]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: display maximum volumes per controller and array
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
106 #define IMSM_DISK_FILLERS 3
107 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
108 };
109
110 /* map selector for map managment
111 */
112 #define MAP_0 0
113 #define MAP_1 1
114 #define MAP_X -1
115
116 /* RAID map configuration infos. */
117 struct imsm_map {
118 __u32 pba_of_lba0_lo; /* start address of partition */
119 __u32 blocks_per_member_lo;/* blocks per member */
120 __u32 num_data_stripes_lo; /* number of data stripes */
121 __u16 blocks_per_strip;
122 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
123 #define IMSM_T_STATE_NORMAL 0
124 #define IMSM_T_STATE_UNINITIALIZED 1
125 #define IMSM_T_STATE_DEGRADED 2
126 #define IMSM_T_STATE_FAILED 3
127 __u8 raid_level;
128 #define IMSM_T_RAID0 0
129 #define IMSM_T_RAID1 1
130 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
131 __u8 num_members; /* number of member disks */
132 __u8 num_domains; /* number of parity domains */
133 __u8 failed_disk_num; /* valid only when state is degraded */
134 __u8 ddf;
135 __u32 pba_of_lba0_hi;
136 __u32 blocks_per_member_hi;
137 __u32 num_data_stripes_hi;
138 __u32 filler[4]; /* expansion area */
139 #define IMSM_ORD_REBUILD (1 << 24)
140 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
141 * top byte contains some flags
142 */
143 } __attribute__ ((packed));
144
145 struct imsm_vol {
146 __u32 curr_migr_unit;
147 __u32 checkpoint_id; /* id to access curr_migr_unit */
148 __u8 migr_state; /* Normal or Migrating */
149 #define MIGR_INIT 0
150 #define MIGR_REBUILD 1
151 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
152 #define MIGR_GEN_MIGR 3
153 #define MIGR_STATE_CHANGE 4
154 #define MIGR_REPAIR 5
155 __u8 migr_type; /* Initializing, Rebuilding, ... */
156 __u8 dirty;
157 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
158 __u16 verify_errors; /* number of mismatches */
159 __u16 bad_blocks; /* number of bad blocks during verify */
160 __u32 filler[4];
161 struct imsm_map map[1];
162 /* here comes another one if migr_state */
163 } __attribute__ ((packed));
164
165 struct imsm_dev {
166 __u8 volume[MAX_RAID_SERIAL_LEN];
167 __u32 size_low;
168 __u32 size_high;
169 #define DEV_BOOTABLE __cpu_to_le32(0x01)
170 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
171 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
172 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
173 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
174 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
175 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
176 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
177 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
178 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
179 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
180 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
181 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
182 __u32 status; /* Persistent RaidDev status */
183 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
184 __u8 migr_priority;
185 __u8 num_sub_vols;
186 __u8 tid;
187 __u8 cng_master_disk;
188 __u16 cache_policy;
189 __u8 cng_state;
190 __u8 cng_sub_state;
191 #define IMSM_DEV_FILLERS 10
192 __u32 filler[IMSM_DEV_FILLERS];
193 struct imsm_vol vol;
194 } __attribute__ ((packed));
195
196 struct imsm_super {
197 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
198 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
199 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
200 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
201 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
202 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
203 __u32 attributes; /* 0x34 - 0x37 */
204 __u8 num_disks; /* 0x38 Number of configured disks */
205 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
206 __u8 error_log_pos; /* 0x3A */
207 __u8 fill[1]; /* 0x3B */
208 __u32 cache_size; /* 0x3c - 0x40 in mb */
209 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
210 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
211 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
212 #define IMSM_FILLERS 35
213 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
214 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
215 /* here comes imsm_dev[num_raid_devs] */
216 /* here comes BBM logs */
217 } __attribute__ ((packed));
218
219 #define BBM_LOG_MAX_ENTRIES 254
220
221 struct bbm_log_entry {
222 __u64 defective_block_start;
223 #define UNREADABLE 0xFFFFFFFF
224 __u32 spare_block_offset;
225 __u16 remapped_marked_count;
226 __u16 disk_ordinal;
227 } __attribute__ ((__packed__));
228
229 struct bbm_log {
230 __u32 signature; /* 0xABADB10C */
231 __u32 entry_count;
232 __u32 reserved_spare_block_count; /* 0 */
233 __u32 reserved; /* 0xFFFF */
234 __u64 first_spare_lba;
235 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
236 } __attribute__ ((__packed__));
237
238
239 #ifndef MDASSEMBLE
240 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
241 #endif
242
243 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
244
245 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
246
247 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
248 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
249 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
250 */
251
252
253 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
254 * be recovered using srcMap */
255 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
256 * already been migrated and must
257 * be recovered from checkpoint area */
258 struct migr_record {
259 __u32 rec_status; /* Status used to determine how to restart
260 * migration in case it aborts
261 * in some fashion */
262 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
263 __u32 family_num; /* Family number of MPB
264 * containing the RaidDev
265 * that is migrating */
266 __u32 ascending_migr; /* True if migrating in increasing
267 * order of lbas */
268 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
269 __u32 dest_depth_per_unit; /* Num member blocks each destMap
270 * member disk
271 * advances per unit-of-operation */
272 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
273 __u32 dest_1st_member_lba; /* First member lba on first
274 * stripe of destination */
275 __u32 num_migr_units; /* Total num migration units-of-op */
276 __u32 post_migr_vol_cap; /* Size of volume after
277 * migration completes */
278 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
279 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
280 * migration ckpt record was read from
281 * (for recovered migrations) */
282 } __attribute__ ((__packed__));
283
284 struct md_list {
285 /* usage marker:
286 * 1: load metadata
287 * 2: metadata does not match
288 * 4: already checked
289 */
290 int used;
291 char *devname;
292 int found;
293 int container;
294 dev_t st_rdev;
295 struct md_list *next;
296 };
297
298 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
299
300 static __u8 migr_type(struct imsm_dev *dev)
301 {
302 if (dev->vol.migr_type == MIGR_VERIFY &&
303 dev->status & DEV_VERIFY_AND_FIX)
304 return MIGR_REPAIR;
305 else
306 return dev->vol.migr_type;
307 }
308
309 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
310 {
311 /* for compatibility with older oroms convert MIGR_REPAIR, into
312 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
313 */
314 if (migr_type == MIGR_REPAIR) {
315 dev->vol.migr_type = MIGR_VERIFY;
316 dev->status |= DEV_VERIFY_AND_FIX;
317 } else {
318 dev->vol.migr_type = migr_type;
319 dev->status &= ~DEV_VERIFY_AND_FIX;
320 }
321 }
322
323 static unsigned int sector_count(__u32 bytes)
324 {
325 return ROUND_UP(bytes, 512) / 512;
326 }
327
328 static unsigned int mpb_sectors(struct imsm_super *mpb)
329 {
330 return sector_count(__le32_to_cpu(mpb->mpb_size));
331 }
332
333 struct intel_dev {
334 struct imsm_dev *dev;
335 struct intel_dev *next;
336 unsigned index;
337 };
338
339 struct intel_hba {
340 enum sys_dev_type type;
341 char *path;
342 char *pci_id;
343 struct intel_hba *next;
344 };
345
346 enum action {
347 DISK_REMOVE = 1,
348 DISK_ADD
349 };
350 /* internal representation of IMSM metadata */
351 struct intel_super {
352 union {
353 void *buf; /* O_DIRECT buffer for reading/writing metadata */
354 struct imsm_super *anchor; /* immovable parameters */
355 };
356 union {
357 void *migr_rec_buf; /* buffer for I/O operations */
358 struct migr_record *migr_rec; /* migration record */
359 };
360 int clean_migration_record_by_mdmon; /* when reshape is switched to next
361 array, it indicates that mdmon is allowed to clean migration
362 record */
363 size_t len; /* size of the 'buf' allocation */
364 void *next_buf; /* for realloc'ing buf from the manager */
365 size_t next_len;
366 int updates_pending; /* count of pending updates for mdmon */
367 int current_vol; /* index of raid device undergoing creation */
368 unsigned long long create_offset; /* common start for 'current_vol' */
369 __u32 random; /* random data for seeding new family numbers */
370 struct intel_dev *devlist;
371 struct dl {
372 struct dl *next;
373 int index;
374 __u8 serial[MAX_RAID_SERIAL_LEN];
375 int major, minor;
376 char *devname;
377 struct imsm_disk disk;
378 int fd;
379 int extent_cnt;
380 struct extent *e; /* for determining freespace @ create */
381 int raiddisk; /* slot to fill in autolayout */
382 enum action action;
383 } *disks, *current_disk;
384 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
385 active */
386 struct dl *missing; /* disks removed while we weren't looking */
387 struct bbm_log *bbm_log;
388 struct intel_hba *hba; /* device path of the raid controller for this metadata */
389 const struct imsm_orom *orom; /* platform firmware support */
390 struct intel_super *next; /* (temp) list for disambiguating family_num */
391 };
392
393 struct intel_disk {
394 struct imsm_disk disk;
395 #define IMSM_UNKNOWN_OWNER (-1)
396 int owner;
397 struct intel_disk *next;
398 };
399
400 struct extent {
401 unsigned long long start, size;
402 };
403
404 /* definitions of reshape process types */
405 enum imsm_reshape_type {
406 CH_TAKEOVER,
407 CH_MIGRATION,
408 };
409
410 /* definition of messages passed to imsm_process_update */
411 enum imsm_update_type {
412 update_activate_spare,
413 update_create_array,
414 update_kill_array,
415 update_rename_array,
416 update_add_remove_disk,
417 update_reshape_container_disks,
418 update_reshape_migration,
419 update_takeover,
420 update_general_migration_checkpoint,
421 };
422
423 struct imsm_update_activate_spare {
424 enum imsm_update_type type;
425 struct dl *dl;
426 int slot;
427 int array;
428 struct imsm_update_activate_spare *next;
429 };
430
431 struct geo_params {
432 int dev_id;
433 char *dev_name;
434 long long size;
435 int level;
436 int layout;
437 int chunksize;
438 int raid_disks;
439 };
440
441 enum takeover_direction {
442 R10_TO_R0,
443 R0_TO_R10
444 };
445 struct imsm_update_takeover {
446 enum imsm_update_type type;
447 int subarray;
448 enum takeover_direction direction;
449 };
450
451 struct imsm_update_reshape {
452 enum imsm_update_type type;
453 int old_raid_disks;
454 int new_raid_disks;
455
456 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
457 };
458
459 struct imsm_update_reshape_migration {
460 enum imsm_update_type type;
461 int old_raid_disks;
462 int new_raid_disks;
463 /* fields for array migration changes
464 */
465 int subdev;
466 int new_level;
467 int new_layout;
468 int new_chunksize;
469
470 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
471 };
472
473 struct imsm_update_general_migration_checkpoint {
474 enum imsm_update_type type;
475 __u32 curr_migr_unit;
476 };
477
478 struct disk_info {
479 __u8 serial[MAX_RAID_SERIAL_LEN];
480 };
481
482 struct imsm_update_create_array {
483 enum imsm_update_type type;
484 int dev_idx;
485 struct imsm_dev dev;
486 };
487
488 struct imsm_update_kill_array {
489 enum imsm_update_type type;
490 int dev_idx;
491 };
492
493 struct imsm_update_rename_array {
494 enum imsm_update_type type;
495 __u8 name[MAX_RAID_SERIAL_LEN];
496 int dev_idx;
497 };
498
499 struct imsm_update_add_remove_disk {
500 enum imsm_update_type type;
501 };
502
503
504 static const char *_sys_dev_type[] = {
505 [SYS_DEV_UNKNOWN] = "Unknown",
506 [SYS_DEV_SAS] = "SAS",
507 [SYS_DEV_SATA] = "SATA"
508 };
509
510 const char *get_sys_dev_type(enum sys_dev_type type)
511 {
512 if (type >= SYS_DEV_MAX)
513 type = SYS_DEV_UNKNOWN;
514
515 return _sys_dev_type[type];
516 }
517
518 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
519 {
520 struct intel_hba *result = malloc(sizeof(*result));
521 if (result) {
522 result->type = device->type;
523 result->path = strdup(device->path);
524 result->next = NULL;
525 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
526 result->pci_id++;
527 }
528 return result;
529 }
530
531 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
532 {
533 struct intel_hba *result=NULL;
534 for (result = hba; result; result = result->next) {
535 if (result->type == device->type && strcmp(result->path, device->path) == 0)
536 break;
537 }
538 return result;
539 }
540
541 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
542 {
543 struct intel_hba *hba;
544
545 /* check if disk attached to Intel HBA */
546 hba = find_intel_hba(super->hba, device);
547 if (hba != NULL)
548 return 1;
549 /* Check if HBA is already attached to super */
550 if (super->hba == NULL) {
551 super->hba = alloc_intel_hba(device);
552 return 1;
553 }
554
555 hba = super->hba;
556 /* Intel metadata allows for all disks attached to the same type HBA.
557 * Do not sypport odf HBA types mixing
558 */
559 if (device->type != hba->type)
560 return 2;
561
562 while (hba->next)
563 hba = hba->next;
564
565 hba->next = alloc_intel_hba(device);
566 return 1;
567 }
568
569 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
570 {
571 struct sys_dev *list, *elem, *prev;
572 char *disk_path;
573
574 if ((list = find_intel_devices()) == NULL)
575 return 0;
576
577 if (fd < 0)
578 disk_path = (char *) devname;
579 else
580 disk_path = diskfd_to_devpath(fd);
581
582 if (!disk_path) {
583 free_sys_dev(&list);
584 return 0;
585 }
586
587 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
588 if (path_attached_to_hba(disk_path, elem->path)) {
589 if (prev == NULL)
590 list = list->next;
591 else
592 prev->next = elem->next;
593 elem->next = NULL;
594 if (disk_path != devname)
595 free(disk_path);
596 free_sys_dev(&list);
597 return elem;
598 }
599 }
600 if (disk_path != devname)
601 free(disk_path);
602 free_sys_dev(&list);
603
604 return NULL;
605 }
606
607
608 static int find_intel_hba_capability(int fd, struct intel_super *super,
609 char *devname);
610
611 static struct supertype *match_metadata_desc_imsm(char *arg)
612 {
613 struct supertype *st;
614
615 if (strcmp(arg, "imsm") != 0 &&
616 strcmp(arg, "default") != 0
617 )
618 return NULL;
619
620 st = malloc(sizeof(*st));
621 if (!st)
622 return NULL;
623 memset(st, 0, sizeof(*st));
624 st->container_dev = NoMdDev;
625 st->ss = &super_imsm;
626 st->max_devs = IMSM_MAX_DEVICES;
627 st->minor_version = 0;
628 st->sb = NULL;
629 return st;
630 }
631
632 #ifndef MDASSEMBLE
633 static __u8 *get_imsm_version(struct imsm_super *mpb)
634 {
635 return &mpb->sig[MPB_SIG_LEN];
636 }
637 #endif
638
639 /* retrieve a disk directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load time
641 */
642 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
643 {
644 if (index >= mpb->num_disks)
645 return NULL;
646 return &mpb->disk[index];
647 }
648
649 /* retrieve the disk description based on a index of the disk
650 * in the sub-array
651 */
652 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
653 {
654 struct dl *d;
655
656 for (d = super->disks; d; d = d->next)
657 if (d->index == index)
658 return d;
659
660 return NULL;
661 }
662 /* retrieve a disk from the parsed metadata */
663 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
664 {
665 struct dl *dl;
666
667 dl = get_imsm_dl_disk(super, index);
668 if (dl)
669 return &dl->disk;
670
671 return NULL;
672 }
673
674 /* generate a checksum directly from the anchor when the anchor is known to be
675 * up-to-date, currently only at load or write_super after coalescing
676 */
677 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
678 {
679 __u32 end = mpb->mpb_size / sizeof(end);
680 __u32 *p = (__u32 *) mpb;
681 __u32 sum = 0;
682
683 while (end--) {
684 sum += __le32_to_cpu(*p);
685 p++;
686 }
687
688 return sum - __le32_to_cpu(mpb->check_sum);
689 }
690
691 static size_t sizeof_imsm_map(struct imsm_map *map)
692 {
693 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
694 }
695
696 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
697 {
698 /* A device can have 2 maps if it is in the middle of a migration.
699 * If second_map is:
700 * MAP_0 - we return the first map
701 * MAP_1 - we return the second map if it exists, else NULL
702 * MAP_X - we return the second map if it exists, else the first
703 */
704 struct imsm_map *map = &dev->vol.map[0];
705 struct imsm_map *map2 = NULL;
706
707 if (dev->vol.migr_state)
708 map2 = (void *)map + sizeof_imsm_map(map);
709
710 switch (second_map) {
711 case MAP_0:
712 break;
713 case MAP_1:
714 map = map2;
715 break;
716 case MAP_X:
717 if (map2)
718 map = map2;
719 break;
720 default:
721 map = NULL;
722 }
723 return map;
724
725 }
726
727 /* return the size of the device.
728 * migr_state increases the returned size if map[0] were to be duplicated
729 */
730 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
731 {
732 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
733 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
734
735 /* migrating means an additional map */
736 if (dev->vol.migr_state)
737 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
738 else if (migr_state)
739 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
740
741 return size;
742 }
743
744 #ifndef MDASSEMBLE
745 /* retrieve disk serial number list from a metadata update */
746 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
747 {
748 void *u = update;
749 struct disk_info *inf;
750
751 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
752 sizeof_imsm_dev(&update->dev, 0);
753
754 return inf;
755 }
756 #endif
757
758 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
759 {
760 int offset;
761 int i;
762 void *_mpb = mpb;
763
764 if (index >= mpb->num_raid_devs)
765 return NULL;
766
767 /* devices start after all disks */
768 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
769
770 for (i = 0; i <= index; i++)
771 if (i == index)
772 return _mpb + offset;
773 else
774 offset += sizeof_imsm_dev(_mpb + offset, 0);
775
776 return NULL;
777 }
778
779 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
780 {
781 struct intel_dev *dv;
782
783 if (index >= super->anchor->num_raid_devs)
784 return NULL;
785 for (dv = super->devlist; dv; dv = dv->next)
786 if (dv->index == index)
787 return dv->dev;
788 return NULL;
789 }
790
791 /*
792 * for second_map:
793 * == MAP_0 get first map
794 * == MAP_1 get second map
795 * == MAP_X than get map according to the current migr_state
796 */
797 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
798 int slot,
799 int second_map)
800 {
801 struct imsm_map *map;
802
803 map = get_imsm_map(dev, second_map);
804
805 /* top byte identifies disk under rebuild */
806 return __le32_to_cpu(map->disk_ord_tbl[slot]);
807 }
808
809 #define ord_to_idx(ord) (((ord) << 8) >> 8)
810 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
811 {
812 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
813
814 return ord_to_idx(ord);
815 }
816
817 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
818 {
819 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
820 }
821
822 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
823 {
824 int slot;
825 __u32 ord;
826
827 for (slot = 0; slot < map->num_members; slot++) {
828 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
829 if (ord_to_idx(ord) == idx)
830 return slot;
831 }
832
833 return -1;
834 }
835
836 static int get_imsm_raid_level(struct imsm_map *map)
837 {
838 if (map->raid_level == 1) {
839 if (map->num_members == 2)
840 return 1;
841 else
842 return 10;
843 }
844
845 return map->raid_level;
846 }
847
848 static int cmp_extent(const void *av, const void *bv)
849 {
850 const struct extent *a = av;
851 const struct extent *b = bv;
852 if (a->start < b->start)
853 return -1;
854 if (a->start > b->start)
855 return 1;
856 return 0;
857 }
858
859 static int count_memberships(struct dl *dl, struct intel_super *super)
860 {
861 int memberships = 0;
862 int i;
863
864 for (i = 0; i < super->anchor->num_raid_devs; i++) {
865 struct imsm_dev *dev = get_imsm_dev(super, i);
866 struct imsm_map *map = get_imsm_map(dev, MAP_0);
867
868 if (get_imsm_disk_slot(map, dl->index) >= 0)
869 memberships++;
870 }
871
872 return memberships;
873 }
874
875 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
876
877 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
878 {
879 if (lo == 0 || hi == 0)
880 return 1;
881 *lo = __le32_to_cpu((unsigned)n);
882 *hi = __le32_to_cpu((unsigned)(n >> 32));
883 return 0;
884 }
885
886 static unsigned long long join_u32(__u32 lo, __u32 hi)
887 {
888 return (unsigned long long)__le32_to_cpu(lo) |
889 (((unsigned long long)__le32_to_cpu(hi)) << 32);
890 }
891
892 static unsigned long long total_blocks(struct imsm_disk *disk)
893 {
894 if (disk == NULL)
895 return 0;
896 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
897 }
898
899 static unsigned long long pba_of_lba0(struct imsm_map *map)
900 {
901 if (map == NULL)
902 return 0;
903 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
904 }
905
906 static unsigned long long blocks_per_member(struct imsm_map *map)
907 {
908 if (map == NULL)
909 return 0;
910 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
911 }
912
913 static unsigned long long num_data_stripes(struct imsm_map *map)
914 {
915 if (map == NULL)
916 return 0;
917 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
918 }
919
920 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
921 {
922 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
923 }
924
925 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
926 {
927 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
928 }
929
930 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
931 {
932 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
933 }
934
935 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
936 {
937 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
938 }
939
940 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
941 {
942 /* find a list of used extents on the given physical device */
943 struct extent *rv, *e;
944 int i;
945 int memberships = count_memberships(dl, super);
946 __u32 reservation;
947
948 /* trim the reserved area for spares, so they can join any array
949 * regardless of whether the OROM has assigned sectors from the
950 * IMSM_RESERVED_SECTORS region
951 */
952 if (dl->index == -1)
953 reservation = imsm_min_reserved_sectors(super);
954 else
955 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
956
957 rv = malloc(sizeof(struct extent) * (memberships + 1));
958 if (!rv)
959 return NULL;
960 e = rv;
961
962 for (i = 0; i < super->anchor->num_raid_devs; i++) {
963 struct imsm_dev *dev = get_imsm_dev(super, i);
964 struct imsm_map *map = get_imsm_map(dev, MAP_0);
965
966 if (get_imsm_disk_slot(map, dl->index) >= 0) {
967 e->start = pba_of_lba0(map);
968 e->size = blocks_per_member(map);
969 e++;
970 }
971 }
972 qsort(rv, memberships, sizeof(*rv), cmp_extent);
973
974 /* determine the start of the metadata
975 * when no raid devices are defined use the default
976 * ...otherwise allow the metadata to truncate the value
977 * as is the case with older versions of imsm
978 */
979 if (memberships) {
980 struct extent *last = &rv[memberships - 1];
981 unsigned long long remainder;
982
983 remainder = total_blocks(&dl->disk) - (last->start + last->size);
984 /* round down to 1k block to satisfy precision of the kernel
985 * 'size' interface
986 */
987 remainder &= ~1UL;
988 /* make sure remainder is still sane */
989 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
990 remainder = ROUND_UP(super->len, 512) >> 9;
991 if (reservation > remainder)
992 reservation = remainder;
993 }
994 e->start = total_blocks(&dl->disk) - reservation;
995 e->size = 0;
996 return rv;
997 }
998
999 /* try to determine how much space is reserved for metadata from
1000 * the last get_extents() entry, otherwise fallback to the
1001 * default
1002 */
1003 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1004 {
1005 struct extent *e;
1006 int i;
1007 __u32 rv;
1008
1009 /* for spares just return a minimal reservation which will grow
1010 * once the spare is picked up by an array
1011 */
1012 if (dl->index == -1)
1013 return MPB_SECTOR_CNT;
1014
1015 e = get_extents(super, dl);
1016 if (!e)
1017 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1018
1019 /* scroll to last entry */
1020 for (i = 0; e[i].size; i++)
1021 continue;
1022
1023 rv = total_blocks(&dl->disk) - e[i].start;
1024
1025 free(e);
1026
1027 return rv;
1028 }
1029
1030 static int is_spare(struct imsm_disk *disk)
1031 {
1032 return (disk->status & SPARE_DISK) == SPARE_DISK;
1033 }
1034
1035 static int is_configured(struct imsm_disk *disk)
1036 {
1037 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1038 }
1039
1040 static int is_failed(struct imsm_disk *disk)
1041 {
1042 return (disk->status & FAILED_DISK) == FAILED_DISK;
1043 }
1044
1045 /* try to determine how much space is reserved for metadata from
1046 * the last get_extents() entry on the smallest active disk,
1047 * otherwise fallback to the default
1048 */
1049 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1050 {
1051 struct extent *e;
1052 int i;
1053 unsigned long long min_active;
1054 __u32 remainder;
1055 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1056 struct dl *dl, *dl_min = NULL;
1057
1058 if (!super)
1059 return rv;
1060
1061 min_active = 0;
1062 for (dl = super->disks; dl; dl = dl->next) {
1063 if (dl->index < 0)
1064 continue;
1065 unsigned long long blocks = total_blocks(&dl->disk);
1066 if (blocks < min_active || min_active == 0) {
1067 dl_min = dl;
1068 min_active = blocks;
1069 }
1070 }
1071 if (!dl_min)
1072 return rv;
1073
1074 /* find last lba used by subarrays on the smallest active disk */
1075 e = get_extents(super, dl_min);
1076 if (!e)
1077 return rv;
1078 for (i = 0; e[i].size; i++)
1079 continue;
1080
1081 remainder = min_active - e[i].start;
1082 free(e);
1083
1084 /* to give priority to recovery we should not require full
1085 IMSM_RESERVED_SECTORS from the spare */
1086 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1087
1088 /* if real reservation is smaller use that value */
1089 return (remainder < rv) ? remainder : rv;
1090 }
1091
1092 /* Return minimum size of a spare that can be used in this array*/
1093 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1094 {
1095 struct intel_super *super = st->sb;
1096 struct dl *dl;
1097 struct extent *e;
1098 int i;
1099 unsigned long long rv = 0;
1100
1101 if (!super)
1102 return rv;
1103 /* find first active disk in array */
1104 dl = super->disks;
1105 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1106 dl = dl->next;
1107 if (!dl)
1108 return rv;
1109 /* find last lba used by subarrays */
1110 e = get_extents(super, dl);
1111 if (!e)
1112 return rv;
1113 for (i = 0; e[i].size; i++)
1114 continue;
1115 if (i > 0)
1116 rv = e[i-1].start + e[i-1].size;
1117 free(e);
1118
1119 /* add the amount of space needed for metadata */
1120 rv = rv + imsm_min_reserved_sectors(super);
1121
1122 return rv * 512;
1123 }
1124
1125 static int is_gen_migration(struct imsm_dev *dev);
1126
1127 #ifndef MDASSEMBLE
1128 static __u64 blocks_per_migr_unit(struct intel_super *super,
1129 struct imsm_dev *dev);
1130
1131 static void print_imsm_dev(struct intel_super *super,
1132 struct imsm_dev *dev,
1133 char *uuid,
1134 int disk_idx)
1135 {
1136 __u64 sz;
1137 int slot, i;
1138 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1139 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1140 __u32 ord;
1141
1142 printf("\n");
1143 printf("[%.16s]:\n", dev->volume);
1144 printf(" UUID : %s\n", uuid);
1145 printf(" RAID Level : %d", get_imsm_raid_level(map));
1146 if (map2)
1147 printf(" <-- %d", get_imsm_raid_level(map2));
1148 printf("\n");
1149 printf(" Members : %d", map->num_members);
1150 if (map2)
1151 printf(" <-- %d", map2->num_members);
1152 printf("\n");
1153 printf(" Slots : [");
1154 for (i = 0; i < map->num_members; i++) {
1155 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1156 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1157 }
1158 printf("]");
1159 if (map2) {
1160 printf(" <-- [");
1161 for (i = 0; i < map2->num_members; i++) {
1162 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1163 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1164 }
1165 printf("]");
1166 }
1167 printf("\n");
1168 printf(" Failed disk : ");
1169 if (map->failed_disk_num == 0xff)
1170 printf("none");
1171 else
1172 printf("%i", map->failed_disk_num);
1173 printf("\n");
1174 slot = get_imsm_disk_slot(map, disk_idx);
1175 if (slot >= 0) {
1176 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1177 printf(" This Slot : %d%s\n", slot,
1178 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1179 } else
1180 printf(" This Slot : ?\n");
1181 sz = __le32_to_cpu(dev->size_high);
1182 sz <<= 32;
1183 sz += __le32_to_cpu(dev->size_low);
1184 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1185 human_size(sz * 512));
1186 sz = blocks_per_member(map);
1187 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1188 human_size(sz * 512));
1189 printf(" Sector Offset : %llu\n",
1190 pba_of_lba0(map));
1191 printf(" Num Stripes : %llu\n",
1192 num_data_stripes(map));
1193 printf(" Chunk Size : %u KiB",
1194 __le16_to_cpu(map->blocks_per_strip) / 2);
1195 if (map2)
1196 printf(" <-- %u KiB",
1197 __le16_to_cpu(map2->blocks_per_strip) / 2);
1198 printf("\n");
1199 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1200 printf(" Migrate State : ");
1201 if (dev->vol.migr_state) {
1202 if (migr_type(dev) == MIGR_INIT)
1203 printf("initialize\n");
1204 else if (migr_type(dev) == MIGR_REBUILD)
1205 printf("rebuild\n");
1206 else if (migr_type(dev) == MIGR_VERIFY)
1207 printf("check\n");
1208 else if (migr_type(dev) == MIGR_GEN_MIGR)
1209 printf("general migration\n");
1210 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1211 printf("state change\n");
1212 else if (migr_type(dev) == MIGR_REPAIR)
1213 printf("repair\n");
1214 else
1215 printf("<unknown:%d>\n", migr_type(dev));
1216 } else
1217 printf("idle\n");
1218 printf(" Map State : %s", map_state_str[map->map_state]);
1219 if (dev->vol.migr_state) {
1220 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1221
1222 printf(" <-- %s", map_state_str[map->map_state]);
1223 printf("\n Checkpoint : %u ",
1224 __le32_to_cpu(dev->vol.curr_migr_unit));
1225 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
1226 printf("(N/A)");
1227 else
1228 printf("(%llu)", (unsigned long long)
1229 blocks_per_migr_unit(super, dev));
1230 }
1231 printf("\n");
1232 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1233 }
1234
1235 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1236 {
1237 char str[MAX_RAID_SERIAL_LEN + 1];
1238 __u64 sz;
1239
1240 if (index < -1 || !disk)
1241 return;
1242
1243 printf("\n");
1244 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1245 if (index >= 0)
1246 printf(" Disk%02d Serial : %s\n", index, str);
1247 else
1248 printf(" Disk Serial : %s\n", str);
1249 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1250 is_configured(disk) ? " active" : "",
1251 is_failed(disk) ? " failed" : "");
1252 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1253 sz = total_blocks(disk) - reserved;
1254 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1255 human_size(sz * 512));
1256 }
1257
1258 void examine_migr_rec_imsm(struct intel_super *super)
1259 {
1260 struct migr_record *migr_rec = super->migr_rec;
1261 struct imsm_super *mpb = super->anchor;
1262 int i;
1263
1264 for (i = 0; i < mpb->num_raid_devs; i++) {
1265 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1266 struct imsm_map *map;
1267 int slot = -1;
1268
1269 if (is_gen_migration(dev) == 0)
1270 continue;
1271
1272 printf("\nMigration Record Information:");
1273
1274 /* first map under migration */
1275 map = get_imsm_map(dev, MAP_0);
1276 if (map)
1277 slot = get_imsm_disk_slot(map, super->disks->index);
1278 if ((map == NULL) || (slot > 1) || (slot < 0)) {
1279 printf(" Empty\n ");
1280 printf("Examine one of first two disks in array\n");
1281 break;
1282 }
1283 printf("\n Status : ");
1284 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1285 printf("Normal\n");
1286 else
1287 printf("Contains Data\n");
1288 printf(" Current Unit : %u\n",
1289 __le32_to_cpu(migr_rec->curr_migr_unit));
1290 printf(" Family : %u\n",
1291 __le32_to_cpu(migr_rec->family_num));
1292 printf(" Ascending : %u\n",
1293 __le32_to_cpu(migr_rec->ascending_migr));
1294 printf(" Blocks Per Unit : %u\n",
1295 __le32_to_cpu(migr_rec->blocks_per_unit));
1296 printf(" Dest. Depth Per Unit : %u\n",
1297 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1298 printf(" Checkpoint Area pba : %u\n",
1299 __le32_to_cpu(migr_rec->ckpt_area_pba));
1300 printf(" First member lba : %u\n",
1301 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1302 printf(" Total Number of Units : %u\n",
1303 __le32_to_cpu(migr_rec->num_migr_units));
1304 printf(" Size of volume : %u\n",
1305 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1306 printf(" Expansion space for LBA64 : %u\n",
1307 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1308 printf(" Record was read from : %u\n",
1309 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1310
1311 break;
1312 }
1313 }
1314 #endif /* MDASSEMBLE */
1315 /*******************************************************************************
1316 * function: imsm_check_attributes
1317 * Description: Function checks if features represented by attributes flags
1318 * are supported by mdadm.
1319 * Parameters:
1320 * attributes - Attributes read from metadata
1321 * Returns:
1322 * 0 - passed attributes contains unsupported features flags
1323 * 1 - all features are supported
1324 ******************************************************************************/
1325 static int imsm_check_attributes(__u32 attributes)
1326 {
1327 int ret_val = 1;
1328 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1329
1330 not_supported &= ~MPB_ATTRIB_IGNORED;
1331
1332 not_supported &= attributes;
1333 if (not_supported) {
1334 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1335 (unsigned)__le32_to_cpu(not_supported));
1336 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1337 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1338 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1339 }
1340 if (not_supported & MPB_ATTRIB_2TB) {
1341 dprintf("\t\tMPB_ATTRIB_2TB\n");
1342 not_supported ^= MPB_ATTRIB_2TB;
1343 }
1344 if (not_supported & MPB_ATTRIB_RAID0) {
1345 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1346 not_supported ^= MPB_ATTRIB_RAID0;
1347 }
1348 if (not_supported & MPB_ATTRIB_RAID1) {
1349 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1350 not_supported ^= MPB_ATTRIB_RAID1;
1351 }
1352 if (not_supported & MPB_ATTRIB_RAID10) {
1353 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1354 not_supported ^= MPB_ATTRIB_RAID10;
1355 }
1356 if (not_supported & MPB_ATTRIB_RAID1E) {
1357 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1358 not_supported ^= MPB_ATTRIB_RAID1E;
1359 }
1360 if (not_supported & MPB_ATTRIB_RAID5) {
1361 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1362 not_supported ^= MPB_ATTRIB_RAID5;
1363 }
1364 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1365 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1366 not_supported ^= MPB_ATTRIB_RAIDCNG;
1367 }
1368 if (not_supported & MPB_ATTRIB_BBM) {
1369 dprintf("\t\tMPB_ATTRIB_BBM\n");
1370 not_supported ^= MPB_ATTRIB_BBM;
1371 }
1372 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1373 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1374 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1375 }
1376 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1377 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1378 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1379 }
1380 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1381 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1382 not_supported ^= MPB_ATTRIB_2TB_DISK;
1383 }
1384 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1385 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1386 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1387 }
1388 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1389 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1390 not_supported ^= MPB_ATTRIB_NEVER_USE;
1391 }
1392
1393 if (not_supported)
1394 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1395
1396 ret_val = 0;
1397 }
1398
1399 return ret_val;
1400 }
1401
1402 #ifndef MDASSEMBLE
1403 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1404
1405 static void examine_super_imsm(struct supertype *st, char *homehost)
1406 {
1407 struct intel_super *super = st->sb;
1408 struct imsm_super *mpb = super->anchor;
1409 char str[MAX_SIGNATURE_LENGTH];
1410 int i;
1411 struct mdinfo info;
1412 char nbuf[64];
1413 __u32 sum;
1414 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1415 struct dl *dl;
1416
1417 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1418 printf(" Magic : %s\n", str);
1419 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1420 printf(" Version : %s\n", get_imsm_version(mpb));
1421 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1422 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1423 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1424 printf(" Attributes : ");
1425 if (imsm_check_attributes(mpb->attributes))
1426 printf("All supported\n");
1427 else
1428 printf("not supported\n");
1429 getinfo_super_imsm(st, &info, NULL);
1430 fname_from_uuid(st, &info, nbuf, ':');
1431 printf(" UUID : %s\n", nbuf + 5);
1432 sum = __le32_to_cpu(mpb->check_sum);
1433 printf(" Checksum : %08x %s\n", sum,
1434 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1435 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1436 printf(" Disks : %d\n", mpb->num_disks);
1437 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1438 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1439 if (super->bbm_log) {
1440 struct bbm_log *log = super->bbm_log;
1441
1442 printf("\n");
1443 printf("Bad Block Management Log:\n");
1444 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1445 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1446 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1447 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1448 printf(" First Spare : %llx\n",
1449 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1450 }
1451 for (i = 0; i < mpb->num_raid_devs; i++) {
1452 struct mdinfo info;
1453 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1454
1455 super->current_vol = i;
1456 getinfo_super_imsm(st, &info, NULL);
1457 fname_from_uuid(st, &info, nbuf, ':');
1458 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1459 }
1460 for (i = 0; i < mpb->num_disks; i++) {
1461 if (i == super->disks->index)
1462 continue;
1463 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1464 }
1465
1466 for (dl = super->disks; dl; dl = dl->next)
1467 if (dl->index == -1)
1468 print_imsm_disk(&dl->disk, -1, reserved);
1469
1470 examine_migr_rec_imsm(super);
1471 }
1472
1473 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1474 {
1475 /* We just write a generic IMSM ARRAY entry */
1476 struct mdinfo info;
1477 char nbuf[64];
1478 struct intel_super *super = st->sb;
1479
1480 if (!super->anchor->num_raid_devs) {
1481 printf("ARRAY metadata=imsm\n");
1482 return;
1483 }
1484
1485 getinfo_super_imsm(st, &info, NULL);
1486 fname_from_uuid(st, &info, nbuf, ':');
1487 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1488 }
1489
1490 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1491 {
1492 /* We just write a generic IMSM ARRAY entry */
1493 struct mdinfo info;
1494 char nbuf[64];
1495 char nbuf1[64];
1496 struct intel_super *super = st->sb;
1497 int i;
1498
1499 if (!super->anchor->num_raid_devs)
1500 return;
1501
1502 getinfo_super_imsm(st, &info, NULL);
1503 fname_from_uuid(st, &info, nbuf, ':');
1504 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1505 struct imsm_dev *dev = get_imsm_dev(super, i);
1506
1507 super->current_vol = i;
1508 getinfo_super_imsm(st, &info, NULL);
1509 fname_from_uuid(st, &info, nbuf1, ':');
1510 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1511 dev->volume, nbuf + 5, i, nbuf1 + 5);
1512 }
1513 }
1514
1515 static void export_examine_super_imsm(struct supertype *st)
1516 {
1517 struct intel_super *super = st->sb;
1518 struct imsm_super *mpb = super->anchor;
1519 struct mdinfo info;
1520 char nbuf[64];
1521
1522 getinfo_super_imsm(st, &info, NULL);
1523 fname_from_uuid(st, &info, nbuf, ':');
1524 printf("MD_METADATA=imsm\n");
1525 printf("MD_LEVEL=container\n");
1526 printf("MD_UUID=%s\n", nbuf+5);
1527 printf("MD_DEVICES=%u\n", mpb->num_disks);
1528 }
1529
1530 static void detail_super_imsm(struct supertype *st, char *homehost)
1531 {
1532 struct mdinfo info;
1533 char nbuf[64];
1534
1535 getinfo_super_imsm(st, &info, NULL);
1536 fname_from_uuid(st, &info, nbuf, ':');
1537 printf("\n UUID : %s\n", nbuf + 5);
1538 }
1539
1540 static void brief_detail_super_imsm(struct supertype *st)
1541 {
1542 struct mdinfo info;
1543 char nbuf[64];
1544 getinfo_super_imsm(st, &info, NULL);
1545 fname_from_uuid(st, &info, nbuf, ':');
1546 printf(" UUID=%s", nbuf + 5);
1547 }
1548
1549 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1550 static void fd2devname(int fd, char *name);
1551
1552 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1553 {
1554 /* dump an unsorted list of devices attached to AHCI Intel storage
1555 * controller, as well as non-connected ports
1556 */
1557 int hba_len = strlen(hba_path) + 1;
1558 struct dirent *ent;
1559 DIR *dir;
1560 char *path = NULL;
1561 int err = 0;
1562 unsigned long port_mask = (1 << port_count) - 1;
1563
1564 if (port_count > (int)sizeof(port_mask) * 8) {
1565 if (verbose)
1566 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1567 return 2;
1568 }
1569
1570 /* scroll through /sys/dev/block looking for devices attached to
1571 * this hba
1572 */
1573 dir = opendir("/sys/dev/block");
1574 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1575 int fd;
1576 char model[64];
1577 char vendor[64];
1578 char buf[1024];
1579 int major, minor;
1580 char *device;
1581 char *c;
1582 int port;
1583 int type;
1584
1585 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1586 continue;
1587 path = devt_to_devpath(makedev(major, minor));
1588 if (!path)
1589 continue;
1590 if (!path_attached_to_hba(path, hba_path)) {
1591 free(path);
1592 path = NULL;
1593 continue;
1594 }
1595
1596 /* retrieve the scsi device type */
1597 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1598 if (verbose)
1599 fprintf(stderr, Name ": failed to allocate 'device'\n");
1600 err = 2;
1601 break;
1602 }
1603 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1604 if (load_sys(device, buf) != 0) {
1605 if (verbose)
1606 fprintf(stderr, Name ": failed to read device type for %s\n",
1607 path);
1608 err = 2;
1609 free(device);
1610 break;
1611 }
1612 type = strtoul(buf, NULL, 10);
1613
1614 /* if it's not a disk print the vendor and model */
1615 if (!(type == 0 || type == 7 || type == 14)) {
1616 vendor[0] = '\0';
1617 model[0] = '\0';
1618 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1619 if (load_sys(device, buf) == 0) {
1620 strncpy(vendor, buf, sizeof(vendor));
1621 vendor[sizeof(vendor) - 1] = '\0';
1622 c = (char *) &vendor[sizeof(vendor) - 1];
1623 while (isspace(*c) || *c == '\0')
1624 *c-- = '\0';
1625
1626 }
1627 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1628 if (load_sys(device, buf) == 0) {
1629 strncpy(model, buf, sizeof(model));
1630 model[sizeof(model) - 1] = '\0';
1631 c = (char *) &model[sizeof(model) - 1];
1632 while (isspace(*c) || *c == '\0')
1633 *c-- = '\0';
1634 }
1635
1636 if (vendor[0] && model[0])
1637 sprintf(buf, "%.64s %.64s", vendor, model);
1638 else
1639 switch (type) { /* numbers from hald/linux/device.c */
1640 case 1: sprintf(buf, "tape"); break;
1641 case 2: sprintf(buf, "printer"); break;
1642 case 3: sprintf(buf, "processor"); break;
1643 case 4:
1644 case 5: sprintf(buf, "cdrom"); break;
1645 case 6: sprintf(buf, "scanner"); break;
1646 case 8: sprintf(buf, "media_changer"); break;
1647 case 9: sprintf(buf, "comm"); break;
1648 case 12: sprintf(buf, "raid"); break;
1649 default: sprintf(buf, "unknown");
1650 }
1651 } else
1652 buf[0] = '\0';
1653 free(device);
1654
1655 /* chop device path to 'host%d' and calculate the port number */
1656 c = strchr(&path[hba_len], '/');
1657 if (!c) {
1658 if (verbose)
1659 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1660 err = 2;
1661 break;
1662 }
1663 *c = '\0';
1664 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1665 port -= host_base;
1666 else {
1667 if (verbose) {
1668 *c = '/'; /* repair the full string */
1669 fprintf(stderr, Name ": failed to determine port number for %s\n",
1670 path);
1671 }
1672 err = 2;
1673 break;
1674 }
1675
1676 /* mark this port as used */
1677 port_mask &= ~(1 << port);
1678
1679 /* print out the device information */
1680 if (buf[0]) {
1681 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1682 continue;
1683 }
1684
1685 fd = dev_open(ent->d_name, O_RDONLY);
1686 if (fd < 0)
1687 printf(" Port%d : - disk info unavailable -\n", port);
1688 else {
1689 fd2devname(fd, buf);
1690 printf(" Port%d : %s", port, buf);
1691 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1692 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1693 else
1694 printf(" ()\n");
1695 close(fd);
1696 }
1697 free(path);
1698 path = NULL;
1699 }
1700 if (path)
1701 free(path);
1702 if (dir)
1703 closedir(dir);
1704 if (err == 0) {
1705 int i;
1706
1707 for (i = 0; i < port_count; i++)
1708 if (port_mask & (1 << i))
1709 printf(" Port%d : - no device attached -\n", i);
1710 }
1711
1712 return err;
1713 }
1714
1715 static void print_found_intel_controllers(struct sys_dev *elem)
1716 {
1717 for (; elem; elem = elem->next) {
1718 fprintf(stderr, Name ": found Intel(R) ");
1719 if (elem->type == SYS_DEV_SATA)
1720 fprintf(stderr, "SATA ");
1721 else if (elem->type == SYS_DEV_SAS)
1722 fprintf(stderr, "SAS ");
1723 fprintf(stderr, "RAID controller");
1724 if (elem->pci_id)
1725 fprintf(stderr, " at %s", elem->pci_id);
1726 fprintf(stderr, ".\n");
1727 }
1728 fflush(stderr);
1729 }
1730
1731 static int ahci_get_port_count(const char *hba_path, int *port_count)
1732 {
1733 struct dirent *ent;
1734 DIR *dir;
1735 int host_base = -1;
1736
1737 *port_count = 0;
1738 if ((dir = opendir(hba_path)) == NULL)
1739 return -1;
1740
1741 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1742 int host;
1743
1744 if (sscanf(ent->d_name, "host%d", &host) != 1)
1745 continue;
1746 if (*port_count == 0)
1747 host_base = host;
1748 else if (host < host_base)
1749 host_base = host;
1750
1751 if (host + 1 > *port_count + host_base)
1752 *port_count = host + 1 - host_base;
1753 }
1754 closedir(dir);
1755 return host_base;
1756 }
1757
1758 static void print_imsm_capability(const struct imsm_orom *orom)
1759 {
1760 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1761 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1762 orom->hotfix_ver, orom->build);
1763 printf(" RAID Levels :%s%s%s%s%s\n",
1764 imsm_orom_has_raid0(orom) ? " raid0" : "",
1765 imsm_orom_has_raid1(orom) ? " raid1" : "",
1766 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1767 imsm_orom_has_raid10(orom) ? " raid10" : "",
1768 imsm_orom_has_raid5(orom) ? " raid5" : "");
1769 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1770 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1771 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1772 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1773 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1774 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1775 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1776 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1777 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1778 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1779 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1780 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1781 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1782 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1783 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1784 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1785 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1786 printf(" 2TB volumes :%s supported\n",
1787 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
1788 printf(" 2TB disks :%s supported\n",
1789 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
1790 printf(" Max Disks : %d\n", orom->tds);
1791 printf(" Max Volumes : %d per array, %d per controller\n",
1792 orom->vpa, orom->vphba);
1793 return;
1794 }
1795
1796 static int detail_platform_imsm(int verbose, int enumerate_only)
1797 {
1798 /* There are two components to imsm platform support, the ahci SATA
1799 * controller and the option-rom. To find the SATA controller we
1800 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1801 * controller with the Intel vendor id is present. This approach
1802 * allows mdadm to leverage the kernel's ahci detection logic, with the
1803 * caveat that if ahci.ko is not loaded mdadm will not be able to
1804 * detect platform raid capabilities. The option-rom resides in a
1805 * platform "Adapter ROM". We scan for its signature to retrieve the
1806 * platform capabilities. If raid support is disabled in the BIOS the
1807 * option-rom capability structure will not be available.
1808 */
1809 const struct imsm_orom *orom;
1810 struct sys_dev *list, *hba;
1811 int host_base = 0;
1812 int port_count = 0;
1813 int result=0;
1814
1815 if (enumerate_only) {
1816 if (check_env("IMSM_NO_PLATFORM"))
1817 return 0;
1818 list = find_intel_devices();
1819 if (!list)
1820 return 2;
1821 for (hba = list; hba; hba = hba->next) {
1822 orom = find_imsm_capability(hba->type);
1823 if (!orom) {
1824 result = 2;
1825 break;
1826 }
1827 }
1828 free_sys_dev(&list);
1829 return result;
1830 }
1831
1832 list = find_intel_devices();
1833 if (!list) {
1834 if (verbose)
1835 fprintf(stderr, Name ": no active Intel(R) RAID "
1836 "controller found.\n");
1837 free_sys_dev(&list);
1838 return 2;
1839 } else if (verbose)
1840 print_found_intel_controllers(list);
1841
1842 for (hba = list; hba; hba = hba->next) {
1843 orom = find_imsm_capability(hba->type);
1844 if (!orom)
1845 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1846 hba->path, get_sys_dev_type(hba->type));
1847 else
1848 print_imsm_capability(orom);
1849 }
1850
1851 for (hba = list; hba; hba = hba->next) {
1852 printf(" I/O Controller : %s (%s)\n",
1853 hba->path, get_sys_dev_type(hba->type));
1854
1855 if (hba->type == SYS_DEV_SATA) {
1856 host_base = ahci_get_port_count(hba->path, &port_count);
1857 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1858 if (verbose)
1859 fprintf(stderr, Name ": failed to enumerate "
1860 "ports on SATA controller at %s.", hba->pci_id);
1861 result |= 2;
1862 }
1863 }
1864 }
1865
1866 free_sys_dev(&list);
1867 return result;
1868 }
1869 #endif
1870
1871 static int match_home_imsm(struct supertype *st, char *homehost)
1872 {
1873 /* the imsm metadata format does not specify any host
1874 * identification information. We return -1 since we can never
1875 * confirm nor deny whether a given array is "meant" for this
1876 * host. We rely on compare_super and the 'family_num' fields to
1877 * exclude member disks that do not belong, and we rely on
1878 * mdadm.conf to specify the arrays that should be assembled.
1879 * Auto-assembly may still pick up "foreign" arrays.
1880 */
1881
1882 return -1;
1883 }
1884
1885 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1886 {
1887 /* The uuid returned here is used for:
1888 * uuid to put into bitmap file (Create, Grow)
1889 * uuid for backup header when saving critical section (Grow)
1890 * comparing uuids when re-adding a device into an array
1891 * In these cases the uuid required is that of the data-array,
1892 * not the device-set.
1893 * uuid to recognise same set when adding a missing device back
1894 * to an array. This is a uuid for the device-set.
1895 *
1896 * For each of these we can make do with a truncated
1897 * or hashed uuid rather than the original, as long as
1898 * everyone agrees.
1899 * In each case the uuid required is that of the data-array,
1900 * not the device-set.
1901 */
1902 /* imsm does not track uuid's so we synthesis one using sha1 on
1903 * - The signature (Which is constant for all imsm array, but no matter)
1904 * - the orig_family_num of the container
1905 * - the index number of the volume
1906 * - the 'serial' number of the volume.
1907 * Hopefully these are all constant.
1908 */
1909 struct intel_super *super = st->sb;
1910
1911 char buf[20];
1912 struct sha1_ctx ctx;
1913 struct imsm_dev *dev = NULL;
1914 __u32 family_num;
1915
1916 /* some mdadm versions failed to set ->orig_family_num, in which
1917 * case fall back to ->family_num. orig_family_num will be
1918 * fixed up with the first metadata update.
1919 */
1920 family_num = super->anchor->orig_family_num;
1921 if (family_num == 0)
1922 family_num = super->anchor->family_num;
1923 sha1_init_ctx(&ctx);
1924 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1925 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1926 if (super->current_vol >= 0)
1927 dev = get_imsm_dev(super, super->current_vol);
1928 if (dev) {
1929 __u32 vol = super->current_vol;
1930 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1931 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1932 }
1933 sha1_finish_ctx(&ctx, buf);
1934 memcpy(uuid, buf, 4*4);
1935 }
1936
1937 #if 0
1938 static void
1939 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1940 {
1941 __u8 *v = get_imsm_version(mpb);
1942 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1943 char major[] = { 0, 0, 0 };
1944 char minor[] = { 0 ,0, 0 };
1945 char patch[] = { 0, 0, 0 };
1946 char *ver_parse[] = { major, minor, patch };
1947 int i, j;
1948
1949 i = j = 0;
1950 while (*v != '\0' && v < end) {
1951 if (*v != '.' && j < 2)
1952 ver_parse[i][j++] = *v;
1953 else {
1954 i++;
1955 j = 0;
1956 }
1957 v++;
1958 }
1959
1960 *m = strtol(minor, NULL, 0);
1961 *p = strtol(patch, NULL, 0);
1962 }
1963 #endif
1964
1965 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1966 {
1967 /* migr_strip_size when repairing or initializing parity */
1968 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1969 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1970
1971 switch (get_imsm_raid_level(map)) {
1972 case 5:
1973 case 10:
1974 return chunk;
1975 default:
1976 return 128*1024 >> 9;
1977 }
1978 }
1979
1980 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1981 {
1982 /* migr_strip_size when rebuilding a degraded disk, no idea why
1983 * this is different than migr_strip_size_resync(), but it's good
1984 * to be compatible
1985 */
1986 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1987 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1988
1989 switch (get_imsm_raid_level(map)) {
1990 case 1:
1991 case 10:
1992 if (map->num_members % map->num_domains == 0)
1993 return 128*1024 >> 9;
1994 else
1995 return chunk;
1996 case 5:
1997 return max((__u32) 64*1024 >> 9, chunk);
1998 default:
1999 return 128*1024 >> 9;
2000 }
2001 }
2002
2003 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2004 {
2005 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2006 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2007 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2008 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2009
2010 return max((__u32) 1, hi_chunk / lo_chunk);
2011 }
2012
2013 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2014 {
2015 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2016 int level = get_imsm_raid_level(lo);
2017
2018 if (level == 1 || level == 10) {
2019 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2020
2021 return hi->num_domains;
2022 } else
2023 return num_stripes_per_unit_resync(dev);
2024 }
2025
2026 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2027 {
2028 /* named 'imsm_' because raid0, raid1 and raid10
2029 * counter-intuitively have the same number of data disks
2030 */
2031 struct imsm_map *map = get_imsm_map(dev, second_map);
2032
2033 switch (get_imsm_raid_level(map)) {
2034 case 0:
2035 case 1:
2036 case 10:
2037 return map->num_members;
2038 case 5:
2039 return map->num_members - 1;
2040 default:
2041 dprintf("%s: unsupported raid level\n", __func__);
2042 return 0;
2043 }
2044 }
2045
2046 static __u32 parity_segment_depth(struct imsm_dev *dev)
2047 {
2048 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2049 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2050
2051 switch(get_imsm_raid_level(map)) {
2052 case 1:
2053 case 10:
2054 return chunk * map->num_domains;
2055 case 5:
2056 return chunk * map->num_members;
2057 default:
2058 return chunk;
2059 }
2060 }
2061
2062 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2063 {
2064 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2065 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2066 __u32 strip = block / chunk;
2067
2068 switch (get_imsm_raid_level(map)) {
2069 case 1:
2070 case 10: {
2071 __u32 vol_strip = (strip * map->num_domains) + 1;
2072 __u32 vol_stripe = vol_strip / map->num_members;
2073
2074 return vol_stripe * chunk + block % chunk;
2075 } case 5: {
2076 __u32 stripe = strip / (map->num_members - 1);
2077
2078 return stripe * chunk + block % chunk;
2079 }
2080 default:
2081 return 0;
2082 }
2083 }
2084
2085 static __u64 blocks_per_migr_unit(struct intel_super *super,
2086 struct imsm_dev *dev)
2087 {
2088 /* calculate the conversion factor between per member 'blocks'
2089 * (md/{resync,rebuild}_start) and imsm migration units, return
2090 * 0 for the 'not migrating' and 'unsupported migration' cases
2091 */
2092 if (!dev->vol.migr_state)
2093 return 0;
2094
2095 switch (migr_type(dev)) {
2096 case MIGR_GEN_MIGR: {
2097 struct migr_record *migr_rec = super->migr_rec;
2098 return __le32_to_cpu(migr_rec->blocks_per_unit);
2099 }
2100 case MIGR_VERIFY:
2101 case MIGR_REPAIR:
2102 case MIGR_INIT: {
2103 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2104 __u32 stripes_per_unit;
2105 __u32 blocks_per_unit;
2106 __u32 parity_depth;
2107 __u32 migr_chunk;
2108 __u32 block_map;
2109 __u32 block_rel;
2110 __u32 segment;
2111 __u32 stripe;
2112 __u8 disks;
2113
2114 /* yes, this is really the translation of migr_units to
2115 * per-member blocks in the 'resync' case
2116 */
2117 stripes_per_unit = num_stripes_per_unit_resync(dev);
2118 migr_chunk = migr_strip_blocks_resync(dev);
2119 disks = imsm_num_data_members(dev, MAP_0);
2120 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2121 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2122 segment = blocks_per_unit / stripe;
2123 block_rel = blocks_per_unit - segment * stripe;
2124 parity_depth = parity_segment_depth(dev);
2125 block_map = map_migr_block(dev, block_rel);
2126 return block_map + parity_depth * segment;
2127 }
2128 case MIGR_REBUILD: {
2129 __u32 stripes_per_unit;
2130 __u32 migr_chunk;
2131
2132 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2133 migr_chunk = migr_strip_blocks_rebuild(dev);
2134 return migr_chunk * stripes_per_unit;
2135 }
2136 case MIGR_STATE_CHANGE:
2137 default:
2138 return 0;
2139 }
2140 }
2141
2142 static int imsm_level_to_layout(int level)
2143 {
2144 switch (level) {
2145 case 0:
2146 case 1:
2147 return 0;
2148 case 5:
2149 case 6:
2150 return ALGORITHM_LEFT_ASYMMETRIC;
2151 case 10:
2152 return 0x102;
2153 }
2154 return UnSet;
2155 }
2156
2157 /*******************************************************************************
2158 * Function: read_imsm_migr_rec
2159 * Description: Function reads imsm migration record from last sector of disk
2160 * Parameters:
2161 * fd : disk descriptor
2162 * super : metadata info
2163 * Returns:
2164 * 0 : success,
2165 * -1 : fail
2166 ******************************************************************************/
2167 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2168 {
2169 int ret_val = -1;
2170 unsigned long long dsize;
2171
2172 get_dev_size(fd, NULL, &dsize);
2173 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2174 fprintf(stderr,
2175 Name ": Cannot seek to anchor block: %s\n",
2176 strerror(errno));
2177 goto out;
2178 }
2179 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2180 MIGR_REC_BUF_SIZE) {
2181 fprintf(stderr,
2182 Name ": Cannot read migr record block: %s\n",
2183 strerror(errno));
2184 goto out;
2185 }
2186 ret_val = 0;
2187
2188 out:
2189 return ret_val;
2190 }
2191
2192 static struct imsm_dev *imsm_get_device_during_migration(
2193 struct intel_super *super)
2194 {
2195
2196 struct intel_dev *dv;
2197
2198 for (dv = super->devlist; dv; dv = dv->next) {
2199 if (is_gen_migration(dv->dev))
2200 return dv->dev;
2201 }
2202 return NULL;
2203 }
2204
2205 /*******************************************************************************
2206 * Function: load_imsm_migr_rec
2207 * Description: Function reads imsm migration record (it is stored at the last
2208 * sector of disk)
2209 * Parameters:
2210 * super : imsm internal array info
2211 * info : general array info
2212 * Returns:
2213 * 0 : success
2214 * -1 : fail
2215 * -2 : no migration in progress
2216 ******************************************************************************/
2217 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2218 {
2219 struct mdinfo *sd;
2220 struct dl *dl = NULL;
2221 char nm[30];
2222 int retval = -1;
2223 int fd = -1;
2224 struct imsm_dev *dev;
2225 struct imsm_map *map = NULL;
2226 int slot = -1;
2227
2228 /* find map under migration */
2229 dev = imsm_get_device_during_migration(super);
2230 /* nothing to load,no migration in progress?
2231 */
2232 if (dev == NULL)
2233 return -2;
2234 map = get_imsm_map(dev, MAP_0);
2235
2236 if (info) {
2237 for (sd = info->devs ; sd ; sd = sd->next) {
2238 /* skip spare and failed disks
2239 */
2240 if (sd->disk.raid_disk < 0)
2241 continue;
2242 /* read only from one of the first two slots */
2243 if (map)
2244 slot = get_imsm_disk_slot(map,
2245 sd->disk.raid_disk);
2246 if ((map == NULL) || (slot > 1) || (slot < 0))
2247 continue;
2248
2249 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2250 fd = dev_open(nm, O_RDONLY);
2251 if (fd >= 0)
2252 break;
2253 }
2254 }
2255 if (fd < 0) {
2256 for (dl = super->disks; dl; dl = dl->next) {
2257 /* skip spare and failed disks
2258 */
2259 if (dl->index < 0)
2260 continue;
2261 /* read only from one of the first two slots */
2262 if (map)
2263 slot = get_imsm_disk_slot(map, dl->index);
2264 if ((map == NULL) || (slot > 1) || (slot < 0))
2265 continue;
2266 sprintf(nm, "%d:%d", dl->major, dl->minor);
2267 fd = dev_open(nm, O_RDONLY);
2268 if (fd >= 0)
2269 break;
2270 }
2271 }
2272 if (fd < 0)
2273 goto out;
2274 retval = read_imsm_migr_rec(fd, super);
2275
2276 out:
2277 if (fd >= 0)
2278 close(fd);
2279 return retval;
2280 }
2281
2282 #ifndef MDASSEMBLE
2283 /*******************************************************************************
2284 * function: imsm_create_metadata_checkpoint_update
2285 * Description: It creates update for checkpoint change.
2286 * Parameters:
2287 * super : imsm internal array info
2288 * u : pointer to prepared update
2289 * Returns:
2290 * Uptate length.
2291 * If length is equal to 0, input pointer u contains no update
2292 ******************************************************************************/
2293 static int imsm_create_metadata_checkpoint_update(
2294 struct intel_super *super,
2295 struct imsm_update_general_migration_checkpoint **u)
2296 {
2297
2298 int update_memory_size = 0;
2299
2300 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2301
2302 if (u == NULL)
2303 return 0;
2304 *u = NULL;
2305
2306 /* size of all update data without anchor */
2307 update_memory_size =
2308 sizeof(struct imsm_update_general_migration_checkpoint);
2309
2310 *u = calloc(1, update_memory_size);
2311 if (*u == NULL) {
2312 dprintf("error: cannot get memory for "
2313 "imsm_create_metadata_checkpoint_update update\n");
2314 return 0;
2315 }
2316 (*u)->type = update_general_migration_checkpoint;
2317 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2318 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2319 (*u)->curr_migr_unit);
2320
2321 return update_memory_size;
2322 }
2323
2324
2325 static void imsm_update_metadata_locally(struct supertype *st,
2326 void *buf, int len);
2327
2328 /*******************************************************************************
2329 * Function: write_imsm_migr_rec
2330 * Description: Function writes imsm migration record
2331 * (at the last sector of disk)
2332 * Parameters:
2333 * super : imsm internal array info
2334 * Returns:
2335 * 0 : success
2336 * -1 : if fail
2337 ******************************************************************************/
2338 static int write_imsm_migr_rec(struct supertype *st)
2339 {
2340 struct intel_super *super = st->sb;
2341 unsigned long long dsize;
2342 char nm[30];
2343 int fd = -1;
2344 int retval = -1;
2345 struct dl *sd;
2346 int len;
2347 struct imsm_update_general_migration_checkpoint *u;
2348 struct imsm_dev *dev;
2349 struct imsm_map *map = NULL;
2350
2351 /* find map under migration */
2352 dev = imsm_get_device_during_migration(super);
2353 /* if no migration, write buffer anyway to clear migr_record
2354 * on disk based on first available device
2355 */
2356 if (dev == NULL)
2357 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2358 super->current_vol);
2359
2360 map = get_imsm_map(dev, MAP_0);
2361
2362 for (sd = super->disks ; sd ; sd = sd->next) {
2363 int slot = -1;
2364
2365 /* skip failed and spare devices */
2366 if (sd->index < 0)
2367 continue;
2368 /* write to 2 first slots only */
2369 if (map)
2370 slot = get_imsm_disk_slot(map, sd->index);
2371 if ((map == NULL) || (slot > 1) || (slot < 0))
2372 continue;
2373
2374 sprintf(nm, "%d:%d", sd->major, sd->minor);
2375 fd = dev_open(nm, O_RDWR);
2376 if (fd < 0)
2377 continue;
2378 get_dev_size(fd, NULL, &dsize);
2379 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2380 fprintf(stderr,
2381 Name ": Cannot seek to anchor block: %s\n",
2382 strerror(errno));
2383 goto out;
2384 }
2385 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2386 MIGR_REC_BUF_SIZE) {
2387 fprintf(stderr,
2388 Name ": Cannot write migr record block: %s\n",
2389 strerror(errno));
2390 goto out;
2391 }
2392 close(fd);
2393 fd = -1;
2394 }
2395 /* update checkpoint information in metadata */
2396 len = imsm_create_metadata_checkpoint_update(super, &u);
2397
2398 if (len <= 0) {
2399 dprintf("imsm: Cannot prepare update\n");
2400 goto out;
2401 }
2402 /* update metadata locally */
2403 imsm_update_metadata_locally(st, u, len);
2404 /* and possibly remotely */
2405 if (st->update_tail) {
2406 append_metadata_update(st, u, len);
2407 /* during reshape we do all work inside metadata handler
2408 * manage_reshape(), so metadata update has to be triggered
2409 * insida it
2410 */
2411 flush_metadata_updates(st);
2412 st->update_tail = &st->updates;
2413 } else
2414 free(u);
2415
2416 retval = 0;
2417 out:
2418 if (fd >= 0)
2419 close(fd);
2420 return retval;
2421 }
2422 #endif /* MDASSEMBLE */
2423
2424 /* spare/missing disks activations are not allowe when
2425 * array/container performs reshape operation, because
2426 * all arrays in container works on the same disks set
2427 */
2428 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2429 {
2430 int rv = 0;
2431 struct intel_dev *i_dev;
2432 struct imsm_dev *dev;
2433
2434 /* check whole container
2435 */
2436 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2437 dev = i_dev->dev;
2438 if (is_gen_migration(dev)) {
2439 /* No repair during any migration in container
2440 */
2441 rv = 1;
2442 break;
2443 }
2444 }
2445 return rv;
2446 }
2447
2448 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2449 {
2450 struct intel_super *super = st->sb;
2451 struct migr_record *migr_rec = super->migr_rec;
2452 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2453 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2454 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2455 struct imsm_map *map_to_analyse = map;
2456 struct dl *dl;
2457 char *devname;
2458 unsigned int component_size_alligment;
2459 int map_disks = info->array.raid_disks;
2460
2461 memset(info, 0, sizeof(*info));
2462 if (prev_map)
2463 map_to_analyse = prev_map;
2464
2465 dl = super->current_disk;
2466
2467 info->container_member = super->current_vol;
2468 info->array.raid_disks = map->num_members;
2469 info->array.level = get_imsm_raid_level(map_to_analyse);
2470 info->array.layout = imsm_level_to_layout(info->array.level);
2471 info->array.md_minor = -1;
2472 info->array.ctime = 0;
2473 info->array.utime = 0;
2474 info->array.chunk_size =
2475 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2476 info->array.state = !dev->vol.dirty;
2477 info->custom_array_size = __le32_to_cpu(dev->size_high);
2478 info->custom_array_size <<= 32;
2479 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2480 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2481
2482 if (is_gen_migration(dev)) {
2483 info->reshape_active = 1;
2484 info->new_level = get_imsm_raid_level(map);
2485 info->new_layout = imsm_level_to_layout(info->new_level);
2486 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2487 info->delta_disks = map->num_members - prev_map->num_members;
2488 if (info->delta_disks) {
2489 /* this needs to be applied to every array
2490 * in the container.
2491 */
2492 info->reshape_active = CONTAINER_RESHAPE;
2493 }
2494 /* We shape information that we give to md might have to be
2495 * modify to cope with md's requirement for reshaping arrays.
2496 * For example, when reshaping a RAID0, md requires it to be
2497 * presented as a degraded RAID4.
2498 * Also if a RAID0 is migrating to a RAID5 we need to specify
2499 * the array as already being RAID5, but the 'before' layout
2500 * is a RAID4-like layout.
2501 */
2502 switch (info->array.level) {
2503 case 0:
2504 switch(info->new_level) {
2505 case 0:
2506 /* conversion is happening as RAID4 */
2507 info->array.level = 4;
2508 info->array.raid_disks += 1;
2509 break;
2510 case 5:
2511 /* conversion is happening as RAID5 */
2512 info->array.level = 5;
2513 info->array.layout = ALGORITHM_PARITY_N;
2514 info->delta_disks -= 1;
2515 break;
2516 default:
2517 /* FIXME error message */
2518 info->array.level = UnSet;
2519 break;
2520 }
2521 break;
2522 }
2523 } else {
2524 info->new_level = UnSet;
2525 info->new_layout = UnSet;
2526 info->new_chunk = info->array.chunk_size;
2527 info->delta_disks = 0;
2528 }
2529
2530 if (dl) {
2531 info->disk.major = dl->major;
2532 info->disk.minor = dl->minor;
2533 info->disk.number = dl->index;
2534 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2535 dl->index);
2536 }
2537
2538 info->data_offset = pba_of_lba0(map_to_analyse);
2539 info->component_size = blocks_per_member(map_to_analyse);
2540
2541 /* check component size aligment
2542 */
2543 component_size_alligment =
2544 info->component_size % (info->array.chunk_size/512);
2545
2546 if (component_size_alligment &&
2547 (info->array.level != 1) && (info->array.level != UnSet)) {
2548 dprintf("imsm: reported component size alligned from %llu ",
2549 info->component_size);
2550 info->component_size -= component_size_alligment;
2551 dprintf("to %llu (%i).\n",
2552 info->component_size, component_size_alligment);
2553 }
2554
2555 memset(info->uuid, 0, sizeof(info->uuid));
2556 info->recovery_start = MaxSector;
2557
2558 info->reshape_progress = 0;
2559 info->resync_start = MaxSector;
2560 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2561 dev->vol.dirty) &&
2562 imsm_reshape_blocks_arrays_changes(super) == 0) {
2563 info->resync_start = 0;
2564 }
2565 if (dev->vol.migr_state) {
2566 switch (migr_type(dev)) {
2567 case MIGR_REPAIR:
2568 case MIGR_INIT: {
2569 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2570 dev);
2571 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2572
2573 info->resync_start = blocks_per_unit * units;
2574 break;
2575 }
2576 case MIGR_GEN_MIGR: {
2577 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2578 dev);
2579 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2580 unsigned long long array_blocks;
2581 int used_disks;
2582
2583 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2584 (units <
2585 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2586 (super->migr_rec->rec_status ==
2587 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2588 units++;
2589
2590 info->reshape_progress = blocks_per_unit * units;
2591
2592 dprintf("IMSM: General Migration checkpoint : %llu "
2593 "(%llu) -> read reshape progress : %llu\n",
2594 (unsigned long long)units,
2595 (unsigned long long)blocks_per_unit,
2596 info->reshape_progress);
2597
2598 used_disks = imsm_num_data_members(dev, MAP_1);
2599 if (used_disks > 0) {
2600 array_blocks = blocks_per_member(map) *
2601 used_disks;
2602 /* round array size down to closest MB
2603 */
2604 info->custom_array_size = (array_blocks
2605 >> SECT_PER_MB_SHIFT)
2606 << SECT_PER_MB_SHIFT;
2607 }
2608 }
2609 case MIGR_VERIFY:
2610 /* we could emulate the checkpointing of
2611 * 'sync_action=check' migrations, but for now
2612 * we just immediately complete them
2613 */
2614 case MIGR_REBUILD:
2615 /* this is handled by container_content_imsm() */
2616 case MIGR_STATE_CHANGE:
2617 /* FIXME handle other migrations */
2618 default:
2619 /* we are not dirty, so... */
2620 info->resync_start = MaxSector;
2621 }
2622 }
2623
2624 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2625 info->name[MAX_RAID_SERIAL_LEN] = 0;
2626
2627 info->array.major_version = -1;
2628 info->array.minor_version = -2;
2629 devname = devnum2devname(st->container_dev);
2630 *info->text_version = '\0';
2631 if (devname)
2632 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2633 free(devname);
2634 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2635 uuid_from_super_imsm(st, info->uuid);
2636
2637 if (dmap) {
2638 int i, j;
2639 for (i=0; i<map_disks; i++) {
2640 dmap[i] = 0;
2641 if (i < info->array.raid_disks) {
2642 struct imsm_disk *dsk;
2643 j = get_imsm_disk_idx(dev, i, MAP_X);
2644 dsk = get_imsm_disk(super, j);
2645 if (dsk && (dsk->status & CONFIGURED_DISK))
2646 dmap[i] = 1;
2647 }
2648 }
2649 }
2650 }
2651
2652 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2653 int failed, int look_in_map);
2654
2655 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2656 int look_in_map);
2657
2658
2659 #ifndef MDASSEMBLE
2660 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2661 {
2662 if (is_gen_migration(dev)) {
2663 int failed;
2664 __u8 map_state;
2665 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2666
2667 failed = imsm_count_failed(super, dev, MAP_1);
2668 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2669 if (map2->map_state != map_state) {
2670 map2->map_state = map_state;
2671 super->updates_pending++;
2672 }
2673 }
2674 }
2675 #endif
2676
2677 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2678 {
2679 struct dl *d;
2680
2681 for (d = super->missing; d; d = d->next)
2682 if (d->index == index)
2683 return &d->disk;
2684 return NULL;
2685 }
2686
2687 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2688 {
2689 struct intel_super *super = st->sb;
2690 struct imsm_disk *disk;
2691 int map_disks = info->array.raid_disks;
2692 int max_enough = -1;
2693 int i;
2694 struct imsm_super *mpb;
2695
2696 if (super->current_vol >= 0) {
2697 getinfo_super_imsm_volume(st, info, map);
2698 return;
2699 }
2700 memset(info, 0, sizeof(*info));
2701
2702 /* Set raid_disks to zero so that Assemble will always pull in valid
2703 * spares
2704 */
2705 info->array.raid_disks = 0;
2706 info->array.level = LEVEL_CONTAINER;
2707 info->array.layout = 0;
2708 info->array.md_minor = -1;
2709 info->array.ctime = 0; /* N/A for imsm */
2710 info->array.utime = 0;
2711 info->array.chunk_size = 0;
2712
2713 info->disk.major = 0;
2714 info->disk.minor = 0;
2715 info->disk.raid_disk = -1;
2716 info->reshape_active = 0;
2717 info->array.major_version = -1;
2718 info->array.minor_version = -2;
2719 strcpy(info->text_version, "imsm");
2720 info->safe_mode_delay = 0;
2721 info->disk.number = -1;
2722 info->disk.state = 0;
2723 info->name[0] = 0;
2724 info->recovery_start = MaxSector;
2725 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2726
2727 /* do we have the all the insync disks that we expect? */
2728 mpb = super->anchor;
2729
2730 for (i = 0; i < mpb->num_raid_devs; i++) {
2731 struct imsm_dev *dev = get_imsm_dev(super, i);
2732 int failed, enough, j, missing = 0;
2733 struct imsm_map *map;
2734 __u8 state;
2735
2736 failed = imsm_count_failed(super, dev, MAP_0);
2737 state = imsm_check_degraded(super, dev, failed, MAP_0);
2738 map = get_imsm_map(dev, MAP_0);
2739
2740 /* any newly missing disks?
2741 * (catches single-degraded vs double-degraded)
2742 */
2743 for (j = 0; j < map->num_members; j++) {
2744 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2745 __u32 idx = ord_to_idx(ord);
2746
2747 if (!(ord & IMSM_ORD_REBUILD) &&
2748 get_imsm_missing(super, idx)) {
2749 missing = 1;
2750 break;
2751 }
2752 }
2753
2754 if (state == IMSM_T_STATE_FAILED)
2755 enough = -1;
2756 else if (state == IMSM_T_STATE_DEGRADED &&
2757 (state != map->map_state || missing))
2758 enough = 0;
2759 else /* we're normal, or already degraded */
2760 enough = 1;
2761 if (is_gen_migration(dev) && missing) {
2762 /* during general migration we need all disks
2763 * that process is running on.
2764 * No new missing disk is allowed.
2765 */
2766 max_enough = -1;
2767 enough = -1;
2768 /* no more checks necessary
2769 */
2770 break;
2771 }
2772 /* in the missing/failed disk case check to see
2773 * if at least one array is runnable
2774 */
2775 max_enough = max(max_enough, enough);
2776 }
2777 dprintf("%s: enough: %d\n", __func__, max_enough);
2778 info->container_enough = max_enough;
2779
2780 if (super->disks) {
2781 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2782
2783 disk = &super->disks->disk;
2784 info->data_offset = total_blocks(&super->disks->disk) - reserved;
2785 info->component_size = reserved;
2786 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2787 /* we don't change info->disk.raid_disk here because
2788 * this state will be finalized in mdmon after we have
2789 * found the 'most fresh' version of the metadata
2790 */
2791 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2792 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2793 }
2794
2795 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2796 * ->compare_super may have updated the 'num_raid_devs' field for spares
2797 */
2798 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2799 uuid_from_super_imsm(st, info->uuid);
2800 else
2801 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2802
2803 /* I don't know how to compute 'map' on imsm, so use safe default */
2804 if (map) {
2805 int i;
2806 for (i = 0; i < map_disks; i++)
2807 map[i] = 1;
2808 }
2809
2810 }
2811
2812 /* allocates memory and fills disk in mdinfo structure
2813 * for each disk in array */
2814 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2815 {
2816 struct mdinfo *mddev = NULL;
2817 struct intel_super *super = st->sb;
2818 struct imsm_disk *disk;
2819 int count = 0;
2820 struct dl *dl;
2821 if (!super || !super->disks)
2822 return NULL;
2823 dl = super->disks;
2824 mddev = malloc(sizeof(*mddev));
2825 if (!mddev) {
2826 fprintf(stderr, Name ": Failed to allocate memory.\n");
2827 return NULL;
2828 }
2829 memset(mddev, 0, sizeof(*mddev));
2830 while (dl) {
2831 struct mdinfo *tmp;
2832 disk = &dl->disk;
2833 tmp = malloc(sizeof(*tmp));
2834 if (!tmp) {
2835 fprintf(stderr, Name ": Failed to allocate memory.\n");
2836 if (mddev)
2837 sysfs_free(mddev);
2838 return NULL;
2839 }
2840 memset(tmp, 0, sizeof(*tmp));
2841 if (mddev->devs)
2842 tmp->next = mddev->devs;
2843 mddev->devs = tmp;
2844 tmp->disk.number = count++;
2845 tmp->disk.major = dl->major;
2846 tmp->disk.minor = dl->minor;
2847 tmp->disk.state = is_configured(disk) ?
2848 (1 << MD_DISK_ACTIVE) : 0;
2849 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2850 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2851 tmp->disk.raid_disk = -1;
2852 dl = dl->next;
2853 }
2854 return mddev;
2855 }
2856
2857 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2858 char *update, char *devname, int verbose,
2859 int uuid_set, char *homehost)
2860 {
2861 /* For 'assemble' and 'force' we need to return non-zero if any
2862 * change was made. For others, the return value is ignored.
2863 * Update options are:
2864 * force-one : This device looks a bit old but needs to be included,
2865 * update age info appropriately.
2866 * assemble: clear any 'faulty' flag to allow this device to
2867 * be assembled.
2868 * force-array: Array is degraded but being forced, mark it clean
2869 * if that will be needed to assemble it.
2870 *
2871 * newdev: not used ????
2872 * grow: Array has gained a new device - this is currently for
2873 * linear only
2874 * resync: mark as dirty so a resync will happen.
2875 * name: update the name - preserving the homehost
2876 * uuid: Change the uuid of the array to match watch is given
2877 *
2878 * Following are not relevant for this imsm:
2879 * sparc2.2 : update from old dodgey metadata
2880 * super-minor: change the preferred_minor number
2881 * summaries: update redundant counters.
2882 * homehost: update the recorded homehost
2883 * _reshape_progress: record new reshape_progress position.
2884 */
2885 int rv = 1;
2886 struct intel_super *super = st->sb;
2887 struct imsm_super *mpb;
2888
2889 /* we can only update container info */
2890 if (!super || super->current_vol >= 0 || !super->anchor)
2891 return 1;
2892
2893 mpb = super->anchor;
2894
2895 if (strcmp(update, "uuid") == 0) {
2896 /* We take this to mean that the family_num should be updated.
2897 * However that is much smaller than the uuid so we cannot really
2898 * allow an explicit uuid to be given. And it is hard to reliably
2899 * know if one was.
2900 * So if !uuid_set we know the current uuid is random and just used
2901 * the first 'int' and copy it to the other 3 positions.
2902 * Otherwise we require the 4 'int's to be the same as would be the
2903 * case if we are using a random uuid. So an explicit uuid will be
2904 * accepted as long as all for ints are the same... which shouldn't hurt
2905 */
2906 if (!uuid_set) {
2907 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
2908 rv = 0;
2909 } else {
2910 if (info->uuid[0] != info->uuid[1] ||
2911 info->uuid[1] != info->uuid[2] ||
2912 info->uuid[2] != info->uuid[3])
2913 rv = -1;
2914 else
2915 rv = 0;
2916 }
2917 if (rv == 0)
2918 mpb->orig_family_num = info->uuid[0];
2919 } else if (strcmp(update, "assemble") == 0)
2920 rv = 0;
2921 else
2922 rv = -1;
2923
2924 /* successful update? recompute checksum */
2925 if (rv == 0)
2926 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2927
2928 return rv;
2929 }
2930
2931 static size_t disks_to_mpb_size(int disks)
2932 {
2933 size_t size;
2934
2935 size = sizeof(struct imsm_super);
2936 size += (disks - 1) * sizeof(struct imsm_disk);
2937 size += 2 * sizeof(struct imsm_dev);
2938 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2939 size += (4 - 2) * sizeof(struct imsm_map);
2940 /* 4 possible disk_ord_tbl's */
2941 size += 4 * (disks - 1) * sizeof(__u32);
2942
2943 return size;
2944 }
2945
2946 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2947 {
2948 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2949 return 0;
2950
2951 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2952 }
2953
2954 static void free_devlist(struct intel_super *super)
2955 {
2956 struct intel_dev *dv;
2957
2958 while (super->devlist) {
2959 dv = super->devlist->next;
2960 free(super->devlist->dev);
2961 free(super->devlist);
2962 super->devlist = dv;
2963 }
2964 }
2965
2966 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2967 {
2968 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2969 }
2970
2971 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2972 {
2973 /*
2974 * return:
2975 * 0 same, or first was empty, and second was copied
2976 * 1 second had wrong number
2977 * 2 wrong uuid
2978 * 3 wrong other info
2979 */
2980 struct intel_super *first = st->sb;
2981 struct intel_super *sec = tst->sb;
2982
2983 if (!first) {
2984 st->sb = tst->sb;
2985 tst->sb = NULL;
2986 return 0;
2987 }
2988 /* in platform dependent environment test if the disks
2989 * use the same Intel hba
2990 */
2991 if (!check_env("IMSM_NO_PLATFORM")) {
2992 if (!first->hba || !sec->hba ||
2993 (first->hba->type != sec->hba->type)) {
2994 fprintf(stderr,
2995 "HBAs of devices does not match %s != %s\n",
2996 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2997 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2998 return 3;
2999 }
3000 }
3001
3002 /* if an anchor does not have num_raid_devs set then it is a free
3003 * floating spare
3004 */
3005 if (first->anchor->num_raid_devs > 0 &&
3006 sec->anchor->num_raid_devs > 0) {
3007 /* Determine if these disks might ever have been
3008 * related. Further disambiguation can only take place
3009 * in load_super_imsm_all
3010 */
3011 __u32 first_family = first->anchor->orig_family_num;
3012 __u32 sec_family = sec->anchor->orig_family_num;
3013
3014 if (memcmp(first->anchor->sig, sec->anchor->sig,
3015 MAX_SIGNATURE_LENGTH) != 0)
3016 return 3;
3017
3018 if (first_family == 0)
3019 first_family = first->anchor->family_num;
3020 if (sec_family == 0)
3021 sec_family = sec->anchor->family_num;
3022
3023 if (first_family != sec_family)
3024 return 3;
3025
3026 }
3027
3028
3029 /* if 'first' is a spare promote it to a populated mpb with sec's
3030 * family number
3031 */
3032 if (first->anchor->num_raid_devs == 0 &&
3033 sec->anchor->num_raid_devs > 0) {
3034 int i;
3035 struct intel_dev *dv;
3036 struct imsm_dev *dev;
3037
3038 /* we need to copy raid device info from sec if an allocation
3039 * fails here we don't associate the spare
3040 */
3041 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3042 dv = malloc(sizeof(*dv));
3043 if (!dv)
3044 break;
3045 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3046 if (!dev) {
3047 free(dv);
3048 break;
3049 }
3050 dv->dev = dev;
3051 dv->index = i;
3052 dv->next = first->devlist;
3053 first->devlist = dv;
3054 }
3055 if (i < sec->anchor->num_raid_devs) {
3056 /* allocation failure */
3057 free_devlist(first);
3058 fprintf(stderr, "imsm: failed to associate spare\n");
3059 return 3;
3060 }
3061 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3062 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3063 first->anchor->family_num = sec->anchor->family_num;
3064 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3065 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3066 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3067 }
3068
3069 return 0;
3070 }
3071
3072 static void fd2devname(int fd, char *name)
3073 {
3074 struct stat st;
3075 char path[256];
3076 char dname[PATH_MAX];
3077 char *nm;
3078 int rv;
3079
3080 name[0] = '\0';
3081 if (fstat(fd, &st) != 0)
3082 return;
3083 sprintf(path, "/sys/dev/block/%d:%d",
3084 major(st.st_rdev), minor(st.st_rdev));
3085
3086 rv = readlink(path, dname, sizeof(dname)-1);
3087 if (rv <= 0)
3088 return;
3089
3090 dname[rv] = '\0';
3091 nm = strrchr(dname, '/');
3092 if (nm) {
3093 nm++;
3094 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3095 }
3096 }
3097
3098 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3099
3100 static int imsm_read_serial(int fd, char *devname,
3101 __u8 serial[MAX_RAID_SERIAL_LEN])
3102 {
3103 unsigned char scsi_serial[255];
3104 int rv;
3105 int rsp_len;
3106 int len;
3107 char *dest;
3108 char *src;
3109 char *rsp_buf;
3110 int i;
3111
3112 memset(scsi_serial, 0, sizeof(scsi_serial));
3113
3114 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3115
3116 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3117 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3118 fd2devname(fd, (char *) serial);
3119 return 0;
3120 }
3121
3122 if (rv != 0) {
3123 if (devname)
3124 fprintf(stderr,
3125 Name ": Failed to retrieve serial for %s\n",
3126 devname);
3127 return rv;
3128 }
3129
3130 rsp_len = scsi_serial[3];
3131 if (!rsp_len) {
3132 if (devname)
3133 fprintf(stderr,
3134 Name ": Failed to retrieve serial for %s\n",
3135 devname);
3136 return 2;
3137 }
3138 rsp_buf = (char *) &scsi_serial[4];
3139
3140 /* trim all whitespace and non-printable characters and convert
3141 * ':' to ';'
3142 */
3143 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3144 src = &rsp_buf[i];
3145 if (*src > 0x20) {
3146 /* ':' is reserved for use in placeholder serial
3147 * numbers for missing disks
3148 */
3149 if (*src == ':')
3150 *dest++ = ';';
3151 else
3152 *dest++ = *src;
3153 }
3154 }
3155 len = dest - rsp_buf;
3156 dest = rsp_buf;
3157
3158 /* truncate leading characters */
3159 if (len > MAX_RAID_SERIAL_LEN) {
3160 dest += len - MAX_RAID_SERIAL_LEN;
3161 len = MAX_RAID_SERIAL_LEN;
3162 }
3163
3164 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3165 memcpy(serial, dest, len);
3166
3167 return 0;
3168 }
3169
3170 static int serialcmp(__u8 *s1, __u8 *s2)
3171 {
3172 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3173 }
3174
3175 static void serialcpy(__u8 *dest, __u8 *src)
3176 {
3177 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3178 }
3179
3180 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3181 {
3182 struct dl *dl;
3183
3184 for (dl = super->disks; dl; dl = dl->next)
3185 if (serialcmp(dl->serial, serial) == 0)
3186 break;
3187
3188 return dl;
3189 }
3190
3191 static struct imsm_disk *
3192 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3193 {
3194 int i;
3195
3196 for (i = 0; i < mpb->num_disks; i++) {
3197 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3198
3199 if (serialcmp(disk->serial, serial) == 0) {
3200 if (idx)
3201 *idx = i;
3202 return disk;
3203 }
3204 }
3205
3206 return NULL;
3207 }
3208
3209 static int
3210 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3211 {
3212 struct imsm_disk *disk;
3213 struct dl *dl;
3214 struct stat stb;
3215 int rv;
3216 char name[40];
3217 __u8 serial[MAX_RAID_SERIAL_LEN];
3218
3219 rv = imsm_read_serial(fd, devname, serial);
3220
3221 if (rv != 0)
3222 return 2;
3223
3224 dl = calloc(1, sizeof(*dl));
3225 if (!dl) {
3226 if (devname)
3227 fprintf(stderr,
3228 Name ": failed to allocate disk buffer for %s\n",
3229 devname);
3230 return 2;
3231 }
3232
3233 fstat(fd, &stb);
3234 dl->major = major(stb.st_rdev);
3235 dl->minor = minor(stb.st_rdev);
3236 dl->next = super->disks;
3237 dl->fd = keep_fd ? fd : -1;
3238 assert(super->disks == NULL);
3239 super->disks = dl;
3240 serialcpy(dl->serial, serial);
3241 dl->index = -2;
3242 dl->e = NULL;
3243 fd2devname(fd, name);
3244 if (devname)
3245 dl->devname = strdup(devname);
3246 else
3247 dl->devname = strdup(name);
3248
3249 /* look up this disk's index in the current anchor */
3250 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3251 if (disk) {
3252 dl->disk = *disk;
3253 /* only set index on disks that are a member of a
3254 * populated contianer, i.e. one with raid_devs
3255 */
3256 if (is_failed(&dl->disk))
3257 dl->index = -2;
3258 else if (is_spare(&dl->disk))
3259 dl->index = -1;
3260 }
3261
3262 return 0;
3263 }
3264
3265 #ifndef MDASSEMBLE
3266 /* When migrating map0 contains the 'destination' state while map1
3267 * contains the current state. When not migrating map0 contains the
3268 * current state. This routine assumes that map[0].map_state is set to
3269 * the current array state before being called.
3270 *
3271 * Migration is indicated by one of the following states
3272 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3273 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3274 * map1state=unitialized)
3275 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3276 * map1state=normal)
3277 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3278 * map1state=degraded)
3279 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3280 * map1state=normal)
3281 */
3282 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3283 __u8 to_state, int migr_type)
3284 {
3285 struct imsm_map *dest;
3286 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3287
3288 dev->vol.migr_state = 1;
3289 set_migr_type(dev, migr_type);
3290 dev->vol.curr_migr_unit = 0;
3291 dest = get_imsm_map(dev, MAP_1);
3292
3293 /* duplicate and then set the target end state in map[0] */
3294 memcpy(dest, src, sizeof_imsm_map(src));
3295 if ((migr_type == MIGR_REBUILD) ||
3296 (migr_type == MIGR_GEN_MIGR)) {
3297 __u32 ord;
3298 int i;
3299
3300 for (i = 0; i < src->num_members; i++) {
3301 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3302 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3303 }
3304 }
3305
3306 if (migr_type == MIGR_GEN_MIGR)
3307 /* Clear migration record */
3308 memset(super->migr_rec, 0, sizeof(struct migr_record));
3309
3310 src->map_state = to_state;
3311 }
3312
3313 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3314 __u8 map_state)
3315 {
3316 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3317 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3318 MAP_0 : MAP_1);
3319 int i, j;
3320
3321 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3322 * completed in the last migration.
3323 *
3324 * FIXME add support for raid-level-migration
3325 */
3326 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3327 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3328 /* when final map state is other than expected
3329 * merge maps (not for migration)
3330 */
3331 int failed;
3332
3333 for (i = 0; i < prev->num_members; i++)
3334 for (j = 0; j < map->num_members; j++)
3335 /* during online capacity expansion
3336 * disks position can be changed
3337 * if takeover is used
3338 */
3339 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3340 ord_to_idx(prev->disk_ord_tbl[i])) {
3341 map->disk_ord_tbl[j] |=
3342 prev->disk_ord_tbl[i];
3343 break;
3344 }
3345 failed = imsm_count_failed(super, dev, MAP_0);
3346 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3347 }
3348
3349 dev->vol.migr_state = 0;
3350 set_migr_type(dev, 0);
3351 dev->vol.curr_migr_unit = 0;
3352 map->map_state = map_state;
3353 }
3354 #endif
3355
3356 static int parse_raid_devices(struct intel_super *super)
3357 {
3358 int i;
3359 struct imsm_dev *dev_new;
3360 size_t len, len_migr;
3361 size_t max_len = 0;
3362 size_t space_needed = 0;
3363 struct imsm_super *mpb = super->anchor;
3364
3365 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3366 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3367 struct intel_dev *dv;
3368
3369 len = sizeof_imsm_dev(dev_iter, 0);
3370 len_migr = sizeof_imsm_dev(dev_iter, 1);
3371 if (len_migr > len)
3372 space_needed += len_migr - len;
3373
3374 dv = malloc(sizeof(*dv));
3375 if (!dv)
3376 return 1;
3377 if (max_len < len_migr)
3378 max_len = len_migr;
3379 if (max_len > len_migr)
3380 space_needed += max_len - len_migr;
3381 dev_new = malloc(max_len);
3382 if (!dev_new) {
3383 free(dv);
3384 return 1;
3385 }
3386 imsm_copy_dev(dev_new, dev_iter);
3387 dv->dev = dev_new;
3388 dv->index = i;
3389 dv->next = super->devlist;
3390 super->devlist = dv;
3391 }
3392
3393 /* ensure that super->buf is large enough when all raid devices
3394 * are migrating
3395 */
3396 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3397 void *buf;
3398
3399 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3400 if (posix_memalign(&buf, 512, len) != 0)
3401 return 1;
3402
3403 memcpy(buf, super->buf, super->len);
3404 memset(buf + super->len, 0, len - super->len);
3405 free(super->buf);
3406 super->buf = buf;
3407 super->len = len;
3408 }
3409
3410 return 0;
3411 }
3412
3413 /* retrieve a pointer to the bbm log which starts after all raid devices */
3414 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3415 {
3416 void *ptr = NULL;
3417
3418 if (__le32_to_cpu(mpb->bbm_log_size)) {
3419 ptr = mpb;
3420 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3421 }
3422
3423 return ptr;
3424 }
3425
3426 /*******************************************************************************
3427 * Function: check_mpb_migr_compatibility
3428 * Description: Function checks for unsupported migration features:
3429 * - migration optimization area (pba_of_lba0)
3430 * - descending reshape (ascending_migr)
3431 * Parameters:
3432 * super : imsm metadata information
3433 * Returns:
3434 * 0 : migration is compatible
3435 * -1 : migration is not compatible
3436 ******************************************************************************/
3437 int check_mpb_migr_compatibility(struct intel_super *super)
3438 {
3439 struct imsm_map *map0, *map1;
3440 struct migr_record *migr_rec = super->migr_rec;
3441 int i;
3442
3443 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3444 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3445
3446 if (dev_iter &&
3447 dev_iter->vol.migr_state == 1 &&
3448 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3449 /* This device is migrating */
3450 map0 = get_imsm_map(dev_iter, MAP_0);
3451 map1 = get_imsm_map(dev_iter, MAP_1);
3452 if (pba_of_lba0(map0) != pba_of_lba0(map1))
3453 /* migration optimization area was used */
3454 return -1;
3455 if (migr_rec->ascending_migr == 0
3456 && migr_rec->dest_depth_per_unit > 0)
3457 /* descending reshape not supported yet */
3458 return -1;
3459 }
3460 }
3461 return 0;
3462 }
3463
3464 static void __free_imsm(struct intel_super *super, int free_disks);
3465
3466 /* load_imsm_mpb - read matrix metadata
3467 * allocates super->mpb to be freed by free_imsm
3468 */
3469 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3470 {
3471 unsigned long long dsize;
3472 unsigned long long sectors;
3473 struct stat;
3474 struct imsm_super *anchor;
3475 __u32 check_sum;
3476
3477 get_dev_size(fd, NULL, &dsize);
3478 if (dsize < 1024) {
3479 if (devname)
3480 fprintf(stderr,
3481 Name ": %s: device to small for imsm\n",
3482 devname);
3483 return 1;
3484 }
3485
3486 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3487 if (devname)
3488 fprintf(stderr, Name
3489 ": Cannot seek to anchor block on %s: %s\n",
3490 devname, strerror(errno));
3491 return 1;
3492 }
3493
3494 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3495 if (devname)
3496 fprintf(stderr,
3497 Name ": Failed to allocate imsm anchor buffer"
3498 " on %s\n", devname);
3499 return 1;
3500 }
3501 if (read(fd, anchor, 512) != 512) {
3502 if (devname)
3503 fprintf(stderr,
3504 Name ": Cannot read anchor block on %s: %s\n",
3505 devname, strerror(errno));
3506 free(anchor);
3507 return 1;
3508 }
3509
3510 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3511 if (devname)
3512 fprintf(stderr,
3513 Name ": no IMSM anchor on %s\n", devname);
3514 free(anchor);
3515 return 2;
3516 }
3517
3518 __free_imsm(super, 0);
3519 /* reload capability and hba */
3520
3521 /* capability and hba must be updated with new super allocation */
3522 find_intel_hba_capability(fd, super, devname);
3523 super->len = ROUND_UP(anchor->mpb_size, 512);
3524 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3525 if (devname)
3526 fprintf(stderr,
3527 Name ": unable to allocate %zu byte mpb buffer\n",
3528 super->len);
3529 free(anchor);
3530 return 2;
3531 }
3532 memcpy(super->buf, anchor, 512);
3533
3534 sectors = mpb_sectors(anchor) - 1;
3535 free(anchor);
3536
3537 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3538 fprintf(stderr, Name
3539 ": %s could not allocate migr_rec buffer\n", __func__);
3540 free(super->buf);
3541 return 2;
3542 }
3543 super->clean_migration_record_by_mdmon = 0;
3544
3545 if (!sectors) {
3546 check_sum = __gen_imsm_checksum(super->anchor);
3547 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3548 if (devname)
3549 fprintf(stderr,
3550 Name ": IMSM checksum %x != %x on %s\n",
3551 check_sum,
3552 __le32_to_cpu(super->anchor->check_sum),
3553 devname);
3554 return 2;
3555 }
3556
3557 return 0;
3558 }
3559
3560 /* read the extended mpb */
3561 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3562 if (devname)
3563 fprintf(stderr,
3564 Name ": Cannot seek to extended mpb on %s: %s\n",
3565 devname, strerror(errno));
3566 return 1;
3567 }
3568
3569 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3570 if (devname)
3571 fprintf(stderr,
3572 Name ": Cannot read extended mpb on %s: %s\n",
3573 devname, strerror(errno));
3574 return 2;
3575 }
3576
3577 check_sum = __gen_imsm_checksum(super->anchor);
3578 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3579 if (devname)
3580 fprintf(stderr,
3581 Name ": IMSM checksum %x != %x on %s\n",
3582 check_sum, __le32_to_cpu(super->anchor->check_sum),
3583 devname);
3584 return 3;
3585 }
3586
3587 /* FIXME the BBM log is disk specific so we cannot use this global
3588 * buffer for all disks. Ok for now since we only look at the global
3589 * bbm_log_size parameter to gate assembly
3590 */
3591 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3592
3593 return 0;
3594 }
3595
3596 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3597
3598 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
3599 static void clear_hi(struct intel_super *super)
3600 {
3601 struct imsm_super *mpb = super->anchor;
3602 int i, n;
3603 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
3604 return;
3605 for (i = 0; i < mpb->num_disks; ++i) {
3606 struct imsm_disk *disk = &mpb->disk[i];
3607 disk->total_blocks_hi = 0;
3608 }
3609 for (i = 0; i < mpb->num_raid_devs; ++i) {
3610 struct imsm_dev *dev = get_imsm_dev(super, i);
3611 if (!dev)
3612 return;
3613 for (n = 0; n < 2; ++n) {
3614 struct imsm_map *map = get_imsm_map(dev, n);
3615 if (!map)
3616 continue;
3617 map->pba_of_lba0_hi = 0;
3618 map->blocks_per_member_hi = 0;
3619 map->num_data_stripes_hi = 0;
3620 }
3621 }
3622 }
3623
3624 static int
3625 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3626 {
3627 int err;
3628
3629 err = load_imsm_mpb(fd, super, devname);
3630 if (err)
3631 return err;
3632 err = load_imsm_disk(fd, super, devname, keep_fd);
3633 if (err)
3634 return err;
3635 err = parse_raid_devices(super);
3636 clear_hi(super);
3637 return err;
3638 }
3639
3640 static void __free_imsm_disk(struct dl *d)
3641 {
3642 if (d->fd >= 0)
3643 close(d->fd);
3644 if (d->devname)
3645 free(d->devname);
3646 if (d->e)
3647 free(d->e);
3648 free(d);
3649
3650 }
3651
3652 static void free_imsm_disks(struct intel_super *super)
3653 {
3654 struct dl *d;
3655
3656 while (super->disks) {
3657 d = super->disks;
3658 super->disks = d->next;
3659 __free_imsm_disk(d);
3660 }
3661 while (super->disk_mgmt_list) {
3662 d = super->disk_mgmt_list;
3663 super->disk_mgmt_list = d->next;
3664 __free_imsm_disk(d);
3665 }
3666 while (super->missing) {
3667 d = super->missing;
3668 super->missing = d->next;
3669 __free_imsm_disk(d);
3670 }
3671
3672 }
3673
3674 /* free all the pieces hanging off of a super pointer */
3675 static void __free_imsm(struct intel_super *super, int free_disks)
3676 {
3677 struct intel_hba *elem, *next;
3678
3679 if (super->buf) {
3680 free(super->buf);
3681 super->buf = NULL;
3682 }
3683 /* unlink capability description */
3684 super->orom = NULL;
3685 if (super->migr_rec_buf) {
3686 free(super->migr_rec_buf);
3687 super->migr_rec_buf = NULL;
3688 }
3689 if (free_disks)
3690 free_imsm_disks(super);
3691 free_devlist(super);
3692 elem = super->hba;
3693 while (elem) {
3694 if (elem->path)
3695 free((void *)elem->path);
3696 next = elem->next;
3697 free(elem);
3698 elem = next;
3699 }
3700 super->hba = NULL;
3701 }
3702
3703 static void free_imsm(struct intel_super *super)
3704 {
3705 __free_imsm(super, 1);
3706 free(super);
3707 }
3708
3709 static void free_super_imsm(struct supertype *st)
3710 {
3711 struct intel_super *super = st->sb;
3712
3713 if (!super)
3714 return;
3715
3716 free_imsm(super);
3717 st->sb = NULL;
3718 }
3719
3720 static struct intel_super *alloc_super(void)
3721 {
3722 struct intel_super *super = malloc(sizeof(*super));
3723
3724 if (super) {
3725 memset(super, 0, sizeof(*super));
3726 super->current_vol = -1;
3727 super->create_offset = ~((unsigned long long) 0);
3728 }
3729 return super;
3730 }
3731
3732 /*
3733 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3734 */
3735 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3736 {
3737 struct sys_dev *hba_name;
3738 int rv = 0;
3739
3740 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3741 super->orom = NULL;
3742 super->hba = NULL;
3743 return 0;
3744 }
3745 hba_name = find_disk_attached_hba(fd, NULL);
3746 if (!hba_name) {
3747 if (devname)
3748 fprintf(stderr,
3749 Name ": %s is not attached to Intel(R) RAID controller.\n",
3750 devname);
3751 return 1;
3752 }
3753 rv = attach_hba_to_super(super, hba_name);
3754 if (rv == 2) {
3755 if (devname) {
3756 struct intel_hba *hba = super->hba;
3757
3758 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3759 "controller (%s),\n"
3760 " but the container is assigned to Intel(R) "
3761 "%s RAID controller (",
3762 devname,
3763 hba_name->path,
3764 hba_name->pci_id ? : "Err!",
3765 get_sys_dev_type(hba_name->type));
3766
3767 while (hba) {
3768 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3769 if (hba->next)
3770 fprintf(stderr, ", ");
3771 hba = hba->next;
3772 }
3773
3774 fprintf(stderr, ").\n"
3775 " Mixing devices attached to different controllers "
3776 "is not allowed.\n");
3777 }
3778 free_sys_dev(&hba_name);
3779 return 2;
3780 }
3781 super->orom = find_imsm_capability(hba_name->type);
3782 free_sys_dev(&hba_name);
3783 if (!super->orom)
3784 return 3;
3785 return 0;
3786 }
3787
3788 /* find_missing - helper routine for load_super_imsm_all that identifies
3789 * disks that have disappeared from the system. This routine relies on
3790 * the mpb being uptodate, which it is at load time.
3791 */
3792 static int find_missing(struct intel_super *super)
3793 {
3794 int i;
3795 struct imsm_super *mpb = super->anchor;
3796 struct dl *dl;
3797 struct imsm_disk *disk;
3798
3799 for (i = 0; i < mpb->num_disks; i++) {
3800 disk = __get_imsm_disk(mpb, i);
3801 dl = serial_to_dl(disk->serial, super);
3802 if (dl)
3803 continue;
3804
3805 dl = malloc(sizeof(*dl));
3806 if (!dl)
3807 return 1;
3808 dl->major = 0;
3809 dl->minor = 0;
3810 dl->fd = -1;
3811 dl->devname = strdup("missing");
3812 dl->index = i;
3813 serialcpy(dl->serial, disk->serial);
3814 dl->disk = *disk;
3815 dl->e = NULL;
3816 dl->next = super->missing;
3817 super->missing = dl;
3818 }
3819
3820 return 0;
3821 }
3822
3823 #ifndef MDASSEMBLE
3824 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3825 {
3826 struct intel_disk *idisk = disk_list;
3827
3828 while (idisk) {
3829 if (serialcmp(idisk->disk.serial, serial) == 0)
3830 break;
3831 idisk = idisk->next;
3832 }
3833
3834 return idisk;
3835 }
3836
3837 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3838 struct intel_super *super,
3839 struct intel_disk **disk_list)
3840 {
3841 struct imsm_disk *d = &super->disks->disk;
3842 struct imsm_super *mpb = super->anchor;
3843 int i, j;
3844
3845 for (i = 0; i < tbl_size; i++) {
3846 struct imsm_super *tbl_mpb = table[i]->anchor;
3847 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3848
3849 if (tbl_mpb->family_num == mpb->family_num) {
3850 if (tbl_mpb->check_sum == mpb->check_sum) {
3851 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3852 __func__, super->disks->major,
3853 super->disks->minor,
3854 table[i]->disks->major,
3855 table[i]->disks->minor);
3856 break;
3857 }
3858
3859 if (((is_configured(d) && !is_configured(tbl_d)) ||
3860 is_configured(d) == is_configured(tbl_d)) &&
3861 tbl_mpb->generation_num < mpb->generation_num) {
3862 /* current version of the mpb is a
3863 * better candidate than the one in
3864 * super_table, but copy over "cross
3865 * generational" status
3866 */
3867 struct intel_disk *idisk;
3868
3869 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3870 __func__, super->disks->major,
3871 super->disks->minor,
3872 table[i]->disks->major,
3873 table[i]->disks->minor);
3874
3875 idisk = disk_list_get(tbl_d->serial, *disk_list);
3876 if (idisk && is_failed(&idisk->disk))
3877 tbl_d->status |= FAILED_DISK;
3878 break;
3879 } else {
3880 struct intel_disk *idisk;
3881 struct imsm_disk *disk;
3882
3883 /* tbl_mpb is more up to date, but copy
3884 * over cross generational status before
3885 * returning
3886 */
3887 disk = __serial_to_disk(d->serial, mpb, NULL);
3888 if (disk && is_failed(disk))
3889 d->status |= FAILED_DISK;
3890
3891 idisk = disk_list_get(d->serial, *disk_list);
3892 if (idisk) {
3893 idisk->owner = i;
3894 if (disk && is_configured(disk))
3895 idisk->disk.status |= CONFIGURED_DISK;
3896 }
3897
3898 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3899 __func__, super->disks->major,
3900 super->disks->minor,
3901 table[i]->disks->major,
3902 table[i]->disks->minor);
3903
3904 return tbl_size;
3905 }
3906 }
3907 }
3908
3909 if (i >= tbl_size)
3910 table[tbl_size++] = super;
3911 else
3912 table[i] = super;
3913
3914 /* update/extend the merged list of imsm_disk records */
3915 for (j = 0; j < mpb->num_disks; j++) {
3916 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3917 struct intel_disk *idisk;
3918
3919 idisk = disk_list_get(disk->serial, *disk_list);
3920 if (idisk) {
3921 idisk->disk.status |= disk->status;
3922 if (is_configured(&idisk->disk) ||
3923 is_failed(&idisk->disk))
3924 idisk->disk.status &= ~(SPARE_DISK);
3925 } else {
3926 idisk = calloc(1, sizeof(*idisk));
3927 if (!idisk)
3928 return -1;
3929 idisk->owner = IMSM_UNKNOWN_OWNER;
3930 idisk->disk = *disk;
3931 idisk->next = *disk_list;
3932 *disk_list = idisk;
3933 }
3934
3935 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3936 idisk->owner = i;
3937 }
3938
3939 return tbl_size;
3940 }
3941
3942 static struct intel_super *
3943 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3944 const int owner)
3945 {
3946 struct imsm_super *mpb = super->anchor;
3947 int ok_count = 0;
3948 int i;
3949
3950 for (i = 0; i < mpb->num_disks; i++) {
3951 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3952 struct intel_disk *idisk;
3953
3954 idisk = disk_list_get(disk->serial, disk_list);
3955 if (idisk) {
3956 if (idisk->owner == owner ||
3957 idisk->owner == IMSM_UNKNOWN_OWNER)
3958 ok_count++;
3959 else
3960 dprintf("%s: '%.16s' owner %d != %d\n",
3961 __func__, disk->serial, idisk->owner,
3962 owner);
3963 } else {
3964 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3965 __func__, __le32_to_cpu(mpb->family_num), i,
3966 disk->serial);
3967 break;
3968 }
3969 }
3970
3971 if (ok_count == mpb->num_disks)
3972 return super;
3973 return NULL;
3974 }
3975
3976 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3977 {
3978 struct intel_super *s;
3979
3980 for (s = super_list; s; s = s->next) {
3981 if (family_num != s->anchor->family_num)
3982 continue;
3983 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3984 __le32_to_cpu(family_num), s->disks->devname);
3985 }
3986 }
3987
3988 static struct intel_super *
3989 imsm_thunderdome(struct intel_super **super_list, int len)
3990 {
3991 struct intel_super *super_table[len];
3992 struct intel_disk *disk_list = NULL;
3993 struct intel_super *champion, *spare;
3994 struct intel_super *s, **del;
3995 int tbl_size = 0;
3996 int conflict;
3997 int i;
3998
3999 memset(super_table, 0, sizeof(super_table));
4000 for (s = *super_list; s; s = s->next)
4001 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4002
4003 for (i = 0; i < tbl_size; i++) {
4004 struct imsm_disk *d;
4005 struct intel_disk *idisk;
4006 struct imsm_super *mpb = super_table[i]->anchor;
4007
4008 s = super_table[i];
4009 d = &s->disks->disk;
4010
4011 /* 'd' must appear in merged disk list for its
4012 * configuration to be valid
4013 */
4014 idisk = disk_list_get(d->serial, disk_list);
4015 if (idisk && idisk->owner == i)
4016 s = validate_members(s, disk_list, i);
4017 else
4018 s = NULL;
4019
4020 if (!s)
4021 dprintf("%s: marking family: %#x from %d:%d offline\n",
4022 __func__, mpb->family_num,
4023 super_table[i]->disks->major,
4024 super_table[i]->disks->minor);
4025 super_table[i] = s;
4026 }
4027
4028 /* This is where the mdadm implementation differs from the Windows
4029 * driver which has no strict concept of a container. We can only
4030 * assemble one family from a container, so when returning a prodigal
4031 * array member to this system the code will not be able to disambiguate
4032 * the container contents that should be assembled ("foreign" versus
4033 * "local"). It requires user intervention to set the orig_family_num
4034 * to a new value to establish a new container. The Windows driver in
4035 * this situation fixes up the volume name in place and manages the
4036 * foreign array as an independent entity.
4037 */
4038 s = NULL;
4039 spare = NULL;
4040 conflict = 0;
4041 for (i = 0; i < tbl_size; i++) {
4042 struct intel_super *tbl_ent = super_table[i];
4043 int is_spare = 0;
4044
4045 if (!tbl_ent)
4046 continue;
4047
4048 if (tbl_ent->anchor->num_raid_devs == 0) {
4049 spare = tbl_ent;
4050 is_spare = 1;
4051 }
4052
4053 if (s && !is_spare) {
4054 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4055 conflict++;
4056 } else if (!s && !is_spare)
4057 s = tbl_ent;
4058 }
4059
4060 if (!s)
4061 s = spare;
4062 if (!s) {
4063 champion = NULL;
4064 goto out;
4065 }
4066 champion = s;
4067
4068 if (conflict)
4069 fprintf(stderr, "Chose family %#x on '%s', "
4070 "assemble conflicts to new container with '--update=uuid'\n",
4071 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4072
4073 /* collect all dl's onto 'champion', and update them to
4074 * champion's version of the status
4075 */
4076 for (s = *super_list; s; s = s->next) {
4077 struct imsm_super *mpb = champion->anchor;
4078 struct dl *dl = s->disks;
4079
4080 if (s == champion)
4081 continue;
4082
4083 for (i = 0; i < mpb->num_disks; i++) {
4084 struct imsm_disk *disk;
4085
4086 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4087 if (disk) {
4088 dl->disk = *disk;
4089 /* only set index on disks that are a member of
4090 * a populated contianer, i.e. one with
4091 * raid_devs
4092 */
4093 if (is_failed(&dl->disk))
4094 dl->index = -2;
4095 else if (is_spare(&dl->disk))
4096 dl->index = -1;
4097 break;
4098 }
4099 }
4100
4101 if (i >= mpb->num_disks) {
4102 struct intel_disk *idisk;
4103
4104 idisk = disk_list_get(dl->serial, disk_list);
4105 if (idisk && is_spare(&idisk->disk) &&
4106 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4107 dl->index = -1;
4108 else {
4109 dl->index = -2;
4110 continue;
4111 }
4112 }
4113
4114 dl->next = champion->disks;
4115 champion->disks = dl;
4116 s->disks = NULL;
4117 }
4118
4119 /* delete 'champion' from super_list */
4120 for (del = super_list; *del; ) {
4121 if (*del == champion) {
4122 *del = (*del)->next;
4123 break;
4124 } else
4125 del = &(*del)->next;
4126 }
4127 champion->next = NULL;
4128
4129 out:
4130 while (disk_list) {
4131 struct intel_disk *idisk = disk_list;
4132
4133 disk_list = disk_list->next;
4134 free(idisk);
4135 }
4136
4137 return champion;
4138 }
4139
4140
4141 static int
4142 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4143 static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4144 int major, int minor, int keep_fd);
4145 static int
4146 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4147 int *max, int keep_fd);
4148
4149
4150 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4151 char *devname, struct md_list *devlist,
4152 int keep_fd)
4153 {
4154 struct intel_super *super_list = NULL;
4155 struct intel_super *super = NULL;
4156 int err = 0;
4157 int i = 0;
4158
4159 if (fd >= 0)
4160 /* 'fd' is an opened container */
4161 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4162 else
4163 /* get super block from devlist devices */
4164 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4165 if (err)
4166 goto error;
4167 /* all mpbs enter, maybe one leaves */
4168 super = imsm_thunderdome(&super_list, i);
4169 if (!super) {
4170 err = 1;
4171 goto error;
4172 }
4173
4174 if (find_missing(super) != 0) {
4175 free_imsm(super);
4176 err = 2;
4177 goto error;
4178 }
4179
4180 /* load migration record */
4181 err = load_imsm_migr_rec(super, NULL);
4182 if (err == -1) {
4183 /* migration is in progress,
4184 * but migr_rec cannot be loaded,
4185 */
4186 err = 4;
4187 goto error;
4188 }
4189
4190 /* Check migration compatibility */
4191 if ((err == 0) && (check_mpb_migr_compatibility(super) != 0)) {
4192 fprintf(stderr, Name ": Unsupported migration detected");
4193 if (devname)
4194 fprintf(stderr, " on %s\n", devname);
4195 else
4196 fprintf(stderr, " (IMSM).\n");
4197
4198 err = 5;
4199 goto error;
4200 }
4201
4202 err = 0;
4203
4204 error:
4205 while (super_list) {
4206 struct intel_super *s = super_list;
4207
4208 super_list = super_list->next;
4209 free_imsm(s);
4210 }
4211
4212
4213 if (err)
4214 return err;
4215
4216 *sbp = super;
4217 if (fd >= 0)
4218 st->container_dev = fd2devnum(fd);
4219 else
4220 st->container_dev = NoMdDev;
4221 if (err == 0 && st->ss == NULL) {
4222 st->ss = &super_imsm;
4223 st->minor_version = 0;
4224 st->max_devs = IMSM_MAX_DEVICES;
4225 }
4226 return 0;
4227 }
4228
4229
4230 static int
4231 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4232 int *max, int keep_fd)
4233 {
4234 struct md_list *tmpdev;
4235 int err = 0;
4236 int i = 0;
4237
4238 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4239 if (tmpdev->used != 1)
4240 continue;
4241 if (tmpdev->container == 1) {
4242 int lmax = 0;
4243 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4244 if (fd < 0) {
4245 fprintf(stderr, Name ": cannot open device %s: %s\n",
4246 tmpdev->devname, strerror(errno));
4247 err = 8;
4248 goto error;
4249 }
4250 err = get_sra_super_block(fd, super_list,
4251 tmpdev->devname, &lmax,
4252 keep_fd);
4253 i += lmax;
4254 close(fd);
4255 if (err) {
4256 err = 7;
4257 goto error;
4258 }
4259 } else {
4260 int major = major(tmpdev->st_rdev);
4261 int minor = minor(tmpdev->st_rdev);
4262 err = get_super_block(super_list,
4263 -1,
4264 tmpdev->devname,
4265 major, minor,
4266 keep_fd);
4267 i++;
4268 if (err) {
4269 err = 6;
4270 goto error;
4271 }
4272 }
4273 }
4274 error:
4275 *max = i;
4276 return err;
4277 }
4278
4279 static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4280 int major, int minor, int keep_fd)
4281 {
4282 struct intel_super*s = NULL;
4283 char nm[32];
4284 int dfd = -1;
4285 int rv;
4286 int err = 0;
4287 int retry;
4288
4289 s = alloc_super();
4290 if (!s) {
4291 err = 1;
4292 goto error;
4293 }
4294
4295 sprintf(nm, "%d:%d", major, minor);
4296 dfd = dev_open(nm, O_RDWR);
4297 if (dfd < 0) {
4298 err = 2;
4299 goto error;
4300 }
4301
4302 rv = find_intel_hba_capability(dfd, s, devname);
4303 /* no orom/efi or non-intel hba of the disk */
4304 if (rv != 0) {
4305 err = 4;
4306 goto error;
4307 }
4308
4309 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4310
4311 /* retry the load if we might have raced against mdmon */
4312 if (err == 3 && (devnum != -1) && mdmon_running(devnum))
4313 for (retry = 0; retry < 3; retry++) {
4314 usleep(3000);
4315 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4316 if (err != 3)
4317 break;
4318 }
4319 error:
4320 if (!err) {
4321 s->next = *super_list;
4322 *super_list = s;
4323 } else {
4324 if (s)
4325 free(s);
4326 if (dfd)
4327 close(dfd);
4328 }
4329 if ((dfd >= 0) && (!keep_fd))
4330 close(dfd);
4331 return err;
4332
4333 }
4334
4335 static int
4336 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4337 {
4338 struct mdinfo *sra;
4339 int devnum;
4340 struct mdinfo *sd;
4341 int err = 0;
4342 int i = 0;
4343 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4344 if (!sra)
4345 return 1;
4346
4347 if (sra->array.major_version != -1 ||
4348 sra->array.minor_version != -2 ||
4349 strcmp(sra->text_version, "imsm") != 0) {
4350 err = 1;
4351 goto error;
4352 }
4353 /* load all mpbs */
4354 devnum = fd2devnum(fd);
4355 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4356 if (get_super_block(super_list, devnum, devname,
4357 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4358 err = 7;
4359 goto error;
4360 }
4361 }
4362 error:
4363 sysfs_free(sra);
4364 *max = i;
4365 return err;
4366 }
4367
4368 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4369 {
4370 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
4371 }
4372 #endif
4373
4374 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4375 {
4376 struct intel_super *super;
4377 int rv;
4378
4379 if (test_partition(fd))
4380 /* IMSM not allowed on partitions */
4381 return 1;
4382
4383 free_super_imsm(st);
4384
4385 super = alloc_super();
4386 if (!super) {
4387 fprintf(stderr,
4388 Name ": malloc of %zu failed.\n",
4389 sizeof(*super));
4390 return 1;
4391 }
4392 /* Load hba and capabilities if they exist.
4393 * But do not preclude loading metadata in case capabilities or hba are
4394 * non-compliant and ignore_hw_compat is set.
4395 */
4396 rv = find_intel_hba_capability(fd, super, devname);
4397 /* no orom/efi or non-intel hba of the disk */
4398 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4399 if (devname)
4400 fprintf(stderr,
4401 Name ": No OROM/EFI properties for %s\n", devname);
4402 free_imsm(super);
4403 return 2;
4404 }
4405 rv = load_and_parse_mpb(fd, super, devname, 0);
4406
4407 if (rv) {
4408 if (devname)
4409 fprintf(stderr,
4410 Name ": Failed to load all information "
4411 "sections on %s\n", devname);
4412 free_imsm(super);
4413 return rv;
4414 }
4415
4416 st->sb = super;
4417 if (st->ss == NULL) {
4418 st->ss = &super_imsm;
4419 st->minor_version = 0;
4420 st->max_devs = IMSM_MAX_DEVICES;
4421 }
4422
4423 /* load migration record */
4424 if (load_imsm_migr_rec(super, NULL) == 0) {
4425 /* Check for unsupported migration features */
4426 if (check_mpb_migr_compatibility(super) != 0) {
4427 fprintf(stderr,
4428 Name ": Unsupported migration detected");
4429 if (devname)
4430 fprintf(stderr, " on %s\n", devname);
4431 else
4432 fprintf(stderr, " (IMSM).\n");
4433 return 3;
4434 }
4435 }
4436
4437 return 0;
4438 }
4439
4440 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4441 {
4442 if (info->level == 1)
4443 return 128;
4444 return info->chunk_size >> 9;
4445 }
4446
4447 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4448 unsigned long long size)
4449 {
4450 if (info->level == 1)
4451 return size * 2;
4452 else
4453 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4454 }
4455
4456 static void imsm_update_version_info(struct intel_super *super)
4457 {
4458 /* update the version and attributes */
4459 struct imsm_super *mpb = super->anchor;
4460 char *version;
4461 struct imsm_dev *dev;
4462 struct imsm_map *map;
4463 int i;
4464
4465 for (i = 0; i < mpb->num_raid_devs; i++) {
4466 dev = get_imsm_dev(super, i);
4467 map = get_imsm_map(dev, MAP_0);
4468 if (__le32_to_cpu(dev->size_high) > 0)
4469 mpb->attributes |= MPB_ATTRIB_2TB;
4470
4471 /* FIXME detect when an array spans a port multiplier */
4472 #if 0
4473 mpb->attributes |= MPB_ATTRIB_PM;
4474 #endif
4475
4476 if (mpb->num_raid_devs > 1 ||
4477 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4478 version = MPB_VERSION_ATTRIBS;
4479 switch (get_imsm_raid_level(map)) {
4480 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4481 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4482 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4483 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4484 }
4485 } else {
4486 if (map->num_members >= 5)
4487 version = MPB_VERSION_5OR6_DISK_ARRAY;
4488 else if (dev->status == DEV_CLONE_N_GO)
4489 version = MPB_VERSION_CNG;
4490 else if (get_imsm_raid_level(map) == 5)
4491 version = MPB_VERSION_RAID5;
4492 else if (map->num_members >= 3)
4493 version = MPB_VERSION_3OR4_DISK_ARRAY;
4494 else if (get_imsm_raid_level(map) == 1)
4495 version = MPB_VERSION_RAID1;
4496 else
4497 version = MPB_VERSION_RAID0;
4498 }
4499 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4500 }
4501 }
4502
4503 static int check_name(struct intel_super *super, char *name, int quiet)
4504 {
4505 struct imsm_super *mpb = super->anchor;
4506 char *reason = NULL;
4507 int i;
4508
4509 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4510 reason = "must be 16 characters or less";
4511
4512 for (i = 0; i < mpb->num_raid_devs; i++) {
4513 struct imsm_dev *dev = get_imsm_dev(super, i);
4514
4515 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4516 reason = "already exists";
4517 break;
4518 }
4519 }
4520
4521 if (reason && !quiet)
4522 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4523
4524 return !reason;
4525 }
4526
4527 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4528 unsigned long long size, char *name,
4529 char *homehost, int *uuid)
4530 {
4531 /* We are creating a volume inside a pre-existing container.
4532 * so st->sb is already set.
4533 */
4534 struct intel_super *super = st->sb;
4535 struct imsm_super *mpb = super->anchor;
4536 struct intel_dev *dv;
4537 struct imsm_dev *dev;
4538 struct imsm_vol *vol;
4539 struct imsm_map *map;
4540 int idx = mpb->num_raid_devs;
4541 int i;
4542 unsigned long long array_blocks;
4543 size_t size_old, size_new;
4544 unsigned long long num_data_stripes;
4545
4546 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4547 fprintf(stderr, Name": This imsm-container already has the "
4548 "maximum of %d volumes\n", super->orom->vpa);
4549 return 0;
4550 }
4551
4552 /* ensure the mpb is large enough for the new data */
4553 size_old = __le32_to_cpu(mpb->mpb_size);
4554 size_new = disks_to_mpb_size(info->nr_disks);
4555 if (size_new > size_old) {
4556 void *mpb_new;
4557 size_t size_round = ROUND_UP(size_new, 512);
4558
4559 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4560 fprintf(stderr, Name": could not allocate new mpb\n");
4561 return 0;
4562 }
4563 if (posix_memalign(&super->migr_rec_buf, 512,
4564 MIGR_REC_BUF_SIZE) != 0) {
4565 fprintf(stderr, Name
4566 ": %s could not allocate migr_rec buffer\n",
4567 __func__);
4568 free(super->buf);
4569 free(super);
4570 free(mpb_new);
4571 return 0;
4572 }
4573 memcpy(mpb_new, mpb, size_old);
4574 free(mpb);
4575 mpb = mpb_new;
4576 super->anchor = mpb_new;
4577 mpb->mpb_size = __cpu_to_le32(size_new);
4578 memset(mpb_new + size_old, 0, size_round - size_old);
4579 }
4580 super->current_vol = idx;
4581
4582 /* handle 'failed_disks' by either:
4583 * a) create dummy disk entries in the table if this the first
4584 * volume in the array. We add them here as this is the only
4585 * opportunity to add them. add_to_super_imsm_volume()
4586 * handles the non-failed disks and continues incrementing
4587 * mpb->num_disks.
4588 * b) validate that 'failed_disks' matches the current number
4589 * of missing disks if the container is populated
4590 */
4591 if (super->current_vol == 0) {
4592 mpb->num_disks = 0;
4593 for (i = 0; i < info->failed_disks; i++) {
4594 struct imsm_disk *disk;
4595
4596 mpb->num_disks++;
4597 disk = __get_imsm_disk(mpb, i);
4598 disk->status = CONFIGURED_DISK | FAILED_DISK;
4599 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4600 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4601 "missing:%d", i);
4602 }
4603 find_missing(super);
4604 } else {
4605 int missing = 0;
4606 struct dl *d;
4607
4608 for (d = super->missing; d; d = d->next)
4609 missing++;
4610 if (info->failed_disks > missing) {
4611 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4612 return 0;
4613 }
4614 }
4615
4616 if (!check_name(super, name, 0))
4617 return 0;
4618 dv = malloc(sizeof(*dv));
4619 if (!dv) {
4620 fprintf(stderr, Name ": failed to allocate device list entry\n");
4621 return 0;
4622 }
4623 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4624 if (!dev) {
4625 free(dv);
4626 fprintf(stderr, Name": could not allocate raid device\n");
4627 return 0;
4628 }
4629
4630 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4631 array_blocks = calc_array_size(info->level, info->raid_disks,
4632 info->layout, info->chunk_size,
4633 size * 2);
4634 /* round array size down to closest MB */
4635 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4636
4637 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4638 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4639 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4640 vol = &dev->vol;
4641 vol->migr_state = 0;
4642 set_migr_type(dev, MIGR_INIT);
4643 vol->dirty = !info->state;
4644 vol->curr_migr_unit = 0;
4645 map = get_imsm_map(dev, MAP_0);
4646 set_pba_of_lba0(map, super->create_offset);
4647 set_blocks_per_member(map, info_to_blocks_per_member(info, size));
4648 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4649 map->failed_disk_num = ~0;
4650 if (info->level > 0)
4651 map->map_state = IMSM_T_STATE_UNINITIALIZED;
4652 else
4653 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4654 IMSM_T_STATE_NORMAL;
4655 map->ddf = 1;
4656
4657 if (info->level == 1 && info->raid_disks > 2) {
4658 free(dev);
4659 free(dv);
4660 fprintf(stderr, Name": imsm does not support more than 2 disks"
4661 "in a raid1 volume\n");
4662 return 0;
4663 }
4664
4665 map->raid_level = info->level;
4666 if (info->level == 10) {
4667 map->raid_level = 1;
4668 map->num_domains = info->raid_disks / 2;
4669 } else if (info->level == 1)
4670 map->num_domains = info->raid_disks;
4671 else
4672 map->num_domains = 1;
4673
4674 /* info->size is only int so use the 'size' parameter instead */
4675 num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4676 num_data_stripes /= map->num_domains;
4677 set_num_data_stripes(map, num_data_stripes);
4678
4679 map->num_members = info->raid_disks;
4680 for (i = 0; i < map->num_members; i++) {
4681 /* initialized in add_to_super */
4682 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4683 }
4684 mpb->num_raid_devs++;
4685
4686 dv->dev = dev;
4687 dv->index = super->current_vol;
4688 dv->next = super->devlist;
4689 super->devlist = dv;
4690
4691 imsm_update_version_info(super);
4692
4693 return 1;
4694 }
4695
4696 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4697 unsigned long long size, char *name,
4698 char *homehost, int *uuid)
4699 {
4700 /* This is primarily called by Create when creating a new array.
4701 * We will then get add_to_super called for each component, and then
4702 * write_init_super called to write it out to each device.
4703 * For IMSM, Create can create on fresh devices or on a pre-existing
4704 * array.
4705 * To create on a pre-existing array a different method will be called.
4706 * This one is just for fresh drives.
4707 */
4708 struct intel_super *super;
4709 struct imsm_super *mpb;
4710 size_t mpb_size;
4711 char *version;
4712
4713 if (st->sb)
4714 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4715
4716 if (info)
4717 mpb_size = disks_to_mpb_size(info->nr_disks);
4718 else
4719 mpb_size = 512;
4720
4721 super = alloc_super();
4722 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4723 free(super);
4724 super = NULL;
4725 }
4726 if (!super) {
4727 fprintf(stderr, Name
4728 ": %s could not allocate superblock\n", __func__);
4729 return 0;
4730 }
4731 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
4732 fprintf(stderr, Name
4733 ": %s could not allocate migr_rec buffer\n", __func__);
4734 free(super->buf);
4735 free(super);
4736 return 0;
4737 }
4738 memset(super->buf, 0, mpb_size);
4739 mpb = super->buf;
4740 mpb->mpb_size = __cpu_to_le32(mpb_size);
4741 st->sb = super;
4742
4743 if (info == NULL) {
4744 /* zeroing superblock */
4745 return 0;
4746 }
4747
4748 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4749
4750 version = (char *) mpb->sig;
4751 strcpy(version, MPB_SIGNATURE);
4752 version += strlen(MPB_SIGNATURE);
4753 strcpy(version, MPB_VERSION_RAID0);
4754
4755 return 1;
4756 }
4757
4758 #ifndef MDASSEMBLE
4759 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4760 int fd, char *devname)
4761 {
4762 struct intel_super *super = st->sb;
4763 struct imsm_super *mpb = super->anchor;
4764 struct imsm_disk *_disk;
4765 struct imsm_dev *dev;
4766 struct imsm_map *map;
4767 struct dl *dl, *df;
4768 int slot;
4769
4770 dev = get_imsm_dev(super, super->current_vol);
4771 map = get_imsm_map(dev, MAP_0);
4772
4773 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4774 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4775 devname);
4776 return 1;
4777 }
4778
4779 if (fd == -1) {
4780 /* we're doing autolayout so grab the pre-marked (in
4781 * validate_geometry) raid_disk
4782 */
4783 for (dl = super->disks; dl; dl = dl->next)
4784 if (dl->raiddisk == dk->raid_disk)
4785 break;
4786 } else {
4787 for (dl = super->disks; dl ; dl = dl->next)
4788 if (dl->major == dk->major &&
4789 dl->minor == dk->minor)
4790 break;
4791 }
4792
4793 if (!dl) {
4794 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4795 return 1;
4796 }
4797
4798 /* add a pristine spare to the metadata */
4799 if (dl->index < 0) {
4800 dl->index = super->anchor->num_disks;
4801 super->anchor->num_disks++;
4802 }
4803 /* Check the device has not already been added */
4804 slot = get_imsm_disk_slot(map, dl->index);
4805 if (slot >= 0 &&
4806 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
4807 fprintf(stderr, Name ": %s has been included in this array twice\n",
4808 devname);
4809 return 1;
4810 }
4811 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4812 dl->disk.status = CONFIGURED_DISK;
4813
4814 /* update size of 'missing' disks to be at least as large as the
4815 * largest acitve member (we only have dummy missing disks when
4816 * creating the first volume)
4817 */
4818 if (super->current_vol == 0) {
4819 for (df = super->missing; df; df = df->next) {
4820 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
4821 set_total_blocks(&df->disk, total_blocks(&dl->disk));
4822 _disk = __get_imsm_disk(mpb, df->index);
4823 *_disk = df->disk;
4824 }
4825 }
4826
4827 /* refresh unset/failed slots to point to valid 'missing' entries */
4828 for (df = super->missing; df; df = df->next)
4829 for (slot = 0; slot < mpb->num_disks; slot++) {
4830 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4831
4832 if ((ord & IMSM_ORD_REBUILD) == 0)
4833 continue;
4834 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4835 if (is_gen_migration(dev)) {
4836 struct imsm_map *map2 = get_imsm_map(dev,
4837 MAP_1);
4838 int slot2 = get_imsm_disk_slot(map2, df->index);
4839 if ((slot2 < map2->num_members) &&
4840 (slot2 >= 0)) {
4841 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4842 slot2,
4843 MAP_1);
4844 if ((unsigned)df->index ==
4845 ord_to_idx(ord2))
4846 set_imsm_ord_tbl_ent(map2,
4847 slot2,
4848 df->index |
4849 IMSM_ORD_REBUILD);
4850 }
4851 }
4852 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4853 break;
4854 }
4855
4856 /* if we are creating the first raid device update the family number */
4857 if (super->current_vol == 0) {
4858 __u32 sum;
4859 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4860
4861 _disk = __get_imsm_disk(mpb, dl->index);
4862 if (!_dev || !_disk) {
4863 fprintf(stderr, Name ": BUG mpb setup error\n");
4864 return 1;
4865 }
4866 *_dev = *dev;
4867 *_disk = dl->disk;
4868 sum = random32();
4869 sum += __gen_imsm_checksum(mpb);
4870 mpb->family_num = __cpu_to_le32(sum);
4871 mpb->orig_family_num = mpb->family_num;
4872 }
4873 super->current_disk = dl;
4874 return 0;
4875 }
4876
4877 /* mark_spare()
4878 * Function marks disk as spare and restores disk serial
4879 * in case it was previously marked as failed by takeover operation
4880 * reruns:
4881 * -1 : critical error
4882 * 0 : disk is marked as spare but serial is not set
4883 * 1 : success
4884 */
4885 int mark_spare(struct dl *disk)
4886 {
4887 __u8 serial[MAX_RAID_SERIAL_LEN];
4888 int ret_val = -1;
4889
4890 if (!disk)
4891 return ret_val;
4892
4893 ret_val = 0;
4894 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4895 /* Restore disk serial number, because takeover marks disk
4896 * as failed and adds to serial ':0' before it becomes
4897 * a spare disk.
4898 */
4899 serialcpy(disk->serial, serial);
4900 serialcpy(disk->disk.serial, serial);
4901 ret_val = 1;
4902 }
4903 disk->disk.status = SPARE_DISK;
4904 disk->index = -1;
4905
4906 return ret_val;
4907 }
4908
4909 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4910 int fd, char *devname)
4911 {
4912 struct intel_super *super = st->sb;
4913 struct dl *dd;
4914 unsigned long long size;
4915 __u32 id;
4916 int rv;
4917 struct stat stb;
4918
4919 /* If we are on an RAID enabled platform check that the disk is
4920 * attached to the raid controller.
4921 * We do not need to test disks attachment for container based additions,
4922 * they shall be already tested when container was created/assembled.
4923 */
4924 rv = find_intel_hba_capability(fd, super, devname);
4925 /* no orom/efi or non-intel hba of the disk */
4926 if (rv != 0) {
4927 dprintf("capability: %p fd: %d ret: %d\n",
4928 super->orom, fd, rv);
4929 return 1;
4930 }
4931
4932 if (super->current_vol >= 0)
4933 return add_to_super_imsm_volume(st, dk, fd, devname);
4934
4935 fstat(fd, &stb);
4936 dd = malloc(sizeof(*dd));
4937 if (!dd) {
4938 fprintf(stderr,
4939 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4940 return 1;
4941 }
4942 memset(dd, 0, sizeof(*dd));
4943 dd->major = major(stb.st_rdev);
4944 dd->minor = minor(stb.st_rdev);
4945 dd->devname = devname ? strdup(devname) : NULL;
4946 dd->fd = fd;
4947 dd->e = NULL;
4948 dd->action = DISK_ADD;
4949 rv = imsm_read_serial(fd, devname, dd->serial);
4950 if (rv) {
4951 fprintf(stderr,
4952 Name ": failed to retrieve scsi serial, aborting\n");
4953 free(dd);
4954 abort();
4955 }
4956
4957 get_dev_size(fd, NULL, &size);
4958 size /= 512;
4959 serialcpy(dd->disk.serial, dd->serial);
4960 set_total_blocks(&dd->disk, size);
4961 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
4962 struct imsm_super *mpb = super->anchor;
4963 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
4964 }
4965 mark_spare(dd);
4966 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4967 dd->disk.scsi_id = __cpu_to_le32(id);
4968 else
4969 dd->disk.scsi_id = __cpu_to_le32(0);
4970
4971 if (st->update_tail) {
4972 dd->next = super->disk_mgmt_list;
4973 super->disk_mgmt_list = dd;
4974 } else {
4975 dd->next = super->disks;
4976 super->disks = dd;
4977 super->updates_pending++;
4978 }
4979
4980 return 0;
4981 }
4982
4983
4984 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4985 {
4986 struct intel_super *super = st->sb;
4987 struct dl *dd;
4988
4989 /* remove from super works only in mdmon - for communication
4990 * manager - monitor. Check if communication memory buffer
4991 * is prepared.
4992 */
4993 if (!st->update_tail) {
4994 fprintf(stderr,
4995 Name ": %s shall be used in mdmon context only"
4996 "(line %d).\n", __func__, __LINE__);
4997 return 1;
4998 }
4999 dd = malloc(sizeof(*dd));
5000 if (!dd) {
5001 fprintf(stderr,
5002 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
5003 return 1;
5004 }
5005 memset(dd, 0, sizeof(*dd));
5006 dd->major = dk->major;
5007 dd->minor = dk->minor;
5008 dd->fd = -1;
5009 mark_spare(dd);
5010 dd->action = DISK_REMOVE;
5011
5012 dd->next = super->disk_mgmt_list;
5013 super->disk_mgmt_list = dd;
5014
5015
5016 return 0;
5017 }
5018
5019 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5020
5021 static union {
5022 char buf[512];
5023 struct imsm_super anchor;
5024 } spare_record __attribute__ ((aligned(512)));
5025
5026 /* spare records have their own family number and do not have any defined raid
5027 * devices
5028 */
5029 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5030 {
5031 struct imsm_super *mpb = super->anchor;
5032 struct imsm_super *spare = &spare_record.anchor;
5033 __u32 sum;
5034 struct dl *d;
5035
5036 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
5037 spare->generation_num = __cpu_to_le32(1UL),
5038 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5039 spare->num_disks = 1,
5040 spare->num_raid_devs = 0,
5041 spare->cache_size = mpb->cache_size,
5042 spare->pwr_cycle_count = __cpu_to_le32(1),
5043
5044 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5045 MPB_SIGNATURE MPB_VERSION_RAID0);
5046
5047 for (d = super->disks; d; d = d->next) {
5048 if (d->index != -1)
5049 continue;
5050
5051 spare->disk[0] = d->disk;
5052 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5053 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5054
5055 sum = __gen_imsm_checksum(spare);
5056 spare->family_num = __cpu_to_le32(sum);
5057 spare->orig_family_num = 0;
5058 sum = __gen_imsm_checksum(spare);
5059 spare->check_sum = __cpu_to_le32(sum);
5060
5061 if (store_imsm_mpb(d->fd, spare)) {
5062 fprintf(stderr, "%s: failed for device %d:%d %s\n",
5063 __func__, d->major, d->minor, strerror(errno));
5064 return 1;
5065 }
5066 if (doclose) {
5067 close(d->fd);
5068 d->fd = -1;
5069 }
5070 }
5071
5072 return 0;
5073 }
5074
5075 static int write_super_imsm(struct supertype *st, int doclose)
5076 {
5077 struct intel_super *super = st->sb;
5078 struct imsm_super *mpb = super->anchor;
5079 struct dl *d;
5080 __u32 generation;
5081 __u32 sum;
5082 int spares = 0;
5083 int i;
5084 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5085 int num_disks = 0;
5086 int clear_migration_record = 1;
5087
5088 /* 'generation' is incremented everytime the metadata is written */
5089 generation = __le32_to_cpu(mpb->generation_num);
5090 generation++;
5091 mpb->generation_num = __cpu_to_le32(generation);
5092
5093 /* fix up cases where previous mdadm releases failed to set
5094 * orig_family_num
5095 */
5096 if (mpb->orig_family_num == 0)
5097 mpb->orig_family_num = mpb->family_num;
5098
5099 for (d = super->disks; d; d = d->next) {
5100 if (d->index == -1)
5101 spares++;
5102 else {
5103 mpb->disk[d->index] = d->disk;
5104 num_disks++;
5105 }
5106 }
5107 for (d = super->missing; d; d = d->next) {
5108 mpb->disk[d->index] = d->disk;
5109 num_disks++;
5110 }
5111 mpb->num_disks = num_disks;
5112 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5113
5114 for (i = 0; i < mpb->num_raid_devs; i++) {
5115 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5116 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5117 if (dev && dev2) {
5118 imsm_copy_dev(dev, dev2);
5119 mpb_size += sizeof_imsm_dev(dev, 0);
5120 }
5121 if (is_gen_migration(dev2))
5122 clear_migration_record = 0;
5123 }
5124 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5125 mpb->mpb_size = __cpu_to_le32(mpb_size);
5126
5127 /* recalculate checksum */
5128 sum = __gen_imsm_checksum(mpb);
5129 mpb->check_sum = __cpu_to_le32(sum);
5130
5131 if (super->clean_migration_record_by_mdmon) {
5132 clear_migration_record = 1;
5133 super->clean_migration_record_by_mdmon = 0;
5134 }
5135 if (clear_migration_record)
5136 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5137
5138 /* write the mpb for disks that compose raid devices */
5139 for (d = super->disks; d ; d = d->next) {
5140 if (d->index < 0 || is_failed(&d->disk))
5141 continue;
5142
5143 if (clear_migration_record) {
5144 unsigned long long dsize;
5145
5146 get_dev_size(d->fd, NULL, &dsize);
5147 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
5148 if (write(d->fd, super->migr_rec_buf,
5149 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5150 perror("Write migr_rec failed");
5151 }
5152 }
5153
5154 if (store_imsm_mpb(d->fd, mpb))
5155 fprintf(stderr,
5156 "%s: failed for device %d:%d (fd: %d)%s\n",
5157 __func__, d->major, d->minor,
5158 d->fd, strerror(errno));
5159
5160 if (doclose) {
5161 close(d->fd);
5162 d->fd = -1;
5163 }
5164 }
5165
5166 if (spares)
5167 return write_super_imsm_spares(super, doclose);
5168
5169 return 0;
5170 }
5171
5172
5173 static int create_array(struct supertype *st, int dev_idx)
5174 {
5175 size_t len;
5176 struct imsm_update_create_array *u;
5177 struct intel_super *super = st->sb;
5178 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5179 struct imsm_map *map = get_imsm_map(dev, MAP_0);
5180 struct disk_info *inf;
5181 struct imsm_disk *disk;
5182 int i;
5183
5184 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5185 sizeof(*inf) * map->num_members;
5186 u = malloc(len);
5187 if (!u) {
5188 fprintf(stderr, "%s: failed to allocate update buffer\n",
5189 __func__);
5190 return 1;
5191 }
5192
5193 u->type = update_create_array;
5194 u->dev_idx = dev_idx;
5195 imsm_copy_dev(&u->dev, dev);
5196 inf = get_disk_info(u);
5197 for (i = 0; i < map->num_members; i++) {
5198 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5199
5200 disk = get_imsm_disk(super, idx);
5201 serialcpy(inf[i].serial, disk->serial);
5202 }
5203 append_metadata_update(st, u, len);
5204
5205 return 0;
5206 }
5207
5208 static int mgmt_disk(struct supertype *st)
5209 {
5210 struct intel_super *super = st->sb;
5211 size_t len;
5212 struct imsm_update_add_remove_disk *u;
5213
5214 if (!super->disk_mgmt_list)
5215 return 0;
5216
5217 len = sizeof(*u);
5218 u = malloc(len);
5219 if (!u) {
5220 fprintf(stderr, "%s: failed to allocate update buffer\n",
5221 __func__);
5222 return 1;
5223 }
5224
5225 u->type = update_add_remove_disk;
5226 append_metadata_update(st, u, len);
5227
5228 return 0;
5229 }
5230
5231 static int write_init_super_imsm(struct supertype *st)
5232 {
5233 struct intel_super *super = st->sb;
5234 int current_vol = super->current_vol;
5235
5236 /* we are done with current_vol reset it to point st at the container */
5237 super->current_vol = -1;
5238
5239 if (st->update_tail) {
5240 /* queue the recently created array / added disk
5241 * as a metadata update */
5242 int rv;
5243
5244 /* determine if we are creating a volume or adding a disk */
5245 if (current_vol < 0) {
5246 /* in the mgmt (add/remove) disk case we are running
5247 * in mdmon context, so don't close fd's
5248 */
5249 return mgmt_disk(st);
5250 } else
5251 rv = create_array(st, current_vol);
5252
5253 return rv;
5254 } else {
5255 struct dl *d;
5256 for (d = super->disks; d; d = d->next)
5257 Kill(d->devname, NULL, 0, 1, 1);
5258 return write_super_imsm(st, 1);
5259 }
5260 }
5261 #endif
5262
5263 static int store_super_imsm(struct supertype *st, int fd)
5264 {
5265 struct intel_super *super = st->sb;
5266 struct imsm_super *mpb = super ? super->anchor : NULL;
5267
5268 if (!mpb)
5269 return 1;
5270
5271 #ifndef MDASSEMBLE
5272 return store_imsm_mpb(fd, mpb);
5273 #else
5274 return 1;
5275 #endif
5276 }
5277
5278 static int imsm_bbm_log_size(struct imsm_super *mpb)
5279 {
5280 return __le32_to_cpu(mpb->bbm_log_size);
5281 }
5282
5283 #ifndef MDASSEMBLE
5284 static int validate_geometry_imsm_container(struct supertype *st, int level,
5285 int layout, int raiddisks, int chunk,
5286 unsigned long long size, char *dev,
5287 unsigned long long *freesize,
5288 int verbose)
5289 {
5290 int fd;
5291 unsigned long long ldsize;
5292 struct intel_super *super=NULL;
5293 int rv = 0;
5294
5295 if (level != LEVEL_CONTAINER)
5296 return 0;
5297 if (!dev)
5298 return 1;
5299
5300 fd = open(dev, O_RDONLY|O_EXCL, 0);
5301 if (fd < 0) {
5302 if (verbose)
5303 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
5304 dev, strerror(errno));
5305 return 0;
5306 }
5307 if (!get_dev_size(fd, dev, &ldsize)) {
5308 close(fd);
5309 return 0;
5310 }
5311
5312 /* capabilities retrieve could be possible
5313 * note that there is no fd for the disks in array.
5314 */
5315 super = alloc_super();
5316 if (!super) {
5317 fprintf(stderr,
5318 Name ": malloc of %zu failed.\n",
5319 sizeof(*super));
5320 close(fd);
5321 return 0;
5322 }
5323
5324 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
5325 if (rv != 0) {
5326 #if DEBUG
5327 char str[256];
5328 fd2devname(fd, str);
5329 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5330 fd, str, super->orom, rv, raiddisks);
5331 #endif
5332 /* no orom/efi or non-intel hba of the disk */
5333 close(fd);
5334 free_imsm(super);
5335 return 0;
5336 }
5337 close(fd);
5338 if (super->orom) {
5339 if (raiddisks > super->orom->tds) {
5340 if (verbose)
5341 fprintf(stderr, Name ": %d exceeds maximum number of"
5342 " platform supported disks: %d\n",
5343 raiddisks, super->orom->tds);
5344 free_imsm(super);
5345 return 0;
5346 }
5347 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
5348 (ldsize >> 9) >> 32 > 0) {
5349 if (verbose)
5350 fprintf(stderr, Name ": %s exceeds maximum platform supported size\n", dev);
5351 free_imsm(super);
5352 return 0;
5353 }
5354 }
5355
5356 *freesize = avail_size_imsm(st, ldsize >> 9);
5357 free_imsm(super);
5358
5359 return 1;
5360 }
5361
5362 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5363 {
5364 const unsigned long long base_start = e[*idx].start;
5365 unsigned long long end = base_start + e[*idx].size;
5366 int i;
5367
5368 if (base_start == end)
5369 return 0;
5370
5371 *idx = *idx + 1;
5372 for (i = *idx; i < num_extents; i++) {
5373 /* extend overlapping extents */
5374 if (e[i].start >= base_start &&
5375 e[i].start <= end) {
5376 if (e[i].size == 0)
5377 return 0;
5378 if (e[i].start + e[i].size > end)
5379 end = e[i].start + e[i].size;
5380 } else if (e[i].start > end) {
5381 *idx = i;
5382 break;
5383 }
5384 }
5385
5386 return end - base_start;
5387 }
5388
5389 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5390 {
5391 /* build a composite disk with all known extents and generate a new
5392 * 'maxsize' given the "all disks in an array must share a common start
5393 * offset" constraint
5394 */
5395 struct extent *e = calloc(sum_extents, sizeof(*e));
5396 struct dl *dl;
5397 int i, j;
5398 int start_extent;
5399 unsigned long long pos;
5400 unsigned long long start = 0;
5401 unsigned long long maxsize;
5402 unsigned long reserve;
5403
5404 if (!e)
5405 return 0;
5406
5407 /* coalesce and sort all extents. also, check to see if we need to
5408 * reserve space between member arrays
5409 */
5410 j = 0;
5411 for (dl = super->disks; dl; dl = dl->next) {
5412 if (!dl->e)
5413 continue;
5414 for (i = 0; i < dl->extent_cnt; i++)
5415 e[j++] = dl->e[i];
5416 }
5417 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5418
5419 /* merge extents */
5420 i = 0;
5421 j = 0;
5422 while (i < sum_extents) {
5423 e[j].start = e[i].start;
5424 e[j].size = find_size(e, &i, sum_extents);
5425 j++;
5426 if (e[j-1].size == 0)
5427 break;
5428 }
5429
5430 pos = 0;
5431 maxsize = 0;
5432 start_extent = 0;
5433 i = 0;
5434 do {
5435 unsigned long long esize;
5436
5437 esize = e[i].start - pos;
5438 if (esize >= maxsize) {
5439 maxsize = esize;
5440 start = pos;
5441 start_extent = i;
5442 }
5443 pos = e[i].start + e[i].size;
5444 i++;
5445 } while (e[i-1].size);
5446 free(e);
5447
5448 if (maxsize == 0)
5449 return 0;
5450
5451 /* FIXME assumes volume at offset 0 is the first volume in a
5452 * container
5453 */
5454 if (start_extent > 0)
5455 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5456 else
5457 reserve = 0;
5458
5459 if (maxsize < reserve)
5460 return 0;
5461
5462 super->create_offset = ~((unsigned long long) 0);
5463 if (start + reserve > super->create_offset)
5464 return 0; /* start overflows create_offset */
5465 super->create_offset = start + reserve;
5466
5467 return maxsize - reserve;
5468 }
5469
5470 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5471 {
5472 if (level < 0 || level == 6 || level == 4)
5473 return 0;
5474
5475 /* if we have an orom prevent invalid raid levels */
5476 if (orom)
5477 switch (level) {
5478 case 0: return imsm_orom_has_raid0(orom);
5479 case 1:
5480 if (raiddisks > 2)
5481 return imsm_orom_has_raid1e(orom);
5482 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5483 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5484 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5485 }
5486 else
5487 return 1; /* not on an Intel RAID platform so anything goes */
5488
5489 return 0;
5490 }
5491
5492
5493 static int
5494 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5495 int dpa, int verbose)
5496 {
5497 struct mdstat_ent *mdstat = mdstat_read(0, 0);
5498 struct mdstat_ent *memb = NULL;
5499 int count = 0;
5500 int num = 0;
5501 struct md_list *dv = NULL;
5502 int found;
5503
5504 for (memb = mdstat ; memb ; memb = memb->next) {
5505 if (memb->metadata_version &&
5506 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
5507 (strcmp(&memb->metadata_version[9], name) == 0) &&
5508 !is_subarray(memb->metadata_version+9) &&
5509 memb->members) {
5510 struct dev_member *dev = memb->members;
5511 int fd = -1;
5512 while(dev && (fd < 0)) {
5513 char *path = malloc(strlen(dev->name) + strlen("/dev/") + 1);
5514 if (path) {
5515 num = sprintf(path, "%s%s", "/dev/", dev->name);
5516 if (num > 0)
5517 fd = open(path, O_RDONLY, 0);
5518 if ((num <= 0) || (fd < 0)) {
5519 pr_vrb(": Cannot open %s: %s\n",
5520 dev->name, strerror(errno));
5521 }
5522 free(path);
5523 }
5524 dev = dev->next;
5525 }
5526 found = 0;
5527 if ((fd >= 0) && disk_attached_to_hba(fd, hba)) {
5528 struct mdstat_ent *vol;
5529 for (vol = mdstat ; vol ; vol = vol->next) {
5530 if ((vol->active > 0) &&
5531 vol->metadata_version &&
5532 is_container_member(vol, memb->dev)) {
5533 found++;
5534 count++;
5535 }
5536 }
5537 if (*devlist && (found < dpa)) {
5538 dv = calloc(1, sizeof(*dv));
5539 if (dv == NULL)
5540 fprintf(stderr, Name ": calloc failed\n");
5541 else {
5542 dv->devname = malloc(strlen(memb->dev) + strlen("/dev/") + 1);
5543 if (dv->devname != NULL) {
5544 sprintf(dv->devname, "%s%s", "/dev/", memb->dev);
5545 dv->found = found;
5546 dv->used = 0;
5547 dv->next = *devlist;
5548 *devlist = dv;
5549 } else
5550 free(dv);
5551 }
5552 }
5553 }
5554 if (fd >= 0)
5555 close(fd);
5556 }
5557 }
5558 free_mdstat(mdstat);
5559 return count;
5560 }
5561
5562 #ifdef DEBUG_LOOP
5563 static struct md_list*
5564 get_loop_devices(void)
5565 {
5566 int i;
5567 struct md_list *devlist = NULL;
5568 struct md_list *dv = NULL;
5569
5570 for(i = 0; i < 12; i++) {
5571 dv = calloc(1, sizeof(*dv));
5572 if (dv == NULL) {
5573 fprintf(stderr, Name ": calloc failed\n");
5574 break;
5575 }
5576 dv->devname = malloc(40);
5577 if (dv->devname == NULL) {
5578 fprintf(stderr, Name ": malloc failed\n");
5579 free(dv);
5580 break;
5581 }
5582 sprintf(dv->devname, "/dev/loop%d", i);
5583 dv->next = devlist;
5584 devlist = dv;
5585 }
5586 return devlist;
5587 }
5588 #endif
5589
5590 static struct md_list*
5591 get_devices(const char *hba_path)
5592 {
5593 struct md_list *devlist = NULL;
5594 struct md_list *dv = NULL;
5595 struct dirent *ent;
5596 DIR *dir;
5597 int err = 0;
5598
5599 #if DEBUG_LOOP
5600 devlist = get_loop_devices();
5601 return devlist;
5602 #endif
5603 /* scroll through /sys/dev/block looking for devices attached to
5604 * this hba
5605 */
5606 dir = opendir("/sys/dev/block");
5607 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5608 int fd;
5609 char buf[1024];
5610 int major, minor;
5611 char *path = NULL;
5612 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5613 continue;
5614 path = devt_to_devpath(makedev(major, minor));
5615 if (!path)
5616 continue;
5617 if (!path_attached_to_hba(path, hba_path)) {
5618 free(path);
5619 path = NULL;
5620 continue;
5621 }
5622 free(path);
5623 path = NULL;
5624 fd = dev_open(ent->d_name, O_RDONLY);
5625 if (fd >= 0) {
5626 fd2devname(fd, buf);
5627 close(fd);
5628 } else {
5629 fprintf(stderr, Name ": cannot open device: %s\n",
5630 ent->d_name);
5631 continue;
5632 }
5633
5634
5635 dv = calloc(1, sizeof(*dv));
5636 if (dv == NULL) {
5637 fprintf(stderr, Name ": malloc failed\n");
5638 err = 1;
5639 break;
5640 }
5641 dv->devname = strdup(buf);
5642 if (dv->devname == NULL) {
5643 fprintf(stderr, Name ": malloc failed\n");
5644 err = 1;
5645 free(dv);
5646 break;
5647 }
5648 dv->next = devlist;
5649 devlist = dv;
5650 }
5651 if (err) {
5652 while(devlist) {
5653 dv = devlist;
5654 devlist = devlist->next;
5655 free(dv->devname);
5656 free(dv);
5657 }
5658 }
5659 return devlist;
5660 }
5661
5662 static int
5663 count_volumes_list(struct md_list *devlist, char *homehost,
5664 int verbose, int *found)
5665 {
5666 struct md_list *tmpdev;
5667 int count = 0;
5668 struct supertype *st = NULL;
5669
5670 /* first walk the list of devices to find a consistent set
5671 * that match the criterea, if that is possible.
5672 * We flag the ones we like with 'used'.
5673 */
5674 *found = 0;
5675 st = match_metadata_desc_imsm("imsm");
5676 if (st == NULL) {
5677 pr_vrb(": cannot allocate memory for imsm supertype\n");
5678 return 0;
5679 }
5680
5681 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5682 char *devname = tmpdev->devname;
5683 struct stat stb;
5684 struct supertype *tst;
5685 int dfd;
5686 if (tmpdev->used > 1)
5687 continue;
5688 tst = dup_super(st);
5689 if (tst == NULL) {
5690 pr_vrb(": cannot allocate memory for imsm supertype\n");
5691 goto err_1;
5692 }
5693 tmpdev->container = 0;
5694 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5695 if (dfd < 0) {
5696 dprintf(": cannot open device %s: %s\n",
5697 devname, strerror(errno));
5698 tmpdev->used = 2;
5699 } else if (fstat(dfd, &stb)< 0) {
5700 /* Impossible! */
5701 dprintf(": fstat failed for %s: %s\n",
5702 devname, strerror(errno));
5703 tmpdev->used = 2;
5704 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
5705 dprintf(": %s is not a block device.\n",
5706 devname);
5707 tmpdev->used = 2;
5708 } else if (must_be_container(dfd)) {
5709 struct supertype *cst;
5710 cst = super_by_fd(dfd, NULL);
5711 if (cst == NULL) {
5712 dprintf(": cannot recognize container type %s\n",
5713 devname);
5714 tmpdev->used = 2;
5715 } else if (tst->ss != st->ss) {
5716 dprintf(": non-imsm container - ignore it: %s\n",
5717 devname);
5718 tmpdev->used = 2;
5719 } else if (!tst->ss->load_container ||
5720 tst->ss->load_container(tst, dfd, NULL))
5721 tmpdev->used = 2;
5722 else {
5723 tmpdev->container = 1;
5724 }
5725 if (cst)
5726 cst->ss->free_super(cst);
5727 } else {
5728 tmpdev->st_rdev = stb.st_rdev;
5729 if (tst->ss->load_super(tst,dfd, NULL)) {
5730 dprintf(": no RAID superblock on %s\n",
5731 devname);
5732 tmpdev->used = 2;
5733 } else if (tst->ss->compare_super == NULL) {
5734 dprintf(": Cannot assemble %s metadata on %s\n",
5735 tst->ss->name, devname);
5736 tmpdev->used = 2;
5737 }
5738 }
5739 if (dfd >= 0)
5740 close(dfd);
5741 if (tmpdev->used == 2 || tmpdev->used == 4) {
5742 /* Ignore unrecognised devices during auto-assembly */
5743 goto loop;
5744 }
5745 else {
5746 struct mdinfo info;
5747 tst->ss->getinfo_super(tst, &info, NULL);
5748
5749 if (st->minor_version == -1)
5750 st->minor_version = tst->minor_version;
5751
5752 if (memcmp(info.uuid, uuid_zero,
5753 sizeof(int[4])) == 0) {
5754 /* this is a floating spare. It cannot define
5755 * an array unless there are no more arrays of
5756 * this type to be found. It can be included
5757 * in an array of this type though.
5758 */
5759 tmpdev->used = 3;
5760 goto loop;
5761 }
5762
5763 if (st->ss != tst->ss ||
5764 st->minor_version != tst->minor_version ||
5765 st->ss->compare_super(st, tst) != 0) {
5766 /* Some mismatch. If exactly one array matches this host,
5767 * we can resolve on that one.
5768 * Or, if we are auto assembling, we just ignore the second
5769 * for now.
5770 */
5771 dprintf(": superblock on %s doesn't match others - assembly aborted\n",
5772 devname);
5773 goto loop;
5774 }
5775 tmpdev->used = 1;
5776 *found = 1;
5777 dprintf("found: devname: %s\n", devname);
5778 }
5779 loop:
5780 if (tst)
5781 tst->ss->free_super(tst);
5782 }
5783 if (*found != 0) {
5784 int err;
5785 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
5786 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
5787 for (iter = head; iter; iter = iter->next) {
5788 dprintf("content->text_version: %s vol\n",
5789 iter->text_version);
5790 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
5791 /* do not assemble arrays with unsupported
5792 configurations */
5793 dprintf(": Cannot activate member %s.\n",
5794 iter->text_version);
5795 } else
5796 count++;
5797 }
5798 sysfs_free(head);
5799
5800 } else {
5801 dprintf(" no valid super block on device list: err: %d %p\n",
5802 err, st->sb);
5803 }
5804 } else {
5805 dprintf(" no more devices to examin\n");
5806 }
5807
5808 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5809 if ((tmpdev->used == 1) && (tmpdev->found)) {
5810 if (count) {
5811 if (count < tmpdev->found)
5812 count = 0;
5813 else
5814 count -= tmpdev->found;
5815 }
5816 }
5817 if (tmpdev->used == 1)
5818 tmpdev->used = 4;
5819 }
5820 err_1:
5821 if (st)
5822 st->ss->free_super(st);
5823 return count;
5824 }
5825
5826
5827 static int
5828 count_volumes(char *hba, int dpa, int verbose)
5829 {
5830 struct md_list *devlist = NULL;
5831 int count = 0;
5832 int found = 0;;
5833
5834 devlist = get_devices(hba);
5835 /* if no intel devices return zero volumes */
5836 if (devlist == NULL)
5837 return 0;
5838
5839 count = active_arrays_by_format("imsm", hba, &devlist, dpa, verbose);
5840 dprintf(" path: %s active arrays: %d\n", hba, count);
5841 if (devlist == NULL)
5842 return 0;
5843 do {
5844 found = 0;
5845 count += count_volumes_list(devlist,
5846 NULL,
5847 verbose,
5848 &found);
5849 dprintf("found %d count: %d\n", found, count);
5850 } while (found);
5851
5852 dprintf("path: %s total number of volumes: %d\n", hba, count);
5853
5854 while(devlist) {
5855 struct md_list *dv = devlist;
5856 devlist = devlist->next;
5857 free(dv->devname);
5858 free(dv);
5859 }
5860 return count;
5861 }
5862
5863 static int imsm_default_chunk(const struct imsm_orom *orom)
5864 {
5865 /* up to 512 if the plaform supports it, otherwise the platform max.
5866 * 128 if no platform detected
5867 */
5868 int fs = max(7, orom ? fls(orom->sss) : 0);
5869
5870 return min(512, (1 << fs));
5871 }
5872
5873 static int
5874 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5875 int raiddisks, int *chunk, unsigned long long size, int verbose)
5876 {
5877 /* check/set platform and metadata limits/defaults */
5878 if (super->orom && raiddisks > super->orom->dpa) {
5879 pr_vrb(": platform supports a maximum of %d disks per array\n",
5880 super->orom->dpa);
5881 return 0;
5882 }
5883
5884 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5885 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5886 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5887 level, raiddisks, raiddisks > 1 ? "s" : "");
5888 return 0;
5889 }
5890
5891 if (chunk && (*chunk == 0 || *chunk == UnSet))
5892 *chunk = imsm_default_chunk(super->orom);
5893
5894 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5895 pr_vrb(": platform does not support a chunk size of: "
5896 "%d\n", *chunk);
5897 return 0;
5898 }
5899
5900 if (layout != imsm_level_to_layout(level)) {
5901 if (level == 5)
5902 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5903 else if (level == 10)
5904 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5905 else
5906 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5907 layout, level);
5908 return 0;
5909 }
5910
5911 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 && chunk &&
5912 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
5913 pr_vrb(": platform does not support a volume size over 2TB\n");
5914 return 0;
5915 }
5916 return 1;
5917 }
5918
5919 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5920 * FIX ME add ahci details
5921 */
5922 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5923 int layout, int raiddisks, int *chunk,
5924 unsigned long long size, char *dev,
5925 unsigned long long *freesize,
5926 int verbose)
5927 {
5928 struct stat stb;
5929 struct intel_super *super = st->sb;
5930 struct imsm_super *mpb;
5931 struct dl *dl;
5932 unsigned long long pos = 0;
5933 unsigned long long maxsize;
5934 struct extent *e;
5935 int i;
5936
5937 /* We must have the container info already read in. */
5938 if (!super)
5939 return 0;
5940
5941 mpb = super->anchor;
5942
5943 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
5944 fprintf(stderr, Name ": RAID gemetry validation failed. "
5945 "Cannot proceed with the action(s).\n");
5946 return 0;
5947 }
5948 if (!dev) {
5949 /* General test: make sure there is space for
5950 * 'raiddisks' device extents of size 'size' at a given
5951 * offset
5952 */
5953 unsigned long long minsize = size;
5954 unsigned long long start_offset = MaxSector;
5955 int dcnt = 0;
5956 if (minsize == 0)
5957 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5958 for (dl = super->disks; dl ; dl = dl->next) {
5959 int found = 0;
5960
5961 pos = 0;
5962 i = 0;
5963 e = get_extents(super, dl);
5964 if (!e) continue;
5965 do {
5966 unsigned long long esize;
5967 esize = e[i].start - pos;
5968 if (esize >= minsize)
5969 found = 1;
5970 if (found && start_offset == MaxSector) {
5971 start_offset = pos;
5972 break;
5973 } else if (found && pos != start_offset) {
5974 found = 0;
5975 break;
5976 }
5977 pos = e[i].start + e[i].size;
5978 i++;
5979 } while (e[i-1].size);
5980 if (found)
5981 dcnt++;
5982 free(e);
5983 }
5984 if (dcnt < raiddisks) {
5985 if (verbose)
5986 fprintf(stderr, Name ": imsm: Not enough "
5987 "devices with space for this array "
5988 "(%d < %d)\n",
5989 dcnt, raiddisks);
5990 return 0;
5991 }
5992 return 1;
5993 }
5994
5995 /* This device must be a member of the set */
5996 if (stat(dev, &stb) < 0)
5997 return 0;
5998 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5999 return 0;
6000 for (dl = super->disks ; dl ; dl = dl->next) {
6001 if (dl->major == (int)major(stb.st_rdev) &&
6002 dl->minor == (int)minor(stb.st_rdev))
6003 break;
6004 }
6005 if (!dl) {
6006 if (verbose)
6007 fprintf(stderr, Name ": %s is not in the "
6008 "same imsm set\n", dev);
6009 return 0;
6010 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6011 /* If a volume is present then the current creation attempt
6012 * cannot incorporate new spares because the orom may not
6013 * understand this configuration (all member disks must be
6014 * members of each array in the container).
6015 */
6016 fprintf(stderr, Name ": %s is a spare and a volume"
6017 " is already defined for this container\n", dev);
6018 fprintf(stderr, Name ": The option-rom requires all member"
6019 " disks to be a member of all volumes\n");
6020 return 0;
6021 } else if (super->orom && mpb->num_raid_devs > 0 &&
6022 mpb->num_disks != raiddisks) {
6023 fprintf(stderr, Name ": The option-rom requires all member"
6024 " disks to be a member of all volumes\n");
6025 return 0;
6026 }
6027
6028 /* retrieve the largest free space block */
6029 e = get_extents(super, dl);
6030 maxsize = 0;
6031 i = 0;
6032 if (e) {
6033 do {
6034 unsigned long long esize;
6035
6036 esize = e[i].start - pos;
6037 if (esize >= maxsize)
6038 maxsize = esize;
6039 pos = e[i].start + e[i].size;
6040 i++;
6041 } while (e[i-1].size);
6042 dl->e = e;
6043 dl->extent_cnt = i;
6044 } else {
6045 if (verbose)
6046 fprintf(stderr, Name ": unable to determine free space for: %s\n",
6047 dev);
6048 return 0;
6049 }
6050 if (maxsize < size) {
6051 if (verbose)
6052 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
6053 dev, maxsize, size);
6054 return 0;
6055 }
6056
6057 /* count total number of extents for merge */
6058 i = 0;
6059 for (dl = super->disks; dl; dl = dl->next)
6060 if (dl->e)
6061 i += dl->extent_cnt;
6062
6063 maxsize = merge_extents(super, i);
6064
6065 if (!check_env("IMSM_NO_PLATFORM") &&
6066 mpb->num_raid_devs > 0 && size && size != maxsize) {
6067 fprintf(stderr, Name ": attempting to create a second "
6068 "volume with size less then remaining space. "
6069 "Aborting...\n");
6070 return 0;
6071 }
6072
6073 if (maxsize < size || maxsize == 0) {
6074 if (verbose) {
6075 if (maxsize == 0)
6076 fprintf(stderr, Name ": no free space"
6077 " left on device. Aborting...\n");
6078 else
6079 fprintf(stderr, Name ": not enough space"
6080 " to create volume of given size"
6081 " (%llu < %llu). Aborting...\n",
6082 maxsize, size);
6083 }
6084 return 0;
6085 }
6086
6087 *freesize = maxsize;
6088
6089 if (super->orom) {
6090 int count = count_volumes(super->hba->path,
6091 super->orom->dpa, verbose);
6092 if (super->orom->vphba <= count) {
6093 pr_vrb(": platform does not support more than %d raid volumes.\n",
6094 super->orom->vphba);
6095 return 0;
6096 }
6097 }
6098 return 1;
6099 }
6100
6101 static int reserve_space(struct supertype *st, int raiddisks,
6102 unsigned long long size, int chunk,
6103 unsigned long long *freesize)
6104 {
6105 struct intel_super *super = st->sb;
6106 struct imsm_super *mpb = super->anchor;
6107 struct dl *dl;
6108 int i;
6109 int extent_cnt;
6110 struct extent *e;
6111 unsigned long long maxsize;
6112 unsigned long long minsize;
6113 int cnt;
6114 int used;
6115
6116 /* find the largest common start free region of the possible disks */
6117 used = 0;
6118 extent_cnt = 0;
6119 cnt = 0;
6120 for (dl = super->disks; dl; dl = dl->next) {
6121 dl->raiddisk = -1;
6122
6123 if (dl->index >= 0)
6124 used++;
6125
6126 /* don't activate new spares if we are orom constrained
6127 * and there is already a volume active in the container
6128 */
6129 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6130 continue;
6131
6132 e = get_extents(super, dl);
6133 if (!e)
6134 continue;
6135 for (i = 1; e[i-1].size; i++)
6136 ;
6137 dl->e = e;
6138 dl->extent_cnt = i;
6139 extent_cnt += i;
6140 cnt++;
6141 }
6142
6143 maxsize = merge_extents(super, extent_cnt);
6144 minsize = size;
6145 if (size == 0)
6146 /* chunk is in K */
6147 minsize = chunk * 2;
6148
6149 if (cnt < raiddisks ||
6150 (super->orom && used && used != raiddisks) ||
6151 maxsize < minsize ||
6152 maxsize == 0) {
6153 fprintf(stderr, Name ": not enough devices with space to create array.\n");
6154 return 0; /* No enough free spaces large enough */
6155 }
6156
6157 if (size == 0) {
6158 size = maxsize;
6159 if (chunk) {
6160 size /= 2 * chunk;
6161 size *= 2 * chunk;
6162 }
6163 maxsize = size;
6164 }
6165 if (!check_env("IMSM_NO_PLATFORM") &&
6166 mpb->num_raid_devs > 0 && size && size != maxsize) {
6167 fprintf(stderr, Name ": attempting to create a second "
6168 "volume with size less then remaining space. "
6169 "Aborting...\n");
6170 return 0;
6171 }
6172 cnt = 0;
6173 for (dl = super->disks; dl; dl = dl->next)
6174 if (dl->e)
6175 dl->raiddisk = cnt++;
6176
6177 *freesize = size;
6178
6179 return 1;
6180 }
6181
6182 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
6183 int raiddisks, int *chunk, unsigned long long size,
6184 char *dev, unsigned long long *freesize,
6185 int verbose)
6186 {
6187 int fd, cfd;
6188 struct mdinfo *sra;
6189 int is_member = 0;
6190
6191 /* load capability
6192 * if given unused devices create a container
6193 * if given given devices in a container create a member volume
6194 */
6195 if (level == LEVEL_CONTAINER) {
6196 /* Must be a fresh device to add to a container */
6197 return validate_geometry_imsm_container(st, level, layout,
6198 raiddisks,
6199 chunk?*chunk:0, size,
6200 dev, freesize,
6201 verbose);
6202 }
6203
6204 if (!dev) {
6205 if (st->sb) {
6206 struct intel_super *super = st->sb;
6207 if (!validate_geometry_imsm_orom(st->sb, level, layout,
6208 raiddisks, chunk, size,
6209 verbose))
6210 return 0;
6211 /* we are being asked to automatically layout a
6212 * new volume based on the current contents of
6213 * the container. If the the parameters can be
6214 * satisfied reserve_space will record the disks,
6215 * start offset, and size of the volume to be
6216 * created. add_to_super and getinfo_super
6217 * detect when autolayout is in progress.
6218 */
6219 /* assuming that freesize is always given when array is
6220 created */
6221 if (super->orom && freesize) {
6222 int count;
6223 count = count_volumes(super->hba->path,
6224 super->orom->dpa, verbose);
6225 if (super->orom->vphba <= count) {
6226 pr_vrb(": platform does not support more"
6227 " than %d raid volumes.\n",
6228 super->orom->vphba);
6229 return 0;
6230 }
6231 }
6232 if (freesize)
6233 return reserve_space(st, raiddisks, size,
6234 chunk?*chunk:0, freesize);
6235 }
6236 return 1;
6237 }
6238 if (st->sb) {
6239 /* creating in a given container */
6240 return validate_geometry_imsm_volume(st, level, layout,
6241 raiddisks, chunk, size,
6242 dev, freesize, verbose);
6243 }
6244
6245 /* This device needs to be a device in an 'imsm' container */
6246 fd = open(dev, O_RDONLY|O_EXCL, 0);
6247 if (fd >= 0) {
6248 if (verbose)
6249 fprintf(stderr,
6250 Name ": Cannot create this array on device %s\n",
6251 dev);
6252 close(fd);
6253 return 0;
6254 }
6255 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6256 if (verbose)
6257 fprintf(stderr, Name ": Cannot open %s: %s\n",
6258 dev, strerror(errno));
6259 return 0;
6260 }
6261 /* Well, it is in use by someone, maybe an 'imsm' container. */
6262 cfd = open_container(fd);
6263 close(fd);
6264 if (cfd < 0) {
6265 if (verbose)
6266 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
6267 dev);
6268 return 0;
6269 }
6270 sra = sysfs_read(cfd, 0, GET_VERSION);
6271 if (sra && sra->array.major_version == -1 &&
6272 strcmp(sra->text_version, "imsm") == 0)
6273 is_member = 1;
6274 sysfs_free(sra);
6275 if (is_member) {
6276 /* This is a member of a imsm container. Load the container
6277 * and try to create a volume
6278 */
6279 struct intel_super *super;
6280
6281 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
6282 st->sb = super;
6283 st->container_dev = fd2devnum(cfd);
6284 close(cfd);
6285 return validate_geometry_imsm_volume(st, level, layout,
6286 raiddisks, chunk,
6287 size, dev,
6288 freesize, 1)
6289 ? 1 : -1;
6290 }
6291 }
6292
6293 if (verbose)
6294 fprintf(stderr, Name ": failed container membership check\n");
6295
6296 close(cfd);
6297 return 0;
6298 }
6299
6300 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
6301 {
6302 struct intel_super *super = st->sb;
6303
6304 if (level && *level == UnSet)
6305 *level = LEVEL_CONTAINER;
6306
6307 if (level && layout && *layout == UnSet)
6308 *layout = imsm_level_to_layout(*level);
6309
6310 if (chunk && (*chunk == UnSet || *chunk == 0))
6311 *chunk = imsm_default_chunk(super->orom);
6312 }
6313
6314 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6315
6316 static int kill_subarray_imsm(struct supertype *st)
6317 {
6318 /* remove the subarray currently referenced by ->current_vol */
6319 __u8 i;
6320 struct intel_dev **dp;
6321 struct intel_super *super = st->sb;
6322 __u8 current_vol = super->current_vol;
6323 struct imsm_super *mpb = super->anchor;
6324
6325 if (super->current_vol < 0)
6326 return 2;
6327 super->current_vol = -1; /* invalidate subarray cursor */
6328
6329 /* block deletions that would change the uuid of active subarrays
6330 *
6331 * FIXME when immutable ids are available, but note that we'll
6332 * also need to fixup the invalidated/active subarray indexes in
6333 * mdstat
6334 */
6335 for (i = 0; i < mpb->num_raid_devs; i++) {
6336 char subarray[4];
6337
6338 if (i < current_vol)
6339 continue;
6340 sprintf(subarray, "%u", i);
6341 if (is_subarray_active(subarray, st->devname)) {
6342 fprintf(stderr,
6343 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6344 current_vol, i);
6345
6346 return 2;
6347 }
6348 }
6349
6350 if (st->update_tail) {
6351 struct imsm_update_kill_array *u = malloc(sizeof(*u));
6352
6353 if (!u)
6354 return 2;
6355 u->type = update_kill_array;
6356 u->dev_idx = current_vol;
6357 append_metadata_update(st, u, sizeof(*u));
6358
6359 return 0;
6360 }
6361
6362 for (dp = &super->devlist; *dp;)
6363 if ((*dp)->index == current_vol) {
6364 *dp = (*dp)->next;
6365 } else {
6366 handle_missing(super, (*dp)->dev);
6367 if ((*dp)->index > current_vol)
6368 (*dp)->index--;
6369 dp = &(*dp)->next;
6370 }
6371
6372 /* no more raid devices, all active components are now spares,
6373 * but of course failed are still failed
6374 */
6375 if (--mpb->num_raid_devs == 0) {
6376 struct dl *d;
6377
6378 for (d = super->disks; d; d = d->next)
6379 if (d->index > -2)
6380 mark_spare(d);
6381 }
6382
6383 super->updates_pending++;
6384
6385 return 0;
6386 }
6387
6388 static int update_subarray_imsm(struct supertype *st, char *subarray,
6389 char *update, struct mddev_ident *ident)
6390 {
6391 /* update the subarray currently referenced by ->current_vol */
6392 struct intel_super *super = st->sb;
6393 struct imsm_super *mpb = super->anchor;
6394
6395 if (strcmp(update, "name") == 0) {
6396 char *name = ident->name;
6397 char *ep;
6398 int vol;
6399
6400 if (is_subarray_active(subarray, st->devname)) {
6401 fprintf(stderr,
6402 Name ": Unable to update name of active subarray\n");
6403 return 2;
6404 }
6405
6406 if (!check_name(super, name, 0))
6407 return 2;
6408
6409 vol = strtoul(subarray, &ep, 10);
6410 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6411 return 2;
6412
6413 if (st->update_tail) {
6414 struct imsm_update_rename_array *u = malloc(sizeof(*u));
6415
6416 if (!u)
6417 return 2;
6418 u->type = update_rename_array;
6419 u->dev_idx = vol;
6420 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6421 append_metadata_update(st, u, sizeof(*u));
6422 } else {
6423 struct imsm_dev *dev;
6424 int i;
6425
6426 dev = get_imsm_dev(super, vol);
6427 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6428 for (i = 0; i < mpb->num_raid_devs; i++) {
6429 dev = get_imsm_dev(super, i);
6430 handle_missing(super, dev);
6431 }
6432 super->updates_pending++;
6433 }
6434 } else
6435 return 2;
6436
6437 return 0;
6438 }
6439 #endif /* MDASSEMBLE */
6440
6441 static int is_gen_migration(struct imsm_dev *dev)
6442 {
6443 if (dev == NULL)
6444 return 0;
6445
6446 if (!dev->vol.migr_state)
6447 return 0;
6448
6449 if (migr_type(dev) == MIGR_GEN_MIGR)
6450 return 1;
6451
6452 return 0;
6453 }
6454
6455 static int is_rebuilding(struct imsm_dev *dev)
6456 {
6457 struct imsm_map *migr_map;
6458
6459 if (!dev->vol.migr_state)
6460 return 0;
6461
6462 if (migr_type(dev) != MIGR_REBUILD)
6463 return 0;
6464
6465 migr_map = get_imsm_map(dev, MAP_1);
6466
6467 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6468 return 1;
6469 else
6470 return 0;
6471 }
6472
6473 #ifndef MDASSEMBLE
6474 static int is_initializing(struct imsm_dev *dev)
6475 {
6476 struct imsm_map *migr_map;
6477
6478 if (!dev->vol.migr_state)
6479 return 0;
6480
6481 if (migr_type(dev) != MIGR_INIT)
6482 return 0;
6483
6484 migr_map = get_imsm_map(dev, MAP_1);
6485
6486 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6487 return 1;
6488
6489 return 0;
6490 }
6491 #endif
6492
6493 static void update_recovery_start(struct intel_super *super,
6494 struct imsm_dev *dev,
6495 struct mdinfo *array)
6496 {
6497 struct mdinfo *rebuild = NULL;
6498 struct mdinfo *d;
6499 __u32 units;
6500
6501 if (!is_rebuilding(dev))
6502 return;
6503
6504 /* Find the rebuild target, but punt on the dual rebuild case */
6505 for (d = array->devs; d; d = d->next)
6506 if (d->recovery_start == 0) {
6507 if (rebuild)
6508 return;
6509 rebuild = d;
6510 }
6511
6512 if (!rebuild) {
6513 /* (?) none of the disks are marked with
6514 * IMSM_ORD_REBUILD, so assume they are missing and the
6515 * disk_ord_tbl was not correctly updated
6516 */
6517 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
6518 return;
6519 }
6520
6521 units = __le32_to_cpu(dev->vol.curr_migr_unit);
6522 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
6523 }
6524
6525 #ifndef MDASSEMBLE
6526 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
6527 #endif
6528
6529 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
6530 {
6531 /* Given a container loaded by load_super_imsm_all,
6532 * extract information about all the arrays into
6533 * an mdinfo tree.
6534 * If 'subarray' is given, just extract info about that array.
6535 *
6536 * For each imsm_dev create an mdinfo, fill it in,
6537 * then look for matching devices in super->disks
6538 * and create appropriate device mdinfo.
6539 */
6540 struct intel_super *super = st->sb;
6541 struct imsm_super *mpb = super->anchor;
6542 struct mdinfo *rest = NULL;
6543 unsigned int i;
6544 int sb_errors = 0;
6545 struct dl *d;
6546 int spare_disks = 0;
6547
6548 /* do not assemble arrays when not all attributes are supported */
6549 if (imsm_check_attributes(mpb->attributes) == 0) {
6550 sb_errors = 1;
6551 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
6552 "Arrays activation is blocked.\n");
6553 }
6554
6555 /* check for bad blocks */
6556 if (imsm_bbm_log_size(super->anchor)) {
6557 fprintf(stderr, Name ": BBM log found in IMSM metadata."
6558 "Arrays activation is blocked.\n");
6559 sb_errors = 1;
6560 }
6561
6562
6563 /* count spare devices, not used in maps
6564 */
6565 for (d = super->disks; d; d = d->next)
6566 if (d->index == -1)
6567 spare_disks++;
6568
6569 for (i = 0; i < mpb->num_raid_devs; i++) {
6570 struct imsm_dev *dev;
6571 struct imsm_map *map;
6572 struct imsm_map *map2;
6573 struct mdinfo *this;
6574 int slot;
6575 #ifndef MDASSEMBLE
6576 int chunk;
6577 #endif
6578 char *ep;
6579
6580 if (subarray &&
6581 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6582 continue;
6583
6584 dev = get_imsm_dev(super, i);
6585 map = get_imsm_map(dev, MAP_0);
6586 map2 = get_imsm_map(dev, MAP_1);
6587
6588 /* do not publish arrays that are in the middle of an
6589 * unsupported migration
6590 */
6591 if (dev->vol.migr_state &&
6592 (migr_type(dev) == MIGR_STATE_CHANGE)) {
6593 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
6594 " unsupported migration in progress\n",
6595 dev->volume);
6596 continue;
6597 }
6598 /* do not publish arrays that are not support by controller's
6599 * OROM/EFI
6600 */
6601
6602 this = malloc(sizeof(*this));
6603 if (!this) {
6604 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
6605 sizeof(*this));
6606 break;
6607 }
6608
6609 super->current_vol = i;
6610 getinfo_super_imsm_volume(st, this, NULL);
6611 this->next = rest;
6612 #ifndef MDASSEMBLE
6613 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
6614 /* mdadm does not support all metadata features- set the bit in all arrays state */
6615 if (!validate_geometry_imsm_orom(super,
6616 get_imsm_raid_level(map), /* RAID level */
6617 imsm_level_to_layout(get_imsm_raid_level(map)),
6618 map->num_members, /* raid disks */
6619 &chunk, join_u32(dev->size_low, dev->size_high),
6620 1 /* verbose */)) {
6621 fprintf(stderr, Name ": IMSM RAID geometry validation"
6622 " failed. Array %s activation is blocked.\n",
6623 dev->volume);
6624 this->array.state |=
6625 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6626 (1<<MD_SB_BLOCK_VOLUME);
6627 }
6628 #endif
6629
6630 /* if array has bad blocks, set suitable bit in all arrays state */
6631 if (sb_errors)
6632 this->array.state |=
6633 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6634 (1<<MD_SB_BLOCK_VOLUME);
6635
6636 for (slot = 0 ; slot < map->num_members; slot++) {
6637 unsigned long long recovery_start;
6638 struct mdinfo *info_d;
6639 struct dl *d;
6640 int idx;
6641 int skip;
6642 __u32 ord;
6643
6644 skip = 0;
6645 idx = get_imsm_disk_idx(dev, slot, MAP_0);
6646 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
6647 for (d = super->disks; d ; d = d->next)
6648 if (d->index == idx)
6649 break;
6650
6651 recovery_start = MaxSector;
6652 if (d == NULL)
6653 skip = 1;
6654 if (d && is_failed(&d->disk))
6655 skip = 1;
6656 if (ord & IMSM_ORD_REBUILD)
6657 recovery_start = 0;
6658
6659 /*
6660 * if we skip some disks the array will be assmebled degraded;
6661 * reset resync start to avoid a dirty-degraded
6662 * situation when performing the intial sync
6663 *
6664 * FIXME handle dirty degraded
6665 */
6666 if ((skip || recovery_start == 0) && !dev->vol.dirty)
6667 this->resync_start = MaxSector;
6668 if (skip)
6669 continue;
6670
6671 info_d = calloc(1, sizeof(*info_d));
6672 if (!info_d) {
6673 fprintf(stderr, Name ": failed to allocate disk"
6674 " for volume %.16s\n", dev->volume);
6675 info_d = this->devs;
6676 while (info_d) {
6677 struct mdinfo *d = info_d->next;
6678
6679 free(info_d);
6680 info_d = d;
6681 }
6682 free(this);
6683 this = rest;
6684 break;
6685 }
6686 info_d->next = this->devs;
6687 this->devs = info_d;
6688
6689 info_d->disk.number = d->index;
6690 info_d->disk.major = d->major;
6691 info_d->disk.minor = d->minor;
6692 info_d->disk.raid_disk = slot;
6693 info_d->recovery_start = recovery_start;
6694 if (map2) {
6695 if (slot < map2->num_members)
6696 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6697 else
6698 this->array.spare_disks++;
6699 } else {
6700 if (slot < map->num_members)
6701 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6702 else
6703 this->array.spare_disks++;
6704 }
6705 if (info_d->recovery_start == MaxSector)
6706 this->array.working_disks++;
6707
6708 info_d->events = __le32_to_cpu(mpb->generation_num);
6709 info_d->data_offset = pba_of_lba0(map);
6710 info_d->component_size = blocks_per_member(map);
6711 }
6712 /* now that the disk list is up-to-date fixup recovery_start */
6713 update_recovery_start(super, dev, this);
6714 this->array.spare_disks += spare_disks;
6715
6716 #ifndef MDASSEMBLE
6717 /* check for reshape */
6718 if (this->reshape_active == 1)
6719 recover_backup_imsm(st, this);
6720 #endif
6721 rest = this;
6722 }
6723
6724 return rest;
6725 }
6726
6727
6728 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6729 int failed, int look_in_map)
6730 {
6731 struct imsm_map *map;
6732
6733 map = get_imsm_map(dev, look_in_map);
6734
6735 if (!failed)
6736 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6737 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6738
6739 switch (get_imsm_raid_level(map)) {
6740 case 0:
6741 return IMSM_T_STATE_FAILED;
6742 break;
6743 case 1:
6744 if (failed < map->num_members)
6745 return IMSM_T_STATE_DEGRADED;
6746 else
6747 return IMSM_T_STATE_FAILED;
6748 break;
6749 case 10:
6750 {
6751 /**
6752 * check to see if any mirrors have failed, otherwise we
6753 * are degraded. Even numbered slots are mirrored on
6754 * slot+1
6755 */
6756 int i;
6757 /* gcc -Os complains that this is unused */
6758 int insync = insync;
6759
6760 for (i = 0; i < map->num_members; i++) {
6761 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6762 int idx = ord_to_idx(ord);
6763 struct imsm_disk *disk;
6764
6765 /* reset the potential in-sync count on even-numbered
6766 * slots. num_copies is always 2 for imsm raid10
6767 */
6768 if ((i & 1) == 0)
6769 insync = 2;
6770
6771 disk = get_imsm_disk(super, idx);
6772 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6773 insync--;
6774
6775 /* no in-sync disks left in this mirror the
6776 * array has failed
6777 */
6778 if (insync == 0)
6779 return IMSM_T_STATE_FAILED;
6780 }
6781
6782 return IMSM_T_STATE_DEGRADED;
6783 }
6784 case 5:
6785 if (failed < 2)
6786 return IMSM_T_STATE_DEGRADED;
6787 else
6788 return IMSM_T_STATE_FAILED;
6789 break;
6790 default:
6791 break;
6792 }
6793
6794 return map->map_state;
6795 }
6796
6797 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6798 int look_in_map)
6799 {
6800 int i;
6801 int failed = 0;
6802 struct imsm_disk *disk;
6803 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6804 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6805 struct imsm_map *map_for_loop;
6806 __u32 ord;
6807 int idx;
6808 int idx_1;
6809
6810 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6811 * disks that are being rebuilt. New failures are recorded to
6812 * map[0]. So we look through all the disks we started with and
6813 * see if any failures are still present, or if any new ones
6814 * have arrived
6815 */
6816 map_for_loop = map;
6817 if (prev && (map->num_members < prev->num_members))
6818 map_for_loop = prev;
6819
6820 for (i = 0; i < map_for_loop->num_members; i++) {
6821 idx_1 = -255;
6822 /* when MAP_X is passed both maps failures are counted
6823 */
6824 if (prev &&
6825 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6826 (i < prev->num_members)) {
6827 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6828 idx_1 = ord_to_idx(ord);
6829
6830 disk = get_imsm_disk(super, idx_1);
6831 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6832 failed++;
6833 }
6834 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6835 (i < map->num_members)) {
6836 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6837 idx = ord_to_idx(ord);
6838
6839 if (idx != idx_1) {
6840 disk = get_imsm_disk(super, idx);
6841 if (!disk || is_failed(disk) ||
6842 ord & IMSM_ORD_REBUILD)
6843 failed++;
6844 }
6845 }
6846 }
6847
6848 return failed;
6849 }
6850
6851 #ifndef MDASSEMBLE
6852 static int imsm_open_new(struct supertype *c, struct active_array *a,
6853 char *inst)
6854 {
6855 struct intel_super *super = c->sb;
6856 struct imsm_super *mpb = super->anchor;
6857
6858 if (atoi(inst) >= mpb->num_raid_devs) {
6859 fprintf(stderr, "%s: subarry index %d, out of range\n",
6860 __func__, atoi(inst));
6861 return -ENODEV;
6862 }
6863
6864 dprintf("imsm: open_new %s\n", inst);
6865 a->info.container_member = atoi(inst);
6866 return 0;
6867 }
6868
6869 static int is_resyncing(struct imsm_dev *dev)
6870 {
6871 struct imsm_map *migr_map;
6872
6873 if (!dev->vol.migr_state)
6874 return 0;
6875
6876 if (migr_type(dev) == MIGR_INIT ||
6877 migr_type(dev) == MIGR_REPAIR)
6878 return 1;
6879
6880 if (migr_type(dev) == MIGR_GEN_MIGR)
6881 return 0;
6882
6883 migr_map = get_imsm_map(dev, MAP_1);
6884
6885 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6886 (dev->vol.migr_type != MIGR_GEN_MIGR))
6887 return 1;
6888 else
6889 return 0;
6890 }
6891
6892 /* return true if we recorded new information */
6893 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6894 {
6895 __u32 ord;
6896 int slot;
6897 struct imsm_map *map;
6898 char buf[MAX_RAID_SERIAL_LEN+3];
6899 unsigned int len, shift = 0;
6900
6901 /* new failures are always set in map[0] */
6902 map = get_imsm_map(dev, MAP_0);
6903
6904 slot = get_imsm_disk_slot(map, idx);
6905 if (slot < 0)
6906 return 0;
6907
6908 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6909 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6910 return 0;
6911
6912 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6913 buf[MAX_RAID_SERIAL_LEN] = '\000';
6914 strcat(buf, ":0");
6915 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6916 shift = len - MAX_RAID_SERIAL_LEN + 1;
6917 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6918
6919 disk->status |= FAILED_DISK;
6920 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6921 /* mark failures in second map if second map exists and this disk
6922 * in this slot.
6923 * This is valid for migration, initialization and rebuild
6924 */
6925 if (dev->vol.migr_state) {
6926 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
6927 int slot2 = get_imsm_disk_slot(map2, idx);
6928
6929 if ((slot2 < map2->num_members) &&
6930 (slot2 >= 0))
6931 set_imsm_ord_tbl_ent(map2, slot2,
6932 idx | IMSM_ORD_REBUILD);
6933 }
6934 if (map->failed_disk_num == 0xff)
6935 map->failed_disk_num = slot;
6936 return 1;
6937 }
6938
6939 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6940 {
6941 mark_failure(dev, disk, idx);
6942
6943 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6944 return;
6945
6946 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6947 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6948 }
6949
6950 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6951 {
6952 struct dl *dl;
6953
6954 if (!super->missing)
6955 return;
6956
6957 dprintf("imsm: mark missing\n");
6958 /* end process for initialization and rebuild only
6959 */
6960 if (is_gen_migration(dev) == 0) {
6961 __u8 map_state;
6962 int failed;
6963
6964 failed = imsm_count_failed(super, dev, MAP_0);
6965 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6966
6967 end_migration(dev, super, map_state);
6968 }
6969 for (dl = super->missing; dl; dl = dl->next)
6970 mark_missing(dev, &dl->disk, dl->index);
6971 super->updates_pending++;
6972 }
6973
6974 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6975 {
6976 int used_disks = imsm_num_data_members(dev, MAP_0);
6977 unsigned long long array_blocks;
6978 struct imsm_map *map;
6979
6980 if (used_disks == 0) {
6981 /* when problems occures
6982 * return current array_blocks value
6983 */
6984 array_blocks = __le32_to_cpu(dev->size_high);
6985 array_blocks = array_blocks << 32;
6986 array_blocks += __le32_to_cpu(dev->size_low);
6987
6988 return array_blocks;
6989 }
6990
6991 /* set array size in metadata
6992 */
6993 map = get_imsm_map(dev, MAP_0);
6994 array_blocks = blocks_per_member(map) * used_disks;
6995
6996 /* round array size down to closest MB
6997 */
6998 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6999 dev->size_low = __cpu_to_le32((__u32)array_blocks);
7000 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7001
7002 return array_blocks;
7003 }
7004
7005 static void imsm_set_disk(struct active_array *a, int n, int state);
7006
7007 static void imsm_progress_container_reshape(struct intel_super *super)
7008 {
7009 /* if no device has a migr_state, but some device has a
7010 * different number of members than the previous device, start
7011 * changing the number of devices in this device to match
7012 * previous.
7013 */
7014 struct imsm_super *mpb = super->anchor;
7015 int prev_disks = -1;
7016 int i;
7017 int copy_map_size;
7018
7019 for (i = 0; i < mpb->num_raid_devs; i++) {
7020 struct imsm_dev *dev = get_imsm_dev(super, i);
7021 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7022 struct imsm_map *map2;
7023 int prev_num_members;
7024
7025 if (dev->vol.migr_state)
7026 return;
7027
7028 if (prev_disks == -1)
7029 prev_disks = map->num_members;
7030 if (prev_disks == map->num_members)
7031 continue;
7032
7033 /* OK, this array needs to enter reshape mode.
7034 * i.e it needs a migr_state
7035 */
7036
7037 copy_map_size = sizeof_imsm_map(map);
7038 prev_num_members = map->num_members;
7039 map->num_members = prev_disks;
7040 dev->vol.migr_state = 1;
7041 dev->vol.curr_migr_unit = 0;
7042 set_migr_type(dev, MIGR_GEN_MIGR);
7043 for (i = prev_num_members;
7044 i < map->num_members; i++)
7045 set_imsm_ord_tbl_ent(map, i, i);
7046 map2 = get_imsm_map(dev, MAP_1);
7047 /* Copy the current map */
7048 memcpy(map2, map, copy_map_size);
7049 map2->num_members = prev_num_members;
7050
7051 imsm_set_array_size(dev);
7052 super->clean_migration_record_by_mdmon = 1;
7053 super->updates_pending++;
7054 }
7055 }
7056
7057 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
7058 * states are handled in imsm_set_disk() with one exception, when a
7059 * resync is stopped due to a new failure this routine will set the
7060 * 'degraded' state for the array.
7061 */
7062 static int imsm_set_array_state(struct active_array *a, int consistent)
7063 {
7064 int inst = a->info.container_member;
7065 struct intel_super *super = a->container->sb;
7066 struct imsm_dev *dev = get_imsm_dev(super, inst);
7067 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7068 int failed = imsm_count_failed(super, dev, MAP_0);
7069 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7070 __u32 blocks_per_unit;
7071
7072 if (dev->vol.migr_state &&
7073 dev->vol.migr_type == MIGR_GEN_MIGR) {
7074 /* array state change is blocked due to reshape action
7075 * We might need to
7076 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7077 * - finish the reshape (if last_checkpoint is big and action != reshape)
7078 * - update curr_migr_unit
7079 */
7080 if (a->curr_action == reshape) {
7081 /* still reshaping, maybe update curr_migr_unit */
7082 goto mark_checkpoint;
7083 } else {
7084 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7085 /* for some reason we aborted the reshape.
7086 *
7087 * disable automatic metadata rollback
7088 * user action is required to recover process
7089 */
7090 if (0) {
7091 struct imsm_map *map2 =
7092 get_imsm_map(dev, MAP_1);
7093 dev->vol.migr_state = 0;
7094 set_migr_type(dev, 0);
7095 dev->vol.curr_migr_unit = 0;
7096 memcpy(map, map2,
7097 sizeof_imsm_map(map2));
7098 super->updates_pending++;
7099 }
7100 }
7101 if (a->last_checkpoint >= a->info.component_size) {
7102 unsigned long long array_blocks;
7103 int used_disks;
7104 struct mdinfo *mdi;
7105
7106 used_disks = imsm_num_data_members(dev, MAP_0);
7107 if (used_disks > 0) {
7108 array_blocks =
7109 blocks_per_member(map) *
7110 used_disks;
7111 /* round array size down to closest MB
7112 */
7113 array_blocks = (array_blocks
7114 >> SECT_PER_MB_SHIFT)
7115 << SECT_PER_MB_SHIFT;
7116 a->info.custom_array_size = array_blocks;
7117 /* encourage manager to update array
7118 * size
7119 */
7120
7121 a->check_reshape = 1;
7122 }
7123 /* finalize online capacity expansion/reshape */
7124 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7125 imsm_set_disk(a,
7126 mdi->disk.raid_disk,
7127 mdi->curr_state);
7128
7129 imsm_progress_container_reshape(super);
7130 }
7131 }
7132 }
7133
7134 /* before we activate this array handle any missing disks */
7135 if (consistent == 2)
7136 handle_missing(super, dev);
7137
7138 if (consistent == 2 &&
7139 (!is_resync_complete(&a->info) ||
7140 map_state != IMSM_T_STATE_NORMAL ||
7141 dev->vol.migr_state))
7142 consistent = 0;
7143
7144 if (is_resync_complete(&a->info)) {
7145 /* complete intialization / resync,
7146 * recovery and interrupted recovery is completed in
7147 * ->set_disk
7148 */
7149 if (is_resyncing(dev)) {
7150 dprintf("imsm: mark resync done\n");
7151 end_migration(dev, super, map_state);
7152 super->updates_pending++;
7153 a->last_checkpoint = 0;
7154 }
7155 } else if ((!is_resyncing(dev) && !failed) &&
7156 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
7157 /* mark the start of the init process if nothing is failed */
7158 dprintf("imsm: mark resync start\n");
7159 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
7160 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
7161 else
7162 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
7163 super->updates_pending++;
7164 }
7165
7166 mark_checkpoint:
7167 /* skip checkpointing for general migration,
7168 * it is controlled in mdadm
7169 */
7170 if (is_gen_migration(dev))
7171 goto skip_mark_checkpoint;
7172
7173 /* check if we can update curr_migr_unit from resync_start, recovery_start */
7174 blocks_per_unit = blocks_per_migr_unit(super, dev);
7175 if (blocks_per_unit) {
7176 __u32 units32;
7177 __u64 units;
7178
7179 units = a->last_checkpoint / blocks_per_unit;
7180 units32 = units;
7181
7182 /* check that we did not overflow 32-bits, and that
7183 * curr_migr_unit needs updating
7184 */
7185 if (units32 == units &&
7186 units32 != 0 &&
7187 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7188 dprintf("imsm: mark checkpoint (%u)\n", units32);
7189 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7190 super->updates_pending++;
7191 }
7192 }
7193
7194 skip_mark_checkpoint:
7195 /* mark dirty / clean */
7196 if (dev->vol.dirty != !consistent) {
7197 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
7198 if (consistent)
7199 dev->vol.dirty = 0;
7200 else
7201 dev->vol.dirty = 1;
7202 super->updates_pending++;
7203 }
7204
7205 return consistent;
7206 }
7207
7208 static void imsm_set_disk(struct active_array *a, int n, int state)
7209 {
7210 int inst = a->info.container_member;
7211 struct intel_super *super = a->container->sb;
7212 struct imsm_dev *dev = get_imsm_dev(super, inst);
7213 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7214 struct imsm_disk *disk;
7215 int failed;
7216 __u32 ord;
7217 __u8 map_state;
7218
7219 if (n > map->num_members)
7220 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
7221 n, map->num_members - 1);
7222
7223 if (n < 0)
7224 return;
7225
7226 dprintf("imsm: set_disk %d:%x\n", n, state);
7227
7228 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
7229 disk = get_imsm_disk(super, ord_to_idx(ord));
7230
7231 /* check for new failures */
7232 if (state & DS_FAULTY) {
7233 if (mark_failure(dev, disk, ord_to_idx(ord)))
7234 super->updates_pending++;
7235 }
7236
7237 /* check if in_sync */
7238 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
7239 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7240
7241 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
7242 super->updates_pending++;
7243 }
7244
7245 failed = imsm_count_failed(super, dev, MAP_0);
7246 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7247
7248 /* check if recovery complete, newly degraded, or failed */
7249 dprintf("imsm: Detected transition to state ");
7250 switch (map_state) {
7251 case IMSM_T_STATE_NORMAL: /* transition to normal state */
7252 dprintf("normal: ");
7253 if (is_rebuilding(dev)) {
7254 dprintf("while rebuilding");
7255 end_migration(dev, super, map_state);
7256 map = get_imsm_map(dev, MAP_0);
7257 map->failed_disk_num = ~0;
7258 super->updates_pending++;
7259 a->last_checkpoint = 0;
7260 break;
7261 }
7262 if (is_gen_migration(dev)) {
7263 dprintf("while general migration");
7264 if (a->last_checkpoint >= a->info.component_size)
7265 end_migration(dev, super, map_state);
7266 else
7267 map->map_state = map_state;
7268 map = get_imsm_map(dev, MAP_0);
7269 map->failed_disk_num = ~0;
7270 super->updates_pending++;
7271 break;
7272 }
7273 break;
7274 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
7275 dprintf("degraded: ");
7276 if ((map->map_state != map_state) &&
7277 !dev->vol.migr_state) {
7278 dprintf("mark degraded");
7279 map->map_state = map_state;
7280 super->updates_pending++;
7281 a->last_checkpoint = 0;
7282 break;
7283 }
7284 if (is_rebuilding(dev)) {
7285 dprintf("while rebuilding.");
7286 if (map->map_state != map_state) {
7287 dprintf(" Map state change");
7288 end_migration(dev, super, map_state);
7289 super->updates_pending++;
7290 }
7291 break;
7292 }
7293 if (is_gen_migration(dev)) {
7294 dprintf("while general migration");
7295 if (a->last_checkpoint >= a->info.component_size)
7296 end_migration(dev, super, map_state);
7297 else {
7298 map->map_state = map_state;
7299 manage_second_map(super, dev);
7300 }
7301 super->updates_pending++;
7302 break;
7303 }
7304 if (is_initializing(dev)) {
7305 dprintf("while initialization.");
7306 map->map_state = map_state;
7307 super->updates_pending++;
7308 break;
7309 }
7310 break;
7311 case IMSM_T_STATE_FAILED: /* transition to failed state */
7312 dprintf("failed: ");
7313 if (is_gen_migration(dev)) {
7314 dprintf("while general migration");
7315 map->map_state = map_state;
7316 super->updates_pending++;
7317 break;
7318 }
7319 if (map->map_state != map_state) {
7320 dprintf("mark failed");
7321 end_migration(dev, super, map_state);
7322 super->updates_pending++;
7323 a->last_checkpoint = 0;
7324 break;
7325 }
7326 break;
7327 default:
7328 dprintf("state %i\n", map_state);
7329 }
7330 dprintf("\n");
7331
7332 }
7333
7334 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
7335 {
7336 void *buf = mpb;
7337 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7338 unsigned long long dsize;
7339 unsigned long long sectors;
7340
7341 get_dev_size(fd, NULL, &dsize);
7342
7343 if (mpb_size > 512) {
7344 /* -1 to account for anchor */
7345 sectors = mpb_sectors(mpb) - 1;
7346
7347 /* write the extended mpb to the sectors preceeding the anchor */
7348 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
7349 return 1;
7350
7351 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
7352 != 512 * sectors)
7353 return 1;
7354 }
7355
7356 /* first block is stored on second to last sector of the disk */
7357 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
7358 return 1;
7359
7360 if (write(fd, buf, 512) != 512)
7361 return 1;
7362
7363 return 0;
7364 }
7365
7366 static void imsm_sync_metadata(struct supertype *container)
7367 {
7368 struct intel_super *super = container->sb;
7369
7370 dprintf("sync metadata: %d\n", super->updates_pending);
7371 if (!super->updates_pending)
7372 return;
7373
7374 write_super_imsm(container, 0);
7375
7376 super->updates_pending = 0;
7377 }
7378
7379 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7380 {
7381 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7382 int i = get_imsm_disk_idx(dev, idx, MAP_X);
7383 struct dl *dl;
7384
7385 for (dl = super->disks; dl; dl = dl->next)
7386 if (dl->index == i)
7387 break;
7388
7389 if (dl && is_failed(&dl->disk))
7390 dl = NULL;
7391
7392 if (dl)
7393 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
7394
7395 return dl;
7396 }
7397
7398 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
7399 struct active_array *a, int activate_new,
7400 struct mdinfo *additional_test_list)
7401 {
7402 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7403 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
7404 struct imsm_super *mpb = super->anchor;
7405 struct imsm_map *map;
7406 unsigned long long pos;
7407 struct mdinfo *d;
7408 struct extent *ex;
7409 int i, j;
7410 int found;
7411 __u32 array_start = 0;
7412 __u32 array_end = 0;
7413 struct dl *dl;
7414 struct mdinfo *test_list;
7415
7416 for (dl = super->disks; dl; dl = dl->next) {
7417 /* If in this array, skip */
7418 for (d = a->info.devs ; d ; d = d->next)
7419 if (d->state_fd >= 0 &&
7420 d->disk.major == dl->major &&
7421 d->disk.minor == dl->minor) {
7422 dprintf("%x:%x already in array\n",
7423 dl->major, dl->minor);
7424 break;
7425 }
7426 if (d)
7427 continue;
7428 test_list = additional_test_list;
7429 while (test_list) {
7430 if (test_list->disk.major == dl->major &&
7431 test_list->disk.minor == dl->minor) {
7432 dprintf("%x:%x already in additional test list\n",
7433 dl->major, dl->minor);
7434 break;
7435 }
7436 test_list = test_list->next;
7437 }
7438 if (test_list)
7439 continue;
7440
7441 /* skip in use or failed drives */
7442 if (is_failed(&dl->disk) || idx == dl->index ||
7443 dl->index == -2) {
7444 dprintf("%x:%x status (failed: %d index: %d)\n",
7445 dl->major, dl->minor, is_failed(&dl->disk), idx);
7446 continue;
7447 }
7448
7449 /* skip pure spares when we are looking for partially
7450 * assimilated drives
7451 */
7452 if (dl->index == -1 && !activate_new)
7453 continue;
7454
7455 /* Does this unused device have the requisite free space?
7456 * It needs to be able to cover all member volumes
7457 */
7458 ex = get_extents(super, dl);
7459 if (!ex) {
7460 dprintf("cannot get extents\n");
7461 continue;
7462 }
7463 for (i = 0; i < mpb->num_raid_devs; i++) {
7464 dev = get_imsm_dev(super, i);
7465 map = get_imsm_map(dev, MAP_0);
7466
7467 /* check if this disk is already a member of
7468 * this array
7469 */
7470 if (get_imsm_disk_slot(map, dl->index) >= 0)
7471 continue;
7472
7473 found = 0;
7474 j = 0;
7475 pos = 0;
7476 array_start = pba_of_lba0(map);
7477 array_end = array_start +
7478 blocks_per_member(map) - 1;
7479
7480 do {
7481 /* check that we can start at pba_of_lba0 with
7482 * blocks_per_member of space
7483 */
7484 if (array_start >= pos && array_end < ex[j].start) {
7485 found = 1;
7486 break;
7487 }
7488 pos = ex[j].start + ex[j].size;
7489 j++;
7490 } while (ex[j-1].size);
7491
7492 if (!found)
7493 break;
7494 }
7495
7496 free(ex);
7497 if (i < mpb->num_raid_devs) {
7498 dprintf("%x:%x does not have %u to %u available\n",
7499 dl->major, dl->minor, array_start, array_end);
7500 /* No room */
7501 continue;
7502 }
7503 return dl;
7504 }
7505
7506 return dl;
7507 }
7508
7509
7510 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7511 {
7512 struct imsm_dev *dev2;
7513 struct imsm_map *map;
7514 struct dl *idisk;
7515 int slot;
7516 int idx;
7517 __u8 state;
7518
7519 dev2 = get_imsm_dev(cont->sb, dev_idx);
7520 if (dev2) {
7521 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
7522 if (state == IMSM_T_STATE_FAILED) {
7523 map = get_imsm_map(dev2, MAP_0);
7524 if (!map)
7525 return 1;
7526 for (slot = 0; slot < map->num_members; slot++) {
7527 /*
7528 * Check if failed disks are deleted from intel
7529 * disk list or are marked to be deleted
7530 */
7531 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
7532 idisk = get_imsm_dl_disk(cont->sb, idx);
7533 /*
7534 * Do not rebuild the array if failed disks
7535 * from failed sub-array are not removed from
7536 * container.
7537 */
7538 if (idisk &&
7539 is_failed(&idisk->disk) &&
7540 (idisk->action != DISK_REMOVE))
7541 return 0;
7542 }
7543 }
7544 }
7545 return 1;
7546 }
7547
7548 static struct mdinfo *imsm_activate_spare(struct active_array *a,
7549 struct metadata_update **updates)
7550 {
7551 /**
7552 * Find a device with unused free space and use it to replace a
7553 * failed/vacant region in an array. We replace failed regions one a
7554 * array at a time. The result is that a new spare disk will be added
7555 * to the first failed array and after the monitor has finished
7556 * propagating failures the remainder will be consumed.
7557 *
7558 * FIXME add a capability for mdmon to request spares from another
7559 * container.
7560 */
7561
7562 struct intel_super *super = a->container->sb;
7563 int inst = a->info.container_member;
7564 struct imsm_dev *dev = get_imsm_dev(super, inst);
7565 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7566 int failed = a->info.array.raid_disks;
7567 struct mdinfo *rv = NULL;
7568 struct mdinfo *d;
7569 struct mdinfo *di;
7570 struct metadata_update *mu;
7571 struct dl *dl;
7572 struct imsm_update_activate_spare *u;
7573 int num_spares = 0;
7574 int i;
7575 int allowed;
7576
7577 for (d = a->info.devs ; d ; d = d->next) {
7578 if ((d->curr_state & DS_FAULTY) &&
7579 d->state_fd >= 0)
7580 /* wait for Removal to happen */
7581 return NULL;
7582 if (d->state_fd >= 0)
7583 failed--;
7584 }
7585
7586 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7587 inst, failed, a->info.array.raid_disks, a->info.array.level);
7588
7589 if (imsm_reshape_blocks_arrays_changes(super))
7590 return NULL;
7591
7592 /* Cannot activate another spare if rebuild is in progress already
7593 */
7594 if (is_rebuilding(dev)) {
7595 dprintf("imsm: No spare activation allowed. "
7596 "Rebuild in progress already.\n");
7597 return NULL;
7598 }
7599
7600 if (a->info.array.level == 4)
7601 /* No repair for takeovered array
7602 * imsm doesn't support raid4
7603 */
7604 return NULL;
7605
7606 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7607 IMSM_T_STATE_DEGRADED)
7608 return NULL;
7609
7610 /*
7611 * If there are any failed disks check state of the other volume.
7612 * Block rebuild if the another one is failed until failed disks
7613 * are removed from container.
7614 */
7615 if (failed) {
7616 dprintf("found failed disks in %.*s, check if there another"
7617 "failed sub-array.\n",
7618 MAX_RAID_SERIAL_LEN, dev->volume);
7619 /* check if states of the other volumes allow for rebuild */
7620 for (i = 0; i < super->anchor->num_raid_devs; i++) {
7621 if (i != inst) {
7622 allowed = imsm_rebuild_allowed(a->container,
7623 i, failed);
7624 if (!allowed)
7625 return NULL;
7626 }
7627 }
7628 }
7629
7630 /* For each slot, if it is not working, find a spare */
7631 for (i = 0; i < a->info.array.raid_disks; i++) {
7632 for (d = a->info.devs ; d ; d = d->next)
7633 if (d->disk.raid_disk == i)
7634 break;
7635 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7636 if (d && (d->state_fd >= 0))
7637 continue;
7638
7639 /*
7640 * OK, this device needs recovery. Try to re-add the
7641 * previous occupant of this slot, if this fails see if
7642 * we can continue the assimilation of a spare that was
7643 * partially assimilated, finally try to activate a new
7644 * spare.
7645 */
7646 dl = imsm_readd(super, i, a);
7647 if (!dl)
7648 dl = imsm_add_spare(super, i, a, 0, rv);
7649 if (!dl)
7650 dl = imsm_add_spare(super, i, a, 1, rv);
7651 if (!dl)
7652 continue;
7653
7654 /* found a usable disk with enough space */
7655 di = malloc(sizeof(*di));
7656 if (!di)
7657 continue;
7658 memset(di, 0, sizeof(*di));
7659
7660 /* dl->index will be -1 in the case we are activating a
7661 * pristine spare. imsm_process_update() will create a
7662 * new index in this case. Once a disk is found to be
7663 * failed in all member arrays it is kicked from the
7664 * metadata
7665 */
7666 di->disk.number = dl->index;
7667
7668 /* (ab)use di->devs to store a pointer to the device
7669 * we chose
7670 */
7671 di->devs = (struct mdinfo *) dl;
7672
7673 di->disk.raid_disk = i;
7674 di->disk.major = dl->major;
7675 di->disk.minor = dl->minor;
7676 di->disk.state = 0;
7677 di->recovery_start = 0;
7678 di->data_offset = pba_of_lba0(map);
7679 di->component_size = a->info.component_size;
7680 di->container_member = inst;
7681 super->random = random32();
7682 di->next = rv;
7683 rv = di;
7684 num_spares++;
7685 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7686 i, di->data_offset);
7687 }
7688
7689 if (!rv)
7690 /* No spares found */
7691 return rv;
7692 /* Now 'rv' has a list of devices to return.
7693 * Create a metadata_update record to update the
7694 * disk_ord_tbl for the array
7695 */
7696 mu = malloc(sizeof(*mu));
7697 if (mu) {
7698 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
7699 if (mu->buf == NULL) {
7700 free(mu);
7701 mu = NULL;
7702 }
7703 }
7704 if (!mu) {
7705 while (rv) {
7706 struct mdinfo *n = rv->next;
7707
7708 free(rv);
7709 rv = n;
7710 }
7711 return NULL;
7712 }
7713
7714 mu->space = NULL;
7715 mu->space_list = NULL;
7716 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7717 mu->next = *updates;
7718 u = (struct imsm_update_activate_spare *) mu->buf;
7719
7720 for (di = rv ; di ; di = di->next) {
7721 u->type = update_activate_spare;
7722 u->dl = (struct dl *) di->devs;
7723 di->devs = NULL;
7724 u->slot = di->disk.raid_disk;
7725 u->array = inst;
7726 u->next = u + 1;
7727 u++;
7728 }
7729 (u-1)->next = NULL;
7730 *updates = mu;
7731
7732 return rv;
7733 }
7734
7735 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7736 {
7737 struct imsm_dev *dev = get_imsm_dev(super, idx);
7738 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7739 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7740 struct disk_info *inf = get_disk_info(u);
7741 struct imsm_disk *disk;
7742 int i;
7743 int j;
7744
7745 for (i = 0; i < map->num_members; i++) {
7746 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7747 for (j = 0; j < new_map->num_members; j++)
7748 if (serialcmp(disk->serial, inf[j].serial) == 0)
7749 return 1;
7750 }
7751
7752 return 0;
7753 }
7754
7755
7756 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7757 {
7758 struct dl *dl = NULL;
7759 for (dl = super->disks; dl; dl = dl->next)
7760 if ((dl->major == major) && (dl->minor == minor))
7761 return dl;
7762 return NULL;
7763 }
7764
7765 static int remove_disk_super(struct intel_super *super, int major, int minor)
7766 {
7767 struct dl *prev = NULL;
7768 struct dl *dl;
7769
7770 prev = NULL;
7771 for (dl = super->disks; dl; dl = dl->next) {
7772 if ((dl->major == major) && (dl->minor == minor)) {
7773 /* remove */
7774 if (prev)
7775 prev->next = dl->next;
7776 else
7777 super->disks = dl->next;
7778 dl->next = NULL;
7779 __free_imsm_disk(dl);
7780 dprintf("%s: removed %x:%x\n",
7781 __func__, major, minor);
7782 break;
7783 }
7784 prev = dl;
7785 }
7786 return 0;
7787 }
7788
7789 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7790
7791 static int add_remove_disk_update(struct intel_super *super)
7792 {
7793 int check_degraded = 0;
7794 struct dl *disk = NULL;
7795 /* add/remove some spares to/from the metadata/contrainer */
7796 while (super->disk_mgmt_list) {
7797 struct dl *disk_cfg;
7798
7799 disk_cfg = super->disk_mgmt_list;
7800 super->disk_mgmt_list = disk_cfg->next;
7801 disk_cfg->next = NULL;
7802
7803 if (disk_cfg->action == DISK_ADD) {
7804 disk_cfg->next = super->disks;
7805 super->disks = disk_cfg;
7806 check_degraded = 1;
7807 dprintf("%s: added %x:%x\n",
7808 __func__, disk_cfg->major,
7809 disk_cfg->minor);
7810 } else if (disk_cfg->action == DISK_REMOVE) {
7811 dprintf("Disk remove action processed: %x.%x\n",
7812 disk_cfg->major, disk_cfg->minor);
7813 disk = get_disk_super(super,
7814 disk_cfg->major,
7815 disk_cfg->minor);
7816 if (disk) {
7817 /* store action status */
7818 disk->action = DISK_REMOVE;
7819 /* remove spare disks only */
7820 if (disk->index == -1) {
7821 remove_disk_super(super,
7822 disk_cfg->major,
7823 disk_cfg->minor);
7824 }
7825 }
7826 /* release allocate disk structure */
7827 __free_imsm_disk(disk_cfg);
7828 }
7829 }
7830 return check_degraded;
7831 }
7832
7833
7834 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7835 struct intel_super *super,
7836 void ***space_list)
7837 {
7838 struct intel_dev *id;
7839 void **tofree = NULL;
7840 int ret_val = 0;
7841
7842 dprintf("apply_reshape_migration_update()\n");
7843 if ((u->subdev < 0) ||
7844 (u->subdev > 1)) {
7845 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7846 return ret_val;
7847 }
7848 if ((space_list == NULL) || (*space_list == NULL)) {
7849 dprintf("imsm: Error: Memory is not allocated\n");
7850 return ret_val;
7851 }
7852
7853 for (id = super->devlist ; id; id = id->next) {
7854 if (id->index == (unsigned)u->subdev) {
7855 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7856 struct imsm_map *map;
7857 struct imsm_dev *new_dev =
7858 (struct imsm_dev *)*space_list;
7859 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7860 int to_state;
7861 struct dl *new_disk;
7862
7863 if (new_dev == NULL)
7864 return ret_val;
7865 *space_list = **space_list;
7866 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
7867 map = get_imsm_map(new_dev, MAP_0);
7868 if (migr_map) {
7869 dprintf("imsm: Error: migration in progress");
7870 return ret_val;
7871 }
7872
7873 to_state = map->map_state;
7874 if ((u->new_level == 5) && (map->raid_level == 0)) {
7875 map->num_members++;
7876 /* this should not happen */
7877 if (u->new_disks[0] < 0) {
7878 map->failed_disk_num =
7879 map->num_members - 1;
7880 to_state = IMSM_T_STATE_DEGRADED;
7881 } else
7882 to_state = IMSM_T_STATE_NORMAL;
7883 }
7884 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
7885 if (u->new_level > -1)
7886 map->raid_level = u->new_level;
7887 migr_map = get_imsm_map(new_dev, MAP_1);
7888 if ((u->new_level == 5) &&
7889 (migr_map->raid_level == 0)) {
7890 int ord = map->num_members - 1;
7891 migr_map->num_members--;
7892 if (u->new_disks[0] < 0)
7893 ord |= IMSM_ORD_REBUILD;
7894 set_imsm_ord_tbl_ent(map,
7895 map->num_members - 1,
7896 ord);
7897 }
7898 id->dev = new_dev;
7899 tofree = (void **)dev;
7900
7901 /* update chunk size
7902 */
7903 if (u->new_chunksize > 0)
7904 map->blocks_per_strip =
7905 __cpu_to_le16(u->new_chunksize * 2);
7906
7907 /* add disk
7908 */
7909 if ((u->new_level != 5) ||
7910 (migr_map->raid_level != 0) ||
7911 (migr_map->raid_level == map->raid_level))
7912 goto skip_disk_add;
7913
7914 if (u->new_disks[0] >= 0) {
7915 /* use passes spare
7916 */
7917 new_disk = get_disk_super(super,
7918 major(u->new_disks[0]),
7919 minor(u->new_disks[0]));
7920 dprintf("imsm: new disk for reshape is: %i:%i "
7921 "(%p, index = %i)\n",
7922 major(u->new_disks[0]),
7923 minor(u->new_disks[0]),
7924 new_disk, new_disk->index);
7925 if (new_disk == NULL)
7926 goto error_disk_add;
7927
7928 new_disk->index = map->num_members - 1;
7929 /* slot to fill in autolayout
7930 */
7931 new_disk->raiddisk = new_disk->index;
7932 new_disk->disk.status |= CONFIGURED_DISK;
7933 new_disk->disk.status &= ~SPARE_DISK;
7934 } else
7935 goto error_disk_add;
7936
7937 skip_disk_add:
7938 *tofree = *space_list;
7939 /* calculate new size
7940 */
7941 imsm_set_array_size(new_dev);
7942
7943 ret_val = 1;
7944 }
7945 }
7946
7947 if (tofree)
7948 *space_list = tofree;
7949 return ret_val;
7950
7951 error_disk_add:
7952 dprintf("Error: imsm: Cannot find disk.\n");
7953 return ret_val;
7954 }
7955
7956 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7957 struct intel_super *super,
7958 struct active_array *active_array)
7959 {
7960 struct imsm_super *mpb = super->anchor;
7961 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7962 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7963 struct imsm_map *migr_map;
7964 struct active_array *a;
7965 struct imsm_disk *disk;
7966 __u8 to_state;
7967 struct dl *dl;
7968 unsigned int found;
7969 int failed;
7970 int victim;
7971 int i;
7972 int second_map_created = 0;
7973
7974 for (; u; u = u->next) {
7975 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
7976
7977 if (victim < 0)
7978 return 0;
7979
7980 for (dl = super->disks; dl; dl = dl->next)
7981 if (dl == u->dl)
7982 break;
7983
7984 if (!dl) {
7985 fprintf(stderr, "error: imsm_activate_spare passed "
7986 "an unknown disk (index: %d)\n",
7987 u->dl->index);
7988 return 0;
7989 }
7990
7991 /* count failures (excluding rebuilds and the victim)
7992 * to determine map[0] state
7993 */
7994 failed = 0;
7995 for (i = 0; i < map->num_members; i++) {
7996 if (i == u->slot)
7997 continue;
7998 disk = get_imsm_disk(super,
7999 get_imsm_disk_idx(dev, i, MAP_X));
8000 if (!disk || is_failed(disk))
8001 failed++;
8002 }
8003
8004 /* adding a pristine spare, assign a new index */
8005 if (dl->index < 0) {
8006 dl->index = super->anchor->num_disks;
8007 super->anchor->num_disks++;
8008 }
8009 disk = &dl->disk;
8010 disk->status |= CONFIGURED_DISK;
8011 disk->status &= ~SPARE_DISK;
8012
8013 /* mark rebuild */
8014 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
8015 if (!second_map_created) {
8016 second_map_created = 1;
8017 map->map_state = IMSM_T_STATE_DEGRADED;
8018 migrate(dev, super, to_state, MIGR_REBUILD);
8019 } else
8020 map->map_state = to_state;
8021 migr_map = get_imsm_map(dev, MAP_1);
8022 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8023 set_imsm_ord_tbl_ent(migr_map, u->slot,
8024 dl->index | IMSM_ORD_REBUILD);
8025
8026 /* update the family_num to mark a new container
8027 * generation, being careful to record the existing
8028 * family_num in orig_family_num to clean up after
8029 * earlier mdadm versions that neglected to set it.
8030 */
8031 if (mpb->orig_family_num == 0)
8032 mpb->orig_family_num = mpb->family_num;
8033 mpb->family_num += super->random;
8034
8035 /* count arrays using the victim in the metadata */
8036 found = 0;
8037 for (a = active_array; a ; a = a->next) {
8038 dev = get_imsm_dev(super, a->info.container_member);
8039 map = get_imsm_map(dev, MAP_0);
8040
8041 if (get_imsm_disk_slot(map, victim) >= 0)
8042 found++;
8043 }
8044
8045 /* delete the victim if it is no longer being
8046 * utilized anywhere
8047 */
8048 if (!found) {
8049 struct dl **dlp;
8050
8051 /* We know that 'manager' isn't touching anything,
8052 * so it is safe to delete
8053 */
8054 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
8055 if ((*dlp)->index == victim)
8056 break;
8057
8058 /* victim may be on the missing list */
8059 if (!*dlp)
8060 for (dlp = &super->missing; *dlp;
8061 dlp = &(*dlp)->next)
8062 if ((*dlp)->index == victim)
8063 break;
8064 imsm_delete(super, dlp, victim);
8065 }
8066 }
8067
8068 return 1;
8069 }
8070
8071 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8072 struct intel_super *super,
8073 void ***space_list)
8074 {
8075 struct dl *new_disk;
8076 struct intel_dev *id;
8077 int i;
8078 int delta_disks = u->new_raid_disks - u->old_raid_disks;
8079 int disk_count = u->old_raid_disks;
8080 void **tofree = NULL;
8081 int devices_to_reshape = 1;
8082 struct imsm_super *mpb = super->anchor;
8083 int ret_val = 0;
8084 unsigned int dev_id;
8085
8086 dprintf("imsm: apply_reshape_container_disks_update()\n");
8087
8088 /* enable spares to use in array */
8089 for (i = 0; i < delta_disks; i++) {
8090 new_disk = get_disk_super(super,
8091 major(u->new_disks[i]),
8092 minor(u->new_disks[i]));
8093 dprintf("imsm: new disk for reshape is: %i:%i "
8094 "(%p, index = %i)\n",
8095 major(u->new_disks[i]), minor(u->new_disks[i]),
8096 new_disk, new_disk->index);
8097 if ((new_disk == NULL) ||
8098 ((new_disk->index >= 0) &&
8099 (new_disk->index < u->old_raid_disks)))
8100 goto update_reshape_exit;
8101 new_disk->index = disk_count++;
8102 /* slot to fill in autolayout
8103 */
8104 new_disk->raiddisk = new_disk->index;
8105 new_disk->disk.status |=
8106 CONFIGURED_DISK;
8107 new_disk->disk.status &= ~SPARE_DISK;
8108 }
8109
8110 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8111 mpb->num_raid_devs);
8112 /* manage changes in volume
8113 */
8114 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
8115 void **sp = *space_list;
8116 struct imsm_dev *newdev;
8117 struct imsm_map *newmap, *oldmap;
8118
8119 for (id = super->devlist ; id; id = id->next) {
8120 if (id->index == dev_id)
8121 break;
8122 }
8123 if (id == NULL)
8124 break;
8125 if (!sp)
8126 continue;
8127 *space_list = *sp;
8128 newdev = (void*)sp;
8129 /* Copy the dev, but not (all of) the map */
8130 memcpy(newdev, id->dev, sizeof(*newdev));
8131 oldmap = get_imsm_map(id->dev, MAP_0);
8132 newmap = get_imsm_map(newdev, MAP_0);
8133 /* Copy the current map */
8134 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8135 /* update one device only
8136 */
8137 if (devices_to_reshape) {
8138 dprintf("imsm: modifying subdev: %i\n",
8139 id->index);
8140 devices_to_reshape--;
8141 newdev->vol.migr_state = 1;
8142 newdev->vol.curr_migr_unit = 0;
8143 set_migr_type(newdev, MIGR_GEN_MIGR);
8144 newmap->num_members = u->new_raid_disks;
8145 for (i = 0; i < delta_disks; i++) {
8146 set_imsm_ord_tbl_ent(newmap,
8147 u->old_raid_disks + i,
8148 u->old_raid_disks + i);
8149 }
8150 /* New map is correct, now need to save old map
8151 */
8152 newmap = get_imsm_map(newdev, MAP_1);
8153 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8154
8155 imsm_set_array_size(newdev);
8156 }
8157
8158 sp = (void **)id->dev;
8159 id->dev = newdev;
8160 *sp = tofree;
8161 tofree = sp;
8162
8163 /* Clear migration record */
8164 memset(super->migr_rec, 0, sizeof(struct migr_record));
8165 }
8166 if (tofree)
8167 *space_list = tofree;
8168 ret_val = 1;
8169
8170 update_reshape_exit:
8171
8172 return ret_val;
8173 }
8174
8175 static int apply_takeover_update(struct imsm_update_takeover *u,
8176 struct intel_super *super,
8177 void ***space_list)
8178 {
8179 struct imsm_dev *dev = NULL;
8180 struct intel_dev *dv;
8181 struct imsm_dev *dev_new;
8182 struct imsm_map *map;
8183 struct dl *dm, *du;
8184 int i;
8185
8186 for (dv = super->devlist; dv; dv = dv->next)
8187 if (dv->index == (unsigned int)u->subarray) {
8188 dev = dv->dev;
8189 break;
8190 }
8191
8192 if (dev == NULL)
8193 return 0;
8194
8195 map = get_imsm_map(dev, MAP_0);
8196
8197 if (u->direction == R10_TO_R0) {
8198 /* Number of failed disks must be half of initial disk number */
8199 if (imsm_count_failed(super, dev, MAP_0) !=
8200 (map->num_members / 2))
8201 return 0;
8202
8203 /* iterate through devices to mark removed disks as spare */
8204 for (dm = super->disks; dm; dm = dm->next) {
8205 if (dm->disk.status & FAILED_DISK) {
8206 int idx = dm->index;
8207 /* update indexes on the disk list */
8208 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
8209 the index values will end up being correct.... NB */
8210 for (du = super->disks; du; du = du->next)
8211 if (du->index > idx)
8212 du->index--;
8213 /* mark as spare disk */
8214 mark_spare(dm);
8215 }
8216 }
8217 /* update map */
8218 map->num_members = map->num_members / 2;
8219 map->map_state = IMSM_T_STATE_NORMAL;
8220 map->num_domains = 1;
8221 map->raid_level = 0;
8222 map->failed_disk_num = -1;
8223 }
8224
8225 if (u->direction == R0_TO_R10) {
8226 void **space;
8227 /* update slots in current disk list */
8228 for (dm = super->disks; dm; dm = dm->next) {
8229 if (dm->index >= 0)
8230 dm->index *= 2;
8231 }
8232 /* create new *missing* disks */
8233 for (i = 0; i < map->num_members; i++) {
8234 space = *space_list;
8235 if (!space)
8236 continue;
8237 *space_list = *space;
8238 du = (void *)space;
8239 memcpy(du, super->disks, sizeof(*du));
8240 du->fd = -1;
8241 du->minor = 0;
8242 du->major = 0;
8243 du->index = (i * 2) + 1;
8244 sprintf((char *)du->disk.serial,
8245 " MISSING_%d", du->index);
8246 sprintf((char *)du->serial,
8247 "MISSING_%d", du->index);
8248 du->next = super->missing;
8249 super->missing = du;
8250 }
8251 /* create new dev and map */
8252 space = *space_list;
8253 if (!space)
8254 return 0;
8255 *space_list = *space;
8256 dev_new = (void *)space;
8257 memcpy(dev_new, dev, sizeof(*dev));
8258 /* update new map */
8259 map = get_imsm_map(dev_new, MAP_0);
8260 map->num_members = map->num_members * 2;
8261 map->map_state = IMSM_T_STATE_DEGRADED;
8262 map->num_domains = 2;
8263 map->raid_level = 1;
8264 /* replace dev<->dev_new */
8265 dv->dev = dev_new;
8266 }
8267 /* update disk order table */
8268 for (du = super->disks; du; du = du->next)
8269 if (du->index >= 0)
8270 set_imsm_ord_tbl_ent(map, du->index, du->index);
8271 for (du = super->missing; du; du = du->next)
8272 if (du->index >= 0) {
8273 set_imsm_ord_tbl_ent(map, du->index, du->index);
8274 mark_missing(dv->dev, &du->disk, du->index);
8275 }
8276
8277 return 1;
8278 }
8279
8280 static void imsm_process_update(struct supertype *st,
8281 struct metadata_update *update)
8282 {
8283 /**
8284 * crack open the metadata_update envelope to find the update record
8285 * update can be one of:
8286 * update_reshape_container_disks - all the arrays in the container
8287 * are being reshaped to have more devices. We need to mark
8288 * the arrays for general migration and convert selected spares
8289 * into active devices.
8290 * update_activate_spare - a spare device has replaced a failed
8291 * device in an array, update the disk_ord_tbl. If this disk is
8292 * present in all member arrays then also clear the SPARE_DISK
8293 * flag
8294 * update_create_array
8295 * update_kill_array
8296 * update_rename_array
8297 * update_add_remove_disk
8298 */
8299 struct intel_super *super = st->sb;
8300 struct imsm_super *mpb;
8301 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8302
8303 /* update requires a larger buf but the allocation failed */
8304 if (super->next_len && !super->next_buf) {
8305 super->next_len = 0;
8306 return;
8307 }
8308
8309 if (super->next_buf) {
8310 memcpy(super->next_buf, super->buf, super->len);
8311 free(super->buf);
8312 super->len = super->next_len;
8313 super->buf = super->next_buf;
8314
8315 super->next_len = 0;
8316 super->next_buf = NULL;
8317 }
8318
8319 mpb = super->anchor;
8320
8321 switch (type) {
8322 case update_general_migration_checkpoint: {
8323 struct intel_dev *id;
8324 struct imsm_update_general_migration_checkpoint *u =
8325 (void *)update->buf;
8326
8327 dprintf("imsm: process_update() "
8328 "for update_general_migration_checkpoint called\n");
8329
8330 /* find device under general migration */
8331 for (id = super->devlist ; id; id = id->next) {
8332 if (is_gen_migration(id->dev)) {
8333 id->dev->vol.curr_migr_unit =
8334 __cpu_to_le32(u->curr_migr_unit);
8335 super->updates_pending++;
8336 }
8337 }
8338 break;
8339 }
8340 case update_takeover: {
8341 struct imsm_update_takeover *u = (void *)update->buf;
8342 if (apply_takeover_update(u, super, &update->space_list)) {
8343 imsm_update_version_info(super);
8344 super->updates_pending++;
8345 }
8346 break;
8347 }
8348
8349 case update_reshape_container_disks: {
8350 struct imsm_update_reshape *u = (void *)update->buf;
8351 if (apply_reshape_container_disks_update(
8352 u, super, &update->space_list))
8353 super->updates_pending++;
8354 break;
8355 }
8356 case update_reshape_migration: {
8357 struct imsm_update_reshape_migration *u = (void *)update->buf;
8358 if (apply_reshape_migration_update(
8359 u, super, &update->space_list))
8360 super->updates_pending++;
8361 break;
8362 }
8363 case update_activate_spare: {
8364 struct imsm_update_activate_spare *u = (void *) update->buf;
8365 if (apply_update_activate_spare(u, super, st->arrays))
8366 super->updates_pending++;
8367 break;
8368 }
8369 case update_create_array: {
8370 /* someone wants to create a new array, we need to be aware of
8371 * a few races/collisions:
8372 * 1/ 'Create' called by two separate instances of mdadm
8373 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8374 * devices that have since been assimilated via
8375 * activate_spare.
8376 * In the event this update can not be carried out mdadm will
8377 * (FIX ME) notice that its update did not take hold.
8378 */
8379 struct imsm_update_create_array *u = (void *) update->buf;
8380 struct intel_dev *dv;
8381 struct imsm_dev *dev;
8382 struct imsm_map *map, *new_map;
8383 unsigned long long start, end;
8384 unsigned long long new_start, new_end;
8385 int i;
8386 struct disk_info *inf;
8387 struct dl *dl;
8388
8389 /* handle racing creates: first come first serve */
8390 if (u->dev_idx < mpb->num_raid_devs) {
8391 dprintf("%s: subarray %d already defined\n",
8392 __func__, u->dev_idx);
8393 goto create_error;
8394 }
8395
8396 /* check update is next in sequence */
8397 if (u->dev_idx != mpb->num_raid_devs) {
8398 dprintf("%s: can not create array %d expected index %d\n",
8399 __func__, u->dev_idx, mpb->num_raid_devs);
8400 goto create_error;
8401 }
8402
8403 new_map = get_imsm_map(&u->dev, MAP_0);
8404 new_start = pba_of_lba0(new_map);
8405 new_end = new_start + blocks_per_member(new_map);
8406 inf = get_disk_info(u);
8407
8408 /* handle activate_spare versus create race:
8409 * check to make sure that overlapping arrays do not include
8410 * overalpping disks
8411 */
8412 for (i = 0; i < mpb->num_raid_devs; i++) {
8413 dev = get_imsm_dev(super, i);
8414 map = get_imsm_map(dev, MAP_0);
8415 start = pba_of_lba0(map);
8416 end = start + blocks_per_member(map);
8417 if ((new_start >= start && new_start <= end) ||
8418 (start >= new_start && start <= new_end))
8419 /* overlap */;
8420 else
8421 continue;
8422
8423 if (disks_overlap(super, i, u)) {
8424 dprintf("%s: arrays overlap\n", __func__);
8425 goto create_error;
8426 }
8427 }
8428
8429 /* check that prepare update was successful */
8430 if (!update->space) {
8431 dprintf("%s: prepare update failed\n", __func__);
8432 goto create_error;
8433 }
8434
8435 /* check that all disks are still active before committing
8436 * changes. FIXME: could we instead handle this by creating a
8437 * degraded array? That's probably not what the user expects,
8438 * so better to drop this update on the floor.
8439 */
8440 for (i = 0; i < new_map->num_members; i++) {
8441 dl = serial_to_dl(inf[i].serial, super);
8442 if (!dl) {
8443 dprintf("%s: disk disappeared\n", __func__);
8444 goto create_error;
8445 }
8446 }
8447
8448 super->updates_pending++;
8449
8450 /* convert spares to members and fixup ord_tbl */
8451 for (i = 0; i < new_map->num_members; i++) {
8452 dl = serial_to_dl(inf[i].serial, super);
8453 if (dl->index == -1) {
8454 dl->index = mpb->num_disks;
8455 mpb->num_disks++;
8456 dl->disk.status |= CONFIGURED_DISK;
8457 dl->disk.status &= ~SPARE_DISK;
8458 }
8459 set_imsm_ord_tbl_ent(new_map, i, dl->index);
8460 }
8461
8462 dv = update->space;
8463 dev = dv->dev;
8464 update->space = NULL;
8465 imsm_copy_dev(dev, &u->dev);
8466 dv->index = u->dev_idx;
8467 dv->next = super->devlist;
8468 super->devlist = dv;
8469 mpb->num_raid_devs++;
8470
8471 imsm_update_version_info(super);
8472 break;
8473 create_error:
8474 /* mdmon knows how to release update->space, but not
8475 * ((struct intel_dev *) update->space)->dev
8476 */
8477 if (update->space) {
8478 dv = update->space;
8479 free(dv->dev);
8480 }
8481 break;
8482 }
8483 case update_kill_array: {
8484 struct imsm_update_kill_array *u = (void *) update->buf;
8485 int victim = u->dev_idx;
8486 struct active_array *a;
8487 struct intel_dev **dp;
8488 struct imsm_dev *dev;
8489
8490 /* sanity check that we are not affecting the uuid of
8491 * active arrays, or deleting an active array
8492 *
8493 * FIXME when immutable ids are available, but note that
8494 * we'll also need to fixup the invalidated/active
8495 * subarray indexes in mdstat
8496 */
8497 for (a = st->arrays; a; a = a->next)
8498 if (a->info.container_member >= victim)
8499 break;
8500 /* by definition if mdmon is running at least one array
8501 * is active in the container, so checking
8502 * mpb->num_raid_devs is just extra paranoia
8503 */
8504 dev = get_imsm_dev(super, victim);
8505 if (a || !dev || mpb->num_raid_devs == 1) {
8506 dprintf("failed to delete subarray-%d\n", victim);
8507 break;
8508 }
8509
8510 for (dp = &super->devlist; *dp;)
8511 if ((*dp)->index == (unsigned)super->current_vol) {
8512 *dp = (*dp)->next;
8513 } else {
8514 if ((*dp)->index > (unsigned)victim)
8515 (*dp)->index--;
8516 dp = &(*dp)->next;
8517 }
8518 mpb->num_raid_devs--;
8519 super->updates_pending++;
8520 break;
8521 }
8522 case update_rename_array: {
8523 struct imsm_update_rename_array *u = (void *) update->buf;
8524 char name[MAX_RAID_SERIAL_LEN+1];
8525 int target = u->dev_idx;
8526 struct active_array *a;
8527 struct imsm_dev *dev;
8528
8529 /* sanity check that we are not affecting the uuid of
8530 * an active array
8531 */
8532 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8533 name[MAX_RAID_SERIAL_LEN] = '\0';
8534 for (a = st->arrays; a; a = a->next)
8535 if (a->info.container_member == target)
8536 break;
8537 dev = get_imsm_dev(super, u->dev_idx);
8538 if (a || !dev || !check_name(super, name, 1)) {
8539 dprintf("failed to rename subarray-%d\n", target);
8540 break;
8541 }
8542
8543 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
8544 super->updates_pending++;
8545 break;
8546 }
8547 case update_add_remove_disk: {
8548 /* we may be able to repair some arrays if disks are
8549 * being added, check teh status of add_remove_disk
8550 * if discs has been added.
8551 */
8552 if (add_remove_disk_update(super)) {
8553 struct active_array *a;
8554
8555 super->updates_pending++;
8556 for (a = st->arrays; a; a = a->next)
8557 a->check_degraded = 1;
8558 }
8559 break;
8560 }
8561 default:
8562 fprintf(stderr, "error: unsuported process update type:"
8563 "(type: %d)\n", type);
8564 }
8565 }
8566
8567 static struct mdinfo *get_spares_for_grow(struct supertype *st);
8568
8569 static void imsm_prepare_update(struct supertype *st,
8570 struct metadata_update *update)
8571 {
8572 /**
8573 * Allocate space to hold new disk entries, raid-device entries or a new
8574 * mpb if necessary. The manager synchronously waits for updates to
8575 * complete in the monitor, so new mpb buffers allocated here can be
8576 * integrated by the monitor thread without worrying about live pointers
8577 * in the manager thread.
8578 */
8579 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8580 struct intel_super *super = st->sb;
8581 struct imsm_super *mpb = super->anchor;
8582 size_t buf_len;
8583 size_t len = 0;
8584
8585 switch (type) {
8586 case update_general_migration_checkpoint:
8587 dprintf("imsm: prepare_update() "
8588 "for update_general_migration_checkpoint called\n");
8589 break;
8590 case update_takeover: {
8591 struct imsm_update_takeover *u = (void *)update->buf;
8592 if (u->direction == R0_TO_R10) {
8593 void **tail = (void **)&update->space_list;
8594 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
8595 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8596 int num_members = map->num_members;
8597 void *space;
8598 int size, i;
8599 int err = 0;
8600 /* allocate memory for added disks */
8601 for (i = 0; i < num_members; i++) {
8602 size = sizeof(struct dl);
8603 space = malloc(size);
8604 if (!space) {
8605 err++;
8606 break;
8607 }
8608 *tail = space;
8609 tail = space;
8610 *tail = NULL;
8611 }
8612 /* allocate memory for new device */
8613 size = sizeof_imsm_dev(super->devlist->dev, 0) +
8614 (num_members * sizeof(__u32));
8615 space = malloc(size);
8616 if (!space)
8617 err++;
8618 else {
8619 *tail = space;
8620 tail = space;
8621 *tail = NULL;
8622 }
8623 if (!err) {
8624 len = disks_to_mpb_size(num_members * 2);
8625 } else {
8626 /* if allocation didn't success, free buffer */
8627 while (update->space_list) {
8628 void **sp = update->space_list;
8629 update->space_list = *sp;
8630 free(sp);
8631 }
8632 }
8633 }
8634
8635 break;
8636 }
8637 case update_reshape_container_disks: {
8638 /* Every raid device in the container is about to
8639 * gain some more devices, and we will enter a
8640 * reconfiguration.
8641 * So each 'imsm_map' will be bigger, and the imsm_vol
8642 * will now hold 2 of them.
8643 * Thus we need new 'struct imsm_dev' allocations sized
8644 * as sizeof_imsm_dev but with more devices in both maps.
8645 */
8646 struct imsm_update_reshape *u = (void *)update->buf;
8647 struct intel_dev *dl;
8648 void **space_tail = (void**)&update->space_list;
8649
8650 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8651
8652 for (dl = super->devlist; dl; dl = dl->next) {
8653 int size = sizeof_imsm_dev(dl->dev, 1);
8654 void *s;
8655 if (u->new_raid_disks > u->old_raid_disks)
8656 size += sizeof(__u32)*2*
8657 (u->new_raid_disks - u->old_raid_disks);
8658 s = malloc(size);
8659 if (!s)
8660 break;
8661 *space_tail = s;
8662 space_tail = s;
8663 *space_tail = NULL;
8664 }
8665
8666 len = disks_to_mpb_size(u->new_raid_disks);
8667 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8668 break;
8669 }
8670 case update_reshape_migration: {
8671 /* for migration level 0->5 we need to add disks
8672 * so the same as for container operation we will copy
8673 * device to the bigger location.
8674 * in memory prepared device and new disk area are prepared
8675 * for usage in process update
8676 */
8677 struct imsm_update_reshape_migration *u = (void *)update->buf;
8678 struct intel_dev *id;
8679 void **space_tail = (void **)&update->space_list;
8680 int size;
8681 void *s;
8682 int current_level = -1;
8683
8684 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8685
8686 /* add space for bigger array in update
8687 */
8688 for (id = super->devlist; id; id = id->next) {
8689 if (id->index == (unsigned)u->subdev) {
8690 size = sizeof_imsm_dev(id->dev, 1);
8691 if (u->new_raid_disks > u->old_raid_disks)
8692 size += sizeof(__u32)*2*
8693 (u->new_raid_disks - u->old_raid_disks);
8694 s = malloc(size);
8695 if (!s)
8696 break;
8697 *space_tail = s;
8698 space_tail = s;
8699 *space_tail = NULL;
8700 break;
8701 }
8702 }
8703 if (update->space_list == NULL)
8704 break;
8705
8706 /* add space for disk in update
8707 */
8708 size = sizeof(struct dl);
8709 s = malloc(size);
8710 if (!s) {
8711 free(update->space_list);
8712 update->space_list = NULL;
8713 break;
8714 }
8715 *space_tail = s;
8716 space_tail = s;
8717 *space_tail = NULL;
8718
8719 /* add spare device to update
8720 */
8721 for (id = super->devlist ; id; id = id->next)
8722 if (id->index == (unsigned)u->subdev) {
8723 struct imsm_dev *dev;
8724 struct imsm_map *map;
8725
8726 dev = get_imsm_dev(super, u->subdev);
8727 map = get_imsm_map(dev, MAP_0);
8728 current_level = map->raid_level;
8729 break;
8730 }
8731 if ((u->new_level == 5) && (u->new_level != current_level)) {
8732 struct mdinfo *spares;
8733
8734 spares = get_spares_for_grow(st);
8735 if (spares) {
8736 struct dl *dl;
8737 struct mdinfo *dev;
8738
8739 dev = spares->devs;
8740 if (dev) {
8741 u->new_disks[0] =
8742 makedev(dev->disk.major,
8743 dev->disk.minor);
8744 dl = get_disk_super(super,
8745 dev->disk.major,
8746 dev->disk.minor);
8747 dl->index = u->old_raid_disks;
8748 dev = dev->next;
8749 }
8750 sysfs_free(spares);
8751 }
8752 }
8753 len = disks_to_mpb_size(u->new_raid_disks);
8754 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8755 break;
8756 }
8757 case update_create_array: {
8758 struct imsm_update_create_array *u = (void *) update->buf;
8759 struct intel_dev *dv;
8760 struct imsm_dev *dev = &u->dev;
8761 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8762 struct dl *dl;
8763 struct disk_info *inf;
8764 int i;
8765 int activate = 0;
8766
8767 inf = get_disk_info(u);
8768 len = sizeof_imsm_dev(dev, 1);
8769 /* allocate a new super->devlist entry */
8770 dv = malloc(sizeof(*dv));
8771 if (dv) {
8772 dv->dev = malloc(len);
8773 if (dv->dev)
8774 update->space = dv;
8775 else {
8776 free(dv);
8777 update->space = NULL;
8778 }
8779 }
8780
8781 /* count how many spares will be converted to members */
8782 for (i = 0; i < map->num_members; i++) {
8783 dl = serial_to_dl(inf[i].serial, super);
8784 if (!dl) {
8785 /* hmm maybe it failed?, nothing we can do about
8786 * it here
8787 */
8788 continue;
8789 }
8790 if (count_memberships(dl, super) == 0)
8791 activate++;
8792 }
8793 len += activate * sizeof(struct imsm_disk);
8794 break;
8795 default:
8796 break;
8797 }
8798 }
8799
8800 /* check if we need a larger metadata buffer */
8801 if (super->next_buf)
8802 buf_len = super->next_len;
8803 else
8804 buf_len = super->len;
8805
8806 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8807 /* ok we need a larger buf than what is currently allocated
8808 * if this allocation fails process_update will notice that
8809 * ->next_len is set and ->next_buf is NULL
8810 */
8811 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8812 if (super->next_buf)
8813 free(super->next_buf);
8814
8815 super->next_len = buf_len;
8816 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
8817 memset(super->next_buf, 0, buf_len);
8818 else
8819 super->next_buf = NULL;
8820 }
8821 }
8822
8823 /* must be called while manager is quiesced */
8824 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
8825 {
8826 struct imsm_super *mpb = super->anchor;
8827 struct dl *iter;
8828 struct imsm_dev *dev;
8829 struct imsm_map *map;
8830 int i, j, num_members;
8831 __u32 ord;
8832
8833 dprintf("%s: deleting device[%d] from imsm_super\n",
8834 __func__, index);
8835
8836 /* shift all indexes down one */
8837 for (iter = super->disks; iter; iter = iter->next)
8838 if (iter->index > (int)index)
8839 iter->index--;
8840 for (iter = super->missing; iter; iter = iter->next)
8841 if (iter->index > (int)index)
8842 iter->index--;
8843
8844 for (i = 0; i < mpb->num_raid_devs; i++) {
8845 dev = get_imsm_dev(super, i);
8846 map = get_imsm_map(dev, MAP_0);
8847 num_members = map->num_members;
8848 for (j = 0; j < num_members; j++) {
8849 /* update ord entries being careful not to propagate
8850 * ord-flags to the first map
8851 */
8852 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
8853
8854 if (ord_to_idx(ord) <= index)
8855 continue;
8856
8857 map = get_imsm_map(dev, MAP_0);
8858 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
8859 map = get_imsm_map(dev, MAP_1);
8860 if (map)
8861 set_imsm_ord_tbl_ent(map, j, ord - 1);
8862 }
8863 }
8864
8865 mpb->num_disks--;
8866 super->updates_pending++;
8867 if (*dlp) {
8868 struct dl *dl = *dlp;
8869
8870 *dlp = (*dlp)->next;
8871 __free_imsm_disk(dl);
8872 }
8873 }
8874 #endif /* MDASSEMBLE */
8875
8876 static void close_targets(int *targets, int new_disks)
8877 {
8878 int i;
8879
8880 if (!targets)
8881 return;
8882
8883 for (i = 0; i < new_disks; i++) {
8884 if (targets[i] >= 0) {
8885 close(targets[i]);
8886 targets[i] = -1;
8887 }
8888 }
8889 }
8890
8891 static int imsm_get_allowed_degradation(int level, int raid_disks,
8892 struct intel_super *super,
8893 struct imsm_dev *dev)
8894 {
8895 switch (level) {
8896 case 1:
8897 case 10:{
8898 int ret_val = 0;
8899 struct imsm_map *map;
8900 int i;
8901
8902 ret_val = raid_disks/2;
8903 /* check map if all disks pairs not failed
8904 * in both maps
8905 */
8906 map = get_imsm_map(dev, MAP_0);
8907 for (i = 0; i < ret_val; i++) {
8908 int degradation = 0;
8909 if (get_imsm_disk(super, i) == NULL)
8910 degradation++;
8911 if (get_imsm_disk(super, i + 1) == NULL)
8912 degradation++;
8913 if (degradation == 2)
8914 return 0;
8915 }
8916 map = get_imsm_map(dev, MAP_1);
8917 /* if there is no second map
8918 * result can be returned
8919 */
8920 if (map == NULL)
8921 return ret_val;
8922 /* check degradation in second map
8923 */
8924 for (i = 0; i < ret_val; i++) {
8925 int degradation = 0;
8926 if (get_imsm_disk(super, i) == NULL)
8927 degradation++;
8928 if (get_imsm_disk(super, i + 1) == NULL)
8929 degradation++;
8930 if (degradation == 2)
8931 return 0;
8932 }
8933 return ret_val;
8934 }
8935 case 5:
8936 return 1;
8937 case 6:
8938 return 2;
8939 default:
8940 return 0;
8941 }
8942 }
8943
8944
8945 /*******************************************************************************
8946 * Function: open_backup_targets
8947 * Description: Function opens file descriptors for all devices given in
8948 * info->devs
8949 * Parameters:
8950 * info : general array info
8951 * raid_disks : number of disks
8952 * raid_fds : table of device's file descriptors
8953 * super : intel super for raid10 degradation check
8954 * dev : intel device for raid10 degradation check
8955 * Returns:
8956 * 0 : success
8957 * -1 : fail
8958 ******************************************************************************/
8959 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
8960 struct intel_super *super, struct imsm_dev *dev)
8961 {
8962 struct mdinfo *sd;
8963 int i;
8964 int opened = 0;
8965
8966 for (i = 0; i < raid_disks; i++)
8967 raid_fds[i] = -1;
8968
8969 for (sd = info->devs ; sd ; sd = sd->next) {
8970 char *dn;
8971
8972 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
8973 dprintf("disk is faulty!!\n");
8974 continue;
8975 }
8976
8977 if ((sd->disk.raid_disk >= raid_disks) ||
8978 (sd->disk.raid_disk < 0))
8979 continue;
8980
8981 dn = map_dev(sd->disk.major,
8982 sd->disk.minor, 1);
8983 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8984 if (raid_fds[sd->disk.raid_disk] < 0) {
8985 fprintf(stderr, "cannot open component\n");
8986 continue;
8987 }
8988 opened++;
8989 }
8990 /* check if maximum array degradation level is not exceeded
8991 */
8992 if ((raid_disks - opened) >
8993 imsm_get_allowed_degradation(info->new_level,
8994 raid_disks,
8995 super, dev)) {
8996 fprintf(stderr, "Not enough disks can be opened.\n");
8997 close_targets(raid_fds, raid_disks);
8998 return -2;
8999 }
9000 return 0;
9001 }
9002
9003 #ifndef MDASSEMBLE
9004 /*******************************************************************************
9005 * Function: init_migr_record_imsm
9006 * Description: Function inits imsm migration record
9007 * Parameters:
9008 * super : imsm internal array info
9009 * dev : device under migration
9010 * info : general array info to find the smallest device
9011 * Returns:
9012 * none
9013 ******************************************************************************/
9014 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
9015 struct mdinfo *info)
9016 {
9017 struct intel_super *super = st->sb;
9018 struct migr_record *migr_rec = super->migr_rec;
9019 int new_data_disks;
9020 unsigned long long dsize, dev_sectors;
9021 long long unsigned min_dev_sectors = -1LLU;
9022 struct mdinfo *sd;
9023 char nm[30];
9024 int fd;
9025 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9026 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
9027 unsigned long long num_migr_units;
9028 unsigned long long array_blocks;
9029
9030 memset(migr_rec, 0, sizeof(struct migr_record));
9031 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9032
9033 /* only ascending reshape supported now */
9034 migr_rec->ascending_migr = __cpu_to_le32(1);
9035
9036 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9037 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9038 migr_rec->dest_depth_per_unit *=
9039 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9040 new_data_disks = imsm_num_data_members(dev, MAP_0);
9041 migr_rec->blocks_per_unit =
9042 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9043 migr_rec->dest_depth_per_unit =
9044 __cpu_to_le32(migr_rec->dest_depth_per_unit);
9045 array_blocks = info->component_size * new_data_disks;
9046 num_migr_units =
9047 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9048
9049 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9050 num_migr_units++;
9051 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9052
9053 migr_rec->post_migr_vol_cap = dev->size_low;
9054 migr_rec->post_migr_vol_cap_hi = dev->size_high;
9055
9056
9057 /* Find the smallest dev */
9058 for (sd = info->devs ; sd ; sd = sd->next) {
9059 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9060 fd = dev_open(nm, O_RDONLY);
9061 if (fd < 0)
9062 continue;
9063 get_dev_size(fd, NULL, &dsize);
9064 dev_sectors = dsize / 512;
9065 if (dev_sectors < min_dev_sectors)
9066 min_dev_sectors = dev_sectors;
9067 close(fd);
9068 }
9069 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9070 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9071
9072 write_imsm_migr_rec(st);
9073
9074 return;
9075 }
9076
9077 /*******************************************************************************
9078 * Function: save_backup_imsm
9079 * Description: Function saves critical data stripes to Migration Copy Area
9080 * and updates the current migration unit status.
9081 * Use restore_stripes() to form a destination stripe,
9082 * and to write it to the Copy Area.
9083 * Parameters:
9084 * st : supertype information
9085 * dev : imsm device that backup is saved for
9086 * info : general array info
9087 * buf : input buffer
9088 * length : length of data to backup (blocks_per_unit)
9089 * Returns:
9090 * 0 : success
9091 *, -1 : fail
9092 ******************************************************************************/
9093 int save_backup_imsm(struct supertype *st,
9094 struct imsm_dev *dev,
9095 struct mdinfo *info,
9096 void *buf,
9097 int length)
9098 {
9099 int rv = -1;
9100 struct intel_super *super = st->sb;
9101 unsigned long long *target_offsets = NULL;
9102 int *targets = NULL;
9103 int i;
9104 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9105 int new_disks = map_dest->num_members;
9106 int dest_layout = 0;
9107 int dest_chunk;
9108 unsigned long long start;
9109 int data_disks = imsm_num_data_members(dev, MAP_0);
9110
9111 targets = malloc(new_disks * sizeof(int));
9112 if (!targets)
9113 goto abort;
9114
9115 for (i = 0; i < new_disks; i++)
9116 targets[i] = -1;
9117
9118 target_offsets = malloc(new_disks * sizeof(unsigned long long));
9119 if (!target_offsets)
9120 goto abort;
9121
9122 start = info->reshape_progress * 512;
9123 for (i = 0; i < new_disks; i++) {
9124 target_offsets[i] = (unsigned long long)
9125 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
9126 /* move back copy area adderss, it will be moved forward
9127 * in restore_stripes() using start input variable
9128 */
9129 target_offsets[i] -= start/data_disks;
9130 }
9131
9132 if (open_backup_targets(info, new_disks, targets,
9133 super, dev))
9134 goto abort;
9135
9136 dest_layout = imsm_level_to_layout(map_dest->raid_level);
9137 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9138
9139 if (restore_stripes(targets, /* list of dest devices */
9140 target_offsets, /* migration record offsets */
9141 new_disks,
9142 dest_chunk,
9143 map_dest->raid_level,
9144 dest_layout,
9145 -1, /* source backup file descriptor */
9146 0, /* input buf offset
9147 * always 0 buf is already offseted */
9148 start,
9149 length,
9150 buf) != 0) {
9151 fprintf(stderr, Name ": Error restoring stripes\n");
9152 goto abort;
9153 }
9154
9155 rv = 0;
9156
9157 abort:
9158 if (targets) {
9159 close_targets(targets, new_disks);
9160 free(targets);
9161 }
9162 free(target_offsets);
9163
9164 return rv;
9165 }
9166
9167 /*******************************************************************************
9168 * Function: save_checkpoint_imsm
9169 * Description: Function called for current unit status update
9170 * in the migration record. It writes it to disk.
9171 * Parameters:
9172 * super : imsm internal array info
9173 * info : general array info
9174 * Returns:
9175 * 0: success
9176 * 1: failure
9177 * 2: failure, means no valid migration record
9178 * / no general migration in progress /
9179 ******************************************************************************/
9180 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9181 {
9182 struct intel_super *super = st->sb;
9183 unsigned long long blocks_per_unit;
9184 unsigned long long curr_migr_unit;
9185
9186 if (load_imsm_migr_rec(super, info) != 0) {
9187 dprintf("imsm: ERROR: Cannot read migration record "
9188 "for checkpoint save.\n");
9189 return 1;
9190 }
9191
9192 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9193 if (blocks_per_unit == 0) {
9194 dprintf("imsm: no migration in progress.\n");
9195 return 2;
9196 }
9197 curr_migr_unit = info->reshape_progress / blocks_per_unit;
9198 /* check if array is alligned to copy area
9199 * if it is not alligned, add one to current migration unit value
9200 * this can happend on array reshape finish only
9201 */
9202 if (info->reshape_progress % blocks_per_unit)
9203 curr_migr_unit++;
9204
9205 super->migr_rec->curr_migr_unit =
9206 __cpu_to_le32(curr_migr_unit);
9207 super->migr_rec->rec_status = __cpu_to_le32(state);
9208 super->migr_rec->dest_1st_member_lba =
9209 __cpu_to_le32(curr_migr_unit *
9210 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
9211 if (write_imsm_migr_rec(st) < 0) {
9212 dprintf("imsm: Cannot write migration record "
9213 "outside backup area\n");
9214 return 1;
9215 }
9216
9217 return 0;
9218 }
9219
9220 /*******************************************************************************
9221 * Function: recover_backup_imsm
9222 * Description: Function recovers critical data from the Migration Copy Area
9223 * while assembling an array.
9224 * Parameters:
9225 * super : imsm internal array info
9226 * info : general array info
9227 * Returns:
9228 * 0 : success (or there is no data to recover)
9229 * 1 : fail
9230 ******************************************************************************/
9231 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9232 {
9233 struct intel_super *super = st->sb;
9234 struct migr_record *migr_rec = super->migr_rec;
9235 struct imsm_map *map_dest = NULL;
9236 struct intel_dev *id = NULL;
9237 unsigned long long read_offset;
9238 unsigned long long write_offset;
9239 unsigned unit_len;
9240 int *targets = NULL;
9241 int new_disks, i, err;
9242 char *buf = NULL;
9243 int retval = 1;
9244 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9245 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
9246 char buffer[20];
9247 int skipped_disks = 0;
9248
9249 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9250 if (err < 1)
9251 return 1;
9252
9253 /* recover data only during assemblation */
9254 if (strncmp(buffer, "inactive", 8) != 0)
9255 return 0;
9256 /* no data to recover */
9257 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9258 return 0;
9259 if (curr_migr_unit >= num_migr_units)
9260 return 1;
9261
9262 /* find device during reshape */
9263 for (id = super->devlist; id; id = id->next)
9264 if (is_gen_migration(id->dev))
9265 break;
9266 if (id == NULL)
9267 return 1;
9268
9269 map_dest = get_imsm_map(id->dev, MAP_0);
9270 new_disks = map_dest->num_members;
9271
9272 read_offset = (unsigned long long)
9273 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9274
9275 write_offset = ((unsigned long long)
9276 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
9277 pba_of_lba0(map_dest)) * 512;
9278
9279 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9280 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
9281 goto abort;
9282 targets = malloc(new_disks * sizeof(int));
9283 if (!targets)
9284 goto abort;
9285
9286 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
9287 fprintf(stderr,
9288 Name ": Cannot open some devices belonging to array.\n");
9289 goto abort;
9290 }
9291
9292 for (i = 0; i < new_disks; i++) {
9293 if (targets[i] < 0) {
9294 skipped_disks++;
9295 continue;
9296 }
9297 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
9298 fprintf(stderr,
9299 Name ": Cannot seek to block: %s\n",
9300 strerror(errno));
9301 skipped_disks++;
9302 continue;
9303 }
9304 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
9305 fprintf(stderr,
9306 Name ": Cannot read copy area block: %s\n",
9307 strerror(errno));
9308 skipped_disks++;
9309 continue;
9310 }
9311 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
9312 fprintf(stderr,
9313 Name ": Cannot seek to block: %s\n",
9314 strerror(errno));
9315 skipped_disks++;
9316 continue;
9317 }
9318 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
9319 fprintf(stderr,
9320 Name ": Cannot restore block: %s\n",
9321 strerror(errno));
9322 skipped_disks++;
9323 continue;
9324 }
9325 }
9326
9327 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9328 new_disks,
9329 super,
9330 id->dev)) {
9331 fprintf(stderr,
9332 Name ": Cannot restore data from backup."
9333 " Too many failed disks\n");
9334 goto abort;
9335 }
9336
9337 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9338 /* ignore error == 2, this can mean end of reshape here
9339 */
9340 dprintf("imsm: Cannot write checkpoint to "
9341 "migration record (UNIT_SRC_NORMAL) during restart\n");
9342 } else
9343 retval = 0;
9344
9345 abort:
9346 if (targets) {
9347 for (i = 0; i < new_disks; i++)
9348 if (targets[i])
9349 close(targets[i]);
9350 free(targets);
9351 }
9352 free(buf);
9353 return retval;
9354 }
9355
9356 static char disk_by_path[] = "/dev/disk/by-path/";
9357
9358 static const char *imsm_get_disk_controller_domain(const char *path)
9359 {
9360 char disk_path[PATH_MAX];
9361 char *drv=NULL;
9362 struct stat st;
9363
9364 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
9365 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9366 if (stat(disk_path, &st) == 0) {
9367 struct sys_dev* hba;
9368 char *path=NULL;
9369
9370 path = devt_to_devpath(st.st_rdev);
9371 if (path == NULL)
9372 return "unknown";
9373 hba = find_disk_attached_hba(-1, path);
9374 if (hba && hba->type == SYS_DEV_SAS)
9375 drv = "isci";
9376 else if (hba && hba->type == SYS_DEV_SATA)
9377 drv = "ahci";
9378 else
9379 drv = "unknown";
9380 dprintf("path: %s hba: %s attached: %s\n",
9381 path, (hba) ? hba->path : "NULL", drv);
9382 free(path);
9383 if (hba)
9384 free_sys_dev(&hba);
9385 }
9386 return drv;
9387 }
9388
9389 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
9390 {
9391 char subdev_name[20];
9392 struct mdstat_ent *mdstat;
9393
9394 sprintf(subdev_name, "%d", subdev);
9395 mdstat = mdstat_by_subdev(subdev_name, container);
9396 if (!mdstat)
9397 return -1;
9398
9399 *minor = mdstat->devnum;
9400 free_mdstat(mdstat);
9401 return 0;
9402 }
9403
9404 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9405 struct geo_params *geo,
9406 int *old_raid_disks)
9407 {
9408 /* currently we only support increasing the number of devices
9409 * for a container. This increases the number of device for each
9410 * member array. They must all be RAID0 or RAID5.
9411 */
9412 int ret_val = 0;
9413 struct mdinfo *info, *member;
9414 int devices_that_can_grow = 0;
9415
9416 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
9417 "st->devnum = (%i)\n",
9418 st->devnum);
9419
9420 if (geo->size != -1 ||
9421 geo->level != UnSet ||
9422 geo->layout != UnSet ||
9423 geo->chunksize != 0 ||
9424 geo->raid_disks == UnSet) {
9425 dprintf("imsm: Container operation is allowed for "
9426 "raid disks number change only.\n");
9427 return ret_val;
9428 }
9429
9430 info = container_content_imsm(st, NULL);
9431 for (member = info; member; member = member->next) {
9432 int result;
9433 int minor;
9434
9435 dprintf("imsm: checking device_num: %i\n",
9436 member->container_member);
9437
9438 if (geo->raid_disks <= member->array.raid_disks) {
9439 /* we work on container for Online Capacity Expansion
9440 * only so raid_disks has to grow
9441 */
9442 dprintf("imsm: for container operation raid disks "
9443 "increase is required\n");
9444 break;
9445 }
9446
9447 if ((info->array.level != 0) &&
9448 (info->array.level != 5)) {
9449 /* we cannot use this container with other raid level
9450 */
9451 dprintf("imsm: for container operation wrong"
9452 " raid level (%i) detected\n",
9453 info->array.level);
9454 break;
9455 } else {
9456 /* check for platform support
9457 * for this raid level configuration
9458 */
9459 struct intel_super *super = st->sb;
9460 if (!is_raid_level_supported(super->orom,
9461 member->array.level,
9462 geo->raid_disks)) {
9463 dprintf("platform does not support raid%d with"
9464 " %d disk%s\n",
9465 info->array.level,
9466 geo->raid_disks,
9467 geo->raid_disks > 1 ? "s" : "");
9468 break;
9469 }
9470 /* check if component size is aligned to chunk size
9471 */
9472 if (info->component_size %
9473 (info->array.chunk_size/512)) {
9474 dprintf("Component size is not aligned to "
9475 "chunk size\n");
9476 break;
9477 }
9478 }
9479
9480 if (*old_raid_disks &&
9481 info->array.raid_disks != *old_raid_disks)
9482 break;
9483 *old_raid_disks = info->array.raid_disks;
9484
9485 /* All raid5 and raid0 volumes in container
9486 * have to be ready for Online Capacity Expansion
9487 * so they need to be assembled. We have already
9488 * checked that no recovery etc is happening.
9489 */
9490 result = imsm_find_array_minor_by_subdev(member->container_member,
9491 st->container_dev,
9492 &minor);
9493 if (result < 0) {
9494 dprintf("imsm: cannot find array\n");
9495 break;
9496 }
9497 devices_that_can_grow++;
9498 }
9499 sysfs_free(info);
9500 if (!member && devices_that_can_grow)
9501 ret_val = 1;
9502
9503 if (ret_val)
9504 dprintf("\tContainer operation allowed\n");
9505 else
9506 dprintf("\tError: %i\n", ret_val);
9507
9508 return ret_val;
9509 }
9510
9511 /* Function: get_spares_for_grow
9512 * Description: Allocates memory and creates list of spare devices
9513 * avaliable in container. Checks if spare drive size is acceptable.
9514 * Parameters: Pointer to the supertype structure
9515 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
9516 * NULL if fail
9517 */
9518 static struct mdinfo *get_spares_for_grow(struct supertype *st)
9519 {
9520 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
9521 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
9522 }
9523
9524 /******************************************************************************
9525 * function: imsm_create_metadata_update_for_reshape
9526 * Function creates update for whole IMSM container.
9527 *
9528 ******************************************************************************/
9529 static int imsm_create_metadata_update_for_reshape(
9530 struct supertype *st,
9531 struct geo_params *geo,
9532 int old_raid_disks,
9533 struct imsm_update_reshape **updatep)
9534 {
9535 struct intel_super *super = st->sb;
9536 struct imsm_super *mpb = super->anchor;
9537 int update_memory_size = 0;
9538 struct imsm_update_reshape *u = NULL;
9539 struct mdinfo *spares = NULL;
9540 int i;
9541 int delta_disks = 0;
9542 struct mdinfo *dev;
9543
9544 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
9545 geo->raid_disks);
9546
9547 delta_disks = geo->raid_disks - old_raid_disks;
9548
9549 /* size of all update data without anchor */
9550 update_memory_size = sizeof(struct imsm_update_reshape);
9551
9552 /* now add space for spare disks that we need to add. */
9553 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9554
9555 u = calloc(1, update_memory_size);
9556 if (u == NULL) {
9557 dprintf("error: "
9558 "cannot get memory for imsm_update_reshape update\n");
9559 return 0;
9560 }
9561 u->type = update_reshape_container_disks;
9562 u->old_raid_disks = old_raid_disks;
9563 u->new_raid_disks = geo->raid_disks;
9564
9565 /* now get spare disks list
9566 */
9567 spares = get_spares_for_grow(st);
9568
9569 if (spares == NULL
9570 || delta_disks > spares->array.spare_disks) {
9571 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
9572 "for %s.\n", geo->dev_name);
9573 i = -1;
9574 goto abort;
9575 }
9576
9577 /* we have got spares
9578 * update disk list in imsm_disk list table in anchor
9579 */
9580 dprintf("imsm: %i spares are available.\n\n",
9581 spares->array.spare_disks);
9582
9583 dev = spares->devs;
9584 for (i = 0; i < delta_disks; i++) {
9585 struct dl *dl;
9586
9587 if (dev == NULL)
9588 break;
9589 u->new_disks[i] = makedev(dev->disk.major,
9590 dev->disk.minor);
9591 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
9592 dl->index = mpb->num_disks;
9593 mpb->num_disks++;
9594 dev = dev->next;
9595 }
9596
9597 abort:
9598 /* free spares
9599 */
9600 sysfs_free(spares);
9601
9602 dprintf("imsm: reshape update preparation :");
9603 if (i == delta_disks) {
9604 dprintf(" OK\n");
9605 *updatep = u;
9606 return update_memory_size;
9607 }
9608 free(u);
9609 dprintf(" Error\n");
9610
9611 return 0;
9612 }
9613
9614 /******************************************************************************
9615 * function: imsm_create_metadata_update_for_migration()
9616 * Creates update for IMSM array.
9617 *
9618 ******************************************************************************/
9619 static int imsm_create_metadata_update_for_migration(
9620 struct supertype *st,
9621 struct geo_params *geo,
9622 struct imsm_update_reshape_migration **updatep)
9623 {
9624 struct intel_super *super = st->sb;
9625 int update_memory_size = 0;
9626 struct imsm_update_reshape_migration *u = NULL;
9627 struct imsm_dev *dev;
9628 int previous_level = -1;
9629
9630 dprintf("imsm_create_metadata_update_for_migration(enter)"
9631 " New Level = %i\n", geo->level);
9632
9633 /* size of all update data without anchor */
9634 update_memory_size = sizeof(struct imsm_update_reshape_migration);
9635
9636 u = calloc(1, update_memory_size);
9637 if (u == NULL) {
9638 dprintf("error: cannot get memory for "
9639 "imsm_create_metadata_update_for_migration\n");
9640 return 0;
9641 }
9642 u->type = update_reshape_migration;
9643 u->subdev = super->current_vol;
9644 u->new_level = geo->level;
9645 u->new_layout = geo->layout;
9646 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
9647 u->new_disks[0] = -1;
9648 u->new_chunksize = -1;
9649
9650 dev = get_imsm_dev(super, u->subdev);
9651 if (dev) {
9652 struct imsm_map *map;
9653
9654 map = get_imsm_map(dev, MAP_0);
9655 if (map) {
9656 int current_chunk_size =
9657 __le16_to_cpu(map->blocks_per_strip) / 2;
9658
9659 if (geo->chunksize != current_chunk_size) {
9660 u->new_chunksize = geo->chunksize / 1024;
9661 dprintf("imsm: "
9662 "chunk size change from %i to %i\n",
9663 current_chunk_size, u->new_chunksize);
9664 }
9665 previous_level = map->raid_level;
9666 }
9667 }
9668 if ((geo->level == 5) && (previous_level == 0)) {
9669 struct mdinfo *spares = NULL;
9670
9671 u->new_raid_disks++;
9672 spares = get_spares_for_grow(st);
9673 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9674 free(u);
9675 sysfs_free(spares);
9676 update_memory_size = 0;
9677 dprintf("error: cannot get spare device "
9678 "for requested migration");
9679 return 0;
9680 }
9681 sysfs_free(spares);
9682 }
9683 dprintf("imsm: reshape update preparation : OK\n");
9684 *updatep = u;
9685
9686 return update_memory_size;
9687 }
9688
9689 static void imsm_update_metadata_locally(struct supertype *st,
9690 void *buf, int len)
9691 {
9692 struct metadata_update mu;
9693
9694 mu.buf = buf;
9695 mu.len = len;
9696 mu.space = NULL;
9697 mu.space_list = NULL;
9698 mu.next = NULL;
9699 imsm_prepare_update(st, &mu);
9700 imsm_process_update(st, &mu);
9701
9702 while (mu.space_list) {
9703 void **space = mu.space_list;
9704 mu.space_list = *space;
9705 free(space);
9706 }
9707 }
9708
9709 /***************************************************************************
9710 * Function: imsm_analyze_change
9711 * Description: Function analyze change for single volume
9712 * and validate if transition is supported
9713 * Parameters: Geometry parameters, supertype structure
9714 * Returns: Operation type code on success, -1 if fail
9715 ****************************************************************************/
9716 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9717 struct geo_params *geo)
9718 {
9719 struct mdinfo info;
9720 int change = -1;
9721 int check_devs = 0;
9722 int chunk;
9723 /* number of added/removed disks in operation result */
9724 int devNumChange = 0;
9725 /* imsm compatible layout value for array geometry verification */
9726 int imsm_layout = -1;
9727
9728 getinfo_super_imsm_volume(st, &info, NULL);
9729 if ((geo->level != info.array.level) &&
9730 (geo->level >= 0) &&
9731 (geo->level != UnSet)) {
9732 switch (info.array.level) {
9733 case 0:
9734 if (geo->level == 5) {
9735 change = CH_MIGRATION;
9736 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
9737 fprintf(stderr,
9738 Name " Error. Requested Layout "
9739 "not supported (left-asymmetric layout "
9740 "is supported only)!\n");
9741 change = -1;
9742 goto analyse_change_exit;
9743 }
9744 imsm_layout = geo->layout;
9745 check_devs = 1;
9746 devNumChange = 1; /* parity disk added */
9747 } else if (geo->level == 10) {
9748 change = CH_TAKEOVER;
9749 check_devs = 1;
9750 devNumChange = 2; /* two mirrors added */
9751 imsm_layout = 0x102; /* imsm supported layout */
9752 }
9753 break;
9754 case 1:
9755 case 10:
9756 if (geo->level == 0) {
9757 change = CH_TAKEOVER;
9758 check_devs = 1;
9759 devNumChange = -(geo->raid_disks/2);
9760 imsm_layout = 0; /* imsm raid0 layout */
9761 }
9762 break;
9763 }
9764 if (change == -1) {
9765 fprintf(stderr,
9766 Name " Error. Level Migration from %d to %d "
9767 "not supported!\n",
9768 info.array.level, geo->level);
9769 goto analyse_change_exit;
9770 }
9771 } else
9772 geo->level = info.array.level;
9773
9774 if ((geo->layout != info.array.layout)
9775 && ((geo->layout != UnSet) && (geo->layout != -1))) {
9776 change = CH_MIGRATION;
9777 if ((info.array.layout == 0)
9778 && (info.array.level == 5)
9779 && (geo->layout == 5)) {
9780 /* reshape 5 -> 4 */
9781 } else if ((info.array.layout == 5)
9782 && (info.array.level == 5)
9783 && (geo->layout == 0)) {
9784 /* reshape 4 -> 5 */
9785 geo->layout = 0;
9786 geo->level = 5;
9787 } else {
9788 fprintf(stderr,
9789 Name " Error. Layout Migration from %d to %d "
9790 "not supported!\n",
9791 info.array.layout, geo->layout);
9792 change = -1;
9793 goto analyse_change_exit;
9794 }
9795 } else {
9796 geo->layout = info.array.layout;
9797 if (imsm_layout == -1)
9798 imsm_layout = info.array.layout;
9799 }
9800
9801 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
9802 && (geo->chunksize != info.array.chunk_size))
9803 change = CH_MIGRATION;
9804 else
9805 geo->chunksize = info.array.chunk_size;
9806
9807 chunk = geo->chunksize / 1024;
9808 if (!validate_geometry_imsm(st,
9809 geo->level,
9810 imsm_layout,
9811 geo->raid_disks + devNumChange,
9812 &chunk,
9813 geo->size,
9814 0, 0, 1))
9815 change = -1;
9816
9817 if (check_devs) {
9818 struct intel_super *super = st->sb;
9819 struct imsm_super *mpb = super->anchor;
9820
9821 if (mpb->num_raid_devs > 1) {
9822 fprintf(stderr,
9823 Name " Error. Cannot perform operation on %s"
9824 "- for this operation it MUST be single "
9825 "array in container\n",
9826 geo->dev_name);
9827 change = -1;
9828 }
9829 }
9830
9831 analyse_change_exit:
9832
9833 return change;
9834 }
9835
9836 int imsm_takeover(struct supertype *st, struct geo_params *geo)
9837 {
9838 struct intel_super *super = st->sb;
9839 struct imsm_update_takeover *u;
9840
9841 u = malloc(sizeof(struct imsm_update_takeover));
9842 if (u == NULL)
9843 return 1;
9844
9845 u->type = update_takeover;
9846 u->subarray = super->current_vol;
9847
9848 /* 10->0 transition */
9849 if (geo->level == 0)
9850 u->direction = R10_TO_R0;
9851
9852 /* 0->10 transition */
9853 if (geo->level == 10)
9854 u->direction = R0_TO_R10;
9855
9856 /* update metadata locally */
9857 imsm_update_metadata_locally(st, u,
9858 sizeof(struct imsm_update_takeover));
9859 /* and possibly remotely */
9860 if (st->update_tail)
9861 append_metadata_update(st, u,
9862 sizeof(struct imsm_update_takeover));
9863 else
9864 free(u);
9865
9866 return 0;
9867 }
9868
9869 static int imsm_reshape_super(struct supertype *st, long long size, int level,
9870 int layout, int chunksize, int raid_disks,
9871 int delta_disks, char *backup, char *dev,
9872 int verbose)
9873 {
9874 int ret_val = 1;
9875 struct geo_params geo;
9876
9877 dprintf("imsm: reshape_super called.\n");
9878
9879 memset(&geo, 0, sizeof(struct geo_params));
9880
9881 geo.dev_name = dev;
9882 geo.dev_id = st->devnum;
9883 geo.size = size;
9884 geo.level = level;
9885 geo.layout = layout;
9886 geo.chunksize = chunksize;
9887 geo.raid_disks = raid_disks;
9888 if (delta_disks != UnSet)
9889 geo.raid_disks += delta_disks;
9890
9891 dprintf("\tfor level : %i\n", geo.level);
9892 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
9893
9894 if (experimental() == 0)
9895 return ret_val;
9896
9897 if (st->container_dev == st->devnum) {
9898 /* On container level we can only increase number of devices. */
9899 dprintf("imsm: info: Container operation\n");
9900 int old_raid_disks = 0;
9901
9902 if (imsm_reshape_is_allowed_on_container(
9903 st, &geo, &old_raid_disks)) {
9904 struct imsm_update_reshape *u = NULL;
9905 int len;
9906
9907 len = imsm_create_metadata_update_for_reshape(
9908 st, &geo, old_raid_disks, &u);
9909
9910 if (len <= 0) {
9911 dprintf("imsm: Cannot prepare update\n");
9912 goto exit_imsm_reshape_super;
9913 }
9914
9915 ret_val = 0;
9916 /* update metadata locally */
9917 imsm_update_metadata_locally(st, u, len);
9918 /* and possibly remotely */
9919 if (st->update_tail)
9920 append_metadata_update(st, u, len);
9921 else
9922 free(u);
9923
9924 } else {
9925 fprintf(stderr, Name ": (imsm) Operation "
9926 "is not allowed on this container\n");
9927 }
9928 } else {
9929 /* On volume level we support following operations
9930 * - takeover: raid10 -> raid0; raid0 -> raid10
9931 * - chunk size migration
9932 * - migration: raid5 -> raid0; raid0 -> raid5
9933 */
9934 struct intel_super *super = st->sb;
9935 struct intel_dev *dev = super->devlist;
9936 int change, devnum;
9937 dprintf("imsm: info: Volume operation\n");
9938 /* find requested device */
9939 while (dev) {
9940 if (imsm_find_array_minor_by_subdev(
9941 dev->index, st->container_dev, &devnum) == 0
9942 && devnum == geo.dev_id)
9943 break;
9944 dev = dev->next;
9945 }
9946 if (dev == NULL) {
9947 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
9948 geo.dev_name, geo.dev_id);
9949 goto exit_imsm_reshape_super;
9950 }
9951 super->current_vol = dev->index;
9952 change = imsm_analyze_change(st, &geo);
9953 switch (change) {
9954 case CH_TAKEOVER:
9955 ret_val = imsm_takeover(st, &geo);
9956 break;
9957 case CH_MIGRATION: {
9958 struct imsm_update_reshape_migration *u = NULL;
9959 int len =
9960 imsm_create_metadata_update_for_migration(
9961 st, &geo, &u);
9962 if (len < 1) {
9963 dprintf("imsm: "
9964 "Cannot prepare update\n");
9965 break;
9966 }
9967 ret_val = 0;
9968 /* update metadata locally */
9969 imsm_update_metadata_locally(st, u, len);
9970 /* and possibly remotely */
9971 if (st->update_tail)
9972 append_metadata_update(st, u, len);
9973 else
9974 free(u);
9975 }
9976 break;
9977 default:
9978 ret_val = 1;
9979 }
9980 }
9981
9982 exit_imsm_reshape_super:
9983 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
9984 return ret_val;
9985 }
9986
9987 /*******************************************************************************
9988 * Function: wait_for_reshape_imsm
9989 * Description: Function writes new sync_max value and waits until
9990 * reshape process reach new position
9991 * Parameters:
9992 * sra : general array info
9993 * ndata : number of disks in new array's layout
9994 * Returns:
9995 * 0 : success,
9996 * 1 : there is no reshape in progress,
9997 * -1 : fail
9998 ******************************************************************************/
9999 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
10000 {
10001 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
10002 unsigned long long completed;
10003 /* to_complete : new sync_max position */
10004 unsigned long long to_complete = sra->reshape_progress;
10005 unsigned long long position_to_set = to_complete / ndata;
10006
10007 if (fd < 0) {
10008 dprintf("imsm: wait_for_reshape_imsm() "
10009 "cannot open reshape_position\n");
10010 return 1;
10011 }
10012
10013 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10014 dprintf("imsm: wait_for_reshape_imsm() "
10015 "cannot read reshape_position (no reshape in progres)\n");
10016 close(fd);
10017 return 0;
10018 }
10019
10020 if (completed > to_complete) {
10021 dprintf("imsm: wait_for_reshape_imsm() "
10022 "wrong next position to set %llu (%llu)\n",
10023 to_complete, completed);
10024 close(fd);
10025 return -1;
10026 }
10027 dprintf("Position set: %llu\n", position_to_set);
10028 if (sysfs_set_num(sra, NULL, "sync_max",
10029 position_to_set) != 0) {
10030 dprintf("imsm: wait_for_reshape_imsm() "
10031 "cannot set reshape position to %llu\n",
10032 position_to_set);
10033 close(fd);
10034 return -1;
10035 }
10036
10037 do {
10038 char action[20];
10039 fd_set rfds;
10040 FD_ZERO(&rfds);
10041 FD_SET(fd, &rfds);
10042 select(fd+1, &rfds, NULL, NULL, NULL);
10043 if (sysfs_get_str(sra, NULL, "sync_action",
10044 action, 20) > 0 &&
10045 strncmp(action, "reshape", 7) != 0)
10046 break;
10047 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10048 dprintf("imsm: wait_for_reshape_imsm() "
10049 "cannot read reshape_position (in loop)\n");
10050 close(fd);
10051 return 1;
10052 }
10053 } while (completed < to_complete);
10054 close(fd);
10055 return 0;
10056
10057 }
10058
10059 /*******************************************************************************
10060 * Function: check_degradation_change
10061 * Description: Check that array hasn't become failed.
10062 * Parameters:
10063 * info : for sysfs access
10064 * sources : source disks descriptors
10065 * degraded: previous degradation level
10066 * Returns:
10067 * degradation level
10068 ******************************************************************************/
10069 int check_degradation_change(struct mdinfo *info,
10070 int *sources,
10071 int degraded)
10072 {
10073 unsigned long long new_degraded;
10074 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10075 if (new_degraded != (unsigned long long)degraded) {
10076 /* check each device to ensure it is still working */
10077 struct mdinfo *sd;
10078 new_degraded = 0;
10079 for (sd = info->devs ; sd ; sd = sd->next) {
10080 if (sd->disk.state & (1<<MD_DISK_FAULTY))
10081 continue;
10082 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10083 char sbuf[20];
10084 if (sysfs_get_str(info,
10085 sd, "state", sbuf, 20) < 0 ||
10086 strstr(sbuf, "faulty") ||
10087 strstr(sbuf, "in_sync") == NULL) {
10088 /* this device is dead */
10089 sd->disk.state = (1<<MD_DISK_FAULTY);
10090 if (sd->disk.raid_disk >= 0 &&
10091 sources[sd->disk.raid_disk] >= 0) {
10092 close(sources[
10093 sd->disk.raid_disk]);
10094 sources[sd->disk.raid_disk] =
10095 -1;
10096 }
10097 new_degraded++;
10098 }
10099 }
10100 }
10101 }
10102
10103 return new_degraded;
10104 }
10105
10106 /*******************************************************************************
10107 * Function: imsm_manage_reshape
10108 * Description: Function finds array under reshape and it manages reshape
10109 * process. It creates stripes backups (if required) and sets
10110 * checheckpoits.
10111 * Parameters:
10112 * afd : Backup handle (nattive) - not used
10113 * sra : general array info
10114 * reshape : reshape parameters - not used
10115 * st : supertype structure
10116 * blocks : size of critical section [blocks]
10117 * fds : table of source device descriptor
10118 * offsets : start of array (offest per devices)
10119 * dests : not used
10120 * destfd : table of destination device descriptor
10121 * destoffsets : table of destination offsets (per device)
10122 * Returns:
10123 * 1 : success, reshape is done
10124 * 0 : fail
10125 ******************************************************************************/
10126 static int imsm_manage_reshape(
10127 int afd, struct mdinfo *sra, struct reshape *reshape,
10128 struct supertype *st, unsigned long backup_blocks,
10129 int *fds, unsigned long long *offsets,
10130 int dests, int *destfd, unsigned long long *destoffsets)
10131 {
10132 int ret_val = 0;
10133 struct intel_super *super = st->sb;
10134 struct intel_dev *dv = NULL;
10135 struct imsm_dev *dev = NULL;
10136 struct imsm_map *map_src;
10137 int migr_vol_qan = 0;
10138 int ndata, odata; /* [bytes] */
10139 int chunk; /* [bytes] */
10140 struct migr_record *migr_rec;
10141 char *buf = NULL;
10142 unsigned int buf_size; /* [bytes] */
10143 unsigned long long max_position; /* array size [bytes] */
10144 unsigned long long next_step; /* [blocks]/[bytes] */
10145 unsigned long long old_data_stripe_length;
10146 unsigned long long start_src; /* [bytes] */
10147 unsigned long long start; /* [bytes] */
10148 unsigned long long start_buf_shift; /* [bytes] */
10149 int degraded = 0;
10150 int source_layout = 0;
10151
10152 if (!fds || !offsets || !sra)
10153 goto abort;
10154
10155 /* Find volume during the reshape */
10156 for (dv = super->devlist; dv; dv = dv->next) {
10157 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10158 && dv->dev->vol.migr_state == 1) {
10159 dev = dv->dev;
10160 migr_vol_qan++;
10161 }
10162 }
10163 /* Only one volume can migrate at the same time */
10164 if (migr_vol_qan != 1) {
10165 fprintf(stderr, Name " : %s", migr_vol_qan ?
10166 "Number of migrating volumes greater than 1\n" :
10167 "There is no volume during migrationg\n");
10168 goto abort;
10169 }
10170
10171 map_src = get_imsm_map(dev, MAP_1);
10172 if (map_src == NULL)
10173 goto abort;
10174
10175 ndata = imsm_num_data_members(dev, MAP_0);
10176 odata = imsm_num_data_members(dev, MAP_1);
10177
10178 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10179 old_data_stripe_length = odata * chunk;
10180
10181 migr_rec = super->migr_rec;
10182
10183 /* initialize migration record for start condition */
10184 if (sra->reshape_progress == 0)
10185 init_migr_record_imsm(st, dev, sra);
10186 else {
10187 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
10188 dprintf("imsm: cannot restart migration when data "
10189 "are present in copy area.\n");
10190 goto abort;
10191 }
10192 /* Save checkpoint to update migration record for current
10193 * reshape position (in md). It can be farther than current
10194 * reshape position in metadata.
10195 */
10196 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10197 /* ignore error == 2, this can mean end of reshape here
10198 */
10199 dprintf("imsm: Cannot write checkpoint to "
10200 "migration record (UNIT_SRC_NORMAL, "
10201 "initial save)\n");
10202 goto abort;
10203 }
10204 }
10205
10206 /* size for data */
10207 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10208 /* extend buffer size for parity disk */
10209 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10210 /* add space for stripe aligment */
10211 buf_size += old_data_stripe_length;
10212 if (posix_memalign((void **)&buf, 4096, buf_size)) {
10213 dprintf("imsm: Cannot allocate checpoint buffer\n");
10214 goto abort;
10215 }
10216
10217 max_position = sra->component_size * ndata;
10218 source_layout = imsm_level_to_layout(map_src->raid_level);
10219
10220 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10221 __le32_to_cpu(migr_rec->num_migr_units)) {
10222 /* current reshape position [blocks] */
10223 unsigned long long current_position =
10224 __le32_to_cpu(migr_rec->blocks_per_unit)
10225 * __le32_to_cpu(migr_rec->curr_migr_unit);
10226 unsigned long long border;
10227
10228 /* Check that array hasn't become failed.
10229 */
10230 degraded = check_degradation_change(sra, fds, degraded);
10231 if (degraded > 1) {
10232 dprintf("imsm: Abort reshape due to degradation"
10233 " level (%i)\n", degraded);
10234 goto abort;
10235 }
10236
10237 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10238
10239 if ((current_position + next_step) > max_position)
10240 next_step = max_position - current_position;
10241
10242 start = current_position * 512;
10243
10244 /* allign reading start to old geometry */
10245 start_buf_shift = start % old_data_stripe_length;
10246 start_src = start - start_buf_shift;
10247
10248 border = (start_src / odata) - (start / ndata);
10249 border /= 512;
10250 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10251 /* save critical stripes to buf
10252 * start - start address of current unit
10253 * to backup [bytes]
10254 * start_src - start address of current unit
10255 * to backup alligned to source array
10256 * [bytes]
10257 */
10258 unsigned long long next_step_filler = 0;
10259 unsigned long long copy_length = next_step * 512;
10260
10261 /* allign copy area length to stripe in old geometry */
10262 next_step_filler = ((copy_length + start_buf_shift)
10263 % old_data_stripe_length);
10264 if (next_step_filler)
10265 next_step_filler = (old_data_stripe_length
10266 - next_step_filler);
10267 dprintf("save_stripes() parameters: start = %llu,"
10268 "\tstart_src = %llu,\tnext_step*512 = %llu,"
10269 "\tstart_in_buf_shift = %llu,"
10270 "\tnext_step_filler = %llu\n",
10271 start, start_src, copy_length,
10272 start_buf_shift, next_step_filler);
10273
10274 if (save_stripes(fds, offsets, map_src->num_members,
10275 chunk, map_src->raid_level,
10276 source_layout, 0, NULL, start_src,
10277 copy_length +
10278 next_step_filler + start_buf_shift,
10279 buf)) {
10280 dprintf("imsm: Cannot save stripes"
10281 " to buffer\n");
10282 goto abort;
10283 }
10284 /* Convert data to destination format and store it
10285 * in backup general migration area
10286 */
10287 if (save_backup_imsm(st, dev, sra,
10288 buf + start_buf_shift, copy_length)) {
10289 dprintf("imsm: Cannot save stripes to "
10290 "target devices\n");
10291 goto abort;
10292 }
10293 if (save_checkpoint_imsm(st, sra,
10294 UNIT_SRC_IN_CP_AREA)) {
10295 dprintf("imsm: Cannot write checkpoint to "
10296 "migration record (UNIT_SRC_IN_CP_AREA)\n");
10297 goto abort;
10298 }
10299 } else {
10300 /* set next step to use whole border area */
10301 border /= next_step;
10302 if (border > 1)
10303 next_step *= border;
10304 }
10305 /* When data backed up, checkpoint stored,
10306 * kick the kernel to reshape unit of data
10307 */
10308 next_step = next_step + sra->reshape_progress;
10309 /* limit next step to array max position */
10310 if (next_step > max_position)
10311 next_step = max_position;
10312 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10313 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
10314 sra->reshape_progress = next_step;
10315
10316 /* wait until reshape finish */
10317 if (wait_for_reshape_imsm(sra, ndata) < 0) {
10318 dprintf("wait_for_reshape_imsm returned error!\n");
10319 goto abort;
10320 }
10321
10322 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10323 /* ignore error == 2, this can mean end of reshape here
10324 */
10325 dprintf("imsm: Cannot write checkpoint to "
10326 "migration record (UNIT_SRC_NORMAL)\n");
10327 goto abort;
10328 }
10329
10330 }
10331
10332 /* return '1' if done */
10333 ret_val = 1;
10334 abort:
10335 free(buf);
10336 abort_reshape(sra);
10337
10338 return ret_val;
10339 }
10340 #endif /* MDASSEMBLE */
10341
10342 struct superswitch super_imsm = {
10343 #ifndef MDASSEMBLE
10344 .examine_super = examine_super_imsm,
10345 .brief_examine_super = brief_examine_super_imsm,
10346 .brief_examine_subarrays = brief_examine_subarrays_imsm,
10347 .export_examine_super = export_examine_super_imsm,
10348 .detail_super = detail_super_imsm,
10349 .brief_detail_super = brief_detail_super_imsm,
10350 .write_init_super = write_init_super_imsm,
10351 .validate_geometry = validate_geometry_imsm,
10352 .add_to_super = add_to_super_imsm,
10353 .remove_from_super = remove_from_super_imsm,
10354 .detail_platform = detail_platform_imsm,
10355 .kill_subarray = kill_subarray_imsm,
10356 .update_subarray = update_subarray_imsm,
10357 .load_container = load_container_imsm,
10358 .default_geometry = default_geometry_imsm,
10359 .get_disk_controller_domain = imsm_get_disk_controller_domain,
10360 .reshape_super = imsm_reshape_super,
10361 .manage_reshape = imsm_manage_reshape,
10362 .recover_backup = recover_backup_imsm,
10363 #endif
10364 .match_home = match_home_imsm,
10365 .uuid_from_super= uuid_from_super_imsm,
10366 .getinfo_super = getinfo_super_imsm,
10367 .getinfo_super_disks = getinfo_super_disks_imsm,
10368 .update_super = update_super_imsm,
10369
10370 .avail_size = avail_size_imsm,
10371 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
10372
10373 .compare_super = compare_super_imsm,
10374
10375 .load_super = load_super_imsm,
10376 .init_super = init_super_imsm,
10377 .store_super = store_super_imsm,
10378 .free_super = free_super_imsm,
10379 .match_metadata_desc = match_metadata_desc_imsm,
10380 .container_content = container_content_imsm,
10381
10382
10383 .external = 1,
10384 .name = "imsm",
10385
10386 #ifndef MDASSEMBLE
10387 /* for mdmon */
10388 .open_new = imsm_open_new,
10389 .set_array_state= imsm_set_array_state,
10390 .set_disk = imsm_set_disk,
10391 .sync_metadata = imsm_sync_metadata,
10392 .activate_spare = imsm_activate_spare,
10393 .process_update = imsm_process_update,
10394 .prepare_update = imsm_prepare_update,
10395 #endif /* MDASSEMBLE */
10396 };