]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
allow add_to_super to return errors
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include <values.h>
25 #include <scsi/sg.h>
26 #include <ctype.h>
27
28 /* MPB == Metadata Parameter Block */
29 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
30 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
31 #define MPB_VERSION_RAID0 "1.0.00"
32 #define MPB_VERSION_RAID1 "1.1.00"
33 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
34 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
35 #define MPB_VERSION_RAID5 "1.2.02"
36 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
37 #define MPB_VERSION_CNG "1.2.06"
38 #define MPB_VERSION_ATTRIBS "1.3.00"
39 #define MAX_SIGNATURE_LENGTH 32
40 #define MAX_RAID_SERIAL_LEN 16
41
42 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
43 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
44 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
47 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
48 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
49 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
50 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
51
52 #define MPB_SECTOR_CNT 418
53 #define IMSM_RESERVED_SECTORS 4096
54
55 /* Disk configuration info. */
56 #define IMSM_MAX_DEVICES 255
57 struct imsm_disk {
58 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
59 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
60 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
61 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
62 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
63 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
64 #define USABLE_DISK __cpu_to_le32(0x08) /* Fully usable unless FAILED_DISK is set */
65 __u32 status; /* 0xF0 - 0xF3 */
66 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
67 #define IMSM_DISK_FILLERS 4
68 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
69 };
70
71 /* RAID map configuration infos. */
72 struct imsm_map {
73 __u32 pba_of_lba0; /* start address of partition */
74 __u32 blocks_per_member;/* blocks per member */
75 __u32 num_data_stripes; /* number of data stripes */
76 __u16 blocks_per_strip;
77 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
78 #define IMSM_T_STATE_NORMAL 0
79 #define IMSM_T_STATE_UNINITIALIZED 1
80 #define IMSM_T_STATE_DEGRADED 2
81 #define IMSM_T_STATE_FAILED 3
82 __u8 raid_level;
83 #define IMSM_T_RAID0 0
84 #define IMSM_T_RAID1 1
85 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
86 __u8 num_members; /* number of member disks */
87 __u8 num_domains; /* number of parity domains */
88 __u8 failed_disk_num; /* valid only when state is degraded */
89 __u8 reserved[1];
90 __u32 filler[7]; /* expansion area */
91 #define IMSM_ORD_REBUILD (1 << 24)
92 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
93 * top byte contains some flags
94 */
95 } __attribute__ ((packed));
96
97 struct imsm_vol {
98 __u32 curr_migr_unit;
99 __u32 checkpoint_id; /* id to access curr_migr_unit */
100 __u8 migr_state; /* Normal or Migrating */
101 #define MIGR_INIT 0
102 #define MIGR_REBUILD 1
103 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
104 #define MIGR_GEN_MIGR 3
105 #define MIGR_STATE_CHANGE 4
106 __u8 migr_type; /* Initializing, Rebuilding, ... */
107 __u8 dirty;
108 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
109 __u16 verify_errors; /* number of mismatches */
110 __u16 bad_blocks; /* number of bad blocks during verify */
111 __u32 filler[4];
112 struct imsm_map map[1];
113 /* here comes another one if migr_state */
114 } __attribute__ ((packed));
115
116 struct imsm_dev {
117 __u8 volume[MAX_RAID_SERIAL_LEN];
118 __u32 size_low;
119 __u32 size_high;
120 #define DEV_BOOTABLE __cpu_to_le32(0x01)
121 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
122 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
123 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
124 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
125 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
126 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
127 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
128 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
129 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
130 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
131 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
132 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
133 __u32 status; /* Persistent RaidDev status */
134 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
135 __u8 migr_priority;
136 __u8 num_sub_vols;
137 __u8 tid;
138 __u8 cng_master_disk;
139 __u16 cache_policy;
140 __u8 cng_state;
141 __u8 cng_sub_state;
142 #define IMSM_DEV_FILLERS 10
143 __u32 filler[IMSM_DEV_FILLERS];
144 struct imsm_vol vol;
145 } __attribute__ ((packed));
146
147 struct imsm_super {
148 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
149 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
150 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
151 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
152 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
153 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
154 __u32 attributes; /* 0x34 - 0x37 */
155 __u8 num_disks; /* 0x38 Number of configured disks */
156 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
157 __u8 error_log_pos; /* 0x3A */
158 __u8 fill[1]; /* 0x3B */
159 __u32 cache_size; /* 0x3c - 0x40 in mb */
160 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
161 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
162 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
163 #define IMSM_FILLERS 35
164 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
165 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
166 /* here comes imsm_dev[num_raid_devs] */
167 /* here comes BBM logs */
168 } __attribute__ ((packed));
169
170 #define BBM_LOG_MAX_ENTRIES 254
171
172 struct bbm_log_entry {
173 __u64 defective_block_start;
174 #define UNREADABLE 0xFFFFFFFF
175 __u32 spare_block_offset;
176 __u16 remapped_marked_count;
177 __u16 disk_ordinal;
178 } __attribute__ ((__packed__));
179
180 struct bbm_log {
181 __u32 signature; /* 0xABADB10C */
182 __u32 entry_count;
183 __u32 reserved_spare_block_count; /* 0 */
184 __u32 reserved; /* 0xFFFF */
185 __u64 first_spare_lba;
186 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
187 } __attribute__ ((__packed__));
188
189
190 #ifndef MDASSEMBLE
191 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
192 #endif
193
194 static unsigned int sector_count(__u32 bytes)
195 {
196 return ((bytes + (512-1)) & (~(512-1))) / 512;
197 }
198
199 static unsigned int mpb_sectors(struct imsm_super *mpb)
200 {
201 return sector_count(__le32_to_cpu(mpb->mpb_size));
202 }
203
204 /* internal representation of IMSM metadata */
205 struct intel_super {
206 union {
207 void *buf; /* O_DIRECT buffer for reading/writing metadata */
208 struct imsm_super *anchor; /* immovable parameters */
209 };
210 size_t len; /* size of the 'buf' allocation */
211 void *next_buf; /* for realloc'ing buf from the manager */
212 size_t next_len;
213 int updates_pending; /* count of pending updates for mdmon */
214 int creating_imsm; /* flag to indicate container creation */
215 int current_vol; /* index of raid device undergoing creation */
216 #define IMSM_MAX_RAID_DEVS 2
217 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
218 struct dl {
219 struct dl *next;
220 int index;
221 __u8 serial[MAX_RAID_SERIAL_LEN];
222 int major, minor;
223 char *devname;
224 struct imsm_disk disk;
225 int fd;
226 } *disks;
227 struct dl *add; /* list of disks to add while mdmon active */
228 struct dl *missing; /* disks removed while we weren't looking */
229 struct bbm_log *bbm_log;
230 };
231
232 struct extent {
233 unsigned long long start, size;
234 };
235
236 /* definition of messages passed to imsm_process_update */
237 enum imsm_update_type {
238 update_activate_spare,
239 update_create_array,
240 update_add_disk,
241 };
242
243 struct imsm_update_activate_spare {
244 enum imsm_update_type type;
245 struct dl *dl;
246 int slot;
247 int array;
248 struct imsm_update_activate_spare *next;
249 };
250
251 struct imsm_update_create_array {
252 enum imsm_update_type type;
253 int dev_idx;
254 struct imsm_dev dev;
255 };
256
257 struct imsm_update_add_disk {
258 enum imsm_update_type type;
259 };
260
261 static struct supertype *match_metadata_desc_imsm(char *arg)
262 {
263 struct supertype *st;
264
265 if (strcmp(arg, "imsm") != 0 &&
266 strcmp(arg, "default") != 0
267 )
268 return NULL;
269
270 st = malloc(sizeof(*st));
271 memset(st, 0, sizeof(*st));
272 st->ss = &super_imsm;
273 st->max_devs = IMSM_MAX_DEVICES;
274 st->minor_version = 0;
275 st->sb = NULL;
276 return st;
277 }
278
279 #ifndef MDASSEMBLE
280 static __u8 *get_imsm_version(struct imsm_super *mpb)
281 {
282 return &mpb->sig[MPB_SIG_LEN];
283 }
284 #endif
285
286 /* retrieve a disk directly from the anchor when the anchor is known to be
287 * up-to-date, currently only at load time
288 */
289 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
290 {
291 if (index >= mpb->num_disks)
292 return NULL;
293 return &mpb->disk[index];
294 }
295
296 #ifndef MDASSEMBLE
297 /* retrieve a disk from the parsed metadata */
298 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
299 {
300 struct dl *d;
301
302 for (d = super->disks; d; d = d->next)
303 if (d->index == index)
304 return &d->disk;
305
306 return NULL;
307 }
308 #endif
309
310 /* generate a checksum directly from the anchor when the anchor is known to be
311 * up-to-date, currently only at load or write_super after coalescing
312 */
313 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
314 {
315 __u32 end = mpb->mpb_size / sizeof(end);
316 __u32 *p = (__u32 *) mpb;
317 __u32 sum = 0;
318
319 while (end--) {
320 sum += __le32_to_cpu(*p);
321 p++;
322 }
323
324 return sum - __le32_to_cpu(mpb->check_sum);
325 }
326
327 static size_t sizeof_imsm_map(struct imsm_map *map)
328 {
329 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
330 }
331
332 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
333 {
334 struct imsm_map *map = &dev->vol.map[0];
335
336 if (second_map && !dev->vol.migr_state)
337 return NULL;
338 else if (second_map) {
339 void *ptr = map;
340
341 return ptr + sizeof_imsm_map(map);
342 } else
343 return map;
344
345 }
346
347 /* return the size of the device.
348 * migr_state increases the returned size if map[0] were to be duplicated
349 */
350 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
351 {
352 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
353 sizeof_imsm_map(get_imsm_map(dev, 0));
354
355 /* migrating means an additional map */
356 if (dev->vol.migr_state)
357 size += sizeof_imsm_map(get_imsm_map(dev, 1));
358 else if (migr_state)
359 size += sizeof_imsm_map(get_imsm_map(dev, 0));
360
361 return size;
362 }
363
364 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
365 {
366 int offset;
367 int i;
368 void *_mpb = mpb;
369
370 if (index >= mpb->num_raid_devs)
371 return NULL;
372
373 /* devices start after all disks */
374 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
375
376 for (i = 0; i <= index; i++)
377 if (i == index)
378 return _mpb + offset;
379 else
380 offset += sizeof_imsm_dev(_mpb + offset, 0);
381
382 return NULL;
383 }
384
385 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
386 {
387 if (index >= super->anchor->num_raid_devs)
388 return NULL;
389 return super->dev_tbl[index];
390 }
391
392 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
393 {
394 struct imsm_map *map;
395
396 if (dev->vol.migr_state)
397 map = get_imsm_map(dev, 1);
398 else
399 map = get_imsm_map(dev, 0);
400
401 /* top byte identifies disk under rebuild */
402 return __le32_to_cpu(map->disk_ord_tbl[slot]);
403 }
404
405 #define ord_to_idx(ord) (((ord) << 8) >> 8)
406 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
407 {
408 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
409
410 return ord_to_idx(ord);
411 }
412
413 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
414 {
415 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
416 }
417
418 static int get_imsm_raid_level(struct imsm_map *map)
419 {
420 if (map->raid_level == 1) {
421 if (map->num_members == 2)
422 return 1;
423 else
424 return 10;
425 }
426
427 return map->raid_level;
428 }
429
430 static int cmp_extent(const void *av, const void *bv)
431 {
432 const struct extent *a = av;
433 const struct extent *b = bv;
434 if (a->start < b->start)
435 return -1;
436 if (a->start > b->start)
437 return 1;
438 return 0;
439 }
440
441 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
442 {
443 /* find a list of used extents on the given physical device */
444 struct extent *rv, *e;
445 int i, j;
446 int memberships = 0;
447 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
448
449 for (i = 0; i < super->anchor->num_raid_devs; i++) {
450 struct imsm_dev *dev = get_imsm_dev(super, i);
451 struct imsm_map *map = get_imsm_map(dev, 0);
452
453 for (j = 0; j < map->num_members; j++) {
454 __u32 index = get_imsm_disk_idx(dev, j);
455
456 if (index == dl->index)
457 memberships++;
458 }
459 }
460 rv = malloc(sizeof(struct extent) * (memberships + 1));
461 if (!rv)
462 return NULL;
463 e = rv;
464
465 for (i = 0; i < super->anchor->num_raid_devs; i++) {
466 struct imsm_dev *dev = get_imsm_dev(super, i);
467 struct imsm_map *map = get_imsm_map(dev, 0);
468
469 for (j = 0; j < map->num_members; j++) {
470 __u32 index = get_imsm_disk_idx(dev, j);
471
472 if (index == dl->index) {
473 e->start = __le32_to_cpu(map->pba_of_lba0);
474 e->size = __le32_to_cpu(map->blocks_per_member);
475 e++;
476 }
477 }
478 }
479 qsort(rv, memberships, sizeof(*rv), cmp_extent);
480
481 /* determine the start of the metadata
482 * when no raid devices are defined use the default
483 * ...otherwise allow the metadata to truncate the value
484 * as is the case with older versions of imsm
485 */
486 if (memberships) {
487 struct extent *last = &rv[memberships - 1];
488 __u32 remainder;
489
490 remainder = __le32_to_cpu(dl->disk.total_blocks) -
491 (last->start + last->size);
492 if (reservation > remainder)
493 reservation = remainder;
494 }
495 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
496 e->size = 0;
497 return rv;
498 }
499
500 /* try to determine how much space is reserved for metadata from
501 * the last get_extents() entry, otherwise fallback to the
502 * default
503 */
504 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
505 {
506 struct extent *e;
507 int i;
508 __u32 rv;
509
510 /* for spares just return a minimal reservation which will grow
511 * once the spare is picked up by an array
512 */
513 if (dl->index == -1)
514 return MPB_SECTOR_CNT;
515
516 e = get_extents(super, dl);
517 if (!e)
518 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
519
520 /* scroll to last entry */
521 for (i = 0; e[i].size; i++)
522 continue;
523
524 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
525
526 free(e);
527
528 return rv;
529 }
530
531 #ifndef MDASSEMBLE
532 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
533 {
534 __u64 sz;
535 int slot;
536 struct imsm_map *map = get_imsm_map(dev, 0);
537 __u32 ord;
538
539 printf("\n");
540 printf("[%.16s]:\n", dev->volume);
541 printf(" UUID : %s\n", uuid);
542 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
543 printf(" Members : %d\n", map->num_members);
544 for (slot = 0; slot < map->num_members; slot++)
545 if (disk_idx== get_imsm_disk_idx(dev, slot))
546 break;
547 if (slot < map->num_members) {
548 ord = get_imsm_ord_tbl_ent(dev, slot);
549 printf(" This Slot : %d%s\n", slot,
550 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
551 } else
552 printf(" This Slot : ?\n");
553 sz = __le32_to_cpu(dev->size_high);
554 sz <<= 32;
555 sz += __le32_to_cpu(dev->size_low);
556 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
557 human_size(sz * 512));
558 sz = __le32_to_cpu(map->blocks_per_member);
559 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
560 human_size(sz * 512));
561 printf(" Sector Offset : %u\n",
562 __le32_to_cpu(map->pba_of_lba0));
563 printf(" Num Stripes : %u\n",
564 __le32_to_cpu(map->num_data_stripes));
565 printf(" Chunk Size : %u KiB\n",
566 __le16_to_cpu(map->blocks_per_strip) / 2);
567 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
568 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
569 if (dev->vol.migr_state)
570 printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
571 printf("\n");
572 printf(" Map State : %s", map_state_str[map->map_state]);
573 if (dev->vol.migr_state) {
574 struct imsm_map *map = get_imsm_map(dev, 1);
575 printf(" <-- %s", map_state_str[map->map_state]);
576 }
577 printf("\n");
578 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
579 }
580
581 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
582 {
583 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
584 char str[MAX_RAID_SERIAL_LEN + 1];
585 __u32 s;
586 __u64 sz;
587
588 if (index < 0)
589 return;
590
591 printf("\n");
592 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
593 printf(" Disk%02d Serial : %s\n", index, str);
594 s = disk->status;
595 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
596 s&CONFIGURED_DISK ? " active" : "",
597 s&FAILED_DISK ? " failed" : "",
598 s&USABLE_DISK ? " usable" : "");
599 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
600 sz = __le32_to_cpu(disk->total_blocks) - reserved;
601 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
602 human_size(sz * 512));
603 }
604
605 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
606
607 static void examine_super_imsm(struct supertype *st, char *homehost)
608 {
609 struct intel_super *super = st->sb;
610 struct imsm_super *mpb = super->anchor;
611 char str[MAX_SIGNATURE_LENGTH];
612 int i;
613 struct mdinfo info;
614 char nbuf[64];
615 __u32 sum;
616 __u32 reserved = imsm_reserved_sectors(super, super->disks);
617
618
619 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
620 printf(" Magic : %s\n", str);
621 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
622 printf(" Version : %s\n", get_imsm_version(mpb));
623 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
624 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
625 getinfo_super_imsm(st, &info);
626 fname_from_uuid(st, &info, nbuf,'-');
627 printf(" UUID : %s\n", nbuf + 5);
628 sum = __le32_to_cpu(mpb->check_sum);
629 printf(" Checksum : %08x %s\n", sum,
630 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
631 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
632 printf(" Disks : %d\n", mpb->num_disks);
633 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
634 print_imsm_disk(mpb, super->disks->index, reserved);
635 if (super->bbm_log) {
636 struct bbm_log *log = super->bbm_log;
637
638 printf("\n");
639 printf("Bad Block Management Log:\n");
640 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
641 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
642 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
643 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
644 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
645 }
646 for (i = 0; i < mpb->num_raid_devs; i++) {
647 struct mdinfo info;
648 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
649
650 super->current_vol = i;
651 getinfo_super_imsm(st, &info);
652 fname_from_uuid(st, &info, nbuf, '-');
653 print_imsm_dev(dev, nbuf + 5, super->disks->index);
654 }
655 for (i = 0; i < mpb->num_disks; i++) {
656 if (i == super->disks->index)
657 continue;
658 print_imsm_disk(mpb, i, reserved);
659 }
660 }
661
662 static void brief_examine_super_imsm(struct supertype *st)
663 {
664 /* We just write a generic IMSM ARRAY entry */
665 struct mdinfo info;
666 char nbuf[64];
667 char nbuf1[64];
668 struct intel_super *super = st->sb;
669 int i;
670
671 if (!super->anchor->num_raid_devs)
672 return;
673
674 getinfo_super_imsm(st, &info);
675 fname_from_uuid(st, &info, nbuf,'-');
676 printf("ARRAY metadata=imsm auto=md UUID=%s\n", nbuf + 5);
677 for (i = 0; i < super->anchor->num_raid_devs; i++) {
678 struct imsm_dev *dev = get_imsm_dev(super, i);
679
680 super->current_vol = i;
681 getinfo_super_imsm(st, &info);
682 fname_from_uuid(st, &info, nbuf1,'-');
683 printf("ARRAY /dev/md/%.16s container=%s\n"
684 " member=%d auto=mdp UUID=%s\n",
685 dev->volume, nbuf + 5, i, nbuf1 + 5);
686 }
687 }
688
689 static void detail_super_imsm(struct supertype *st, char *homehost)
690 {
691 struct mdinfo info;
692 char nbuf[64];
693
694 getinfo_super_imsm(st, &info);
695 fname_from_uuid(st, &info, nbuf,'-');
696 printf("\n UUID : %s\n", nbuf + 5);
697 }
698
699 static void brief_detail_super_imsm(struct supertype *st)
700 {
701 struct mdinfo info;
702 char nbuf[64];
703 getinfo_super_imsm(st, &info);
704 fname_from_uuid(st, &info, nbuf,'-');
705 printf(" UUID=%s", nbuf + 5);
706 }
707 #endif
708
709 static int match_home_imsm(struct supertype *st, char *homehost)
710 {
711 /* the imsm metadata format does not specify any host
712 * identification information. We return -1 since we can never
713 * confirm nor deny whether a given array is "meant" for this
714 * host. We rely on compare_super and the 'family_num' field to
715 * exclude member disks that do not belong, and we rely on
716 * mdadm.conf to specify the arrays that should be assembled.
717 * Auto-assembly may still pick up "foreign" arrays.
718 */
719
720 return -1;
721 }
722
723 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
724 {
725 /* The uuid returned here is used for:
726 * uuid to put into bitmap file (Create, Grow)
727 * uuid for backup header when saving critical section (Grow)
728 * comparing uuids when re-adding a device into an array
729 * In these cases the uuid required is that of the data-array,
730 * not the device-set.
731 * uuid to recognise same set when adding a missing device back
732 * to an array. This is a uuid for the device-set.
733 *
734 * For each of these we can make do with a truncated
735 * or hashed uuid rather than the original, as long as
736 * everyone agrees.
737 * In each case the uuid required is that of the data-array,
738 * not the device-set.
739 */
740 /* imsm does not track uuid's so we synthesis one using sha1 on
741 * - The signature (Which is constant for all imsm array, but no matter)
742 * - the family_num of the container
743 * - the index number of the volume
744 * - the 'serial' number of the volume.
745 * Hopefully these are all constant.
746 */
747 struct intel_super *super = st->sb;
748
749 char buf[20];
750 struct sha1_ctx ctx;
751 struct imsm_dev *dev = NULL;
752
753 sha1_init_ctx(&ctx);
754 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
755 sha1_process_bytes(&super->anchor->family_num, sizeof(__u32), &ctx);
756 if (super->current_vol >= 0)
757 dev = get_imsm_dev(super, super->current_vol);
758 if (dev) {
759 __u32 vol = super->current_vol;
760 sha1_process_bytes(&vol, sizeof(vol), &ctx);
761 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
762 }
763 sha1_finish_ctx(&ctx, buf);
764 memcpy(uuid, buf, 4*4);
765 }
766
767 #if 0
768 static void
769 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
770 {
771 __u8 *v = get_imsm_version(mpb);
772 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
773 char major[] = { 0, 0, 0 };
774 char minor[] = { 0 ,0, 0 };
775 char patch[] = { 0, 0, 0 };
776 char *ver_parse[] = { major, minor, patch };
777 int i, j;
778
779 i = j = 0;
780 while (*v != '\0' && v < end) {
781 if (*v != '.' && j < 2)
782 ver_parse[i][j++] = *v;
783 else {
784 i++;
785 j = 0;
786 }
787 v++;
788 }
789
790 *m = strtol(minor, NULL, 0);
791 *p = strtol(patch, NULL, 0);
792 }
793 #endif
794
795 static int imsm_level_to_layout(int level)
796 {
797 switch (level) {
798 case 0:
799 case 1:
800 return 0;
801 case 5:
802 case 6:
803 return ALGORITHM_LEFT_ASYMMETRIC;
804 case 10:
805 return 0x102;
806 }
807 return -1;
808 }
809
810 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
811 {
812 struct intel_super *super = st->sb;
813 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
814 struct imsm_map *map = get_imsm_map(dev, 0);
815
816 info->container_member = super->current_vol;
817 info->array.raid_disks = map->num_members;
818 info->array.level = get_imsm_raid_level(map);
819 info->array.layout = imsm_level_to_layout(info->array.level);
820 info->array.md_minor = -1;
821 info->array.ctime = 0;
822 info->array.utime = 0;
823 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
824 info->array.state = !dev->vol.dirty;
825
826 info->disk.major = 0;
827 info->disk.minor = 0;
828
829 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
830 info->component_size = __le32_to_cpu(map->blocks_per_member);
831 memset(info->uuid, 0, sizeof(info->uuid));
832
833 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
834 info->resync_start = 0;
835 else if (dev->vol.migr_state)
836 info->resync_start = __le32_to_cpu(dev->vol.curr_migr_unit);
837 else
838 info->resync_start = ~0ULL;
839
840 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
841 info->name[MAX_RAID_SERIAL_LEN] = 0;
842
843 info->array.major_version = -1;
844 info->array.minor_version = -2;
845 sprintf(info->text_version, "/%s/%d",
846 devnum2devname(st->container_dev),
847 info->container_member);
848 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
849 uuid_from_super_imsm(st, info->uuid);
850 }
851
852
853 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
854 {
855 struct intel_super *super = st->sb;
856 struct imsm_disk *disk;
857 __u32 s;
858
859 if (super->current_vol >= 0) {
860 getinfo_super_imsm_volume(st, info);
861 return;
862 }
863
864 /* Set raid_disks to zero so that Assemble will always pull in valid
865 * spares
866 */
867 info->array.raid_disks = 0;
868 info->array.level = LEVEL_CONTAINER;
869 info->array.layout = 0;
870 info->array.md_minor = -1;
871 info->array.ctime = 0; /* N/A for imsm */
872 info->array.utime = 0;
873 info->array.chunk_size = 0;
874
875 info->disk.major = 0;
876 info->disk.minor = 0;
877 info->disk.raid_disk = -1;
878 info->reshape_active = 0;
879 info->array.major_version = -1;
880 info->array.minor_version = -2;
881 strcpy(info->text_version, "imsm");
882 info->safe_mode_delay = 0;
883 info->disk.number = -1;
884 info->disk.state = 0;
885 info->name[0] = 0;
886
887 if (super->disks) {
888 __u32 reserved = imsm_reserved_sectors(super, super->disks);
889
890 disk = &super->disks->disk;
891 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
892 info->component_size = reserved;
893 s = disk->status;
894 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
895 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
896 info->disk.state |= s & SPARE_DISK ? 0 : (1 << MD_DISK_SYNC);
897 }
898
899 /* only call uuid_from_super_imsm when this disk is part of a populated container,
900 * ->compare_super may have updated the 'num_raid_devs' field for spares
901 */
902 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
903 uuid_from_super_imsm(st, info->uuid);
904 else
905 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
906 }
907
908 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
909 char *update, char *devname, int verbose,
910 int uuid_set, char *homehost)
911 {
912 /* FIXME */
913
914 /* For 'assemble' and 'force' we need to return non-zero if any
915 * change was made. For others, the return value is ignored.
916 * Update options are:
917 * force-one : This device looks a bit old but needs to be included,
918 * update age info appropriately.
919 * assemble: clear any 'faulty' flag to allow this device to
920 * be assembled.
921 * force-array: Array is degraded but being forced, mark it clean
922 * if that will be needed to assemble it.
923 *
924 * newdev: not used ????
925 * grow: Array has gained a new device - this is currently for
926 * linear only
927 * resync: mark as dirty so a resync will happen.
928 * name: update the name - preserving the homehost
929 *
930 * Following are not relevant for this imsm:
931 * sparc2.2 : update from old dodgey metadata
932 * super-minor: change the preferred_minor number
933 * summaries: update redundant counters.
934 * uuid: Change the uuid of the array to match watch is given
935 * homehost: update the recorded homehost
936 * _reshape_progress: record new reshape_progress position.
937 */
938 int rv = 0;
939 //struct intel_super *super = st->sb;
940 //struct imsm_super *mpb = super->mpb;
941
942 if (strcmp(update, "grow") == 0) {
943 }
944 if (strcmp(update, "resync") == 0) {
945 /* dev->vol.dirty = 1; */
946 }
947
948 /* IMSM has no concept of UUID or homehost */
949
950 return rv;
951 }
952
953 static size_t disks_to_mpb_size(int disks)
954 {
955 size_t size;
956
957 size = sizeof(struct imsm_super);
958 size += (disks - 1) * sizeof(struct imsm_disk);
959 size += 2 * sizeof(struct imsm_dev);
960 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
961 size += (4 - 2) * sizeof(struct imsm_map);
962 /* 4 possible disk_ord_tbl's */
963 size += 4 * (disks - 1) * sizeof(__u32);
964
965 return size;
966 }
967
968 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
969 {
970 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
971 return 0;
972
973 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
974 }
975
976 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
977 {
978 /*
979 * return:
980 * 0 same, or first was empty, and second was copied
981 * 1 second had wrong number
982 * 2 wrong uuid
983 * 3 wrong other info
984 */
985 struct intel_super *first = st->sb;
986 struct intel_super *sec = tst->sb;
987
988 if (!first) {
989 st->sb = tst->sb;
990 tst->sb = NULL;
991 return 0;
992 }
993
994 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
995 return 3;
996
997 /* if an anchor does not have num_raid_devs set then it is a free
998 * floating spare
999 */
1000 if (first->anchor->num_raid_devs > 0 &&
1001 sec->anchor->num_raid_devs > 0) {
1002 if (first->anchor->family_num != sec->anchor->family_num)
1003 return 3;
1004 }
1005
1006 /* if 'first' is a spare promote it to a populated mpb with sec's
1007 * family number
1008 */
1009 if (first->anchor->num_raid_devs == 0 &&
1010 sec->anchor->num_raid_devs > 0) {
1011 int i;
1012
1013 /* we need to copy raid device info from sec if an allocation
1014 * fails here we don't associate the spare
1015 */
1016 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
1017 first->dev_tbl[i] = malloc(sizeof(struct imsm_dev));
1018 if (!first->dev_tbl) {
1019 while (--i >= 0) {
1020 free(first->dev_tbl[i]);
1021 first->dev_tbl[i] = NULL;
1022 }
1023 fprintf(stderr, "imsm: failed to associate spare\n");
1024 return 3;
1025 }
1026 *first->dev_tbl[i] = *sec->dev_tbl[i];
1027 }
1028
1029 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
1030 first->anchor->family_num = sec->anchor->family_num;
1031 }
1032
1033 return 0;
1034 }
1035
1036 static void fd2devname(int fd, char *name)
1037 {
1038 struct stat st;
1039 char path[256];
1040 char dname[100];
1041 char *nm;
1042 int rv;
1043
1044 name[0] = '\0';
1045 if (fstat(fd, &st) != 0)
1046 return;
1047 sprintf(path, "/sys/dev/block/%d:%d",
1048 major(st.st_rdev), minor(st.st_rdev));
1049
1050 rv = readlink(path, dname, sizeof(dname));
1051 if (rv <= 0)
1052 return;
1053
1054 dname[rv] = '\0';
1055 nm = strrchr(dname, '/');
1056 nm++;
1057 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1058 }
1059
1060
1061 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1062
1063 static int imsm_read_serial(int fd, char *devname,
1064 __u8 serial[MAX_RAID_SERIAL_LEN])
1065 {
1066 unsigned char scsi_serial[255];
1067 int rv;
1068 int rsp_len;
1069 int len;
1070 char *c, *rsp_buf;
1071
1072 memset(scsi_serial, 0, sizeof(scsi_serial));
1073
1074 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1075
1076 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
1077 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1078 fd2devname(fd, (char *) serial);
1079 return 0;
1080 }
1081
1082 if (rv != 0) {
1083 if (devname)
1084 fprintf(stderr,
1085 Name ": Failed to retrieve serial for %s\n",
1086 devname);
1087 return rv;
1088 }
1089
1090 /* trim leading whitespace */
1091 rsp_len = scsi_serial[3];
1092 rsp_buf = (char *) &scsi_serial[4];
1093 c = rsp_buf;
1094 while (isspace(*c))
1095 c++;
1096
1097 /* truncate len to the end of rsp_buf if necessary */
1098 if (c + MAX_RAID_SERIAL_LEN > rsp_buf + rsp_len)
1099 len = rsp_len - (c - rsp_buf);
1100 else
1101 len = MAX_RAID_SERIAL_LEN;
1102
1103 /* initialize the buffer and copy rsp_buf characters */
1104 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1105 memcpy(serial, c, len);
1106
1107 /* trim trailing whitespace starting with the last character copied */
1108 c = (char *) &serial[len - 1];
1109 while (isspace(*c) || *c == '\0')
1110 *c-- = '\0';
1111
1112 return 0;
1113 }
1114
1115 static int serialcmp(__u8 *s1, __u8 *s2)
1116 {
1117 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1118 }
1119
1120 static void serialcpy(__u8 *dest, __u8 *src)
1121 {
1122 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1123 }
1124
1125 static int
1126 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1127 {
1128 struct dl *dl;
1129 struct stat stb;
1130 int rv;
1131 int i;
1132 int alloc = 1;
1133 __u8 serial[MAX_RAID_SERIAL_LEN];
1134
1135 rv = imsm_read_serial(fd, devname, serial);
1136
1137 if (rv != 0)
1138 return 2;
1139
1140 /* check if this is a disk we have seen before. it may be a spare in
1141 * super->disks while the current anchor believes it is a raid member,
1142 * check if we need to update dl->index
1143 */
1144 for (dl = super->disks; dl; dl = dl->next)
1145 if (serialcmp(dl->serial, serial) == 0)
1146 break;
1147
1148 if (!dl)
1149 dl = malloc(sizeof(*dl));
1150 else
1151 alloc = 0;
1152
1153 if (!dl) {
1154 if (devname)
1155 fprintf(stderr,
1156 Name ": failed to allocate disk buffer for %s\n",
1157 devname);
1158 return 2;
1159 }
1160
1161 if (alloc) {
1162 fstat(fd, &stb);
1163 dl->major = major(stb.st_rdev);
1164 dl->minor = minor(stb.st_rdev);
1165 dl->next = super->disks;
1166 dl->fd = keep_fd ? fd : -1;
1167 dl->devname = devname ? strdup(devname) : NULL;
1168 serialcpy(dl->serial, serial);
1169 dl->index = -2;
1170 } else if (keep_fd) {
1171 close(dl->fd);
1172 dl->fd = fd;
1173 }
1174
1175 /* look up this disk's index in the current anchor */
1176 for (i = 0; i < super->anchor->num_disks; i++) {
1177 struct imsm_disk *disk_iter;
1178
1179 disk_iter = __get_imsm_disk(super->anchor, i);
1180
1181 if (serialcmp(disk_iter->serial, dl->serial) == 0) {
1182 dl->disk = *disk_iter;
1183 /* only set index on disks that are a member of a
1184 * populated contianer, i.e. one with raid_devs
1185 */
1186 if (dl->disk.status & FAILED_DISK)
1187 dl->index = -2;
1188 else if (dl->disk.status & SPARE_DISK)
1189 dl->index = -1;
1190 else
1191 dl->index = i;
1192
1193 break;
1194 }
1195 }
1196
1197 /* no match, maybe a stale failed drive */
1198 if (i == super->anchor->num_disks && dl->index >= 0) {
1199 dl->disk = *__get_imsm_disk(super->anchor, dl->index);
1200 if (dl->disk.status & FAILED_DISK)
1201 dl->index = -2;
1202 }
1203
1204 if (alloc)
1205 super->disks = dl;
1206
1207 return 0;
1208 }
1209
1210 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1211 {
1212 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1213 }
1214
1215 #ifndef MDASSEMBLE
1216 /* When migrating map0 contains the 'destination' state while map1
1217 * contains the current state. When not migrating map0 contains the
1218 * current state. This routine assumes that map[0].map_state is set to
1219 * the current array state before being called.
1220 *
1221 * Migration is indicated by one of the following states
1222 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1223 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
1224 * map1state=unitialized)
1225 * 3/ Verify (Resync) (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
1226 * map1state=normal)
1227 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
1228 * map1state=degraded)
1229 */
1230 static void migrate(struct imsm_dev *dev, __u8 to_state, int rebuild_resync)
1231 {
1232 struct imsm_map *dest;
1233 struct imsm_map *src = get_imsm_map(dev, 0);
1234
1235 dev->vol.migr_state = 1;
1236 dev->vol.migr_type = rebuild_resync;
1237 dev->vol.curr_migr_unit = 0;
1238 dest = get_imsm_map(dev, 1);
1239
1240 memcpy(dest, src, sizeof_imsm_map(src));
1241 src->map_state = to_state;
1242 }
1243
1244 static void end_migration(struct imsm_dev *dev, __u8 map_state)
1245 {
1246 struct imsm_map *map = get_imsm_map(dev, 0);
1247
1248 dev->vol.migr_state = 0;
1249 dev->vol.curr_migr_unit = 0;
1250 map->map_state = map_state;
1251 }
1252 #endif
1253
1254 static int parse_raid_devices(struct intel_super *super)
1255 {
1256 int i;
1257 struct imsm_dev *dev_new;
1258 size_t len, len_migr;
1259 size_t space_needed = 0;
1260 struct imsm_super *mpb = super->anchor;
1261
1262 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1263 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
1264
1265 len = sizeof_imsm_dev(dev_iter, 0);
1266 len_migr = sizeof_imsm_dev(dev_iter, 1);
1267 if (len_migr > len)
1268 space_needed += len_migr - len;
1269
1270 dev_new = malloc(len_migr);
1271 if (!dev_new)
1272 return 1;
1273 imsm_copy_dev(dev_new, dev_iter);
1274 super->dev_tbl[i] = dev_new;
1275 }
1276
1277 /* ensure that super->buf is large enough when all raid devices
1278 * are migrating
1279 */
1280 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1281 void *buf;
1282
1283 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1284 if (posix_memalign(&buf, 512, len) != 0)
1285 return 1;
1286
1287 memcpy(buf, super->buf, len);
1288 free(super->buf);
1289 super->buf = buf;
1290 super->len = len;
1291 }
1292
1293 return 0;
1294 }
1295
1296 /* retrieve a pointer to the bbm log which starts after all raid devices */
1297 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1298 {
1299 void *ptr = NULL;
1300
1301 if (__le32_to_cpu(mpb->bbm_log_size)) {
1302 ptr = mpb;
1303 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1304 }
1305
1306 return ptr;
1307 }
1308
1309 static void __free_imsm(struct intel_super *super, int free_disks);
1310
1311 /* load_imsm_mpb - read matrix metadata
1312 * allocates super->mpb to be freed by free_super
1313 */
1314 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1315 {
1316 unsigned long long dsize;
1317 unsigned long long sectors;
1318 struct stat;
1319 struct imsm_super *anchor;
1320 __u32 check_sum;
1321 int rc;
1322
1323 get_dev_size(fd, NULL, &dsize);
1324
1325 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1326 if (devname)
1327 fprintf(stderr,
1328 Name ": Cannot seek to anchor block on %s: %s\n",
1329 devname, strerror(errno));
1330 return 1;
1331 }
1332
1333 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1334 if (devname)
1335 fprintf(stderr,
1336 Name ": Failed to allocate imsm anchor buffer"
1337 " on %s\n", devname);
1338 return 1;
1339 }
1340 if (read(fd, anchor, 512) != 512) {
1341 if (devname)
1342 fprintf(stderr,
1343 Name ": Cannot read anchor block on %s: %s\n",
1344 devname, strerror(errno));
1345 free(anchor);
1346 return 1;
1347 }
1348
1349 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1350 if (devname)
1351 fprintf(stderr,
1352 Name ": no IMSM anchor on %s\n", devname);
1353 free(anchor);
1354 return 2;
1355 }
1356
1357 __free_imsm(super, 0);
1358 super->len = ROUND_UP(anchor->mpb_size, 512);
1359 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1360 if (devname)
1361 fprintf(stderr,
1362 Name ": unable to allocate %zu byte mpb buffer\n",
1363 super->len);
1364 free(anchor);
1365 return 2;
1366 }
1367 memcpy(super->buf, anchor, 512);
1368
1369 sectors = mpb_sectors(anchor) - 1;
1370 free(anchor);
1371 if (!sectors) {
1372 rc = load_imsm_disk(fd, super, devname, 0);
1373 if (rc == 0)
1374 rc = parse_raid_devices(super);
1375 return rc;
1376 }
1377
1378 /* read the extended mpb */
1379 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1380 if (devname)
1381 fprintf(stderr,
1382 Name ": Cannot seek to extended mpb on %s: %s\n",
1383 devname, strerror(errno));
1384 return 1;
1385 }
1386
1387 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1388 if (devname)
1389 fprintf(stderr,
1390 Name ": Cannot read extended mpb on %s: %s\n",
1391 devname, strerror(errno));
1392 return 2;
1393 }
1394
1395 check_sum = __gen_imsm_checksum(super->anchor);
1396 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1397 if (devname)
1398 fprintf(stderr,
1399 Name ": IMSM checksum %x != %x on %s\n",
1400 check_sum, __le32_to_cpu(super->anchor->check_sum),
1401 devname);
1402 return 2;
1403 }
1404
1405 /* FIXME the BBM log is disk specific so we cannot use this global
1406 * buffer for all disks. Ok for now since we only look at the global
1407 * bbm_log_size parameter to gate assembly
1408 */
1409 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1410
1411 rc = load_imsm_disk(fd, super, devname, 0);
1412 if (rc == 0)
1413 rc = parse_raid_devices(super);
1414
1415 return rc;
1416 }
1417
1418 static void __free_imsm_disk(struct dl *d)
1419 {
1420 if (d->fd >= 0)
1421 close(d->fd);
1422 if (d->devname)
1423 free(d->devname);
1424 free(d);
1425
1426 }
1427 static void free_imsm_disks(struct intel_super *super)
1428 {
1429 struct dl *d;
1430
1431 while (super->disks) {
1432 d = super->disks;
1433 super->disks = d->next;
1434 __free_imsm_disk(d);
1435 }
1436 while (super->missing) {
1437 d = super->missing;
1438 super->missing = d->next;
1439 __free_imsm_disk(d);
1440 }
1441
1442 }
1443
1444 /* free all the pieces hanging off of a super pointer */
1445 static void __free_imsm(struct intel_super *super, int free_disks)
1446 {
1447 int i;
1448
1449 if (super->buf) {
1450 free(super->buf);
1451 super->buf = NULL;
1452 }
1453 if (free_disks)
1454 free_imsm_disks(super);
1455 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1456 if (super->dev_tbl[i]) {
1457 free(super->dev_tbl[i]);
1458 super->dev_tbl[i] = NULL;
1459 }
1460 }
1461
1462 static void free_imsm(struct intel_super *super)
1463 {
1464 __free_imsm(super, 1);
1465 free(super);
1466 }
1467
1468 static void free_super_imsm(struct supertype *st)
1469 {
1470 struct intel_super *super = st->sb;
1471
1472 if (!super)
1473 return;
1474
1475 free_imsm(super);
1476 st->sb = NULL;
1477 }
1478
1479 static struct intel_super *alloc_super(int creating_imsm)
1480 {
1481 struct intel_super *super = malloc(sizeof(*super));
1482
1483 if (super) {
1484 memset(super, 0, sizeof(*super));
1485 super->creating_imsm = creating_imsm;
1486 super->current_vol = -1;
1487 }
1488
1489 return super;
1490 }
1491
1492 #ifndef MDASSEMBLE
1493 /* find_missing - helper routine for load_super_imsm_all that identifies
1494 * disks that have disappeared from the system. This routine relies on
1495 * the mpb being uptodate, which it is at load time.
1496 */
1497 static int find_missing(struct intel_super *super)
1498 {
1499 int i;
1500 struct imsm_super *mpb = super->anchor;
1501 struct dl *dl;
1502 struct imsm_disk *disk;
1503
1504 for (i = 0; i < mpb->num_disks; i++) {
1505 disk = __get_imsm_disk(mpb, i);
1506 for (dl = super->disks; dl; dl = dl->next)
1507 if (serialcmp(dl->disk.serial, disk->serial) == 0)
1508 break;
1509 if (dl)
1510 continue;
1511 /* ok we have a 'disk' without a live entry in
1512 * super->disks
1513 */
1514 if (disk->status & FAILED_DISK || !(disk->status & USABLE_DISK))
1515 continue; /* never mind, already marked */
1516
1517 dl = malloc(sizeof(*dl));
1518 if (!dl)
1519 return 1;
1520 dl->major = 0;
1521 dl->minor = 0;
1522 dl->fd = -1;
1523 dl->devname = strdup("missing");
1524 dl->index = i;
1525 serialcpy(dl->serial, disk->serial);
1526 dl->disk = *disk;
1527 dl->next = super->missing;
1528 super->missing = dl;
1529 }
1530
1531 return 0;
1532 }
1533
1534 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1535 char *devname, int keep_fd)
1536 {
1537 struct mdinfo *sra;
1538 struct intel_super *super;
1539 struct mdinfo *sd, *best = NULL;
1540 __u32 bestgen = 0;
1541 __u32 gen;
1542 char nm[20];
1543 int dfd;
1544 int rv;
1545
1546 /* check if this disk is a member of an active array */
1547 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1548 if (!sra)
1549 return 1;
1550
1551 if (sra->array.major_version != -1 ||
1552 sra->array.minor_version != -2 ||
1553 strcmp(sra->text_version, "imsm") != 0)
1554 return 1;
1555
1556 super = alloc_super(0);
1557 if (!super)
1558 return 1;
1559
1560 /* find the most up to date disk in this array, skipping spares */
1561 for (sd = sra->devs; sd; sd = sd->next) {
1562 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1563 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1564 if (!dfd) {
1565 free_imsm(super);
1566 return 2;
1567 }
1568 rv = load_imsm_mpb(dfd, super, NULL);
1569 if (!keep_fd)
1570 close(dfd);
1571 if (rv == 0) {
1572 if (super->anchor->num_raid_devs == 0)
1573 gen = 0;
1574 else
1575 gen = __le32_to_cpu(super->anchor->generation_num);
1576 if (!best || gen > bestgen) {
1577 bestgen = gen;
1578 best = sd;
1579 }
1580 } else {
1581 free_imsm(super);
1582 return 2;
1583 }
1584 }
1585
1586 if (!best) {
1587 free_imsm(super);
1588 return 1;
1589 }
1590
1591 /* load the most up to date anchor */
1592 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1593 dfd = dev_open(nm, O_RDONLY);
1594 if (!dfd) {
1595 free_imsm(super);
1596 return 1;
1597 }
1598 rv = load_imsm_mpb(dfd, super, NULL);
1599 close(dfd);
1600 if (rv != 0) {
1601 free_imsm(super);
1602 return 2;
1603 }
1604
1605 /* re-parse the disk list with the current anchor */
1606 for (sd = sra->devs ; sd ; sd = sd->next) {
1607 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1608 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1609 if (!dfd) {
1610 free_imsm(super);
1611 return 2;
1612 }
1613 load_imsm_disk(dfd, super, NULL, keep_fd);
1614 if (!keep_fd)
1615 close(dfd);
1616 }
1617
1618
1619 if (find_missing(super) != 0) {
1620 free_imsm(super);
1621 return 2;
1622 }
1623
1624 if (st->subarray[0]) {
1625 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1626 super->current_vol = atoi(st->subarray);
1627 else
1628 return 1;
1629 }
1630
1631 *sbp = super;
1632 st->container_dev = fd2devnum(fd);
1633 if (st->ss == NULL) {
1634 st->ss = &super_imsm;
1635 st->minor_version = 0;
1636 st->max_devs = IMSM_MAX_DEVICES;
1637 }
1638 st->loaded_container = 1;
1639
1640 return 0;
1641 }
1642 #endif
1643
1644 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1645 {
1646 struct intel_super *super;
1647 int rv;
1648
1649 #ifndef MDASSEMBLE
1650 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1651 return 0;
1652 #endif
1653 if (st->subarray[0])
1654 return 1; /* FIXME */
1655
1656 super = alloc_super(0);
1657 if (!super) {
1658 fprintf(stderr,
1659 Name ": malloc of %zu failed.\n",
1660 sizeof(*super));
1661 return 1;
1662 }
1663
1664 rv = load_imsm_mpb(fd, super, devname);
1665
1666 if (rv) {
1667 if (devname)
1668 fprintf(stderr,
1669 Name ": Failed to load all information "
1670 "sections on %s\n", devname);
1671 free_imsm(super);
1672 return rv;
1673 }
1674
1675 st->sb = super;
1676 if (st->ss == NULL) {
1677 st->ss = &super_imsm;
1678 st->minor_version = 0;
1679 st->max_devs = IMSM_MAX_DEVICES;
1680 }
1681 st->loaded_container = 0;
1682
1683 return 0;
1684 }
1685
1686 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1687 {
1688 if (info->level == 1)
1689 return 128;
1690 return info->chunk_size >> 9;
1691 }
1692
1693 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1694 {
1695 __u32 num_stripes;
1696
1697 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1698 if (info->level == 1)
1699 num_stripes /= 2;
1700
1701 return num_stripes;
1702 }
1703
1704 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1705 {
1706 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1707 }
1708
1709 static void imsm_update_version_info(struct intel_super *super)
1710 {
1711 /* update the version and attributes */
1712 struct imsm_super *mpb = super->anchor;
1713 char *version;
1714 struct imsm_dev *dev;
1715 struct imsm_map *map;
1716 int i;
1717
1718 for (i = 0; i < mpb->num_raid_devs; i++) {
1719 dev = get_imsm_dev(super, i);
1720 map = get_imsm_map(dev, 0);
1721 if (__le32_to_cpu(dev->size_high) > 0)
1722 mpb->attributes |= MPB_ATTRIB_2TB;
1723
1724 /* FIXME detect when an array spans a port multiplier */
1725 #if 0
1726 mpb->attributes |= MPB_ATTRIB_PM;
1727 #endif
1728
1729 if (mpb->num_raid_devs > 1 ||
1730 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
1731 version = MPB_VERSION_ATTRIBS;
1732 switch (get_imsm_raid_level(map)) {
1733 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
1734 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
1735 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
1736 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
1737 }
1738 } else {
1739 if (map->num_members >= 5)
1740 version = MPB_VERSION_5OR6_DISK_ARRAY;
1741 else if (dev->status == DEV_CLONE_N_GO)
1742 version = MPB_VERSION_CNG;
1743 else if (get_imsm_raid_level(map) == 5)
1744 version = MPB_VERSION_RAID5;
1745 else if (map->num_members >= 3)
1746 version = MPB_VERSION_3OR4_DISK_ARRAY;
1747 else if (get_imsm_raid_level(map) == 1)
1748 version = MPB_VERSION_RAID1;
1749 else
1750 version = MPB_VERSION_RAID0;
1751 }
1752 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
1753 }
1754 }
1755
1756 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1757 unsigned long long size, char *name,
1758 char *homehost, int *uuid)
1759 {
1760 /* We are creating a volume inside a pre-existing container.
1761 * so st->sb is already set.
1762 */
1763 struct intel_super *super = st->sb;
1764 struct imsm_super *mpb = super->anchor;
1765 struct imsm_dev *dev;
1766 struct imsm_vol *vol;
1767 struct imsm_map *map;
1768 int idx = mpb->num_raid_devs;
1769 int i;
1770 unsigned long long array_blocks;
1771 __u32 offset = 0;
1772 size_t size_old, size_new;
1773
1774 if (mpb->num_raid_devs >= 2) {
1775 fprintf(stderr, Name": This imsm-container already has the "
1776 "maximum of 2 volumes\n");
1777 return 0;
1778 }
1779
1780 /* ensure the mpb is large enough for the new data */
1781 size_old = __le32_to_cpu(mpb->mpb_size);
1782 size_new = disks_to_mpb_size(info->nr_disks);
1783 if (size_new > size_old) {
1784 void *mpb_new;
1785 size_t size_round = ROUND_UP(size_new, 512);
1786
1787 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1788 fprintf(stderr, Name": could not allocate new mpb\n");
1789 return 0;
1790 }
1791 memcpy(mpb_new, mpb, size_old);
1792 free(mpb);
1793 mpb = mpb_new;
1794 super->anchor = mpb_new;
1795 mpb->mpb_size = __cpu_to_le32(size_new);
1796 memset(mpb_new + size_old, 0, size_round - size_old);
1797 }
1798 super->current_vol = idx;
1799 /* when creating the first raid device in this container set num_disks
1800 * to zero, i.e. delete this spare and add raid member devices in
1801 * add_to_super_imsm_volume()
1802 */
1803 if (super->current_vol == 0)
1804 mpb->num_disks = 0;
1805 sprintf(st->subarray, "%d", idx);
1806 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1807 if (!dev) {
1808 fprintf(stderr, Name": could not allocate raid device\n");
1809 return 0;
1810 }
1811 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1812 array_blocks = calc_array_size(info->level, info->raid_disks,
1813 info->layout, info->chunk_size,
1814 info->size*2);
1815 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1816 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1817 dev->status = __cpu_to_le32(0);
1818 dev->reserved_blocks = __cpu_to_le32(0);
1819 vol = &dev->vol;
1820 vol->migr_state = 0;
1821 vol->migr_type = MIGR_INIT;
1822 vol->dirty = 0;
1823 vol->curr_migr_unit = 0;
1824 for (i = 0; i < idx; i++) {
1825 struct imsm_dev *prev = get_imsm_dev(super, i);
1826 struct imsm_map *pmap = get_imsm_map(prev, 0);
1827
1828 offset += __le32_to_cpu(pmap->blocks_per_member);
1829 offset += IMSM_RESERVED_SECTORS;
1830 }
1831 map = get_imsm_map(dev, 0);
1832 map->pba_of_lba0 = __cpu_to_le32(offset);
1833 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1834 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1835 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1836 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1837 IMSM_T_STATE_NORMAL;
1838
1839 if (info->level == 1 && info->raid_disks > 2) {
1840 fprintf(stderr, Name": imsm does not support more than 2 disks"
1841 "in a raid1 volume\n");
1842 return 0;
1843 }
1844 if (info->level == 10) {
1845 map->raid_level = 1;
1846 map->num_domains = info->raid_disks / 2;
1847 } else {
1848 map->raid_level = info->level;
1849 map->num_domains = !!map->raid_level;
1850 }
1851
1852 map->num_members = info->raid_disks;
1853 for (i = 0; i < map->num_members; i++) {
1854 /* initialized in add_to_super */
1855 set_imsm_ord_tbl_ent(map, i, 0);
1856 }
1857 mpb->num_raid_devs++;
1858 super->dev_tbl[super->current_vol] = dev;
1859
1860 imsm_update_version_info(super);
1861
1862 return 1;
1863 }
1864
1865 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1866 unsigned long long size, char *name,
1867 char *homehost, int *uuid)
1868 {
1869 /* This is primarily called by Create when creating a new array.
1870 * We will then get add_to_super called for each component, and then
1871 * write_init_super called to write it out to each device.
1872 * For IMSM, Create can create on fresh devices or on a pre-existing
1873 * array.
1874 * To create on a pre-existing array a different method will be called.
1875 * This one is just for fresh drives.
1876 */
1877 struct intel_super *super;
1878 struct imsm_super *mpb;
1879 size_t mpb_size;
1880 char *version;
1881
1882 if (!info) {
1883 st->sb = NULL;
1884 return 0;
1885 }
1886 if (st->sb)
1887 return init_super_imsm_volume(st, info, size, name, homehost,
1888 uuid);
1889
1890 super = alloc_super(1);
1891 if (!super)
1892 return 0;
1893 mpb_size = disks_to_mpb_size(info->nr_disks);
1894 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1895 free(super);
1896 return 0;
1897 }
1898 mpb = super->buf;
1899 memset(mpb, 0, mpb_size);
1900
1901 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
1902
1903 version = (char *) mpb->sig;
1904 strcpy(version, MPB_SIGNATURE);
1905 version += strlen(MPB_SIGNATURE);
1906 strcpy(version, MPB_VERSION_RAID0);
1907 mpb->mpb_size = mpb_size;
1908
1909 st->sb = super;
1910 return 1;
1911 }
1912
1913 #ifndef MDASSEMBLE
1914 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1915 int fd, char *devname)
1916 {
1917 struct intel_super *super = st->sb;
1918 struct imsm_super *mpb = super->anchor;
1919 struct dl *dl;
1920 struct imsm_dev *dev;
1921 struct imsm_map *map;
1922
1923 dev = get_imsm_dev(super, super->current_vol);
1924 map = get_imsm_map(dev, 0);
1925
1926 for (dl = super->disks; dl ; dl = dl->next)
1927 if (dl->major == dk->major &&
1928 dl->minor == dk->minor)
1929 break;
1930
1931 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1932 return 1;
1933
1934 /* add a pristine spare to the metadata */
1935 if (dl->index < 0) {
1936 dl->index = super->anchor->num_disks;
1937 super->anchor->num_disks++;
1938 }
1939 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
1940 dl->disk.status = CONFIGURED_DISK | USABLE_DISK;
1941
1942 /* if we are creating the first raid device update the family number */
1943 if (super->current_vol == 0) {
1944 __u32 sum;
1945 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1946 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1947
1948 *_dev = *dev;
1949 *_disk = dl->disk;
1950 sum = __gen_imsm_checksum(mpb);
1951 mpb->family_num = __cpu_to_le32(sum);
1952 }
1953
1954 return 0;
1955 }
1956
1957 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1958 int fd, char *devname)
1959 {
1960 struct intel_super *super = st->sb;
1961 struct dl *dd;
1962 unsigned long long size;
1963 __u32 id;
1964 int rv;
1965 struct stat stb;
1966
1967 if (super->current_vol >= 0)
1968 return add_to_super_imsm_volume(st, dk, fd, devname);
1969
1970 fstat(fd, &stb);
1971 dd = malloc(sizeof(*dd));
1972 if (!dd) {
1973 fprintf(stderr,
1974 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1975 return 1;
1976 }
1977 memset(dd, 0, sizeof(*dd));
1978 dd->major = major(stb.st_rdev);
1979 dd->minor = minor(stb.st_rdev);
1980 dd->index = -1;
1981 dd->devname = devname ? strdup(devname) : NULL;
1982 dd->fd = fd;
1983 rv = imsm_read_serial(fd, devname, dd->serial);
1984 if (rv) {
1985 fprintf(stderr,
1986 Name ": failed to retrieve scsi serial, aborting\n");
1987 free(dd);
1988 abort();
1989 }
1990
1991 get_dev_size(fd, NULL, &size);
1992 size /= 512;
1993 serialcpy(dd->disk.serial, dd->serial);
1994 dd->disk.total_blocks = __cpu_to_le32(size);
1995 dd->disk.status = USABLE_DISK | SPARE_DISK;
1996 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1997 dd->disk.scsi_id = __cpu_to_le32(id);
1998 else
1999 dd->disk.scsi_id = __cpu_to_le32(0);
2000
2001 if (st->update_tail) {
2002 dd->next = super->add;
2003 super->add = dd;
2004 } else {
2005 dd->next = super->disks;
2006 super->disks = dd;
2007 }
2008
2009 return 0;
2010 }
2011
2012 static int store_imsm_mpb(int fd, struct intel_super *super);
2013
2014 /* spare records have their own family number and do not have any defined raid
2015 * devices
2016 */
2017 static int write_super_imsm_spares(struct intel_super *super, int doclose)
2018 {
2019 struct imsm_super mpb_save;
2020 struct imsm_super *mpb = super->anchor;
2021 __u32 sum;
2022 struct dl *d;
2023
2024 mpb_save = *mpb;
2025 mpb->num_raid_devs = 0;
2026 mpb->num_disks = 1;
2027 mpb->mpb_size = sizeof(struct imsm_super);
2028 mpb->generation_num = __cpu_to_le32(1UL);
2029
2030 for (d = super->disks; d; d = d->next) {
2031 if (d->index != -1)
2032 continue;
2033
2034 mpb->disk[0] = d->disk;
2035 sum = __gen_imsm_checksum(mpb);
2036 mpb->family_num = __cpu_to_le32(sum);
2037 sum = __gen_imsm_checksum(mpb);
2038 mpb->check_sum = __cpu_to_le32(sum);
2039
2040 if (store_imsm_mpb(d->fd, super)) {
2041 fprintf(stderr, "%s: failed for device %d:%d %s\n",
2042 __func__, d->major, d->minor, strerror(errno));
2043 *mpb = mpb_save;
2044 return 1;
2045 }
2046 if (doclose) {
2047 close(d->fd);
2048 d->fd = -1;
2049 }
2050 }
2051
2052 *mpb = mpb_save;
2053 return 0;
2054 }
2055
2056 static int write_super_imsm(struct intel_super *super, int doclose)
2057 {
2058 struct imsm_super *mpb = super->anchor;
2059 struct dl *d;
2060 __u32 generation;
2061 __u32 sum;
2062 int spares = 0;
2063 int i;
2064 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
2065
2066 /* 'generation' is incremented everytime the metadata is written */
2067 generation = __le32_to_cpu(mpb->generation_num);
2068 generation++;
2069 mpb->generation_num = __cpu_to_le32(generation);
2070
2071 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
2072 for (d = super->disks; d; d = d->next) {
2073 if (d->index == -1)
2074 spares++;
2075 else
2076 mpb->disk[d->index] = d->disk;
2077 }
2078 for (d = super->missing; d; d = d->next)
2079 mpb->disk[d->index] = d->disk;
2080
2081 for (i = 0; i < mpb->num_raid_devs; i++) {
2082 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2083
2084 imsm_copy_dev(dev, super->dev_tbl[i]);
2085 mpb_size += sizeof_imsm_dev(dev, 0);
2086 }
2087 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
2088 mpb->mpb_size = __cpu_to_le32(mpb_size);
2089
2090 /* recalculate checksum */
2091 sum = __gen_imsm_checksum(mpb);
2092 mpb->check_sum = __cpu_to_le32(sum);
2093
2094 /* write the mpb for disks that compose raid devices */
2095 for (d = super->disks; d ; d = d->next) {
2096 if (d->index < 0)
2097 continue;
2098 if (store_imsm_mpb(d->fd, super))
2099 fprintf(stderr, "%s: failed for device %d:%d %s\n",
2100 __func__, d->major, d->minor, strerror(errno));
2101 if (doclose) {
2102 close(d->fd);
2103 d->fd = -1;
2104 }
2105 }
2106
2107 if (spares)
2108 return write_super_imsm_spares(super, doclose);
2109
2110 return 0;
2111 }
2112
2113
2114 static int create_array(struct supertype *st)
2115 {
2116 size_t len;
2117 struct imsm_update_create_array *u;
2118 struct intel_super *super = st->sb;
2119 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2120
2121 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0);
2122 u = malloc(len);
2123 if (!u) {
2124 fprintf(stderr, "%s: failed to allocate update buffer\n",
2125 __func__);
2126 return 1;
2127 }
2128
2129 u->type = update_create_array;
2130 u->dev_idx = super->current_vol;
2131 imsm_copy_dev(&u->dev, dev);
2132 append_metadata_update(st, u, len);
2133
2134 return 0;
2135 }
2136
2137 static int _add_disk(struct supertype *st)
2138 {
2139 struct intel_super *super = st->sb;
2140 size_t len;
2141 struct imsm_update_add_disk *u;
2142
2143 if (!super->add)
2144 return 0;
2145
2146 len = sizeof(*u);
2147 u = malloc(len);
2148 if (!u) {
2149 fprintf(stderr, "%s: failed to allocate update buffer\n",
2150 __func__);
2151 return 1;
2152 }
2153
2154 u->type = update_add_disk;
2155 append_metadata_update(st, u, len);
2156
2157 return 0;
2158 }
2159
2160 static int write_init_super_imsm(struct supertype *st)
2161 {
2162 if (st->update_tail) {
2163 /* queue the recently created array / added disk
2164 * as a metadata update */
2165 struct intel_super *super = st->sb;
2166 struct dl *d;
2167 int rv;
2168
2169 /* determine if we are creating a volume or adding a disk */
2170 if (super->current_vol < 0) {
2171 /* in the add disk case we are running in mdmon
2172 * context, so don't close fd's
2173 */
2174 return _add_disk(st);
2175 } else
2176 rv = create_array(st);
2177
2178 for (d = super->disks; d ; d = d->next) {
2179 close(d->fd);
2180 d->fd = -1;
2181 }
2182
2183 return rv;
2184 } else
2185 return write_super_imsm(st->sb, 1);
2186 }
2187 #endif
2188
2189 static int store_zero_imsm(struct supertype *st, int fd)
2190 {
2191 unsigned long long dsize;
2192 void *buf;
2193
2194 get_dev_size(fd, NULL, &dsize);
2195
2196 /* first block is stored on second to last sector of the disk */
2197 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2198 return 1;
2199
2200 if (posix_memalign(&buf, 512, 512) != 0)
2201 return 1;
2202
2203 memset(buf, 0, 512);
2204 if (write(fd, buf, 512) != 512)
2205 return 1;
2206 return 0;
2207 }
2208
2209 static int imsm_bbm_log_size(struct imsm_super *mpb)
2210 {
2211 return __le32_to_cpu(mpb->bbm_log_size);
2212 }
2213
2214 #ifndef MDASSEMBLE
2215 static int validate_geometry_imsm_container(struct supertype *st, int level,
2216 int layout, int raiddisks, int chunk,
2217 unsigned long long size, char *dev,
2218 unsigned long long *freesize,
2219 int verbose)
2220 {
2221 int fd;
2222 unsigned long long ldsize;
2223
2224 if (level != LEVEL_CONTAINER)
2225 return 0;
2226 if (!dev)
2227 return 1;
2228
2229 fd = open(dev, O_RDONLY|O_EXCL, 0);
2230 if (fd < 0) {
2231 if (verbose)
2232 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
2233 dev, strerror(errno));
2234 return 0;
2235 }
2236 if (!get_dev_size(fd, dev, &ldsize)) {
2237 close(fd);
2238 return 0;
2239 }
2240 close(fd);
2241
2242 *freesize = avail_size_imsm(st, ldsize >> 9);
2243
2244 return 1;
2245 }
2246
2247 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
2248 * FIX ME add ahci details
2249 */
2250 static int validate_geometry_imsm_volume(struct supertype *st, int level,
2251 int layout, int raiddisks, int chunk,
2252 unsigned long long size, char *dev,
2253 unsigned long long *freesize,
2254 int verbose)
2255 {
2256 struct stat stb;
2257 struct intel_super *super = st->sb;
2258 struct dl *dl;
2259 unsigned long long pos = 0;
2260 unsigned long long maxsize;
2261 struct extent *e;
2262 int i;
2263
2264 if (level == LEVEL_CONTAINER)
2265 return 0;
2266
2267 if (level == 1 && raiddisks > 2) {
2268 if (verbose)
2269 fprintf(stderr, Name ": imsm does not support more "
2270 "than 2 in a raid1 configuration\n");
2271 return 0;
2272 }
2273
2274 /* We must have the container info already read in. */
2275 if (!super)
2276 return 0;
2277
2278 if (!dev) {
2279 /* General test: make sure there is space for
2280 * 'raiddisks' device extents of size 'size' at a given
2281 * offset
2282 */
2283 unsigned long long minsize = size*2 /* convert to blocks */;
2284 unsigned long long start_offset = ~0ULL;
2285 int dcnt = 0;
2286 if (minsize == 0)
2287 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
2288 for (dl = super->disks; dl ; dl = dl->next) {
2289 int found = 0;
2290
2291 pos = 0;
2292 i = 0;
2293 e = get_extents(super, dl);
2294 if (!e) continue;
2295 do {
2296 unsigned long long esize;
2297 esize = e[i].start - pos;
2298 if (esize >= minsize)
2299 found = 1;
2300 if (found && start_offset == ~0ULL) {
2301 start_offset = pos;
2302 break;
2303 } else if (found && pos != start_offset) {
2304 found = 0;
2305 break;
2306 }
2307 pos = e[i].start + e[i].size;
2308 i++;
2309 } while (e[i-1].size);
2310 if (found)
2311 dcnt++;
2312 free(e);
2313 }
2314 if (dcnt < raiddisks) {
2315 if (verbose)
2316 fprintf(stderr, Name ": imsm: Not enough "
2317 "devices with space for this array "
2318 "(%d < %d)\n",
2319 dcnt, raiddisks);
2320 return 0;
2321 }
2322 return 1;
2323 }
2324 /* This device must be a member of the set */
2325 if (stat(dev, &stb) < 0)
2326 return 0;
2327 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2328 return 0;
2329 for (dl = super->disks ; dl ; dl = dl->next) {
2330 if (dl->major == major(stb.st_rdev) &&
2331 dl->minor == minor(stb.st_rdev))
2332 break;
2333 }
2334 if (!dl) {
2335 if (verbose)
2336 fprintf(stderr, Name ": %s is not in the "
2337 "same imsm set\n", dev);
2338 return 0;
2339 }
2340 e = get_extents(super, dl);
2341 maxsize = 0;
2342 i = 0;
2343 if (e) do {
2344 unsigned long long esize;
2345 esize = e[i].start - pos;
2346 if (esize >= maxsize)
2347 maxsize = esize;
2348 pos = e[i].start + e[i].size;
2349 i++;
2350 } while (e[i-1].size);
2351 *freesize = maxsize;
2352
2353 return 1;
2354 }
2355
2356 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
2357 int raiddisks, int chunk, unsigned long long size,
2358 char *dev, unsigned long long *freesize,
2359 int verbose)
2360 {
2361 int fd, cfd;
2362 struct mdinfo *sra;
2363
2364 /* if given unused devices create a container
2365 * if given given devices in a container create a member volume
2366 */
2367 if (level == LEVEL_CONTAINER) {
2368 /* Must be a fresh device to add to a container */
2369 return validate_geometry_imsm_container(st, level, layout,
2370 raiddisks, chunk, size,
2371 dev, freesize,
2372 verbose);
2373 }
2374
2375 if (st->sb) {
2376 /* creating in a given container */
2377 return validate_geometry_imsm_volume(st, level, layout,
2378 raiddisks, chunk, size,
2379 dev, freesize, verbose);
2380 }
2381
2382 /* limit creation to the following levels */
2383 if (!dev)
2384 switch (level) {
2385 case 0:
2386 case 1:
2387 case 10:
2388 case 5:
2389 break;
2390 default:
2391 return 1;
2392 }
2393
2394 /* This device needs to be a device in an 'imsm' container */
2395 fd = open(dev, O_RDONLY|O_EXCL, 0);
2396 if (fd >= 0) {
2397 if (verbose)
2398 fprintf(stderr,
2399 Name ": Cannot create this array on device %s\n",
2400 dev);
2401 close(fd);
2402 return 0;
2403 }
2404 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2405 if (verbose)
2406 fprintf(stderr, Name ": Cannot open %s: %s\n",
2407 dev, strerror(errno));
2408 return 0;
2409 }
2410 /* Well, it is in use by someone, maybe an 'imsm' container. */
2411 cfd = open_container(fd);
2412 if (cfd < 0) {
2413 close(fd);
2414 if (verbose)
2415 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
2416 dev);
2417 return 0;
2418 }
2419 sra = sysfs_read(cfd, 0, GET_VERSION);
2420 close(fd);
2421 if (sra && sra->array.major_version == -1 &&
2422 strcmp(sra->text_version, "imsm") == 0) {
2423 /* This is a member of a imsm container. Load the container
2424 * and try to create a volume
2425 */
2426 struct intel_super *super;
2427
2428 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
2429 st->sb = super;
2430 st->container_dev = fd2devnum(cfd);
2431 close(cfd);
2432 return validate_geometry_imsm_volume(st, level, layout,
2433 raiddisks, chunk,
2434 size, dev,
2435 freesize, verbose);
2436 }
2437 close(cfd);
2438 } else /* may belong to another container */
2439 return 0;
2440
2441 return 1;
2442 }
2443 #endif /* MDASSEMBLE */
2444
2445 static struct mdinfo *container_content_imsm(struct supertype *st)
2446 {
2447 /* Given a container loaded by load_super_imsm_all,
2448 * extract information about all the arrays into
2449 * an mdinfo tree.
2450 *
2451 * For each imsm_dev create an mdinfo, fill it in,
2452 * then look for matching devices in super->disks
2453 * and create appropriate device mdinfo.
2454 */
2455 struct intel_super *super = st->sb;
2456 struct imsm_super *mpb = super->anchor;
2457 struct mdinfo *rest = NULL;
2458 int i;
2459
2460 /* do not assemble arrays that might have bad blocks */
2461 if (imsm_bbm_log_size(super->anchor)) {
2462 fprintf(stderr, Name ": BBM log found in metadata. "
2463 "Cannot activate array(s).\n");
2464 return NULL;
2465 }
2466
2467 for (i = 0; i < mpb->num_raid_devs; i++) {
2468 struct imsm_dev *dev = get_imsm_dev(super, i);
2469 struct imsm_map *map = get_imsm_map(dev, 0);
2470 struct mdinfo *this;
2471 int slot;
2472
2473 this = malloc(sizeof(*this));
2474 memset(this, 0, sizeof(*this));
2475 this->next = rest;
2476
2477 super->current_vol = i;
2478 getinfo_super_imsm_volume(st, this);
2479 for (slot = 0 ; slot < map->num_members; slot++) {
2480 struct mdinfo *info_d;
2481 struct dl *d;
2482 int idx;
2483 int skip;
2484 __u32 s;
2485 __u32 ord;
2486
2487 skip = 0;
2488 idx = get_imsm_disk_idx(dev, slot);
2489 ord = get_imsm_ord_tbl_ent(dev, slot);
2490 for (d = super->disks; d ; d = d->next)
2491 if (d->index == idx)
2492 break;
2493
2494 if (d == NULL)
2495 skip = 1;
2496
2497 s = d ? d->disk.status : 0;
2498 if (s & FAILED_DISK)
2499 skip = 1;
2500 if (!(s & USABLE_DISK))
2501 skip = 1;
2502 if (ord & IMSM_ORD_REBUILD)
2503 skip = 1;
2504
2505 /*
2506 * if we skip some disks the array will be assmebled degraded;
2507 * reset resync start to avoid a dirty-degraded situation
2508 *
2509 * FIXME handle dirty degraded
2510 */
2511 if (skip && !dev->vol.dirty)
2512 this->resync_start = ~0ULL;
2513 if (skip)
2514 continue;
2515
2516 info_d = malloc(sizeof(*info_d));
2517 if (!info_d) {
2518 fprintf(stderr, Name ": failed to allocate disk"
2519 " for volume %s\n", (char *) dev->volume);
2520 free(this);
2521 this = rest;
2522 break;
2523 }
2524 memset(info_d, 0, sizeof(*info_d));
2525 info_d->next = this->devs;
2526 this->devs = info_d;
2527
2528 info_d->disk.number = d->index;
2529 info_d->disk.major = d->major;
2530 info_d->disk.minor = d->minor;
2531 info_d->disk.raid_disk = slot;
2532
2533 this->array.working_disks++;
2534
2535 info_d->events = __le32_to_cpu(mpb->generation_num);
2536 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2537 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2538 if (d->devname)
2539 strcpy(info_d->name, d->devname);
2540 }
2541 rest = this;
2542 }
2543
2544 return rest;
2545 }
2546
2547
2548 #ifndef MDASSEMBLE
2549 static int imsm_open_new(struct supertype *c, struct active_array *a,
2550 char *inst)
2551 {
2552 struct intel_super *super = c->sb;
2553 struct imsm_super *mpb = super->anchor;
2554
2555 if (atoi(inst) >= mpb->num_raid_devs) {
2556 fprintf(stderr, "%s: subarry index %d, out of range\n",
2557 __func__, atoi(inst));
2558 return -ENODEV;
2559 }
2560
2561 dprintf("imsm: open_new %s\n", inst);
2562 a->info.container_member = atoi(inst);
2563 return 0;
2564 }
2565
2566 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
2567 {
2568 struct imsm_map *map = get_imsm_map(dev, 0);
2569
2570 if (!failed)
2571 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
2572 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
2573
2574 switch (get_imsm_raid_level(map)) {
2575 case 0:
2576 return IMSM_T_STATE_FAILED;
2577 break;
2578 case 1:
2579 if (failed < map->num_members)
2580 return IMSM_T_STATE_DEGRADED;
2581 else
2582 return IMSM_T_STATE_FAILED;
2583 break;
2584 case 10:
2585 {
2586 /**
2587 * check to see if any mirrors have failed, otherwise we
2588 * are degraded. Even numbered slots are mirrored on
2589 * slot+1
2590 */
2591 int i;
2592 /* gcc -Os complains that this is unused */
2593 int insync = insync;
2594
2595 for (i = 0; i < map->num_members; i++) {
2596 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2597 int idx = ord_to_idx(ord);
2598 struct imsm_disk *disk;
2599
2600 /* reset the potential in-sync count on even-numbered
2601 * slots. num_copies is always 2 for imsm raid10
2602 */
2603 if ((i & 1) == 0)
2604 insync = 2;
2605
2606 disk = get_imsm_disk(super, idx);
2607 if (!disk || disk->status & FAILED_DISK ||
2608 ord & IMSM_ORD_REBUILD)
2609 insync--;
2610
2611 /* no in-sync disks left in this mirror the
2612 * array has failed
2613 */
2614 if (insync == 0)
2615 return IMSM_T_STATE_FAILED;
2616 }
2617
2618 return IMSM_T_STATE_DEGRADED;
2619 }
2620 case 5:
2621 if (failed < 2)
2622 return IMSM_T_STATE_DEGRADED;
2623 else
2624 return IMSM_T_STATE_FAILED;
2625 break;
2626 default:
2627 break;
2628 }
2629
2630 return map->map_state;
2631 }
2632
2633 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
2634 {
2635 int i;
2636 int failed = 0;
2637 struct imsm_disk *disk;
2638 struct imsm_map *map = get_imsm_map(dev, 0);
2639
2640 for (i = 0; i < map->num_members; i++) {
2641 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2642 int idx = ord_to_idx(ord);
2643
2644 disk = get_imsm_disk(super, idx);
2645 if (!disk || disk->status & FAILED_DISK ||
2646 ord & IMSM_ORD_REBUILD)
2647 failed++;
2648 }
2649
2650 return failed;
2651 }
2652
2653 static int is_resyncing(struct imsm_dev *dev)
2654 {
2655 struct imsm_map *migr_map;
2656
2657 if (!dev->vol.migr_state)
2658 return 0;
2659
2660 if (dev->vol.migr_type == MIGR_INIT)
2661 return 1;
2662
2663 migr_map = get_imsm_map(dev, 1);
2664
2665 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
2666 return 1;
2667 else
2668 return 0;
2669 }
2670
2671 static int is_rebuilding(struct imsm_dev *dev)
2672 {
2673 struct imsm_map *migr_map;
2674
2675 if (!dev->vol.migr_state)
2676 return 0;
2677
2678 if (dev->vol.migr_type != MIGR_REBUILD)
2679 return 0;
2680
2681 migr_map = get_imsm_map(dev, 1);
2682
2683 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
2684 return 1;
2685 else
2686 return 0;
2687 }
2688
2689 static void mark_failure(struct imsm_disk *disk)
2690 {
2691 if (disk->status & FAILED_DISK)
2692 return;
2693 disk->status |= FAILED_DISK;
2694 disk->scsi_id = __cpu_to_le32(~(__u32)0);
2695 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
2696 }
2697
2698 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
2699 * states are handled in imsm_set_disk() with one exception, when a
2700 * resync is stopped due to a new failure this routine will set the
2701 * 'degraded' state for the array.
2702 */
2703 static int imsm_set_array_state(struct active_array *a, int consistent)
2704 {
2705 int inst = a->info.container_member;
2706 struct intel_super *super = a->container->sb;
2707 struct imsm_dev *dev = get_imsm_dev(super, inst);
2708 struct imsm_map *map = get_imsm_map(dev, 0);
2709 int failed = imsm_count_failed(super, dev);
2710 __u8 map_state = imsm_check_degraded(super, dev, failed);
2711
2712 /* before we activate this array handle any missing disks */
2713 if (consistent == 2 && super->missing) {
2714 struct dl *dl;
2715
2716 dprintf("imsm: mark missing\n");
2717 end_migration(dev, map_state);
2718 for (dl = super->missing; dl; dl = dl->next)
2719 mark_failure(&dl->disk);
2720 super->updates_pending++;
2721 }
2722
2723 if (consistent == 2 &&
2724 (!is_resync_complete(a) ||
2725 map_state != IMSM_T_STATE_NORMAL ||
2726 dev->vol.migr_state))
2727 consistent = 0;
2728
2729 if (is_resync_complete(a)) {
2730 /* complete intialization / resync,
2731 * recovery is completed in ->set_disk
2732 */
2733 if (is_resyncing(dev)) {
2734 dprintf("imsm: mark resync done\n");
2735 end_migration(dev, map_state);
2736 super->updates_pending++;
2737 }
2738 } else if (!is_resyncing(dev) && !failed) {
2739 /* mark the start of the init process if nothing is failed */
2740 dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
2741 if (map->map_state == IMSM_T_STATE_NORMAL)
2742 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REBUILD);
2743 else
2744 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
2745 super->updates_pending++;
2746 }
2747
2748 /* check if we can update the migration checkpoint */
2749 if (dev->vol.migr_state &&
2750 __le32_to_cpu(dev->vol.curr_migr_unit) != a->resync_start) {
2751 dprintf("imsm: checkpoint migration (%llu)\n", a->resync_start);
2752 dev->vol.curr_migr_unit = __cpu_to_le32(a->resync_start);
2753 super->updates_pending++;
2754 }
2755
2756 /* mark dirty / clean */
2757 if (dev->vol.dirty != !consistent) {
2758 dprintf("imsm: mark '%s' (%llu)\n",
2759 consistent ? "clean" : "dirty", a->resync_start);
2760 if (consistent)
2761 dev->vol.dirty = 0;
2762 else
2763 dev->vol.dirty = 1;
2764 super->updates_pending++;
2765 }
2766 return consistent;
2767 }
2768
2769 static void imsm_set_disk(struct active_array *a, int n, int state)
2770 {
2771 int inst = a->info.container_member;
2772 struct intel_super *super = a->container->sb;
2773 struct imsm_dev *dev = get_imsm_dev(super, inst);
2774 struct imsm_map *map = get_imsm_map(dev, 0);
2775 struct imsm_disk *disk;
2776 int failed;
2777 __u32 ord;
2778 __u8 map_state;
2779
2780 if (n > map->num_members)
2781 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2782 n, map->num_members - 1);
2783
2784 if (n < 0)
2785 return;
2786
2787 dprintf("imsm: set_disk %d:%x\n", n, state);
2788
2789 ord = get_imsm_ord_tbl_ent(dev, n);
2790 disk = get_imsm_disk(super, ord_to_idx(ord));
2791
2792 /* check for new failures */
2793 if ((state & DS_FAULTY) && !(disk->status & FAILED_DISK)) {
2794 mark_failure(disk);
2795 super->updates_pending++;
2796 }
2797
2798 /* check if in_sync */
2799 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD) {
2800 struct imsm_map *migr_map = get_imsm_map(dev, 1);
2801
2802 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
2803 super->updates_pending++;
2804 }
2805
2806 failed = imsm_count_failed(super, dev);
2807 map_state = imsm_check_degraded(super, dev, failed);
2808
2809 /* check if recovery complete, newly degraded, or failed */
2810 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
2811 end_migration(dev, map_state);
2812 super->updates_pending++;
2813 } else if (map_state == IMSM_T_STATE_DEGRADED &&
2814 map->map_state != map_state &&
2815 !dev->vol.migr_state) {
2816 dprintf("imsm: mark degraded\n");
2817 map->map_state = map_state;
2818 super->updates_pending++;
2819 } else if (map_state == IMSM_T_STATE_FAILED &&
2820 map->map_state != map_state) {
2821 dprintf("imsm: mark failed\n");
2822 end_migration(dev, map_state);
2823 super->updates_pending++;
2824 }
2825 }
2826
2827 static int store_imsm_mpb(int fd, struct intel_super *super)
2828 {
2829 struct imsm_super *mpb = super->anchor;
2830 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2831 unsigned long long dsize;
2832 unsigned long long sectors;
2833
2834 get_dev_size(fd, NULL, &dsize);
2835
2836 if (mpb_size > 512) {
2837 /* -1 to account for anchor */
2838 sectors = mpb_sectors(mpb) - 1;
2839
2840 /* write the extended mpb to the sectors preceeding the anchor */
2841 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2842 return 1;
2843
2844 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2845 return 1;
2846 }
2847
2848 /* first block is stored on second to last sector of the disk */
2849 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2850 return 1;
2851
2852 if (write(fd, super->buf, 512) != 512)
2853 return 1;
2854
2855 return 0;
2856 }
2857
2858 static void imsm_sync_metadata(struct supertype *container)
2859 {
2860 struct intel_super *super = container->sb;
2861
2862 if (!super->updates_pending)
2863 return;
2864
2865 write_super_imsm(super, 0);
2866
2867 super->updates_pending = 0;
2868 }
2869
2870 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
2871 {
2872 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2873 int i = get_imsm_disk_idx(dev, idx);
2874 struct dl *dl;
2875
2876 for (dl = super->disks; dl; dl = dl->next)
2877 if (dl->index == i)
2878 break;
2879
2880 if (dl && dl->disk.status & FAILED_DISK)
2881 dl = NULL;
2882
2883 if (dl)
2884 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
2885
2886 return dl;
2887 }
2888
2889 static struct dl *imsm_add_spare(struct intel_super *super, int slot, struct active_array *a)
2890 {
2891 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2892 int idx = get_imsm_disk_idx(dev, slot);
2893 struct imsm_map *map = get_imsm_map(dev, 0);
2894 unsigned long long esize;
2895 unsigned long long pos;
2896 struct mdinfo *d;
2897 struct extent *ex;
2898 int j;
2899 int found;
2900 __u32 array_start;
2901 struct dl *dl;
2902
2903 for (dl = super->disks; dl; dl = dl->next) {
2904 /* If in this array, skip */
2905 for (d = a->info.devs ; d ; d = d->next)
2906 if (d->state_fd >= 0 &&
2907 d->disk.major == dl->major &&
2908 d->disk.minor == dl->minor) {
2909 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2910 break;
2911 }
2912 if (d)
2913 continue;
2914
2915 /* skip in use or failed drives */
2916 if (dl->disk.status & FAILED_DISK || idx == dl->index) {
2917 dprintf("%x:%x status ( %s%s)\n",
2918 dl->major, dl->minor,
2919 dl->disk.status & FAILED_DISK ? "failed " : "",
2920 idx == dl->index ? "in use " : "");
2921 continue;
2922 }
2923
2924 /* Does this unused device have the requisite free space?
2925 * We need a->info.component_size sectors
2926 */
2927 ex = get_extents(super, dl);
2928 if (!ex) {
2929 dprintf("cannot get extents\n");
2930 continue;
2931 }
2932 found = 0;
2933 j = 0;
2934 pos = 0;
2935 array_start = __le32_to_cpu(map->pba_of_lba0);
2936
2937 do {
2938 /* check that we can start at pba_of_lba0 with
2939 * a->info.component_size of space
2940 */
2941 esize = ex[j].start - pos;
2942 if (array_start >= pos &&
2943 array_start + a->info.component_size < ex[j].start) {
2944 found = 1;
2945 break;
2946 }
2947 pos = ex[j].start + ex[j].size;
2948 j++;
2949
2950 } while (ex[j-1].size);
2951
2952 free(ex);
2953 if (!found) {
2954 dprintf("%x:%x does not have %llu at %d\n",
2955 dl->major, dl->minor,
2956 a->info.component_size,
2957 __le32_to_cpu(map->pba_of_lba0));
2958 /* No room */
2959 continue;
2960 } else
2961 break;
2962 }
2963
2964 return dl;
2965 }
2966
2967 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2968 struct metadata_update **updates)
2969 {
2970 /**
2971 * Find a device with unused free space and use it to replace a
2972 * failed/vacant region in an array. We replace failed regions one a
2973 * array at a time. The result is that a new spare disk will be added
2974 * to the first failed array and after the monitor has finished
2975 * propagating failures the remainder will be consumed.
2976 *
2977 * FIXME add a capability for mdmon to request spares from another
2978 * container.
2979 */
2980
2981 struct intel_super *super = a->container->sb;
2982 int inst = a->info.container_member;
2983 struct imsm_dev *dev = get_imsm_dev(super, inst);
2984 struct imsm_map *map = get_imsm_map(dev, 0);
2985 int failed = a->info.array.raid_disks;
2986 struct mdinfo *rv = NULL;
2987 struct mdinfo *d;
2988 struct mdinfo *di;
2989 struct metadata_update *mu;
2990 struct dl *dl;
2991 struct imsm_update_activate_spare *u;
2992 int num_spares = 0;
2993 int i;
2994
2995 for (d = a->info.devs ; d ; d = d->next) {
2996 if ((d->curr_state & DS_FAULTY) &&
2997 d->state_fd >= 0)
2998 /* wait for Removal to happen */
2999 return NULL;
3000 if (d->state_fd >= 0)
3001 failed--;
3002 }
3003
3004 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
3005 inst, failed, a->info.array.raid_disks, a->info.array.level);
3006 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
3007 return NULL;
3008
3009 /* For each slot, if it is not working, find a spare */
3010 for (i = 0; i < a->info.array.raid_disks; i++) {
3011 for (d = a->info.devs ; d ; d = d->next)
3012 if (d->disk.raid_disk == i)
3013 break;
3014 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
3015 if (d && (d->state_fd >= 0))
3016 continue;
3017
3018 /*
3019 * OK, this device needs recovery. Try to re-add the previous
3020 * occupant of this slot, if this fails add a new spare
3021 */
3022 dl = imsm_readd(super, i, a);
3023 if (!dl)
3024 dl = imsm_add_spare(super, i, a);
3025 if (!dl)
3026 continue;
3027
3028 /* found a usable disk with enough space */
3029 di = malloc(sizeof(*di));
3030 if (!di)
3031 continue;
3032 memset(di, 0, sizeof(*di));
3033
3034 /* dl->index will be -1 in the case we are activating a
3035 * pristine spare. imsm_process_update() will create a
3036 * new index in this case. Once a disk is found to be
3037 * failed in all member arrays it is kicked from the
3038 * metadata
3039 */
3040 di->disk.number = dl->index;
3041
3042 /* (ab)use di->devs to store a pointer to the device
3043 * we chose
3044 */
3045 di->devs = (struct mdinfo *) dl;
3046
3047 di->disk.raid_disk = i;
3048 di->disk.major = dl->major;
3049 di->disk.minor = dl->minor;
3050 di->disk.state = 0;
3051 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
3052 di->component_size = a->info.component_size;
3053 di->container_member = inst;
3054 di->next = rv;
3055 rv = di;
3056 num_spares++;
3057 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
3058 i, di->data_offset);
3059
3060 break;
3061 }
3062
3063 if (!rv)
3064 /* No spares found */
3065 return rv;
3066 /* Now 'rv' has a list of devices to return.
3067 * Create a metadata_update record to update the
3068 * disk_ord_tbl for the array
3069 */
3070 mu = malloc(sizeof(*mu));
3071 if (mu) {
3072 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
3073 if (mu->buf == NULL) {
3074 free(mu);
3075 mu = NULL;
3076 }
3077 }
3078 if (!mu) {
3079 while (rv) {
3080 struct mdinfo *n = rv->next;
3081
3082 free(rv);
3083 rv = n;
3084 }
3085 return NULL;
3086 }
3087
3088 mu->space = NULL;
3089 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
3090 mu->next = *updates;
3091 u = (struct imsm_update_activate_spare *) mu->buf;
3092
3093 for (di = rv ; di ; di = di->next) {
3094 u->type = update_activate_spare;
3095 u->dl = (struct dl *) di->devs;
3096 di->devs = NULL;
3097 u->slot = di->disk.raid_disk;
3098 u->array = inst;
3099 u->next = u + 1;
3100 u++;
3101 }
3102 (u-1)->next = NULL;
3103 *updates = mu;
3104
3105 return rv;
3106 }
3107
3108 static int disks_overlap(struct imsm_dev *d1, struct imsm_dev *d2)
3109 {
3110 struct imsm_map *m1 = get_imsm_map(d1, 0);
3111 struct imsm_map *m2 = get_imsm_map(d2, 0);
3112 int i;
3113 int j;
3114 int idx;
3115
3116 for (i = 0; i < m1->num_members; i++) {
3117 idx = get_imsm_disk_idx(d1, i);
3118 for (j = 0; j < m2->num_members; j++)
3119 if (idx == get_imsm_disk_idx(d2, j))
3120 return 1;
3121 }
3122
3123 return 0;
3124 }
3125
3126 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
3127
3128 static void imsm_process_update(struct supertype *st,
3129 struct metadata_update *update)
3130 {
3131 /**
3132 * crack open the metadata_update envelope to find the update record
3133 * update can be one of:
3134 * update_activate_spare - a spare device has replaced a failed
3135 * device in an array, update the disk_ord_tbl. If this disk is
3136 * present in all member arrays then also clear the SPARE_DISK
3137 * flag
3138 */
3139 struct intel_super *super = st->sb;
3140 struct imsm_super *mpb;
3141 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
3142
3143 /* update requires a larger buf but the allocation failed */
3144 if (super->next_len && !super->next_buf) {
3145 super->next_len = 0;
3146 return;
3147 }
3148
3149 if (super->next_buf) {
3150 memcpy(super->next_buf, super->buf, super->len);
3151 free(super->buf);
3152 super->len = super->next_len;
3153 super->buf = super->next_buf;
3154
3155 super->next_len = 0;
3156 super->next_buf = NULL;
3157 }
3158
3159 mpb = super->anchor;
3160
3161 switch (type) {
3162 case update_activate_spare: {
3163 struct imsm_update_activate_spare *u = (void *) update->buf;
3164 struct imsm_dev *dev = get_imsm_dev(super, u->array);
3165 struct imsm_map *map = get_imsm_map(dev, 0);
3166 struct imsm_map *migr_map;
3167 struct active_array *a;
3168 struct imsm_disk *disk;
3169 __u8 to_state;
3170 struct dl *dl;
3171 unsigned int found;
3172 int failed;
3173 int victim = get_imsm_disk_idx(dev, u->slot);
3174 int i;
3175
3176 for (dl = super->disks; dl; dl = dl->next)
3177 if (dl == u->dl)
3178 break;
3179
3180 if (!dl) {
3181 fprintf(stderr, "error: imsm_activate_spare passed "
3182 "an unknown disk (index: %d)\n",
3183 u->dl->index);
3184 return;
3185 }
3186
3187 super->updates_pending++;
3188
3189 /* count failures (excluding rebuilds and the victim)
3190 * to determine map[0] state
3191 */
3192 failed = 0;
3193 for (i = 0; i < map->num_members; i++) {
3194 if (i == u->slot)
3195 continue;
3196 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
3197 if (!disk || disk->status & FAILED_DISK)
3198 failed++;
3199 }
3200
3201 /* adding a pristine spare, assign a new index */
3202 if (dl->index < 0) {
3203 dl->index = super->anchor->num_disks;
3204 super->anchor->num_disks++;
3205 }
3206 disk = &dl->disk;
3207 disk->status |= CONFIGURED_DISK;
3208 disk->status &= ~SPARE_DISK;
3209
3210 /* mark rebuild */
3211 to_state = imsm_check_degraded(super, dev, failed);
3212 map->map_state = IMSM_T_STATE_DEGRADED;
3213 migrate(dev, to_state, MIGR_REBUILD);
3214 migr_map = get_imsm_map(dev, 1);
3215 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
3216 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
3217
3218 /* count arrays using the victim in the metadata */
3219 found = 0;
3220 for (a = st->arrays; a ; a = a->next) {
3221 dev = get_imsm_dev(super, a->info.container_member);
3222 for (i = 0; i < map->num_members; i++)
3223 if (victim == get_imsm_disk_idx(dev, i))
3224 found++;
3225 }
3226
3227 /* delete the victim if it is no longer being
3228 * utilized anywhere
3229 */
3230 if (!found) {
3231 struct dl **dlp;
3232
3233 /* We know that 'manager' isn't touching anything,
3234 * so it is safe to delete
3235 */
3236 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
3237 if ((*dlp)->index == victim)
3238 break;
3239
3240 /* victim may be on the missing list */
3241 if (!*dlp)
3242 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
3243 if ((*dlp)->index == victim)
3244 break;
3245 imsm_delete(super, dlp, victim);
3246 }
3247 break;
3248 }
3249 case update_create_array: {
3250 /* someone wants to create a new array, we need to be aware of
3251 * a few races/collisions:
3252 * 1/ 'Create' called by two separate instances of mdadm
3253 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
3254 * devices that have since been assimilated via
3255 * activate_spare.
3256 * In the event this update can not be carried out mdadm will
3257 * (FIX ME) notice that its update did not take hold.
3258 */
3259 struct imsm_update_create_array *u = (void *) update->buf;
3260 struct imsm_dev *dev;
3261 struct imsm_map *map, *new_map;
3262 unsigned long long start, end;
3263 unsigned long long new_start, new_end;
3264 int i;
3265 int overlap = 0;
3266
3267 /* handle racing creates: first come first serve */
3268 if (u->dev_idx < mpb->num_raid_devs) {
3269 dprintf("%s: subarray %d already defined\n",
3270 __func__, u->dev_idx);
3271 return;
3272 }
3273
3274 /* check update is next in sequence */
3275 if (u->dev_idx != mpb->num_raid_devs) {
3276 dprintf("%s: can not create array %d expected index %d\n",
3277 __func__, u->dev_idx, mpb->num_raid_devs);
3278 return;
3279 }
3280
3281 new_map = get_imsm_map(&u->dev, 0);
3282 new_start = __le32_to_cpu(new_map->pba_of_lba0);
3283 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
3284
3285 /* handle activate_spare versus create race:
3286 * check to make sure that overlapping arrays do not include
3287 * overalpping disks
3288 */
3289 for (i = 0; i < mpb->num_raid_devs; i++) {
3290 dev = get_imsm_dev(super, i);
3291 map = get_imsm_map(dev, 0);
3292 start = __le32_to_cpu(map->pba_of_lba0);
3293 end = start + __le32_to_cpu(map->blocks_per_member);
3294 if ((new_start >= start && new_start <= end) ||
3295 (start >= new_start && start <= new_end))
3296 overlap = 1;
3297 if (overlap && disks_overlap(dev, &u->dev)) {
3298 dprintf("%s: arrays overlap\n", __func__);
3299 return;
3300 }
3301 }
3302 /* check num_members sanity */
3303 if (new_map->num_members > mpb->num_disks) {
3304 dprintf("%s: num_disks out of range\n", __func__);
3305 return;
3306 }
3307
3308 /* check that prepare update was successful */
3309 if (!update->space) {
3310 dprintf("%s: prepare update failed\n", __func__);
3311 return;
3312 }
3313
3314 super->updates_pending++;
3315 dev = update->space;
3316 map = get_imsm_map(dev, 0);
3317 update->space = NULL;
3318 imsm_copy_dev(dev, &u->dev);
3319 map = get_imsm_map(dev, 0);
3320 super->dev_tbl[u->dev_idx] = dev;
3321 mpb->num_raid_devs++;
3322
3323 /* fix up flags */
3324 for (i = 0; i < map->num_members; i++) {
3325 struct imsm_disk *disk;
3326
3327 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
3328 disk->status |= CONFIGURED_DISK;
3329 disk->status &= ~SPARE_DISK;
3330 }
3331
3332 imsm_update_version_info(super);
3333
3334 break;
3335 }
3336 case update_add_disk:
3337
3338 /* we may be able to repair some arrays if disks are
3339 * being added */
3340 if (super->add) {
3341 struct active_array *a;
3342
3343 super->updates_pending++;
3344 for (a = st->arrays; a; a = a->next)
3345 a->check_degraded = 1;
3346 }
3347 /* add some spares to the metadata */
3348 while (super->add) {
3349 struct dl *al;
3350
3351 al = super->add;
3352 super->add = al->next;
3353 al->next = super->disks;
3354 super->disks = al;
3355 dprintf("%s: added %x:%x\n",
3356 __func__, al->major, al->minor);
3357 }
3358
3359 break;
3360 }
3361 }
3362
3363 static void imsm_prepare_update(struct supertype *st,
3364 struct metadata_update *update)
3365 {
3366 /**
3367 * Allocate space to hold new disk entries, raid-device entries or a new
3368 * mpb if necessary. The manager synchronously waits for updates to
3369 * complete in the monitor, so new mpb buffers allocated here can be
3370 * integrated by the monitor thread without worrying about live pointers
3371 * in the manager thread.
3372 */
3373 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
3374 struct intel_super *super = st->sb;
3375 struct imsm_super *mpb = super->anchor;
3376 size_t buf_len;
3377 size_t len = 0;
3378
3379 switch (type) {
3380 case update_create_array: {
3381 struct imsm_update_create_array *u = (void *) update->buf;
3382
3383 len = sizeof_imsm_dev(&u->dev, 1);
3384 update->space = malloc(len);
3385 break;
3386 default:
3387 break;
3388 }
3389 }
3390
3391 /* check if we need a larger metadata buffer */
3392 if (super->next_buf)
3393 buf_len = super->next_len;
3394 else
3395 buf_len = super->len;
3396
3397 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
3398 /* ok we need a larger buf than what is currently allocated
3399 * if this allocation fails process_update will notice that
3400 * ->next_len is set and ->next_buf is NULL
3401 */
3402 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
3403 if (super->next_buf)
3404 free(super->next_buf);
3405
3406 super->next_len = buf_len;
3407 if (posix_memalign(&super->next_buf, buf_len, 512) != 0)
3408 super->next_buf = NULL;
3409 }
3410 }
3411
3412 /* must be called while manager is quiesced */
3413 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
3414 {
3415 struct imsm_super *mpb = super->anchor;
3416 struct dl *iter;
3417 struct imsm_dev *dev;
3418 struct imsm_map *map;
3419 int i, j, num_members;
3420 __u32 ord;
3421
3422 dprintf("%s: deleting device[%d] from imsm_super\n",
3423 __func__, index);
3424
3425 /* shift all indexes down one */
3426 for (iter = super->disks; iter; iter = iter->next)
3427 if (iter->index > index)
3428 iter->index--;
3429 for (iter = super->missing; iter; iter = iter->next)
3430 if (iter->index > index)
3431 iter->index--;
3432
3433 for (i = 0; i < mpb->num_raid_devs; i++) {
3434 dev = get_imsm_dev(super, i);
3435 map = get_imsm_map(dev, 0);
3436 num_members = map->num_members;
3437 for (j = 0; j < num_members; j++) {
3438 /* update ord entries being careful not to propagate
3439 * ord-flags to the first map
3440 */
3441 ord = get_imsm_ord_tbl_ent(dev, j);
3442
3443 if (ord_to_idx(ord) <= index)
3444 continue;
3445
3446 map = get_imsm_map(dev, 0);
3447 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
3448 map = get_imsm_map(dev, 1);
3449 if (map)
3450 set_imsm_ord_tbl_ent(map, j, ord - 1);
3451 }
3452 }
3453
3454 mpb->num_disks--;
3455 super->updates_pending++;
3456 if (*dlp) {
3457 struct dl *dl = *dlp;
3458
3459 *dlp = (*dlp)->next;
3460 __free_imsm_disk(dl);
3461 }
3462 }
3463 #endif /* MDASSEMBLE */
3464
3465 struct superswitch super_imsm = {
3466 #ifndef MDASSEMBLE
3467 .examine_super = examine_super_imsm,
3468 .brief_examine_super = brief_examine_super_imsm,
3469 .detail_super = detail_super_imsm,
3470 .brief_detail_super = brief_detail_super_imsm,
3471 .write_init_super = write_init_super_imsm,
3472 .validate_geometry = validate_geometry_imsm,
3473 .add_to_super = add_to_super_imsm,
3474 #endif
3475 .match_home = match_home_imsm,
3476 .uuid_from_super= uuid_from_super_imsm,
3477 .getinfo_super = getinfo_super_imsm,
3478 .update_super = update_super_imsm,
3479
3480 .avail_size = avail_size_imsm,
3481
3482 .compare_super = compare_super_imsm,
3483
3484 .load_super = load_super_imsm,
3485 .init_super = init_super_imsm,
3486 .store_super = store_zero_imsm,
3487 .free_super = free_super_imsm,
3488 .match_metadata_desc = match_metadata_desc_imsm,
3489 .container_content = container_content_imsm,
3490
3491 .external = 1,
3492
3493 #ifndef MDASSEMBLE
3494 /* for mdmon */
3495 .open_new = imsm_open_new,
3496 .load_super = load_super_imsm,
3497 .set_array_state= imsm_set_array_state,
3498 .set_disk = imsm_set_disk,
3499 .sync_metadata = imsm_sync_metadata,
3500 .activate_spare = imsm_activate_spare,
3501 .process_update = imsm_process_update,
3502 .prepare_update = imsm_prepare_update,
3503 #endif /* MDASSEMBLE */
3504 };