]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: debug environment variable to use 'device name' as 'serial number'
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2007 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "mdadm.h"
21 #include "mdmon.h"
22 #include <values.h>
23 #include <scsi/sg.h>
24 #include <ctype.h>
25
26 /* MPB == Metadata Parameter Block */
27 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
28 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
29 #define MPB_VERSION_RAID0 "1.0.00"
30 #define MPB_VERSION_RAID1 "1.1.00"
31 #define MPB_VERSION_RAID5 "1.2.02"
32 #define MAX_SIGNATURE_LENGTH 32
33 #define MAX_RAID_SERIAL_LEN 16
34 #define MPB_SECTOR_CNT 418
35 #define IMSM_RESERVED_SECTORS 4096
36
37 /* Disk configuration info. */
38 #define IMSM_MAX_DEVICES 255
39 struct imsm_disk {
40 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
41 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
42 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
43 __u32 status; /* 0xF0 - 0xF3 */
44 #define SPARE_DISK 0x01 /* Spare */
45 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
46 #define FAILED_DISK 0x04 /* Permanent failure */
47 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
48
49 #define IMSM_DISK_FILLERS 5
50 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
51 };
52
53 /* RAID map configuration infos. */
54 struct imsm_map {
55 __u32 pba_of_lba0; /* start address of partition */
56 __u32 blocks_per_member;/* blocks per member */
57 __u32 num_data_stripes; /* number of data stripes */
58 __u16 blocks_per_strip;
59 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
60 #define IMSM_T_STATE_NORMAL 0
61 #define IMSM_T_STATE_UNINITIALIZED 1
62 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
63 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
64 __u8 raid_level;
65 #define IMSM_T_RAID0 0
66 #define IMSM_T_RAID1 1
67 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
68 __u8 num_members; /* number of member disks */
69 __u8 reserved[3];
70 __u32 filler[7]; /* expansion area */
71 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
72 top byte special */
73 } __attribute__ ((packed));
74
75 struct imsm_vol {
76 __u32 reserved[2];
77 __u8 migr_state; /* Normal or Migrating */
78 __u8 migr_type; /* Initializing, Rebuilding, ... */
79 __u8 dirty;
80 __u8 fill[1];
81 __u32 filler[5];
82 struct imsm_map map[1];
83 /* here comes another one if migr_state */
84 } __attribute__ ((packed));
85
86 struct imsm_dev {
87 __u8 volume[MAX_RAID_SERIAL_LEN];
88 __u32 size_low;
89 __u32 size_high;
90 __u32 status; /* Persistent RaidDev status */
91 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
92 #define IMSM_DEV_FILLERS 12
93 __u32 filler[IMSM_DEV_FILLERS];
94 struct imsm_vol vol;
95 } __attribute__ ((packed));
96
97 struct imsm_super {
98 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
99 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
100 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
101 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
102 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
103 __u32 reserved[2]; /* 0x30 - 0x37 */
104 __u8 num_disks; /* 0x38 Number of configured disks */
105 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
106 __u8 fill[2]; /* 0x3A - 0x3B */
107 #define IMSM_FILLERS 39
108 __u32 filler[IMSM_FILLERS]; /* 0x3C - 0xD7 RAID_MPB_FILLERS */
109 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
110 /* here comes imsm_dev[num_raid_devs] */
111 } __attribute__ ((packed));
112
113 #ifndef MDASSEMBLE
114 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
115 #endif
116
117 static unsigned int sector_count(__u32 bytes)
118 {
119 return ((bytes + (512-1)) & (~(512-1))) / 512;
120 }
121
122 static unsigned int mpb_sectors(struct imsm_super *mpb)
123 {
124 return sector_count(__le32_to_cpu(mpb->mpb_size));
125 }
126
127 /* internal representation of IMSM metadata */
128 struct intel_super {
129 union {
130 struct imsm_super *mpb;
131 void *buf;
132 };
133 int updates_pending; /* count of pending updates for mdmon */
134 int creating_imsm; /* flag to indicate container creation */
135 int current_vol; /* index of raid device undergoing creation */
136 struct dl {
137 struct dl *next;
138 int index;
139 __u8 serial[MAX_RAID_SERIAL_LEN];
140 int major, minor;
141 char *devname;
142 int fd;
143 } *disks;
144 };
145
146 struct extent {
147 unsigned long long start, size;
148 };
149
150 /* definition of messages passed to imsm_process_update */
151 enum imsm_update_type {
152 update_activate_spare,
153 update_create_array,
154 };
155
156 struct imsm_update_activate_spare {
157 enum imsm_update_type type;
158 int disk_idx;
159 int slot;
160 int array;
161 struct imsm_update_activate_spare *next;
162 };
163
164 struct imsm_update_create_array {
165 enum imsm_update_type type;
166 struct imsm_dev dev;
167 int dev_idx;
168 };
169
170 static int imsm_env_devname_as_serial(void)
171 {
172 char *val = getenv("IMSM_DEVNAME_AS_SERIAL");
173
174 if (val && atoi(val) == 1)
175 return 1;
176
177 return 0;
178 }
179
180
181 static struct supertype *match_metadata_desc_imsm(char *arg)
182 {
183 struct supertype *st;
184
185 if (strcmp(arg, "imsm") != 0 &&
186 strcmp(arg, "default") != 0
187 )
188 return NULL;
189
190 st = malloc(sizeof(*st));
191 memset(st, 0, sizeof(*st));
192 st->ss = &super_imsm;
193 st->max_devs = IMSM_MAX_DEVICES;
194 st->minor_version = 0;
195 st->sb = NULL;
196 return st;
197 }
198
199 static __u8 *get_imsm_version(struct imsm_super *mpb)
200 {
201 return &mpb->sig[MPB_SIG_LEN];
202 }
203
204 static struct imsm_disk *get_imsm_disk(struct imsm_super *mpb, __u8 index)
205 {
206 if (index > mpb->num_disks - 1)
207 return NULL;
208 return &mpb->disk[index];
209 }
210
211 static __u32 gen_imsm_checksum(struct imsm_super *mpb)
212 {
213 __u32 end = mpb->mpb_size / sizeof(end);
214 __u32 *p = (__u32 *) mpb;
215 __u32 sum = 0;
216
217 while (end--)
218 sum += __le32_to_cpu(*p++);
219
220 return sum - __le32_to_cpu(mpb->check_sum);
221 }
222
223 static size_t sizeof_imsm_dev(struct imsm_dev *dev)
224 {
225 size_t size = sizeof(*dev);
226
227 /* each map has disk_ord_tbl[num_members - 1] additional space */
228 size += sizeof(__u32) * (dev->vol.map[0].num_members - 1);
229
230 /* migrating means an additional map */
231 if (dev->vol.migr_state) {
232 size += sizeof(struct imsm_map);
233 size += sizeof(__u32) * (dev->vol.map[1].num_members - 1);
234 }
235
236 return size;
237 }
238
239 static struct imsm_dev *get_imsm_dev(struct imsm_super *mpb, __u8 index)
240 {
241 int offset;
242 int i;
243 void *_mpb = mpb;
244
245 if (index > mpb->num_raid_devs - 1)
246 return NULL;
247
248 /* devices start after all disks */
249 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
250
251 for (i = 0; i <= index; i++)
252 if (i == index)
253 return _mpb + offset;
254 else
255 offset += sizeof_imsm_dev(_mpb + offset);
256
257 return NULL;
258 }
259
260 static __u32 get_imsm_disk_idx(struct imsm_map *map, int slot)
261 {
262 __u32 *ord_tbl = &map->disk_ord_tbl[slot];
263
264 /* top byte is 'special' */
265 return __le32_to_cpu(*ord_tbl & ~(0xff << 24));
266 }
267
268 static int get_imsm_raid_level(struct imsm_map *map)
269 {
270 if (map->raid_level == 1) {
271 if (map->num_members == 2)
272 return 1;
273 else
274 return 10;
275 }
276
277 return map->raid_level;
278 }
279
280 static int cmp_extent(const void *av, const void *bv)
281 {
282 const struct extent *a = av;
283 const struct extent *b = bv;
284 if (a->start < b->start)
285 return -1;
286 if (a->start > b->start)
287 return 1;
288 return 0;
289 }
290
291 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
292 {
293 /* find a list of used extents on the given physical device */
294 struct imsm_super *mpb = super->mpb;
295 struct imsm_disk *disk;
296 struct extent *rv, *e;
297 int i, j;
298 int memberships = 0;
299
300 disk = get_imsm_disk(mpb, dl->index);
301 if (!disk)
302 return NULL;
303
304 for (i = 0; i < mpb->num_raid_devs; i++) {
305 struct imsm_dev *dev = get_imsm_dev(mpb, i);
306 struct imsm_map *map = dev->vol.map;
307
308 for (j = 0; j < map->num_members; j++) {
309 __u32 index = get_imsm_disk_idx(map, j);
310
311 if (index == dl->index)
312 memberships++;
313 }
314 }
315 rv = malloc(sizeof(struct extent) * (memberships + 1));
316 if (!rv)
317 return NULL;
318 e = rv;
319
320 for (i = 0; i < mpb->num_raid_devs; i++) {
321 struct imsm_dev *dev = get_imsm_dev(mpb, i);
322 struct imsm_map *map = dev->vol.map;
323
324 for (j = 0; j < map->num_members; j++) {
325 __u32 index = get_imsm_disk_idx(map, j);
326
327 if (index == dl->index) {
328 e->start = __le32_to_cpu(map->pba_of_lba0);
329 e->size = __le32_to_cpu(map->blocks_per_member);
330 e++;
331 }
332 }
333 }
334 qsort(rv, memberships, sizeof(*rv), cmp_extent);
335
336 e->start = __le32_to_cpu(disk->total_blocks) -
337 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
338 e->size = 0;
339 return rv;
340 }
341
342 #ifndef MDASSEMBLE
343 static void print_imsm_dev(struct imsm_dev *dev, int index)
344 {
345 __u64 sz;
346 int slot;
347 struct imsm_map *map = dev->vol.map;
348
349 printf("\n");
350 printf("[%s]:\n", dev->volume);
351 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
352 printf(" Members : %d\n", map->num_members);
353 for (slot = 0; slot < map->num_members; slot++)
354 if (index == get_imsm_disk_idx(map, slot))
355 break;
356 if (slot < map->num_members)
357 printf(" This Slot : %d\n", slot);
358 else
359 printf(" This Slot : ?\n");
360 sz = __le32_to_cpu(dev->size_high);
361 sz <<= 32;
362 sz += __le32_to_cpu(dev->size_low);
363 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
364 human_size(sz * 512));
365 sz = __le32_to_cpu(map->blocks_per_member);
366 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
367 human_size(sz * 512));
368 printf(" Sector Offset : %u\n",
369 __le32_to_cpu(map->pba_of_lba0));
370 printf(" Num Stripes : %u\n",
371 __le32_to_cpu(map->num_data_stripes));
372 printf(" Chunk Size : %u KiB\n",
373 __le16_to_cpu(map->blocks_per_strip) / 2);
374 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
375 printf(" Migrate State : %s\n", dev->vol.migr_state ? "migrating" : "idle");
376 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
377 printf(" Map State : %s\n", map_state_str[map->map_state]);
378 }
379
380 static void print_imsm_disk(struct imsm_super *mpb, int index)
381 {
382 struct imsm_disk *disk = get_imsm_disk(mpb, index);
383 char str[MAX_RAID_SERIAL_LEN];
384 __u32 s;
385 __u64 sz;
386
387 if (index < 0)
388 return;
389
390 printf("\n");
391 snprintf(str, MAX_RAID_SERIAL_LEN, "%s", disk->serial);
392 printf(" Disk%02d Serial : %s\n", index, str);
393 s = __le32_to_cpu(disk->status);
394 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
395 s&CONFIGURED_DISK ? " active" : "",
396 s&FAILED_DISK ? " failed" : "",
397 s&USABLE_DISK ? " usable" : "");
398 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
399 sz = __le32_to_cpu(disk->total_blocks) -
400 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS * mpb->num_raid_devs);
401 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
402 human_size(sz * 512));
403 }
404
405 static void examine_super_imsm(struct supertype *st, char *homehost)
406 {
407 struct intel_super *super = st->sb;
408 struct imsm_super *mpb = super->mpb;
409 char str[MAX_SIGNATURE_LENGTH];
410 int i;
411 __u32 sum;
412
413 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
414 printf(" Magic : %s\n", str);
415 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
416 printf(" Version : %s\n", get_imsm_version(mpb));
417 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
418 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
419 sum = __le32_to_cpu(mpb->check_sum);
420 printf(" Checksum : %08x %s\n", sum,
421 gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
422 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
423 printf(" Disks : %d\n", mpb->num_disks);
424 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
425 print_imsm_disk(mpb, super->disks->index);
426 for (i = 0; i < mpb->num_raid_devs; i++)
427 print_imsm_dev(get_imsm_dev(mpb, i), super->disks->index);
428 for (i = 0; i < mpb->num_disks; i++) {
429 if (i == super->disks->index)
430 continue;
431 print_imsm_disk(mpb, i);
432 }
433 }
434
435 static void brief_examine_super_imsm(struct supertype *st)
436 {
437 struct intel_super *super = st->sb;
438 struct imsm_super *mpb = super->mpb;
439
440 printf("ARRAY /dev/imsm family=%08x metadata=external:imsm\n",
441 __le32_to_cpu(mpb->family_num));
442 }
443
444 static void detail_super_imsm(struct supertype *st, char *homehost)
445 {
446 printf("%s\n", __FUNCTION__);
447 }
448
449 static void brief_detail_super_imsm(struct supertype *st)
450 {
451 printf("%s\n", __FUNCTION__);
452 }
453 #endif
454
455 static int match_home_imsm(struct supertype *st, char *homehost)
456 {
457 printf("%s\n", __FUNCTION__);
458
459 return 0;
460 }
461
462 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
463 {
464 printf("%s\n", __FUNCTION__);
465 }
466
467 #if 0
468 static void
469 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
470 {
471 __u8 *v = get_imsm_version(mpb);
472 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
473 char major[] = { 0, 0, 0 };
474 char minor[] = { 0 ,0, 0 };
475 char patch[] = { 0, 0, 0 };
476 char *ver_parse[] = { major, minor, patch };
477 int i, j;
478
479 i = j = 0;
480 while (*v != '\0' && v < end) {
481 if (*v != '.' && j < 2)
482 ver_parse[i][j++] = *v;
483 else {
484 i++;
485 j = 0;
486 }
487 v++;
488 }
489
490 *m = strtol(minor, NULL, 0);
491 *p = strtol(patch, NULL, 0);
492 }
493 #endif
494
495 static int imsm_level_to_layout(int level)
496 {
497 switch (level) {
498 case 0:
499 case 1:
500 return 0;
501 case 5:
502 case 6:
503 return ALGORITHM_LEFT_SYMMETRIC;
504 case 10:
505 return 0x102; //FIXME is this correct?
506 }
507 return -1;
508 }
509
510 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
511 {
512 struct intel_super *super = st->sb;
513 struct imsm_super *mpb = super->mpb;
514 struct imsm_dev *dev = get_imsm_dev(mpb, super->current_vol);
515 struct imsm_map *map = &dev->vol.map[0];
516
517 info->container_member = super->current_vol;
518 info->array.raid_disks = map->num_members;
519 info->array.level = get_imsm_raid_level(map);
520 info->array.layout = imsm_level_to_layout(info->array.level);
521 info->array.md_minor = -1;
522 info->array.ctime = 0;
523 info->array.utime = 0;
524 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip * 512);
525
526 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
527 info->component_size = __le32_to_cpu(map->blocks_per_member);
528
529 info->disk.major = 0;
530 info->disk.minor = 0;
531
532 sprintf(info->text_version, "/%s/%d",
533 devnum2devname(st->container_dev),
534 info->container_member);
535 }
536
537
538 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
539 {
540 struct intel_super *super = st->sb;
541 struct imsm_super *mpb = super->mpb;
542 struct imsm_disk *disk;
543 __u32 s;
544
545 if (super->current_vol >= 0) {
546 getinfo_super_imsm_volume(st, info);
547 return;
548 }
549 info->array.raid_disks = mpb->num_disks;
550 info->array.level = LEVEL_CONTAINER;
551 info->array.layout = 0;
552 info->array.md_minor = -1;
553 info->array.ctime = 0; /* N/A for imsm */
554 info->array.utime = 0;
555 info->array.chunk_size = 0;
556
557 info->disk.major = 0;
558 info->disk.minor = 0;
559 info->disk.raid_disk = -1;
560 info->reshape_active = 0;
561 strcpy(info->text_version, "imsm");
562 info->disk.number = -1;
563 info->disk.state = 0;
564
565 if (super->disks) {
566 disk = get_imsm_disk(mpb, super->disks->index);
567 if (!disk) {
568 info->disk.number = -1;
569 info->disk.raid_disk = -1;
570 return;
571 }
572 info->disk.number = super->disks->index;
573 info->disk.raid_disk = super->disks->index;
574 info->data_offset = __le32_to_cpu(disk->total_blocks) -
575 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
576 info->component_size = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
577 s = __le32_to_cpu(disk->status);
578 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
579 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
580 info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
581 }
582 }
583
584 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
585 char *update, char *devname, int verbose,
586 int uuid_set, char *homehost)
587 {
588 /* FIXME */
589
590 /* For 'assemble' and 'force' we need to return non-zero if any
591 * change was made. For others, the return value is ignored.
592 * Update options are:
593 * force-one : This device looks a bit old but needs to be included,
594 * update age info appropriately.
595 * assemble: clear any 'faulty' flag to allow this device to
596 * be assembled.
597 * force-array: Array is degraded but being forced, mark it clean
598 * if that will be needed to assemble it.
599 *
600 * newdev: not used ????
601 * grow: Array has gained a new device - this is currently for
602 * linear only
603 * resync: mark as dirty so a resync will happen.
604 * name: update the name - preserving the homehost
605 *
606 * Following are not relevant for this imsm:
607 * sparc2.2 : update from old dodgey metadata
608 * super-minor: change the preferred_minor number
609 * summaries: update redundant counters.
610 * uuid: Change the uuid of the array to match watch is given
611 * homehost: update the recorded homehost
612 * _reshape_progress: record new reshape_progress position.
613 */
614 int rv = 0;
615 //struct intel_super *super = st->sb;
616 //struct imsm_super *mpb = super->mpb;
617
618 if (strcmp(update, "grow") == 0) {
619 }
620 if (strcmp(update, "resync") == 0) {
621 /* dev->vol.dirty = 1; */
622 }
623
624 /* IMSM has no concept of UUID or homehost */
625
626 return rv;
627 }
628
629 static size_t disks_to_mpb_size(int disks)
630 {
631 size_t size;
632
633 size = sizeof(struct imsm_super);
634 size += (disks - 1) * sizeof(struct imsm_disk);
635 size += 2 * sizeof(struct imsm_dev);
636 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
637 size += (4 - 2) * sizeof(struct imsm_map);
638 /* 4 possible disk_ord_tbl's */
639 size += 4 * (disks - 1) * sizeof(__u32);
640
641 return size;
642 }
643
644 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
645 {
646 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
647 return 0;
648
649 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
650 }
651
652 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
653 {
654 /*
655 * return:
656 * 0 same, or first was empty, and second was copied
657 * 1 second had wrong number
658 * 2 wrong uuid
659 * 3 wrong other info
660 */
661 struct intel_super *first = st->sb;
662 struct intel_super *sec = tst->sb;
663
664 if (!first) {
665 st->sb = tst->sb;
666 tst->sb = NULL;
667 return 0;
668 }
669
670 if (memcmp(first->mpb->sig, sec->mpb->sig, MAX_SIGNATURE_LENGTH) != 0)
671 return 3;
672 if (first->mpb->family_num != sec->mpb->family_num)
673 return 3;
674 if (first->mpb->mpb_size != sec->mpb->mpb_size)
675 return 3;
676 if (first->mpb->check_sum != sec->mpb->check_sum)
677 return 3;
678
679 return 0;
680 }
681
682 static void fd2devname(int fd, char *name)
683 {
684 struct stat st;
685 char path[256];
686 char dname[100];
687 char *nm;
688 int rv;
689
690 name[0] = '\0';
691 if (fstat(fd, &st) != 0)
692 return;
693 sprintf(path, "/sys/dev/block/%d:%d",
694 major(st.st_rdev), minor(st.st_rdev));
695
696 rv = readlink(path, dname, sizeof(dname));
697 if (rv <= 0)
698 return;
699
700 dname[rv] = '\0';
701 nm = strrchr(dname, '/');
702 nm++;
703 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
704 }
705
706
707 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
708
709 static int imsm_read_serial(int fd, char *devname,
710 __u8 serial[MAX_RAID_SERIAL_LEN])
711 {
712 unsigned char scsi_serial[255];
713 int sg_fd;
714 int rv;
715 int rsp_len;
716 int i, cnt;
717
718 memset(scsi_serial, 0, sizeof(scsi_serial));
719
720 sg_fd = sysfs_disk_to_sg(fd);
721 if (sg_fd < 0) {
722 if (devname)
723 fprintf(stderr,
724 Name ": Failed to open sg interface for %s: %s\n",
725 devname, strerror(errno));
726 return 1;
727 }
728
729 if (imsm_env_devname_as_serial()) {
730 char name[MAX_RAID_SERIAL_LEN];
731
732 fd2devname(fd, name);
733 strcpy((char *) serial, name);
734 return 0;
735 }
736
737 rv = scsi_get_serial(sg_fd, scsi_serial, sizeof(scsi_serial));
738 close(sg_fd);
739
740 if (rv != 0) {
741 if (devname)
742 fprintf(stderr,
743 Name ": Failed to retrieve serial for %s\n",
744 devname);
745 return rv;
746 }
747
748 rsp_len = scsi_serial[3];
749 for (i = 0, cnt = 0; i < rsp_len; i++) {
750 if (!isspace(scsi_serial[4 + i]))
751 serial[cnt++] = scsi_serial[4 + i];
752 if (cnt == MAX_RAID_SERIAL_LEN)
753 break;
754 }
755
756 serial[MAX_RAID_SERIAL_LEN - 1] = '\0';
757
758 return 0;
759 }
760
761 static int
762 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
763 {
764 struct imsm_super *mpb = super->mpb;
765 struct dl *dl;
766 struct stat stb;
767 struct imsm_disk *disk;
768 int rv;
769 int i;
770
771 dl = malloc(sizeof(*dl));
772 if (!dl) {
773 if (devname)
774 fprintf(stderr,
775 Name ": failed to allocate disk buffer for %s\n",
776 devname);
777 return 2;
778 }
779 memset(dl, 0, sizeof(*dl));
780
781 fstat(fd, &stb);
782 dl->major = major(stb.st_rdev);
783 dl->minor = minor(stb.st_rdev);
784 dl->next = super->disks;
785 dl->fd = keep_fd ? fd : -1;
786 dl->devname = devname ? strdup(devname) : NULL;
787 dl->index = -1;
788 super->disks = dl;
789 rv = imsm_read_serial(fd, devname, dl->serial);
790
791 if (rv != 0)
792 return 2;
793
794 /* look up this disk's index */
795 for (i = 0; i < mpb->num_disks; i++) {
796 disk = get_imsm_disk(mpb, i);
797
798 if (memcmp(disk->serial, dl->serial, MAX_RAID_SERIAL_LEN) == 0)
799 break;
800 }
801
802 if (i > mpb->num_disks - 1) {
803 if (devname)
804 fprintf(stderr,
805 Name ": failed to match serial \'%s\' for %s\n",
806 dl->serial, devname);
807 return 0;
808 }
809
810 dl->index = i;
811
812 return 0;
813 }
814
815 /* load_imsm_mpb - read matrix metadata
816 * allocates super->mpb to be freed by free_super
817 */
818 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
819 {
820 unsigned long long dsize;
821 size_t len, mpb_size;
822 unsigned long long sectors;
823 struct stat;
824 struct imsm_super *anchor;
825 __u32 check_sum;
826
827 get_dev_size(fd, NULL, &dsize);
828
829 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
830 if (devname)
831 fprintf(stderr,
832 Name ": Cannot seek to anchor block on %s: %s\n",
833 devname, strerror(errno));
834 return 1;
835 }
836
837 len = 512;
838 if (posix_memalign((void**)&anchor, 512, len) != 0) {
839 if (devname)
840 fprintf(stderr,
841 Name ": Failed to allocate imsm anchor buffer"
842 " on %s\n", devname);
843 return 1;
844 }
845 if (read(fd, anchor, len) != len) {
846 if (devname)
847 fprintf(stderr,
848 Name ": Cannot read anchor block on %s: %s\n",
849 devname, strerror(errno));
850 free(anchor);
851 return 1;
852 }
853
854 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
855 if (devname)
856 fprintf(stderr,
857 Name ": no IMSM anchor on %s\n", devname);
858 free(anchor);
859 return 2;
860 }
861
862 mpb_size = __le32_to_cpu(anchor->mpb_size);
863 mpb_size = ROUND_UP(mpb_size, 512);
864 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
865 if (devname)
866 fprintf(stderr,
867 Name ": unable to allocate %zu byte mpb buffer\n",
868 mpb_size);
869 free(anchor);
870 return 2;
871 }
872 memcpy(super->buf, anchor, len);
873
874 sectors = mpb_sectors(anchor) - 1;
875 free(anchor);
876 if (!sectors)
877 return load_imsm_disk(fd, super, devname, 0);
878
879 /* read the extended mpb */
880 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
881 if (devname)
882 fprintf(stderr,
883 Name ": Cannot seek to extended mpb on %s: %s\n",
884 devname, strerror(errno));
885 return 1;
886 }
887
888 len = mpb_size - 512;
889 if (read(fd, super->buf + 512, len) != len) {
890 if (devname)
891 fprintf(stderr,
892 Name ": Cannot read extended mpb on %s: %s\n",
893 devname, strerror(errno));
894 return 2;
895 }
896
897 check_sum = gen_imsm_checksum(super->mpb);
898 if (check_sum != __le32_to_cpu(super->mpb->check_sum)) {
899 if (devname)
900 fprintf(stderr,
901 Name ": IMSM checksum %x != %x on %s\n",
902 check_sum, __le32_to_cpu(super->mpb->check_sum),
903 devname);
904 return 2;
905 }
906
907 return load_imsm_disk(fd, super, devname, 0);
908 }
909
910 static void free_imsm_disks(struct intel_super *super)
911 {
912 while (super->disks) {
913 struct dl *d = super->disks;
914
915 super->disks = d->next;
916 if (d->fd >= 0)
917 close(d->fd);
918 if (d->devname)
919 free(d->devname);
920 free(d);
921 }
922 }
923
924 static void free_imsm(struct intel_super *super)
925 {
926 if (super->mpb)
927 free(super->mpb);
928 free_imsm_disks(super);
929 free(super);
930 }
931
932
933 static void free_super_imsm(struct supertype *st)
934 {
935 struct intel_super *super = st->sb;
936
937 if (!super)
938 return;
939
940 free_imsm(super);
941 st->sb = NULL;
942 }
943
944 static struct intel_super *alloc_super(int creating_imsm)
945 {
946 struct intel_super *super = malloc(sizeof(*super));
947
948 if (super) {
949 memset(super, 0, sizeof(*super));
950 super->creating_imsm = creating_imsm;
951 super->current_vol = -1;
952 }
953
954 return super;
955 }
956
957 #ifndef MDASSEMBLE
958 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
959 char *devname, int keep_fd)
960 {
961 struct mdinfo *sra;
962 struct intel_super *super;
963 struct mdinfo *sd, *best = NULL;
964 __u32 bestgen = 0;
965 __u32 gen;
966 char nm[20];
967 int dfd;
968 int rv;
969
970 /* check if this disk is a member of an active array */
971 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
972 if (!sra)
973 return 1;
974
975 if (sra->array.major_version != -1 ||
976 sra->array.minor_version != -2 ||
977 strcmp(sra->text_version, "imsm") != 0)
978 return 1;
979
980 super = alloc_super(0);
981 if (!super)
982 return 1;
983
984 /* find the most up to date disk in this array */
985 for (sd = sra->devs; sd; sd = sd->next) {
986 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
987 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
988 if (!dfd) {
989 free_imsm(super);
990 return 2;
991 }
992 rv = load_imsm_mpb(dfd, super, NULL);
993 if (!keep_fd)
994 close(dfd);
995 if (rv == 0) {
996 gen = __le32_to_cpu(super->mpb->generation_num);
997 if (!best || gen > bestgen) {
998 bestgen = gen;
999 best = sd;
1000 }
1001 } else {
1002 free_imsm(super);
1003 return 2;
1004 }
1005 }
1006
1007 if (!best) {
1008 free_imsm(super);
1009 return 1;
1010 }
1011
1012 /* load the most up to date anchor */
1013 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1014 dfd = dev_open(nm, O_RDONLY);
1015 if (!dfd) {
1016 free_imsm(super);
1017 return 1;
1018 }
1019 rv = load_imsm_mpb(dfd, super, NULL);
1020 close(dfd);
1021 if (rv != 0) {
1022 free_imsm(super);
1023 return 2;
1024 }
1025
1026 /* reset the disk list */
1027 free_imsm_disks(super);
1028
1029 /* populate disk list */
1030 for (sd = sra->devs ; sd ; sd = sd->next) {
1031 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1032 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1033 if (!dfd) {
1034 free_imsm(super);
1035 return 2;
1036 }
1037 load_imsm_disk(dfd, super, NULL, keep_fd);
1038 if (!keep_fd)
1039 close(dfd);
1040 }
1041
1042 if (st->subarray[0]) {
1043 if (atoi(st->subarray) <= super->mpb->num_raid_devs)
1044 super->current_vol = atoi(st->subarray);
1045 else
1046 return 1;
1047 }
1048
1049 *sbp = super;
1050 if (st->ss == NULL) {
1051 st->ss = &super_imsm;
1052 st->minor_version = 0;
1053 st->max_devs = IMSM_MAX_DEVICES;
1054 st->container_dev = fd2devnum(fd);
1055 }
1056
1057 return 0;
1058 }
1059 #endif
1060
1061 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1062 {
1063 struct intel_super *super;
1064 int rv;
1065
1066 #ifndef MDASSEMBLE
1067 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1068 return 0;
1069 #endif
1070 if (st->subarray[0])
1071 return 1; /* FIXME */
1072
1073 super = alloc_super(0);
1074 if (!super) {
1075 fprintf(stderr,
1076 Name ": malloc of %zu failed.\n",
1077 sizeof(*super));
1078 return 1;
1079 }
1080
1081 rv = load_imsm_mpb(fd, super, devname);
1082
1083 if (rv) {
1084 if (devname)
1085 fprintf(stderr,
1086 Name ": Failed to load all information "
1087 "sections on %s\n", devname);
1088 free_imsm(super);
1089 return rv;
1090 }
1091
1092 st->sb = super;
1093 if (st->ss == NULL) {
1094 st->ss = &super_imsm;
1095 st->minor_version = 0;
1096 st->max_devs = IMSM_MAX_DEVICES;
1097 }
1098
1099 return 0;
1100 }
1101
1102 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1103 {
1104 if (info->level == 1)
1105 return 128;
1106 return info->chunk_size >> 9;
1107 }
1108
1109 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1110 {
1111 __u32 num_stripes;
1112
1113 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1114 if (info->level == 1)
1115 num_stripes /= 2;
1116
1117 return num_stripes;
1118 }
1119
1120 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1121 unsigned long long size, char *name,
1122 char *homehost, int *uuid)
1123 {
1124 /* We are creating a volume inside a pre-existing container.
1125 * so st->sb is already set.
1126 */
1127 struct intel_super *super = st->sb;
1128 struct imsm_super *mpb = super->mpb;
1129 struct imsm_dev *dev;
1130 struct imsm_vol *vol;
1131 struct imsm_map *map;
1132 int idx = mpb->num_raid_devs;
1133 int i;
1134 unsigned long long array_blocks;
1135 __u32 offset = 0;
1136 size_t size_old, size_new;
1137
1138 if (mpb->num_raid_devs >= 2) {
1139 fprintf(stderr, Name": This imsm-container already has the "
1140 "maximum of 2 volumes\n");
1141 return 0;
1142 }
1143
1144 /* ensure the mpb is large enough for the new data */
1145 size_old = __le32_to_cpu(mpb->mpb_size);
1146 size_new = disks_to_mpb_size(info->nr_disks);
1147 if (size_new > size_old) {
1148 void *mpb_new;
1149 size_t size_round = ROUND_UP(size_new, 512);
1150
1151 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1152 fprintf(stderr, Name": could not allocate new mpb\n");
1153 return 0;
1154 }
1155 memcpy(mpb_new, mpb, size_old);
1156 free(mpb);
1157 mpb = mpb_new;
1158 super->mpb = mpb_new;
1159 mpb->mpb_size = __cpu_to_le32(size_new);
1160 memset(mpb_new + size_old, 0, size_round - size_old);
1161 }
1162 super->current_vol = idx;
1163 sprintf(st->subarray, "%d", idx);
1164 mpb->num_raid_devs++;
1165 dev = get_imsm_dev(mpb, idx);
1166 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1167 array_blocks = calc_array_size(info->level, info->raid_disks,
1168 info->layout, info->chunk_size,
1169 info->size*2);
1170 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1171 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1172 dev->status = __cpu_to_le32(0);
1173 dev->reserved_blocks = __cpu_to_le32(0);
1174 vol = &dev->vol;
1175 vol->migr_state = 0;
1176 vol->migr_type = 0;
1177 vol->dirty = 0;
1178 for (i = 0; i < idx; i++) {
1179 struct imsm_dev *prev = get_imsm_dev(mpb, i);
1180 struct imsm_map *pmap = &prev->vol.map[0];
1181
1182 offset += __le32_to_cpu(pmap->blocks_per_member);
1183 offset += IMSM_RESERVED_SECTORS;
1184 }
1185 map = &vol->map[0];
1186 map->pba_of_lba0 = __cpu_to_le32(offset);
1187 map->blocks_per_member = __cpu_to_le32(info->size * 2);
1188 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1189 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1190 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1191 IMSM_T_STATE_NORMAL;
1192
1193 if (info->level == 1 && info->raid_disks > 2) {
1194 fprintf(stderr, Name": imsm does not support more than 2 disks"
1195 "in a raid1 volume\n");
1196 return 0;
1197 }
1198 if (info->level == 10)
1199 map->raid_level = 1;
1200 else
1201 map->raid_level = info->level;
1202
1203 map->num_members = info->raid_disks;
1204 for (i = 0; i < map->num_members; i++) {
1205 /* initialized in add_to_super */
1206 map->disk_ord_tbl[i] = __cpu_to_le32(0);
1207 }
1208
1209 return 1;
1210 }
1211
1212 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1213 unsigned long long size, char *name,
1214 char *homehost, int *uuid)
1215 {
1216 /* This is primarily called by Create when creating a new array.
1217 * We will then get add_to_super called for each component, and then
1218 * write_init_super called to write it out to each device.
1219 * For IMSM, Create can create on fresh devices or on a pre-existing
1220 * array.
1221 * To create on a pre-existing array a different method will be called.
1222 * This one is just for fresh drives.
1223 */
1224 struct intel_super *super;
1225 struct imsm_super *mpb;
1226 size_t mpb_size;
1227
1228 if (!info) {
1229 st->sb = NULL;
1230 return 0;
1231 }
1232 if (st->sb)
1233 return init_super_imsm_volume(st, info, size, name, homehost,
1234 uuid);
1235
1236 super = alloc_super(1);
1237 if (!super)
1238 return 0;
1239 mpb_size = disks_to_mpb_size(info->nr_disks);
1240 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1241 free(super);
1242 return 0;
1243 }
1244 mpb = super->buf;
1245 memset(mpb, 0, mpb_size);
1246
1247 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1248 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1249 strlen(MPB_VERSION_RAID5));
1250 mpb->mpb_size = mpb_size;
1251
1252 st->sb = super;
1253 return 1;
1254 }
1255
1256 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1257 int fd, char *devname)
1258 {
1259 struct intel_super *super = st->sb;
1260 struct imsm_super *mpb = super->mpb;
1261 struct dl *dl;
1262 struct imsm_dev *dev;
1263 struct imsm_map *map;
1264 struct imsm_disk *disk;
1265 __u32 status;
1266
1267 dev = get_imsm_dev(mpb, super->current_vol);
1268 map = &dev->vol.map[0];
1269
1270 for (dl = super->disks; dl ; dl = dl->next)
1271 if (dl->major == dk->major &&
1272 dl->minor == dk->minor)
1273 break;
1274 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1275 return;
1276
1277 map->disk_ord_tbl[dk->number] = __cpu_to_le32(dl->index);
1278
1279 disk = get_imsm_disk(mpb, dl->index);
1280 status = CONFIGURED_DISK | USABLE_DISK;
1281 disk->status = __cpu_to_le32(status);
1282 }
1283
1284 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1285 int fd, char *devname)
1286 {
1287 struct intel_super *super = st->sb;
1288 struct imsm_super *mpb = super->mpb;
1289 struct imsm_disk *disk;
1290 struct dl *dd;
1291 unsigned long long size;
1292 __u32 status, id;
1293 int rv;
1294 struct stat stb;
1295
1296 if (super->current_vol >= 0) {
1297 add_to_super_imsm_volume(st, dk, fd, devname);
1298 return;
1299 }
1300
1301 fstat(fd, &stb);
1302 dd = malloc(sizeof(*dd));
1303 if (!dd) {
1304 fprintf(stderr,
1305 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1306 abort();
1307 }
1308 memset(dd, 0, sizeof(*dd));
1309 dd->major = major(stb.st_rdev);
1310 dd->minor = minor(stb.st_rdev);
1311 dd->index = dk->number;
1312 dd->devname = devname ? strdup(devname) : NULL;
1313 dd->next = super->disks;
1314 dd->fd = fd;
1315 rv = imsm_read_serial(fd, devname, dd->serial);
1316 if (rv) {
1317 fprintf(stderr,
1318 Name ": failed to retrieve scsi serial, aborting\n");
1319 abort();
1320 }
1321
1322 if (mpb->num_disks <= dk->number)
1323 mpb->num_disks = dk->number + 1;
1324
1325 disk = get_imsm_disk(mpb, dk->number);
1326 get_dev_size(fd, NULL, &size);
1327 size /= 512;
1328 status = USABLE_DISK | SPARE_DISK;
1329 strcpy((char *) disk->serial, (char *) dd->serial);
1330 disk->total_blocks = __cpu_to_le32(size);
1331 disk->status = __cpu_to_le32(status);
1332 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1333 disk->scsi_id = __cpu_to_le32(id);
1334 else
1335 disk->scsi_id = __cpu_to_le32(0);
1336
1337 /* update the family number if we are creating a container */
1338 if (super->creating_imsm)
1339 mpb->family_num = __cpu_to_le32(gen_imsm_checksum(mpb));
1340
1341 super->disks = dd;
1342 }
1343
1344 static int store_imsm_mpb(int fd, struct intel_super *super);
1345
1346 static int write_super_imsm(struct intel_super *super, int doclose)
1347 {
1348 struct imsm_super *mpb = super->mpb;
1349 struct dl *d;
1350 __u32 generation;
1351 __u32 sum;
1352
1353 /* 'generation' is incremented everytime the metadata is written */
1354 generation = __le32_to_cpu(mpb->generation_num);
1355 generation++;
1356 mpb->generation_num = __cpu_to_le32(generation);
1357
1358 /* recalculate checksum */
1359 sum = gen_imsm_checksum(mpb);
1360 mpb->check_sum = __cpu_to_le32(sum);
1361
1362 for (d = super->disks; d ; d = d->next) {
1363 if (store_imsm_mpb(d->fd, super)) {
1364 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1365 __func__, d->major, d->minor, strerror(errno));
1366 return 0;
1367 }
1368 if (doclose) {
1369 close(d->fd);
1370 d->fd = -1;
1371 }
1372 }
1373
1374 return 1;
1375 }
1376
1377 static int write_init_super_imsm(struct supertype *st)
1378 {
1379 if (st->update_tail) {
1380 /* queue the recently created array as a metadata update */
1381 size_t len;
1382 struct imsm_update_create_array *u;
1383 struct intel_super *super = st->sb;
1384 struct imsm_super *mpb = super->mpb;
1385 struct imsm_dev *dev;
1386 struct imsm_map *map;
1387 struct dl *d;
1388
1389 if (super->current_vol < 0 ||
1390 !(dev = get_imsm_dev(mpb, super->current_vol))) {
1391 fprintf(stderr, "%s: could not determine sub-array\n",
1392 __func__);
1393 return 1;
1394 }
1395
1396
1397 map = &dev->vol.map[0];
1398 len = sizeof(*u) + sizeof(__u32) * (map->num_members - 1);
1399 u = malloc(len);
1400 if (!u) {
1401 fprintf(stderr, "%s: failed to allocate update buffer\n",
1402 __func__);
1403 return 1;
1404 }
1405
1406 u->type = update_create_array;
1407 u->dev_idx = super->current_vol;
1408 memcpy(&u->dev, dev, sizeof(*dev));
1409 memcpy(u->dev.vol.map[0].disk_ord_tbl, map->disk_ord_tbl,
1410 sizeof(__u32) * map->num_members);
1411 append_metadata_update(st, u, len);
1412
1413 for (d = super->disks; d ; d = d->next) {
1414 close(d->fd);
1415 d->fd = -1;
1416 }
1417
1418 return 0;
1419 } else
1420 return write_super_imsm(st->sb, 1);
1421 }
1422
1423 static int store_zero_imsm(struct supertype *st, int fd)
1424 {
1425 unsigned long long dsize;
1426 void *buf;
1427
1428 get_dev_size(fd, NULL, &dsize);
1429
1430 /* first block is stored on second to last sector of the disk */
1431 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1432 return 1;
1433
1434 if (posix_memalign(&buf, 512, 512) != 0)
1435 return 1;
1436
1437 memset(buf, 0, sizeof(buf));
1438 if (write(fd, buf, sizeof(buf)) != sizeof(buf))
1439 return 1;
1440 return 0;
1441 }
1442
1443 static int validate_geometry_imsm_container(struct supertype *st, int level,
1444 int layout, int raiddisks, int chunk,
1445 unsigned long long size, char *dev,
1446 unsigned long long *freesize,
1447 int verbose)
1448 {
1449 int fd;
1450 unsigned long long ldsize;
1451
1452 if (level != LEVEL_CONTAINER)
1453 return 0;
1454 if (!dev)
1455 return 1;
1456
1457 fd = open(dev, O_RDONLY|O_EXCL, 0);
1458 if (fd < 0) {
1459 if (verbose)
1460 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
1461 dev, strerror(errno));
1462 return 0;
1463 }
1464 if (!get_dev_size(fd, dev, &ldsize)) {
1465 close(fd);
1466 return 0;
1467 }
1468 close(fd);
1469
1470 *freesize = avail_size_imsm(st, ldsize >> 9);
1471
1472 return 1;
1473 }
1474
1475 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
1476 * FIX ME add ahci details
1477 */
1478 static int validate_geometry_imsm_volume(struct supertype *st, int level,
1479 int layout, int raiddisks, int chunk,
1480 unsigned long long size, char *dev,
1481 unsigned long long *freesize,
1482 int verbose)
1483 {
1484 struct stat stb;
1485 struct intel_super *super = st->sb;
1486 struct dl *dl;
1487 unsigned long long pos = 0;
1488 unsigned long long maxsize;
1489 struct extent *e;
1490 int i;
1491
1492 if (level == LEVEL_CONTAINER)
1493 return 0;
1494
1495 if (level == 1 && raiddisks > 2) {
1496 if (verbose)
1497 fprintf(stderr, Name ": imsm does not support more "
1498 "than 2 in a raid1 configuration\n");
1499 return 0;
1500 }
1501
1502 /* We must have the container info already read in. */
1503 if (!super)
1504 return 0;
1505
1506 if (!dev) {
1507 /* General test: make sure there is space for
1508 * 'raiddisks' device extents of size 'size' at a given
1509 * offset
1510 */
1511 unsigned long long minsize = size*2 /* convert to blocks */;
1512 unsigned long long start_offset = ~0ULL;
1513 int dcnt = 0;
1514 if (minsize == 0)
1515 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1516 for (dl = super->disks; dl ; dl = dl->next) {
1517 int found = 0;
1518
1519 pos = 0;
1520 i = 0;
1521 e = get_extents(super, dl);
1522 if (!e) continue;
1523 do {
1524 unsigned long long esize;
1525 esize = e[i].start - pos;
1526 if (esize >= minsize)
1527 found = 1;
1528 if (found && start_offset == ~0ULL) {
1529 start_offset = pos;
1530 break;
1531 } else if (found && pos != start_offset) {
1532 found = 0;
1533 break;
1534 }
1535 pos = e[i].start + e[i].size;
1536 i++;
1537 } while (e[i-1].size);
1538 if (found)
1539 dcnt++;
1540 free(e);
1541 }
1542 if (dcnt < raiddisks) {
1543 if (verbose)
1544 fprintf(stderr, Name ": imsm: Not enough "
1545 "devices with space for this array "
1546 "(%d < %d)\n",
1547 dcnt, raiddisks);
1548 return 0;
1549 }
1550 return 1;
1551 }
1552 /* This device must be a member of the set */
1553 if (stat(dev, &stb) < 0)
1554 return 0;
1555 if ((S_IFMT & stb.st_mode) != S_IFBLK)
1556 return 0;
1557 for (dl = super->disks ; dl ; dl = dl->next) {
1558 if (dl->major == major(stb.st_rdev) &&
1559 dl->minor == minor(stb.st_rdev))
1560 break;
1561 }
1562 if (!dl) {
1563 if (verbose)
1564 fprintf(stderr, Name ": %s is not in the "
1565 "same imsm set\n", dev);
1566 return 0;
1567 }
1568 e = get_extents(super, dl);
1569 maxsize = 0;
1570 i = 0;
1571 if (e) do {
1572 unsigned long long esize;
1573 esize = e[i].start - pos;
1574 if (esize >= maxsize)
1575 maxsize = esize;
1576 pos = e[i].start + e[i].size;
1577 i++;
1578 } while (e[i-1].size);
1579 *freesize = maxsize;
1580
1581 return 1;
1582 }
1583
1584 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
1585 int raiddisks, int chunk, unsigned long long size,
1586 char *dev, unsigned long long *freesize,
1587 int verbose)
1588 {
1589 int fd, cfd;
1590 struct mdinfo *sra;
1591
1592 /* if given unused devices create a container
1593 * if given given devices in a container create a member volume
1594 */
1595 if (level == LEVEL_CONTAINER) {
1596 /* Must be a fresh device to add to a container */
1597 return validate_geometry_imsm_container(st, level, layout,
1598 raiddisks, chunk, size,
1599 dev, freesize,
1600 verbose);
1601 }
1602
1603 if (st->sb) {
1604 /* creating in a given container */
1605 return validate_geometry_imsm_volume(st, level, layout,
1606 raiddisks, chunk, size,
1607 dev, freesize, verbose);
1608 }
1609
1610 /* limit creation to the following levels */
1611 if (!dev)
1612 switch (level) {
1613 case 0:
1614 case 1:
1615 case 10:
1616 case 5:
1617 break;
1618 default:
1619 return 1;
1620 }
1621
1622 /* This device needs to be a device in an 'imsm' container */
1623 fd = open(dev, O_RDONLY|O_EXCL, 0);
1624 if (fd >= 0) {
1625 if (verbose)
1626 fprintf(stderr,
1627 Name ": Cannot create this array on device %s\n",
1628 dev);
1629 close(fd);
1630 return 0;
1631 }
1632 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
1633 if (verbose)
1634 fprintf(stderr, Name ": Cannot open %s: %s\n",
1635 dev, strerror(errno));
1636 return 0;
1637 }
1638 /* Well, it is in use by someone, maybe an 'imsm' container. */
1639 cfd = open_container(fd);
1640 if (cfd < 0) {
1641 close(fd);
1642 if (verbose)
1643 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
1644 dev);
1645 return 0;
1646 }
1647 sra = sysfs_read(cfd, 0, GET_VERSION);
1648 close(fd);
1649 if (sra && sra->array.major_version == -1 &&
1650 strcmp(sra->text_version, "imsm") == 0) {
1651 /* This is a member of a imsm container. Load the container
1652 * and try to create a volume
1653 */
1654 struct intel_super *super;
1655
1656 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
1657 st->sb = super;
1658 st->container_dev = fd2devnum(cfd);
1659 close(cfd);
1660 return validate_geometry_imsm_volume(st, level, layout,
1661 raiddisks, chunk,
1662 size, dev,
1663 freesize, verbose);
1664 }
1665 close(cfd);
1666 } else /* may belong to another container */
1667 return 0;
1668
1669 return 1;
1670 }
1671
1672 static struct mdinfo *container_content_imsm(struct supertype *st)
1673 {
1674 /* Given a container loaded by load_super_imsm_all,
1675 * extract information about all the arrays into
1676 * an mdinfo tree.
1677 *
1678 * For each imsm_dev create an mdinfo, fill it in,
1679 * then look for matching devices in super->disks
1680 * and create appropriate device mdinfo.
1681 */
1682 struct intel_super *super = st->sb;
1683 struct imsm_super *mpb = super->mpb;
1684 struct mdinfo *rest = NULL;
1685 int i;
1686
1687 for (i = 0; i < mpb->num_raid_devs; i++) {
1688 struct imsm_dev *dev = get_imsm_dev(mpb, i);
1689 struct imsm_vol *vol = &dev->vol;
1690 struct imsm_map *map = vol->map;
1691 struct mdinfo *this;
1692 __u64 sz;
1693 int slot;
1694
1695 this = malloc(sizeof(*this));
1696 memset(this, 0, sizeof(*this));
1697 this->next = rest;
1698 rest = this;
1699
1700 this->array.level = get_imsm_raid_level(map);
1701 this->array.raid_disks = map->num_members;
1702 this->array.layout = imsm_level_to_layout(this->array.level);
1703 this->array.md_minor = -1;
1704 this->array.ctime = 0;
1705 this->array.utime = 0;
1706 this->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1707 this->array.state = !vol->dirty;
1708 this->container_member = i;
1709 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
1710 this->resync_start = 0;
1711 else
1712 this->resync_start = ~0ULL;
1713
1714 strncpy(this->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1715 this->name[MAX_RAID_SERIAL_LEN] = 0;
1716
1717 sprintf(this->text_version, "/%s/%d",
1718 devnum2devname(st->container_dev),
1719 this->container_member);
1720
1721 memset(this->uuid, 0, sizeof(this->uuid));
1722
1723 sz = __le32_to_cpu(dev->size_high);
1724 sz <<= 32;
1725 sz += __le32_to_cpu(dev->size_low);
1726 this->component_size = sz;
1727 this->array.size = this->component_size / 2;
1728
1729 for (slot = 0 ; slot < map->num_members; slot++) {
1730 struct imsm_disk *disk;
1731 struct mdinfo *info_d;
1732 struct dl *d;
1733 int idx;
1734 __u32 s;
1735
1736 idx = __le32_to_cpu(map->disk_ord_tbl[slot] & ~(0xff << 24));
1737 for (d = super->disks; d ; d = d->next)
1738 if (d->index == idx)
1739 break;
1740
1741 if (d == NULL)
1742 break; /* shouldn't this be continue ?? */
1743
1744 info_d = malloc(sizeof(*info_d));
1745 if (!info_d)
1746 break; /* ditto ?? */
1747 memset(info_d, 0, sizeof(*info_d));
1748 info_d->next = this->devs;
1749 this->devs = info_d;
1750
1751 disk = get_imsm_disk(mpb, idx);
1752 s = __le32_to_cpu(disk->status);
1753
1754 info_d->disk.number = d->index;
1755 info_d->disk.major = d->major;
1756 info_d->disk.minor = d->minor;
1757 info_d->disk.raid_disk = slot;
1758 info_d->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
1759 info_d->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
1760 info_d->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
1761
1762 this->array.working_disks++;
1763
1764 info_d->events = __le32_to_cpu(mpb->generation_num);
1765 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
1766 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
1767 if (d->devname)
1768 strcpy(info_d->name, d->devname);
1769 }
1770 }
1771
1772 return rest;
1773 }
1774
1775
1776 static int imsm_open_new(struct supertype *c, struct active_array *a,
1777 char *inst)
1778 {
1779 struct intel_super *super = c->sb;
1780 struct imsm_super *mpb = super->mpb;
1781
1782 if (atoi(inst) + 1 > mpb->num_raid_devs) {
1783 fprintf(stderr, "%s: subarry index %d, out of range\n",
1784 __func__, atoi(inst));
1785 return -ENODEV;
1786 }
1787
1788 dprintf("imsm: open_new %s\n", inst);
1789 a->info.container_member = atoi(inst);
1790 return 0;
1791 }
1792
1793 static __u8 imsm_check_degraded(struct imsm_super *mpb, int n, int failed)
1794 {
1795 struct imsm_dev *dev = get_imsm_dev(mpb, n);
1796 struct imsm_map *map = dev->vol.map;
1797
1798 if (!failed)
1799 return map->map_state;
1800
1801 switch (get_imsm_raid_level(map)) {
1802 case 0:
1803 return IMSM_T_STATE_FAILED;
1804 break;
1805 case 1:
1806 if (failed < map->num_members)
1807 return IMSM_T_STATE_DEGRADED;
1808 else
1809 return IMSM_T_STATE_FAILED;
1810 break;
1811 case 10:
1812 {
1813 /**
1814 * check to see if any mirrors have failed,
1815 * otherwise we are degraded
1816 */
1817 int device_per_mirror = 2; /* FIXME is this always the case?
1818 * and are they always adjacent?
1819 */
1820 int failed = 0;
1821 int i;
1822
1823 for (i = 0; i < map->num_members; i++) {
1824 int idx = get_imsm_disk_idx(map, i);
1825 struct imsm_disk *disk = get_imsm_disk(mpb, idx);
1826
1827 if (__le32_to_cpu(disk->status) & FAILED_DISK)
1828 failed++;
1829
1830 if (failed >= device_per_mirror)
1831 return IMSM_T_STATE_FAILED;
1832
1833 /* reset 'failed' for next mirror set */
1834 if (!((i + 1) % device_per_mirror))
1835 failed = 0;
1836 }
1837
1838 return IMSM_T_STATE_DEGRADED;
1839 }
1840 case 5:
1841 if (failed < 2)
1842 return IMSM_T_STATE_DEGRADED;
1843 else
1844 return IMSM_T_STATE_FAILED;
1845 break;
1846 default:
1847 break;
1848 }
1849
1850 return map->map_state;
1851 }
1852
1853 static int imsm_count_failed(struct imsm_super *mpb, struct imsm_map *map)
1854 {
1855 int i;
1856 int failed = 0;
1857 struct imsm_disk *disk;
1858
1859 for (i = 0; i < map->num_members; i++) {
1860 int idx = get_imsm_disk_idx(map, i);
1861
1862 disk = get_imsm_disk(mpb, idx);
1863 if (__le32_to_cpu(disk->status) & FAILED_DISK)
1864 failed++;
1865 }
1866
1867 return failed;
1868 }
1869
1870 static void imsm_set_array_state(struct active_array *a, int consistent)
1871 {
1872 int inst = a->info.container_member;
1873 struct intel_super *super = a->container->sb;
1874 struct imsm_dev *dev = get_imsm_dev(super->mpb, inst);
1875 struct imsm_map *map = &dev->vol.map[0];
1876 int dirty = !consistent;
1877 int failed;
1878 __u8 map_state;
1879
1880 if (a->resync_start == ~0ULL) {
1881 failed = imsm_count_failed(super->mpb, map);
1882 map_state = imsm_check_degraded(super->mpb, inst, failed);
1883 if (!failed)
1884 map_state = IMSM_T_STATE_NORMAL;
1885 if (map->map_state != map_state) {
1886 dprintf("imsm: map_state %d: %d\n",
1887 inst, map_state);
1888 map->map_state = map_state;
1889 super->updates_pending++;
1890 }
1891 }
1892
1893 if (dev->vol.dirty != dirty) {
1894 dprintf("imsm: mark '%s' (%llu)\n",
1895 dirty?"dirty":"clean", a->resync_start);
1896
1897 dev->vol.dirty = dirty;
1898 super->updates_pending++;
1899 }
1900 }
1901
1902 static void imsm_set_disk(struct active_array *a, int n, int state)
1903 {
1904 int inst = a->info.container_member;
1905 struct intel_super *super = a->container->sb;
1906 struct imsm_dev *dev = get_imsm_dev(super->mpb, inst);
1907 struct imsm_map *map = dev->vol.map;
1908 struct imsm_disk *disk;
1909 __u32 status;
1910 int failed = 0;
1911 int new_failure = 0;
1912
1913 if (n > map->num_members)
1914 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
1915 n, map->num_members - 1);
1916
1917 if (n < 0)
1918 return;
1919
1920 dprintf("imsm: set_disk %d:%x\n", n, state);
1921
1922 disk = get_imsm_disk(super->mpb, get_imsm_disk_idx(map, n));
1923
1924 /* check for new failures */
1925 status = __le32_to_cpu(disk->status);
1926 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
1927 status |= FAILED_DISK;
1928 disk->status = __cpu_to_le32(status);
1929 new_failure = 1;
1930 super->updates_pending++;
1931 }
1932
1933 /* the number of failures have changed, count up 'failed' to determine
1934 * degraded / failed status
1935 */
1936 if (new_failure && map->map_state != IMSM_T_STATE_FAILED)
1937 failed = imsm_count_failed(super->mpb, map);
1938
1939 /* determine map_state based on failed or in_sync count */
1940 if (failed)
1941 map->map_state = imsm_check_degraded(super->mpb, inst, failed);
1942 else if (map->map_state == IMSM_T_STATE_DEGRADED) {
1943 struct mdinfo *d;
1944 int working = 0;
1945
1946 for (d = a->info.devs ; d ; d = d->next)
1947 if (d->curr_state & DS_INSYNC)
1948 working++;
1949
1950 if (working == a->info.array.raid_disks) {
1951 map->map_state = IMSM_T_STATE_NORMAL;
1952 super->updates_pending++;
1953 }
1954 }
1955 }
1956
1957 static int store_imsm_mpb(int fd, struct intel_super *super)
1958 {
1959 struct imsm_super *mpb = super->mpb;
1960 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
1961 unsigned long long dsize;
1962 unsigned long long sectors;
1963
1964 get_dev_size(fd, NULL, &dsize);
1965
1966 if (mpb_size > 512) {
1967 /* -1 to account for anchor */
1968 sectors = mpb_sectors(mpb) - 1;
1969
1970 /* write the extended mpb to the sectors preceeding the anchor */
1971 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
1972 return 1;
1973
1974 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
1975 return 1;
1976 }
1977
1978 /* first block is stored on second to last sector of the disk */
1979 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1980 return 1;
1981
1982 if (write(fd, super->buf, 512) != 512)
1983 return 1;
1984
1985 return 0;
1986 }
1987
1988 static void imsm_sync_metadata(struct supertype *container)
1989 {
1990 struct intel_super *super = container->sb;
1991
1992 if (!super->updates_pending)
1993 return;
1994
1995 write_super_imsm(super, 0);
1996
1997 super->updates_pending = 0;
1998 }
1999
2000 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2001 struct metadata_update **updates)
2002 {
2003 /**
2004 * Take a device that is marked spare in the metadata and use it to
2005 * replace a failed/vacant slot in an array. There may be a case where
2006 * a device is failed in one array but active in a second.
2007 * imsm_process_update catches this case and does not clear the SPARE_DISK
2008 * flag, allowing the second array to start using the device on failure.
2009 * SPARE_DISK is cleared when all arrays are using a device.
2010 *
2011 * FIXME: is this a valid use of SPARE_DISK?
2012 */
2013
2014 struct intel_super *super = a->container->sb;
2015 struct imsm_super *mpb = super->mpb;
2016 int inst = a->info.container_member;
2017 struct imsm_dev *dev = get_imsm_dev(mpb, inst);
2018 struct imsm_map *map = dev->vol.map;
2019 int failed = a->info.array.raid_disks;
2020 struct mdinfo *rv = NULL;
2021 struct mdinfo *d;
2022 struct mdinfo *di;
2023 struct metadata_update *mu;
2024 struct dl *dl;
2025 struct imsm_update_activate_spare *u;
2026 int num_spares = 0;
2027 int i;
2028
2029 for (d = a->info.devs ; d ; d = d->next) {
2030 if ((d->curr_state & DS_FAULTY) &&
2031 d->state_fd >= 0)
2032 /* wait for Removal to happen */
2033 return NULL;
2034 if (d->state_fd >= 0)
2035 failed--;
2036 }
2037
2038 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2039 inst, failed, a->info.array.raid_disks, a->info.array.level);
2040 if (imsm_check_degraded(mpb, inst, failed) != IMSM_T_STATE_DEGRADED)
2041 return NULL;
2042
2043 /* For each slot, if it is not working, find a spare */
2044 dl = super->disks;
2045 for (i = 0; i < a->info.array.raid_disks; i++) {
2046 for (d = a->info.devs ; d ; d = d->next)
2047 if (d->disk.raid_disk == i)
2048 break;
2049 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2050 if (d && (d->state_fd >= 0))
2051 continue;
2052
2053 /* OK, this device needs recovery. Find a spare */
2054 for ( ; dl ; dl = dl->next) {
2055 unsigned long long esize;
2056 unsigned long long pos;
2057 struct mdinfo *d2;
2058 struct extent *ex;
2059 struct imsm_disk *disk;
2060 int j;
2061 int found;
2062 __u32 array_start;
2063
2064 /* If in this array, skip */
2065 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
2066 if (d2->disk.major == dl->major &&
2067 d2->disk.minor == dl->minor) {
2068 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2069 break;
2070 }
2071 if (d2)
2072 continue;
2073
2074 /* is this unused device marked as a spare? */
2075 disk = get_imsm_disk(mpb, dl->index);
2076 if (!(__le32_to_cpu(disk->status) & SPARE_DISK))
2077 continue;
2078
2079 /* We are allowed to use this device - is there space?
2080 * We need a->info.component_size sectors */
2081 ex = get_extents(super, dl);
2082 if (!ex) {
2083 dprintf("cannot get extents\n");
2084 continue;
2085 }
2086 found = 0;
2087 j = 0;
2088 pos = 0;
2089 array_start = __le32_to_cpu(map->pba_of_lba0);
2090
2091 do {
2092 /* check that we can start at pba_of_lba0 with
2093 * a->info.component_size of space
2094 */
2095 esize = ex[j].start - pos;
2096 if (array_start >= pos &&
2097 array_start + a->info.component_size < ex[j].start) {
2098 found = 1;
2099 break;
2100 }
2101 pos = ex[j].start + ex[j].size;
2102 j++;
2103
2104 } while (ex[j-1].size);
2105
2106 free(ex);
2107 if (!found) {
2108 dprintf("%x:%x does not have %llu at %d\n",
2109 dl->major, dl->minor,
2110 a->info.component_size,
2111 __le32_to_cpu(map->pba_of_lba0));
2112 /* No room */
2113 continue;
2114 }
2115
2116 /* found a usable disk with enough space */
2117 di = malloc(sizeof(*di));
2118 memset(di, 0, sizeof(*di));
2119 di->disk.number = dl->index;
2120 di->disk.raid_disk = i;
2121 di->disk.major = dl->major;
2122 di->disk.minor = dl->minor;
2123 di->disk.state = 0;
2124 di->data_offset = array_start;
2125 di->component_size = a->info.component_size;
2126 di->container_member = inst;
2127 di->next = rv;
2128 rv = di;
2129 num_spares++;
2130 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2131 i, pos);
2132
2133 break;
2134 }
2135 }
2136
2137 if (!rv)
2138 /* No spares found */
2139 return rv;
2140 /* Now 'rv' has a list of devices to return.
2141 * Create a metadata_update record to update the
2142 * disk_ord_tbl for the array
2143 */
2144 mu = malloc(sizeof(*mu));
2145 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2146 mu->space = NULL;
2147 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2148 mu->next = *updates;
2149 u = (struct imsm_update_activate_spare *) mu->buf;
2150
2151 for (di = rv ; di ; di = di->next) {
2152 u->type = update_activate_spare;
2153 u->disk_idx = di->disk.number;
2154 u->slot = di->disk.raid_disk;
2155 u->array = inst;
2156 u->next = u + 1;
2157 u++;
2158 }
2159 (u-1)->next = NULL;
2160 *updates = mu;
2161
2162 return rv;
2163 }
2164
2165 static int weight(unsigned int field)
2166 {
2167 int weight;
2168
2169 for (weight = 0; field; weight++)
2170 field &= field - 1;
2171
2172 return weight;
2173 }
2174
2175 static int disks_overlap(struct imsm_map *m1, struct imsm_map *m2)
2176 {
2177 int i;
2178 int j;
2179 int idx;
2180
2181 for (i = 0; i < m1->num_members; i++) {
2182 idx = get_imsm_disk_idx(m1, i);
2183 for (j = 0; j < m2->num_members; j++)
2184 if (idx == get_imsm_disk_idx(m2, j))
2185 return 1;
2186 }
2187
2188 return 0;
2189 }
2190
2191 static void imsm_process_update(struct supertype *st,
2192 struct metadata_update *update)
2193 {
2194 /**
2195 * crack open the metadata_update envelope to find the update record
2196 * update can be one of:
2197 * update_activate_spare - a spare device has replaced a failed
2198 * device in an array, update the disk_ord_tbl. If this disk is
2199 * present in all member arrays then also clear the SPARE_DISK
2200 * flag
2201 */
2202 struct intel_super *super = st->sb;
2203 struct imsm_super *mpb = super->mpb;
2204 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2205
2206 switch (type) {
2207 case update_activate_spare: {
2208 struct imsm_update_activate_spare *u = (void *) update->buf;
2209 struct imsm_dev *dev = get_imsm_dev(mpb, u->array);
2210 struct imsm_map *map = &dev->vol.map[0];
2211 struct active_array *a;
2212 struct imsm_disk *disk;
2213 __u32 status;
2214 struct dl *dl;
2215 struct mdinfo *d;
2216 unsigned int members;
2217 unsigned int found;
2218 int victim;
2219 int i;
2220
2221 for (dl = super->disks; dl; dl = dl->next)
2222 if (dl->index == u->disk_idx)
2223 break;
2224
2225 if (!dl) {
2226 fprintf(stderr, "error: imsm_activate_spare passed "
2227 "an unknown disk_idx: %d\n", u->disk_idx);
2228 return;
2229 }
2230
2231 super->updates_pending++;
2232
2233 victim = get_imsm_disk_idx(map, u->slot);
2234 map->disk_ord_tbl[u->slot] = __cpu_to_le32(u->disk_idx);
2235 disk = get_imsm_disk(mpb, u->disk_idx);
2236 status = __le32_to_cpu(disk->status);
2237 status |= CONFIGURED_DISK;
2238 disk->status = __cpu_to_le32(status);
2239
2240 /* map unique/live arrays using the spare */
2241 members = 0;
2242 found = 0;
2243 for (a = st->arrays; a; a = a->next) {
2244 int inst = a->info.container_member;
2245
2246 dev = get_imsm_dev(mpb, inst);
2247 map = &dev->vol.map[0];
2248 if (map->raid_level > 0)
2249 members |= 1 << inst;
2250 for (d = a->info.devs; d; d = d->next)
2251 if (d->disk.major == dl->major &&
2252 d->disk.minor == dl->minor)
2253 found |= 1 << inst;
2254 }
2255
2256 /* until all arrays that can absorb this disk have absorbed
2257 * this disk it can still be considered a spare
2258 */
2259 if (weight(found) >= weight(members)) {
2260 status = __le32_to_cpu(disk->status);
2261 status &= ~SPARE_DISK;
2262 disk->status = __cpu_to_le32(status);
2263 }
2264
2265 /* count arrays using the victim in the metadata */
2266 found = 0;
2267 for (a = st->arrays; a ; a = a->next) {
2268 dev = get_imsm_dev(mpb, a->info.container_member);
2269 map = &dev->vol.map[0];
2270 for (i = 0; i < map->num_members; i++)
2271 if (victim == get_imsm_disk_idx(map, i))
2272 found++;
2273 }
2274
2275 /* clear some flags if the victim is no longer being
2276 * utilized anywhere
2277 */
2278 disk = get_imsm_disk(mpb, victim);
2279 if (!found) {
2280 status = __le32_to_cpu(disk->status);
2281 status &= ~(CONFIGURED_DISK | USABLE_DISK);
2282 disk->status = __cpu_to_le32(status);
2283 }
2284 break;
2285 }
2286 case update_create_array: {
2287 /* someone wants to create a new array, we need to be aware of
2288 * a few races/collisions:
2289 * 1/ 'Create' called by two separate instances of mdadm
2290 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
2291 * devices that have since been assimilated via
2292 * activate_spare.
2293 * In the event this update can not be carried out mdadm will
2294 * (FIX ME) notice that its update did not take hold.
2295 */
2296 struct imsm_update_create_array *u = (void *) update->buf;
2297 struct imsm_dev *dev;
2298 struct imsm_map *map, *new_map;
2299 unsigned long long start, end;
2300 unsigned long long new_start, new_end;
2301 int i;
2302 int overlap = 0;
2303
2304 /* handle racing creates: first come first serve */
2305 if (u->dev_idx < mpb->num_raid_devs) {
2306 dprintf("%s: subarray %d already defined\n",
2307 __func__, u->dev_idx);
2308 return;
2309 }
2310
2311 /* check update is next in sequence */
2312 if (u->dev_idx != mpb->num_raid_devs) {
2313 dprintf("%s: can not create arrays out of sequence\n",
2314 __func__);
2315 return;
2316 }
2317
2318 new_map = &u->dev.vol.map[0];
2319 new_start = __le32_to_cpu(new_map->pba_of_lba0);
2320 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
2321
2322 /* handle activate_spare versus create race:
2323 * check to make sure that overlapping arrays do not include
2324 * overalpping disks
2325 */
2326 for (i = 0; i < mpb->num_raid_devs; i++) {
2327 dev = get_imsm_dev(mpb, i);
2328 map = &dev->vol.map[0];
2329 start = __le32_to_cpu(map->pba_of_lba0);
2330 end = start + __le32_to_cpu(map->blocks_per_member);
2331 if ((new_start >= start && new_start <= end) ||
2332 (start >= new_start && start <= new_end))
2333 overlap = 1;
2334 if (overlap && disks_overlap(map, new_map)) {
2335 dprintf("%s: arrays overlap\n", __func__);
2336 return;
2337 }
2338 }
2339 /* check num_members sanity */
2340 if (new_map->num_members > mpb->num_disks) {
2341 dprintf("%s: num_disks out of range\n", __func__);
2342 return;
2343 }
2344
2345 super->updates_pending++;
2346 mpb->num_raid_devs++;
2347 dev = get_imsm_dev(mpb, u->dev_idx);
2348 memcpy(dev, &u->dev, sizeof(*dev));
2349 map = &dev->vol.map[0];
2350 memcpy(map->disk_ord_tbl, new_map->disk_ord_tbl,
2351 sizeof(__u32) * new_map->num_members);
2352
2353 /* fix up flags, if arrays overlap then the drives can not be
2354 * spares
2355 */
2356 for (i = 0; i < map->num_members; i++) {
2357 struct imsm_disk *disk;
2358 __u32 status;
2359
2360 disk = get_imsm_disk(mpb, get_imsm_disk_idx(map, i));
2361 status = __le32_to_cpu(disk->status);
2362 status |= CONFIGURED_DISK;
2363 if (overlap)
2364 status &= ~SPARE_DISK;
2365 disk->status = __cpu_to_le32(status);
2366 }
2367 break;
2368 }
2369 }
2370 }
2371
2372 static void imsm_prepare_update(struct supertype *st,
2373 struct metadata_update *update)
2374 {
2375 /* Allocate space to hold a new mpb if necessary. We currently
2376 * allocate enough to hold 2 subarrays for the given number of disks.
2377 * This may not be sufficient iff reshaping.
2378 *
2379 * FIX ME handle the reshape case.
2380 *
2381 * The monitor will be able to safely change super->mpb by arranging
2382 * for it to be freed in check_update_queue(). I.e. the monitor thread
2383 * will start using the new pointer and the manager can continue to use
2384 * the old value until check_update_queue() runs.
2385 */
2386
2387 return;
2388 }
2389
2390 struct superswitch super_imsm = {
2391 #ifndef MDASSEMBLE
2392 .examine_super = examine_super_imsm,
2393 .brief_examine_super = brief_examine_super_imsm,
2394 .detail_super = detail_super_imsm,
2395 .brief_detail_super = brief_detail_super_imsm,
2396 .write_init_super = write_init_super_imsm,
2397 #endif
2398 .match_home = match_home_imsm,
2399 .uuid_from_super= uuid_from_super_imsm,
2400 .getinfo_super = getinfo_super_imsm,
2401 .update_super = update_super_imsm,
2402
2403 .avail_size = avail_size_imsm,
2404
2405 .compare_super = compare_super_imsm,
2406
2407 .load_super = load_super_imsm,
2408 .init_super = init_super_imsm,
2409 .add_to_super = add_to_super_imsm,
2410 .store_super = store_zero_imsm,
2411 .free_super = free_super_imsm,
2412 .match_metadata_desc = match_metadata_desc_imsm,
2413 .container_content = container_content_imsm,
2414
2415 .validate_geometry = validate_geometry_imsm,
2416 .external = 1,
2417
2418 /* for mdmon */
2419 .open_new = imsm_open_new,
2420 .load_super = load_super_imsm,
2421 .set_array_state= imsm_set_array_state,
2422 .set_disk = imsm_set_disk,
2423 .sync_metadata = imsm_sync_metadata,
2424 .activate_spare = imsm_activate_spare,
2425 .process_update = imsm_process_update,
2426 .prepare_update = imsm_prepare_update,
2427 };