) {
8244 a->last_checkpoint = mdi->recovery_start;
8245 super->updates_pending++;
8246 }
8247 break;
8248 }
8249 end_migration(dev, super, map_state);
8250 map = get_imsm_map(dev, MAP_0);
8251 map->failed_disk_num = ~0;
8252 super->updates_pending++;
8253 a->last_checkpoint = 0;
8254 break;
8255 }
8256 if (is_gen_migration(dev)) {
8257 dprintf_cont("while general migration");
8258 if (a->last_checkpoint >= a->info.component_size)
8259 end_migration(dev, super, map_state);
8260 else
8261 map->map_state = map_state;
8262 map = get_imsm_map(dev, MAP_0);
8263 map->failed_disk_num = ~0;
8264 super->updates_pending++;
8265 break;
8266 }
8267 break;
8268 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
8269 dprintf_cont("degraded: ");
8270 if (map->map_state != map_state && !dev->vol.migr_state) {
8271 dprintf_cont("mark degraded");
8272 map->map_state = map_state;
8273 super->updates_pending++;
8274 a->last_checkpoint = 0;
8275 break;
8276 }
8277 if (is_rebuilding(dev)) {
8278 dprintf_cont("while rebuilding.");
8279 if (map->map_state != map_state) {
8280 dprintf_cont(" Map state change");
8281 end_migration(dev, super, map_state);
8282 super->updates_pending++;
8283 }
8284 break;
8285 }
8286 if (is_gen_migration(dev)) {
8287 dprintf_cont("while general migration");
8288 if (a->last_checkpoint >= a->info.component_size)
8289 end_migration(dev, super, map_state);
8290 else {
8291 map->map_state = map_state;
8292 manage_second_map(super, dev);
8293 }
8294 super->updates_pending++;
8295 break;
8296 }
8297 if (is_initializing(dev)) {
8298 dprintf_cont("while initialization.");
8299 map->map_state = map_state;
8300 super->updates_pending++;
8301 break;
8302 }
8303 break;
8304 case IMSM_T_STATE_FAILED: /* transition to failed state */
8305 dprintf_cont("failed: ");
8306 if (is_gen_migration(dev)) {
8307 dprintf_cont("while general migration");
8308 map->map_state = map_state;
8309 super->updates_pending++;
8310 break;
8311 }
8312 if (map->map_state != map_state) {
8313 dprintf_cont("mark failed");
8314 end_migration(dev, super, map_state);
8315 super->updates_pending++;
8316 a->last_checkpoint = 0;
8317 break;
8318 }
8319 break;
8320 default:
8321 dprintf_cont("state %i\n", map_state);
8322 }
8323 dprintf_cont("\n");
8324 }
8325
8326 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
8327 {
8328 void *buf = mpb;
8329 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8330 unsigned long long dsize;
8331 unsigned long long sectors;
8332 unsigned int sector_size;
8333
8334 get_dev_sector_size(fd, NULL, &sector_size);
8335 get_dev_size(fd, NULL, &dsize);
8336
8337 if (mpb_size > sector_size) {
8338 /* -1 to account for anchor */
8339 sectors = mpb_sectors(mpb, sector_size) - 1;
8340
8341 /* write the extended mpb to the sectors preceeding the anchor */
8342 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8343 SEEK_SET) < 0)
8344 return 1;
8345
8346 if ((unsigned long long)write(fd, buf + sector_size,
8347 sector_size * sectors) != sector_size * sectors)
8348 return 1;
8349 }
8350
8351 /* first block is stored on second to last sector of the disk */
8352 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
8353 return 1;
8354
8355 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
8356 return 1;
8357
8358 return 0;
8359 }
8360
8361 static void imsm_sync_metadata(struct supertype *container)
8362 {
8363 struct intel_super *super = container->sb;
8364
8365 dprintf("sync metadata: %d\n", super->updates_pending);
8366 if (!super->updates_pending)
8367 return;
8368
8369 write_super_imsm(container, 0);
8370
8371 super->updates_pending = 0;
8372 }
8373
8374 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
8375 {
8376 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
8377 int i = get_imsm_disk_idx(dev, idx, MAP_X);
8378 struct dl *dl;
8379
8380 for (dl = super->disks; dl; dl = dl->next)
8381 if (dl->index == i)
8382 break;
8383
8384 if (dl && is_failed(&dl->disk))
8385 dl = NULL;
8386
8387 if (dl)
8388 dprintf("found %x:%x\n", dl->major, dl->minor);
8389
8390 return dl;
8391 }
8392
8393 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
8394 struct active_array *a, int activate_new,
8395 struct mdinfo *additional_test_list)
8396 {
8397 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
8398 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
8399 struct imsm_super *mpb = super->anchor;
8400 struct imsm_map *map;
8401 unsigned long long pos;
8402 struct mdinfo *d;
8403 struct extent *ex;
8404 int i, j;
8405 int found;
8406 __u32 array_start = 0;
8407 __u32 array_end = 0;
8408 struct dl *dl;
8409 struct mdinfo *test_list;
8410
8411 for (dl = super->disks; dl; dl = dl->next) {
8412 /* If in this array, skip */
8413 for (d = a->info.devs ; d ; d = d->next)
8414 if (d->state_fd >= 0 &&
8415 d->disk.major == dl->major &&
8416 d->disk.minor == dl->minor) {
8417 dprintf("%x:%x already in array\n",
8418 dl->major, dl->minor);
8419 break;
8420 }
8421 if (d)
8422 continue;
8423 test_list = additional_test_list;
8424 while (test_list) {
8425 if (test_list->disk.major == dl->major &&
8426 test_list->disk.minor == dl->minor) {
8427 dprintf("%x:%x already in additional test list\n",
8428 dl->major, dl->minor);
8429 break;
8430 }
8431 test_list = test_list->next;
8432 }
8433 if (test_list)
8434 continue;
8435
8436 /* skip in use or failed drives */
8437 if (is_failed(&dl->disk) || idx == dl->index ||
8438 dl->index == -2) {
8439 dprintf("%x:%x status (failed: %d index: %d)\n",
8440 dl->major, dl->minor, is_failed(&dl->disk), idx);
8441 continue;
8442 }
8443
8444 /* skip pure spares when we are looking for partially
8445 * assimilated drives
8446 */
8447 if (dl->index == -1 && !activate_new)
8448 continue;
8449
8450 /* Does this unused device have the requisite free space?
8451 * It needs to be able to cover all member volumes
8452 */
8453 ex = get_extents(super, dl);
8454 if (!ex) {
8455 dprintf("cannot get extents\n");
8456 continue;
8457 }
8458 for (i = 0; i < mpb->num_raid_devs; i++) {
8459 dev = get_imsm_dev(super, i);
8460 map = get_imsm_map(dev, MAP_0);
8461
8462 /* check if this disk is already a member of
8463 * this array
8464 */
8465 if (get_imsm_disk_slot(map, dl->index) >= 0)
8466 continue;
8467
8468 found = 0;
8469 j = 0;
8470 pos = 0;
8471 array_start = pba_of_lba0(map);
8472 array_end = array_start +
8473 blocks_per_member(map) - 1;
8474
8475 do {
8476 /* check that we can start at pba_of_lba0 with
8477 * blocks_per_member of space
8478 */
8479 if (array_start >= pos && array_end < ex[j].start) {
8480 found = 1;
8481 break;
8482 }
8483 pos = ex[j].start + ex[j].size;
8484 j++;
8485 } while (ex[j-1].size);
8486
8487 if (!found)
8488 break;
8489 }
8490
8491 free(ex);
8492 if (i < mpb->num_raid_devs) {
8493 dprintf("%x:%x does not have %u to %u available\n",
8494 dl->major, dl->minor, array_start, array_end);
8495 /* No room */
8496 continue;
8497 }
8498 return dl;
8499 }
8500
8501 return dl;
8502 }
8503
8504 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
8505 {
8506 struct imsm_dev *dev2;
8507 struct imsm_map *map;
8508 struct dl *idisk;
8509 int slot;
8510 int idx;
8511 __u8 state;
8512
8513 dev2 = get_imsm_dev(cont->sb, dev_idx);
8514 if (dev2) {
8515 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
8516 if (state == IMSM_T_STATE_FAILED) {
8517 map = get_imsm_map(dev2, MAP_0);
8518 if (!map)
8519 return 1;
8520 for (slot = 0; slot < map->num_members; slot++) {
8521 /*
8522 * Check if failed disks are deleted from intel
8523 * disk list or are marked to be deleted
8524 */
8525 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
8526 idisk = get_imsm_dl_disk(cont->sb, idx);
8527 /*
8528 * Do not rebuild the array if failed disks
8529 * from failed sub-array are not removed from
8530 * container.
8531 */
8532 if (idisk &&
8533 is_failed(&idisk->disk) &&
8534 (idisk->action != DISK_REMOVE))
8535 return 0;
8536 }
8537 }
8538 }
8539 return 1;
8540 }
8541
8542 static struct mdinfo *imsm_activate_spare(struct active_array *a,
8543 struct metadata_update **updates)
8544 {
8545 /**
8546 * Find a device with unused free space and use it to replace a
8547 * failed/vacant region in an array. We replace failed regions one a
8548 * array at a time. The result is that a new spare disk will be added
8549 * to the first failed array and after the monitor has finished
8550 * propagating failures the remainder will be consumed.
8551 *
8552 * FIXME add a capability for mdmon to request spares from another
8553 * container.
8554 */
8555
8556 struct intel_super *super = a->container->sb;
8557 int inst = a->info.container_member;
8558 struct imsm_dev *dev = get_imsm_dev(super, inst);
8559 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8560 int failed = a->info.array.raid_disks;
8561 struct mdinfo *rv = NULL;
8562 struct mdinfo *d;
8563 struct mdinfo *di;
8564 struct metadata_update *mu;
8565 struct dl *dl;
8566 struct imsm_update_activate_spare *u;
8567 int num_spares = 0;
8568 int i;
8569 int allowed;
8570
8571 for (d = a->info.devs ; d ; d = d->next) {
8572 if ((d->curr_state & DS_FAULTY) &&
8573 d->state_fd >= 0)
8574 /* wait for Removal to happen */
8575 return NULL;
8576 if (d->state_fd >= 0)
8577 failed--;
8578 }
8579
8580 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
8581 inst, failed, a->info.array.raid_disks, a->info.array.level);
8582
8583 if (imsm_reshape_blocks_arrays_changes(super))
8584 return NULL;
8585
8586 /* Cannot activate another spare if rebuild is in progress already
8587 */
8588 if (is_rebuilding(dev)) {
8589 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
8590 return NULL;
8591 }
8592
8593 if (a->info.array.level == 4)
8594 /* No repair for takeovered array
8595 * imsm doesn't support raid4
8596 */
8597 return NULL;
8598
8599 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
8600 IMSM_T_STATE_DEGRADED)
8601 return NULL;
8602
8603 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
8604 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
8605 return NULL;
8606 }
8607
8608 /*
8609 * If there are any failed disks check state of the other volume.
8610 * Block rebuild if the another one is failed until failed disks
8611 * are removed from container.
8612 */
8613 if (failed) {
8614 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
8615 MAX_RAID_SERIAL_LEN, dev->volume);
8616 /* check if states of the other volumes allow for rebuild */
8617 for (i = 0; i < super->anchor->num_raid_devs; i++) {
8618 if (i != inst) {
8619 allowed = imsm_rebuild_allowed(a->container,
8620 i, failed);
8621 if (!allowed)
8622 return NULL;
8623 }
8624 }
8625 }
8626
8627 /* For each slot, if it is not working, find a spare */
8628 for (i = 0; i < a->info.array.raid_disks; i++) {
8629 for (d = a->info.devs ; d ; d = d->next)
8630 if (d->disk.raid_disk == i)
8631 break;
8632 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
8633 if (d && (d->state_fd >= 0))
8634 continue;
8635
8636 /*
8637 * OK, this device needs recovery. Try to re-add the
8638 * previous occupant of this slot, if this fails see if
8639 * we can continue the assimilation of a spare that was
8640 * partially assimilated, finally try to activate a new
8641 * spare.
8642 */
8643 dl = imsm_readd(super, i, a);
8644 if (!dl)
8645 dl = imsm_add_spare(super, i, a, 0, rv);
8646 if (!dl)
8647 dl = imsm_add_spare(super, i, a, 1, rv);
8648 if (!dl)
8649 continue;
8650
8651 /* found a usable disk with enough space */
8652 di = xcalloc(1, sizeof(*di));
8653
8654 /* dl->index will be -1 in the case we are activating a
8655 * pristine spare. imsm_process_update() will create a
8656 * new index in this case. Once a disk is found to be
8657 * failed in all member arrays it is kicked from the
8658 * metadata
8659 */
8660 di->disk.number = dl->index;
8661
8662 /* (ab)use di->devs to store a pointer to the device
8663 * we chose
8664 */
8665 di->devs = (struct mdinfo *) dl;
8666
8667 di->disk.raid_disk = i;
8668 di->disk.major = dl->major;
8669 di->disk.minor = dl->minor;
8670 di->disk.state = 0;
8671 di->recovery_start = 0;
8672 di->data_offset = pba_of_lba0(map);
8673 di->component_size = a->info.component_size;
8674 di->container_member = inst;
8675 di->bb.supported = 1;
8676 if (dev->rwh_policy == RWH_DISTRIBUTED) {
8677 di->consistency_policy = CONSISTENCY_POLICY_PPL;
8678 di->ppl_sector = get_ppl_sector(super, inst);
8679 di->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE) >> 9;
8680 }
8681 super->random = random32();
8682 di->next = rv;
8683 rv = di;
8684 num_spares++;
8685 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
8686 i, di->data_offset);
8687 }
8688
8689 if (!rv)
8690 /* No spares found */
8691 return rv;
8692 /* Now 'rv' has a list of devices to return.
8693 * Create a metadata_update record to update the
8694 * disk_ord_tbl for the array
8695 */
8696 mu = xmalloc(sizeof(*mu));
8697 mu->buf = xcalloc(num_spares,
8698 sizeof(struct imsm_update_activate_spare));
8699 mu->space = NULL;
8700 mu->space_list = NULL;
8701 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
8702 mu->next = *updates;
8703 u = (struct imsm_update_activate_spare *) mu->buf;
8704
8705 for (di = rv ; di ; di = di->next) {
8706 u->type = update_activate_spare;
8707 u->dl = (struct dl *) di->devs;
8708 di->devs = NULL;
8709 u->slot = di->disk.raid_disk;
8710 u->array = inst;
8711 u->next = u + 1;
8712 u++;
8713 }
8714 (u-1)->next = NULL;
8715 *updates = mu;
8716
8717 return rv;
8718 }
8719
8720 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8721 {
8722 struct imsm_dev *dev = get_imsm_dev(super, idx);
8723 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8724 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
8725 struct disk_info *inf = get_disk_info(u);
8726 struct imsm_disk *disk;
8727 int i;
8728 int j;
8729
8730 for (i = 0; i < map->num_members; i++) {
8731 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
8732 for (j = 0; j < new_map->num_members; j++)
8733 if (serialcmp(disk->serial, inf[j].serial) == 0)
8734 return 1;
8735 }
8736
8737 return 0;
8738 }
8739
8740 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
8741 {
8742 struct dl *dl;
8743
8744 for (dl = super->disks; dl; dl = dl->next)
8745 if (dl->major == major && dl->minor == minor)
8746 return dl;
8747 return NULL;
8748 }
8749
8750 static int remove_disk_super(struct intel_super *super, int major, int minor)
8751 {
8752 struct dl *prev;
8753 struct dl *dl;
8754
8755 prev = NULL;
8756 for (dl = super->disks; dl; dl = dl->next) {
8757 if (dl->major == major && dl->minor == minor) {
8758 /* remove */
8759 if (prev)
8760 prev->next = dl->next;
8761 else
8762 super->disks = dl->next;
8763 dl->next = NULL;
8764 __free_imsm_disk(dl);
8765 dprintf("removed %x:%x\n", major, minor);
8766 break;
8767 }
8768 prev = dl;
8769 }
8770 return 0;
8771 }
8772
8773 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
8774
8775 static int add_remove_disk_update(struct intel_super *super)
8776 {
8777 int check_degraded = 0;
8778 struct dl *disk;
8779
8780 /* add/remove some spares to/from the metadata/contrainer */
8781 while (super->disk_mgmt_list) {
8782 struct dl *disk_cfg;
8783
8784 disk_cfg = super->disk_mgmt_list;
8785 super->disk_mgmt_list = disk_cfg->next;
8786 disk_cfg->next = NULL;
8787
8788 if (disk_cfg->action == DISK_ADD) {
8789 disk_cfg->next = super->disks;
8790 super->disks = disk_cfg;
8791 check_degraded = 1;
8792 dprintf("added %x:%x\n",
8793 disk_cfg->major, disk_cfg->minor);
8794 } else if (disk_cfg->action == DISK_REMOVE) {
8795 dprintf("Disk remove action processed: %x.%x\n",
8796 disk_cfg->major, disk_cfg->minor);
8797 disk = get_disk_super(super,
8798 disk_cfg->major,
8799 disk_cfg->minor);
8800 if (disk) {
8801 /* store action status */
8802 disk->action = DISK_REMOVE;
8803 /* remove spare disks only */
8804 if (disk->index == -1) {
8805 remove_disk_super(super,
8806 disk_cfg->major,
8807 disk_cfg->minor);
8808 }
8809 }
8810 /* release allocate disk structure */
8811 __free_imsm_disk(disk_cfg);
8812 }
8813 }
8814 return check_degraded;
8815 }
8816
8817 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
8818 struct intel_super *super,
8819 void ***space_list)
8820 {
8821 struct intel_dev *id;
8822 void **tofree = NULL;
8823 int ret_val = 0;
8824
8825 dprintf("(enter)\n");
8826 if (u->subdev < 0 || u->subdev > 1) {
8827 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8828 return ret_val;
8829 }
8830 if (space_list == NULL || *space_list == NULL) {
8831 dprintf("imsm: Error: Memory is not allocated\n");
8832 return ret_val;
8833 }
8834
8835 for (id = super->devlist ; id; id = id->next) {
8836 if (id->index == (unsigned)u->subdev) {
8837 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8838 struct imsm_map *map;
8839 struct imsm_dev *new_dev =
8840 (struct imsm_dev *)*space_list;
8841 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8842 int to_state;
8843 struct dl *new_disk;
8844
8845 if (new_dev == NULL)
8846 return ret_val;
8847 *space_list = **space_list;
8848 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
8849 map = get_imsm_map(new_dev, MAP_0);
8850 if (migr_map) {
8851 dprintf("imsm: Error: migration in progress");
8852 return ret_val;
8853 }
8854
8855 to_state = map->map_state;
8856 if ((u->new_level == 5) && (map->raid_level == 0)) {
8857 map->num_members++;
8858 /* this should not happen */
8859 if (u->new_disks[0] < 0) {
8860 map->failed_disk_num =
8861 map->num_members - 1;
8862 to_state = IMSM_T_STATE_DEGRADED;
8863 } else
8864 to_state = IMSM_T_STATE_NORMAL;
8865 }
8866 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
8867 if (u->new_level > -1)
8868 map->raid_level = u->new_level;
8869 migr_map = get_imsm_map(new_dev, MAP_1);
8870 if ((u->new_level == 5) &&
8871 (migr_map->raid_level == 0)) {
8872 int ord = map->num_members - 1;
8873 migr_map->num_members--;
8874 if (u->new_disks[0] < 0)
8875 ord |= IMSM_ORD_REBUILD;
8876 set_imsm_ord_tbl_ent(map,
8877 map->num_members - 1,
8878 ord);
8879 }
8880 id->dev = new_dev;
8881 tofree = (void **)dev;
8882
8883 /* update chunk size
8884 */
8885 if (u->new_chunksize > 0) {
8886 unsigned long long num_data_stripes;
8887 int used_disks =
8888 imsm_num_data_members(dev, MAP_0);
8889
8890 if (used_disks == 0)
8891 return ret_val;
8892
8893 map->blocks_per_strip =
8894 __cpu_to_le16(u->new_chunksize * 2);
8895 num_data_stripes =
8896 (join_u32(dev->size_low, dev->size_high)
8897 / used_disks);
8898 num_data_stripes /= map->blocks_per_strip;
8899 num_data_stripes /= map->num_domains;
8900 set_num_data_stripes(map, num_data_stripes);
8901 }
8902
8903 /* add disk
8904 */
8905 if (u->new_level != 5 || migr_map->raid_level != 0 ||
8906 migr_map->raid_level == map->raid_level)
8907 goto skip_disk_add;
8908
8909 if (u->new_disks[0] >= 0) {
8910 /* use passes spare
8911 */
8912 new_disk = get_disk_super(super,
8913 major(u->new_disks[0]),
8914 minor(u->new_disks[0]));
8915 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
8916 major(u->new_disks[0]),
8917 minor(u->new_disks[0]),
8918 new_disk, new_disk->index);
8919 if (new_disk == NULL)
8920 goto error_disk_add;
8921
8922 new_disk->index = map->num_members - 1;
8923 /* slot to fill in autolayout
8924 */
8925 new_disk->raiddisk = new_disk->index;
8926 new_disk->disk.status |= CONFIGURED_DISK;
8927 new_disk->disk.status &= ~SPARE_DISK;
8928 } else
8929 goto error_disk_add;
8930
8931 skip_disk_add:
8932 *tofree = *space_list;
8933 /* calculate new size
8934 */
8935 imsm_set_array_size(new_dev, -1);
8936
8937 ret_val = 1;
8938 }
8939 }
8940
8941 if (tofree)
8942 *space_list = tofree;
8943 return ret_val;
8944
8945 error_disk_add:
8946 dprintf("Error: imsm: Cannot find disk.\n");
8947 return ret_val;
8948 }
8949
8950 static int apply_size_change_update(struct imsm_update_size_change *u,
8951 struct intel_super *super)
8952 {
8953 struct intel_dev *id;
8954 int ret_val = 0;
8955
8956 dprintf("(enter)\n");
8957 if (u->subdev < 0 || u->subdev > 1) {
8958 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8959 return ret_val;
8960 }
8961
8962 for (id = super->devlist ; id; id = id->next) {
8963 if (id->index == (unsigned)u->subdev) {
8964 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8965 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8966 int used_disks = imsm_num_data_members(dev, MAP_0);
8967 unsigned long long blocks_per_member;
8968 unsigned long long num_data_stripes;
8969
8970 /* calculate new size
8971 */
8972 blocks_per_member = u->new_size / used_disks;
8973 num_data_stripes = blocks_per_member /
8974 map->blocks_per_strip;
8975 num_data_stripes /= map->num_domains;
8976 dprintf("(size: %llu, blocks per member: %llu, num_data_stipes: %llu)\n",
8977 u->new_size, blocks_per_member,
8978 num_data_stripes);
8979 set_blocks_per_member(map, blocks_per_member);
8980 set_num_data_stripes(map, num_data_stripes);
8981 imsm_set_array_size(dev, u->new_size);
8982
8983 ret_val = 1;
8984 break;
8985 }
8986 }
8987
8988 return ret_val;
8989 }
8990
8991 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
8992 struct intel_super *super,
8993 struct active_array *active_array)
8994 {
8995 struct imsm_super *mpb = super->anchor;
8996 struct imsm_dev *dev = get_imsm_dev(super, u->array);
8997 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8998 struct imsm_map *migr_map;
8999 struct active_array *a;
9000 struct imsm_disk *disk;
9001 __u8 to_state;
9002 struct dl *dl;
9003 unsigned int found;
9004 int failed;
9005 int victim;
9006 int i;
9007 int second_map_created = 0;
9008
9009 for (; u; u = u->next) {
9010 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
9011
9012 if (victim < 0)
9013 return 0;
9014
9015 for (dl = super->disks; dl; dl = dl->next)
9016 if (dl == u->dl)
9017 break;
9018
9019 if (!dl) {
9020 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
9021 u->dl->index);
9022 return 0;
9023 }
9024
9025 /* count failures (excluding rebuilds and the victim)
9026 * to determine map[0] state
9027 */
9028 failed = 0;
9029 for (i = 0; i < map->num_members; i++) {
9030 if (i == u->slot)
9031 continue;
9032 disk = get_imsm_disk(super,
9033 get_imsm_disk_idx(dev, i, MAP_X));
9034 if (!disk || is_failed(disk))
9035 failed++;
9036 }
9037
9038 /* adding a pristine spare, assign a new index */
9039 if (dl->index < 0) {
9040 dl->index = super->anchor->num_disks;
9041 super->anchor->num_disks++;
9042 }
9043 disk = &dl->disk;
9044 disk->status |= CONFIGURED_DISK;
9045 disk->status &= ~SPARE_DISK;
9046
9047 /* mark rebuild */
9048 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
9049 if (!second_map_created) {
9050 second_map_created = 1;
9051 map->map_state = IMSM_T_STATE_DEGRADED;
9052 migrate(dev, super, to_state, MIGR_REBUILD);
9053 } else
9054 map->map_state = to_state;
9055 migr_map = get_imsm_map(dev, MAP_1);
9056 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9057 set_imsm_ord_tbl_ent(migr_map, u->slot,
9058 dl->index | IMSM_ORD_REBUILD);
9059
9060 /* update the family_num to mark a new container
9061 * generation, being careful to record the existing
9062 * family_num in orig_family_num to clean up after
9063 * earlier mdadm versions that neglected to set it.
9064 */
9065 if (mpb->orig_family_num == 0)
9066 mpb->orig_family_num = mpb->family_num;
9067 mpb->family_num += super->random;
9068
9069 /* count arrays using the victim in the metadata */
9070 found = 0;
9071 for (a = active_array; a ; a = a->next) {
9072 dev = get_imsm_dev(super, a->info.container_member);
9073 map = get_imsm_map(dev, MAP_0);
9074
9075 if (get_imsm_disk_slot(map, victim) >= 0)
9076 found++;
9077 }
9078
9079 /* delete the victim if it is no longer being
9080 * utilized anywhere
9081 */
9082 if (!found) {
9083 struct dl **dlp;
9084
9085 /* We know that 'manager' isn't touching anything,
9086 * so it is safe to delete
9087 */
9088 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
9089 if ((*dlp)->index == victim)
9090 break;
9091
9092 /* victim may be on the missing list */
9093 if (!*dlp)
9094 for (dlp = &super->missing; *dlp;
9095 dlp = &(*dlp)->next)
9096 if ((*dlp)->index == victim)
9097 break;
9098 imsm_delete(super, dlp, victim);
9099 }
9100 }
9101
9102 return 1;
9103 }
9104
9105 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9106 struct intel_super *super,
9107 void ***space_list)
9108 {
9109 struct dl *new_disk;
9110 struct intel_dev *id;
9111 int i;
9112 int delta_disks = u->new_raid_disks - u->old_raid_disks;
9113 int disk_count = u->old_raid_disks;
9114 void **tofree = NULL;
9115 int devices_to_reshape = 1;
9116 struct imsm_super *mpb = super->anchor;
9117 int ret_val = 0;
9118 unsigned int dev_id;
9119
9120 dprintf("(enter)\n");
9121
9122 /* enable spares to use in array */
9123 for (i = 0; i < delta_disks; i++) {
9124 new_disk = get_disk_super(super,
9125 major(u->new_disks[i]),
9126 minor(u->new_disks[i]));
9127 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
9128 major(u->new_disks[i]), minor(u->new_disks[i]),
9129 new_disk, new_disk->index);
9130 if (new_disk == NULL ||
9131 (new_disk->index >= 0 &&
9132 new_disk->index < u->old_raid_disks))
9133 goto update_reshape_exit;
9134 new_disk->index = disk_count++;
9135 /* slot to fill in autolayout
9136 */
9137 new_disk->raiddisk = new_disk->index;
9138 new_disk->disk.status |=
9139 CONFIGURED_DISK;
9140 new_disk->disk.status &= ~SPARE_DISK;
9141 }
9142
9143 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9144 mpb->num_raid_devs);
9145 /* manage changes in volume
9146 */
9147 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
9148 void **sp = *space_list;
9149 struct imsm_dev *newdev;
9150 struct imsm_map *newmap, *oldmap;
9151
9152 for (id = super->devlist ; id; id = id->next) {
9153 if (id->index == dev_id)
9154 break;
9155 }
9156 if (id == NULL)
9157 break;
9158 if (!sp)
9159 continue;
9160 *space_list = *sp;
9161 newdev = (void*)sp;
9162 /* Copy the dev, but not (all of) the map */
9163 memcpy(newdev, id->dev, sizeof(*newdev));
9164 oldmap = get_imsm_map(id->dev, MAP_0);
9165 newmap = get_imsm_map(newdev, MAP_0);
9166 /* Copy the current map */
9167 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9168 /* update one device only
9169 */
9170 if (devices_to_reshape) {
9171 dprintf("imsm: modifying subdev: %i\n",
9172 id->index);
9173 devices_to_reshape--;
9174 newdev->vol.migr_state = 1;
9175 newdev->vol.curr_migr_unit = 0;
9176 set_migr_type(newdev, MIGR_GEN_MIGR);
9177 newmap->num_members = u->new_raid_disks;
9178 for (i = 0; i < delta_disks; i++) {
9179 set_imsm_ord_tbl_ent(newmap,
9180 u->old_raid_disks + i,
9181 u->old_raid_disks + i);
9182 }
9183 /* New map is correct, now need to save old map
9184 */
9185 newmap = get_imsm_map(newdev, MAP_1);
9186 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9187
9188 imsm_set_array_size(newdev, -1);
9189 }
9190
9191 sp = (void **)id->dev;
9192 id->dev = newdev;
9193 *sp = tofree;
9194 tofree = sp;
9195
9196 /* Clear migration record */
9197 memset(super->migr_rec, 0, sizeof(struct migr_record));
9198 }
9199 if (tofree)
9200 *space_list = tofree;
9201 ret_val = 1;
9202
9203 update_reshape_exit:
9204
9205 return ret_val;
9206 }
9207
9208 static int apply_takeover_update(struct imsm_update_takeover *u,
9209 struct intel_super *super,
9210 void ***space_list)
9211 {
9212 struct imsm_dev *dev = NULL;
9213 struct intel_dev *dv;
9214 struct imsm_dev *dev_new;
9215 struct imsm_map *map;
9216 struct dl *dm, *du;
9217 int i;
9218
9219 for (dv = super->devlist; dv; dv = dv->next)
9220 if (dv->index == (unsigned int)u->subarray) {
9221 dev = dv->dev;
9222 break;
9223 }
9224
9225 if (dev == NULL)
9226 return 0;
9227
9228 map = get_imsm_map(dev, MAP_0);
9229
9230 if (u->direction == R10_TO_R0) {
9231 unsigned long long num_data_stripes;
9232
9233 map->num_domains = 1;
9234 num_data_stripes = blocks_per_member(map);
9235 num_data_stripes /= map->blocks_per_strip;
9236 num_data_stripes /= map->num_domains;
9237 set_num_data_stripes(map, num_data_stripes);
9238
9239 /* Number of failed disks must be half of initial disk number */
9240 if (imsm_count_failed(super, dev, MAP_0) !=
9241 (map->num_members / 2))
9242 return 0;
9243
9244 /* iterate through devices to mark removed disks as spare */
9245 for (dm = super->disks; dm; dm = dm->next) {
9246 if (dm->disk.status & FAILED_DISK) {
9247 int idx = dm->index;
9248 /* update indexes on the disk list */
9249 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9250 the index values will end up being correct.... NB */
9251 for (du = super->disks; du; du = du->next)
9252 if (du->index > idx)
9253 du->index--;
9254 /* mark as spare disk */
9255 mark_spare(dm);
9256 }
9257 }
9258 /* update map */
9259 map->num_members = map->num_members / 2;
9260 map->map_state = IMSM_T_STATE_NORMAL;
9261 map->num_domains = 1;
9262 map->raid_level = 0;
9263 map->failed_disk_num = -1;
9264 }
9265
9266 if (u->direction == R0_TO_R10) {
9267 void **space;
9268 /* update slots in current disk list */
9269 for (dm = super->disks; dm; dm = dm->next) {
9270 if (dm->index >= 0)
9271 dm->index *= 2;
9272 }
9273 /* create new *missing* disks */
9274 for (i = 0; i < map->num_members; i++) {
9275 space = *space_list;
9276 if (!space)
9277 continue;
9278 *space_list = *space;
9279 du = (void *)space;
9280 memcpy(du, super->disks, sizeof(*du));
9281 du->fd = -1;
9282 du->minor = 0;
9283 du->major = 0;
9284 du->index = (i * 2) + 1;
9285 sprintf((char *)du->disk.serial,
9286 " MISSING_%d", du->index);
9287 sprintf((char *)du->serial,
9288 "MISSING_%d", du->index);
9289 du->next = super->missing;
9290 super->missing = du;
9291 }
9292 /* create new dev and map */
9293 space = *space_list;
9294 if (!space)
9295 return 0;
9296 *space_list = *space;
9297 dev_new = (void *)space;
9298 memcpy(dev_new, dev, sizeof(*dev));
9299 /* update new map */
9300 map = get_imsm_map(dev_new, MAP_0);
9301 map->num_members = map->num_members * 2;
9302 map->map_state = IMSM_T_STATE_DEGRADED;
9303 map->num_domains = 2;
9304 map->raid_level = 1;
9305 /* replace dev<->dev_new */
9306 dv->dev = dev_new;
9307 }
9308 /* update disk order table */
9309 for (du = super->disks; du; du = du->next)
9310 if (du->index >= 0)
9311 set_imsm_ord_tbl_ent(map, du->index, du->index);
9312 for (du = super->missing; du; du = du->next)
9313 if (du->index >= 0) {
9314 set_imsm_ord_tbl_ent(map, du->index, du->index);
9315 mark_missing(super, dv->dev, &du->disk, du->index);
9316 }
9317
9318 return 1;
9319 }
9320
9321 static void imsm_process_update(struct supertype *st,
9322 struct metadata_update *update)
9323 {
9324 /**
9325 * crack open the metadata_update envelope to find the update record
9326 * update can be one of:
9327 * update_reshape_container_disks - all the arrays in the container
9328 * are being reshaped to have more devices. We need to mark
9329 * the arrays for general migration and convert selected spares
9330 * into active devices.
9331 * update_activate_spare - a spare device has replaced a failed
9332 * device in an array, update the disk_ord_tbl. If this disk is
9333 * present in all member arrays then also clear the SPARE_DISK
9334 * flag
9335 * update_create_array
9336 * update_kill_array
9337 * update_rename_array
9338 * update_add_remove_disk
9339 */
9340 struct intel_super *super = st->sb;
9341 struct imsm_super *mpb;
9342 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
9343
9344 /* update requires a larger buf but the allocation failed */
9345 if (super->next_len && !super->next_buf) {
9346 super->next_len = 0;
9347 return;
9348 }
9349
9350 if (super->next_buf) {
9351 memcpy(super->next_buf, super->buf, super->len);
9352 free(super->buf);
9353 super->len = super->next_len;
9354 super->buf = super->next_buf;
9355
9356 super->next_len = 0;
9357 super->next_buf = NULL;
9358 }
9359
9360 mpb = super->anchor;
9361
9362 switch (type) {
9363 case update_general_migration_checkpoint: {
9364 struct intel_dev *id;
9365 struct imsm_update_general_migration_checkpoint *u =
9366 (void *)update->buf;
9367
9368 dprintf("called for update_general_migration_checkpoint\n");
9369
9370 /* find device under general migration */
9371 for (id = super->devlist ; id; id = id->next) {
9372 if (is_gen_migration(id->dev)) {
9373 id->dev->vol.curr_migr_unit =
9374 __cpu_to_le32(u->curr_migr_unit);
9375 super->updates_pending++;
9376 }
9377 }
9378 break;
9379 }
9380 case update_takeover: {
9381 struct imsm_update_takeover *u = (void *)update->buf;
9382 if (apply_takeover_update(u, super, &update->space_list)) {
9383 imsm_update_version_info(super);
9384 super->updates_pending++;
9385 }
9386 break;
9387 }
9388
9389 case update_reshape_container_disks: {
9390 struct imsm_update_reshape *u = (void *)update->buf;
9391 if (apply_reshape_container_disks_update(
9392 u, super, &update->space_list))
9393 super->updates_pending++;
9394 break;
9395 }
9396 case update_reshape_migration: {
9397 struct imsm_update_reshape_migration *u = (void *)update->buf;
9398 if (apply_reshape_migration_update(
9399 u, super, &update->space_list))
9400 super->updates_pending++;
9401 break;
9402 }
9403 case update_size_change: {
9404 struct imsm_update_size_change *u = (void *)update->buf;
9405 if (apply_size_change_update(u, super))
9406 super->updates_pending++;
9407 break;
9408 }
9409 case update_activate_spare: {
9410 struct imsm_update_activate_spare *u = (void *) update->buf;
9411 if (apply_update_activate_spare(u, super, st->arrays))
9412 super->updates_pending++;
9413 break;
9414 }
9415 case update_create_array: {
9416 /* someone wants to create a new array, we need to be aware of
9417 * a few races/collisions:
9418 * 1/ 'Create' called by two separate instances of mdadm
9419 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
9420 * devices that have since been assimilated via
9421 * activate_spare.
9422 * In the event this update can not be carried out mdadm will
9423 * (FIX ME) notice that its update did not take hold.
9424 */
9425 struct imsm_update_create_array *u = (void *) update->buf;
9426 struct intel_dev *dv;
9427 struct imsm_dev *dev;
9428 struct imsm_map *map, *new_map;
9429 unsigned long long start, end;
9430 unsigned long long new_start, new_end;
9431 int i;
9432 struct disk_info *inf;
9433 struct dl *dl;
9434
9435 /* handle racing creates: first come first serve */
9436 if (u->dev_idx < mpb->num_raid_devs) {
9437 dprintf("subarray %d already defined\n", u->dev_idx);
9438 goto create_error;
9439 }
9440
9441 /* check update is next in sequence */
9442 if (u->dev_idx != mpb->num_raid_devs) {
9443 dprintf("can not create array %d expected index %d\n",
9444 u->dev_idx, mpb->num_raid_devs);
9445 goto create_error;
9446 }
9447
9448 new_map = get_imsm_map(&u->dev, MAP_0);
9449 new_start = pba_of_lba0(new_map);
9450 new_end = new_start + blocks_per_member(new_map);
9451 inf = get_disk_info(u);
9452
9453 /* handle activate_spare versus create race:
9454 * check to make sure that overlapping arrays do not include
9455 * overalpping disks
9456 */
9457 for (i = 0; i < mpb->num_raid_devs; i++) {
9458 dev = get_imsm_dev(super, i);
9459 map = get_imsm_map(dev, MAP_0);
9460 start = pba_of_lba0(map);
9461 end = start + blocks_per_member(map);
9462 if ((new_start >= start && new_start <= end) ||
9463 (start >= new_start && start <= new_end))
9464 /* overlap */;
9465 else
9466 continue;
9467
9468 if (disks_overlap(super, i, u)) {
9469 dprintf("arrays overlap\n");
9470 goto create_error;
9471 }
9472 }
9473
9474 /* check that prepare update was successful */
9475 if (!update->space) {
9476 dprintf("prepare update failed\n");
9477 goto create_error;
9478 }
9479
9480 /* check that all disks are still active before committing
9481 * changes. FIXME: could we instead handle this by creating a
9482 * degraded array? That's probably not what the user expects,
9483 * so better to drop this update on the floor.
9484 */
9485 for (i = 0; i < new_map->num_members; i++) {
9486 dl = serial_to_dl(inf[i].serial, super);
9487 if (!dl) {
9488 dprintf("disk disappeared\n");
9489 goto create_error;
9490 }
9491 }
9492
9493 super->updates_pending++;
9494
9495 /* convert spares to members and fixup ord_tbl */
9496 for (i = 0; i < new_map->num_members; i++) {
9497 dl = serial_to_dl(inf[i].serial, super);
9498 if (dl->index == -1) {
9499 dl->index = mpb->num_disks;
9500 mpb->num_disks++;
9501 dl->disk.status |= CONFIGURED_DISK;
9502 dl->disk.status &= ~SPARE_DISK;
9503 }
9504 set_imsm_ord_tbl_ent(new_map, i, dl->index);
9505 }
9506
9507 dv = update->space;
9508 dev = dv->dev;
9509 update->space = NULL;
9510 imsm_copy_dev(dev, &u->dev);
9511 dv->index = u->dev_idx;
9512 dv->next = super->devlist;
9513 super->devlist = dv;
9514 mpb->num_raid_devs++;
9515
9516 imsm_update_version_info(super);
9517 break;
9518 create_error:
9519 /* mdmon knows how to release update->space, but not
9520 * ((struct intel_dev *) update->space)->dev
9521 */
9522 if (update->space) {
9523 dv = update->space;
9524 free(dv->dev);
9525 }
9526 break;
9527 }
9528 case update_kill_array: {
9529 struct imsm_update_kill_array *u = (void *) update->buf;
9530 int victim = u->dev_idx;
9531 struct active_array *a;
9532 struct intel_dev **dp;
9533 struct imsm_dev *dev;
9534
9535 /* sanity check that we are not affecting the uuid of
9536 * active arrays, or deleting an active array
9537 *
9538 * FIXME when immutable ids are available, but note that
9539 * we'll also need to fixup the invalidated/active
9540 * subarray indexes in mdstat
9541 */
9542 for (a = st->arrays; a; a = a->next)
9543 if (a->info.container_member >= victim)
9544 break;
9545 /* by definition if mdmon is running at least one array
9546 * is active in the container, so checking
9547 * mpb->num_raid_devs is just extra paranoia
9548 */
9549 dev = get_imsm_dev(super, victim);
9550 if (a || !dev || mpb->num_raid_devs == 1) {
9551 dprintf("failed to delete subarray-%d\n", victim);
9552 break;
9553 }
9554
9555 for (dp = &super->devlist; *dp;)
9556 if ((*dp)->index == (unsigned)super->current_vol) {
9557 *dp = (*dp)->next;
9558 } else {
9559 if ((*dp)->index > (unsigned)victim)
9560 (*dp)->index--;
9561 dp = &(*dp)->next;
9562 }
9563 mpb->num_raid_devs--;
9564 super->updates_pending++;
9565 break;
9566 }
9567 case update_rename_array: {
9568 struct imsm_update_rename_array *u = (void *) update->buf;
9569 char name[MAX_RAID_SERIAL_LEN+1];
9570 int target = u->dev_idx;
9571 struct active_array *a;
9572 struct imsm_dev *dev;
9573
9574 /* sanity check that we are not affecting the uuid of
9575 * an active array
9576 */
9577 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
9578 name[MAX_RAID_SERIAL_LEN] = '\0';
9579 for (a = st->arrays; a; a = a->next)
9580 if (a->info.container_member == target)
9581 break;
9582 dev = get_imsm_dev(super, u->dev_idx);
9583 if (a || !dev || !check_name(super, name, 1)) {
9584 dprintf("failed to rename subarray-%d\n", target);
9585 break;
9586 }
9587
9588 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
9589 super->updates_pending++;
9590 break;
9591 }
9592 case update_add_remove_disk: {
9593 /* we may be able to repair some arrays if disks are
9594 * being added, check the status of add_remove_disk
9595 * if discs has been added.
9596 */
9597 if (add_remove_disk_update(super)) {
9598 struct active_array *a;
9599
9600 super->updates_pending++;
9601 for (a = st->arrays; a; a = a->next)
9602 a->check_degraded = 1;
9603 }
9604 break;
9605 }
9606 case update_prealloc_badblocks_mem:
9607 break;
9608 case update_rwh_policy: {
9609 struct imsm_update_rwh_policy *u = (void *)update->buf;
9610 int target = u->dev_idx;
9611 struct imsm_dev *dev = get_imsm_dev(super, target);
9612 if (!dev) {
9613 dprintf("could not find subarray-%d\n", target);
9614 break;
9615 }
9616
9617 if (dev->rwh_policy != u->new_policy) {
9618 dev->rwh_policy = u->new_policy;
9619 super->updates_pending++;
9620 }
9621 break;
9622 }
9623 default:
9624 pr_err("error: unsuported process update type:(type: %d)\n", type);
9625 }
9626 }
9627
9628 static struct mdinfo *get_spares_for_grow(struct supertype *st);
9629
9630 static int imsm_prepare_update(struct supertype *st,
9631 struct metadata_update *update)
9632 {
9633 /**
9634 * Allocate space to hold new disk entries, raid-device entries or a new
9635 * mpb if necessary. The manager synchronously waits for updates to
9636 * complete in the monitor, so new mpb buffers allocated here can be
9637 * integrated by the monitor thread without worrying about live pointers
9638 * in the manager thread.
9639 */
9640 enum imsm_update_type type;
9641 struct intel_super *super = st->sb;
9642 unsigned int sector_size = super->sector_size;
9643 struct imsm_super *mpb = super->anchor;
9644 size_t buf_len;
9645 size_t len = 0;
9646
9647 if (update->len < (int)sizeof(type))
9648 return 0;
9649
9650 type = *(enum imsm_update_type *) update->buf;
9651
9652 switch (type) {
9653 case update_general_migration_checkpoint:
9654 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
9655 return 0;
9656 dprintf("called for update_general_migration_checkpoint\n");
9657 break;
9658 case update_takeover: {
9659 struct imsm_update_takeover *u = (void *)update->buf;
9660 if (update->len < (int)sizeof(*u))
9661 return 0;
9662 if (u->direction == R0_TO_R10) {
9663 void **tail = (void **)&update->space_list;
9664 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
9665 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9666 int num_members = map->num_members;
9667 void *space;
9668 int size, i;
9669 /* allocate memory for added disks */
9670 for (i = 0; i < num_members; i++) {
9671 size = sizeof(struct dl);
9672 space = xmalloc(size);
9673 *tail = space;
9674 tail = space;
9675 *tail = NULL;
9676 }
9677 /* allocate memory for new device */
9678 size = sizeof_imsm_dev(super->devlist->dev, 0) +
9679 (num_members * sizeof(__u32));
9680 space = xmalloc(size);
9681 *tail = space;
9682 tail = space;
9683 *tail = NULL;
9684 len = disks_to_mpb_size(num_members * 2);
9685 }
9686
9687 break;
9688 }
9689 case update_reshape_container_disks: {
9690 /* Every raid device in the container is about to
9691 * gain some more devices, and we will enter a
9692 * reconfiguration.
9693 * So each 'imsm_map' will be bigger, and the imsm_vol
9694 * will now hold 2 of them.
9695 * Thus we need new 'struct imsm_dev' allocations sized
9696 * as sizeof_imsm_dev but with more devices in both maps.
9697 */
9698 struct imsm_update_reshape *u = (void *)update->buf;
9699 struct intel_dev *dl;
9700 void **space_tail = (void**)&update->space_list;
9701
9702 if (update->len < (int)sizeof(*u))
9703 return 0;
9704
9705 dprintf("for update_reshape\n");
9706
9707 for (dl = super->devlist; dl; dl = dl->next) {
9708 int size = sizeof_imsm_dev(dl->dev, 1);
9709 void *s;
9710 if (u->new_raid_disks > u->old_raid_disks)
9711 size += sizeof(__u32)*2*
9712 (u->new_raid_disks - u->old_raid_disks);
9713 s = xmalloc(size);
9714 *space_tail = s;
9715 space_tail = s;
9716 *space_tail = NULL;
9717 }
9718
9719 len = disks_to_mpb_size(u->new_raid_disks);
9720 dprintf("New anchor length is %llu\n", (unsigned long long)len);
9721 break;
9722 }
9723 case update_reshape_migration: {
9724 /* for migration level 0->5 we need to add disks
9725 * so the same as for container operation we will copy
9726 * device to the bigger location.
9727 * in memory prepared device and new disk area are prepared
9728 * for usage in process update
9729 */
9730 struct imsm_update_reshape_migration *u = (void *)update->buf;
9731 struct intel_dev *id;
9732 void **space_tail = (void **)&update->space_list;
9733 int size;
9734 void *s;
9735 int current_level = -1;
9736
9737 if (update->len < (int)sizeof(*u))
9738 return 0;
9739
9740 dprintf("for update_reshape\n");
9741
9742 /* add space for bigger array in update
9743 */
9744 for (id = super->devlist; id; id = id->next) {
9745 if (id->index == (unsigned)u->subdev) {
9746 size = sizeof_imsm_dev(id->dev, 1);
9747 if (u->new_raid_disks > u->old_raid_disks)
9748 size += sizeof(__u32)*2*
9749 (u->new_raid_disks - u->old_raid_disks);
9750 s = xmalloc(size);
9751 *space_tail = s;
9752 space_tail = s;
9753 *space_tail = NULL;
9754 break;
9755 }
9756 }
9757 if (update->space_list == NULL)
9758 break;
9759
9760 /* add space for disk in update
9761 */
9762 size = sizeof(struct dl);
9763 s = xmalloc(size);
9764 *space_tail = s;
9765 space_tail = s;
9766 *space_tail = NULL;
9767
9768 /* add spare device to update
9769 */
9770 for (id = super->devlist ; id; id = id->next)
9771 if (id->index == (unsigned)u->subdev) {
9772 struct imsm_dev *dev;
9773 struct imsm_map *map;
9774
9775 dev = get_imsm_dev(super, u->subdev);
9776 map = get_imsm_map(dev, MAP_0);
9777 current_level = map->raid_level;
9778 break;
9779 }
9780 if (u->new_level == 5 && u->new_level != current_level) {
9781 struct mdinfo *spares;
9782
9783 spares = get_spares_for_grow(st);
9784 if (spares) {
9785 struct dl *dl;
9786 struct mdinfo *dev;
9787
9788 dev = spares->devs;
9789 if (dev) {
9790 u->new_disks[0] =
9791 makedev(dev->disk.major,
9792 dev->disk.minor);
9793 dl = get_disk_super(super,
9794 dev->disk.major,
9795 dev->disk.minor);
9796 dl->index = u->old_raid_disks;
9797 dev = dev->next;
9798 }
9799 sysfs_free(spares);
9800 }
9801 }
9802 len = disks_to_mpb_size(u->new_raid_disks);
9803 dprintf("New anchor length is %llu\n", (unsigned long long)len);
9804 break;
9805 }
9806 case update_size_change: {
9807 if (update->len < (int)sizeof(struct imsm_update_size_change))
9808 return 0;
9809 break;
9810 }
9811 case update_activate_spare: {
9812 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
9813 return 0;
9814 break;
9815 }
9816 case update_create_array: {
9817 struct imsm_update_create_array *u = (void *) update->buf;
9818 struct intel_dev *dv;
9819 struct imsm_dev *dev = &u->dev;
9820 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9821 struct dl *dl;
9822 struct disk_info *inf;
9823 int i;
9824 int activate = 0;
9825
9826 if (update->len < (int)sizeof(*u))
9827 return 0;
9828
9829 inf = get_disk_info(u);
9830 len = sizeof_imsm_dev(dev, 1);
9831 /* allocate a new super->devlist entry */
9832 dv = xmalloc(sizeof(*dv));
9833 dv->dev = xmalloc(len);
9834 update->space = dv;
9835
9836 /* count how many spares will be converted to members */
9837 for (i = 0; i < map->num_members; i++) {
9838 dl = serial_to_dl(inf[i].serial, super);
9839 if (!dl) {
9840 /* hmm maybe it failed?, nothing we can do about
9841 * it here
9842 */
9843 continue;
9844 }
9845 if (count_memberships(dl, super) == 0)
9846 activate++;
9847 }
9848 len += activate * sizeof(struct imsm_disk);
9849 break;
9850 }
9851 case update_kill_array: {
9852 if (update->len < (int)sizeof(struct imsm_update_kill_array))
9853 return 0;
9854 break;
9855 }
9856 case update_rename_array: {
9857 if (update->len < (int)sizeof(struct imsm_update_rename_array))
9858 return 0;
9859 break;
9860 }
9861 case update_add_remove_disk:
9862 /* no update->len needed */
9863 break;
9864 case update_prealloc_badblocks_mem:
9865 super->extra_space += sizeof(struct bbm_log) -
9866 get_imsm_bbm_log_size(super->bbm_log);
9867 break;
9868 case update_rwh_policy: {
9869 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
9870 return 0;
9871 break;
9872 }
9873 default:
9874 return 0;
9875 }
9876
9877 /* check if we need a larger metadata buffer */
9878 if (super->next_buf)
9879 buf_len = super->next_len;
9880 else
9881 buf_len = super->len;
9882
9883 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
9884 /* ok we need a larger buf than what is currently allocated
9885 * if this allocation fails process_update will notice that
9886 * ->next_len is set and ->next_buf is NULL
9887 */
9888 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
9889 super->extra_space + len, sector_size);
9890 if (super->next_buf)
9891 free(super->next_buf);
9892
9893 super->next_len = buf_len;
9894 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
9895 memset(super->next_buf, 0, buf_len);
9896 else
9897 super->next_buf = NULL;
9898 }
9899 return 1;
9900 }
9901
9902 /* must be called while manager is quiesced */
9903 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
9904 {
9905 struct imsm_super *mpb = super->anchor;
9906 struct dl *iter;
9907 struct imsm_dev *dev;
9908 struct imsm_map *map;
9909 unsigned int i, j, num_members;
9910 __u32 ord;
9911 struct bbm_log *log = super->bbm_log;
9912
9913 dprintf("deleting device[%d] from imsm_super\n", index);
9914
9915 /* shift all indexes down one */
9916 for (iter = super->disks; iter; iter = iter->next)
9917 if (iter->index > (int)index)
9918 iter->index--;
9919 for (iter = super->missing; iter; iter = iter->next)
9920 if (iter->index > (int)index)
9921 iter->index--;
9922
9923 for (i = 0; i < mpb->num_raid_devs; i++) {
9924 dev = get_imsm_dev(super, i);
9925 map = get_imsm_map(dev, MAP_0);
9926 num_members = map->num_members;
9927 for (j = 0; j < num_members; j++) {
9928 /* update ord entries being careful not to propagate
9929 * ord-flags to the first map
9930 */
9931 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
9932
9933 if (ord_to_idx(ord) <= index)
9934 continue;
9935
9936 map = get_imsm_map(dev, MAP_0);
9937 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
9938 map = get_imsm_map(dev, MAP_1);
9939 if (map)
9940 set_imsm_ord_tbl_ent(map, j, ord - 1);
9941 }
9942 }
9943
9944 for (i = 0; i < log->entry_count; i++) {
9945 struct bbm_log_entry *entry = &log->marked_block_entries[i];
9946
9947 if (entry->disk_ordinal <= index)
9948 continue;
9949 entry->disk_ordinal--;
9950 }
9951
9952 mpb->num_disks--;
9953 super->updates_pending++;
9954 if (*dlp) {
9955 struct dl *dl = *dlp;
9956
9957 *dlp = (*dlp)->next;
9958 __free_imsm_disk(dl);
9959 }
9960 }
9961
9962 static void close_targets(int *targets, int new_disks)
9963 {
9964 int i;
9965
9966 if (!targets)
9967 return;
9968
9969 for (i = 0; i < new_disks; i++) {
9970 if (targets[i] >= 0) {
9971 close(targets[i]);
9972 targets[i] = -1;
9973 }
9974 }
9975 }
9976
9977 static int imsm_get_allowed_degradation(int level, int raid_disks,
9978 struct intel_super *super,
9979 struct imsm_dev *dev)
9980 {
9981 switch (level) {
9982 case 1:
9983 case 10:{
9984 int ret_val = 0;
9985 struct imsm_map *map;
9986 int i;
9987
9988 ret_val = raid_disks/2;
9989 /* check map if all disks pairs not failed
9990 * in both maps
9991 */
9992 map = get_imsm_map(dev, MAP_0);
9993 for (i = 0; i < ret_val; i++) {
9994 int degradation = 0;
9995 if (get_imsm_disk(super, i) == NULL)
9996 degradation++;
9997 if (get_imsm_disk(super, i + 1) == NULL)
9998 degradation++;
9999 if (degradation == 2)
10000 return 0;
10001 }
10002 map = get_imsm_map(dev, MAP_1);
10003 /* if there is no second map
10004 * result can be returned
10005 */
10006 if (map == NULL)
10007 return ret_val;
10008 /* check degradation in second map
10009 */
10010 for (i = 0; i < ret_val; i++) {
10011 int degradation = 0;
10012 if (get_imsm_disk(super, i) == NULL)
10013 degradation++;
10014 if (get_imsm_disk(super, i + 1) == NULL)
10015 degradation++;
10016 if (degradation == 2)
10017 return 0;
10018 }
10019 return ret_val;
10020 }
10021 case 5:
10022 return 1;
10023 case 6:
10024 return 2;
10025 default:
10026 return 0;
10027 }
10028 }
10029
10030 /*******************************************************************************
10031 * Function: open_backup_targets
10032 * Description: Function opens file descriptors for all devices given in
10033 * info->devs
10034 * Parameters:
10035 * info : general array info
10036 * raid_disks : number of disks
10037 * raid_fds : table of device's file descriptors
10038 * super : intel super for raid10 degradation check
10039 * dev : intel device for raid10 degradation check
10040 * Returns:
10041 * 0 : success
10042 * -1 : fail
10043 ******************************************************************************/
10044 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
10045 struct intel_super *super, struct imsm_dev *dev)
10046 {
10047 struct mdinfo *sd;
10048 int i;
10049 int opened = 0;
10050
10051 for (i = 0; i < raid_disks; i++)
10052 raid_fds[i] = -1;
10053
10054 for (sd = info->devs ; sd ; sd = sd->next) {
10055 char *dn;
10056
10057 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
10058 dprintf("disk is faulty!!\n");
10059 continue;
10060 }
10061
10062 if (sd->disk.raid_disk >= raid_disks || sd->disk.raid_disk < 0)
10063 continue;
10064
10065 dn = map_dev(sd->disk.major,
10066 sd->disk.minor, 1);
10067 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
10068 if (raid_fds[sd->disk.raid_disk] < 0) {
10069 pr_err("cannot open component\n");
10070 continue;
10071 }
10072 opened++;
10073 }
10074 /* check if maximum array degradation level is not exceeded
10075 */
10076 if ((raid_disks - opened) >
10077 imsm_get_allowed_degradation(info->new_level, raid_disks,
10078 super, dev)) {
10079 pr_err("Not enough disks can be opened.\n");
10080 close_targets(raid_fds, raid_disks);
10081 return -2;
10082 }
10083 return 0;
10084 }
10085
10086 /*******************************************************************************
10087 * Function: validate_container_imsm
10088 * Description: This routine validates container after assemble,
10089 * eg. if devices in container are under the same controller.
10090 *
10091 * Parameters:
10092 * info : linked list with info about devices used in array
10093 * Returns:
10094 * 1 : HBA mismatch
10095 * 0 : Success
10096 ******************************************************************************/
10097 int validate_container_imsm(struct mdinfo *info)
10098 {
10099 if (check_env("IMSM_NO_PLATFORM"))
10100 return 0;
10101
10102 struct sys_dev *idev;
10103 struct sys_dev *hba = NULL;
10104 struct sys_dev *intel_devices = find_intel_devices();
10105 char *dev_path = devt_to_devpath(makedev(info->disk.major,
10106 info->disk.minor));
10107
10108 for (idev = intel_devices; idev; idev = idev->next) {
10109 if (dev_path && strstr(dev_path, idev->path)) {
10110 hba = idev;
10111 break;
10112 }
10113 }
10114 if (dev_path)
10115 free(dev_path);
10116
10117 if (!hba) {
10118 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10119 devid2kname(makedev(info->disk.major, info->disk.minor)));
10120 return 1;
10121 }
10122
10123 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10124 struct mdinfo *dev;
10125
10126 for (dev = info->next; dev; dev = dev->next) {
10127 dev_path = devt_to_devpath(makedev(dev->disk.major, dev->disk.minor));
10128
10129 struct sys_dev *hba2 = NULL;
10130 for (idev = intel_devices; idev; idev = idev->next) {
10131 if (dev_path && strstr(dev_path, idev->path)) {
10132 hba2 = idev;
10133 break;
10134 }
10135 }
10136 if (dev_path)
10137 free(dev_path);
10138
10139 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10140 get_orom_by_device_id(hba2->dev_id);
10141
10142 if (hba2 && hba->type != hba2->type) {
10143 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10144 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10145 return 1;
10146 }
10147
10148 if (orom != orom2) {
10149 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10150 " This operation is not supported and can lead to data loss.\n");
10151 return 1;
10152 }
10153
10154 if (!orom) {
10155 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10156 " This operation is not supported and can lead to data loss.\n");
10157 return 1;
10158 }
10159 }
10160
10161 return 0;
10162 }
10163
10164 /*******************************************************************************
10165 * Function: imsm_record_badblock
10166 * Description: This routine stores new bad block record in BBM log
10167 *
10168 * Parameters:
10169 * a : array containing a bad block
10170 * slot : disk number containing a bad block
10171 * sector : bad block sector
10172 * length : bad block sectors range
10173 * Returns:
10174 * 1 : Success
10175 * 0 : Error
10176 ******************************************************************************/
10177 static int imsm_record_badblock(struct active_array *a, int slot,
10178 unsigned long long sector, int length)
10179 {
10180 struct intel_super *super = a->container->sb;
10181 int ord;
10182 int ret;
10183
10184 ord = imsm_disk_slot_to_ord(a, slot);
10185 if (ord < 0)
10186 return 0;
10187
10188 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10189 length);
10190 if (ret)
10191 super->updates_pending++;
10192
10193 return ret;
10194 }
10195 /*******************************************************************************
10196 * Function: imsm_clear_badblock
10197 * Description: This routine clears bad block record from BBM log
10198 *
10199 * Parameters:
10200 * a : array containing a bad block
10201 * slot : disk number containing a bad block
10202 * sector : bad block sector
10203 * length : bad block sectors range
10204 * Returns:
10205 * 1 : Success
10206 * 0 : Error
10207 ******************************************************************************/
10208 static int imsm_clear_badblock(struct active_array *a, int slot,
10209 unsigned long long sector, int length)
10210 {
10211 struct intel_super *super = a->container->sb;
10212 int ord;
10213 int ret;
10214
10215 ord = imsm_disk_slot_to_ord(a, slot);
10216 if (ord < 0)
10217 return 0;
10218
10219 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10220 if (ret)
10221 super->updates_pending++;
10222
10223 return ret;
10224 }
10225 /*******************************************************************************
10226 * Function: imsm_get_badblocks
10227 * Description: This routine get list of bad blocks for an array
10228 *
10229 * Parameters:
10230 * a : array
10231 * slot : disk number
10232 * Returns:
10233 * bb : structure containing bad blocks
10234 * NULL : error
10235 ******************************************************************************/
10236 static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10237 {
10238 int inst = a->info.container_member;
10239 struct intel_super *super = a->container->sb;
10240 struct imsm_dev *dev = get_imsm_dev(super, inst);
10241 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10242 int ord;
10243
10244 ord = imsm_disk_slot_to_ord(a, slot);
10245 if (ord < 0)
10246 return NULL;
10247
10248 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
10249 blocks_per_member(map), &super->bb);
10250
10251 return &super->bb;
10252 }
10253 /*******************************************************************************
10254 * Function: examine_badblocks_imsm
10255 * Description: Prints list of bad blocks on a disk to the standard output
10256 *
10257 * Parameters:
10258 * st : metadata handler
10259 * fd : open file descriptor for device
10260 * devname : device name
10261 * Returns:
10262 * 0 : Success
10263 * 1 : Error
10264 ******************************************************************************/
10265 static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10266 {
10267 struct intel_super *super = st->sb;
10268 struct bbm_log *log = super->bbm_log;
10269 struct dl *d = NULL;
10270 int any = 0;
10271
10272 for (d = super->disks; d ; d = d->next) {
10273 if (strcmp(d->devname, devname) == 0)
10274 break;
10275 }
10276
10277 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10278 pr_err("%s doesn't appear to be part of a raid array\n",
10279 devname);
10280 return 1;
10281 }
10282
10283 if (log != NULL) {
10284 unsigned int i;
10285 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10286
10287 for (i = 0; i < log->entry_count; i++) {
10288 if (entry[i].disk_ordinal == d->index) {
10289 unsigned long long sector = __le48_to_cpu(
10290 &entry[i].defective_block_start);
10291 int cnt = entry[i].marked_count + 1;
10292
10293 if (!any) {
10294 printf("Bad-blocks on %s:\n", devname);
10295 any = 1;
10296 }
10297
10298 printf("%20llu for %d sectors\n", sector, cnt);
10299 }
10300 }
10301 }
10302
10303 if (!any)
10304 printf("No bad-blocks list configured on %s\n", devname);
10305
10306 return 0;
10307 }
10308 /*******************************************************************************
10309 * Function: init_migr_record_imsm
10310 * Description: Function inits imsm migration record
10311 * Parameters:
10312 * super : imsm internal array info
10313 * dev : device under migration
10314 * info : general array info to find the smallest device
10315 * Returns:
10316 * none
10317 ******************************************************************************/
10318 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10319 struct mdinfo *info)
10320 {
10321 struct intel_super *super = st->sb;
10322 struct migr_record *migr_rec = super->migr_rec;
10323 int new_data_disks;
10324 unsigned long long dsize, dev_sectors;
10325 long long unsigned min_dev_sectors = -1LLU;
10326 struct mdinfo *sd;
10327 char nm[30];
10328 int fd;
10329 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10330 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
10331 unsigned long long num_migr_units;
10332 unsigned long long array_blocks;
10333
10334 memset(migr_rec, 0, sizeof(struct migr_record));
10335 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10336
10337 /* only ascending reshape supported now */
10338 migr_rec->ascending_migr = __cpu_to_le32(1);
10339
10340 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10341 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10342 migr_rec->dest_depth_per_unit *=
10343 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10344 new_data_disks = imsm_num_data_members(dev, MAP_0);
10345 migr_rec->blocks_per_unit =
10346 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10347 migr_rec->dest_depth_per_unit =
10348 __cpu_to_le32(migr_rec->dest_depth_per_unit);
10349 array_blocks = info->component_size * new_data_disks;
10350 num_migr_units =
10351 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10352
10353 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10354 num_migr_units++;
10355 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
10356
10357 migr_rec->post_migr_vol_cap = dev->size_low;
10358 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10359
10360 /* Find the smallest dev */
10361 for (sd = info->devs ; sd ; sd = sd->next) {
10362 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
10363 fd = dev_open(nm, O_RDONLY);
10364 if (fd < 0)
10365 continue;
10366 get_dev_size(fd, NULL, &dsize);
10367 dev_sectors = dsize / 512;
10368 if (dev_sectors < min_dev_sectors)
10369 min_dev_sectors = dev_sectors;
10370 close(fd);
10371 }
10372 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
10373 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10374
10375 write_imsm_migr_rec(st);
10376
10377 return;
10378 }
10379
10380 /*******************************************************************************
10381 * Function: save_backup_imsm
10382 * Description: Function saves critical data stripes to Migration Copy Area
10383 * and updates the current migration unit status.
10384 * Use restore_stripes() to form a destination stripe,
10385 * and to write it to the Copy Area.
10386 * Parameters:
10387 * st : supertype information
10388 * dev : imsm device that backup is saved for
10389 * info : general array info
10390 * buf : input buffer
10391 * length : length of data to backup (blocks_per_unit)
10392 * Returns:
10393 * 0 : success
10394 *, -1 : fail
10395 ******************************************************************************/
10396 int save_backup_imsm(struct supertype *st,
10397 struct imsm_dev *dev,
10398 struct mdinfo *info,
10399 void *buf,
10400 int length)
10401 {
10402 int rv = -1;
10403 struct intel_super *super = st->sb;
10404 unsigned long long *target_offsets;
10405 int *targets;
10406 int i;
10407 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10408 int new_disks = map_dest->num_members;
10409 int dest_layout = 0;
10410 int dest_chunk;
10411 unsigned long long start;
10412 int data_disks = imsm_num_data_members(dev, MAP_0);
10413
10414 targets = xmalloc(new_disks * sizeof(int));
10415
10416 for (i = 0; i < new_disks; i++)
10417 targets[i] = -1;
10418
10419 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
10420
10421 start = info->reshape_progress * 512;
10422 for (i = 0; i < new_disks; i++) {
10423 target_offsets[i] = (unsigned long long)
10424 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
10425 /* move back copy area adderss, it will be moved forward
10426 * in restore_stripes() using start input variable
10427 */
10428 target_offsets[i] -= start/data_disks;
10429 }
10430
10431 if (open_backup_targets(info, new_disks, targets,
10432 super, dev))
10433 goto abort;
10434
10435 dest_layout = imsm_level_to_layout(map_dest->raid_level);
10436 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
10437
10438 if (restore_stripes(targets, /* list of dest devices */
10439 target_offsets, /* migration record offsets */
10440 new_disks,
10441 dest_chunk,
10442 map_dest->raid_level,
10443 dest_layout,
10444 -1, /* source backup file descriptor */
10445 0, /* input buf offset
10446 * always 0 buf is already offseted */
10447 start,
10448 length,
10449 buf) != 0) {
10450 pr_err("Error restoring stripes\n");
10451 goto abort;
10452 }
10453
10454 rv = 0;
10455
10456 abort:
10457 if (targets) {
10458 close_targets(targets, new_disks);
10459 free(targets);
10460 }
10461 free(target_offsets);
10462
10463 return rv;
10464 }
10465
10466 /*******************************************************************************
10467 * Function: save_checkpoint_imsm
10468 * Description: Function called for current unit status update
10469 * in the migration record. It writes it to disk.
10470 * Parameters:
10471 * super : imsm internal array info
10472 * info : general array info
10473 * Returns:
10474 * 0: success
10475 * 1: failure
10476 * 2: failure, means no valid migration record
10477 * / no general migration in progress /
10478 ******************************************************************************/
10479 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
10480 {
10481 struct intel_super *super = st->sb;
10482 unsigned long long blocks_per_unit;
10483 unsigned long long curr_migr_unit;
10484
10485 if (load_imsm_migr_rec(super, info) != 0) {
10486 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
10487 return 1;
10488 }
10489
10490 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
10491 if (blocks_per_unit == 0) {
10492 dprintf("imsm: no migration in progress.\n");
10493 return 2;
10494 }
10495 curr_migr_unit = info->reshape_progress / blocks_per_unit;
10496 /* check if array is alligned to copy area
10497 * if it is not alligned, add one to current migration unit value
10498 * this can happend on array reshape finish only
10499 */
10500 if (info->reshape_progress % blocks_per_unit)
10501 curr_migr_unit++;
10502
10503 super->migr_rec->curr_migr_unit =
10504 __cpu_to_le32(curr_migr_unit);
10505 super->migr_rec->rec_status = __cpu_to_le32(state);
10506 super->migr_rec->dest_1st_member_lba =
10507 __cpu_to_le32(curr_migr_unit *
10508 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
10509 if (write_imsm_migr_rec(st) < 0) {
10510 dprintf("imsm: Cannot write migration record outside backup area\n");
10511 return 1;
10512 }
10513
10514 return 0;
10515 }
10516
10517 /*******************************************************************************
10518 * Function: recover_backup_imsm
10519 * Description: Function recovers critical data from the Migration Copy Area
10520 * while assembling an array.
10521 * Parameters:
10522 * super : imsm internal array info
10523 * info : general array info
10524 * Returns:
10525 * 0 : success (or there is no data to recover)
10526 * 1 : fail
10527 ******************************************************************************/
10528 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
10529 {
10530 struct intel_super *super = st->sb;
10531 struct migr_record *migr_rec = super->migr_rec;
10532 struct imsm_map *map_dest;
10533 struct intel_dev *id = NULL;
10534 unsigned long long read_offset;
10535 unsigned long long write_offset;
10536 unsigned unit_len;
10537 int *targets = NULL;
10538 int new_disks, i, err;
10539 char *buf = NULL;
10540 int retval = 1;
10541 unsigned int sector_size = super->sector_size;
10542 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
10543 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
10544 char buffer[20];
10545 int skipped_disks = 0;
10546
10547 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
10548 if (err < 1)
10549 return 1;
10550
10551 /* recover data only during assemblation */
10552 if (strncmp(buffer, "inactive", 8) != 0)
10553 return 0;
10554 /* no data to recover */
10555 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
10556 return 0;
10557 if (curr_migr_unit >= num_migr_units)
10558 return 1;
10559
10560 /* find device during reshape */
10561 for (id = super->devlist; id; id = id->next)
10562 if (is_gen_migration(id->dev))
10563 break;
10564 if (id == NULL)
10565 return 1;
10566
10567 map_dest = get_imsm_map(id->dev, MAP_0);
10568 new_disks = map_dest->num_members;
10569
10570 read_offset = (unsigned long long)
10571 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
10572
10573 write_offset = ((unsigned long long)
10574 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
10575 pba_of_lba0(map_dest)) * 512;
10576
10577 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10578 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
10579 goto abort;
10580 targets = xcalloc(new_disks, sizeof(int));
10581
10582 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
10583 pr_err("Cannot open some devices belonging to array.\n");
10584 goto abort;
10585 }
10586
10587 for (i = 0; i < new_disks; i++) {
10588 if (targets[i] < 0) {
10589 skipped_disks++;
10590 continue;
10591 }
10592 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
10593 pr_err("Cannot seek to block: %s\n",
10594 strerror(errno));
10595 skipped_disks++;
10596 continue;
10597 }
10598 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
10599 pr_err("Cannot read copy area block: %s\n",
10600 strerror(errno));
10601 skipped_disks++;
10602 continue;
10603 }
10604 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
10605 pr_err("Cannot seek to block: %s\n",
10606 strerror(errno));
10607 skipped_disks++;
10608 continue;
10609 }
10610 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
10611 pr_err("Cannot restore block: %s\n",
10612 strerror(errno));
10613 skipped_disks++;
10614 continue;
10615 }
10616 }
10617
10618 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
10619 new_disks,
10620 super,
10621 id->dev)) {
10622 pr_err("Cannot restore data from backup. Too many failed disks\n");
10623 goto abort;
10624 }
10625
10626 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
10627 /* ignore error == 2, this can mean end of reshape here
10628 */
10629 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
10630 } else
10631 retval = 0;
10632
10633 abort:
10634 if (targets) {
10635 for (i = 0; i < new_disks; i++)
10636 if (targets[i])
10637 close(targets[i]);
10638 free(targets);
10639 }
10640 free(buf);
10641 return retval;
10642 }
10643
10644 static char disk_by_path[] = "/dev/disk/by-path/";
10645
10646 static const char *imsm_get_disk_controller_domain(const char *path)
10647 {
10648 char disk_path[PATH_MAX];
10649 char *drv=NULL;
10650 struct stat st;
10651
10652 strcpy(disk_path, disk_by_path);
10653 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
10654 if (stat(disk_path, &st) == 0) {
10655 struct sys_dev* hba;
10656 char *path;
10657
10658 path = devt_to_devpath(st.st_rdev);
10659 if (path == NULL)
10660 return "unknown";
10661 hba = find_disk_attached_hba(-1, path);
10662 if (hba && hba->type == SYS_DEV_SAS)
10663 drv = "isci";
10664 else if (hba && hba->type == SYS_DEV_SATA)
10665 drv = "ahci";
10666 else
10667 drv = "unknown";
10668 dprintf("path: %s hba: %s attached: %s\n",
10669 path, (hba) ? hba->path : "NULL", drv);
10670 free(path);
10671 }
10672 return drv;
10673 }
10674
10675 static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
10676 {
10677 static char devnm[32];
10678 char subdev_name[20];
10679 struct mdstat_ent *mdstat;
10680
10681 sprintf(subdev_name, "%d", subdev);
10682 mdstat = mdstat_by_subdev(subdev_name, container);
10683 if (!mdstat)
10684 return NULL;
10685
10686 strcpy(devnm, mdstat->devnm);
10687 free_mdstat(mdstat);
10688 return devnm;
10689 }
10690
10691 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
10692 struct geo_params *geo,
10693 int *old_raid_disks,
10694 int direction)
10695 {
10696 /* currently we only support increasing the number of devices
10697 * for a container. This increases the number of device for each
10698 * member array. They must all be RAID0 or RAID5.
10699 */
10700 int ret_val = 0;
10701 struct mdinfo *info, *member;
10702 int devices_that_can_grow = 0;
10703
10704 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
10705
10706 if (geo->size > 0 ||
10707 geo->level != UnSet ||
10708 geo->layout != UnSet ||
10709 geo->chunksize != 0 ||
10710 geo->raid_disks == UnSet) {
10711 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
10712 return ret_val;
10713 }
10714
10715 if (direction == ROLLBACK_METADATA_CHANGES) {
10716 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
10717 return ret_val;
10718 }
10719
10720 info = container_content_imsm(st, NULL);
10721 for (member = info; member; member = member->next) {
10722 char *result;
10723
10724 dprintf("imsm: checking device_num: %i\n",
10725 member->container_member);
10726
10727 if (geo->raid_disks <= member->array.raid_disks) {
10728 /* we work on container for Online Capacity Expansion
10729 * only so raid_disks has to grow
10730 */
10731 dprintf("imsm: for container operation raid disks increase is required\n");
10732 break;
10733 }
10734
10735 if (info->array.level != 0 && info->array.level != 5) {
10736 /* we cannot use this container with other raid level
10737 */
10738 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
10739 info->array.level);
10740 break;
10741 } else {
10742 /* check for platform support
10743 * for this raid level configuration
10744 */
10745 struct intel_super *super = st->sb;
10746 if (!is_raid_level_supported(super->orom,
10747 member->array.level,
10748 geo->raid_disks)) {
10749 dprintf("platform does not support raid%d with %d disk%s\n",
10750 info->array.level,
10751 geo->raid_disks,
10752 geo->raid_disks > 1 ? "s" : "");
10753 break;
10754 }
10755 /* check if component size is aligned to chunk size
10756 */
10757 if (info->component_size %
10758 (info->array.chunk_size/512)) {
10759 dprintf("Component size is not aligned to chunk size\n");
10760 break;
10761 }
10762 }
10763
10764 if (*old_raid_disks &&
10765 info->array.raid_disks != *old_raid_disks)
10766 break;
10767 *old_raid_disks = info->array.raid_disks;
10768
10769 /* All raid5 and raid0 volumes in container
10770 * have to be ready for Online Capacity Expansion
10771 * so they need to be assembled. We have already
10772 * checked that no recovery etc is happening.
10773 */
10774 result = imsm_find_array_devnm_by_subdev(member->container_member,
10775 st->container_devnm);
10776 if (result == NULL) {
10777 dprintf("imsm: cannot find array\n");
10778 break;
10779 }
10780 devices_that_can_grow++;
10781 }
10782 sysfs_free(info);
10783 if (!member && devices_that_can_grow)
10784 ret_val = 1;
10785
10786 if (ret_val)
10787 dprintf("Container operation allowed\n");
10788 else
10789 dprintf("Error: %i\n", ret_val);
10790
10791 return ret_val;
10792 }
10793
10794 /* Function: get_spares_for_grow
10795 * Description: Allocates memory and creates list of spare devices
10796 * avaliable in container. Checks if spare drive size is acceptable.
10797 * Parameters: Pointer to the supertype structure
10798 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
10799 * NULL if fail
10800 */
10801 static struct mdinfo *get_spares_for_grow(struct supertype *st)
10802 {
10803 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
10804 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
10805 }
10806
10807 /******************************************************************************
10808 * function: imsm_create_metadata_update_for_reshape
10809 * Function creates update for whole IMSM container.
10810 *
10811 ******************************************************************************/
10812 static int imsm_create_metadata_update_for_reshape(
10813 struct supertype *st,
10814 struct geo_params *geo,
10815 int old_raid_disks,
10816 struct imsm_update_reshape **updatep)
10817 {
10818 struct intel_super *super = st->sb;
10819 struct imsm_super *mpb = super->anchor;
10820 int update_memory_size;
10821 struct imsm_update_reshape *u;
10822 struct mdinfo *spares;
10823 int i;
10824 int delta_disks;
10825 struct mdinfo *dev;
10826
10827 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
10828
10829 delta_disks = geo->raid_disks - old_raid_disks;
10830
10831 /* size of all update data without anchor */
10832 update_memory_size = sizeof(struct imsm_update_reshape);
10833
10834 /* now add space for spare disks that we need to add. */
10835 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
10836
10837 u = xcalloc(1, update_memory_size);
10838 u->type = update_reshape_container_disks;
10839 u->old_raid_disks = old_raid_disks;
10840 u->new_raid_disks = geo->raid_disks;
10841
10842 /* now get spare disks list
10843 */
10844 spares = get_spares_for_grow(st);
10845
10846 if (spares == NULL
10847 || delta_disks > spares->array.spare_disks) {
10848 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
10849 i = -1;
10850 goto abort;
10851 }
10852
10853 /* we have got spares
10854 * update disk list in imsm_disk list table in anchor
10855 */
10856 dprintf("imsm: %i spares are available.\n\n",
10857 spares->array.spare_disks);
10858
10859 dev = spares->devs;
10860 for (i = 0; i < delta_disks; i++) {
10861 struct dl *dl;
10862
10863 if (dev == NULL)
10864 break;
10865 u->new_disks[i] = makedev(dev->disk.major,
10866 dev->disk.minor);
10867 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
10868 dl->index = mpb->num_disks;
10869 mpb->num_disks++;
10870 dev = dev->next;
10871 }
10872
10873 abort:
10874 /* free spares
10875 */
10876 sysfs_free(spares);
10877
10878 dprintf("imsm: reshape update preparation :");
10879 if (i == delta_disks) {
10880 dprintf_cont(" OK\n");
10881 *updatep = u;
10882 return update_memory_size;
10883 }
10884 free(u);
10885 dprintf_cont(" Error\n");
10886
10887 return 0;
10888 }
10889
10890 /******************************************************************************
10891 * function: imsm_create_metadata_update_for_size_change()
10892 * Creates update for IMSM array for array size change.
10893 *
10894 ******************************************************************************/
10895 static int imsm_create_metadata_update_for_size_change(
10896 struct supertype *st,
10897 struct geo_params *geo,
10898 struct imsm_update_size_change **updatep)
10899 {
10900 struct intel_super *super = st->sb;
10901 int update_memory_size;
10902 struct imsm_update_size_change *u;
10903
10904 dprintf("(enter) New size = %llu\n", geo->size);
10905
10906 /* size of all update data without anchor */
10907 update_memory_size = sizeof(struct imsm_update_size_change);
10908
10909 u = xcalloc(1, update_memory_size);
10910 u->type = update_size_change;
10911 u->subdev = super->current_vol;
10912 u->new_size = geo->size;
10913
10914 dprintf("imsm: reshape update preparation : OK\n");
10915 *updatep = u;
10916
10917 return update_memory_size;
10918 }
10919
10920 /******************************************************************************
10921 * function: imsm_create_metadata_update_for_migration()
10922 * Creates update for IMSM array.
10923 *
10924 ******************************************************************************/
10925 static int imsm_create_metadata_update_for_migration(
10926 struct supertype *st,
10927 struct geo_params *geo,
10928 struct imsm_update_reshape_migration **updatep)
10929 {
10930 struct intel_super *super = st->sb;
10931 int update_memory_size;
10932 struct imsm_update_reshape_migration *u;
10933 struct imsm_dev *dev;
10934 int previous_level = -1;
10935
10936 dprintf("(enter) New Level = %i\n", geo->level);
10937
10938 /* size of all update data without anchor */
10939 update_memory_size = sizeof(struct imsm_update_reshape_migration);
10940
10941 u = xcalloc(1, update_memory_size);
10942 u->type = update_reshape_migration;
10943 u->subdev = super->current_vol;
10944 u->new_level = geo->level;
10945 u->new_layout = geo->layout;
10946 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
10947 u->new_disks[0] = -1;
10948 u->new_chunksize = -1;
10949
10950 dev = get_imsm_dev(super, u->subdev);
10951 if (dev) {
10952 struct imsm_map *map;
10953
10954 map = get_imsm_map(dev, MAP_0);
10955 if (map) {
10956 int current_chunk_size =
10957 __le16_to_cpu(map->blocks_per_strip) / 2;
10958
10959 if (geo->chunksize != current_chunk_size) {
10960 u->new_chunksize = geo->chunksize / 1024;
10961 dprintf("imsm: chunk size change from %i to %i\n",
10962 current_chunk_size, u->new_chunksize);
10963 }
10964 previous_level = map->raid_level;
10965 }
10966 }
10967 if (geo->level == 5 && previous_level == 0) {
10968 struct mdinfo *spares = NULL;
10969
10970 u->new_raid_disks++;
10971 spares = get_spares_for_grow(st);
10972 if (spares == NULL || spares->array.spare_disks < 1) {
10973 free(u);
10974 sysfs_free(spares);
10975 update_memory_size = 0;
10976 pr_err("cannot get spare device for requested migration\n");
10977 return 0;
10978 }
10979 sysfs_free(spares);
10980 }
10981 dprintf("imsm: reshape update preparation : OK\n");
10982 *updatep = u;
10983
10984 return update_memory_size;
10985 }
10986
10987 static void imsm_update_metadata_locally(struct supertype *st,
10988 void *buf, int len)
10989 {
10990 struct metadata_update mu;
10991
10992 mu.buf = buf;
10993 mu.len = len;
10994 mu.space = NULL;
10995 mu.space_list = NULL;
10996 mu.next = NULL;
10997 if (imsm_prepare_update(st, &mu))
10998 imsm_process_update(st, &mu);
10999
11000 while (mu.space_list) {
11001 void **space = mu.space_list;
11002 mu.space_list = *space;
11003 free(space);
11004 }
11005 }
11006
11007 /***************************************************************************
11008 * Function: imsm_analyze_change
11009 * Description: Function analyze change for single volume
11010 * and validate if transition is supported
11011 * Parameters: Geometry parameters, supertype structure,
11012 * metadata change direction (apply/rollback)
11013 * Returns: Operation type code on success, -1 if fail
11014 ****************************************************************************/
11015 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
11016 struct geo_params *geo,
11017 int direction)
11018 {
11019 struct mdinfo info;
11020 int change = -1;
11021 int check_devs = 0;
11022 int chunk;
11023 /* number of added/removed disks in operation result */
11024 int devNumChange = 0;
11025 /* imsm compatible layout value for array geometry verification */
11026 int imsm_layout = -1;
11027 int data_disks;
11028 struct imsm_dev *dev;
11029 struct intel_super *super;
11030 unsigned long long current_size;
11031 unsigned long long free_size;
11032 unsigned long long max_size;
11033 int rv;
11034
11035 getinfo_super_imsm_volume(st, &info, NULL);
11036 if (geo->level != info.array.level && geo->level >= 0 &&
11037 geo->level != UnSet) {
11038 switch (info.array.level) {
11039 case 0:
11040 if (geo->level == 5) {
11041 change = CH_MIGRATION;
11042 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
11043 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
11044 change = -1;
11045 goto analyse_change_exit;
11046 }
11047 imsm_layout = geo->layout;
11048 check_devs = 1;
11049 devNumChange = 1; /* parity disk added */
11050 } else if (geo->level == 10) {
11051 change = CH_TAKEOVER;
11052 check_devs = 1;
11053 devNumChange = 2; /* two mirrors added */
11054 imsm_layout = 0x102; /* imsm supported layout */
11055 }
11056 break;
11057 case 1:
11058 case 10:
11059 if (geo->level == 0) {
11060 change = CH_TAKEOVER;
11061 check_devs = 1;
11062 devNumChange = -(geo->raid_disks/2);
11063 imsm_layout = 0; /* imsm raid0 layout */
11064 }
11065 break;
11066 }
11067 if (change == -1) {
11068 pr_err("Error. Level Migration from %d to %d not supported!\n",
11069 info.array.level, geo->level);
11070 goto analyse_change_exit;
11071 }
11072 } else
11073 geo->level = info.array.level;
11074
11075 if (geo->layout != info.array.layout &&
11076 (geo->layout != UnSet && geo->layout != -1)) {
11077 change = CH_MIGRATION;
11078 if (info.array.layout == 0 && info.array.level == 5 &&
11079 geo->layout == 5) {
11080 /* reshape 5 -> 4 */
11081 } else if (info.array.layout == 5 && info.array.level == 5 &&
11082 geo->layout == 0) {
11083 /* reshape 4 -> 5 */
11084 geo->layout = 0;
11085 geo->level = 5;
11086 } else {
11087 pr_err("Error. Layout Migration from %d to %d not supported!\n",
11088 info.array.layout, geo->layout);
11089 change = -1;
11090 goto analyse_change_exit;
11091 }
11092 } else {
11093 geo->layout = info.array.layout;
11094 if (imsm_layout == -1)
11095 imsm_layout = info.array.layout;
11096 }
11097
11098 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11099 geo->chunksize != info.array.chunk_size) {
11100 if (info.array.level == 10) {
11101 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11102 change = -1;
11103 goto analyse_change_exit;
11104 } else if (info.component_size % (geo->chunksize/512)) {
11105 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11106 geo->chunksize/1024, info.component_size/2);
11107 change = -1;
11108 goto analyse_change_exit;
11109 }
11110 change = CH_MIGRATION;
11111 } else {
11112 geo->chunksize = info.array.chunk_size;
11113 }
11114
11115 chunk = geo->chunksize / 1024;
11116
11117 super = st->sb;
11118 dev = get_imsm_dev(super, super->current_vol);
11119 data_disks = imsm_num_data_members(dev , MAP_0);
11120 /* compute current size per disk member
11121 */
11122 current_size = info.custom_array_size / data_disks;
11123
11124 if (geo->size > 0 && geo->size != MAX_SIZE) {
11125 /* align component size
11126 */
11127 geo->size = imsm_component_size_aligment_check(
11128 get_imsm_raid_level(dev->vol.map),
11129 chunk * 1024, super->sector_size,
11130 geo->size * 2);
11131 if (geo->size == 0) {
11132 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is 0).\n",
11133 current_size);
11134 goto analyse_change_exit;
11135 }
11136 }
11137
11138 if (current_size != geo->size && geo->size > 0) {
11139 if (change != -1) {
11140 pr_err("Error. Size change should be the only one at a time.\n");
11141 change = -1;
11142 goto analyse_change_exit;
11143 }
11144 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
11145 pr_err("Error. The last volume in container can be expanded only (%i/%s).\n",
11146 super->current_vol, st->devnm);
11147 goto analyse_change_exit;
11148 }
11149 /* check the maximum available size
11150 */
11151 rv = imsm_get_free_size(st, dev->vol.map->num_members,
11152 0, chunk, &free_size);
11153 if (rv == 0)
11154 /* Cannot find maximum available space
11155 */
11156 max_size = 0;
11157 else {
11158 max_size = free_size + current_size;
11159 /* align component size
11160 */
11161 max_size = imsm_component_size_aligment_check(
11162 get_imsm_raid_level(dev->vol.map),
11163 chunk * 1024, super->sector_size,
11164 max_size);
11165 }
11166 if (geo->size == MAX_SIZE) {
11167 /* requested size change to the maximum available size
11168 */
11169 if (max_size == 0) {
11170 pr_err("Error. Cannot find maximum available space.\n");
11171 change = -1;
11172 goto analyse_change_exit;
11173 } else
11174 geo->size = max_size;
11175 }
11176
11177 if (direction == ROLLBACK_METADATA_CHANGES) {
11178 /* accept size for rollback only
11179 */
11180 } else {
11181 /* round size due to metadata compatibility
11182 */
11183 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
11184 << SECT_PER_MB_SHIFT;
11185 dprintf("Prepare update for size change to %llu\n",
11186 geo->size );
11187 if (current_size >= geo->size) {
11188 pr_err("Error. Size expansion is supported only (current size is %llu, requested size /rounded/ is %llu).\n",
11189 current_size, geo->size);
11190 goto analyse_change_exit;
11191 }
11192 if (max_size && geo->size > max_size) {
11193 pr_err("Error. Requested size is larger than maximum available size (maximum available size is %llu, requested size /rounded/ is %llu).\n",
11194 max_size, geo->size);
11195 goto analyse_change_exit;
11196 }
11197 }
11198 geo->size *= data_disks;
11199 geo->raid_disks = dev->vol.map->num_members;
11200 change = CH_ARRAY_SIZE;
11201 }
11202 if (!validate_geometry_imsm(st,
11203 geo->level,
11204 imsm_layout,
11205 geo->raid_disks + devNumChange,
11206 &chunk,
11207 geo->size, INVALID_SECTORS,
11208 0, 0, info.consistency_policy, 1))
11209 change = -1;
11210
11211 if (check_devs) {
11212 struct intel_super *super = st->sb;
11213 struct imsm_super *mpb = super->anchor;
11214
11215 if (mpb->num_raid_devs > 1) {
11216 pr_err("Error. Cannot perform operation on %s- for this operation it MUST be single array in container\n",
11217 geo->dev_name);
11218 change = -1;
11219 }
11220 }
11221
11222 analyse_change_exit:
11223 if (direction == ROLLBACK_METADATA_CHANGES &&
11224 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
11225 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
11226 change = -1;
11227 }
11228 return change;
11229 }
11230
11231 int imsm_takeover(struct supertype *st, struct geo_params *geo)
11232 {
11233 struct intel_super *super = st->sb;
11234 struct imsm_update_takeover *u;
11235
11236 u = xmalloc(sizeof(struct imsm_update_takeover));
11237
11238 u->type = update_takeover;
11239 u->subarray = super->current_vol;
11240
11241 /* 10->0 transition */
11242 if (geo->level == 0)
11243 u->direction = R10_TO_R0;
11244
11245 /* 0->10 transition */
11246 if (geo->level == 10)
11247 u->direction = R0_TO_R10;
11248
11249 /* update metadata locally */
11250 imsm_update_metadata_locally(st, u,
11251 sizeof(struct imsm_update_takeover));
11252 /* and possibly remotely */
11253 if (st->update_tail)
11254 append_metadata_update(st, u,
11255 sizeof(struct imsm_update_takeover));
11256 else
11257 free(u);
11258
11259 return 0;
11260 }
11261
11262 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11263 int level,
11264 int layout, int chunksize, int raid_disks,
11265 int delta_disks, char *backup, char *dev,
11266 int direction, int verbose)
11267 {
11268 int ret_val = 1;
11269 struct geo_params geo;
11270
11271 dprintf("(enter)\n");
11272
11273 memset(&geo, 0, sizeof(struct geo_params));
11274
11275 geo.dev_name = dev;
11276 strcpy(geo.devnm, st->devnm);
11277 geo.size = size;
11278 geo.level = level;
11279 geo.layout = layout;
11280 geo.chunksize = chunksize;
11281 geo.raid_disks = raid_disks;
11282 if (delta_disks != UnSet)
11283 geo.raid_disks += delta_disks;
11284
11285 dprintf("for level : %i\n", geo.level);
11286 dprintf("for raid_disks : %i\n", geo.raid_disks);
11287
11288 if (experimental() == 0)
11289 return ret_val;
11290
11291 if (strcmp(st->container_devnm, st->devnm) == 0) {
11292 /* On container level we can only increase number of devices. */
11293 dprintf("imsm: info: Container operation\n");
11294 int old_raid_disks = 0;
11295
11296 if (imsm_reshape_is_allowed_on_container(
11297 st, &geo, &old_raid_disks, direction)) {
11298 struct imsm_update_reshape *u = NULL;
11299 int len;
11300
11301 len = imsm_create_metadata_update_for_reshape(
11302 st, &geo, old_raid_disks, &u);
11303
11304 if (len <= 0) {
11305 dprintf("imsm: Cannot prepare update\n");
11306 goto exit_imsm_reshape_super;
11307 }
11308
11309 ret_val = 0;
11310 /* update metadata locally */
11311 imsm_update_metadata_locally(st, u, len);
11312 /* and possibly remotely */
11313 if (st->update_tail)
11314 append_metadata_update(st, u, len);
11315 else
11316 free(u);
11317
11318 } else {
11319 pr_err("(imsm) Operation is not allowed on this container\n");
11320 }
11321 } else {
11322 /* On volume level we support following operations
11323 * - takeover: raid10 -> raid0; raid0 -> raid10
11324 * - chunk size migration
11325 * - migration: raid5 -> raid0; raid0 -> raid5
11326 */
11327 struct intel_super *super = st->sb;
11328 struct intel_dev *dev = super->devlist;
11329 int change;
11330 dprintf("imsm: info: Volume operation\n");
11331 /* find requested device */
11332 while (dev) {
11333 char *devnm =
11334 imsm_find_array_devnm_by_subdev(
11335 dev->index, st->container_devnm);
11336 if (devnm && strcmp(devnm, geo.devnm) == 0)
11337 break;
11338 dev = dev->next;
11339 }
11340 if (dev == NULL) {
11341 pr_err("Cannot find %s (%s) subarray\n",
11342 geo.dev_name, geo.devnm);
11343 goto exit_imsm_reshape_super;
11344 }
11345 super->current_vol = dev->index;
11346 change = imsm_analyze_change(st, &geo, direction);
11347 switch (change) {
11348 case CH_TAKEOVER:
11349 ret_val = imsm_takeover(st, &geo);
11350 break;
11351 case CH_MIGRATION: {
11352 struct imsm_update_reshape_migration *u = NULL;
11353 int len =
11354 imsm_create_metadata_update_for_migration(
11355 st, &geo, &u);
11356 if (len < 1) {
11357 dprintf("imsm: Cannot prepare update\n");
11358 break;
11359 }
11360 ret_val = 0;
11361 /* update metadata locally */
11362 imsm_update_metadata_locally(st, u, len);
11363 /* and possibly remotely */
11364 if (st->update_tail)
11365 append_metadata_update(st, u, len);
11366 else
11367 free(u);
11368 }
11369 break;
11370 case CH_ARRAY_SIZE: {
11371 struct imsm_update_size_change *u = NULL;
11372 int len =
11373 imsm_create_metadata_update_for_size_change(
11374 st, &geo, &u);
11375 if (len < 1) {
11376 dprintf("imsm: Cannot prepare update\n");
11377 break;
11378 }
11379 ret_val = 0;
11380 /* update metadata locally */
11381 imsm_update_metadata_locally(st, u, len);
11382 /* and possibly remotely */
11383 if (st->update_tail)
11384 append_metadata_update(st, u, len);
11385 else
11386 free(u);
11387 }
11388 break;
11389 default:
11390 ret_val = 1;
11391 }
11392 }
11393
11394 exit_imsm_reshape_super:
11395 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
11396 return ret_val;
11397 }
11398
11399 #define COMPLETED_OK 0
11400 #define COMPLETED_NONE 1
11401 #define COMPLETED_DELAYED 2
11402
11403 static int read_completed(int fd, unsigned long long *val)
11404 {
11405 int ret;
11406 char buf[50];
11407
11408 ret = sysfs_fd_get_str(fd, buf, 50);
11409 if (ret < 0)
11410 return ret;
11411
11412 ret = COMPLETED_OK;
11413 if (strncmp(buf, "none", 4) == 0) {
11414 ret = COMPLETED_NONE;
11415 } else if (strncmp(buf, "delayed", 7) == 0) {
11416 ret = COMPLETED_DELAYED;
11417 } else {
11418 char *ep;
11419 *val = strtoull(buf, &ep, 0);
11420 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
11421 ret = -1;
11422 }
11423 return ret;
11424 }
11425
11426 /*******************************************************************************
11427 * Function: wait_for_reshape_imsm
11428 * Description: Function writes new sync_max value and waits until
11429 * reshape process reach new position
11430 * Parameters:
11431 * sra : general array info
11432 * ndata : number of disks in new array's layout
11433 * Returns:
11434 * 0 : success,
11435 * 1 : there is no reshape in progress,
11436 * -1 : fail
11437 ******************************************************************************/
11438 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
11439 {
11440 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
11441 int retry = 3;
11442 unsigned long long completed;
11443 /* to_complete : new sync_max position */
11444 unsigned long long to_complete = sra->reshape_progress;
11445 unsigned long long position_to_set = to_complete / ndata;
11446
11447 if (fd < 0) {
11448 dprintf("cannot open reshape_position\n");
11449 return 1;
11450 }
11451
11452 do {
11453 if (sysfs_fd_get_ll(fd, &completed) < 0) {
11454 if (!retry) {
11455 dprintf("cannot read reshape_position (no reshape in progres)\n");
11456 close(fd);
11457 return 1;
11458 }
11459 usleep(30000);
11460 } else
11461 break;
11462 } while (retry--);
11463
11464 if (completed > position_to_set) {
11465 dprintf("wrong next position to set %llu (%llu)\n",
11466 to_complete, position_to_set);
11467 close(fd);
11468 return -1;
11469 }
11470 dprintf("Position set: %llu\n", position_to_set);
11471 if (sysfs_set_num(sra, NULL, "sync_max",
11472 position_to_set) != 0) {
11473 dprintf("cannot set reshape position to %llu\n",
11474 position_to_set);
11475 close(fd);
11476 return -1;
11477 }
11478
11479 do {
11480 int rc;
11481 char action[20];
11482 int timeout = 3000;
11483
11484 sysfs_wait(fd, &timeout);
11485 if (sysfs_get_str(sra, NULL, "sync_action",
11486 action, 20) > 0 &&
11487 strncmp(action, "reshape", 7) != 0) {
11488 if (strncmp(action, "idle", 4) == 0)
11489 break;
11490 close(fd);
11491 return -1;
11492 }
11493
11494 rc = read_completed(fd, &completed);
11495 if (rc < 0) {
11496 dprintf("cannot read reshape_position (in loop)\n");
11497 close(fd);
11498 return 1;
11499 } else if (rc == COMPLETED_NONE)
11500 break;
11501 } while (completed < position_to_set);
11502
11503 close(fd);
11504 return 0;
11505 }
11506
11507 /*******************************************************************************
11508 * Function: check_degradation_change
11509 * Description: Check that array hasn't become failed.
11510 * Parameters:
11511 * info : for sysfs access
11512 * sources : source disks descriptors
11513 * degraded: previous degradation level
11514 * Returns:
11515 * degradation level
11516 ******************************************************************************/
11517 int check_degradation_change(struct mdinfo *info,
11518 int *sources,
11519 int degraded)
11520 {
11521 unsigned long long new_degraded;
11522 int rv;
11523
11524 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
11525 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
11526 /* check each device to ensure it is still working */
11527 struct mdinfo *sd;
11528 new_degraded = 0;
11529 for (sd = info->devs ; sd ; sd = sd->next) {
11530 if (sd->disk.state & (1<<MD_DISK_FAULTY))
11531 continue;
11532 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
11533 char sbuf[100];
11534
11535 if (sysfs_get_str(info,
11536 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
11537 strstr(sbuf, "faulty") ||
11538 strstr(sbuf, "in_sync") == NULL) {
11539 /* this device is dead */
11540 sd->disk.state = (1<<MD_DISK_FAULTY);
11541 if (sd->disk.raid_disk >= 0 &&
11542 sources[sd->disk.raid_disk] >= 0) {
11543 close(sources[
11544 sd->disk.raid_disk]);
11545 sources[sd->disk.raid_disk] =
11546 -1;
11547 }
11548 new_degraded++;
11549 }
11550 }
11551 }
11552 }
11553
11554 return new_degraded;
11555 }
11556
11557 /*******************************************************************************
11558 * Function: imsm_manage_reshape
11559 * Description: Function finds array under reshape and it manages reshape
11560 * process. It creates stripes backups (if required) and sets
11561 * checkpoints.
11562 * Parameters:
11563 * afd : Backup handle (nattive) - not used
11564 * sra : general array info
11565 * reshape : reshape parameters - not used
11566 * st : supertype structure
11567 * blocks : size of critical section [blocks]
11568 * fds : table of source device descriptor
11569 * offsets : start of array (offest per devices)
11570 * dests : not used
11571 * destfd : table of destination device descriptor
11572 * destoffsets : table of destination offsets (per device)
11573 * Returns:
11574 * 1 : success, reshape is done
11575 * 0 : fail
11576 ******************************************************************************/
11577 static int imsm_manage_reshape(
11578 int afd, struct mdinfo *sra, struct reshape *reshape,
11579 struct supertype *st, unsigned long backup_blocks,
11580 int *fds, unsigned long long *offsets,
11581 int dests, int *destfd, unsigned long long *destoffsets)
11582 {
11583 int ret_val = 0;
11584 struct intel_super *super = st->sb;
11585 struct intel_dev *dv;
11586 unsigned int sector_size = super->sector_size;
11587 struct imsm_dev *dev = NULL;
11588 struct imsm_map *map_src;
11589 int migr_vol_qan = 0;
11590 int ndata, odata; /* [bytes] */
11591 int chunk; /* [bytes] */
11592 struct migr_record *migr_rec;
11593 char *buf = NULL;
11594 unsigned int buf_size; /* [bytes] */
11595 unsigned long long max_position; /* array size [bytes] */
11596 unsigned long long next_step; /* [blocks]/[bytes] */
11597 unsigned long long old_data_stripe_length;
11598 unsigned long long start_src; /* [bytes] */
11599 unsigned long long start; /* [bytes] */
11600 unsigned long long start_buf_shift; /* [bytes] */
11601 int degraded = 0;
11602 int source_layout = 0;
11603
11604 if (!sra)
11605 return ret_val;
11606
11607 if (!fds || !offsets)
11608 goto abort;
11609
11610 /* Find volume during the reshape */
11611 for (dv = super->devlist; dv; dv = dv->next) {
11612 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
11613 && dv->dev->vol.migr_state == 1) {
11614 dev = dv->dev;
11615 migr_vol_qan++;
11616 }
11617 }
11618 /* Only one volume can migrate at the same time */
11619 if (migr_vol_qan != 1) {
11620 pr_err("%s", migr_vol_qan ?
11621 "Number of migrating volumes greater than 1\n" :
11622 "There is no volume during migrationg\n");
11623 goto abort;
11624 }
11625
11626 map_src = get_imsm_map(dev, MAP_1);
11627 if (map_src == NULL)
11628 goto abort;
11629
11630 ndata = imsm_num_data_members(dev, MAP_0);
11631 odata = imsm_num_data_members(dev, MAP_1);
11632
11633 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
11634 old_data_stripe_length = odata * chunk;
11635
11636 migr_rec = super->migr_rec;
11637
11638 /* initialize migration record for start condition */
11639 if (sra->reshape_progress == 0)
11640 init_migr_record_imsm(st, dev, sra);
11641 else {
11642 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
11643 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
11644 goto abort;
11645 }
11646 /* Save checkpoint to update migration record for current
11647 * reshape position (in md). It can be farther than current
11648 * reshape position in metadata.
11649 */
11650 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11651 /* ignore error == 2, this can mean end of reshape here
11652 */
11653 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
11654 goto abort;
11655 }
11656 }
11657
11658 /* size for data */
11659 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
11660 /* extend buffer size for parity disk */
11661 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
11662 /* add space for stripe aligment */
11663 buf_size += old_data_stripe_length;
11664 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
11665 dprintf("imsm: Cannot allocate checkpoint buffer\n");
11666 goto abort;
11667 }
11668
11669 max_position = sra->component_size * ndata;
11670 source_layout = imsm_level_to_layout(map_src->raid_level);
11671
11672 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
11673 __le32_to_cpu(migr_rec->num_migr_units)) {
11674 /* current reshape position [blocks] */
11675 unsigned long long current_position =
11676 __le32_to_cpu(migr_rec->blocks_per_unit)
11677 * __le32_to_cpu(migr_rec->curr_migr_unit);
11678 unsigned long long border;
11679
11680 /* Check that array hasn't become failed.
11681 */
11682 degraded = check_degradation_change(sra, fds, degraded);
11683 if (degraded > 1) {
11684 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
11685 goto abort;
11686 }
11687
11688 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
11689
11690 if ((current_position + next_step) > max_position)
11691 next_step = max_position - current_position;
11692
11693 start = current_position * 512;
11694
11695 /* align reading start to old geometry */
11696 start_buf_shift = start % old_data_stripe_length;
11697 start_src = start - start_buf_shift;
11698
11699 border = (start_src / odata) - (start / ndata);
11700 border /= 512;
11701 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
11702 /* save critical stripes to buf
11703 * start - start address of current unit
11704 * to backup [bytes]
11705 * start_src - start address of current unit
11706 * to backup alligned to source array
11707 * [bytes]
11708 */
11709 unsigned long long next_step_filler;
11710 unsigned long long copy_length = next_step * 512;
11711
11712 /* allign copy area length to stripe in old geometry */
11713 next_step_filler = ((copy_length + start_buf_shift)
11714 % old_data_stripe_length);
11715 if (next_step_filler)
11716 next_step_filler = (old_data_stripe_length
11717 - next_step_filler);
11718 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
11719 start, start_src, copy_length,
11720 start_buf_shift, next_step_filler);
11721
11722 if (save_stripes(fds, offsets, map_src->num_members,
11723 chunk, map_src->raid_level,
11724 source_layout, 0, NULL, start_src,
11725 copy_length +
11726 next_step_filler + start_buf_shift,
11727 buf)) {
11728 dprintf("imsm: Cannot save stripes to buffer\n");
11729 goto abort;
11730 }
11731 /* Convert data to destination format and store it
11732 * in backup general migration area
11733 */
11734 if (save_backup_imsm(st, dev, sra,
11735 buf + start_buf_shift, copy_length)) {
11736 dprintf("imsm: Cannot save stripes to target devices\n");
11737 goto abort;
11738 }
11739 if (save_checkpoint_imsm(st, sra,
11740 UNIT_SRC_IN_CP_AREA)) {
11741 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
11742 goto abort;
11743 }
11744 } else {
11745 /* set next step to use whole border area */
11746 border /= next_step;
11747 if (border > 1)
11748 next_step *= border;
11749 }
11750 /* When data backed up, checkpoint stored,
11751 * kick the kernel to reshape unit of data
11752 */
11753 next_step = next_step + sra->reshape_progress;
11754 /* limit next step to array max position */
11755 if (next_step > max_position)
11756 next_step = max_position;
11757 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
11758 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
11759 sra->reshape_progress = next_step;
11760
11761 /* wait until reshape finish */
11762 if (wait_for_reshape_imsm(sra, ndata)) {
11763 dprintf("wait_for_reshape_imsm returned error!\n");
11764 goto abort;
11765 }
11766 if (sigterm)
11767 goto abort;
11768
11769 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
11770 /* ignore error == 2, this can mean end of reshape here
11771 */
11772 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
11773 goto abort;
11774 }
11775
11776 }
11777
11778 /* clear migr_rec on disks after successful migration */
11779 struct dl *d;
11780
11781 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*sector_size);
11782 for (d = super->disks; d; d = d->next) {
11783 if (d->index < 0 || is_failed(&d->disk))
11784 continue;
11785 unsigned long long dsize;
11786
11787 get_dev_size(d->fd, NULL, &dsize);
11788 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
11789 SEEK_SET) >= 0) {
11790 if ((unsigned int)write(d->fd, super->migr_rec_buf,
11791 MIGR_REC_BUF_SECTORS*sector_size) !=
11792 MIGR_REC_BUF_SECTORS*sector_size)
11793 perror("Write migr_rec failed");
11794 }
11795 }
11796
11797 /* return '1' if done */
11798 ret_val = 1;
11799 abort:
11800 free(buf);
11801 /* See Grow.c: abort_reshape() for further explanation */
11802 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
11803 sysfs_set_num(sra, NULL, "suspend_hi", 0);
11804 sysfs_set_num(sra, NULL, "suspend_lo", 0);
11805
11806 return ret_val;
11807 }
11808
11809 struct superswitch super_imsm = {
11810 .examine_super = examine_super_imsm,
11811 .brief_examine_super = brief_examine_super_imsm,
11812 .brief_examine_subarrays = brief_examine_subarrays_imsm,
11813 .export_examine_super = export_examine_super_imsm,
11814 .detail_super = detail_super_imsm,
11815 .brief_detail_super = brief_detail_super_imsm,
11816 .write_init_super = write_init_super_imsm,
11817 .validate_geometry = validate_geometry_imsm,
11818 .add_to_super = add_to_super_imsm,
11819 .remove_from_super = remove_from_super_imsm,
11820 .detail_platform = detail_platform_imsm,
11821 .export_detail_platform = export_detail_platform_imsm,
11822 .kill_subarray = kill_subarray_imsm,
11823 .update_subarray = update_subarray_imsm,
11824 .load_container = load_container_imsm,
11825 .default_geometry = default_geometry_imsm,
11826 .get_disk_controller_domain = imsm_get_disk_controller_domain,
11827 .reshape_super = imsm_reshape_super,
11828 .manage_reshape = imsm_manage_reshape,
11829 .recover_backup = recover_backup_imsm,
11830 .copy_metadata = copy_metadata_imsm,
11831 .examine_badblocks = examine_badblocks_imsm,
11832 .match_home = match_home_imsm,
11833 .uuid_from_super= uuid_from_super_imsm,
11834 .getinfo_super = getinfo_super_imsm,
11835 .getinfo_super_disks = getinfo_super_disks_imsm,
11836 .update_super = update_super_imsm,
11837
11838 .avail_size = avail_size_imsm,
11839 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
11840
11841 .compare_super = compare_super_imsm,
11842
11843 .load_super = load_super_imsm,
11844 .init_super = init_super_imsm,
11845 .store_super = store_super_imsm,
11846 .free_super = free_super_imsm,
11847 .match_metadata_desc = match_metadata_desc_imsm,
11848 .container_content = container_content_imsm,
11849 .validate_container = validate_container_imsm,
11850
11851 .write_init_ppl = write_init_ppl_imsm,
11852 .validate_ppl = validate_ppl_imsm,
11853
11854 .external = 1,
11855 .name = "imsm",
11856
11857 /* for mdmon */
11858 .open_new = imsm_open_new,
11859 .set_array_state= imsm_set_array_state,
11860 .set_disk = imsm_set_disk,
11861 .sync_metadata = imsm_sync_metadata,
11862 .activate_spare = imsm_activate_spare,
11863 .process_update = imsm_process_update,
11864 .prepare_update = imsm_prepare_update,
11865 .record_bad_block = imsm_record_badblock,
11866 .clear_bad_block = imsm_clear_badblock,
11867 .get_bad_blocks = imsm_get_badblocks,
11868 };