]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: FIX: Use definitions for migration record disk operations
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 #define IMSM_DISK_FILLERS 4
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107 };
108
109 /* map selector for map managment
110 */
111 #define MAP_0 0
112 #define MAP_1 1
113 #define MAP_X -1
114
115 /* RAID map configuration infos. */
116 struct imsm_map {
117 __u32 pba_of_lba0; /* start address of partition */
118 __u32 blocks_per_member;/* blocks per member */
119 __u32 num_data_stripes; /* number of data stripes */
120 __u16 blocks_per_strip;
121 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
122 #define IMSM_T_STATE_NORMAL 0
123 #define IMSM_T_STATE_UNINITIALIZED 1
124 #define IMSM_T_STATE_DEGRADED 2
125 #define IMSM_T_STATE_FAILED 3
126 __u8 raid_level;
127 #define IMSM_T_RAID0 0
128 #define IMSM_T_RAID1 1
129 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
130 __u8 num_members; /* number of member disks */
131 __u8 num_domains; /* number of parity domains */
132 __u8 failed_disk_num; /* valid only when state is degraded */
133 __u8 ddf;
134 __u32 filler[7]; /* expansion area */
135 #define IMSM_ORD_REBUILD (1 << 24)
136 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
137 * top byte contains some flags
138 */
139 } __attribute__ ((packed));
140
141 struct imsm_vol {
142 __u32 curr_migr_unit;
143 __u32 checkpoint_id; /* id to access curr_migr_unit */
144 __u8 migr_state; /* Normal or Migrating */
145 #define MIGR_INIT 0
146 #define MIGR_REBUILD 1
147 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
148 #define MIGR_GEN_MIGR 3
149 #define MIGR_STATE_CHANGE 4
150 #define MIGR_REPAIR 5
151 __u8 migr_type; /* Initializing, Rebuilding, ... */
152 __u8 dirty;
153 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
154 __u16 verify_errors; /* number of mismatches */
155 __u16 bad_blocks; /* number of bad blocks during verify */
156 __u32 filler[4];
157 struct imsm_map map[1];
158 /* here comes another one if migr_state */
159 } __attribute__ ((packed));
160
161 struct imsm_dev {
162 __u8 volume[MAX_RAID_SERIAL_LEN];
163 __u32 size_low;
164 __u32 size_high;
165 #define DEV_BOOTABLE __cpu_to_le32(0x01)
166 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
167 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
168 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
169 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
170 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
171 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
172 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
173 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
174 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
175 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
176 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
177 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
178 __u32 status; /* Persistent RaidDev status */
179 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
180 __u8 migr_priority;
181 __u8 num_sub_vols;
182 __u8 tid;
183 __u8 cng_master_disk;
184 __u16 cache_policy;
185 __u8 cng_state;
186 __u8 cng_sub_state;
187 #define IMSM_DEV_FILLERS 10
188 __u32 filler[IMSM_DEV_FILLERS];
189 struct imsm_vol vol;
190 } __attribute__ ((packed));
191
192 struct imsm_super {
193 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
194 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
195 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
196 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
197 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
198 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
199 __u32 attributes; /* 0x34 - 0x37 */
200 __u8 num_disks; /* 0x38 Number of configured disks */
201 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
202 __u8 error_log_pos; /* 0x3A */
203 __u8 fill[1]; /* 0x3B */
204 __u32 cache_size; /* 0x3c - 0x40 in mb */
205 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
206 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
207 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
208 #define IMSM_FILLERS 35
209 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
210 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
211 /* here comes imsm_dev[num_raid_devs] */
212 /* here comes BBM logs */
213 } __attribute__ ((packed));
214
215 #define BBM_LOG_MAX_ENTRIES 254
216
217 struct bbm_log_entry {
218 __u64 defective_block_start;
219 #define UNREADABLE 0xFFFFFFFF
220 __u32 spare_block_offset;
221 __u16 remapped_marked_count;
222 __u16 disk_ordinal;
223 } __attribute__ ((__packed__));
224
225 struct bbm_log {
226 __u32 signature; /* 0xABADB10C */
227 __u32 entry_count;
228 __u32 reserved_spare_block_count; /* 0 */
229 __u32 reserved; /* 0xFFFF */
230 __u64 first_spare_lba;
231 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
232 } __attribute__ ((__packed__));
233
234
235 #ifndef MDASSEMBLE
236 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
237 #endif
238
239 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
240
241 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
242
243 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
244 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
245 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
246 */
247
248
249 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
250 * be recovered using srcMap */
251 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
252 * already been migrated and must
253 * be recovered from checkpoint area */
254 struct migr_record {
255 __u32 rec_status; /* Status used to determine how to restart
256 * migration in case it aborts
257 * in some fashion */
258 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
259 __u32 family_num; /* Family number of MPB
260 * containing the RaidDev
261 * that is migrating */
262 __u32 ascending_migr; /* True if migrating in increasing
263 * order of lbas */
264 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
265 __u32 dest_depth_per_unit; /* Num member blocks each destMap
266 * member disk
267 * advances per unit-of-operation */
268 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
269 __u32 dest_1st_member_lba; /* First member lba on first
270 * stripe of destination */
271 __u32 num_migr_units; /* Total num migration units-of-op */
272 __u32 post_migr_vol_cap; /* Size of volume after
273 * migration completes */
274 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
275 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
276 * migration ckpt record was read from
277 * (for recovered migrations) */
278 } __attribute__ ((__packed__));
279
280 static __u8 migr_type(struct imsm_dev *dev)
281 {
282 if (dev->vol.migr_type == MIGR_VERIFY &&
283 dev->status & DEV_VERIFY_AND_FIX)
284 return MIGR_REPAIR;
285 else
286 return dev->vol.migr_type;
287 }
288
289 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
290 {
291 /* for compatibility with older oroms convert MIGR_REPAIR, into
292 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
293 */
294 if (migr_type == MIGR_REPAIR) {
295 dev->vol.migr_type = MIGR_VERIFY;
296 dev->status |= DEV_VERIFY_AND_FIX;
297 } else {
298 dev->vol.migr_type = migr_type;
299 dev->status &= ~DEV_VERIFY_AND_FIX;
300 }
301 }
302
303 static unsigned int sector_count(__u32 bytes)
304 {
305 return ((bytes + (512-1)) & (~(512-1))) / 512;
306 }
307
308 static unsigned int mpb_sectors(struct imsm_super *mpb)
309 {
310 return sector_count(__le32_to_cpu(mpb->mpb_size));
311 }
312
313 struct intel_dev {
314 struct imsm_dev *dev;
315 struct intel_dev *next;
316 unsigned index;
317 };
318
319 struct intel_hba {
320 enum sys_dev_type type;
321 char *path;
322 char *pci_id;
323 struct intel_hba *next;
324 };
325
326 enum action {
327 DISK_REMOVE = 1,
328 DISK_ADD
329 };
330 /* internal representation of IMSM metadata */
331 struct intel_super {
332 union {
333 void *buf; /* O_DIRECT buffer for reading/writing metadata */
334 struct imsm_super *anchor; /* immovable parameters */
335 };
336 union {
337 void *migr_rec_buf; /* buffer for I/O operations */
338 struct migr_record *migr_rec; /* migration record */
339 };
340 size_t len; /* size of the 'buf' allocation */
341 void *next_buf; /* for realloc'ing buf from the manager */
342 size_t next_len;
343 int updates_pending; /* count of pending updates for mdmon */
344 int current_vol; /* index of raid device undergoing creation */
345 __u32 create_offset; /* common start for 'current_vol' */
346 __u32 random; /* random data for seeding new family numbers */
347 struct intel_dev *devlist;
348 struct dl {
349 struct dl *next;
350 int index;
351 __u8 serial[MAX_RAID_SERIAL_LEN];
352 int major, minor;
353 char *devname;
354 struct imsm_disk disk;
355 int fd;
356 int extent_cnt;
357 struct extent *e; /* for determining freespace @ create */
358 int raiddisk; /* slot to fill in autolayout */
359 enum action action;
360 } *disks, *current_disk;
361 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
362 active */
363 struct dl *missing; /* disks removed while we weren't looking */
364 struct bbm_log *bbm_log;
365 struct intel_hba *hba; /* device path of the raid controller for this metadata */
366 const struct imsm_orom *orom; /* platform firmware support */
367 struct intel_super *next; /* (temp) list for disambiguating family_num */
368 };
369
370 struct intel_disk {
371 struct imsm_disk disk;
372 #define IMSM_UNKNOWN_OWNER (-1)
373 int owner;
374 struct intel_disk *next;
375 };
376
377 struct extent {
378 unsigned long long start, size;
379 };
380
381 /* definitions of reshape process types */
382 enum imsm_reshape_type {
383 CH_TAKEOVER,
384 CH_MIGRATION,
385 };
386
387 /* definition of messages passed to imsm_process_update */
388 enum imsm_update_type {
389 update_activate_spare,
390 update_create_array,
391 update_kill_array,
392 update_rename_array,
393 update_add_remove_disk,
394 update_reshape_container_disks,
395 update_reshape_migration,
396 update_takeover,
397 update_general_migration_checkpoint,
398 };
399
400 struct imsm_update_activate_spare {
401 enum imsm_update_type type;
402 struct dl *dl;
403 int slot;
404 int array;
405 struct imsm_update_activate_spare *next;
406 };
407
408 struct geo_params {
409 int dev_id;
410 char *dev_name;
411 long long size;
412 int level;
413 int layout;
414 int chunksize;
415 int raid_disks;
416 };
417
418 enum takeover_direction {
419 R10_TO_R0,
420 R0_TO_R10
421 };
422 struct imsm_update_takeover {
423 enum imsm_update_type type;
424 int subarray;
425 enum takeover_direction direction;
426 };
427
428 struct imsm_update_reshape {
429 enum imsm_update_type type;
430 int old_raid_disks;
431 int new_raid_disks;
432
433 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
434 };
435
436 struct imsm_update_reshape_migration {
437 enum imsm_update_type type;
438 int old_raid_disks;
439 int new_raid_disks;
440 /* fields for array migration changes
441 */
442 int subdev;
443 int new_level;
444 int new_layout;
445 int new_chunksize;
446
447 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
448 };
449
450 struct imsm_update_general_migration_checkpoint {
451 enum imsm_update_type type;
452 __u32 curr_migr_unit;
453 };
454
455 struct disk_info {
456 __u8 serial[MAX_RAID_SERIAL_LEN];
457 };
458
459 struct imsm_update_create_array {
460 enum imsm_update_type type;
461 int dev_idx;
462 struct imsm_dev dev;
463 };
464
465 struct imsm_update_kill_array {
466 enum imsm_update_type type;
467 int dev_idx;
468 };
469
470 struct imsm_update_rename_array {
471 enum imsm_update_type type;
472 __u8 name[MAX_RAID_SERIAL_LEN];
473 int dev_idx;
474 };
475
476 struct imsm_update_add_remove_disk {
477 enum imsm_update_type type;
478 };
479
480
481 static const char *_sys_dev_type[] = {
482 [SYS_DEV_UNKNOWN] = "Unknown",
483 [SYS_DEV_SAS] = "SAS",
484 [SYS_DEV_SATA] = "SATA"
485 };
486
487 const char *get_sys_dev_type(enum sys_dev_type type)
488 {
489 if (type >= SYS_DEV_MAX)
490 type = SYS_DEV_UNKNOWN;
491
492 return _sys_dev_type[type];
493 }
494
495 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
496 {
497 struct intel_hba *result = malloc(sizeof(*result));
498 if (result) {
499 result->type = device->type;
500 result->path = strdup(device->path);
501 result->next = NULL;
502 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
503 result->pci_id++;
504 }
505 return result;
506 }
507
508 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
509 {
510 struct intel_hba *result=NULL;
511 for (result = hba; result; result = result->next) {
512 if (result->type == device->type && strcmp(result->path, device->path) == 0)
513 break;
514 }
515 return result;
516 }
517
518 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
519 {
520 struct intel_hba *hba;
521
522 /* check if disk attached to Intel HBA */
523 hba = find_intel_hba(super->hba, device);
524 if (hba != NULL)
525 return 1;
526 /* Check if HBA is already attached to super */
527 if (super->hba == NULL) {
528 super->hba = alloc_intel_hba(device);
529 return 1;
530 }
531
532 hba = super->hba;
533 /* Intel metadata allows for all disks attached to the same type HBA.
534 * Do not sypport odf HBA types mixing
535 */
536 if (device->type != hba->type)
537 return 2;
538
539 while (hba->next)
540 hba = hba->next;
541
542 hba->next = alloc_intel_hba(device);
543 return 1;
544 }
545
546 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
547 {
548 struct sys_dev *list, *elem, *prev;
549 char *disk_path;
550
551 if ((list = find_intel_devices()) == NULL)
552 return 0;
553
554 if (fd < 0)
555 disk_path = (char *) devname;
556 else
557 disk_path = diskfd_to_devpath(fd);
558
559 if (!disk_path) {
560 free_sys_dev(&list);
561 return 0;
562 }
563
564 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
565 if (path_attached_to_hba(disk_path, elem->path)) {
566 if (prev == NULL)
567 list = list->next;
568 else
569 prev->next = elem->next;
570 elem->next = NULL;
571 if (disk_path != devname)
572 free(disk_path);
573 free_sys_dev(&list);
574 return elem;
575 }
576 }
577 if (disk_path != devname)
578 free(disk_path);
579 free_sys_dev(&list);
580
581 return NULL;
582 }
583
584
585 static int find_intel_hba_capability(int fd, struct intel_super *super,
586 char *devname);
587
588 static struct supertype *match_metadata_desc_imsm(char *arg)
589 {
590 struct supertype *st;
591
592 if (strcmp(arg, "imsm") != 0 &&
593 strcmp(arg, "default") != 0
594 )
595 return NULL;
596
597 st = malloc(sizeof(*st));
598 if (!st)
599 return NULL;
600 memset(st, 0, sizeof(*st));
601 st->container_dev = NoMdDev;
602 st->ss = &super_imsm;
603 st->max_devs = IMSM_MAX_DEVICES;
604 st->minor_version = 0;
605 st->sb = NULL;
606 return st;
607 }
608
609 #ifndef MDASSEMBLE
610 static __u8 *get_imsm_version(struct imsm_super *mpb)
611 {
612 return &mpb->sig[MPB_SIG_LEN];
613 }
614 #endif
615
616 /* retrieve a disk directly from the anchor when the anchor is known to be
617 * up-to-date, currently only at load time
618 */
619 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
620 {
621 if (index >= mpb->num_disks)
622 return NULL;
623 return &mpb->disk[index];
624 }
625
626 /* retrieve the disk description based on a index of the disk
627 * in the sub-array
628 */
629 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
630 {
631 struct dl *d;
632
633 for (d = super->disks; d; d = d->next)
634 if (d->index == index)
635 return d;
636
637 return NULL;
638 }
639 /* retrieve a disk from the parsed metadata */
640 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
641 {
642 struct dl *dl;
643
644 dl = get_imsm_dl_disk(super, index);
645 if (dl)
646 return &dl->disk;
647
648 return NULL;
649 }
650
651 /* generate a checksum directly from the anchor when the anchor is known to be
652 * up-to-date, currently only at load or write_super after coalescing
653 */
654 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
655 {
656 __u32 end = mpb->mpb_size / sizeof(end);
657 __u32 *p = (__u32 *) mpb;
658 __u32 sum = 0;
659
660 while (end--) {
661 sum += __le32_to_cpu(*p);
662 p++;
663 }
664
665 return sum - __le32_to_cpu(mpb->check_sum);
666 }
667
668 static size_t sizeof_imsm_map(struct imsm_map *map)
669 {
670 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
671 }
672
673 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
674 {
675 /* A device can have 2 maps if it is in the middle of a migration.
676 * If second_map is:
677 * MAP_0 - we return the first map
678 * MAP_1 - we return the second map if it exists, else NULL
679 * MAP_X - we return the second map if it exists, else the first
680 */
681 struct imsm_map *map = &dev->vol.map[0];
682 struct imsm_map *map2 = NULL;
683
684 if (dev->vol.migr_state)
685 map2 = (void *)map + sizeof_imsm_map(map);
686
687 switch (second_map) {
688 case MAP_0:
689 break;
690 case MAP_1:
691 map = map2;
692 break;
693 case MAP_X:
694 if (map2)
695 map = map2;
696 break;
697 default:
698 map = NULL;
699 }
700 return map;
701
702 }
703
704 /* return the size of the device.
705 * migr_state increases the returned size if map[0] were to be duplicated
706 */
707 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
708 {
709 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
710 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
711
712 /* migrating means an additional map */
713 if (dev->vol.migr_state)
714 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
715 else if (migr_state)
716 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
717
718 return size;
719 }
720
721 #ifndef MDASSEMBLE
722 /* retrieve disk serial number list from a metadata update */
723 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
724 {
725 void *u = update;
726 struct disk_info *inf;
727
728 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
729 sizeof_imsm_dev(&update->dev, 0);
730
731 return inf;
732 }
733 #endif
734
735 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
736 {
737 int offset;
738 int i;
739 void *_mpb = mpb;
740
741 if (index >= mpb->num_raid_devs)
742 return NULL;
743
744 /* devices start after all disks */
745 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
746
747 for (i = 0; i <= index; i++)
748 if (i == index)
749 return _mpb + offset;
750 else
751 offset += sizeof_imsm_dev(_mpb + offset, 0);
752
753 return NULL;
754 }
755
756 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
757 {
758 struct intel_dev *dv;
759
760 if (index >= super->anchor->num_raid_devs)
761 return NULL;
762 for (dv = super->devlist; dv; dv = dv->next)
763 if (dv->index == index)
764 return dv->dev;
765 return NULL;
766 }
767
768 /*
769 * for second_map:
770 * == MAP_0 get first map
771 * == MAP_1 get second map
772 * == MAP_X than get map according to the current migr_state
773 */
774 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
775 int slot,
776 int second_map)
777 {
778 struct imsm_map *map;
779
780 map = get_imsm_map(dev, second_map);
781
782 /* top byte identifies disk under rebuild */
783 return __le32_to_cpu(map->disk_ord_tbl[slot]);
784 }
785
786 #define ord_to_idx(ord) (((ord) << 8) >> 8)
787 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
788 {
789 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
790
791 return ord_to_idx(ord);
792 }
793
794 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
795 {
796 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
797 }
798
799 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
800 {
801 int slot;
802 __u32 ord;
803
804 for (slot = 0; slot < map->num_members; slot++) {
805 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
806 if (ord_to_idx(ord) == idx)
807 return slot;
808 }
809
810 return -1;
811 }
812
813 static int get_imsm_raid_level(struct imsm_map *map)
814 {
815 if (map->raid_level == 1) {
816 if (map->num_members == 2)
817 return 1;
818 else
819 return 10;
820 }
821
822 return map->raid_level;
823 }
824
825 static int cmp_extent(const void *av, const void *bv)
826 {
827 const struct extent *a = av;
828 const struct extent *b = bv;
829 if (a->start < b->start)
830 return -1;
831 if (a->start > b->start)
832 return 1;
833 return 0;
834 }
835
836 static int count_memberships(struct dl *dl, struct intel_super *super)
837 {
838 int memberships = 0;
839 int i;
840
841 for (i = 0; i < super->anchor->num_raid_devs; i++) {
842 struct imsm_dev *dev = get_imsm_dev(super, i);
843 struct imsm_map *map = get_imsm_map(dev, MAP_0);
844
845 if (get_imsm_disk_slot(map, dl->index) >= 0)
846 memberships++;
847 }
848
849 return memberships;
850 }
851
852 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
853
854 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
855 {
856 /* find a list of used extents on the given physical device */
857 struct extent *rv, *e;
858 int i;
859 int memberships = count_memberships(dl, super);
860 __u32 reservation;
861
862 /* trim the reserved area for spares, so they can join any array
863 * regardless of whether the OROM has assigned sectors from the
864 * IMSM_RESERVED_SECTORS region
865 */
866 if (dl->index == -1)
867 reservation = imsm_min_reserved_sectors(super);
868 else
869 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
870
871 rv = malloc(sizeof(struct extent) * (memberships + 1));
872 if (!rv)
873 return NULL;
874 e = rv;
875
876 for (i = 0; i < super->anchor->num_raid_devs; i++) {
877 struct imsm_dev *dev = get_imsm_dev(super, i);
878 struct imsm_map *map = get_imsm_map(dev, MAP_0);
879
880 if (get_imsm_disk_slot(map, dl->index) >= 0) {
881 e->start = __le32_to_cpu(map->pba_of_lba0);
882 e->size = __le32_to_cpu(map->blocks_per_member);
883 e++;
884 }
885 }
886 qsort(rv, memberships, sizeof(*rv), cmp_extent);
887
888 /* determine the start of the metadata
889 * when no raid devices are defined use the default
890 * ...otherwise allow the metadata to truncate the value
891 * as is the case with older versions of imsm
892 */
893 if (memberships) {
894 struct extent *last = &rv[memberships - 1];
895 __u32 remainder;
896
897 remainder = __le32_to_cpu(dl->disk.total_blocks) -
898 (last->start + last->size);
899 /* round down to 1k block to satisfy precision of the kernel
900 * 'size' interface
901 */
902 remainder &= ~1UL;
903 /* make sure remainder is still sane */
904 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
905 remainder = ROUND_UP(super->len, 512) >> 9;
906 if (reservation > remainder)
907 reservation = remainder;
908 }
909 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
910 e->size = 0;
911 return rv;
912 }
913
914 /* try to determine how much space is reserved for metadata from
915 * the last get_extents() entry, otherwise fallback to the
916 * default
917 */
918 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
919 {
920 struct extent *e;
921 int i;
922 __u32 rv;
923
924 /* for spares just return a minimal reservation which will grow
925 * once the spare is picked up by an array
926 */
927 if (dl->index == -1)
928 return MPB_SECTOR_CNT;
929
930 e = get_extents(super, dl);
931 if (!e)
932 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
933
934 /* scroll to last entry */
935 for (i = 0; e[i].size; i++)
936 continue;
937
938 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
939
940 free(e);
941
942 return rv;
943 }
944
945 static int is_spare(struct imsm_disk *disk)
946 {
947 return (disk->status & SPARE_DISK) == SPARE_DISK;
948 }
949
950 static int is_configured(struct imsm_disk *disk)
951 {
952 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
953 }
954
955 static int is_failed(struct imsm_disk *disk)
956 {
957 return (disk->status & FAILED_DISK) == FAILED_DISK;
958 }
959
960 /* try to determine how much space is reserved for metadata from
961 * the last get_extents() entry on the smallest active disk,
962 * otherwise fallback to the default
963 */
964 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
965 {
966 struct extent *e;
967 int i;
968 __u32 min_active, remainder;
969 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
970 struct dl *dl, *dl_min = NULL;
971
972 if (!super)
973 return rv;
974
975 min_active = 0;
976 for (dl = super->disks; dl; dl = dl->next) {
977 if (dl->index < 0)
978 continue;
979 if (dl->disk.total_blocks < min_active || min_active == 0) {
980 dl_min = dl;
981 min_active = dl->disk.total_blocks;
982 }
983 }
984 if (!dl_min)
985 return rv;
986
987 /* find last lba used by subarrays on the smallest active disk */
988 e = get_extents(super, dl_min);
989 if (!e)
990 return rv;
991 for (i = 0; e[i].size; i++)
992 continue;
993
994 remainder = min_active - e[i].start;
995 free(e);
996
997 /* to give priority to recovery we should not require full
998 IMSM_RESERVED_SECTORS from the spare */
999 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1000
1001 /* if real reservation is smaller use that value */
1002 return (remainder < rv) ? remainder : rv;
1003 }
1004
1005 /* Return minimum size of a spare that can be used in this array*/
1006 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1007 {
1008 struct intel_super *super = st->sb;
1009 struct dl *dl;
1010 struct extent *e;
1011 int i;
1012 unsigned long long rv = 0;
1013
1014 if (!super)
1015 return rv;
1016 /* find first active disk in array */
1017 dl = super->disks;
1018 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1019 dl = dl->next;
1020 if (!dl)
1021 return rv;
1022 /* find last lba used by subarrays */
1023 e = get_extents(super, dl);
1024 if (!e)
1025 return rv;
1026 for (i = 0; e[i].size; i++)
1027 continue;
1028 if (i > 0)
1029 rv = e[i-1].start + e[i-1].size;
1030 free(e);
1031
1032 /* add the amount of space needed for metadata */
1033 rv = rv + imsm_min_reserved_sectors(super);
1034
1035 return rv * 512;
1036 }
1037
1038 static int is_gen_migration(struct imsm_dev *dev);
1039
1040 #ifndef MDASSEMBLE
1041 static __u64 blocks_per_migr_unit(struct intel_super *super,
1042 struct imsm_dev *dev);
1043
1044 static void print_imsm_dev(struct intel_super *super,
1045 struct imsm_dev *dev,
1046 char *uuid,
1047 int disk_idx)
1048 {
1049 __u64 sz;
1050 int slot, i;
1051 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1052 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1053 __u32 ord;
1054
1055 printf("\n");
1056 printf("[%.16s]:\n", dev->volume);
1057 printf(" UUID : %s\n", uuid);
1058 printf(" RAID Level : %d", get_imsm_raid_level(map));
1059 if (map2)
1060 printf(" <-- %d", get_imsm_raid_level(map2));
1061 printf("\n");
1062 printf(" Members : %d", map->num_members);
1063 if (map2)
1064 printf(" <-- %d", map2->num_members);
1065 printf("\n");
1066 printf(" Slots : [");
1067 for (i = 0; i < map->num_members; i++) {
1068 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1069 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1070 }
1071 printf("]");
1072 if (map2) {
1073 printf(" <-- [");
1074 for (i = 0; i < map2->num_members; i++) {
1075 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1076 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1077 }
1078 printf("]");
1079 }
1080 printf("\n");
1081 printf(" Failed disk : ");
1082 if (map->failed_disk_num == 0xff)
1083 printf("none");
1084 else
1085 printf("%i", map->failed_disk_num);
1086 printf("\n");
1087 slot = get_imsm_disk_slot(map, disk_idx);
1088 if (slot >= 0) {
1089 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1090 printf(" This Slot : %d%s\n", slot,
1091 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1092 } else
1093 printf(" This Slot : ?\n");
1094 sz = __le32_to_cpu(dev->size_high);
1095 sz <<= 32;
1096 sz += __le32_to_cpu(dev->size_low);
1097 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1098 human_size(sz * 512));
1099 sz = __le32_to_cpu(map->blocks_per_member);
1100 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1101 human_size(sz * 512));
1102 printf(" Sector Offset : %u\n",
1103 __le32_to_cpu(map->pba_of_lba0));
1104 printf(" Num Stripes : %u\n",
1105 __le32_to_cpu(map->num_data_stripes));
1106 printf(" Chunk Size : %u KiB",
1107 __le16_to_cpu(map->blocks_per_strip) / 2);
1108 if (map2)
1109 printf(" <-- %u KiB",
1110 __le16_to_cpu(map2->blocks_per_strip) / 2);
1111 printf("\n");
1112 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1113 printf(" Migrate State : ");
1114 if (dev->vol.migr_state) {
1115 if (migr_type(dev) == MIGR_INIT)
1116 printf("initialize\n");
1117 else if (migr_type(dev) == MIGR_REBUILD)
1118 printf("rebuild\n");
1119 else if (migr_type(dev) == MIGR_VERIFY)
1120 printf("check\n");
1121 else if (migr_type(dev) == MIGR_GEN_MIGR)
1122 printf("general migration\n");
1123 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1124 printf("state change\n");
1125 else if (migr_type(dev) == MIGR_REPAIR)
1126 printf("repair\n");
1127 else
1128 printf("<unknown:%d>\n", migr_type(dev));
1129 } else
1130 printf("idle\n");
1131 printf(" Map State : %s", map_state_str[map->map_state]);
1132 if (dev->vol.migr_state) {
1133 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1134
1135 printf(" <-- %s", map_state_str[map->map_state]);
1136 printf("\n Checkpoint : %u ",
1137 __le32_to_cpu(dev->vol.curr_migr_unit));
1138 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
1139 printf("(N/A)");
1140 else
1141 printf("(%llu)", (unsigned long long)
1142 blocks_per_migr_unit(super, dev));
1143 }
1144 printf("\n");
1145 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1146 }
1147
1148 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1149 {
1150 char str[MAX_RAID_SERIAL_LEN + 1];
1151 __u64 sz;
1152
1153 if (index < -1 || !disk)
1154 return;
1155
1156 printf("\n");
1157 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1158 if (index >= 0)
1159 printf(" Disk%02d Serial : %s\n", index, str);
1160 else
1161 printf(" Disk Serial : %s\n", str);
1162 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1163 is_configured(disk) ? " active" : "",
1164 is_failed(disk) ? " failed" : "");
1165 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1166 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1167 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1168 human_size(sz * 512));
1169 }
1170
1171 void examine_migr_rec_imsm(struct intel_super *super)
1172 {
1173 struct migr_record *migr_rec = super->migr_rec;
1174 struct imsm_super *mpb = super->anchor;
1175 int i;
1176
1177 for (i = 0; i < mpb->num_raid_devs; i++) {
1178 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1179 struct imsm_map *map;
1180 int slot;
1181
1182 if (is_gen_migration(dev) == 0)
1183 continue;
1184
1185 printf("\nMigration Record Information:");
1186
1187 /* first map under migration */
1188 map = get_imsm_map(dev, MAP_0);
1189 if (map)
1190 slot = get_imsm_disk_slot(map, super->disks->index);
1191 if ((map == NULL) || (slot > 1) || (slot < 0)) {
1192 printf(" Empty\n ");
1193 printf("Examine one of first two disks in array\n");
1194 break;
1195 }
1196 printf("\n Status : ");
1197 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1198 printf("Normal\n");
1199 else
1200 printf("Contains Data\n");
1201 printf(" Current Unit : %u\n",
1202 __le32_to_cpu(migr_rec->curr_migr_unit));
1203 printf(" Family : %u\n",
1204 __le32_to_cpu(migr_rec->family_num));
1205 printf(" Ascending : %u\n",
1206 __le32_to_cpu(migr_rec->ascending_migr));
1207 printf(" Blocks Per Unit : %u\n",
1208 __le32_to_cpu(migr_rec->blocks_per_unit));
1209 printf(" Dest. Depth Per Unit : %u\n",
1210 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1211 printf(" Checkpoint Area pba : %u\n",
1212 __le32_to_cpu(migr_rec->ckpt_area_pba));
1213 printf(" First member lba : %u\n",
1214 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1215 printf(" Total Number of Units : %u\n",
1216 __le32_to_cpu(migr_rec->num_migr_units));
1217 printf(" Size of volume : %u\n",
1218 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1219 printf(" Expansion space for LBA64 : %u\n",
1220 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1221 printf(" Record was read from : %u\n",
1222 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1223
1224 break;
1225 }
1226 }
1227 #endif /* MDASSEMBLE */
1228 /*******************************************************************************
1229 * function: imsm_check_attributes
1230 * Description: Function checks if features represented by attributes flags
1231 * are supported by mdadm.
1232 * Parameters:
1233 * attributes - Attributes read from metadata
1234 * Returns:
1235 * 0 - passed attributes contains unsupported features flags
1236 * 1 - all features are supported
1237 ******************************************************************************/
1238 static int imsm_check_attributes(__u32 attributes)
1239 {
1240 int ret_val = 1;
1241 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1242
1243 not_supported &= ~MPB_ATTRIB_IGNORED;
1244
1245 not_supported &= attributes;
1246 if (not_supported) {
1247 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1248 (unsigned)__le32_to_cpu(not_supported));
1249 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1250 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1251 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1252 }
1253 if (not_supported & MPB_ATTRIB_2TB) {
1254 dprintf("\t\tMPB_ATTRIB_2TB\n");
1255 not_supported ^= MPB_ATTRIB_2TB;
1256 }
1257 if (not_supported & MPB_ATTRIB_RAID0) {
1258 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1259 not_supported ^= MPB_ATTRIB_RAID0;
1260 }
1261 if (not_supported & MPB_ATTRIB_RAID1) {
1262 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1263 not_supported ^= MPB_ATTRIB_RAID1;
1264 }
1265 if (not_supported & MPB_ATTRIB_RAID10) {
1266 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1267 not_supported ^= MPB_ATTRIB_RAID10;
1268 }
1269 if (not_supported & MPB_ATTRIB_RAID1E) {
1270 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1271 not_supported ^= MPB_ATTRIB_RAID1E;
1272 }
1273 if (not_supported & MPB_ATTRIB_RAID5) {
1274 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1275 not_supported ^= MPB_ATTRIB_RAID5;
1276 }
1277 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1278 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1279 not_supported ^= MPB_ATTRIB_RAIDCNG;
1280 }
1281 if (not_supported & MPB_ATTRIB_BBM) {
1282 dprintf("\t\tMPB_ATTRIB_BBM\n");
1283 not_supported ^= MPB_ATTRIB_BBM;
1284 }
1285 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1286 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1287 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1288 }
1289 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1290 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1291 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1292 }
1293 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1294 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1295 not_supported ^= MPB_ATTRIB_2TB_DISK;
1296 }
1297 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1298 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1299 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1300 }
1301 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1302 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1303 not_supported ^= MPB_ATTRIB_NEVER_USE;
1304 }
1305
1306 if (not_supported)
1307 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1308
1309 ret_val = 0;
1310 }
1311
1312 return ret_val;
1313 }
1314
1315 #ifndef MDASSEMBLE
1316 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1317
1318 static void examine_super_imsm(struct supertype *st, char *homehost)
1319 {
1320 struct intel_super *super = st->sb;
1321 struct imsm_super *mpb = super->anchor;
1322 char str[MAX_SIGNATURE_LENGTH];
1323 int i;
1324 struct mdinfo info;
1325 char nbuf[64];
1326 __u32 sum;
1327 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1328 struct dl *dl;
1329
1330 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1331 printf(" Magic : %s\n", str);
1332 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1333 printf(" Version : %s\n", get_imsm_version(mpb));
1334 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1335 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1336 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1337 printf(" Attributes : ");
1338 if (imsm_check_attributes(mpb->attributes))
1339 printf("All supported\n");
1340 else
1341 printf("not supported\n");
1342 getinfo_super_imsm(st, &info, NULL);
1343 fname_from_uuid(st, &info, nbuf, ':');
1344 printf(" UUID : %s\n", nbuf + 5);
1345 sum = __le32_to_cpu(mpb->check_sum);
1346 printf(" Checksum : %08x %s\n", sum,
1347 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1348 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1349 printf(" Disks : %d\n", mpb->num_disks);
1350 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1351 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1352 if (super->bbm_log) {
1353 struct bbm_log *log = super->bbm_log;
1354
1355 printf("\n");
1356 printf("Bad Block Management Log:\n");
1357 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1358 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1359 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1360 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1361 printf(" First Spare : %llx\n",
1362 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1363 }
1364 for (i = 0; i < mpb->num_raid_devs; i++) {
1365 struct mdinfo info;
1366 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1367
1368 super->current_vol = i;
1369 getinfo_super_imsm(st, &info, NULL);
1370 fname_from_uuid(st, &info, nbuf, ':');
1371 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1372 }
1373 for (i = 0; i < mpb->num_disks; i++) {
1374 if (i == super->disks->index)
1375 continue;
1376 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1377 }
1378
1379 for (dl = super->disks; dl; dl = dl->next)
1380 if (dl->index == -1)
1381 print_imsm_disk(&dl->disk, -1, reserved);
1382
1383 examine_migr_rec_imsm(super);
1384 }
1385
1386 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1387 {
1388 /* We just write a generic IMSM ARRAY entry */
1389 struct mdinfo info;
1390 char nbuf[64];
1391 struct intel_super *super = st->sb;
1392
1393 if (!super->anchor->num_raid_devs) {
1394 printf("ARRAY metadata=imsm\n");
1395 return;
1396 }
1397
1398 getinfo_super_imsm(st, &info, NULL);
1399 fname_from_uuid(st, &info, nbuf, ':');
1400 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1401 }
1402
1403 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1404 {
1405 /* We just write a generic IMSM ARRAY entry */
1406 struct mdinfo info;
1407 char nbuf[64];
1408 char nbuf1[64];
1409 struct intel_super *super = st->sb;
1410 int i;
1411
1412 if (!super->anchor->num_raid_devs)
1413 return;
1414
1415 getinfo_super_imsm(st, &info, NULL);
1416 fname_from_uuid(st, &info, nbuf, ':');
1417 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1418 struct imsm_dev *dev = get_imsm_dev(super, i);
1419
1420 super->current_vol = i;
1421 getinfo_super_imsm(st, &info, NULL);
1422 fname_from_uuid(st, &info, nbuf1, ':');
1423 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1424 dev->volume, nbuf + 5, i, nbuf1 + 5);
1425 }
1426 }
1427
1428 static void export_examine_super_imsm(struct supertype *st)
1429 {
1430 struct intel_super *super = st->sb;
1431 struct imsm_super *mpb = super->anchor;
1432 struct mdinfo info;
1433 char nbuf[64];
1434
1435 getinfo_super_imsm(st, &info, NULL);
1436 fname_from_uuid(st, &info, nbuf, ':');
1437 printf("MD_METADATA=imsm\n");
1438 printf("MD_LEVEL=container\n");
1439 printf("MD_UUID=%s\n", nbuf+5);
1440 printf("MD_DEVICES=%u\n", mpb->num_disks);
1441 }
1442
1443 static void detail_super_imsm(struct supertype *st, char *homehost)
1444 {
1445 struct mdinfo info;
1446 char nbuf[64];
1447
1448 getinfo_super_imsm(st, &info, NULL);
1449 fname_from_uuid(st, &info, nbuf, ':');
1450 printf("\n UUID : %s\n", nbuf + 5);
1451 }
1452
1453 static void brief_detail_super_imsm(struct supertype *st)
1454 {
1455 struct mdinfo info;
1456 char nbuf[64];
1457 getinfo_super_imsm(st, &info, NULL);
1458 fname_from_uuid(st, &info, nbuf, ':');
1459 printf(" UUID=%s", nbuf + 5);
1460 }
1461
1462 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1463 static void fd2devname(int fd, char *name);
1464
1465 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1466 {
1467 /* dump an unsorted list of devices attached to AHCI Intel storage
1468 * controller, as well as non-connected ports
1469 */
1470 int hba_len = strlen(hba_path) + 1;
1471 struct dirent *ent;
1472 DIR *dir;
1473 char *path = NULL;
1474 int err = 0;
1475 unsigned long port_mask = (1 << port_count) - 1;
1476
1477 if (port_count > (int)sizeof(port_mask) * 8) {
1478 if (verbose)
1479 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1480 return 2;
1481 }
1482
1483 /* scroll through /sys/dev/block looking for devices attached to
1484 * this hba
1485 */
1486 dir = opendir("/sys/dev/block");
1487 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1488 int fd;
1489 char model[64];
1490 char vendor[64];
1491 char buf[1024];
1492 int major, minor;
1493 char *device;
1494 char *c;
1495 int port;
1496 int type;
1497
1498 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1499 continue;
1500 path = devt_to_devpath(makedev(major, minor));
1501 if (!path)
1502 continue;
1503 if (!path_attached_to_hba(path, hba_path)) {
1504 free(path);
1505 path = NULL;
1506 continue;
1507 }
1508
1509 /* retrieve the scsi device type */
1510 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1511 if (verbose)
1512 fprintf(stderr, Name ": failed to allocate 'device'\n");
1513 err = 2;
1514 break;
1515 }
1516 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1517 if (load_sys(device, buf) != 0) {
1518 if (verbose)
1519 fprintf(stderr, Name ": failed to read device type for %s\n",
1520 path);
1521 err = 2;
1522 free(device);
1523 break;
1524 }
1525 type = strtoul(buf, NULL, 10);
1526
1527 /* if it's not a disk print the vendor and model */
1528 if (!(type == 0 || type == 7 || type == 14)) {
1529 vendor[0] = '\0';
1530 model[0] = '\0';
1531 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1532 if (load_sys(device, buf) == 0) {
1533 strncpy(vendor, buf, sizeof(vendor));
1534 vendor[sizeof(vendor) - 1] = '\0';
1535 c = (char *) &vendor[sizeof(vendor) - 1];
1536 while (isspace(*c) || *c == '\0')
1537 *c-- = '\0';
1538
1539 }
1540 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1541 if (load_sys(device, buf) == 0) {
1542 strncpy(model, buf, sizeof(model));
1543 model[sizeof(model) - 1] = '\0';
1544 c = (char *) &model[sizeof(model) - 1];
1545 while (isspace(*c) || *c == '\0')
1546 *c-- = '\0';
1547 }
1548
1549 if (vendor[0] && model[0])
1550 sprintf(buf, "%.64s %.64s", vendor, model);
1551 else
1552 switch (type) { /* numbers from hald/linux/device.c */
1553 case 1: sprintf(buf, "tape"); break;
1554 case 2: sprintf(buf, "printer"); break;
1555 case 3: sprintf(buf, "processor"); break;
1556 case 4:
1557 case 5: sprintf(buf, "cdrom"); break;
1558 case 6: sprintf(buf, "scanner"); break;
1559 case 8: sprintf(buf, "media_changer"); break;
1560 case 9: sprintf(buf, "comm"); break;
1561 case 12: sprintf(buf, "raid"); break;
1562 default: sprintf(buf, "unknown");
1563 }
1564 } else
1565 buf[0] = '\0';
1566 free(device);
1567
1568 /* chop device path to 'host%d' and calculate the port number */
1569 c = strchr(&path[hba_len], '/');
1570 if (!c) {
1571 if (verbose)
1572 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1573 err = 2;
1574 break;
1575 }
1576 *c = '\0';
1577 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1578 port -= host_base;
1579 else {
1580 if (verbose) {
1581 *c = '/'; /* repair the full string */
1582 fprintf(stderr, Name ": failed to determine port number for %s\n",
1583 path);
1584 }
1585 err = 2;
1586 break;
1587 }
1588
1589 /* mark this port as used */
1590 port_mask &= ~(1 << port);
1591
1592 /* print out the device information */
1593 if (buf[0]) {
1594 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1595 continue;
1596 }
1597
1598 fd = dev_open(ent->d_name, O_RDONLY);
1599 if (fd < 0)
1600 printf(" Port%d : - disk info unavailable -\n", port);
1601 else {
1602 fd2devname(fd, buf);
1603 printf(" Port%d : %s", port, buf);
1604 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1605 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1606 else
1607 printf(" ()\n");
1608 close(fd);
1609 }
1610 free(path);
1611 path = NULL;
1612 }
1613 if (path)
1614 free(path);
1615 if (dir)
1616 closedir(dir);
1617 if (err == 0) {
1618 int i;
1619
1620 for (i = 0; i < port_count; i++)
1621 if (port_mask & (1 << i))
1622 printf(" Port%d : - no device attached -\n", i);
1623 }
1624
1625 return err;
1626 }
1627
1628 static void print_found_intel_controllers(struct sys_dev *elem)
1629 {
1630 for (; elem; elem = elem->next) {
1631 fprintf(stderr, Name ": found Intel(R) ");
1632 if (elem->type == SYS_DEV_SATA)
1633 fprintf(stderr, "SATA ");
1634 else if (elem->type == SYS_DEV_SAS)
1635 fprintf(stderr, "SAS ");
1636 fprintf(stderr, "RAID controller");
1637 if (elem->pci_id)
1638 fprintf(stderr, " at %s", elem->pci_id);
1639 fprintf(stderr, ".\n");
1640 }
1641 fflush(stderr);
1642 }
1643
1644 static int ahci_get_port_count(const char *hba_path, int *port_count)
1645 {
1646 struct dirent *ent;
1647 DIR *dir;
1648 int host_base = -1;
1649
1650 *port_count = 0;
1651 if ((dir = opendir(hba_path)) == NULL)
1652 return -1;
1653
1654 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1655 int host;
1656
1657 if (sscanf(ent->d_name, "host%d", &host) != 1)
1658 continue;
1659 if (*port_count == 0)
1660 host_base = host;
1661 else if (host < host_base)
1662 host_base = host;
1663
1664 if (host + 1 > *port_count + host_base)
1665 *port_count = host + 1 - host_base;
1666 }
1667 closedir(dir);
1668 return host_base;
1669 }
1670
1671 static void print_imsm_capability(const struct imsm_orom *orom)
1672 {
1673 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1674 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1675 orom->hotfix_ver, orom->build);
1676 printf(" RAID Levels :%s%s%s%s%s\n",
1677 imsm_orom_has_raid0(orom) ? " raid0" : "",
1678 imsm_orom_has_raid1(orom) ? " raid1" : "",
1679 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1680 imsm_orom_has_raid10(orom) ? " raid10" : "",
1681 imsm_orom_has_raid5(orom) ? " raid5" : "");
1682 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1683 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1684 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1685 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1686 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1687 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1688 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1689 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1690 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1691 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1692 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1693 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1694 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1695 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1696 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1697 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1698 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1699 printf(" Max Disks : %d\n", orom->tds);
1700 printf(" Max Volumes : %d\n", orom->vpa);
1701 return;
1702 }
1703
1704 static int detail_platform_imsm(int verbose, int enumerate_only)
1705 {
1706 /* There are two components to imsm platform support, the ahci SATA
1707 * controller and the option-rom. To find the SATA controller we
1708 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1709 * controller with the Intel vendor id is present. This approach
1710 * allows mdadm to leverage the kernel's ahci detection logic, with the
1711 * caveat that if ahci.ko is not loaded mdadm will not be able to
1712 * detect platform raid capabilities. The option-rom resides in a
1713 * platform "Adapter ROM". We scan for its signature to retrieve the
1714 * platform capabilities. If raid support is disabled in the BIOS the
1715 * option-rom capability structure will not be available.
1716 */
1717 const struct imsm_orom *orom;
1718 struct sys_dev *list, *hba;
1719 int host_base = 0;
1720 int port_count = 0;
1721 int result=0;
1722
1723 if (enumerate_only) {
1724 if (check_env("IMSM_NO_PLATFORM"))
1725 return 0;
1726 list = find_intel_devices();
1727 if (!list)
1728 return 2;
1729 for (hba = list; hba; hba = hba->next) {
1730 orom = find_imsm_capability(hba->type);
1731 if (!orom) {
1732 result = 2;
1733 break;
1734 }
1735 }
1736 free_sys_dev(&list);
1737 return result;
1738 }
1739
1740 list = find_intel_devices();
1741 if (!list) {
1742 if (verbose)
1743 fprintf(stderr, Name ": no active Intel(R) RAID "
1744 "controller found.\n");
1745 free_sys_dev(&list);
1746 return 2;
1747 } else if (verbose)
1748 print_found_intel_controllers(list);
1749
1750 for (hba = list; hba; hba = hba->next) {
1751 orom = find_imsm_capability(hba->type);
1752 if (!orom)
1753 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1754 hba->path, get_sys_dev_type(hba->type));
1755 else
1756 print_imsm_capability(orom);
1757 }
1758
1759 for (hba = list; hba; hba = hba->next) {
1760 printf(" I/O Controller : %s (%s)\n",
1761 hba->path, get_sys_dev_type(hba->type));
1762
1763 if (hba->type == SYS_DEV_SATA) {
1764 host_base = ahci_get_port_count(hba->path, &port_count);
1765 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1766 if (verbose)
1767 fprintf(stderr, Name ": failed to enumerate "
1768 "ports on SATA controller at %s.", hba->pci_id);
1769 result |= 2;
1770 }
1771 }
1772 }
1773
1774 free_sys_dev(&list);
1775 return result;
1776 }
1777 #endif
1778
1779 static int match_home_imsm(struct supertype *st, char *homehost)
1780 {
1781 /* the imsm metadata format does not specify any host
1782 * identification information. We return -1 since we can never
1783 * confirm nor deny whether a given array is "meant" for this
1784 * host. We rely on compare_super and the 'family_num' fields to
1785 * exclude member disks that do not belong, and we rely on
1786 * mdadm.conf to specify the arrays that should be assembled.
1787 * Auto-assembly may still pick up "foreign" arrays.
1788 */
1789
1790 return -1;
1791 }
1792
1793 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1794 {
1795 /* The uuid returned here is used for:
1796 * uuid to put into bitmap file (Create, Grow)
1797 * uuid for backup header when saving critical section (Grow)
1798 * comparing uuids when re-adding a device into an array
1799 * In these cases the uuid required is that of the data-array,
1800 * not the device-set.
1801 * uuid to recognise same set when adding a missing device back
1802 * to an array. This is a uuid for the device-set.
1803 *
1804 * For each of these we can make do with a truncated
1805 * or hashed uuid rather than the original, as long as
1806 * everyone agrees.
1807 * In each case the uuid required is that of the data-array,
1808 * not the device-set.
1809 */
1810 /* imsm does not track uuid's so we synthesis one using sha1 on
1811 * - The signature (Which is constant for all imsm array, but no matter)
1812 * - the orig_family_num of the container
1813 * - the index number of the volume
1814 * - the 'serial' number of the volume.
1815 * Hopefully these are all constant.
1816 */
1817 struct intel_super *super = st->sb;
1818
1819 char buf[20];
1820 struct sha1_ctx ctx;
1821 struct imsm_dev *dev = NULL;
1822 __u32 family_num;
1823
1824 /* some mdadm versions failed to set ->orig_family_num, in which
1825 * case fall back to ->family_num. orig_family_num will be
1826 * fixed up with the first metadata update.
1827 */
1828 family_num = super->anchor->orig_family_num;
1829 if (family_num == 0)
1830 family_num = super->anchor->family_num;
1831 sha1_init_ctx(&ctx);
1832 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1833 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1834 if (super->current_vol >= 0)
1835 dev = get_imsm_dev(super, super->current_vol);
1836 if (dev) {
1837 __u32 vol = super->current_vol;
1838 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1839 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1840 }
1841 sha1_finish_ctx(&ctx, buf);
1842 memcpy(uuid, buf, 4*4);
1843 }
1844
1845 #if 0
1846 static void
1847 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1848 {
1849 __u8 *v = get_imsm_version(mpb);
1850 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1851 char major[] = { 0, 0, 0 };
1852 char minor[] = { 0 ,0, 0 };
1853 char patch[] = { 0, 0, 0 };
1854 char *ver_parse[] = { major, minor, patch };
1855 int i, j;
1856
1857 i = j = 0;
1858 while (*v != '\0' && v < end) {
1859 if (*v != '.' && j < 2)
1860 ver_parse[i][j++] = *v;
1861 else {
1862 i++;
1863 j = 0;
1864 }
1865 v++;
1866 }
1867
1868 *m = strtol(minor, NULL, 0);
1869 *p = strtol(patch, NULL, 0);
1870 }
1871 #endif
1872
1873 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1874 {
1875 /* migr_strip_size when repairing or initializing parity */
1876 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1877 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1878
1879 switch (get_imsm_raid_level(map)) {
1880 case 5:
1881 case 10:
1882 return chunk;
1883 default:
1884 return 128*1024 >> 9;
1885 }
1886 }
1887
1888 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1889 {
1890 /* migr_strip_size when rebuilding a degraded disk, no idea why
1891 * this is different than migr_strip_size_resync(), but it's good
1892 * to be compatible
1893 */
1894 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1895 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1896
1897 switch (get_imsm_raid_level(map)) {
1898 case 1:
1899 case 10:
1900 if (map->num_members % map->num_domains == 0)
1901 return 128*1024 >> 9;
1902 else
1903 return chunk;
1904 case 5:
1905 return max((__u32) 64*1024 >> 9, chunk);
1906 default:
1907 return 128*1024 >> 9;
1908 }
1909 }
1910
1911 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1912 {
1913 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1914 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1915 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1916 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1917
1918 return max((__u32) 1, hi_chunk / lo_chunk);
1919 }
1920
1921 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1922 {
1923 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1924 int level = get_imsm_raid_level(lo);
1925
1926 if (level == 1 || level == 10) {
1927 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1928
1929 return hi->num_domains;
1930 } else
1931 return num_stripes_per_unit_resync(dev);
1932 }
1933
1934 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1935 {
1936 /* named 'imsm_' because raid0, raid1 and raid10
1937 * counter-intuitively have the same number of data disks
1938 */
1939 struct imsm_map *map = get_imsm_map(dev, second_map);
1940
1941 switch (get_imsm_raid_level(map)) {
1942 case 0:
1943 case 1:
1944 case 10:
1945 return map->num_members;
1946 case 5:
1947 return map->num_members - 1;
1948 default:
1949 dprintf("%s: unsupported raid level\n", __func__);
1950 return 0;
1951 }
1952 }
1953
1954 static __u32 parity_segment_depth(struct imsm_dev *dev)
1955 {
1956 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1957 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1958
1959 switch(get_imsm_raid_level(map)) {
1960 case 1:
1961 case 10:
1962 return chunk * map->num_domains;
1963 case 5:
1964 return chunk * map->num_members;
1965 default:
1966 return chunk;
1967 }
1968 }
1969
1970 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1971 {
1972 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1973 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1974 __u32 strip = block / chunk;
1975
1976 switch (get_imsm_raid_level(map)) {
1977 case 1:
1978 case 10: {
1979 __u32 vol_strip = (strip * map->num_domains) + 1;
1980 __u32 vol_stripe = vol_strip / map->num_members;
1981
1982 return vol_stripe * chunk + block % chunk;
1983 } case 5: {
1984 __u32 stripe = strip / (map->num_members - 1);
1985
1986 return stripe * chunk + block % chunk;
1987 }
1988 default:
1989 return 0;
1990 }
1991 }
1992
1993 static __u64 blocks_per_migr_unit(struct intel_super *super,
1994 struct imsm_dev *dev)
1995 {
1996 /* calculate the conversion factor between per member 'blocks'
1997 * (md/{resync,rebuild}_start) and imsm migration units, return
1998 * 0 for the 'not migrating' and 'unsupported migration' cases
1999 */
2000 if (!dev->vol.migr_state)
2001 return 0;
2002
2003 switch (migr_type(dev)) {
2004 case MIGR_GEN_MIGR: {
2005 struct migr_record *migr_rec = super->migr_rec;
2006 return __le32_to_cpu(migr_rec->blocks_per_unit);
2007 }
2008 case MIGR_VERIFY:
2009 case MIGR_REPAIR:
2010 case MIGR_INIT: {
2011 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2012 __u32 stripes_per_unit;
2013 __u32 blocks_per_unit;
2014 __u32 parity_depth;
2015 __u32 migr_chunk;
2016 __u32 block_map;
2017 __u32 block_rel;
2018 __u32 segment;
2019 __u32 stripe;
2020 __u8 disks;
2021
2022 /* yes, this is really the translation of migr_units to
2023 * per-member blocks in the 'resync' case
2024 */
2025 stripes_per_unit = num_stripes_per_unit_resync(dev);
2026 migr_chunk = migr_strip_blocks_resync(dev);
2027 disks = imsm_num_data_members(dev, MAP_0);
2028 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2029 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2030 segment = blocks_per_unit / stripe;
2031 block_rel = blocks_per_unit - segment * stripe;
2032 parity_depth = parity_segment_depth(dev);
2033 block_map = map_migr_block(dev, block_rel);
2034 return block_map + parity_depth * segment;
2035 }
2036 case MIGR_REBUILD: {
2037 __u32 stripes_per_unit;
2038 __u32 migr_chunk;
2039
2040 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2041 migr_chunk = migr_strip_blocks_rebuild(dev);
2042 return migr_chunk * stripes_per_unit;
2043 }
2044 case MIGR_STATE_CHANGE:
2045 default:
2046 return 0;
2047 }
2048 }
2049
2050 static int imsm_level_to_layout(int level)
2051 {
2052 switch (level) {
2053 case 0:
2054 case 1:
2055 return 0;
2056 case 5:
2057 case 6:
2058 return ALGORITHM_LEFT_ASYMMETRIC;
2059 case 10:
2060 return 0x102;
2061 }
2062 return UnSet;
2063 }
2064
2065 /*******************************************************************************
2066 * Function: read_imsm_migr_rec
2067 * Description: Function reads imsm migration record from last sector of disk
2068 * Parameters:
2069 * fd : disk descriptor
2070 * super : metadata info
2071 * Returns:
2072 * 0 : success,
2073 * -1 : fail
2074 ******************************************************************************/
2075 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2076 {
2077 int ret_val = -1;
2078 unsigned long long dsize;
2079
2080 get_dev_size(fd, NULL, &dsize);
2081 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2082 fprintf(stderr,
2083 Name ": Cannot seek to anchor block: %s\n",
2084 strerror(errno));
2085 goto out;
2086 }
2087 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2088 MIGR_REC_BUF_SIZE) {
2089 fprintf(stderr,
2090 Name ": Cannot read migr record block: %s\n",
2091 strerror(errno));
2092 goto out;
2093 }
2094 ret_val = 0;
2095
2096 out:
2097 return ret_val;
2098 }
2099
2100 static struct imsm_dev *imsm_get_device_during_migration(
2101 struct intel_super *super)
2102 {
2103
2104 struct intel_dev *dv;
2105
2106 for (dv = super->devlist; dv; dv = dv->next) {
2107 if (is_gen_migration(dv->dev))
2108 return dv->dev;
2109 }
2110 return NULL;
2111 }
2112
2113 /*******************************************************************************
2114 * Function: load_imsm_migr_rec
2115 * Description: Function reads imsm migration record (it is stored at the last
2116 * sector of disk)
2117 * Parameters:
2118 * super : imsm internal array info
2119 * info : general array info
2120 * Returns:
2121 * 0 : success
2122 * -1 : fail
2123 ******************************************************************************/
2124 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2125 {
2126 struct mdinfo *sd;
2127 struct dl *dl = NULL;
2128 char nm[30];
2129 int retval = -1;
2130 int fd = -1;
2131 struct imsm_dev *dev;
2132 struct imsm_map *map = NULL;
2133 int slot;
2134
2135 /* find map under migration */
2136 dev = imsm_get_device_during_migration(super);
2137 /* nothing to load,no migration in progress?
2138 */
2139 if (dev == NULL)
2140 return 0;
2141 map = get_imsm_map(dev, MAP_0);
2142
2143 if (info) {
2144 for (sd = info->devs ; sd ; sd = sd->next) {
2145 /* skip spare and failed disks
2146 */
2147 if (sd->disk.raid_disk < 0)
2148 continue;
2149 /* read only from one of the first two slots */
2150 if (map)
2151 slot = get_imsm_disk_slot(map,
2152 sd->disk.raid_disk);
2153 if ((map == NULL) || (slot > 1) || (slot < 0))
2154 continue;
2155
2156 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2157 fd = dev_open(nm, O_RDONLY);
2158 if (fd >= 0)
2159 break;
2160 }
2161 }
2162 if (fd < 0) {
2163 for (dl = super->disks; dl; dl = dl->next) {
2164 /* skip spare and failed disks
2165 */
2166 if (dl->index < 0)
2167 continue;
2168 /* read only from one of the first two slots */
2169 if (map)
2170 slot = get_imsm_disk_slot(map, dl->index);
2171 if ((map == NULL) || (slot > 1) || (slot < 0))
2172 continue;
2173 sprintf(nm, "%d:%d", dl->major, dl->minor);
2174 fd = dev_open(nm, O_RDONLY);
2175 if (fd >= 0)
2176 break;
2177 }
2178 }
2179 if (fd < 0)
2180 goto out;
2181 retval = read_imsm_migr_rec(fd, super);
2182
2183 out:
2184 if (fd >= 0)
2185 close(fd);
2186 return retval;
2187 }
2188
2189 #ifndef MDASSEMBLE
2190 /*******************************************************************************
2191 * function: imsm_create_metadata_checkpoint_update
2192 * Description: It creates update for checkpoint change.
2193 * Parameters:
2194 * super : imsm internal array info
2195 * u : pointer to prepared update
2196 * Returns:
2197 * Uptate length.
2198 * If length is equal to 0, input pointer u contains no update
2199 ******************************************************************************/
2200 static int imsm_create_metadata_checkpoint_update(
2201 struct intel_super *super,
2202 struct imsm_update_general_migration_checkpoint **u)
2203 {
2204
2205 int update_memory_size = 0;
2206
2207 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2208
2209 if (u == NULL)
2210 return 0;
2211 *u = NULL;
2212
2213 /* size of all update data without anchor */
2214 update_memory_size =
2215 sizeof(struct imsm_update_general_migration_checkpoint);
2216
2217 *u = calloc(1, update_memory_size);
2218 if (*u == NULL) {
2219 dprintf("error: cannot get memory for "
2220 "imsm_create_metadata_checkpoint_update update\n");
2221 return 0;
2222 }
2223 (*u)->type = update_general_migration_checkpoint;
2224 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2225 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2226 (*u)->curr_migr_unit);
2227
2228 return update_memory_size;
2229 }
2230
2231
2232 static void imsm_update_metadata_locally(struct supertype *st,
2233 void *buf, int len);
2234
2235 /*******************************************************************************
2236 * Function: write_imsm_migr_rec
2237 * Description: Function writes imsm migration record
2238 * (at the last sector of disk)
2239 * Parameters:
2240 * super : imsm internal array info
2241 * Returns:
2242 * 0 : success
2243 * -1 : if fail
2244 ******************************************************************************/
2245 static int write_imsm_migr_rec(struct supertype *st)
2246 {
2247 struct intel_super *super = st->sb;
2248 unsigned long long dsize;
2249 char nm[30];
2250 int fd = -1;
2251 int retval = -1;
2252 struct dl *sd;
2253 int len;
2254 struct imsm_update_general_migration_checkpoint *u;
2255 struct imsm_dev *dev;
2256 struct imsm_map *map = NULL;
2257
2258 /* find map under migration */
2259 dev = imsm_get_device_during_migration(super);
2260 /* if no migration, write buffer anyway to clear migr_record
2261 * on disk based on first available device
2262 */
2263 if (dev == NULL)
2264 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2265 super->current_vol);
2266
2267 map = get_imsm_map(dev, MAP_0);
2268
2269 for (sd = super->disks ; sd ; sd = sd->next) {
2270 int slot;
2271
2272 /* skip failed and spare devices */
2273 if (sd->index < 0)
2274 continue;
2275 /* write to 2 first slots only */
2276 if (map)
2277 slot = get_imsm_disk_slot(map, sd->index);
2278 if ((map == NULL) || (slot > 1) || (slot < 0))
2279 continue;
2280
2281 sprintf(nm, "%d:%d", sd->major, sd->minor);
2282 fd = dev_open(nm, O_RDWR);
2283 if (fd < 0)
2284 continue;
2285 get_dev_size(fd, NULL, &dsize);
2286 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2287 fprintf(stderr,
2288 Name ": Cannot seek to anchor block: %s\n",
2289 strerror(errno));
2290 goto out;
2291 }
2292 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2293 MIGR_REC_BUF_SIZE) {
2294 fprintf(stderr,
2295 Name ": Cannot write migr record block: %s\n",
2296 strerror(errno));
2297 goto out;
2298 }
2299 close(fd);
2300 fd = -1;
2301 }
2302 /* update checkpoint information in metadata */
2303 len = imsm_create_metadata_checkpoint_update(super, &u);
2304
2305 if (len <= 0) {
2306 dprintf("imsm: Cannot prepare update\n");
2307 goto out;
2308 }
2309 /* update metadata locally */
2310 imsm_update_metadata_locally(st, u, len);
2311 /* and possibly remotely */
2312 if (st->update_tail) {
2313 append_metadata_update(st, u, len);
2314 /* during reshape we do all work inside metadata handler
2315 * manage_reshape(), so metadata update has to be triggered
2316 * insida it
2317 */
2318 flush_metadata_updates(st);
2319 st->update_tail = &st->updates;
2320 } else
2321 free(u);
2322
2323 retval = 0;
2324 out:
2325 if (fd >= 0)
2326 close(fd);
2327 return retval;
2328 }
2329 #endif /* MDASSEMBLE */
2330
2331 /* spare/missing disks activations are not allowe when
2332 * array/container performs reshape operation, because
2333 * all arrays in container works on the same disks set
2334 */
2335 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2336 {
2337 int rv = 0;
2338 struct intel_dev *i_dev;
2339 struct imsm_dev *dev;
2340
2341 /* check whole container
2342 */
2343 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2344 dev = i_dev->dev;
2345 if (is_gen_migration(dev)) {
2346 /* No repair during any migration in container
2347 */
2348 rv = 1;
2349 break;
2350 }
2351 }
2352 return rv;
2353 }
2354
2355 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2356 {
2357 struct intel_super *super = st->sb;
2358 struct migr_record *migr_rec = super->migr_rec;
2359 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2360 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2361 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2362 struct imsm_map *map_to_analyse = map;
2363 struct dl *dl;
2364 char *devname;
2365 unsigned int component_size_alligment;
2366 int map_disks = info->array.raid_disks;
2367
2368 memset(info, 0, sizeof(*info));
2369 if (prev_map)
2370 map_to_analyse = prev_map;
2371
2372 dl = super->current_disk;
2373
2374 info->container_member = super->current_vol;
2375 info->array.raid_disks = map->num_members;
2376 info->array.level = get_imsm_raid_level(map_to_analyse);
2377 info->array.layout = imsm_level_to_layout(info->array.level);
2378 info->array.md_minor = -1;
2379 info->array.ctime = 0;
2380 info->array.utime = 0;
2381 info->array.chunk_size =
2382 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2383 info->array.state = !dev->vol.dirty;
2384 info->custom_array_size = __le32_to_cpu(dev->size_high);
2385 info->custom_array_size <<= 32;
2386 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2387 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2388
2389 if (is_gen_migration(dev)) {
2390 info->reshape_active = 1;
2391 info->new_level = get_imsm_raid_level(map);
2392 info->new_layout = imsm_level_to_layout(info->new_level);
2393 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2394 info->delta_disks = map->num_members - prev_map->num_members;
2395 if (info->delta_disks) {
2396 /* this needs to be applied to every array
2397 * in the container.
2398 */
2399 info->reshape_active = CONTAINER_RESHAPE;
2400 }
2401 /* We shape information that we give to md might have to be
2402 * modify to cope with md's requirement for reshaping arrays.
2403 * For example, when reshaping a RAID0, md requires it to be
2404 * presented as a degraded RAID4.
2405 * Also if a RAID0 is migrating to a RAID5 we need to specify
2406 * the array as already being RAID5, but the 'before' layout
2407 * is a RAID4-like layout.
2408 */
2409 switch (info->array.level) {
2410 case 0:
2411 switch(info->new_level) {
2412 case 0:
2413 /* conversion is happening as RAID4 */
2414 info->array.level = 4;
2415 info->array.raid_disks += 1;
2416 break;
2417 case 5:
2418 /* conversion is happening as RAID5 */
2419 info->array.level = 5;
2420 info->array.layout = ALGORITHM_PARITY_N;
2421 info->delta_disks -= 1;
2422 break;
2423 default:
2424 /* FIXME error message */
2425 info->array.level = UnSet;
2426 break;
2427 }
2428 break;
2429 }
2430 } else {
2431 info->new_level = UnSet;
2432 info->new_layout = UnSet;
2433 info->new_chunk = info->array.chunk_size;
2434 info->delta_disks = 0;
2435 }
2436
2437 if (dl) {
2438 info->disk.major = dl->major;
2439 info->disk.minor = dl->minor;
2440 info->disk.number = dl->index;
2441 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2442 dl->index);
2443 }
2444
2445 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2446 info->component_size =
2447 __le32_to_cpu(map_to_analyse->blocks_per_member);
2448
2449 /* check component size aligment
2450 */
2451 component_size_alligment =
2452 info->component_size % (info->array.chunk_size/512);
2453
2454 if (component_size_alligment &&
2455 (info->array.level != 1) && (info->array.level != UnSet)) {
2456 dprintf("imsm: reported component size alligned from %llu ",
2457 info->component_size);
2458 info->component_size -= component_size_alligment;
2459 dprintf("to %llu (%i).\n",
2460 info->component_size, component_size_alligment);
2461 }
2462
2463 memset(info->uuid, 0, sizeof(info->uuid));
2464 info->recovery_start = MaxSector;
2465
2466 info->reshape_progress = 0;
2467 info->resync_start = MaxSector;
2468 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2469 dev->vol.dirty) &&
2470 imsm_reshape_blocks_arrays_changes(super) == 0) {
2471 info->resync_start = 0;
2472 }
2473 if (dev->vol.migr_state) {
2474 switch (migr_type(dev)) {
2475 case MIGR_REPAIR:
2476 case MIGR_INIT: {
2477 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2478 dev);
2479 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2480
2481 info->resync_start = blocks_per_unit * units;
2482 break;
2483 }
2484 case MIGR_GEN_MIGR: {
2485 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2486 dev);
2487 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2488 unsigned long long array_blocks;
2489 int used_disks;
2490
2491 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2492 (units <
2493 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2494 (super->migr_rec->rec_status ==
2495 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2496 units++;
2497
2498 info->reshape_progress = blocks_per_unit * units;
2499
2500 dprintf("IMSM: General Migration checkpoint : %llu "
2501 "(%llu) -> read reshape progress : %llu\n",
2502 (unsigned long long)units,
2503 (unsigned long long)blocks_per_unit,
2504 info->reshape_progress);
2505
2506 used_disks = imsm_num_data_members(dev, MAP_1);
2507 if (used_disks > 0) {
2508 array_blocks = map->blocks_per_member *
2509 used_disks;
2510 /* round array size down to closest MB
2511 */
2512 info->custom_array_size = (array_blocks
2513 >> SECT_PER_MB_SHIFT)
2514 << SECT_PER_MB_SHIFT;
2515 }
2516 }
2517 case MIGR_VERIFY:
2518 /* we could emulate the checkpointing of
2519 * 'sync_action=check' migrations, but for now
2520 * we just immediately complete them
2521 */
2522 case MIGR_REBUILD:
2523 /* this is handled by container_content_imsm() */
2524 case MIGR_STATE_CHANGE:
2525 /* FIXME handle other migrations */
2526 default:
2527 /* we are not dirty, so... */
2528 info->resync_start = MaxSector;
2529 }
2530 }
2531
2532 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2533 info->name[MAX_RAID_SERIAL_LEN] = 0;
2534
2535 info->array.major_version = -1;
2536 info->array.minor_version = -2;
2537 devname = devnum2devname(st->container_dev);
2538 *info->text_version = '\0';
2539 if (devname)
2540 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2541 free(devname);
2542 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2543 uuid_from_super_imsm(st, info->uuid);
2544
2545 if (dmap) {
2546 int i, j;
2547 for (i=0; i<map_disks; i++) {
2548 dmap[i] = 0;
2549 if (i < info->array.raid_disks) {
2550 struct imsm_disk *dsk;
2551 j = get_imsm_disk_idx(dev, i, MAP_X);
2552 dsk = get_imsm_disk(super, j);
2553 if (dsk && (dsk->status & CONFIGURED_DISK))
2554 dmap[i] = 1;
2555 }
2556 }
2557 }
2558 }
2559
2560 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2561 int failed, int look_in_map);
2562
2563 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2564 int look_in_map);
2565
2566 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2567 {
2568 if (is_gen_migration(dev)) {
2569 int failed;
2570 __u8 map_state;
2571 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2572
2573 failed = imsm_count_failed(super, dev, MAP_1);
2574 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2575 if (map2->map_state != map_state) {
2576 map2->map_state = map_state;
2577 super->updates_pending++;
2578 }
2579 }
2580 }
2581
2582 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2583 {
2584 struct dl *d;
2585
2586 for (d = super->missing; d; d = d->next)
2587 if (d->index == index)
2588 return &d->disk;
2589 return NULL;
2590 }
2591
2592 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2593 {
2594 struct intel_super *super = st->sb;
2595 struct imsm_disk *disk;
2596 int map_disks = info->array.raid_disks;
2597 int max_enough = -1;
2598 int i;
2599 struct imsm_super *mpb;
2600
2601 if (super->current_vol >= 0) {
2602 getinfo_super_imsm_volume(st, info, map);
2603 return;
2604 }
2605 memset(info, 0, sizeof(*info));
2606
2607 /* Set raid_disks to zero so that Assemble will always pull in valid
2608 * spares
2609 */
2610 info->array.raid_disks = 0;
2611 info->array.level = LEVEL_CONTAINER;
2612 info->array.layout = 0;
2613 info->array.md_minor = -1;
2614 info->array.ctime = 0; /* N/A for imsm */
2615 info->array.utime = 0;
2616 info->array.chunk_size = 0;
2617
2618 info->disk.major = 0;
2619 info->disk.minor = 0;
2620 info->disk.raid_disk = -1;
2621 info->reshape_active = 0;
2622 info->array.major_version = -1;
2623 info->array.minor_version = -2;
2624 strcpy(info->text_version, "imsm");
2625 info->safe_mode_delay = 0;
2626 info->disk.number = -1;
2627 info->disk.state = 0;
2628 info->name[0] = 0;
2629 info->recovery_start = MaxSector;
2630 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2631
2632 /* do we have the all the insync disks that we expect? */
2633 mpb = super->anchor;
2634
2635 for (i = 0; i < mpb->num_raid_devs; i++) {
2636 struct imsm_dev *dev = get_imsm_dev(super, i);
2637 int failed, enough, j, missing = 0;
2638 struct imsm_map *map;
2639 __u8 state;
2640
2641 failed = imsm_count_failed(super, dev, MAP_0);
2642 state = imsm_check_degraded(super, dev, failed, MAP_0);
2643 map = get_imsm_map(dev, MAP_0);
2644
2645 /* any newly missing disks?
2646 * (catches single-degraded vs double-degraded)
2647 */
2648 for (j = 0; j < map->num_members; j++) {
2649 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2650 __u32 idx = ord_to_idx(ord);
2651
2652 if (!(ord & IMSM_ORD_REBUILD) &&
2653 get_imsm_missing(super, idx)) {
2654 missing = 1;
2655 break;
2656 }
2657 }
2658
2659 if (state == IMSM_T_STATE_FAILED)
2660 enough = -1;
2661 else if (state == IMSM_T_STATE_DEGRADED &&
2662 (state != map->map_state || missing))
2663 enough = 0;
2664 else /* we're normal, or already degraded */
2665 enough = 1;
2666
2667 /* in the missing/failed disk case check to see
2668 * if at least one array is runnable
2669 */
2670 max_enough = max(max_enough, enough);
2671 }
2672 dprintf("%s: enough: %d\n", __func__, max_enough);
2673 info->container_enough = max_enough;
2674
2675 if (super->disks) {
2676 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2677
2678 disk = &super->disks->disk;
2679 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2680 info->component_size = reserved;
2681 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2682 /* we don't change info->disk.raid_disk here because
2683 * this state will be finalized in mdmon after we have
2684 * found the 'most fresh' version of the metadata
2685 */
2686 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2687 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2688 }
2689
2690 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2691 * ->compare_super may have updated the 'num_raid_devs' field for spares
2692 */
2693 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2694 uuid_from_super_imsm(st, info->uuid);
2695 else
2696 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2697
2698 /* I don't know how to compute 'map' on imsm, so use safe default */
2699 if (map) {
2700 int i;
2701 for (i = 0; i < map_disks; i++)
2702 map[i] = 1;
2703 }
2704
2705 }
2706
2707 /* allocates memory and fills disk in mdinfo structure
2708 * for each disk in array */
2709 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2710 {
2711 struct mdinfo *mddev = NULL;
2712 struct intel_super *super = st->sb;
2713 struct imsm_disk *disk;
2714 int count = 0;
2715 struct dl *dl;
2716 if (!super || !super->disks)
2717 return NULL;
2718 dl = super->disks;
2719 mddev = malloc(sizeof(*mddev));
2720 if (!mddev) {
2721 fprintf(stderr, Name ": Failed to allocate memory.\n");
2722 return NULL;
2723 }
2724 memset(mddev, 0, sizeof(*mddev));
2725 while (dl) {
2726 struct mdinfo *tmp;
2727 disk = &dl->disk;
2728 tmp = malloc(sizeof(*tmp));
2729 if (!tmp) {
2730 fprintf(stderr, Name ": Failed to allocate memory.\n");
2731 if (mddev)
2732 sysfs_free(mddev);
2733 return NULL;
2734 }
2735 memset(tmp, 0, sizeof(*tmp));
2736 if (mddev->devs)
2737 tmp->next = mddev->devs;
2738 mddev->devs = tmp;
2739 tmp->disk.number = count++;
2740 tmp->disk.major = dl->major;
2741 tmp->disk.minor = dl->minor;
2742 tmp->disk.state = is_configured(disk) ?
2743 (1 << MD_DISK_ACTIVE) : 0;
2744 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2745 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2746 tmp->disk.raid_disk = -1;
2747 dl = dl->next;
2748 }
2749 return mddev;
2750 }
2751
2752 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2753 char *update, char *devname, int verbose,
2754 int uuid_set, char *homehost)
2755 {
2756 /* For 'assemble' and 'force' we need to return non-zero if any
2757 * change was made. For others, the return value is ignored.
2758 * Update options are:
2759 * force-one : This device looks a bit old but needs to be included,
2760 * update age info appropriately.
2761 * assemble: clear any 'faulty' flag to allow this device to
2762 * be assembled.
2763 * force-array: Array is degraded but being forced, mark it clean
2764 * if that will be needed to assemble it.
2765 *
2766 * newdev: not used ????
2767 * grow: Array has gained a new device - this is currently for
2768 * linear only
2769 * resync: mark as dirty so a resync will happen.
2770 * name: update the name - preserving the homehost
2771 * uuid: Change the uuid of the array to match watch is given
2772 *
2773 * Following are not relevant for this imsm:
2774 * sparc2.2 : update from old dodgey metadata
2775 * super-minor: change the preferred_minor number
2776 * summaries: update redundant counters.
2777 * homehost: update the recorded homehost
2778 * _reshape_progress: record new reshape_progress position.
2779 */
2780 int rv = 1;
2781 struct intel_super *super = st->sb;
2782 struct imsm_super *mpb;
2783
2784 /* we can only update container info */
2785 if (!super || super->current_vol >= 0 || !super->anchor)
2786 return 1;
2787
2788 mpb = super->anchor;
2789
2790 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2791 rv = -1;
2792 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2793 mpb->orig_family_num = *((__u32 *) info->update_private);
2794 rv = 0;
2795 } else if (strcmp(update, "uuid") == 0) {
2796 __u32 *new_family = malloc(sizeof(*new_family));
2797
2798 /* update orig_family_number with the incoming random
2799 * data, report the new effective uuid, and store the
2800 * new orig_family_num for future updates.
2801 */
2802 if (new_family) {
2803 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2804 uuid_from_super_imsm(st, info->uuid);
2805 *new_family = mpb->orig_family_num;
2806 info->update_private = new_family;
2807 rv = 0;
2808 }
2809 } else if (strcmp(update, "assemble") == 0)
2810 rv = 0;
2811 else
2812 rv = -1;
2813
2814 /* successful update? recompute checksum */
2815 if (rv == 0)
2816 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2817
2818 return rv;
2819 }
2820
2821 static size_t disks_to_mpb_size(int disks)
2822 {
2823 size_t size;
2824
2825 size = sizeof(struct imsm_super);
2826 size += (disks - 1) * sizeof(struct imsm_disk);
2827 size += 2 * sizeof(struct imsm_dev);
2828 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2829 size += (4 - 2) * sizeof(struct imsm_map);
2830 /* 4 possible disk_ord_tbl's */
2831 size += 4 * (disks - 1) * sizeof(__u32);
2832
2833 return size;
2834 }
2835
2836 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2837 {
2838 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2839 return 0;
2840
2841 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2842 }
2843
2844 static void free_devlist(struct intel_super *super)
2845 {
2846 struct intel_dev *dv;
2847
2848 while (super->devlist) {
2849 dv = super->devlist->next;
2850 free(super->devlist->dev);
2851 free(super->devlist);
2852 super->devlist = dv;
2853 }
2854 }
2855
2856 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2857 {
2858 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2859 }
2860
2861 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2862 {
2863 /*
2864 * return:
2865 * 0 same, or first was empty, and second was copied
2866 * 1 second had wrong number
2867 * 2 wrong uuid
2868 * 3 wrong other info
2869 */
2870 struct intel_super *first = st->sb;
2871 struct intel_super *sec = tst->sb;
2872
2873 if (!first) {
2874 st->sb = tst->sb;
2875 tst->sb = NULL;
2876 return 0;
2877 }
2878 /* in platform dependent environment test if the disks
2879 * use the same Intel hba
2880 */
2881 if (!check_env("IMSM_NO_PLATFORM")) {
2882 if (!first->hba || !sec->hba ||
2883 (first->hba->type != sec->hba->type)) {
2884 fprintf(stderr,
2885 "HBAs of devices does not match %s != %s\n",
2886 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2887 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2888 return 3;
2889 }
2890 }
2891
2892 /* if an anchor does not have num_raid_devs set then it is a free
2893 * floating spare
2894 */
2895 if (first->anchor->num_raid_devs > 0 &&
2896 sec->anchor->num_raid_devs > 0) {
2897 /* Determine if these disks might ever have been
2898 * related. Further disambiguation can only take place
2899 * in load_super_imsm_all
2900 */
2901 __u32 first_family = first->anchor->orig_family_num;
2902 __u32 sec_family = sec->anchor->orig_family_num;
2903
2904 if (memcmp(first->anchor->sig, sec->anchor->sig,
2905 MAX_SIGNATURE_LENGTH) != 0)
2906 return 3;
2907
2908 if (first_family == 0)
2909 first_family = first->anchor->family_num;
2910 if (sec_family == 0)
2911 sec_family = sec->anchor->family_num;
2912
2913 if (first_family != sec_family)
2914 return 3;
2915
2916 }
2917
2918
2919 /* if 'first' is a spare promote it to a populated mpb with sec's
2920 * family number
2921 */
2922 if (first->anchor->num_raid_devs == 0 &&
2923 sec->anchor->num_raid_devs > 0) {
2924 int i;
2925 struct intel_dev *dv;
2926 struct imsm_dev *dev;
2927
2928 /* we need to copy raid device info from sec if an allocation
2929 * fails here we don't associate the spare
2930 */
2931 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2932 dv = malloc(sizeof(*dv));
2933 if (!dv)
2934 break;
2935 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2936 if (!dev) {
2937 free(dv);
2938 break;
2939 }
2940 dv->dev = dev;
2941 dv->index = i;
2942 dv->next = first->devlist;
2943 first->devlist = dv;
2944 }
2945 if (i < sec->anchor->num_raid_devs) {
2946 /* allocation failure */
2947 free_devlist(first);
2948 fprintf(stderr, "imsm: failed to associate spare\n");
2949 return 3;
2950 }
2951 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2952 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2953 first->anchor->family_num = sec->anchor->family_num;
2954 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2955 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2956 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2957 }
2958
2959 return 0;
2960 }
2961
2962 static void fd2devname(int fd, char *name)
2963 {
2964 struct stat st;
2965 char path[256];
2966 char dname[PATH_MAX];
2967 char *nm;
2968 int rv;
2969
2970 name[0] = '\0';
2971 if (fstat(fd, &st) != 0)
2972 return;
2973 sprintf(path, "/sys/dev/block/%d:%d",
2974 major(st.st_rdev), minor(st.st_rdev));
2975
2976 rv = readlink(path, dname, sizeof(dname)-1);
2977 if (rv <= 0)
2978 return;
2979
2980 dname[rv] = '\0';
2981 nm = strrchr(dname, '/');
2982 if (nm) {
2983 nm++;
2984 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2985 }
2986 }
2987
2988 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2989
2990 static int imsm_read_serial(int fd, char *devname,
2991 __u8 serial[MAX_RAID_SERIAL_LEN])
2992 {
2993 unsigned char scsi_serial[255];
2994 int rv;
2995 int rsp_len;
2996 int len;
2997 char *dest;
2998 char *src;
2999 char *rsp_buf;
3000 int i;
3001
3002 memset(scsi_serial, 0, sizeof(scsi_serial));
3003
3004 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3005
3006 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3007 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3008 fd2devname(fd, (char *) serial);
3009 return 0;
3010 }
3011
3012 if (rv != 0) {
3013 if (devname)
3014 fprintf(stderr,
3015 Name ": Failed to retrieve serial for %s\n",
3016 devname);
3017 return rv;
3018 }
3019
3020 rsp_len = scsi_serial[3];
3021 if (!rsp_len) {
3022 if (devname)
3023 fprintf(stderr,
3024 Name ": Failed to retrieve serial for %s\n",
3025 devname);
3026 return 2;
3027 }
3028 rsp_buf = (char *) &scsi_serial[4];
3029
3030 /* trim all whitespace and non-printable characters and convert
3031 * ':' to ';'
3032 */
3033 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3034 src = &rsp_buf[i];
3035 if (*src > 0x20) {
3036 /* ':' is reserved for use in placeholder serial
3037 * numbers for missing disks
3038 */
3039 if (*src == ':')
3040 *dest++ = ';';
3041 else
3042 *dest++ = *src;
3043 }
3044 }
3045 len = dest - rsp_buf;
3046 dest = rsp_buf;
3047
3048 /* truncate leading characters */
3049 if (len > MAX_RAID_SERIAL_LEN) {
3050 dest += len - MAX_RAID_SERIAL_LEN;
3051 len = MAX_RAID_SERIAL_LEN;
3052 }
3053
3054 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3055 memcpy(serial, dest, len);
3056
3057 return 0;
3058 }
3059
3060 static int serialcmp(__u8 *s1, __u8 *s2)
3061 {
3062 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3063 }
3064
3065 static void serialcpy(__u8 *dest, __u8 *src)
3066 {
3067 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3068 }
3069
3070 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3071 {
3072 struct dl *dl;
3073
3074 for (dl = super->disks; dl; dl = dl->next)
3075 if (serialcmp(dl->serial, serial) == 0)
3076 break;
3077
3078 return dl;
3079 }
3080
3081 static struct imsm_disk *
3082 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3083 {
3084 int i;
3085
3086 for (i = 0; i < mpb->num_disks; i++) {
3087 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3088
3089 if (serialcmp(disk->serial, serial) == 0) {
3090 if (idx)
3091 *idx = i;
3092 return disk;
3093 }
3094 }
3095
3096 return NULL;
3097 }
3098
3099 static int
3100 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3101 {
3102 struct imsm_disk *disk;
3103 struct dl *dl;
3104 struct stat stb;
3105 int rv;
3106 char name[40];
3107 __u8 serial[MAX_RAID_SERIAL_LEN];
3108
3109 rv = imsm_read_serial(fd, devname, serial);
3110
3111 if (rv != 0)
3112 return 2;
3113
3114 dl = calloc(1, sizeof(*dl));
3115 if (!dl) {
3116 if (devname)
3117 fprintf(stderr,
3118 Name ": failed to allocate disk buffer for %s\n",
3119 devname);
3120 return 2;
3121 }
3122
3123 fstat(fd, &stb);
3124 dl->major = major(stb.st_rdev);
3125 dl->minor = minor(stb.st_rdev);
3126 dl->next = super->disks;
3127 dl->fd = keep_fd ? fd : -1;
3128 assert(super->disks == NULL);
3129 super->disks = dl;
3130 serialcpy(dl->serial, serial);
3131 dl->index = -2;
3132 dl->e = NULL;
3133 fd2devname(fd, name);
3134 if (devname)
3135 dl->devname = strdup(devname);
3136 else
3137 dl->devname = strdup(name);
3138
3139 /* look up this disk's index in the current anchor */
3140 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3141 if (disk) {
3142 dl->disk = *disk;
3143 /* only set index on disks that are a member of a
3144 * populated contianer, i.e. one with raid_devs
3145 */
3146 if (is_failed(&dl->disk))
3147 dl->index = -2;
3148 else if (is_spare(&dl->disk))
3149 dl->index = -1;
3150 }
3151
3152 return 0;
3153 }
3154
3155 #ifndef MDASSEMBLE
3156 /* When migrating map0 contains the 'destination' state while map1
3157 * contains the current state. When not migrating map0 contains the
3158 * current state. This routine assumes that map[0].map_state is set to
3159 * the current array state before being called.
3160 *
3161 * Migration is indicated by one of the following states
3162 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3163 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3164 * map1state=unitialized)
3165 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3166 * map1state=normal)
3167 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3168 * map1state=degraded)
3169 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3170 * map1state=normal)
3171 */
3172 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3173 __u8 to_state, int migr_type)
3174 {
3175 struct imsm_map *dest;
3176 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3177
3178 dev->vol.migr_state = 1;
3179 set_migr_type(dev, migr_type);
3180 dev->vol.curr_migr_unit = 0;
3181 dest = get_imsm_map(dev, MAP_1);
3182
3183 /* duplicate and then set the target end state in map[0] */
3184 memcpy(dest, src, sizeof_imsm_map(src));
3185 if ((migr_type == MIGR_REBUILD) ||
3186 (migr_type == MIGR_GEN_MIGR)) {
3187 __u32 ord;
3188 int i;
3189
3190 for (i = 0; i < src->num_members; i++) {
3191 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3192 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3193 }
3194 }
3195
3196 if (migr_type == MIGR_GEN_MIGR)
3197 /* Clear migration record */
3198 memset(super->migr_rec, 0, sizeof(struct migr_record));
3199
3200 src->map_state = to_state;
3201 }
3202
3203 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3204 __u8 map_state)
3205 {
3206 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3207 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3208 MAP_0 : MAP_1);
3209 int i, j;
3210
3211 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3212 * completed in the last migration.
3213 *
3214 * FIXME add support for raid-level-migration
3215 */
3216 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3217 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3218 /* when final map state is other than expected
3219 * merge maps (not for migration)
3220 */
3221 int failed;
3222
3223 for (i = 0; i < prev->num_members; i++)
3224 for (j = 0; j < map->num_members; j++)
3225 /* during online capacity expansion
3226 * disks position can be changed
3227 * if takeover is used
3228 */
3229 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3230 ord_to_idx(prev->disk_ord_tbl[i])) {
3231 map->disk_ord_tbl[j] |=
3232 prev->disk_ord_tbl[i];
3233 break;
3234 }
3235 failed = imsm_count_failed(super, dev, MAP_0);
3236 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3237 }
3238
3239 dev->vol.migr_state = 0;
3240 set_migr_type(dev, 0);
3241 dev->vol.curr_migr_unit = 0;
3242 map->map_state = map_state;
3243 }
3244 #endif
3245
3246 static int parse_raid_devices(struct intel_super *super)
3247 {
3248 int i;
3249 struct imsm_dev *dev_new;
3250 size_t len, len_migr;
3251 size_t max_len = 0;
3252 size_t space_needed = 0;
3253 struct imsm_super *mpb = super->anchor;
3254
3255 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3256 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3257 struct intel_dev *dv;
3258
3259 len = sizeof_imsm_dev(dev_iter, 0);
3260 len_migr = sizeof_imsm_dev(dev_iter, 1);
3261 if (len_migr > len)
3262 space_needed += len_migr - len;
3263
3264 dv = malloc(sizeof(*dv));
3265 if (!dv)
3266 return 1;
3267 if (max_len < len_migr)
3268 max_len = len_migr;
3269 if (max_len > len_migr)
3270 space_needed += max_len - len_migr;
3271 dev_new = malloc(max_len);
3272 if (!dev_new) {
3273 free(dv);
3274 return 1;
3275 }
3276 imsm_copy_dev(dev_new, dev_iter);
3277 dv->dev = dev_new;
3278 dv->index = i;
3279 dv->next = super->devlist;
3280 super->devlist = dv;
3281 }
3282
3283 /* ensure that super->buf is large enough when all raid devices
3284 * are migrating
3285 */
3286 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3287 void *buf;
3288
3289 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3290 if (posix_memalign(&buf, 512, len) != 0)
3291 return 1;
3292
3293 memcpy(buf, super->buf, super->len);
3294 memset(buf + super->len, 0, len - super->len);
3295 free(super->buf);
3296 super->buf = buf;
3297 super->len = len;
3298 }
3299
3300 return 0;
3301 }
3302
3303 /* retrieve a pointer to the bbm log which starts after all raid devices */
3304 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3305 {
3306 void *ptr = NULL;
3307
3308 if (__le32_to_cpu(mpb->bbm_log_size)) {
3309 ptr = mpb;
3310 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3311 }
3312
3313 return ptr;
3314 }
3315
3316 /*******************************************************************************
3317 * Function: check_mpb_migr_compatibility
3318 * Description: Function checks for unsupported migration features:
3319 * - migration optimization area (pba_of_lba0)
3320 * - descending reshape (ascending_migr)
3321 * Parameters:
3322 * super : imsm metadata information
3323 * Returns:
3324 * 0 : migration is compatible
3325 * -1 : migration is not compatible
3326 ******************************************************************************/
3327 int check_mpb_migr_compatibility(struct intel_super *super)
3328 {
3329 struct imsm_map *map0, *map1;
3330 struct migr_record *migr_rec = super->migr_rec;
3331 int i;
3332
3333 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3334 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3335
3336 if (dev_iter &&
3337 dev_iter->vol.migr_state == 1 &&
3338 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3339 /* This device is migrating */
3340 map0 = get_imsm_map(dev_iter, MAP_0);
3341 map1 = get_imsm_map(dev_iter, MAP_1);
3342 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3343 /* migration optimization area was used */
3344 return -1;
3345 if (migr_rec->ascending_migr == 0
3346 && migr_rec->dest_depth_per_unit > 0)
3347 /* descending reshape not supported yet */
3348 return -1;
3349 }
3350 }
3351 return 0;
3352 }
3353
3354 static void __free_imsm(struct intel_super *super, int free_disks);
3355
3356 /* load_imsm_mpb - read matrix metadata
3357 * allocates super->mpb to be freed by free_imsm
3358 */
3359 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3360 {
3361 unsigned long long dsize;
3362 unsigned long long sectors;
3363 struct stat;
3364 struct imsm_super *anchor;
3365 __u32 check_sum;
3366
3367 get_dev_size(fd, NULL, &dsize);
3368 if (dsize < 1024) {
3369 if (devname)
3370 fprintf(stderr,
3371 Name ": %s: device to small for imsm\n",
3372 devname);
3373 return 1;
3374 }
3375
3376 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3377 if (devname)
3378 fprintf(stderr, Name
3379 ": Cannot seek to anchor block on %s: %s\n",
3380 devname, strerror(errno));
3381 return 1;
3382 }
3383
3384 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3385 if (devname)
3386 fprintf(stderr,
3387 Name ": Failed to allocate imsm anchor buffer"
3388 " on %s\n", devname);
3389 return 1;
3390 }
3391 if (read(fd, anchor, 512) != 512) {
3392 if (devname)
3393 fprintf(stderr,
3394 Name ": Cannot read anchor block on %s: %s\n",
3395 devname, strerror(errno));
3396 free(anchor);
3397 return 1;
3398 }
3399
3400 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3401 if (devname)
3402 fprintf(stderr,
3403 Name ": no IMSM anchor on %s\n", devname);
3404 free(anchor);
3405 return 2;
3406 }
3407
3408 __free_imsm(super, 0);
3409 /* reload capability and hba */
3410
3411 /* capability and hba must be updated with new super allocation */
3412 find_intel_hba_capability(fd, super, devname);
3413 super->len = ROUND_UP(anchor->mpb_size, 512);
3414 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3415 if (devname)
3416 fprintf(stderr,
3417 Name ": unable to allocate %zu byte mpb buffer\n",
3418 super->len);
3419 free(anchor);
3420 return 2;
3421 }
3422 memcpy(super->buf, anchor, 512);
3423
3424 sectors = mpb_sectors(anchor) - 1;
3425 free(anchor);
3426
3427 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3428 fprintf(stderr, Name
3429 ": %s could not allocate migr_rec buffer\n", __func__);
3430 free(super->buf);
3431 return 2;
3432 }
3433
3434 if (!sectors) {
3435 check_sum = __gen_imsm_checksum(super->anchor);
3436 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3437 if (devname)
3438 fprintf(stderr,
3439 Name ": IMSM checksum %x != %x on %s\n",
3440 check_sum,
3441 __le32_to_cpu(super->anchor->check_sum),
3442 devname);
3443 return 2;
3444 }
3445
3446 return 0;
3447 }
3448
3449 /* read the extended mpb */
3450 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3451 if (devname)
3452 fprintf(stderr,
3453 Name ": Cannot seek to extended mpb on %s: %s\n",
3454 devname, strerror(errno));
3455 return 1;
3456 }
3457
3458 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3459 if (devname)
3460 fprintf(stderr,
3461 Name ": Cannot read extended mpb on %s: %s\n",
3462 devname, strerror(errno));
3463 return 2;
3464 }
3465
3466 check_sum = __gen_imsm_checksum(super->anchor);
3467 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3468 if (devname)
3469 fprintf(stderr,
3470 Name ": IMSM checksum %x != %x on %s\n",
3471 check_sum, __le32_to_cpu(super->anchor->check_sum),
3472 devname);
3473 return 3;
3474 }
3475
3476 /* FIXME the BBM log is disk specific so we cannot use this global
3477 * buffer for all disks. Ok for now since we only look at the global
3478 * bbm_log_size parameter to gate assembly
3479 */
3480 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3481
3482 return 0;
3483 }
3484
3485 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3486
3487 static int
3488 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3489 {
3490 int err;
3491
3492 err = load_imsm_mpb(fd, super, devname);
3493 if (err)
3494 return err;
3495 err = load_imsm_disk(fd, super, devname, keep_fd);
3496 if (err)
3497 return err;
3498 err = parse_raid_devices(super);
3499
3500 return err;
3501 }
3502
3503 static void __free_imsm_disk(struct dl *d)
3504 {
3505 if (d->fd >= 0)
3506 close(d->fd);
3507 if (d->devname)
3508 free(d->devname);
3509 if (d->e)
3510 free(d->e);
3511 free(d);
3512
3513 }
3514
3515 static void free_imsm_disks(struct intel_super *super)
3516 {
3517 struct dl *d;
3518
3519 while (super->disks) {
3520 d = super->disks;
3521 super->disks = d->next;
3522 __free_imsm_disk(d);
3523 }
3524 while (super->disk_mgmt_list) {
3525 d = super->disk_mgmt_list;
3526 super->disk_mgmt_list = d->next;
3527 __free_imsm_disk(d);
3528 }
3529 while (super->missing) {
3530 d = super->missing;
3531 super->missing = d->next;
3532 __free_imsm_disk(d);
3533 }
3534
3535 }
3536
3537 /* free all the pieces hanging off of a super pointer */
3538 static void __free_imsm(struct intel_super *super, int free_disks)
3539 {
3540 struct intel_hba *elem, *next;
3541
3542 if (super->buf) {
3543 free(super->buf);
3544 super->buf = NULL;
3545 }
3546 /* unlink capability description */
3547 super->orom = NULL;
3548 if (super->migr_rec_buf) {
3549 free(super->migr_rec_buf);
3550 super->migr_rec_buf = NULL;
3551 }
3552 if (free_disks)
3553 free_imsm_disks(super);
3554 free_devlist(super);
3555 elem = super->hba;
3556 while (elem) {
3557 if (elem->path)
3558 free((void *)elem->path);
3559 next = elem->next;
3560 free(elem);
3561 elem = next;
3562 }
3563 super->hba = NULL;
3564 }
3565
3566 static void free_imsm(struct intel_super *super)
3567 {
3568 __free_imsm(super, 1);
3569 free(super);
3570 }
3571
3572 static void free_super_imsm(struct supertype *st)
3573 {
3574 struct intel_super *super = st->sb;
3575
3576 if (!super)
3577 return;
3578
3579 free_imsm(super);
3580 st->sb = NULL;
3581 }
3582
3583 static struct intel_super *alloc_super(void)
3584 {
3585 struct intel_super *super = malloc(sizeof(*super));
3586
3587 if (super) {
3588 memset(super, 0, sizeof(*super));
3589 super->current_vol = -1;
3590 super->create_offset = ~((__u32 ) 0);
3591 }
3592 return super;
3593 }
3594
3595 /*
3596 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3597 */
3598 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3599 {
3600 struct sys_dev *hba_name;
3601 int rv = 0;
3602
3603 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3604 super->orom = NULL;
3605 super->hba = NULL;
3606 return 0;
3607 }
3608 hba_name = find_disk_attached_hba(fd, NULL);
3609 if (!hba_name) {
3610 if (devname)
3611 fprintf(stderr,
3612 Name ": %s is not attached to Intel(R) RAID controller.\n",
3613 devname);
3614 return 1;
3615 }
3616 rv = attach_hba_to_super(super, hba_name);
3617 if (rv == 2) {
3618 if (devname) {
3619 struct intel_hba *hba = super->hba;
3620
3621 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3622 "controller (%s),\n"
3623 " but the container is assigned to Intel(R) "
3624 "%s RAID controller (",
3625 devname,
3626 hba_name->path,
3627 hba_name->pci_id ? : "Err!",
3628 get_sys_dev_type(hba_name->type));
3629
3630 while (hba) {
3631 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3632 if (hba->next)
3633 fprintf(stderr, ", ");
3634 hba = hba->next;
3635 }
3636
3637 fprintf(stderr, ").\n"
3638 " Mixing devices attached to different controllers "
3639 "is not allowed.\n");
3640 }
3641 free_sys_dev(&hba_name);
3642 return 2;
3643 }
3644 super->orom = find_imsm_capability(hba_name->type);
3645 free_sys_dev(&hba_name);
3646 if (!super->orom)
3647 return 3;
3648 return 0;
3649 }
3650
3651 /* find_missing - helper routine for load_super_imsm_all that identifies
3652 * disks that have disappeared from the system. This routine relies on
3653 * the mpb being uptodate, which it is at load time.
3654 */
3655 static int find_missing(struct intel_super *super)
3656 {
3657 int i;
3658 struct imsm_super *mpb = super->anchor;
3659 struct dl *dl;
3660 struct imsm_disk *disk;
3661
3662 for (i = 0; i < mpb->num_disks; i++) {
3663 disk = __get_imsm_disk(mpb, i);
3664 dl = serial_to_dl(disk->serial, super);
3665 if (dl)
3666 continue;
3667
3668 dl = malloc(sizeof(*dl));
3669 if (!dl)
3670 return 1;
3671 dl->major = 0;
3672 dl->minor = 0;
3673 dl->fd = -1;
3674 dl->devname = strdup("missing");
3675 dl->index = i;
3676 serialcpy(dl->serial, disk->serial);
3677 dl->disk = *disk;
3678 dl->e = NULL;
3679 dl->next = super->missing;
3680 super->missing = dl;
3681 }
3682
3683 return 0;
3684 }
3685
3686 #ifndef MDASSEMBLE
3687 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3688 {
3689 struct intel_disk *idisk = disk_list;
3690
3691 while (idisk) {
3692 if (serialcmp(idisk->disk.serial, serial) == 0)
3693 break;
3694 idisk = idisk->next;
3695 }
3696
3697 return idisk;
3698 }
3699
3700 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3701 struct intel_super *super,
3702 struct intel_disk **disk_list)
3703 {
3704 struct imsm_disk *d = &super->disks->disk;
3705 struct imsm_super *mpb = super->anchor;
3706 int i, j;
3707
3708 for (i = 0; i < tbl_size; i++) {
3709 struct imsm_super *tbl_mpb = table[i]->anchor;
3710 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3711
3712 if (tbl_mpb->family_num == mpb->family_num) {
3713 if (tbl_mpb->check_sum == mpb->check_sum) {
3714 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3715 __func__, super->disks->major,
3716 super->disks->minor,
3717 table[i]->disks->major,
3718 table[i]->disks->minor);
3719 break;
3720 }
3721
3722 if (((is_configured(d) && !is_configured(tbl_d)) ||
3723 is_configured(d) == is_configured(tbl_d)) &&
3724 tbl_mpb->generation_num < mpb->generation_num) {
3725 /* current version of the mpb is a
3726 * better candidate than the one in
3727 * super_table, but copy over "cross
3728 * generational" status
3729 */
3730 struct intel_disk *idisk;
3731
3732 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3733 __func__, super->disks->major,
3734 super->disks->minor,
3735 table[i]->disks->major,
3736 table[i]->disks->minor);
3737
3738 idisk = disk_list_get(tbl_d->serial, *disk_list);
3739 if (idisk && is_failed(&idisk->disk))
3740 tbl_d->status |= FAILED_DISK;
3741 break;
3742 } else {
3743 struct intel_disk *idisk;
3744 struct imsm_disk *disk;
3745
3746 /* tbl_mpb is more up to date, but copy
3747 * over cross generational status before
3748 * returning
3749 */
3750 disk = __serial_to_disk(d->serial, mpb, NULL);
3751 if (disk && is_failed(disk))
3752 d->status |= FAILED_DISK;
3753
3754 idisk = disk_list_get(d->serial, *disk_list);
3755 if (idisk) {
3756 idisk->owner = i;
3757 if (disk && is_configured(disk))
3758 idisk->disk.status |= CONFIGURED_DISK;
3759 }
3760
3761 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3762 __func__, super->disks->major,
3763 super->disks->minor,
3764 table[i]->disks->major,
3765 table[i]->disks->minor);
3766
3767 return tbl_size;
3768 }
3769 }
3770 }
3771
3772 if (i >= tbl_size)
3773 table[tbl_size++] = super;
3774 else
3775 table[i] = super;
3776
3777 /* update/extend the merged list of imsm_disk records */
3778 for (j = 0; j < mpb->num_disks; j++) {
3779 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3780 struct intel_disk *idisk;
3781
3782 idisk = disk_list_get(disk->serial, *disk_list);
3783 if (idisk) {
3784 idisk->disk.status |= disk->status;
3785 if (is_configured(&idisk->disk) ||
3786 is_failed(&idisk->disk))
3787 idisk->disk.status &= ~(SPARE_DISK);
3788 } else {
3789 idisk = calloc(1, sizeof(*idisk));
3790 if (!idisk)
3791 return -1;
3792 idisk->owner = IMSM_UNKNOWN_OWNER;
3793 idisk->disk = *disk;
3794 idisk->next = *disk_list;
3795 *disk_list = idisk;
3796 }
3797
3798 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3799 idisk->owner = i;
3800 }
3801
3802 return tbl_size;
3803 }
3804
3805 static struct intel_super *
3806 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3807 const int owner)
3808 {
3809 struct imsm_super *mpb = super->anchor;
3810 int ok_count = 0;
3811 int i;
3812
3813 for (i = 0; i < mpb->num_disks; i++) {
3814 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3815 struct intel_disk *idisk;
3816
3817 idisk = disk_list_get(disk->serial, disk_list);
3818 if (idisk) {
3819 if (idisk->owner == owner ||
3820 idisk->owner == IMSM_UNKNOWN_OWNER)
3821 ok_count++;
3822 else
3823 dprintf("%s: '%.16s' owner %d != %d\n",
3824 __func__, disk->serial, idisk->owner,
3825 owner);
3826 } else {
3827 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3828 __func__, __le32_to_cpu(mpb->family_num), i,
3829 disk->serial);
3830 break;
3831 }
3832 }
3833
3834 if (ok_count == mpb->num_disks)
3835 return super;
3836 return NULL;
3837 }
3838
3839 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3840 {
3841 struct intel_super *s;
3842
3843 for (s = super_list; s; s = s->next) {
3844 if (family_num != s->anchor->family_num)
3845 continue;
3846 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3847 __le32_to_cpu(family_num), s->disks->devname);
3848 }
3849 }
3850
3851 static struct intel_super *
3852 imsm_thunderdome(struct intel_super **super_list, int len)
3853 {
3854 struct intel_super *super_table[len];
3855 struct intel_disk *disk_list = NULL;
3856 struct intel_super *champion, *spare;
3857 struct intel_super *s, **del;
3858 int tbl_size = 0;
3859 int conflict;
3860 int i;
3861
3862 memset(super_table, 0, sizeof(super_table));
3863 for (s = *super_list; s; s = s->next)
3864 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3865
3866 for (i = 0; i < tbl_size; i++) {
3867 struct imsm_disk *d;
3868 struct intel_disk *idisk;
3869 struct imsm_super *mpb = super_table[i]->anchor;
3870
3871 s = super_table[i];
3872 d = &s->disks->disk;
3873
3874 /* 'd' must appear in merged disk list for its
3875 * configuration to be valid
3876 */
3877 idisk = disk_list_get(d->serial, disk_list);
3878 if (idisk && idisk->owner == i)
3879 s = validate_members(s, disk_list, i);
3880 else
3881 s = NULL;
3882
3883 if (!s)
3884 dprintf("%s: marking family: %#x from %d:%d offline\n",
3885 __func__, mpb->family_num,
3886 super_table[i]->disks->major,
3887 super_table[i]->disks->minor);
3888 super_table[i] = s;
3889 }
3890
3891 /* This is where the mdadm implementation differs from the Windows
3892 * driver which has no strict concept of a container. We can only
3893 * assemble one family from a container, so when returning a prodigal
3894 * array member to this system the code will not be able to disambiguate
3895 * the container contents that should be assembled ("foreign" versus
3896 * "local"). It requires user intervention to set the orig_family_num
3897 * to a new value to establish a new container. The Windows driver in
3898 * this situation fixes up the volume name in place and manages the
3899 * foreign array as an independent entity.
3900 */
3901 s = NULL;
3902 spare = NULL;
3903 conflict = 0;
3904 for (i = 0; i < tbl_size; i++) {
3905 struct intel_super *tbl_ent = super_table[i];
3906 int is_spare = 0;
3907
3908 if (!tbl_ent)
3909 continue;
3910
3911 if (tbl_ent->anchor->num_raid_devs == 0) {
3912 spare = tbl_ent;
3913 is_spare = 1;
3914 }
3915
3916 if (s && !is_spare) {
3917 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3918 conflict++;
3919 } else if (!s && !is_spare)
3920 s = tbl_ent;
3921 }
3922
3923 if (!s)
3924 s = spare;
3925 if (!s) {
3926 champion = NULL;
3927 goto out;
3928 }
3929 champion = s;
3930
3931 if (conflict)
3932 fprintf(stderr, "Chose family %#x on '%s', "
3933 "assemble conflicts to new container with '--update=uuid'\n",
3934 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3935
3936 /* collect all dl's onto 'champion', and update them to
3937 * champion's version of the status
3938 */
3939 for (s = *super_list; s; s = s->next) {
3940 struct imsm_super *mpb = champion->anchor;
3941 struct dl *dl = s->disks;
3942
3943 if (s == champion)
3944 continue;
3945
3946 for (i = 0; i < mpb->num_disks; i++) {
3947 struct imsm_disk *disk;
3948
3949 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3950 if (disk) {
3951 dl->disk = *disk;
3952 /* only set index on disks that are a member of
3953 * a populated contianer, i.e. one with
3954 * raid_devs
3955 */
3956 if (is_failed(&dl->disk))
3957 dl->index = -2;
3958 else if (is_spare(&dl->disk))
3959 dl->index = -1;
3960 break;
3961 }
3962 }
3963
3964 if (i >= mpb->num_disks) {
3965 struct intel_disk *idisk;
3966
3967 idisk = disk_list_get(dl->serial, disk_list);
3968 if (idisk && is_spare(&idisk->disk) &&
3969 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3970 dl->index = -1;
3971 else {
3972 dl->index = -2;
3973 continue;
3974 }
3975 }
3976
3977 dl->next = champion->disks;
3978 champion->disks = dl;
3979 s->disks = NULL;
3980 }
3981
3982 /* delete 'champion' from super_list */
3983 for (del = super_list; *del; ) {
3984 if (*del == champion) {
3985 *del = (*del)->next;
3986 break;
3987 } else
3988 del = &(*del)->next;
3989 }
3990 champion->next = NULL;
3991
3992 out:
3993 while (disk_list) {
3994 struct intel_disk *idisk = disk_list;
3995
3996 disk_list = disk_list->next;
3997 free(idisk);
3998 }
3999
4000 return champion;
4001 }
4002
4003 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4004 char *devname)
4005 {
4006 struct mdinfo *sra;
4007 struct intel_super *super_list = NULL;
4008 struct intel_super *super = NULL;
4009 int devnum = fd2devnum(fd);
4010 struct mdinfo *sd;
4011 int retry;
4012 int err = 0;
4013 int i;
4014
4015 /* check if 'fd' an opened container */
4016 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4017 if (!sra)
4018 return 1;
4019
4020 if (sra->array.major_version != -1 ||
4021 sra->array.minor_version != -2 ||
4022 strcmp(sra->text_version, "imsm") != 0) {
4023 err = 1;
4024 goto error;
4025 }
4026 /* load all mpbs */
4027 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4028 struct intel_super *s = alloc_super();
4029 char nm[32];
4030 int dfd;
4031 int rv;
4032
4033 err = 1;
4034 if (!s)
4035 goto error;
4036 s->next = super_list;
4037 super_list = s;
4038
4039 err = 2;
4040 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
4041 dfd = dev_open(nm, O_RDWR);
4042 if (dfd < 0)
4043 goto error;
4044
4045 rv = find_intel_hba_capability(dfd, s, devname);
4046 /* no orom/efi or non-intel hba of the disk */
4047 if (rv != 0)
4048 goto error;
4049
4050 err = load_and_parse_mpb(dfd, s, NULL, 1);
4051
4052 /* retry the load if we might have raced against mdmon */
4053 if (err == 3 && mdmon_running(devnum))
4054 for (retry = 0; retry < 3; retry++) {
4055 usleep(3000);
4056 err = load_and_parse_mpb(dfd, s, NULL, 1);
4057 if (err != 3)
4058 break;
4059 }
4060 if (err)
4061 goto error;
4062 }
4063
4064 /* all mpbs enter, maybe one leaves */
4065 super = imsm_thunderdome(&super_list, i);
4066 if (!super) {
4067 err = 1;
4068 goto error;
4069 }
4070
4071 if (find_missing(super) != 0) {
4072 free_imsm(super);
4073 err = 2;
4074 goto error;
4075 }
4076
4077 /* load migration record */
4078 err = load_imsm_migr_rec(super, NULL);
4079 if (err) {
4080 err = 4;
4081 goto error;
4082 }
4083
4084 /* Check migration compatibility */
4085 if (check_mpb_migr_compatibility(super) != 0) {
4086 fprintf(stderr, Name ": Unsupported migration detected");
4087 if (devname)
4088 fprintf(stderr, " on %s\n", devname);
4089 else
4090 fprintf(stderr, " (IMSM).\n");
4091
4092 err = 5;
4093 goto error;
4094 }
4095
4096 err = 0;
4097
4098 error:
4099 while (super_list) {
4100 struct intel_super *s = super_list;
4101
4102 super_list = super_list->next;
4103 free_imsm(s);
4104 }
4105 sysfs_free(sra);
4106
4107 if (err)
4108 return err;
4109
4110 *sbp = super;
4111 st->container_dev = devnum;
4112 if (err == 0 && st->ss == NULL) {
4113 st->ss = &super_imsm;
4114 st->minor_version = 0;
4115 st->max_devs = IMSM_MAX_DEVICES;
4116 }
4117 return 0;
4118 }
4119
4120 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4121 {
4122 return load_super_imsm_all(st, fd, &st->sb, devname);
4123 }
4124 #endif
4125
4126 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4127 {
4128 struct intel_super *super;
4129 int rv;
4130
4131 if (test_partition(fd))
4132 /* IMSM not allowed on partitions */
4133 return 1;
4134
4135 free_super_imsm(st);
4136
4137 super = alloc_super();
4138 if (!super) {
4139 fprintf(stderr,
4140 Name ": malloc of %zu failed.\n",
4141 sizeof(*super));
4142 return 1;
4143 }
4144 /* Load hba and capabilities if they exist.
4145 * But do not preclude loading metadata in case capabilities or hba are
4146 * non-compliant and ignore_hw_compat is set.
4147 */
4148 rv = find_intel_hba_capability(fd, super, devname);
4149 /* no orom/efi or non-intel hba of the disk */
4150 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4151 if (devname)
4152 fprintf(stderr,
4153 Name ": No OROM/EFI properties for %s\n", devname);
4154 free_imsm(super);
4155 return 2;
4156 }
4157 rv = load_and_parse_mpb(fd, super, devname, 0);
4158
4159 if (rv) {
4160 if (devname)
4161 fprintf(stderr,
4162 Name ": Failed to load all information "
4163 "sections on %s\n", devname);
4164 free_imsm(super);
4165 return rv;
4166 }
4167
4168 st->sb = super;
4169 if (st->ss == NULL) {
4170 st->ss = &super_imsm;
4171 st->minor_version = 0;
4172 st->max_devs = IMSM_MAX_DEVICES;
4173 }
4174
4175 /* load migration record */
4176 if (load_imsm_migr_rec(super, NULL) == 0) {
4177 /* Check for unsupported migration features */
4178 if (check_mpb_migr_compatibility(super) != 0) {
4179 fprintf(stderr,
4180 Name ": Unsupported migration detected");
4181 if (devname)
4182 fprintf(stderr, " on %s\n", devname);
4183 else
4184 fprintf(stderr, " (IMSM).\n");
4185 return 3;
4186 }
4187 }
4188
4189 return 0;
4190 }
4191
4192 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4193 {
4194 if (info->level == 1)
4195 return 128;
4196 return info->chunk_size >> 9;
4197 }
4198
4199 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
4200 {
4201 __u32 num_stripes;
4202
4203 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
4204 num_stripes /= num_domains;
4205
4206 return num_stripes;
4207 }
4208
4209 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4210 {
4211 if (info->level == 1)
4212 return info->size * 2;
4213 else
4214 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4215 }
4216
4217 static void imsm_update_version_info(struct intel_super *super)
4218 {
4219 /* update the version and attributes */
4220 struct imsm_super *mpb = super->anchor;
4221 char *version;
4222 struct imsm_dev *dev;
4223 struct imsm_map *map;
4224 int i;
4225
4226 for (i = 0; i < mpb->num_raid_devs; i++) {
4227 dev = get_imsm_dev(super, i);
4228 map = get_imsm_map(dev, MAP_0);
4229 if (__le32_to_cpu(dev->size_high) > 0)
4230 mpb->attributes |= MPB_ATTRIB_2TB;
4231
4232 /* FIXME detect when an array spans a port multiplier */
4233 #if 0
4234 mpb->attributes |= MPB_ATTRIB_PM;
4235 #endif
4236
4237 if (mpb->num_raid_devs > 1 ||
4238 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4239 version = MPB_VERSION_ATTRIBS;
4240 switch (get_imsm_raid_level(map)) {
4241 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4242 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4243 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4244 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4245 }
4246 } else {
4247 if (map->num_members >= 5)
4248 version = MPB_VERSION_5OR6_DISK_ARRAY;
4249 else if (dev->status == DEV_CLONE_N_GO)
4250 version = MPB_VERSION_CNG;
4251 else if (get_imsm_raid_level(map) == 5)
4252 version = MPB_VERSION_RAID5;
4253 else if (map->num_members >= 3)
4254 version = MPB_VERSION_3OR4_DISK_ARRAY;
4255 else if (get_imsm_raid_level(map) == 1)
4256 version = MPB_VERSION_RAID1;
4257 else
4258 version = MPB_VERSION_RAID0;
4259 }
4260 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4261 }
4262 }
4263
4264 static int check_name(struct intel_super *super, char *name, int quiet)
4265 {
4266 struct imsm_super *mpb = super->anchor;
4267 char *reason = NULL;
4268 int i;
4269
4270 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4271 reason = "must be 16 characters or less";
4272
4273 for (i = 0; i < mpb->num_raid_devs; i++) {
4274 struct imsm_dev *dev = get_imsm_dev(super, i);
4275
4276 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4277 reason = "already exists";
4278 break;
4279 }
4280 }
4281
4282 if (reason && !quiet)
4283 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4284
4285 return !reason;
4286 }
4287
4288 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4289 unsigned long long size, char *name,
4290 char *homehost, int *uuid)
4291 {
4292 /* We are creating a volume inside a pre-existing container.
4293 * so st->sb is already set.
4294 */
4295 struct intel_super *super = st->sb;
4296 struct imsm_super *mpb = super->anchor;
4297 struct intel_dev *dv;
4298 struct imsm_dev *dev;
4299 struct imsm_vol *vol;
4300 struct imsm_map *map;
4301 int idx = mpb->num_raid_devs;
4302 int i;
4303 unsigned long long array_blocks;
4304 size_t size_old, size_new;
4305 __u32 num_data_stripes;
4306
4307 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4308 fprintf(stderr, Name": This imsm-container already has the "
4309 "maximum of %d volumes\n", super->orom->vpa);
4310 return 0;
4311 }
4312
4313 /* ensure the mpb is large enough for the new data */
4314 size_old = __le32_to_cpu(mpb->mpb_size);
4315 size_new = disks_to_mpb_size(info->nr_disks);
4316 if (size_new > size_old) {
4317 void *mpb_new;
4318 size_t size_round = ROUND_UP(size_new, 512);
4319
4320 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4321 fprintf(stderr, Name": could not allocate new mpb\n");
4322 return 0;
4323 }
4324 if (posix_memalign(&super->migr_rec_buf, 512,
4325 MIGR_REC_BUF_SIZE) != 0) {
4326 fprintf(stderr, Name
4327 ": %s could not allocate migr_rec buffer\n",
4328 __func__);
4329 free(super->buf);
4330 free(super);
4331 free(mpb_new);
4332 return 0;
4333 }
4334 memcpy(mpb_new, mpb, size_old);
4335 free(mpb);
4336 mpb = mpb_new;
4337 super->anchor = mpb_new;
4338 mpb->mpb_size = __cpu_to_le32(size_new);
4339 memset(mpb_new + size_old, 0, size_round - size_old);
4340 }
4341 super->current_vol = idx;
4342
4343 /* handle 'failed_disks' by either:
4344 * a) create dummy disk entries in the table if this the first
4345 * volume in the array. We add them here as this is the only
4346 * opportunity to add them. add_to_super_imsm_volume()
4347 * handles the non-failed disks and continues incrementing
4348 * mpb->num_disks.
4349 * b) validate that 'failed_disks' matches the current number
4350 * of missing disks if the container is populated
4351 */
4352 if (super->current_vol == 0) {
4353 mpb->num_disks = 0;
4354 for (i = 0; i < info->failed_disks; i++) {
4355 struct imsm_disk *disk;
4356
4357 mpb->num_disks++;
4358 disk = __get_imsm_disk(mpb, i);
4359 disk->status = CONFIGURED_DISK | FAILED_DISK;
4360 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4361 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4362 "missing:%d", i);
4363 }
4364 find_missing(super);
4365 } else {
4366 int missing = 0;
4367 struct dl *d;
4368
4369 for (d = super->missing; d; d = d->next)
4370 missing++;
4371 if (info->failed_disks > missing) {
4372 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4373 return 0;
4374 }
4375 }
4376
4377 if (!check_name(super, name, 0))
4378 return 0;
4379 dv = malloc(sizeof(*dv));
4380 if (!dv) {
4381 fprintf(stderr, Name ": failed to allocate device list entry\n");
4382 return 0;
4383 }
4384 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4385 if (!dev) {
4386 free(dv);
4387 fprintf(stderr, Name": could not allocate raid device\n");
4388 return 0;
4389 }
4390
4391 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4392 if (info->level == 1)
4393 array_blocks = info_to_blocks_per_member(info);
4394 else
4395 array_blocks = calc_array_size(info->level, info->raid_disks,
4396 info->layout, info->chunk_size,
4397 info->size*2);
4398 /* round array size down to closest MB */
4399 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4400
4401 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4402 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4403 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4404 vol = &dev->vol;
4405 vol->migr_state = 0;
4406 set_migr_type(dev, MIGR_INIT);
4407 vol->dirty = !info->state;
4408 vol->curr_migr_unit = 0;
4409 map = get_imsm_map(dev, MAP_0);
4410 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
4411 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
4412 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4413 map->failed_disk_num = ~0;
4414 if (info->level > 0)
4415 map->map_state = IMSM_T_STATE_UNINITIALIZED;
4416 else
4417 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4418 IMSM_T_STATE_NORMAL;
4419 map->ddf = 1;
4420
4421 if (info->level == 1 && info->raid_disks > 2) {
4422 free(dev);
4423 free(dv);
4424 fprintf(stderr, Name": imsm does not support more than 2 disks"
4425 "in a raid1 volume\n");
4426 return 0;
4427 }
4428
4429 map->raid_level = info->level;
4430 if (info->level == 10) {
4431 map->raid_level = 1;
4432 map->num_domains = info->raid_disks / 2;
4433 } else if (info->level == 1)
4434 map->num_domains = info->raid_disks;
4435 else
4436 map->num_domains = 1;
4437
4438 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4439 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
4440
4441 map->num_members = info->raid_disks;
4442 for (i = 0; i < map->num_members; i++) {
4443 /* initialized in add_to_super */
4444 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4445 }
4446 mpb->num_raid_devs++;
4447
4448 dv->dev = dev;
4449 dv->index = super->current_vol;
4450 dv->next = super->devlist;
4451 super->devlist = dv;
4452
4453 imsm_update_version_info(super);
4454
4455 return 1;
4456 }
4457
4458 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4459 unsigned long long size, char *name,
4460 char *homehost, int *uuid)
4461 {
4462 /* This is primarily called by Create when creating a new array.
4463 * We will then get add_to_super called for each component, and then
4464 * write_init_super called to write it out to each device.
4465 * For IMSM, Create can create on fresh devices or on a pre-existing
4466 * array.
4467 * To create on a pre-existing array a different method will be called.
4468 * This one is just for fresh drives.
4469 */
4470 struct intel_super *super;
4471 struct imsm_super *mpb;
4472 size_t mpb_size;
4473 char *version;
4474
4475 if (st->sb)
4476 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4477
4478 if (info)
4479 mpb_size = disks_to_mpb_size(info->nr_disks);
4480 else
4481 mpb_size = 512;
4482
4483 super = alloc_super();
4484 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4485 free(super);
4486 super = NULL;
4487 }
4488 if (!super) {
4489 fprintf(stderr, Name
4490 ": %s could not allocate superblock\n", __func__);
4491 return 0;
4492 }
4493 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
4494 fprintf(stderr, Name
4495 ": %s could not allocate migr_rec buffer\n", __func__);
4496 free(super->buf);
4497 free(super);
4498 return 0;
4499 }
4500 memset(super->buf, 0, mpb_size);
4501 mpb = super->buf;
4502 mpb->mpb_size = __cpu_to_le32(mpb_size);
4503 st->sb = super;
4504
4505 if (info == NULL) {
4506 /* zeroing superblock */
4507 return 0;
4508 }
4509
4510 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4511
4512 version = (char *) mpb->sig;
4513 strcpy(version, MPB_SIGNATURE);
4514 version += strlen(MPB_SIGNATURE);
4515 strcpy(version, MPB_VERSION_RAID0);
4516
4517 return 1;
4518 }
4519
4520 #ifndef MDASSEMBLE
4521 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4522 int fd, char *devname)
4523 {
4524 struct intel_super *super = st->sb;
4525 struct imsm_super *mpb = super->anchor;
4526 struct imsm_disk *_disk;
4527 struct imsm_dev *dev;
4528 struct imsm_map *map;
4529 struct dl *dl, *df;
4530 int slot;
4531
4532 dev = get_imsm_dev(super, super->current_vol);
4533 map = get_imsm_map(dev, MAP_0);
4534
4535 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4536 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4537 devname);
4538 return 1;
4539 }
4540
4541 if (fd == -1) {
4542 /* we're doing autolayout so grab the pre-marked (in
4543 * validate_geometry) raid_disk
4544 */
4545 for (dl = super->disks; dl; dl = dl->next)
4546 if (dl->raiddisk == dk->raid_disk)
4547 break;
4548 } else {
4549 for (dl = super->disks; dl ; dl = dl->next)
4550 if (dl->major == dk->major &&
4551 dl->minor == dk->minor)
4552 break;
4553 }
4554
4555 if (!dl) {
4556 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4557 return 1;
4558 }
4559
4560 /* add a pristine spare to the metadata */
4561 if (dl->index < 0) {
4562 dl->index = super->anchor->num_disks;
4563 super->anchor->num_disks++;
4564 }
4565 /* Check the device has not already been added */
4566 slot = get_imsm_disk_slot(map, dl->index);
4567 if (slot >= 0 &&
4568 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
4569 fprintf(stderr, Name ": %s has been included in this array twice\n",
4570 devname);
4571 return 1;
4572 }
4573 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4574 dl->disk.status = CONFIGURED_DISK;
4575
4576 /* update size of 'missing' disks to be at least as large as the
4577 * largest acitve member (we only have dummy missing disks when
4578 * creating the first volume)
4579 */
4580 if (super->current_vol == 0) {
4581 for (df = super->missing; df; df = df->next) {
4582 if (dl->disk.total_blocks > df->disk.total_blocks)
4583 df->disk.total_blocks = dl->disk.total_blocks;
4584 _disk = __get_imsm_disk(mpb, df->index);
4585 *_disk = df->disk;
4586 }
4587 }
4588
4589 /* refresh unset/failed slots to point to valid 'missing' entries */
4590 for (df = super->missing; df; df = df->next)
4591 for (slot = 0; slot < mpb->num_disks; slot++) {
4592 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4593
4594 if ((ord & IMSM_ORD_REBUILD) == 0)
4595 continue;
4596 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4597 if (is_gen_migration(dev)) {
4598 struct imsm_map *map2 = get_imsm_map(dev,
4599 MAP_1);
4600 int slot2 = get_imsm_disk_slot(map2, df->index);
4601 if ((slot2 < map2->num_members) &&
4602 (slot2 >= 0)) {
4603 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4604 slot2,
4605 MAP_1);
4606 if ((unsigned)df->index ==
4607 ord_to_idx(ord2))
4608 set_imsm_ord_tbl_ent(map2,
4609 slot2,
4610 df->index |
4611 IMSM_ORD_REBUILD);
4612 }
4613 }
4614 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4615 break;
4616 }
4617
4618 /* if we are creating the first raid device update the family number */
4619 if (super->current_vol == 0) {
4620 __u32 sum;
4621 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4622
4623 _disk = __get_imsm_disk(mpb, dl->index);
4624 if (!_dev || !_disk) {
4625 fprintf(stderr, Name ": BUG mpb setup error\n");
4626 return 1;
4627 }
4628 *_dev = *dev;
4629 *_disk = dl->disk;
4630 sum = random32();
4631 sum += __gen_imsm_checksum(mpb);
4632 mpb->family_num = __cpu_to_le32(sum);
4633 mpb->orig_family_num = mpb->family_num;
4634 }
4635 super->current_disk = dl;
4636 return 0;
4637 }
4638
4639 /* mark_spare()
4640 * Function marks disk as spare and restores disk serial
4641 * in case it was previously marked as failed by takeover operation
4642 * reruns:
4643 * -1 : critical error
4644 * 0 : disk is marked as spare but serial is not set
4645 * 1 : success
4646 */
4647 int mark_spare(struct dl *disk)
4648 {
4649 __u8 serial[MAX_RAID_SERIAL_LEN];
4650 int ret_val = -1;
4651
4652 if (!disk)
4653 return ret_val;
4654
4655 ret_val = 0;
4656 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4657 /* Restore disk serial number, because takeover marks disk
4658 * as failed and adds to serial ':0' before it becomes
4659 * a spare disk.
4660 */
4661 serialcpy(disk->serial, serial);
4662 serialcpy(disk->disk.serial, serial);
4663 ret_val = 1;
4664 }
4665 disk->disk.status = SPARE_DISK;
4666 disk->index = -1;
4667
4668 return ret_val;
4669 }
4670
4671 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4672 int fd, char *devname)
4673 {
4674 struct intel_super *super = st->sb;
4675 struct dl *dd;
4676 unsigned long long size;
4677 __u32 id;
4678 int rv;
4679 struct stat stb;
4680
4681 /* If we are on an RAID enabled platform check that the disk is
4682 * attached to the raid controller.
4683 * We do not need to test disks attachment for container based additions,
4684 * they shall be already tested when container was created/assembled.
4685 */
4686 rv = find_intel_hba_capability(fd, super, devname);
4687 /* no orom/efi or non-intel hba of the disk */
4688 if (rv != 0) {
4689 dprintf("capability: %p fd: %d ret: %d\n",
4690 super->orom, fd, rv);
4691 return 1;
4692 }
4693
4694 if (super->current_vol >= 0)
4695 return add_to_super_imsm_volume(st, dk, fd, devname);
4696
4697 fstat(fd, &stb);
4698 dd = malloc(sizeof(*dd));
4699 if (!dd) {
4700 fprintf(stderr,
4701 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4702 return 1;
4703 }
4704 memset(dd, 0, sizeof(*dd));
4705 dd->major = major(stb.st_rdev);
4706 dd->minor = minor(stb.st_rdev);
4707 dd->devname = devname ? strdup(devname) : NULL;
4708 dd->fd = fd;
4709 dd->e = NULL;
4710 dd->action = DISK_ADD;
4711 rv = imsm_read_serial(fd, devname, dd->serial);
4712 if (rv) {
4713 fprintf(stderr,
4714 Name ": failed to retrieve scsi serial, aborting\n");
4715 free(dd);
4716 abort();
4717 }
4718
4719 get_dev_size(fd, NULL, &size);
4720 size /= 512;
4721 serialcpy(dd->disk.serial, dd->serial);
4722 dd->disk.total_blocks = __cpu_to_le32(size);
4723 mark_spare(dd);
4724 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4725 dd->disk.scsi_id = __cpu_to_le32(id);
4726 else
4727 dd->disk.scsi_id = __cpu_to_le32(0);
4728
4729 if (st->update_tail) {
4730 dd->next = super->disk_mgmt_list;
4731 super->disk_mgmt_list = dd;
4732 } else {
4733 dd->next = super->disks;
4734 super->disks = dd;
4735 super->updates_pending++;
4736 }
4737
4738 return 0;
4739 }
4740
4741
4742 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4743 {
4744 struct intel_super *super = st->sb;
4745 struct dl *dd;
4746
4747 /* remove from super works only in mdmon - for communication
4748 * manager - monitor. Check if communication memory buffer
4749 * is prepared.
4750 */
4751 if (!st->update_tail) {
4752 fprintf(stderr,
4753 Name ": %s shall be used in mdmon context only"
4754 "(line %d).\n", __func__, __LINE__);
4755 return 1;
4756 }
4757 dd = malloc(sizeof(*dd));
4758 if (!dd) {
4759 fprintf(stderr,
4760 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4761 return 1;
4762 }
4763 memset(dd, 0, sizeof(*dd));
4764 dd->major = dk->major;
4765 dd->minor = dk->minor;
4766 dd->fd = -1;
4767 mark_spare(dd);
4768 dd->action = DISK_REMOVE;
4769
4770 dd->next = super->disk_mgmt_list;
4771 super->disk_mgmt_list = dd;
4772
4773
4774 return 0;
4775 }
4776
4777 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4778
4779 static union {
4780 char buf[512];
4781 struct imsm_super anchor;
4782 } spare_record __attribute__ ((aligned(512)));
4783
4784 /* spare records have their own family number and do not have any defined raid
4785 * devices
4786 */
4787 static int write_super_imsm_spares(struct intel_super *super, int doclose)
4788 {
4789 struct imsm_super *mpb = super->anchor;
4790 struct imsm_super *spare = &spare_record.anchor;
4791 __u32 sum;
4792 struct dl *d;
4793
4794 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4795 spare->generation_num = __cpu_to_le32(1UL),
4796 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4797 spare->num_disks = 1,
4798 spare->num_raid_devs = 0,
4799 spare->cache_size = mpb->cache_size,
4800 spare->pwr_cycle_count = __cpu_to_le32(1),
4801
4802 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4803 MPB_SIGNATURE MPB_VERSION_RAID0);
4804
4805 for (d = super->disks; d; d = d->next) {
4806 if (d->index != -1)
4807 continue;
4808
4809 spare->disk[0] = d->disk;
4810 sum = __gen_imsm_checksum(spare);
4811 spare->family_num = __cpu_to_le32(sum);
4812 spare->orig_family_num = 0;
4813 sum = __gen_imsm_checksum(spare);
4814 spare->check_sum = __cpu_to_le32(sum);
4815
4816 if (store_imsm_mpb(d->fd, spare)) {
4817 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4818 __func__, d->major, d->minor, strerror(errno));
4819 return 1;
4820 }
4821 if (doclose) {
4822 close(d->fd);
4823 d->fd = -1;
4824 }
4825 }
4826
4827 return 0;
4828 }
4829
4830 static int write_super_imsm(struct supertype *st, int doclose)
4831 {
4832 struct intel_super *super = st->sb;
4833 struct imsm_super *mpb = super->anchor;
4834 struct dl *d;
4835 __u32 generation;
4836 __u32 sum;
4837 int spares = 0;
4838 int i;
4839 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
4840 int num_disks = 0;
4841 int clear_migration_record = 1;
4842
4843 /* 'generation' is incremented everytime the metadata is written */
4844 generation = __le32_to_cpu(mpb->generation_num);
4845 generation++;
4846 mpb->generation_num = __cpu_to_le32(generation);
4847
4848 /* fix up cases where previous mdadm releases failed to set
4849 * orig_family_num
4850 */
4851 if (mpb->orig_family_num == 0)
4852 mpb->orig_family_num = mpb->family_num;
4853
4854 for (d = super->disks; d; d = d->next) {
4855 if (d->index == -1)
4856 spares++;
4857 else {
4858 mpb->disk[d->index] = d->disk;
4859 num_disks++;
4860 }
4861 }
4862 for (d = super->missing; d; d = d->next) {
4863 mpb->disk[d->index] = d->disk;
4864 num_disks++;
4865 }
4866 mpb->num_disks = num_disks;
4867 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
4868
4869 for (i = 0; i < mpb->num_raid_devs; i++) {
4870 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
4871 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4872 if (dev && dev2) {
4873 imsm_copy_dev(dev, dev2);
4874 mpb_size += sizeof_imsm_dev(dev, 0);
4875 }
4876 if (is_gen_migration(dev2))
4877 clear_migration_record = 0;
4878 }
4879 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4880 mpb->mpb_size = __cpu_to_le32(mpb_size);
4881
4882 /* recalculate checksum */
4883 sum = __gen_imsm_checksum(mpb);
4884 mpb->check_sum = __cpu_to_le32(sum);
4885
4886 if (clear_migration_record)
4887 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
4888
4889 /* write the mpb for disks that compose raid devices */
4890 for (d = super->disks; d ; d = d->next) {
4891 if (d->index < 0 || is_failed(&d->disk))
4892 continue;
4893 if (store_imsm_mpb(d->fd, mpb))
4894 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4895 __func__, d->major, d->minor, strerror(errno));
4896 if (clear_migration_record) {
4897 unsigned long long dsize;
4898
4899 get_dev_size(d->fd, NULL, &dsize);
4900 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4901 if (write(d->fd, super->migr_rec_buf,
4902 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
4903 perror("Write migr_rec failed");
4904 }
4905 }
4906 if (doclose) {
4907 close(d->fd);
4908 d->fd = -1;
4909 }
4910 }
4911
4912 if (spares)
4913 return write_super_imsm_spares(super, doclose);
4914
4915 return 0;
4916 }
4917
4918
4919 static int create_array(struct supertype *st, int dev_idx)
4920 {
4921 size_t len;
4922 struct imsm_update_create_array *u;
4923 struct intel_super *super = st->sb;
4924 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4925 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4926 struct disk_info *inf;
4927 struct imsm_disk *disk;
4928 int i;
4929
4930 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4931 sizeof(*inf) * map->num_members;
4932 u = malloc(len);
4933 if (!u) {
4934 fprintf(stderr, "%s: failed to allocate update buffer\n",
4935 __func__);
4936 return 1;
4937 }
4938
4939 u->type = update_create_array;
4940 u->dev_idx = dev_idx;
4941 imsm_copy_dev(&u->dev, dev);
4942 inf = get_disk_info(u);
4943 for (i = 0; i < map->num_members; i++) {
4944 int idx = get_imsm_disk_idx(dev, i, MAP_X);
4945
4946 disk = get_imsm_disk(super, idx);
4947 serialcpy(inf[i].serial, disk->serial);
4948 }
4949 append_metadata_update(st, u, len);
4950
4951 return 0;
4952 }
4953
4954 static int mgmt_disk(struct supertype *st)
4955 {
4956 struct intel_super *super = st->sb;
4957 size_t len;
4958 struct imsm_update_add_remove_disk *u;
4959
4960 if (!super->disk_mgmt_list)
4961 return 0;
4962
4963 len = sizeof(*u);
4964 u = malloc(len);
4965 if (!u) {
4966 fprintf(stderr, "%s: failed to allocate update buffer\n",
4967 __func__);
4968 return 1;
4969 }
4970
4971 u->type = update_add_remove_disk;
4972 append_metadata_update(st, u, len);
4973
4974 return 0;
4975 }
4976
4977 static int write_init_super_imsm(struct supertype *st)
4978 {
4979 struct intel_super *super = st->sb;
4980 int current_vol = super->current_vol;
4981
4982 /* we are done with current_vol reset it to point st at the container */
4983 super->current_vol = -1;
4984
4985 if (st->update_tail) {
4986 /* queue the recently created array / added disk
4987 * as a metadata update */
4988 int rv;
4989
4990 /* determine if we are creating a volume or adding a disk */
4991 if (current_vol < 0) {
4992 /* in the mgmt (add/remove) disk case we are running
4993 * in mdmon context, so don't close fd's
4994 */
4995 return mgmt_disk(st);
4996 } else
4997 rv = create_array(st, current_vol);
4998
4999 return rv;
5000 } else {
5001 struct dl *d;
5002 for (d = super->disks; d; d = d->next)
5003 Kill(d->devname, NULL, 0, 1, 1);
5004 return write_super_imsm(st, 1);
5005 }
5006 }
5007 #endif
5008
5009 static int store_super_imsm(struct supertype *st, int fd)
5010 {
5011 struct intel_super *super = st->sb;
5012 struct imsm_super *mpb = super ? super->anchor : NULL;
5013
5014 if (!mpb)
5015 return 1;
5016
5017 #ifndef MDASSEMBLE
5018 return store_imsm_mpb(fd, mpb);
5019 #else
5020 return 1;
5021 #endif
5022 }
5023
5024 static int imsm_bbm_log_size(struct imsm_super *mpb)
5025 {
5026 return __le32_to_cpu(mpb->bbm_log_size);
5027 }
5028
5029 #ifndef MDASSEMBLE
5030 static int validate_geometry_imsm_container(struct supertype *st, int level,
5031 int layout, int raiddisks, int chunk,
5032 unsigned long long size, char *dev,
5033 unsigned long long *freesize,
5034 int verbose)
5035 {
5036 int fd;
5037 unsigned long long ldsize;
5038 struct intel_super *super=NULL;
5039 int rv = 0;
5040
5041 if (level != LEVEL_CONTAINER)
5042 return 0;
5043 if (!dev)
5044 return 1;
5045
5046 fd = open(dev, O_RDONLY|O_EXCL, 0);
5047 if (fd < 0) {
5048 if (verbose)
5049 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
5050 dev, strerror(errno));
5051 return 0;
5052 }
5053 if (!get_dev_size(fd, dev, &ldsize)) {
5054 close(fd);
5055 return 0;
5056 }
5057
5058 /* capabilities retrieve could be possible
5059 * note that there is no fd for the disks in array.
5060 */
5061 super = alloc_super();
5062 if (!super) {
5063 fprintf(stderr,
5064 Name ": malloc of %zu failed.\n",
5065 sizeof(*super));
5066 close(fd);
5067 return 0;
5068 }
5069
5070 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
5071 if (rv != 0) {
5072 #if DEBUG
5073 char str[256];
5074 fd2devname(fd, str);
5075 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5076 fd, str, super->orom, rv, raiddisks);
5077 #endif
5078 /* no orom/efi or non-intel hba of the disk */
5079 close(fd);
5080 free_imsm(super);
5081 return 0;
5082 }
5083 close(fd);
5084 if (super->orom && raiddisks > super->orom->tds) {
5085 if (verbose)
5086 fprintf(stderr, Name ": %d exceeds maximum number of"
5087 " platform supported disks: %d\n",
5088 raiddisks, super->orom->tds);
5089
5090 free_imsm(super);
5091 return 0;
5092 }
5093
5094 *freesize = avail_size_imsm(st, ldsize >> 9);
5095 free_imsm(super);
5096
5097 return 1;
5098 }
5099
5100 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5101 {
5102 const unsigned long long base_start = e[*idx].start;
5103 unsigned long long end = base_start + e[*idx].size;
5104 int i;
5105
5106 if (base_start == end)
5107 return 0;
5108
5109 *idx = *idx + 1;
5110 for (i = *idx; i < num_extents; i++) {
5111 /* extend overlapping extents */
5112 if (e[i].start >= base_start &&
5113 e[i].start <= end) {
5114 if (e[i].size == 0)
5115 return 0;
5116 if (e[i].start + e[i].size > end)
5117 end = e[i].start + e[i].size;
5118 } else if (e[i].start > end) {
5119 *idx = i;
5120 break;
5121 }
5122 }
5123
5124 return end - base_start;
5125 }
5126
5127 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5128 {
5129 /* build a composite disk with all known extents and generate a new
5130 * 'maxsize' given the "all disks in an array must share a common start
5131 * offset" constraint
5132 */
5133 struct extent *e = calloc(sum_extents, sizeof(*e));
5134 struct dl *dl;
5135 int i, j;
5136 int start_extent;
5137 unsigned long long pos;
5138 unsigned long long start = 0;
5139 unsigned long long maxsize;
5140 unsigned long reserve;
5141
5142 if (!e)
5143 return 0;
5144
5145 /* coalesce and sort all extents. also, check to see if we need to
5146 * reserve space between member arrays
5147 */
5148 j = 0;
5149 for (dl = super->disks; dl; dl = dl->next) {
5150 if (!dl->e)
5151 continue;
5152 for (i = 0; i < dl->extent_cnt; i++)
5153 e[j++] = dl->e[i];
5154 }
5155 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5156
5157 /* merge extents */
5158 i = 0;
5159 j = 0;
5160 while (i < sum_extents) {
5161 e[j].start = e[i].start;
5162 e[j].size = find_size(e, &i, sum_extents);
5163 j++;
5164 if (e[j-1].size == 0)
5165 break;
5166 }
5167
5168 pos = 0;
5169 maxsize = 0;
5170 start_extent = 0;
5171 i = 0;
5172 do {
5173 unsigned long long esize;
5174
5175 esize = e[i].start - pos;
5176 if (esize >= maxsize) {
5177 maxsize = esize;
5178 start = pos;
5179 start_extent = i;
5180 }
5181 pos = e[i].start + e[i].size;
5182 i++;
5183 } while (e[i-1].size);
5184 free(e);
5185
5186 if (maxsize == 0)
5187 return 0;
5188
5189 /* FIXME assumes volume at offset 0 is the first volume in a
5190 * container
5191 */
5192 if (start_extent > 0)
5193 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5194 else
5195 reserve = 0;
5196
5197 if (maxsize < reserve)
5198 return 0;
5199
5200 super->create_offset = ~((__u32) 0);
5201 if (start + reserve > super->create_offset)
5202 return 0; /* start overflows create_offset */
5203 super->create_offset = start + reserve;
5204
5205 return maxsize - reserve;
5206 }
5207
5208 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5209 {
5210 if (level < 0 || level == 6 || level == 4)
5211 return 0;
5212
5213 /* if we have an orom prevent invalid raid levels */
5214 if (orom)
5215 switch (level) {
5216 case 0: return imsm_orom_has_raid0(orom);
5217 case 1:
5218 if (raiddisks > 2)
5219 return imsm_orom_has_raid1e(orom);
5220 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5221 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5222 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5223 }
5224 else
5225 return 1; /* not on an Intel RAID platform so anything goes */
5226
5227 return 0;
5228 }
5229
5230 static int imsm_default_chunk(const struct imsm_orom *orom)
5231 {
5232 /* up to 512 if the plaform supports it, otherwise the platform max.
5233 * 128 if no platform detected
5234 */
5235 int fs = max(7, orom ? fls(orom->sss) : 0);
5236
5237 return min(512, (1 << fs));
5238 }
5239
5240 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
5241 static int
5242 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5243 int raiddisks, int *chunk, int verbose)
5244 {
5245 /* check/set platform and metadata limits/defaults */
5246 if (super->orom && raiddisks > super->orom->dpa) {
5247 pr_vrb(": platform supports a maximum of %d disks per array\n",
5248 super->orom->dpa);
5249 return 0;
5250 }
5251
5252 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5253 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5254 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5255 level, raiddisks, raiddisks > 1 ? "s" : "");
5256 return 0;
5257 }
5258
5259 if (chunk && (*chunk == 0 || *chunk == UnSet))
5260 *chunk = imsm_default_chunk(super->orom);
5261
5262 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5263 pr_vrb(": platform does not support a chunk size of: "
5264 "%d\n", *chunk);
5265 return 0;
5266 }
5267
5268 if (layout != imsm_level_to_layout(level)) {
5269 if (level == 5)
5270 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5271 else if (level == 10)
5272 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5273 else
5274 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5275 layout, level);
5276 return 0;
5277 }
5278 return 1;
5279 }
5280
5281 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5282 * FIX ME add ahci details
5283 */
5284 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5285 int layout, int raiddisks, int *chunk,
5286 unsigned long long size, char *dev,
5287 unsigned long long *freesize,
5288 int verbose)
5289 {
5290 struct stat stb;
5291 struct intel_super *super = st->sb;
5292 struct imsm_super *mpb;
5293 struct dl *dl;
5294 unsigned long long pos = 0;
5295 unsigned long long maxsize;
5296 struct extent *e;
5297 int i;
5298
5299 /* We must have the container info already read in. */
5300 if (!super)
5301 return 0;
5302
5303 mpb = super->anchor;
5304
5305 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5306 fprintf(stderr, Name ": the option-rom requires all "
5307 "member disks to be a member of all volumes.\n");
5308 return 0;
5309 }
5310
5311 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5312 fprintf(stderr, Name ": RAID gemetry validation failed. "
5313 "Cannot proceed with the action(s).\n");
5314 return 0;
5315 }
5316 if (!dev) {
5317 /* General test: make sure there is space for
5318 * 'raiddisks' device extents of size 'size' at a given
5319 * offset
5320 */
5321 unsigned long long minsize = size;
5322 unsigned long long start_offset = MaxSector;
5323 int dcnt = 0;
5324 if (minsize == 0)
5325 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5326 for (dl = super->disks; dl ; dl = dl->next) {
5327 int found = 0;
5328
5329 pos = 0;
5330 i = 0;
5331 e = get_extents(super, dl);
5332 if (!e) continue;
5333 do {
5334 unsigned long long esize;
5335 esize = e[i].start - pos;
5336 if (esize >= minsize)
5337 found = 1;
5338 if (found && start_offset == MaxSector) {
5339 start_offset = pos;
5340 break;
5341 } else if (found && pos != start_offset) {
5342 found = 0;
5343 break;
5344 }
5345 pos = e[i].start + e[i].size;
5346 i++;
5347 } while (e[i-1].size);
5348 if (found)
5349 dcnt++;
5350 free(e);
5351 }
5352 if (dcnt < raiddisks) {
5353 if (verbose)
5354 fprintf(stderr, Name ": imsm: Not enough "
5355 "devices with space for this array "
5356 "(%d < %d)\n",
5357 dcnt, raiddisks);
5358 return 0;
5359 }
5360 return 1;
5361 }
5362
5363 /* This device must be a member of the set */
5364 if (stat(dev, &stb) < 0)
5365 return 0;
5366 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5367 return 0;
5368 for (dl = super->disks ; dl ; dl = dl->next) {
5369 if (dl->major == (int)major(stb.st_rdev) &&
5370 dl->minor == (int)minor(stb.st_rdev))
5371 break;
5372 }
5373 if (!dl) {
5374 if (verbose)
5375 fprintf(stderr, Name ": %s is not in the "
5376 "same imsm set\n", dev);
5377 return 0;
5378 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5379 /* If a volume is present then the current creation attempt
5380 * cannot incorporate new spares because the orom may not
5381 * understand this configuration (all member disks must be
5382 * members of each array in the container).
5383 */
5384 fprintf(stderr, Name ": %s is a spare and a volume"
5385 " is already defined for this container\n", dev);
5386 fprintf(stderr, Name ": The option-rom requires all member"
5387 " disks to be a member of all volumes\n");
5388 return 0;
5389 }
5390
5391 /* retrieve the largest free space block */
5392 e = get_extents(super, dl);
5393 maxsize = 0;
5394 i = 0;
5395 if (e) {
5396 do {
5397 unsigned long long esize;
5398
5399 esize = e[i].start - pos;
5400 if (esize >= maxsize)
5401 maxsize = esize;
5402 pos = e[i].start + e[i].size;
5403 i++;
5404 } while (e[i-1].size);
5405 dl->e = e;
5406 dl->extent_cnt = i;
5407 } else {
5408 if (verbose)
5409 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5410 dev);
5411 return 0;
5412 }
5413 if (maxsize < size) {
5414 if (verbose)
5415 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5416 dev, maxsize, size);
5417 return 0;
5418 }
5419
5420 /* count total number of extents for merge */
5421 i = 0;
5422 for (dl = super->disks; dl; dl = dl->next)
5423 if (dl->e)
5424 i += dl->extent_cnt;
5425
5426 maxsize = merge_extents(super, i);
5427
5428 if (!check_env("IMSM_NO_PLATFORM") &&
5429 mpb->num_raid_devs > 0 && size && size != maxsize) {
5430 fprintf(stderr, Name ": attempting to create a second "
5431 "volume with size less then remaining space. "
5432 "Aborting...\n");
5433 return 0;
5434 }
5435
5436 if (maxsize < size || maxsize == 0) {
5437 if (verbose)
5438 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5439 maxsize, size);
5440 return 0;
5441 }
5442
5443 *freesize = maxsize;
5444
5445 return 1;
5446 }
5447
5448 static int reserve_space(struct supertype *st, int raiddisks,
5449 unsigned long long size, int chunk,
5450 unsigned long long *freesize)
5451 {
5452 struct intel_super *super = st->sb;
5453 struct imsm_super *mpb = super->anchor;
5454 struct dl *dl;
5455 int i;
5456 int extent_cnt;
5457 struct extent *e;
5458 unsigned long long maxsize;
5459 unsigned long long minsize;
5460 int cnt;
5461 int used;
5462
5463 /* find the largest common start free region of the possible disks */
5464 used = 0;
5465 extent_cnt = 0;
5466 cnt = 0;
5467 for (dl = super->disks; dl; dl = dl->next) {
5468 dl->raiddisk = -1;
5469
5470 if (dl->index >= 0)
5471 used++;
5472
5473 /* don't activate new spares if we are orom constrained
5474 * and there is already a volume active in the container
5475 */
5476 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5477 continue;
5478
5479 e = get_extents(super, dl);
5480 if (!e)
5481 continue;
5482 for (i = 1; e[i-1].size; i++)
5483 ;
5484 dl->e = e;
5485 dl->extent_cnt = i;
5486 extent_cnt += i;
5487 cnt++;
5488 }
5489
5490 maxsize = merge_extents(super, extent_cnt);
5491 minsize = size;
5492 if (size == 0)
5493 /* chunk is in K */
5494 minsize = chunk * 2;
5495
5496 if (cnt < raiddisks ||
5497 (super->orom && used && used != raiddisks) ||
5498 maxsize < minsize ||
5499 maxsize == 0) {
5500 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5501 return 0; /* No enough free spaces large enough */
5502 }
5503
5504 if (size == 0) {
5505 size = maxsize;
5506 if (chunk) {
5507 size /= 2 * chunk;
5508 size *= 2 * chunk;
5509 }
5510 }
5511
5512 cnt = 0;
5513 for (dl = super->disks; dl; dl = dl->next)
5514 if (dl->e)
5515 dl->raiddisk = cnt++;
5516
5517 *freesize = size;
5518
5519 return 1;
5520 }
5521
5522 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
5523 int raiddisks, int *chunk, unsigned long long size,
5524 char *dev, unsigned long long *freesize,
5525 int verbose)
5526 {
5527 int fd, cfd;
5528 struct mdinfo *sra;
5529 int is_member = 0;
5530
5531 /* load capability
5532 * if given unused devices create a container
5533 * if given given devices in a container create a member volume
5534 */
5535 if (level == LEVEL_CONTAINER) {
5536 /* Must be a fresh device to add to a container */
5537 return validate_geometry_imsm_container(st, level, layout,
5538 raiddisks,
5539 chunk?*chunk:0, size,
5540 dev, freesize,
5541 verbose);
5542 }
5543
5544 if (!dev) {
5545 if (st->sb) {
5546 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5547 raiddisks, chunk,
5548 verbose))
5549 return 0;
5550 /* we are being asked to automatically layout a
5551 * new volume based on the current contents of
5552 * the container. If the the parameters can be
5553 * satisfied reserve_space will record the disks,
5554 * start offset, and size of the volume to be
5555 * created. add_to_super and getinfo_super
5556 * detect when autolayout is in progress.
5557 */
5558 if (freesize)
5559 return reserve_space(st, raiddisks, size,
5560 chunk?*chunk:0, freesize);
5561 }
5562 return 1;
5563 }
5564 if (st->sb) {
5565 /* creating in a given container */
5566 return validate_geometry_imsm_volume(st, level, layout,
5567 raiddisks, chunk, size,
5568 dev, freesize, verbose);
5569 }
5570
5571 /* This device needs to be a device in an 'imsm' container */
5572 fd = open(dev, O_RDONLY|O_EXCL, 0);
5573 if (fd >= 0) {
5574 if (verbose)
5575 fprintf(stderr,
5576 Name ": Cannot create this array on device %s\n",
5577 dev);
5578 close(fd);
5579 return 0;
5580 }
5581 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5582 if (verbose)
5583 fprintf(stderr, Name ": Cannot open %s: %s\n",
5584 dev, strerror(errno));
5585 return 0;
5586 }
5587 /* Well, it is in use by someone, maybe an 'imsm' container. */
5588 cfd = open_container(fd);
5589 close(fd);
5590 if (cfd < 0) {
5591 if (verbose)
5592 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5593 dev);
5594 return 0;
5595 }
5596 sra = sysfs_read(cfd, 0, GET_VERSION);
5597 if (sra && sra->array.major_version == -1 &&
5598 strcmp(sra->text_version, "imsm") == 0)
5599 is_member = 1;
5600 sysfs_free(sra);
5601 if (is_member) {
5602 /* This is a member of a imsm container. Load the container
5603 * and try to create a volume
5604 */
5605 struct intel_super *super;
5606
5607 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
5608 st->sb = super;
5609 st->container_dev = fd2devnum(cfd);
5610 close(cfd);
5611 return validate_geometry_imsm_volume(st, level, layout,
5612 raiddisks, chunk,
5613 size, dev,
5614 freesize, 1)
5615 ? 1 : -1;
5616 }
5617 }
5618
5619 if (verbose)
5620 fprintf(stderr, Name ": failed container membership check\n");
5621
5622 close(cfd);
5623 return 0;
5624 }
5625
5626 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
5627 {
5628 struct intel_super *super = st->sb;
5629
5630 if (level && *level == UnSet)
5631 *level = LEVEL_CONTAINER;
5632
5633 if (level && layout && *layout == UnSet)
5634 *layout = imsm_level_to_layout(*level);
5635
5636 if (chunk && (*chunk == UnSet || *chunk == 0))
5637 *chunk = imsm_default_chunk(super->orom);
5638 }
5639
5640 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5641
5642 static int kill_subarray_imsm(struct supertype *st)
5643 {
5644 /* remove the subarray currently referenced by ->current_vol */
5645 __u8 i;
5646 struct intel_dev **dp;
5647 struct intel_super *super = st->sb;
5648 __u8 current_vol = super->current_vol;
5649 struct imsm_super *mpb = super->anchor;
5650
5651 if (super->current_vol < 0)
5652 return 2;
5653 super->current_vol = -1; /* invalidate subarray cursor */
5654
5655 /* block deletions that would change the uuid of active subarrays
5656 *
5657 * FIXME when immutable ids are available, but note that we'll
5658 * also need to fixup the invalidated/active subarray indexes in
5659 * mdstat
5660 */
5661 for (i = 0; i < mpb->num_raid_devs; i++) {
5662 char subarray[4];
5663
5664 if (i < current_vol)
5665 continue;
5666 sprintf(subarray, "%u", i);
5667 if (is_subarray_active(subarray, st->devname)) {
5668 fprintf(stderr,
5669 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5670 current_vol, i);
5671
5672 return 2;
5673 }
5674 }
5675
5676 if (st->update_tail) {
5677 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5678
5679 if (!u)
5680 return 2;
5681 u->type = update_kill_array;
5682 u->dev_idx = current_vol;
5683 append_metadata_update(st, u, sizeof(*u));
5684
5685 return 0;
5686 }
5687
5688 for (dp = &super->devlist; *dp;)
5689 if ((*dp)->index == current_vol) {
5690 *dp = (*dp)->next;
5691 } else {
5692 handle_missing(super, (*dp)->dev);
5693 if ((*dp)->index > current_vol)
5694 (*dp)->index--;
5695 dp = &(*dp)->next;
5696 }
5697
5698 /* no more raid devices, all active components are now spares,
5699 * but of course failed are still failed
5700 */
5701 if (--mpb->num_raid_devs == 0) {
5702 struct dl *d;
5703
5704 for (d = super->disks; d; d = d->next)
5705 if (d->index > -2)
5706 mark_spare(d);
5707 }
5708
5709 super->updates_pending++;
5710
5711 return 0;
5712 }
5713
5714 static int update_subarray_imsm(struct supertype *st, char *subarray,
5715 char *update, struct mddev_ident *ident)
5716 {
5717 /* update the subarray currently referenced by ->current_vol */
5718 struct intel_super *super = st->sb;
5719 struct imsm_super *mpb = super->anchor;
5720
5721 if (strcmp(update, "name") == 0) {
5722 char *name = ident->name;
5723 char *ep;
5724 int vol;
5725
5726 if (is_subarray_active(subarray, st->devname)) {
5727 fprintf(stderr,
5728 Name ": Unable to update name of active subarray\n");
5729 return 2;
5730 }
5731
5732 if (!check_name(super, name, 0))
5733 return 2;
5734
5735 vol = strtoul(subarray, &ep, 10);
5736 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5737 return 2;
5738
5739 if (st->update_tail) {
5740 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5741
5742 if (!u)
5743 return 2;
5744 u->type = update_rename_array;
5745 u->dev_idx = vol;
5746 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5747 append_metadata_update(st, u, sizeof(*u));
5748 } else {
5749 struct imsm_dev *dev;
5750 int i;
5751
5752 dev = get_imsm_dev(super, vol);
5753 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5754 for (i = 0; i < mpb->num_raid_devs; i++) {
5755 dev = get_imsm_dev(super, i);
5756 handle_missing(super, dev);
5757 }
5758 super->updates_pending++;
5759 }
5760 } else
5761 return 2;
5762
5763 return 0;
5764 }
5765 #endif /* MDASSEMBLE */
5766
5767 static int is_gen_migration(struct imsm_dev *dev)
5768 {
5769 if (dev == NULL)
5770 return 0;
5771
5772 if (!dev->vol.migr_state)
5773 return 0;
5774
5775 if (migr_type(dev) == MIGR_GEN_MIGR)
5776 return 1;
5777
5778 return 0;
5779 }
5780
5781 static int is_rebuilding(struct imsm_dev *dev)
5782 {
5783 struct imsm_map *migr_map;
5784
5785 if (!dev->vol.migr_state)
5786 return 0;
5787
5788 if (migr_type(dev) != MIGR_REBUILD)
5789 return 0;
5790
5791 migr_map = get_imsm_map(dev, MAP_1);
5792
5793 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5794 return 1;
5795 else
5796 return 0;
5797 }
5798
5799 static int is_initializing(struct imsm_dev *dev)
5800 {
5801 struct imsm_map *migr_map;
5802
5803 if (!dev->vol.migr_state)
5804 return 0;
5805
5806 if (migr_type(dev) != MIGR_INIT)
5807 return 0;
5808
5809 migr_map = get_imsm_map(dev, MAP_1);
5810
5811 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
5812 return 1;
5813
5814 return 0;
5815
5816 }
5817
5818 static void update_recovery_start(struct intel_super *super,
5819 struct imsm_dev *dev,
5820 struct mdinfo *array)
5821 {
5822 struct mdinfo *rebuild = NULL;
5823 struct mdinfo *d;
5824 __u32 units;
5825
5826 if (!is_rebuilding(dev))
5827 return;
5828
5829 /* Find the rebuild target, but punt on the dual rebuild case */
5830 for (d = array->devs; d; d = d->next)
5831 if (d->recovery_start == 0) {
5832 if (rebuild)
5833 return;
5834 rebuild = d;
5835 }
5836
5837 if (!rebuild) {
5838 /* (?) none of the disks are marked with
5839 * IMSM_ORD_REBUILD, so assume they are missing and the
5840 * disk_ord_tbl was not correctly updated
5841 */
5842 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5843 return;
5844 }
5845
5846 units = __le32_to_cpu(dev->vol.curr_migr_unit);
5847 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
5848 }
5849
5850 #ifndef MDASSEMBLE
5851 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
5852 #endif
5853
5854 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
5855 {
5856 /* Given a container loaded by load_super_imsm_all,
5857 * extract information about all the arrays into
5858 * an mdinfo tree.
5859 * If 'subarray' is given, just extract info about that array.
5860 *
5861 * For each imsm_dev create an mdinfo, fill it in,
5862 * then look for matching devices in super->disks
5863 * and create appropriate device mdinfo.
5864 */
5865 struct intel_super *super = st->sb;
5866 struct imsm_super *mpb = super->anchor;
5867 struct mdinfo *rest = NULL;
5868 unsigned int i;
5869 int sb_errors = 0;
5870 struct dl *d;
5871 int spare_disks = 0;
5872
5873 /* do not assemble arrays when not all attributes are supported */
5874 if (imsm_check_attributes(mpb->attributes) == 0) {
5875 sb_errors = 1;
5876 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
5877 "Arrays activation is blocked.\n");
5878 }
5879
5880 /* check for bad blocks */
5881 if (imsm_bbm_log_size(super->anchor)) {
5882 fprintf(stderr, Name ": BBM log found in IMSM metadata."
5883 "Arrays activation is blocked.\n");
5884 sb_errors = 1;
5885 }
5886
5887
5888 /* count spare devices, not used in maps
5889 */
5890 for (d = super->disks; d; d = d->next)
5891 if (d->index == -1)
5892 spare_disks++;
5893
5894 for (i = 0; i < mpb->num_raid_devs; i++) {
5895 struct imsm_dev *dev;
5896 struct imsm_map *map;
5897 struct imsm_map *map2;
5898 struct mdinfo *this;
5899 int slot, chunk;
5900 char *ep;
5901
5902 if (subarray &&
5903 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5904 continue;
5905
5906 dev = get_imsm_dev(super, i);
5907 map = get_imsm_map(dev, MAP_0);
5908 map2 = get_imsm_map(dev, MAP_1);
5909
5910 /* do not publish arrays that are in the middle of an
5911 * unsupported migration
5912 */
5913 if (dev->vol.migr_state &&
5914 (migr_type(dev) == MIGR_STATE_CHANGE)) {
5915 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5916 " unsupported migration in progress\n",
5917 dev->volume);
5918 continue;
5919 }
5920 /* do not publish arrays that are not support by controller's
5921 * OROM/EFI
5922 */
5923
5924 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
5925 this = malloc(sizeof(*this));
5926 if (!this) {
5927 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
5928 sizeof(*this));
5929 break;
5930 }
5931
5932 super->current_vol = i;
5933 getinfo_super_imsm_volume(st, this, NULL);
5934 this->next = rest;
5935 #ifndef MDASSEMBLE
5936 /* mdadm does not support all metadata features- set the bit in all arrays state */
5937 if (!validate_geometry_imsm_orom(super,
5938 get_imsm_raid_level(map), /* RAID level */
5939 imsm_level_to_layout(get_imsm_raid_level(map)),
5940 map->num_members, /* raid disks */
5941 &chunk,
5942 1 /* verbose */)) {
5943 fprintf(stderr, Name ": IMSM RAID geometry validation"
5944 " failed. Array %s activation is blocked.\n",
5945 dev->volume);
5946 this->array.state |=
5947 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5948 (1<<MD_SB_BLOCK_VOLUME);
5949 }
5950 #endif
5951
5952 /* if array has bad blocks, set suitable bit in all arrays state */
5953 if (sb_errors)
5954 this->array.state |=
5955 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5956 (1<<MD_SB_BLOCK_VOLUME);
5957
5958 for (slot = 0 ; slot < map->num_members; slot++) {
5959 unsigned long long recovery_start;
5960 struct mdinfo *info_d;
5961 struct dl *d;
5962 int idx;
5963 int skip;
5964 __u32 ord;
5965
5966 skip = 0;
5967 idx = get_imsm_disk_idx(dev, slot, MAP_0);
5968 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5969 for (d = super->disks; d ; d = d->next)
5970 if (d->index == idx)
5971 break;
5972
5973 recovery_start = MaxSector;
5974 if (d == NULL)
5975 skip = 1;
5976 if (d && is_failed(&d->disk))
5977 skip = 1;
5978 if (ord & IMSM_ORD_REBUILD)
5979 recovery_start = 0;
5980
5981 /*
5982 * if we skip some disks the array will be assmebled degraded;
5983 * reset resync start to avoid a dirty-degraded
5984 * situation when performing the intial sync
5985 *
5986 * FIXME handle dirty degraded
5987 */
5988 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5989 this->resync_start = MaxSector;
5990 if (skip)
5991 continue;
5992
5993 info_d = calloc(1, sizeof(*info_d));
5994 if (!info_d) {
5995 fprintf(stderr, Name ": failed to allocate disk"
5996 " for volume %.16s\n", dev->volume);
5997 info_d = this->devs;
5998 while (info_d) {
5999 struct mdinfo *d = info_d->next;
6000
6001 free(info_d);
6002 info_d = d;
6003 }
6004 free(this);
6005 this = rest;
6006 break;
6007 }
6008 info_d->next = this->devs;
6009 this->devs = info_d;
6010
6011 info_d->disk.number = d->index;
6012 info_d->disk.major = d->major;
6013 info_d->disk.minor = d->minor;
6014 info_d->disk.raid_disk = slot;
6015 info_d->recovery_start = recovery_start;
6016 if (map2) {
6017 if (slot < map2->num_members)
6018 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6019 else
6020 this->array.spare_disks++;
6021 } else {
6022 if (slot < map->num_members)
6023 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6024 else
6025 this->array.spare_disks++;
6026 }
6027 if (info_d->recovery_start == MaxSector)
6028 this->array.working_disks++;
6029
6030 info_d->events = __le32_to_cpu(mpb->generation_num);
6031 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
6032 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
6033 }
6034 /* now that the disk list is up-to-date fixup recovery_start */
6035 update_recovery_start(super, dev, this);
6036 this->array.spare_disks += spare_disks;
6037
6038 #ifndef MDASSEMBLE
6039 /* check for reshape */
6040 if (this->reshape_active == 1)
6041 recover_backup_imsm(st, this);
6042 #endif
6043 rest = this;
6044 }
6045
6046 return rest;
6047 }
6048
6049
6050 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6051 int failed, int look_in_map)
6052 {
6053 struct imsm_map *map;
6054
6055 map = get_imsm_map(dev, look_in_map);
6056
6057 if (!failed)
6058 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6059 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6060
6061 switch (get_imsm_raid_level(map)) {
6062 case 0:
6063 return IMSM_T_STATE_FAILED;
6064 break;
6065 case 1:
6066 if (failed < map->num_members)
6067 return IMSM_T_STATE_DEGRADED;
6068 else
6069 return IMSM_T_STATE_FAILED;
6070 break;
6071 case 10:
6072 {
6073 /**
6074 * check to see if any mirrors have failed, otherwise we
6075 * are degraded. Even numbered slots are mirrored on
6076 * slot+1
6077 */
6078 int i;
6079 /* gcc -Os complains that this is unused */
6080 int insync = insync;
6081
6082 for (i = 0; i < map->num_members; i++) {
6083 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6084 int idx = ord_to_idx(ord);
6085 struct imsm_disk *disk;
6086
6087 /* reset the potential in-sync count on even-numbered
6088 * slots. num_copies is always 2 for imsm raid10
6089 */
6090 if ((i & 1) == 0)
6091 insync = 2;
6092
6093 disk = get_imsm_disk(super, idx);
6094 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6095 insync--;
6096
6097 /* no in-sync disks left in this mirror the
6098 * array has failed
6099 */
6100 if (insync == 0)
6101 return IMSM_T_STATE_FAILED;
6102 }
6103
6104 return IMSM_T_STATE_DEGRADED;
6105 }
6106 case 5:
6107 if (failed < 2)
6108 return IMSM_T_STATE_DEGRADED;
6109 else
6110 return IMSM_T_STATE_FAILED;
6111 break;
6112 default:
6113 break;
6114 }
6115
6116 return map->map_state;
6117 }
6118
6119 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6120 int look_in_map)
6121 {
6122 int i;
6123 int failed = 0;
6124 struct imsm_disk *disk;
6125 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6126 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6127 struct imsm_map *map_for_loop;
6128 __u32 ord;
6129 int idx;
6130 int idx_1;
6131
6132 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6133 * disks that are being rebuilt. New failures are recorded to
6134 * map[0]. So we look through all the disks we started with and
6135 * see if any failures are still present, or if any new ones
6136 * have arrived
6137 */
6138 map_for_loop = map;
6139 if (prev && (map->num_members < prev->num_members))
6140 map_for_loop = prev;
6141
6142 for (i = 0; i < map_for_loop->num_members; i++) {
6143 idx_1 = -255;
6144 /* when MAP_X is passed both maps failures are counted
6145 */
6146 if (prev &&
6147 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6148 (i < prev->num_members)) {
6149 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6150 idx_1 = ord_to_idx(ord);
6151
6152 disk = get_imsm_disk(super, idx_1);
6153 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6154 failed++;
6155 }
6156 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6157 (i < map->num_members)) {
6158 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6159 idx = ord_to_idx(ord);
6160
6161 if (idx != idx_1) {
6162 disk = get_imsm_disk(super, idx);
6163 if (!disk || is_failed(disk) ||
6164 ord & IMSM_ORD_REBUILD)
6165 failed++;
6166 }
6167 }
6168 }
6169
6170 return failed;
6171 }
6172
6173 #ifndef MDASSEMBLE
6174 static int imsm_open_new(struct supertype *c, struct active_array *a,
6175 char *inst)
6176 {
6177 struct intel_super *super = c->sb;
6178 struct imsm_super *mpb = super->anchor;
6179
6180 if (atoi(inst) >= mpb->num_raid_devs) {
6181 fprintf(stderr, "%s: subarry index %d, out of range\n",
6182 __func__, atoi(inst));
6183 return -ENODEV;
6184 }
6185
6186 dprintf("imsm: open_new %s\n", inst);
6187 a->info.container_member = atoi(inst);
6188 return 0;
6189 }
6190
6191 static int is_resyncing(struct imsm_dev *dev)
6192 {
6193 struct imsm_map *migr_map;
6194
6195 if (!dev->vol.migr_state)
6196 return 0;
6197
6198 if (migr_type(dev) == MIGR_INIT ||
6199 migr_type(dev) == MIGR_REPAIR)
6200 return 1;
6201
6202 if (migr_type(dev) == MIGR_GEN_MIGR)
6203 return 0;
6204
6205 migr_map = get_imsm_map(dev, MAP_1);
6206
6207 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6208 (dev->vol.migr_type != MIGR_GEN_MIGR))
6209 return 1;
6210 else
6211 return 0;
6212 }
6213
6214 /* return true if we recorded new information */
6215 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6216 {
6217 __u32 ord;
6218 int slot;
6219 struct imsm_map *map;
6220 char buf[MAX_RAID_SERIAL_LEN+3];
6221 unsigned int len, shift = 0;
6222
6223 /* new failures are always set in map[0] */
6224 map = get_imsm_map(dev, MAP_0);
6225
6226 slot = get_imsm_disk_slot(map, idx);
6227 if (slot < 0)
6228 return 0;
6229
6230 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6231 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6232 return 0;
6233
6234 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6235 buf[MAX_RAID_SERIAL_LEN] = '\000';
6236 strcat(buf, ":0");
6237 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6238 shift = len - MAX_RAID_SERIAL_LEN + 1;
6239 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6240
6241 disk->status |= FAILED_DISK;
6242 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6243 /* mark failures in second map if second map exists and this disk
6244 * in this slot.
6245 * This is valid for migration, initialization and rebuild
6246 */
6247 if (dev->vol.migr_state) {
6248 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
6249 int slot2 = get_imsm_disk_slot(map2, idx);
6250
6251 if ((slot2 < map2->num_members) &&
6252 (slot2 >= 0))
6253 set_imsm_ord_tbl_ent(map2, slot2,
6254 idx | IMSM_ORD_REBUILD);
6255 }
6256 if (map->failed_disk_num == 0xff)
6257 map->failed_disk_num = slot;
6258 return 1;
6259 }
6260
6261 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6262 {
6263 mark_failure(dev, disk, idx);
6264
6265 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6266 return;
6267
6268 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6269 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6270 }
6271
6272 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6273 {
6274 struct dl *dl;
6275
6276 if (!super->missing)
6277 return;
6278
6279 dprintf("imsm: mark missing\n");
6280 /* end process for initialization and rebuild only
6281 */
6282 if (is_gen_migration(dev) == 0) {
6283 __u8 map_state;
6284 int failed;
6285
6286 failed = imsm_count_failed(super, dev, MAP_0);
6287 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6288
6289 end_migration(dev, super, map_state);
6290 }
6291 for (dl = super->missing; dl; dl = dl->next)
6292 mark_missing(dev, &dl->disk, dl->index);
6293 super->updates_pending++;
6294 }
6295
6296 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6297 {
6298 int used_disks = imsm_num_data_members(dev, MAP_0);
6299 unsigned long long array_blocks;
6300 struct imsm_map *map;
6301
6302 if (used_disks == 0) {
6303 /* when problems occures
6304 * return current array_blocks value
6305 */
6306 array_blocks = __le32_to_cpu(dev->size_high);
6307 array_blocks = array_blocks << 32;
6308 array_blocks += __le32_to_cpu(dev->size_low);
6309
6310 return array_blocks;
6311 }
6312
6313 /* set array size in metadata
6314 */
6315 map = get_imsm_map(dev, MAP_0);
6316 array_blocks = map->blocks_per_member * used_disks;
6317
6318 /* round array size down to closest MB
6319 */
6320 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6321 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6322 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6323
6324 return array_blocks;
6325 }
6326
6327 static void imsm_set_disk(struct active_array *a, int n, int state);
6328
6329 static void imsm_progress_container_reshape(struct intel_super *super)
6330 {
6331 /* if no device has a migr_state, but some device has a
6332 * different number of members than the previous device, start
6333 * changing the number of devices in this device to match
6334 * previous.
6335 */
6336 struct imsm_super *mpb = super->anchor;
6337 int prev_disks = -1;
6338 int i;
6339 int copy_map_size;
6340
6341 for (i = 0; i < mpb->num_raid_devs; i++) {
6342 struct imsm_dev *dev = get_imsm_dev(super, i);
6343 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6344 struct imsm_map *map2;
6345 int prev_num_members;
6346
6347 if (dev->vol.migr_state)
6348 return;
6349
6350 if (prev_disks == -1)
6351 prev_disks = map->num_members;
6352 if (prev_disks == map->num_members)
6353 continue;
6354
6355 /* OK, this array needs to enter reshape mode.
6356 * i.e it needs a migr_state
6357 */
6358
6359 copy_map_size = sizeof_imsm_map(map);
6360 prev_num_members = map->num_members;
6361 map->num_members = prev_disks;
6362 dev->vol.migr_state = 1;
6363 dev->vol.curr_migr_unit = 0;
6364 set_migr_type(dev, MIGR_GEN_MIGR);
6365 for (i = prev_num_members;
6366 i < map->num_members; i++)
6367 set_imsm_ord_tbl_ent(map, i, i);
6368 map2 = get_imsm_map(dev, MAP_1);
6369 /* Copy the current map */
6370 memcpy(map2, map, copy_map_size);
6371 map2->num_members = prev_num_members;
6372
6373 imsm_set_array_size(dev);
6374 super->updates_pending++;
6375 }
6376 }
6377
6378 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
6379 * states are handled in imsm_set_disk() with one exception, when a
6380 * resync is stopped due to a new failure this routine will set the
6381 * 'degraded' state for the array.
6382 */
6383 static int imsm_set_array_state(struct active_array *a, int consistent)
6384 {
6385 int inst = a->info.container_member;
6386 struct intel_super *super = a->container->sb;
6387 struct imsm_dev *dev = get_imsm_dev(super, inst);
6388 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6389 int failed = imsm_count_failed(super, dev, MAP_0);
6390 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6391 __u32 blocks_per_unit;
6392
6393 if (dev->vol.migr_state &&
6394 dev->vol.migr_type == MIGR_GEN_MIGR) {
6395 /* array state change is blocked due to reshape action
6396 * We might need to
6397 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6398 * - finish the reshape (if last_checkpoint is big and action != reshape)
6399 * - update curr_migr_unit
6400 */
6401 if (a->curr_action == reshape) {
6402 /* still reshaping, maybe update curr_migr_unit */
6403 goto mark_checkpoint;
6404 } else {
6405 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6406 /* for some reason we aborted the reshape.
6407 *
6408 * disable automatic metadata rollback
6409 * user action is required to recover process
6410 */
6411 if (0) {
6412 struct imsm_map *map2 =
6413 get_imsm_map(dev, MAP_1);
6414 dev->vol.migr_state = 0;
6415 set_migr_type(dev, 0);
6416 dev->vol.curr_migr_unit = 0;
6417 memcpy(map, map2,
6418 sizeof_imsm_map(map2));
6419 super->updates_pending++;
6420 }
6421 }
6422 if (a->last_checkpoint >= a->info.component_size) {
6423 unsigned long long array_blocks;
6424 int used_disks;
6425 struct mdinfo *mdi;
6426
6427 used_disks = imsm_num_data_members(dev, MAP_0);
6428 if (used_disks > 0) {
6429 array_blocks =
6430 map->blocks_per_member *
6431 used_disks;
6432 /* round array size down to closest MB
6433 */
6434 array_blocks = (array_blocks
6435 >> SECT_PER_MB_SHIFT)
6436 << SECT_PER_MB_SHIFT;
6437 a->info.custom_array_size = array_blocks;
6438 /* encourage manager to update array
6439 * size
6440 */
6441
6442 a->check_reshape = 1;
6443 }
6444 /* finalize online capacity expansion/reshape */
6445 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6446 imsm_set_disk(a,
6447 mdi->disk.raid_disk,
6448 mdi->curr_state);
6449
6450 imsm_progress_container_reshape(super);
6451 }
6452 }
6453 }
6454
6455 /* before we activate this array handle any missing disks */
6456 if (consistent == 2)
6457 handle_missing(super, dev);
6458
6459 if (consistent == 2 &&
6460 (!is_resync_complete(&a->info) ||
6461 map_state != IMSM_T_STATE_NORMAL ||
6462 dev->vol.migr_state))
6463 consistent = 0;
6464
6465 if (is_resync_complete(&a->info)) {
6466 /* complete intialization / resync,
6467 * recovery and interrupted recovery is completed in
6468 * ->set_disk
6469 */
6470 if (is_resyncing(dev)) {
6471 dprintf("imsm: mark resync done\n");
6472 end_migration(dev, super, map_state);
6473 super->updates_pending++;
6474 a->last_checkpoint = 0;
6475 }
6476 } else if ((!is_resyncing(dev) && !failed) &&
6477 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
6478 /* mark the start of the init process if nothing is failed */
6479 dprintf("imsm: mark resync start\n");
6480 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
6481 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
6482 else
6483 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
6484 super->updates_pending++;
6485 }
6486
6487 mark_checkpoint:
6488 /* skip checkpointing for general migration,
6489 * it is controlled in mdadm
6490 */
6491 if (is_gen_migration(dev))
6492 goto skip_mark_checkpoint;
6493
6494 /* check if we can update curr_migr_unit from resync_start, recovery_start */
6495 blocks_per_unit = blocks_per_migr_unit(super, dev);
6496 if (blocks_per_unit) {
6497 __u32 units32;
6498 __u64 units;
6499
6500 units = a->last_checkpoint / blocks_per_unit;
6501 units32 = units;
6502
6503 /* check that we did not overflow 32-bits, and that
6504 * curr_migr_unit needs updating
6505 */
6506 if (units32 == units &&
6507 units32 != 0 &&
6508 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6509 dprintf("imsm: mark checkpoint (%u)\n", units32);
6510 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6511 super->updates_pending++;
6512 }
6513 }
6514
6515 skip_mark_checkpoint:
6516 /* mark dirty / clean */
6517 if (dev->vol.dirty != !consistent) {
6518 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
6519 if (consistent)
6520 dev->vol.dirty = 0;
6521 else
6522 dev->vol.dirty = 1;
6523 super->updates_pending++;
6524 }
6525
6526 return consistent;
6527 }
6528
6529 static void imsm_set_disk(struct active_array *a, int n, int state)
6530 {
6531 int inst = a->info.container_member;
6532 struct intel_super *super = a->container->sb;
6533 struct imsm_dev *dev = get_imsm_dev(super, inst);
6534 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6535 struct imsm_disk *disk;
6536 int failed;
6537 __u32 ord;
6538 __u8 map_state;
6539
6540 if (n > map->num_members)
6541 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6542 n, map->num_members - 1);
6543
6544 if (n < 0)
6545 return;
6546
6547 dprintf("imsm: set_disk %d:%x\n", n, state);
6548
6549 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
6550 disk = get_imsm_disk(super, ord_to_idx(ord));
6551
6552 /* check for new failures */
6553 if (state & DS_FAULTY) {
6554 if (mark_failure(dev, disk, ord_to_idx(ord)))
6555 super->updates_pending++;
6556 }
6557
6558 /* check if in_sync */
6559 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
6560 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
6561
6562 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
6563 super->updates_pending++;
6564 }
6565
6566 failed = imsm_count_failed(super, dev, MAP_0);
6567 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6568
6569 /* check if recovery complete, newly degraded, or failed */
6570 dprintf("imsm: Detected transition to state ");
6571 switch (map_state) {
6572 case IMSM_T_STATE_NORMAL: /* transition to normal state */
6573 dprintf("normal: ");
6574 if (is_rebuilding(dev)) {
6575 dprintf("while rebuilding");
6576 end_migration(dev, super, map_state);
6577 map = get_imsm_map(dev, MAP_0);
6578 map->failed_disk_num = ~0;
6579 super->updates_pending++;
6580 a->last_checkpoint = 0;
6581 break;
6582 }
6583 if (is_gen_migration(dev)) {
6584 dprintf("while general migration");
6585 if (a->last_checkpoint >= a->info.component_size)
6586 end_migration(dev, super, map_state);
6587 else
6588 map->map_state = map_state;
6589 map = get_imsm_map(dev, MAP_0);
6590 map->failed_disk_num = ~0;
6591 super->updates_pending++;
6592 break;
6593 }
6594 break;
6595 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
6596 dprintf("degraded: ");
6597 if ((map->map_state != map_state) &&
6598 !dev->vol.migr_state) {
6599 dprintf("mark degraded");
6600 map->map_state = map_state;
6601 super->updates_pending++;
6602 a->last_checkpoint = 0;
6603 break;
6604 }
6605 if (is_rebuilding(dev)) {
6606 dprintf("while rebuilding.");
6607 if (map->map_state != map_state) {
6608 dprintf(" Map state change");
6609 end_migration(dev, super, map_state);
6610 super->updates_pending++;
6611 }
6612 break;
6613 }
6614 if (is_gen_migration(dev)) {
6615 dprintf("while general migration");
6616 if (a->last_checkpoint >= a->info.component_size)
6617 end_migration(dev, super, map_state);
6618 else {
6619 map->map_state = map_state;
6620 manage_second_map(super, dev);
6621 }
6622 super->updates_pending++;
6623 break;
6624 }
6625 if (is_initializing(dev)) {
6626 dprintf("while initialization.");
6627 map->map_state = map_state;
6628 super->updates_pending++;
6629 break;
6630 }
6631 break;
6632 case IMSM_T_STATE_FAILED: /* transition to failed state */
6633 dprintf("failed: ");
6634 if (is_gen_migration(dev)) {
6635 dprintf("while general migration");
6636 map->map_state = map_state;
6637 super->updates_pending++;
6638 break;
6639 }
6640 if (map->map_state != map_state) {
6641 dprintf("mark failed");
6642 end_migration(dev, super, map_state);
6643 super->updates_pending++;
6644 a->last_checkpoint = 0;
6645 break;
6646 }
6647 break;
6648 default:
6649 dprintf("state %i\n", map_state);
6650 }
6651 dprintf("\n");
6652
6653 }
6654
6655 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
6656 {
6657 void *buf = mpb;
6658 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6659 unsigned long long dsize;
6660 unsigned long long sectors;
6661
6662 get_dev_size(fd, NULL, &dsize);
6663
6664 if (mpb_size > 512) {
6665 /* -1 to account for anchor */
6666 sectors = mpb_sectors(mpb) - 1;
6667
6668 /* write the extended mpb to the sectors preceeding the anchor */
6669 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6670 return 1;
6671
6672 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6673 != 512 * sectors)
6674 return 1;
6675 }
6676
6677 /* first block is stored on second to last sector of the disk */
6678 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
6679 return 1;
6680
6681 if (write(fd, buf, 512) != 512)
6682 return 1;
6683
6684 return 0;
6685 }
6686
6687 static void imsm_sync_metadata(struct supertype *container)
6688 {
6689 struct intel_super *super = container->sb;
6690
6691 dprintf("sync metadata: %d\n", super->updates_pending);
6692 if (!super->updates_pending)
6693 return;
6694
6695 write_super_imsm(container, 0);
6696
6697 super->updates_pending = 0;
6698 }
6699
6700 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6701 {
6702 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6703 int i = get_imsm_disk_idx(dev, idx, MAP_X);
6704 struct dl *dl;
6705
6706 for (dl = super->disks; dl; dl = dl->next)
6707 if (dl->index == i)
6708 break;
6709
6710 if (dl && is_failed(&dl->disk))
6711 dl = NULL;
6712
6713 if (dl)
6714 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6715
6716 return dl;
6717 }
6718
6719 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
6720 struct active_array *a, int activate_new,
6721 struct mdinfo *additional_test_list)
6722 {
6723 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6724 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
6725 struct imsm_super *mpb = super->anchor;
6726 struct imsm_map *map;
6727 unsigned long long pos;
6728 struct mdinfo *d;
6729 struct extent *ex;
6730 int i, j;
6731 int found;
6732 __u32 array_start = 0;
6733 __u32 array_end = 0;
6734 struct dl *dl;
6735 struct mdinfo *test_list;
6736
6737 for (dl = super->disks; dl; dl = dl->next) {
6738 /* If in this array, skip */
6739 for (d = a->info.devs ; d ; d = d->next)
6740 if (d->state_fd >= 0 &&
6741 d->disk.major == dl->major &&
6742 d->disk.minor == dl->minor) {
6743 dprintf("%x:%x already in array\n",
6744 dl->major, dl->minor);
6745 break;
6746 }
6747 if (d)
6748 continue;
6749 test_list = additional_test_list;
6750 while (test_list) {
6751 if (test_list->disk.major == dl->major &&
6752 test_list->disk.minor == dl->minor) {
6753 dprintf("%x:%x already in additional test list\n",
6754 dl->major, dl->minor);
6755 break;
6756 }
6757 test_list = test_list->next;
6758 }
6759 if (test_list)
6760 continue;
6761
6762 /* skip in use or failed drives */
6763 if (is_failed(&dl->disk) || idx == dl->index ||
6764 dl->index == -2) {
6765 dprintf("%x:%x status (failed: %d index: %d)\n",
6766 dl->major, dl->minor, is_failed(&dl->disk), idx);
6767 continue;
6768 }
6769
6770 /* skip pure spares when we are looking for partially
6771 * assimilated drives
6772 */
6773 if (dl->index == -1 && !activate_new)
6774 continue;
6775
6776 /* Does this unused device have the requisite free space?
6777 * It needs to be able to cover all member volumes
6778 */
6779 ex = get_extents(super, dl);
6780 if (!ex) {
6781 dprintf("cannot get extents\n");
6782 continue;
6783 }
6784 for (i = 0; i < mpb->num_raid_devs; i++) {
6785 dev = get_imsm_dev(super, i);
6786 map = get_imsm_map(dev, MAP_0);
6787
6788 /* check if this disk is already a member of
6789 * this array
6790 */
6791 if (get_imsm_disk_slot(map, dl->index) >= 0)
6792 continue;
6793
6794 found = 0;
6795 j = 0;
6796 pos = 0;
6797 array_start = __le32_to_cpu(map->pba_of_lba0);
6798 array_end = array_start +
6799 __le32_to_cpu(map->blocks_per_member) - 1;
6800
6801 do {
6802 /* check that we can start at pba_of_lba0 with
6803 * blocks_per_member of space
6804 */
6805 if (array_start >= pos && array_end < ex[j].start) {
6806 found = 1;
6807 break;
6808 }
6809 pos = ex[j].start + ex[j].size;
6810 j++;
6811 } while (ex[j-1].size);
6812
6813 if (!found)
6814 break;
6815 }
6816
6817 free(ex);
6818 if (i < mpb->num_raid_devs) {
6819 dprintf("%x:%x does not have %u to %u available\n",
6820 dl->major, dl->minor, array_start, array_end);
6821 /* No room */
6822 continue;
6823 }
6824 return dl;
6825 }
6826
6827 return dl;
6828 }
6829
6830
6831 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6832 {
6833 struct imsm_dev *dev2;
6834 struct imsm_map *map;
6835 struct dl *idisk;
6836 int slot;
6837 int idx;
6838 __u8 state;
6839
6840 dev2 = get_imsm_dev(cont->sb, dev_idx);
6841 if (dev2) {
6842 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
6843 if (state == IMSM_T_STATE_FAILED) {
6844 map = get_imsm_map(dev2, MAP_0);
6845 if (!map)
6846 return 1;
6847 for (slot = 0; slot < map->num_members; slot++) {
6848 /*
6849 * Check if failed disks are deleted from intel
6850 * disk list or are marked to be deleted
6851 */
6852 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
6853 idisk = get_imsm_dl_disk(cont->sb, idx);
6854 /*
6855 * Do not rebuild the array if failed disks
6856 * from failed sub-array are not removed from
6857 * container.
6858 */
6859 if (idisk &&
6860 is_failed(&idisk->disk) &&
6861 (idisk->action != DISK_REMOVE))
6862 return 0;
6863 }
6864 }
6865 }
6866 return 1;
6867 }
6868
6869 static struct mdinfo *imsm_activate_spare(struct active_array *a,
6870 struct metadata_update **updates)
6871 {
6872 /**
6873 * Find a device with unused free space and use it to replace a
6874 * failed/vacant region in an array. We replace failed regions one a
6875 * array at a time. The result is that a new spare disk will be added
6876 * to the first failed array and after the monitor has finished
6877 * propagating failures the remainder will be consumed.
6878 *
6879 * FIXME add a capability for mdmon to request spares from another
6880 * container.
6881 */
6882
6883 struct intel_super *super = a->container->sb;
6884 int inst = a->info.container_member;
6885 struct imsm_dev *dev = get_imsm_dev(super, inst);
6886 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6887 int failed = a->info.array.raid_disks;
6888 struct mdinfo *rv = NULL;
6889 struct mdinfo *d;
6890 struct mdinfo *di;
6891 struct metadata_update *mu;
6892 struct dl *dl;
6893 struct imsm_update_activate_spare *u;
6894 int num_spares = 0;
6895 int i;
6896 int allowed;
6897
6898 for (d = a->info.devs ; d ; d = d->next) {
6899 if ((d->curr_state & DS_FAULTY) &&
6900 d->state_fd >= 0)
6901 /* wait for Removal to happen */
6902 return NULL;
6903 if (d->state_fd >= 0)
6904 failed--;
6905 }
6906
6907 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6908 inst, failed, a->info.array.raid_disks, a->info.array.level);
6909
6910 if (imsm_reshape_blocks_arrays_changes(super))
6911 return NULL;
6912
6913 /* Cannot activate another spare if rebuild is in progress already
6914 */
6915 if (is_rebuilding(dev)) {
6916 dprintf("imsm: No spare activation allowed. "
6917 "Rebuild in progress already.\n");
6918 return NULL;
6919 }
6920
6921 if (a->info.array.level == 4)
6922 /* No repair for takeovered array
6923 * imsm doesn't support raid4
6924 */
6925 return NULL;
6926
6927 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
6928 IMSM_T_STATE_DEGRADED)
6929 return NULL;
6930
6931 /*
6932 * If there are any failed disks check state of the other volume.
6933 * Block rebuild if the another one is failed until failed disks
6934 * are removed from container.
6935 */
6936 if (failed) {
6937 dprintf("found failed disks in %.*s, check if there another"
6938 "failed sub-array.\n",
6939 MAX_RAID_SERIAL_LEN, dev->volume);
6940 /* check if states of the other volumes allow for rebuild */
6941 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6942 if (i != inst) {
6943 allowed = imsm_rebuild_allowed(a->container,
6944 i, failed);
6945 if (!allowed)
6946 return NULL;
6947 }
6948 }
6949 }
6950
6951 /* For each slot, if it is not working, find a spare */
6952 for (i = 0; i < a->info.array.raid_disks; i++) {
6953 for (d = a->info.devs ; d ; d = d->next)
6954 if (d->disk.raid_disk == i)
6955 break;
6956 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6957 if (d && (d->state_fd >= 0))
6958 continue;
6959
6960 /*
6961 * OK, this device needs recovery. Try to re-add the
6962 * previous occupant of this slot, if this fails see if
6963 * we can continue the assimilation of a spare that was
6964 * partially assimilated, finally try to activate a new
6965 * spare.
6966 */
6967 dl = imsm_readd(super, i, a);
6968 if (!dl)
6969 dl = imsm_add_spare(super, i, a, 0, rv);
6970 if (!dl)
6971 dl = imsm_add_spare(super, i, a, 1, rv);
6972 if (!dl)
6973 continue;
6974
6975 /* found a usable disk with enough space */
6976 di = malloc(sizeof(*di));
6977 if (!di)
6978 continue;
6979 memset(di, 0, sizeof(*di));
6980
6981 /* dl->index will be -1 in the case we are activating a
6982 * pristine spare. imsm_process_update() will create a
6983 * new index in this case. Once a disk is found to be
6984 * failed in all member arrays it is kicked from the
6985 * metadata
6986 */
6987 di->disk.number = dl->index;
6988
6989 /* (ab)use di->devs to store a pointer to the device
6990 * we chose
6991 */
6992 di->devs = (struct mdinfo *) dl;
6993
6994 di->disk.raid_disk = i;
6995 di->disk.major = dl->major;
6996 di->disk.minor = dl->minor;
6997 di->disk.state = 0;
6998 di->recovery_start = 0;
6999 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
7000 di->component_size = a->info.component_size;
7001 di->container_member = inst;
7002 super->random = random32();
7003 di->next = rv;
7004 rv = di;
7005 num_spares++;
7006 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7007 i, di->data_offset);
7008 }
7009
7010 if (!rv)
7011 /* No spares found */
7012 return rv;
7013 /* Now 'rv' has a list of devices to return.
7014 * Create a metadata_update record to update the
7015 * disk_ord_tbl for the array
7016 */
7017 mu = malloc(sizeof(*mu));
7018 if (mu) {
7019 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
7020 if (mu->buf == NULL) {
7021 free(mu);
7022 mu = NULL;
7023 }
7024 }
7025 if (!mu) {
7026 while (rv) {
7027 struct mdinfo *n = rv->next;
7028
7029 free(rv);
7030 rv = n;
7031 }
7032 return NULL;
7033 }
7034
7035 mu->space = NULL;
7036 mu->space_list = NULL;
7037 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7038 mu->next = *updates;
7039 u = (struct imsm_update_activate_spare *) mu->buf;
7040
7041 for (di = rv ; di ; di = di->next) {
7042 u->type = update_activate_spare;
7043 u->dl = (struct dl *) di->devs;
7044 di->devs = NULL;
7045 u->slot = di->disk.raid_disk;
7046 u->array = inst;
7047 u->next = u + 1;
7048 u++;
7049 }
7050 (u-1)->next = NULL;
7051 *updates = mu;
7052
7053 return rv;
7054 }
7055
7056 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7057 {
7058 struct imsm_dev *dev = get_imsm_dev(super, idx);
7059 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7060 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7061 struct disk_info *inf = get_disk_info(u);
7062 struct imsm_disk *disk;
7063 int i;
7064 int j;
7065
7066 for (i = 0; i < map->num_members; i++) {
7067 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7068 for (j = 0; j < new_map->num_members; j++)
7069 if (serialcmp(disk->serial, inf[j].serial) == 0)
7070 return 1;
7071 }
7072
7073 return 0;
7074 }
7075
7076
7077 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7078 {
7079 struct dl *dl = NULL;
7080 for (dl = super->disks; dl; dl = dl->next)
7081 if ((dl->major == major) && (dl->minor == minor))
7082 return dl;
7083 return NULL;
7084 }
7085
7086 static int remove_disk_super(struct intel_super *super, int major, int minor)
7087 {
7088 struct dl *prev = NULL;
7089 struct dl *dl;
7090
7091 prev = NULL;
7092 for (dl = super->disks; dl; dl = dl->next) {
7093 if ((dl->major == major) && (dl->minor == minor)) {
7094 /* remove */
7095 if (prev)
7096 prev->next = dl->next;
7097 else
7098 super->disks = dl->next;
7099 dl->next = NULL;
7100 __free_imsm_disk(dl);
7101 dprintf("%s: removed %x:%x\n",
7102 __func__, major, minor);
7103 break;
7104 }
7105 prev = dl;
7106 }
7107 return 0;
7108 }
7109
7110 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7111
7112 static int add_remove_disk_update(struct intel_super *super)
7113 {
7114 int check_degraded = 0;
7115 struct dl *disk = NULL;
7116 /* add/remove some spares to/from the metadata/contrainer */
7117 while (super->disk_mgmt_list) {
7118 struct dl *disk_cfg;
7119
7120 disk_cfg = super->disk_mgmt_list;
7121 super->disk_mgmt_list = disk_cfg->next;
7122 disk_cfg->next = NULL;
7123
7124 if (disk_cfg->action == DISK_ADD) {
7125 disk_cfg->next = super->disks;
7126 super->disks = disk_cfg;
7127 check_degraded = 1;
7128 dprintf("%s: added %x:%x\n",
7129 __func__, disk_cfg->major,
7130 disk_cfg->minor);
7131 } else if (disk_cfg->action == DISK_REMOVE) {
7132 dprintf("Disk remove action processed: %x.%x\n",
7133 disk_cfg->major, disk_cfg->minor);
7134 disk = get_disk_super(super,
7135 disk_cfg->major,
7136 disk_cfg->minor);
7137 if (disk) {
7138 /* store action status */
7139 disk->action = DISK_REMOVE;
7140 /* remove spare disks only */
7141 if (disk->index == -1) {
7142 remove_disk_super(super,
7143 disk_cfg->major,
7144 disk_cfg->minor);
7145 }
7146 }
7147 /* release allocate disk structure */
7148 __free_imsm_disk(disk_cfg);
7149 }
7150 }
7151 return check_degraded;
7152 }
7153
7154
7155 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7156 struct intel_super *super,
7157 void ***space_list)
7158 {
7159 struct intel_dev *id;
7160 void **tofree = NULL;
7161 int ret_val = 0;
7162
7163 dprintf("apply_reshape_migration_update()\n");
7164 if ((u->subdev < 0) ||
7165 (u->subdev > 1)) {
7166 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7167 return ret_val;
7168 }
7169 if ((space_list == NULL) || (*space_list == NULL)) {
7170 dprintf("imsm: Error: Memory is not allocated\n");
7171 return ret_val;
7172 }
7173
7174 for (id = super->devlist ; id; id = id->next) {
7175 if (id->index == (unsigned)u->subdev) {
7176 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7177 struct imsm_map *map;
7178 struct imsm_dev *new_dev =
7179 (struct imsm_dev *)*space_list;
7180 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7181 int to_state;
7182 struct dl *new_disk;
7183
7184 if (new_dev == NULL)
7185 return ret_val;
7186 *space_list = **space_list;
7187 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
7188 map = get_imsm_map(new_dev, MAP_0);
7189 if (migr_map) {
7190 dprintf("imsm: Error: migration in progress");
7191 return ret_val;
7192 }
7193
7194 to_state = map->map_state;
7195 if ((u->new_level == 5) && (map->raid_level == 0)) {
7196 map->num_members++;
7197 /* this should not happen */
7198 if (u->new_disks[0] < 0) {
7199 map->failed_disk_num =
7200 map->num_members - 1;
7201 to_state = IMSM_T_STATE_DEGRADED;
7202 } else
7203 to_state = IMSM_T_STATE_NORMAL;
7204 }
7205 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
7206 if (u->new_level > -1)
7207 map->raid_level = u->new_level;
7208 migr_map = get_imsm_map(new_dev, MAP_1);
7209 if ((u->new_level == 5) &&
7210 (migr_map->raid_level == 0)) {
7211 int ord = map->num_members - 1;
7212 migr_map->num_members--;
7213 if (u->new_disks[0] < 0)
7214 ord |= IMSM_ORD_REBUILD;
7215 set_imsm_ord_tbl_ent(map,
7216 map->num_members - 1,
7217 ord);
7218 }
7219 id->dev = new_dev;
7220 tofree = (void **)dev;
7221
7222 /* update chunk size
7223 */
7224 if (u->new_chunksize > 0)
7225 map->blocks_per_strip =
7226 __cpu_to_le16(u->new_chunksize * 2);
7227
7228 /* add disk
7229 */
7230 if ((u->new_level != 5) ||
7231 (migr_map->raid_level != 0) ||
7232 (migr_map->raid_level == map->raid_level))
7233 goto skip_disk_add;
7234
7235 if (u->new_disks[0] >= 0) {
7236 /* use passes spare
7237 */
7238 new_disk = get_disk_super(super,
7239 major(u->new_disks[0]),
7240 minor(u->new_disks[0]));
7241 dprintf("imsm: new disk for reshape is: %i:%i "
7242 "(%p, index = %i)\n",
7243 major(u->new_disks[0]),
7244 minor(u->new_disks[0]),
7245 new_disk, new_disk->index);
7246 if (new_disk == NULL)
7247 goto error_disk_add;
7248
7249 new_disk->index = map->num_members - 1;
7250 /* slot to fill in autolayout
7251 */
7252 new_disk->raiddisk = new_disk->index;
7253 new_disk->disk.status |= CONFIGURED_DISK;
7254 new_disk->disk.status &= ~SPARE_DISK;
7255 } else
7256 goto error_disk_add;
7257
7258 skip_disk_add:
7259 *tofree = *space_list;
7260 /* calculate new size
7261 */
7262 imsm_set_array_size(new_dev);
7263
7264 ret_val = 1;
7265 }
7266 }
7267
7268 if (tofree)
7269 *space_list = tofree;
7270 return ret_val;
7271
7272 error_disk_add:
7273 dprintf("Error: imsm: Cannot find disk.\n");
7274 return ret_val;
7275 }
7276
7277 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7278 struct intel_super *super,
7279 struct active_array *active_array)
7280 {
7281 struct imsm_super *mpb = super->anchor;
7282 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7283 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7284 struct imsm_map *migr_map;
7285 struct active_array *a;
7286 struct imsm_disk *disk;
7287 __u8 to_state;
7288 struct dl *dl;
7289 unsigned int found;
7290 int failed;
7291 int victim;
7292 int i;
7293 int second_map_created = 0;
7294
7295 for (; u; u = u->next) {
7296 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
7297
7298 if (victim < 0)
7299 return 0;
7300
7301 for (dl = super->disks; dl; dl = dl->next)
7302 if (dl == u->dl)
7303 break;
7304
7305 if (!dl) {
7306 fprintf(stderr, "error: imsm_activate_spare passed "
7307 "an unknown disk (index: %d)\n",
7308 u->dl->index);
7309 return 0;
7310 }
7311
7312 /* count failures (excluding rebuilds and the victim)
7313 * to determine map[0] state
7314 */
7315 failed = 0;
7316 for (i = 0; i < map->num_members; i++) {
7317 if (i == u->slot)
7318 continue;
7319 disk = get_imsm_disk(super,
7320 get_imsm_disk_idx(dev, i, MAP_X));
7321 if (!disk || is_failed(disk))
7322 failed++;
7323 }
7324
7325 /* adding a pristine spare, assign a new index */
7326 if (dl->index < 0) {
7327 dl->index = super->anchor->num_disks;
7328 super->anchor->num_disks++;
7329 }
7330 disk = &dl->disk;
7331 disk->status |= CONFIGURED_DISK;
7332 disk->status &= ~SPARE_DISK;
7333
7334 /* mark rebuild */
7335 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
7336 if (!second_map_created) {
7337 second_map_created = 1;
7338 map->map_state = IMSM_T_STATE_DEGRADED;
7339 migrate(dev, super, to_state, MIGR_REBUILD);
7340 } else
7341 map->map_state = to_state;
7342 migr_map = get_imsm_map(dev, MAP_1);
7343 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7344 set_imsm_ord_tbl_ent(migr_map, u->slot,
7345 dl->index | IMSM_ORD_REBUILD);
7346
7347 /* update the family_num to mark a new container
7348 * generation, being careful to record the existing
7349 * family_num in orig_family_num to clean up after
7350 * earlier mdadm versions that neglected to set it.
7351 */
7352 if (mpb->orig_family_num == 0)
7353 mpb->orig_family_num = mpb->family_num;
7354 mpb->family_num += super->random;
7355
7356 /* count arrays using the victim in the metadata */
7357 found = 0;
7358 for (a = active_array; a ; a = a->next) {
7359 dev = get_imsm_dev(super, a->info.container_member);
7360 map = get_imsm_map(dev, MAP_0);
7361
7362 if (get_imsm_disk_slot(map, victim) >= 0)
7363 found++;
7364 }
7365
7366 /* delete the victim if it is no longer being
7367 * utilized anywhere
7368 */
7369 if (!found) {
7370 struct dl **dlp;
7371
7372 /* We know that 'manager' isn't touching anything,
7373 * so it is safe to delete
7374 */
7375 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
7376 if ((*dlp)->index == victim)
7377 break;
7378
7379 /* victim may be on the missing list */
7380 if (!*dlp)
7381 for (dlp = &super->missing; *dlp;
7382 dlp = &(*dlp)->next)
7383 if ((*dlp)->index == victim)
7384 break;
7385 imsm_delete(super, dlp, victim);
7386 }
7387 }
7388
7389 return 1;
7390 }
7391
7392 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7393 struct intel_super *super,
7394 void ***space_list)
7395 {
7396 struct dl *new_disk;
7397 struct intel_dev *id;
7398 int i;
7399 int delta_disks = u->new_raid_disks - u->old_raid_disks;
7400 int disk_count = u->old_raid_disks;
7401 void **tofree = NULL;
7402 int devices_to_reshape = 1;
7403 struct imsm_super *mpb = super->anchor;
7404 int ret_val = 0;
7405 unsigned int dev_id;
7406
7407 dprintf("imsm: apply_reshape_container_disks_update()\n");
7408
7409 /* enable spares to use in array */
7410 for (i = 0; i < delta_disks; i++) {
7411 new_disk = get_disk_super(super,
7412 major(u->new_disks[i]),
7413 minor(u->new_disks[i]));
7414 dprintf("imsm: new disk for reshape is: %i:%i "
7415 "(%p, index = %i)\n",
7416 major(u->new_disks[i]), minor(u->new_disks[i]),
7417 new_disk, new_disk->index);
7418 if ((new_disk == NULL) ||
7419 ((new_disk->index >= 0) &&
7420 (new_disk->index < u->old_raid_disks)))
7421 goto update_reshape_exit;
7422 new_disk->index = disk_count++;
7423 /* slot to fill in autolayout
7424 */
7425 new_disk->raiddisk = new_disk->index;
7426 new_disk->disk.status |=
7427 CONFIGURED_DISK;
7428 new_disk->disk.status &= ~SPARE_DISK;
7429 }
7430
7431 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7432 mpb->num_raid_devs);
7433 /* manage changes in volume
7434 */
7435 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
7436 void **sp = *space_list;
7437 struct imsm_dev *newdev;
7438 struct imsm_map *newmap, *oldmap;
7439
7440 for (id = super->devlist ; id; id = id->next) {
7441 if (id->index == dev_id)
7442 break;
7443 }
7444 if (id == NULL)
7445 break;
7446 if (!sp)
7447 continue;
7448 *space_list = *sp;
7449 newdev = (void*)sp;
7450 /* Copy the dev, but not (all of) the map */
7451 memcpy(newdev, id->dev, sizeof(*newdev));
7452 oldmap = get_imsm_map(id->dev, MAP_0);
7453 newmap = get_imsm_map(newdev, MAP_0);
7454 /* Copy the current map */
7455 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7456 /* update one device only
7457 */
7458 if (devices_to_reshape) {
7459 dprintf("imsm: modifying subdev: %i\n",
7460 id->index);
7461 devices_to_reshape--;
7462 newdev->vol.migr_state = 1;
7463 newdev->vol.curr_migr_unit = 0;
7464 set_migr_type(newdev, MIGR_GEN_MIGR);
7465 newmap->num_members = u->new_raid_disks;
7466 for (i = 0; i < delta_disks; i++) {
7467 set_imsm_ord_tbl_ent(newmap,
7468 u->old_raid_disks + i,
7469 u->old_raid_disks + i);
7470 }
7471 /* New map is correct, now need to save old map
7472 */
7473 newmap = get_imsm_map(newdev, MAP_1);
7474 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7475
7476 imsm_set_array_size(newdev);
7477 }
7478
7479 sp = (void **)id->dev;
7480 id->dev = newdev;
7481 *sp = tofree;
7482 tofree = sp;
7483
7484 /* Clear migration record */
7485 memset(super->migr_rec, 0, sizeof(struct migr_record));
7486 }
7487 if (tofree)
7488 *space_list = tofree;
7489 ret_val = 1;
7490
7491 update_reshape_exit:
7492
7493 return ret_val;
7494 }
7495
7496 static int apply_takeover_update(struct imsm_update_takeover *u,
7497 struct intel_super *super,
7498 void ***space_list)
7499 {
7500 struct imsm_dev *dev = NULL;
7501 struct intel_dev *dv;
7502 struct imsm_dev *dev_new;
7503 struct imsm_map *map;
7504 struct dl *dm, *du;
7505 int i;
7506
7507 for (dv = super->devlist; dv; dv = dv->next)
7508 if (dv->index == (unsigned int)u->subarray) {
7509 dev = dv->dev;
7510 break;
7511 }
7512
7513 if (dev == NULL)
7514 return 0;
7515
7516 map = get_imsm_map(dev, MAP_0);
7517
7518 if (u->direction == R10_TO_R0) {
7519 /* Number of failed disks must be half of initial disk number */
7520 if (imsm_count_failed(super, dev, MAP_0) !=
7521 (map->num_members / 2))
7522 return 0;
7523
7524 /* iterate through devices to mark removed disks as spare */
7525 for (dm = super->disks; dm; dm = dm->next) {
7526 if (dm->disk.status & FAILED_DISK) {
7527 int idx = dm->index;
7528 /* update indexes on the disk list */
7529 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7530 the index values will end up being correct.... NB */
7531 for (du = super->disks; du; du = du->next)
7532 if (du->index > idx)
7533 du->index--;
7534 /* mark as spare disk */
7535 mark_spare(dm);
7536 }
7537 }
7538 /* update map */
7539 map->num_members = map->num_members / 2;
7540 map->map_state = IMSM_T_STATE_NORMAL;
7541 map->num_domains = 1;
7542 map->raid_level = 0;
7543 map->failed_disk_num = -1;
7544 }
7545
7546 if (u->direction == R0_TO_R10) {
7547 void **space;
7548 /* update slots in current disk list */
7549 for (dm = super->disks; dm; dm = dm->next) {
7550 if (dm->index >= 0)
7551 dm->index *= 2;
7552 }
7553 /* create new *missing* disks */
7554 for (i = 0; i < map->num_members; i++) {
7555 space = *space_list;
7556 if (!space)
7557 continue;
7558 *space_list = *space;
7559 du = (void *)space;
7560 memcpy(du, super->disks, sizeof(*du));
7561 du->fd = -1;
7562 du->minor = 0;
7563 du->major = 0;
7564 du->index = (i * 2) + 1;
7565 sprintf((char *)du->disk.serial,
7566 " MISSING_%d", du->index);
7567 sprintf((char *)du->serial,
7568 "MISSING_%d", du->index);
7569 du->next = super->missing;
7570 super->missing = du;
7571 }
7572 /* create new dev and map */
7573 space = *space_list;
7574 if (!space)
7575 return 0;
7576 *space_list = *space;
7577 dev_new = (void *)space;
7578 memcpy(dev_new, dev, sizeof(*dev));
7579 /* update new map */
7580 map = get_imsm_map(dev_new, MAP_0);
7581 map->num_members = map->num_members * 2;
7582 map->map_state = IMSM_T_STATE_DEGRADED;
7583 map->num_domains = 2;
7584 map->raid_level = 1;
7585 /* replace dev<->dev_new */
7586 dv->dev = dev_new;
7587 }
7588 /* update disk order table */
7589 for (du = super->disks; du; du = du->next)
7590 if (du->index >= 0)
7591 set_imsm_ord_tbl_ent(map, du->index, du->index);
7592 for (du = super->missing; du; du = du->next)
7593 if (du->index >= 0) {
7594 set_imsm_ord_tbl_ent(map, du->index, du->index);
7595 mark_missing(dv->dev, &du->disk, du->index);
7596 }
7597
7598 return 1;
7599 }
7600
7601 static void imsm_process_update(struct supertype *st,
7602 struct metadata_update *update)
7603 {
7604 /**
7605 * crack open the metadata_update envelope to find the update record
7606 * update can be one of:
7607 * update_reshape_container_disks - all the arrays in the container
7608 * are being reshaped to have more devices. We need to mark
7609 * the arrays for general migration and convert selected spares
7610 * into active devices.
7611 * update_activate_spare - a spare device has replaced a failed
7612 * device in an array, update the disk_ord_tbl. If this disk is
7613 * present in all member arrays then also clear the SPARE_DISK
7614 * flag
7615 * update_create_array
7616 * update_kill_array
7617 * update_rename_array
7618 * update_add_remove_disk
7619 */
7620 struct intel_super *super = st->sb;
7621 struct imsm_super *mpb;
7622 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7623
7624 /* update requires a larger buf but the allocation failed */
7625 if (super->next_len && !super->next_buf) {
7626 super->next_len = 0;
7627 return;
7628 }
7629
7630 if (super->next_buf) {
7631 memcpy(super->next_buf, super->buf, super->len);
7632 free(super->buf);
7633 super->len = super->next_len;
7634 super->buf = super->next_buf;
7635
7636 super->next_len = 0;
7637 super->next_buf = NULL;
7638 }
7639
7640 mpb = super->anchor;
7641
7642 switch (type) {
7643 case update_general_migration_checkpoint: {
7644 struct intel_dev *id;
7645 struct imsm_update_general_migration_checkpoint *u =
7646 (void *)update->buf;
7647
7648 dprintf("imsm: process_update() "
7649 "for update_general_migration_checkpoint called\n");
7650
7651 /* find device under general migration */
7652 for (id = super->devlist ; id; id = id->next) {
7653 if (is_gen_migration(id->dev)) {
7654 id->dev->vol.curr_migr_unit =
7655 __cpu_to_le32(u->curr_migr_unit);
7656 super->updates_pending++;
7657 }
7658 }
7659 break;
7660 }
7661 case update_takeover: {
7662 struct imsm_update_takeover *u = (void *)update->buf;
7663 if (apply_takeover_update(u, super, &update->space_list)) {
7664 imsm_update_version_info(super);
7665 super->updates_pending++;
7666 }
7667 break;
7668 }
7669
7670 case update_reshape_container_disks: {
7671 struct imsm_update_reshape *u = (void *)update->buf;
7672 if (apply_reshape_container_disks_update(
7673 u, super, &update->space_list))
7674 super->updates_pending++;
7675 break;
7676 }
7677 case update_reshape_migration: {
7678 struct imsm_update_reshape_migration *u = (void *)update->buf;
7679 if (apply_reshape_migration_update(
7680 u, super, &update->space_list))
7681 super->updates_pending++;
7682 break;
7683 }
7684 case update_activate_spare: {
7685 struct imsm_update_activate_spare *u = (void *) update->buf;
7686 if (apply_update_activate_spare(u, super, st->arrays))
7687 super->updates_pending++;
7688 break;
7689 }
7690 case update_create_array: {
7691 /* someone wants to create a new array, we need to be aware of
7692 * a few races/collisions:
7693 * 1/ 'Create' called by two separate instances of mdadm
7694 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7695 * devices that have since been assimilated via
7696 * activate_spare.
7697 * In the event this update can not be carried out mdadm will
7698 * (FIX ME) notice that its update did not take hold.
7699 */
7700 struct imsm_update_create_array *u = (void *) update->buf;
7701 struct intel_dev *dv;
7702 struct imsm_dev *dev;
7703 struct imsm_map *map, *new_map;
7704 unsigned long long start, end;
7705 unsigned long long new_start, new_end;
7706 int i;
7707 struct disk_info *inf;
7708 struct dl *dl;
7709
7710 /* handle racing creates: first come first serve */
7711 if (u->dev_idx < mpb->num_raid_devs) {
7712 dprintf("%s: subarray %d already defined\n",
7713 __func__, u->dev_idx);
7714 goto create_error;
7715 }
7716
7717 /* check update is next in sequence */
7718 if (u->dev_idx != mpb->num_raid_devs) {
7719 dprintf("%s: can not create array %d expected index %d\n",
7720 __func__, u->dev_idx, mpb->num_raid_devs);
7721 goto create_error;
7722 }
7723
7724 new_map = get_imsm_map(&u->dev, MAP_0);
7725 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7726 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
7727 inf = get_disk_info(u);
7728
7729 /* handle activate_spare versus create race:
7730 * check to make sure that overlapping arrays do not include
7731 * overalpping disks
7732 */
7733 for (i = 0; i < mpb->num_raid_devs; i++) {
7734 dev = get_imsm_dev(super, i);
7735 map = get_imsm_map(dev, MAP_0);
7736 start = __le32_to_cpu(map->pba_of_lba0);
7737 end = start + __le32_to_cpu(map->blocks_per_member);
7738 if ((new_start >= start && new_start <= end) ||
7739 (start >= new_start && start <= new_end))
7740 /* overlap */;
7741 else
7742 continue;
7743
7744 if (disks_overlap(super, i, u)) {
7745 dprintf("%s: arrays overlap\n", __func__);
7746 goto create_error;
7747 }
7748 }
7749
7750 /* check that prepare update was successful */
7751 if (!update->space) {
7752 dprintf("%s: prepare update failed\n", __func__);
7753 goto create_error;
7754 }
7755
7756 /* check that all disks are still active before committing
7757 * changes. FIXME: could we instead handle this by creating a
7758 * degraded array? That's probably not what the user expects,
7759 * so better to drop this update on the floor.
7760 */
7761 for (i = 0; i < new_map->num_members; i++) {
7762 dl = serial_to_dl(inf[i].serial, super);
7763 if (!dl) {
7764 dprintf("%s: disk disappeared\n", __func__);
7765 goto create_error;
7766 }
7767 }
7768
7769 super->updates_pending++;
7770
7771 /* convert spares to members and fixup ord_tbl */
7772 for (i = 0; i < new_map->num_members; i++) {
7773 dl = serial_to_dl(inf[i].serial, super);
7774 if (dl->index == -1) {
7775 dl->index = mpb->num_disks;
7776 mpb->num_disks++;
7777 dl->disk.status |= CONFIGURED_DISK;
7778 dl->disk.status &= ~SPARE_DISK;
7779 }
7780 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7781 }
7782
7783 dv = update->space;
7784 dev = dv->dev;
7785 update->space = NULL;
7786 imsm_copy_dev(dev, &u->dev);
7787 dv->index = u->dev_idx;
7788 dv->next = super->devlist;
7789 super->devlist = dv;
7790 mpb->num_raid_devs++;
7791
7792 imsm_update_version_info(super);
7793 break;
7794 create_error:
7795 /* mdmon knows how to release update->space, but not
7796 * ((struct intel_dev *) update->space)->dev
7797 */
7798 if (update->space) {
7799 dv = update->space;
7800 free(dv->dev);
7801 }
7802 break;
7803 }
7804 case update_kill_array: {
7805 struct imsm_update_kill_array *u = (void *) update->buf;
7806 int victim = u->dev_idx;
7807 struct active_array *a;
7808 struct intel_dev **dp;
7809 struct imsm_dev *dev;
7810
7811 /* sanity check that we are not affecting the uuid of
7812 * active arrays, or deleting an active array
7813 *
7814 * FIXME when immutable ids are available, but note that
7815 * we'll also need to fixup the invalidated/active
7816 * subarray indexes in mdstat
7817 */
7818 for (a = st->arrays; a; a = a->next)
7819 if (a->info.container_member >= victim)
7820 break;
7821 /* by definition if mdmon is running at least one array
7822 * is active in the container, so checking
7823 * mpb->num_raid_devs is just extra paranoia
7824 */
7825 dev = get_imsm_dev(super, victim);
7826 if (a || !dev || mpb->num_raid_devs == 1) {
7827 dprintf("failed to delete subarray-%d\n", victim);
7828 break;
7829 }
7830
7831 for (dp = &super->devlist; *dp;)
7832 if ((*dp)->index == (unsigned)super->current_vol) {
7833 *dp = (*dp)->next;
7834 } else {
7835 if ((*dp)->index > (unsigned)victim)
7836 (*dp)->index--;
7837 dp = &(*dp)->next;
7838 }
7839 mpb->num_raid_devs--;
7840 super->updates_pending++;
7841 break;
7842 }
7843 case update_rename_array: {
7844 struct imsm_update_rename_array *u = (void *) update->buf;
7845 char name[MAX_RAID_SERIAL_LEN+1];
7846 int target = u->dev_idx;
7847 struct active_array *a;
7848 struct imsm_dev *dev;
7849
7850 /* sanity check that we are not affecting the uuid of
7851 * an active array
7852 */
7853 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7854 name[MAX_RAID_SERIAL_LEN] = '\0';
7855 for (a = st->arrays; a; a = a->next)
7856 if (a->info.container_member == target)
7857 break;
7858 dev = get_imsm_dev(super, u->dev_idx);
7859 if (a || !dev || !check_name(super, name, 1)) {
7860 dprintf("failed to rename subarray-%d\n", target);
7861 break;
7862 }
7863
7864 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7865 super->updates_pending++;
7866 break;
7867 }
7868 case update_add_remove_disk: {
7869 /* we may be able to repair some arrays if disks are
7870 * being added, check teh status of add_remove_disk
7871 * if discs has been added.
7872 */
7873 if (add_remove_disk_update(super)) {
7874 struct active_array *a;
7875
7876 super->updates_pending++;
7877 for (a = st->arrays; a; a = a->next)
7878 a->check_degraded = 1;
7879 }
7880 break;
7881 }
7882 default:
7883 fprintf(stderr, "error: unsuported process update type:"
7884 "(type: %d)\n", type);
7885 }
7886 }
7887
7888 static struct mdinfo *get_spares_for_grow(struct supertype *st);
7889
7890 static void imsm_prepare_update(struct supertype *st,
7891 struct metadata_update *update)
7892 {
7893 /**
7894 * Allocate space to hold new disk entries, raid-device entries or a new
7895 * mpb if necessary. The manager synchronously waits for updates to
7896 * complete in the monitor, so new mpb buffers allocated here can be
7897 * integrated by the monitor thread without worrying about live pointers
7898 * in the manager thread.
7899 */
7900 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7901 struct intel_super *super = st->sb;
7902 struct imsm_super *mpb = super->anchor;
7903 size_t buf_len;
7904 size_t len = 0;
7905
7906 switch (type) {
7907 case update_general_migration_checkpoint:
7908 dprintf("imsm: prepare_update() "
7909 "for update_general_migration_checkpoint called\n");
7910 break;
7911 case update_takeover: {
7912 struct imsm_update_takeover *u = (void *)update->buf;
7913 if (u->direction == R0_TO_R10) {
7914 void **tail = (void **)&update->space_list;
7915 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7916 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7917 int num_members = map->num_members;
7918 void *space;
7919 int size, i;
7920 int err = 0;
7921 /* allocate memory for added disks */
7922 for (i = 0; i < num_members; i++) {
7923 size = sizeof(struct dl);
7924 space = malloc(size);
7925 if (!space) {
7926 err++;
7927 break;
7928 }
7929 *tail = space;
7930 tail = space;
7931 *tail = NULL;
7932 }
7933 /* allocate memory for new device */
7934 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7935 (num_members * sizeof(__u32));
7936 space = malloc(size);
7937 if (!space)
7938 err++;
7939 else {
7940 *tail = space;
7941 tail = space;
7942 *tail = NULL;
7943 }
7944 if (!err) {
7945 len = disks_to_mpb_size(num_members * 2);
7946 } else {
7947 /* if allocation didn't success, free buffer */
7948 while (update->space_list) {
7949 void **sp = update->space_list;
7950 update->space_list = *sp;
7951 free(sp);
7952 }
7953 }
7954 }
7955
7956 break;
7957 }
7958 case update_reshape_container_disks: {
7959 /* Every raid device in the container is about to
7960 * gain some more devices, and we will enter a
7961 * reconfiguration.
7962 * So each 'imsm_map' will be bigger, and the imsm_vol
7963 * will now hold 2 of them.
7964 * Thus we need new 'struct imsm_dev' allocations sized
7965 * as sizeof_imsm_dev but with more devices in both maps.
7966 */
7967 struct imsm_update_reshape *u = (void *)update->buf;
7968 struct intel_dev *dl;
7969 void **space_tail = (void**)&update->space_list;
7970
7971 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7972
7973 for (dl = super->devlist; dl; dl = dl->next) {
7974 int size = sizeof_imsm_dev(dl->dev, 1);
7975 void *s;
7976 if (u->new_raid_disks > u->old_raid_disks)
7977 size += sizeof(__u32)*2*
7978 (u->new_raid_disks - u->old_raid_disks);
7979 s = malloc(size);
7980 if (!s)
7981 break;
7982 *space_tail = s;
7983 space_tail = s;
7984 *space_tail = NULL;
7985 }
7986
7987 len = disks_to_mpb_size(u->new_raid_disks);
7988 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7989 break;
7990 }
7991 case update_reshape_migration: {
7992 /* for migration level 0->5 we need to add disks
7993 * so the same as for container operation we will copy
7994 * device to the bigger location.
7995 * in memory prepared device and new disk area are prepared
7996 * for usage in process update
7997 */
7998 struct imsm_update_reshape_migration *u = (void *)update->buf;
7999 struct intel_dev *id;
8000 void **space_tail = (void **)&update->space_list;
8001 int size;
8002 void *s;
8003 int current_level = -1;
8004
8005 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8006
8007 /* add space for bigger array in update
8008 */
8009 for (id = super->devlist; id; id = id->next) {
8010 if (id->index == (unsigned)u->subdev) {
8011 size = sizeof_imsm_dev(id->dev, 1);
8012 if (u->new_raid_disks > u->old_raid_disks)
8013 size += sizeof(__u32)*2*
8014 (u->new_raid_disks - u->old_raid_disks);
8015 s = malloc(size);
8016 if (!s)
8017 break;
8018 *space_tail = s;
8019 space_tail = s;
8020 *space_tail = NULL;
8021 break;
8022 }
8023 }
8024 if (update->space_list == NULL)
8025 break;
8026
8027 /* add space for disk in update
8028 */
8029 size = sizeof(struct dl);
8030 s = malloc(size);
8031 if (!s) {
8032 free(update->space_list);
8033 update->space_list = NULL;
8034 break;
8035 }
8036 *space_tail = s;
8037 space_tail = s;
8038 *space_tail = NULL;
8039
8040 /* add spare device to update
8041 */
8042 for (id = super->devlist ; id; id = id->next)
8043 if (id->index == (unsigned)u->subdev) {
8044 struct imsm_dev *dev;
8045 struct imsm_map *map;
8046
8047 dev = get_imsm_dev(super, u->subdev);
8048 map = get_imsm_map(dev, MAP_0);
8049 current_level = map->raid_level;
8050 break;
8051 }
8052 if ((u->new_level == 5) && (u->new_level != current_level)) {
8053 struct mdinfo *spares;
8054
8055 spares = get_spares_for_grow(st);
8056 if (spares) {
8057 struct dl *dl;
8058 struct mdinfo *dev;
8059
8060 dev = spares->devs;
8061 if (dev) {
8062 u->new_disks[0] =
8063 makedev(dev->disk.major,
8064 dev->disk.minor);
8065 dl = get_disk_super(super,
8066 dev->disk.major,
8067 dev->disk.minor);
8068 dl->index = u->old_raid_disks;
8069 dev = dev->next;
8070 }
8071 sysfs_free(spares);
8072 }
8073 }
8074 len = disks_to_mpb_size(u->new_raid_disks);
8075 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8076 break;
8077 }
8078 case update_create_array: {
8079 struct imsm_update_create_array *u = (void *) update->buf;
8080 struct intel_dev *dv;
8081 struct imsm_dev *dev = &u->dev;
8082 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8083 struct dl *dl;
8084 struct disk_info *inf;
8085 int i;
8086 int activate = 0;
8087
8088 inf = get_disk_info(u);
8089 len = sizeof_imsm_dev(dev, 1);
8090 /* allocate a new super->devlist entry */
8091 dv = malloc(sizeof(*dv));
8092 if (dv) {
8093 dv->dev = malloc(len);
8094 if (dv->dev)
8095 update->space = dv;
8096 else {
8097 free(dv);
8098 update->space = NULL;
8099 }
8100 }
8101
8102 /* count how many spares will be converted to members */
8103 for (i = 0; i < map->num_members; i++) {
8104 dl = serial_to_dl(inf[i].serial, super);
8105 if (!dl) {
8106 /* hmm maybe it failed?, nothing we can do about
8107 * it here
8108 */
8109 continue;
8110 }
8111 if (count_memberships(dl, super) == 0)
8112 activate++;
8113 }
8114 len += activate * sizeof(struct imsm_disk);
8115 break;
8116 default:
8117 break;
8118 }
8119 }
8120
8121 /* check if we need a larger metadata buffer */
8122 if (super->next_buf)
8123 buf_len = super->next_len;
8124 else
8125 buf_len = super->len;
8126
8127 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8128 /* ok we need a larger buf than what is currently allocated
8129 * if this allocation fails process_update will notice that
8130 * ->next_len is set and ->next_buf is NULL
8131 */
8132 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8133 if (super->next_buf)
8134 free(super->next_buf);
8135
8136 super->next_len = buf_len;
8137 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
8138 memset(super->next_buf, 0, buf_len);
8139 else
8140 super->next_buf = NULL;
8141 }
8142 }
8143
8144 /* must be called while manager is quiesced */
8145 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
8146 {
8147 struct imsm_super *mpb = super->anchor;
8148 struct dl *iter;
8149 struct imsm_dev *dev;
8150 struct imsm_map *map;
8151 int i, j, num_members;
8152 __u32 ord;
8153
8154 dprintf("%s: deleting device[%d] from imsm_super\n",
8155 __func__, index);
8156
8157 /* shift all indexes down one */
8158 for (iter = super->disks; iter; iter = iter->next)
8159 if (iter->index > (int)index)
8160 iter->index--;
8161 for (iter = super->missing; iter; iter = iter->next)
8162 if (iter->index > (int)index)
8163 iter->index--;
8164
8165 for (i = 0; i < mpb->num_raid_devs; i++) {
8166 dev = get_imsm_dev(super, i);
8167 map = get_imsm_map(dev, MAP_0);
8168 num_members = map->num_members;
8169 for (j = 0; j < num_members; j++) {
8170 /* update ord entries being careful not to propagate
8171 * ord-flags to the first map
8172 */
8173 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
8174
8175 if (ord_to_idx(ord) <= index)
8176 continue;
8177
8178 map = get_imsm_map(dev, MAP_0);
8179 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
8180 map = get_imsm_map(dev, MAP_1);
8181 if (map)
8182 set_imsm_ord_tbl_ent(map, j, ord - 1);
8183 }
8184 }
8185
8186 mpb->num_disks--;
8187 super->updates_pending++;
8188 if (*dlp) {
8189 struct dl *dl = *dlp;
8190
8191 *dlp = (*dlp)->next;
8192 __free_imsm_disk(dl);
8193 }
8194 }
8195 #endif /* MDASSEMBLE */
8196
8197 static void close_targets(int *targets, int new_disks)
8198 {
8199 int i;
8200
8201 if (!targets)
8202 return;
8203
8204 for (i = 0; i < new_disks; i++) {
8205 if (targets[i] >= 0) {
8206 close(targets[i]);
8207 targets[i] = -1;
8208 }
8209 }
8210 }
8211
8212 static int imsm_get_allowed_degradation(int level, int raid_disks,
8213 struct intel_super *super,
8214 struct imsm_dev *dev)
8215 {
8216 switch (level) {
8217 case 10:{
8218 int ret_val = 0;
8219 struct imsm_map *map;
8220 int i;
8221
8222 ret_val = raid_disks/2;
8223 /* check map if all disks pairs not failed
8224 * in both maps
8225 */
8226 map = get_imsm_map(dev, MAP_0);
8227 for (i = 0; i < ret_val; i++) {
8228 int degradation = 0;
8229 if (get_imsm_disk(super, i) == NULL)
8230 degradation++;
8231 if (get_imsm_disk(super, i + 1) == NULL)
8232 degradation++;
8233 if (degradation == 2)
8234 return 0;
8235 }
8236 map = get_imsm_map(dev, MAP_1);
8237 /* if there is no second map
8238 * result can be returned
8239 */
8240 if (map == NULL)
8241 return ret_val;
8242 /* check degradation in second map
8243 */
8244 for (i = 0; i < ret_val; i++) {
8245 int degradation = 0;
8246 if (get_imsm_disk(super, i) == NULL)
8247 degradation++;
8248 if (get_imsm_disk(super, i + 1) == NULL)
8249 degradation++;
8250 if (degradation == 2)
8251 return 0;
8252 }
8253 return ret_val;
8254 }
8255 case 5:
8256 return 1;
8257 case 6:
8258 return 2;
8259 default:
8260 return 0;
8261 }
8262 }
8263
8264
8265 /*******************************************************************************
8266 * Function: open_backup_targets
8267 * Description: Function opens file descriptors for all devices given in
8268 * info->devs
8269 * Parameters:
8270 * info : general array info
8271 * raid_disks : number of disks
8272 * raid_fds : table of device's file descriptors
8273 * super : intel super for raid10 degradation check
8274 * dev : intel device for raid10 degradation check
8275 * Returns:
8276 * 0 : success
8277 * -1 : fail
8278 ******************************************************************************/
8279 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
8280 struct intel_super *super, struct imsm_dev *dev)
8281 {
8282 struct mdinfo *sd;
8283 int i;
8284 int opened = 0;
8285
8286 for (i = 0; i < raid_disks; i++)
8287 raid_fds[i] = -1;
8288
8289 for (sd = info->devs ; sd ; sd = sd->next) {
8290 char *dn;
8291
8292 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
8293 dprintf("disk is faulty!!\n");
8294 continue;
8295 }
8296
8297 if ((sd->disk.raid_disk >= raid_disks) ||
8298 (sd->disk.raid_disk < 0))
8299 continue;
8300
8301 dn = map_dev(sd->disk.major,
8302 sd->disk.minor, 1);
8303 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8304 if (raid_fds[sd->disk.raid_disk] < 0) {
8305 fprintf(stderr, "cannot open component\n");
8306 continue;
8307 }
8308 opened++;
8309 }
8310 /* check if maximum array degradation level is not exceeded
8311 */
8312 if ((raid_disks - opened) >
8313 imsm_get_allowed_degradation(info->new_level,
8314 raid_disks,
8315 super, dev)) {
8316 fprintf(stderr, "Not enough disks can be opened.\n");
8317 close_targets(raid_fds, raid_disks);
8318 return -2;
8319 }
8320 return 0;
8321 }
8322
8323 #ifndef MDASSEMBLE
8324 /*******************************************************************************
8325 * Function: init_migr_record_imsm
8326 * Description: Function inits imsm migration record
8327 * Parameters:
8328 * super : imsm internal array info
8329 * dev : device under migration
8330 * info : general array info to find the smallest device
8331 * Returns:
8332 * none
8333 ******************************************************************************/
8334 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
8335 struct mdinfo *info)
8336 {
8337 struct intel_super *super = st->sb;
8338 struct migr_record *migr_rec = super->migr_rec;
8339 int new_data_disks;
8340 unsigned long long dsize, dev_sectors;
8341 long long unsigned min_dev_sectors = -1LLU;
8342 struct mdinfo *sd;
8343 char nm[30];
8344 int fd;
8345 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
8346 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
8347 unsigned long long num_migr_units;
8348 unsigned long long array_blocks;
8349
8350 memset(migr_rec, 0, sizeof(struct migr_record));
8351 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
8352
8353 /* only ascending reshape supported now */
8354 migr_rec->ascending_migr = __cpu_to_le32(1);
8355
8356 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
8357 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8358 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
8359 new_data_disks = imsm_num_data_members(dev, MAP_0);
8360 migr_rec->blocks_per_unit =
8361 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8362 migr_rec->dest_depth_per_unit =
8363 __cpu_to_le32(migr_rec->dest_depth_per_unit);
8364 array_blocks = info->component_size * new_data_disks;
8365 num_migr_units =
8366 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
8367
8368 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
8369 num_migr_units++;
8370 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
8371
8372 migr_rec->post_migr_vol_cap = dev->size_low;
8373 migr_rec->post_migr_vol_cap_hi = dev->size_high;
8374
8375
8376 /* Find the smallest dev */
8377 for (sd = info->devs ; sd ; sd = sd->next) {
8378 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
8379 fd = dev_open(nm, O_RDONLY);
8380 if (fd < 0)
8381 continue;
8382 get_dev_size(fd, NULL, &dsize);
8383 dev_sectors = dsize / 512;
8384 if (dev_sectors < min_dev_sectors)
8385 min_dev_sectors = dev_sectors;
8386 close(fd);
8387 }
8388 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8389 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8390
8391 write_imsm_migr_rec(st);
8392
8393 return;
8394 }
8395
8396 /*******************************************************************************
8397 * Function: save_backup_imsm
8398 * Description: Function saves critical data stripes to Migration Copy Area
8399 * and updates the current migration unit status.
8400 * Use restore_stripes() to form a destination stripe,
8401 * and to write it to the Copy Area.
8402 * Parameters:
8403 * st : supertype information
8404 * dev : imsm device that backup is saved for
8405 * info : general array info
8406 * buf : input buffer
8407 * length : length of data to backup (blocks_per_unit)
8408 * Returns:
8409 * 0 : success
8410 *, -1 : fail
8411 ******************************************************************************/
8412 int save_backup_imsm(struct supertype *st,
8413 struct imsm_dev *dev,
8414 struct mdinfo *info,
8415 void *buf,
8416 int length)
8417 {
8418 int rv = -1;
8419 struct intel_super *super = st->sb;
8420 unsigned long long *target_offsets = NULL;
8421 int *targets = NULL;
8422 int i;
8423 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
8424 int new_disks = map_dest->num_members;
8425 int dest_layout = 0;
8426 int dest_chunk;
8427 unsigned long long start;
8428 int data_disks = imsm_num_data_members(dev, MAP_0);
8429
8430 targets = malloc(new_disks * sizeof(int));
8431 if (!targets)
8432 goto abort;
8433
8434 for (i = 0; i < new_disks; i++)
8435 targets[i] = -1;
8436
8437 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8438 if (!target_offsets)
8439 goto abort;
8440
8441 start = info->reshape_progress * 512;
8442 for (i = 0; i < new_disks; i++) {
8443 target_offsets[i] = (unsigned long long)
8444 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
8445 /* move back copy area adderss, it will be moved forward
8446 * in restore_stripes() using start input variable
8447 */
8448 target_offsets[i] -= start/data_disks;
8449 }
8450
8451 if (open_backup_targets(info, new_disks, targets,
8452 super, dev))
8453 goto abort;
8454
8455 dest_layout = imsm_level_to_layout(map_dest->raid_level);
8456 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8457
8458 if (restore_stripes(targets, /* list of dest devices */
8459 target_offsets, /* migration record offsets */
8460 new_disks,
8461 dest_chunk,
8462 map_dest->raid_level,
8463 dest_layout,
8464 -1, /* source backup file descriptor */
8465 0, /* input buf offset
8466 * always 0 buf is already offseted */
8467 start,
8468 length,
8469 buf) != 0) {
8470 fprintf(stderr, Name ": Error restoring stripes\n");
8471 goto abort;
8472 }
8473
8474 rv = 0;
8475
8476 abort:
8477 if (targets) {
8478 close_targets(targets, new_disks);
8479 free(targets);
8480 }
8481 free(target_offsets);
8482
8483 return rv;
8484 }
8485
8486 /*******************************************************************************
8487 * Function: save_checkpoint_imsm
8488 * Description: Function called for current unit status update
8489 * in the migration record. It writes it to disk.
8490 * Parameters:
8491 * super : imsm internal array info
8492 * info : general array info
8493 * Returns:
8494 * 0: success
8495 * 1: failure
8496 * 2: failure, means no valid migration record
8497 * / no general migration in progress /
8498 ******************************************************************************/
8499 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8500 {
8501 struct intel_super *super = st->sb;
8502 unsigned long long blocks_per_unit;
8503 unsigned long long curr_migr_unit;
8504
8505 if (load_imsm_migr_rec(super, info) != 0) {
8506 dprintf("imsm: ERROR: Cannot read migration record "
8507 "for checkpoint save.\n");
8508 return 1;
8509 }
8510
8511 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8512 if (blocks_per_unit == 0) {
8513 dprintf("imsm: no migration in progress.\n");
8514 return 2;
8515 }
8516 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8517 /* check if array is alligned to copy area
8518 * if it is not alligned, add one to current migration unit value
8519 * this can happend on array reshape finish only
8520 */
8521 if (info->reshape_progress % blocks_per_unit)
8522 curr_migr_unit++;
8523
8524 super->migr_rec->curr_migr_unit =
8525 __cpu_to_le32(curr_migr_unit);
8526 super->migr_rec->rec_status = __cpu_to_le32(state);
8527 super->migr_rec->dest_1st_member_lba =
8528 __cpu_to_le32(curr_migr_unit *
8529 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
8530 if (write_imsm_migr_rec(st) < 0) {
8531 dprintf("imsm: Cannot write migration record "
8532 "outside backup area\n");
8533 return 1;
8534 }
8535
8536 return 0;
8537 }
8538
8539 /*******************************************************************************
8540 * Function: recover_backup_imsm
8541 * Description: Function recovers critical data from the Migration Copy Area
8542 * while assembling an array.
8543 * Parameters:
8544 * super : imsm internal array info
8545 * info : general array info
8546 * Returns:
8547 * 0 : success (or there is no data to recover)
8548 * 1 : fail
8549 ******************************************************************************/
8550 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8551 {
8552 struct intel_super *super = st->sb;
8553 struct migr_record *migr_rec = super->migr_rec;
8554 struct imsm_map *map_dest = NULL;
8555 struct intel_dev *id = NULL;
8556 unsigned long long read_offset;
8557 unsigned long long write_offset;
8558 unsigned unit_len;
8559 int *targets = NULL;
8560 int new_disks, i, err;
8561 char *buf = NULL;
8562 int retval = 1;
8563 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8564 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
8565 char buffer[20];
8566 int skipped_disks = 0;
8567
8568 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8569 if (err < 1)
8570 return 1;
8571
8572 /* recover data only during assemblation */
8573 if (strncmp(buffer, "inactive", 8) != 0)
8574 return 0;
8575 /* no data to recover */
8576 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8577 return 0;
8578 if (curr_migr_unit >= num_migr_units)
8579 return 1;
8580
8581 /* find device during reshape */
8582 for (id = super->devlist; id; id = id->next)
8583 if (is_gen_migration(id->dev))
8584 break;
8585 if (id == NULL)
8586 return 1;
8587
8588 map_dest = get_imsm_map(id->dev, MAP_0);
8589 new_disks = map_dest->num_members;
8590
8591 read_offset = (unsigned long long)
8592 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8593
8594 write_offset = ((unsigned long long)
8595 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
8596 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
8597
8598 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8599 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8600 goto abort;
8601 targets = malloc(new_disks * sizeof(int));
8602 if (!targets)
8603 goto abort;
8604
8605 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
8606 fprintf(stderr,
8607 Name ": Cannot open some devices belonging to array.\n");
8608 goto abort;
8609 }
8610
8611 for (i = 0; i < new_disks; i++) {
8612 if (targets[i] < 0) {
8613 skipped_disks++;
8614 continue;
8615 }
8616 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8617 fprintf(stderr,
8618 Name ": Cannot seek to block: %s\n",
8619 strerror(errno));
8620 skipped_disks++;
8621 continue;
8622 }
8623 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
8624 fprintf(stderr,
8625 Name ": Cannot read copy area block: %s\n",
8626 strerror(errno));
8627 skipped_disks++;
8628 continue;
8629 }
8630 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8631 fprintf(stderr,
8632 Name ": Cannot seek to block: %s\n",
8633 strerror(errno));
8634 skipped_disks++;
8635 continue;
8636 }
8637 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
8638 fprintf(stderr,
8639 Name ": Cannot restore block: %s\n",
8640 strerror(errno));
8641 skipped_disks++;
8642 continue;
8643 }
8644 }
8645
8646 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
8647 new_disks,
8648 super,
8649 id->dev)) {
8650 fprintf(stderr,
8651 Name ": Cannot restore data from backup."
8652 " Too many failed disks\n");
8653 goto abort;
8654 }
8655
8656 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8657 /* ignore error == 2, this can mean end of reshape here
8658 */
8659 dprintf("imsm: Cannot write checkpoint to "
8660 "migration record (UNIT_SRC_NORMAL) during restart\n");
8661 } else
8662 retval = 0;
8663
8664 abort:
8665 if (targets) {
8666 for (i = 0; i < new_disks; i++)
8667 if (targets[i])
8668 close(targets[i]);
8669 free(targets);
8670 }
8671 free(buf);
8672 return retval;
8673 }
8674
8675 static char disk_by_path[] = "/dev/disk/by-path/";
8676
8677 static const char *imsm_get_disk_controller_domain(const char *path)
8678 {
8679 char disk_path[PATH_MAX];
8680 char *drv=NULL;
8681 struct stat st;
8682
8683 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8684 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8685 if (stat(disk_path, &st) == 0) {
8686 struct sys_dev* hba;
8687 char *path=NULL;
8688
8689 path = devt_to_devpath(st.st_rdev);
8690 if (path == NULL)
8691 return "unknown";
8692 hba = find_disk_attached_hba(-1, path);
8693 if (hba && hba->type == SYS_DEV_SAS)
8694 drv = "isci";
8695 else if (hba && hba->type == SYS_DEV_SATA)
8696 drv = "ahci";
8697 else
8698 drv = "unknown";
8699 dprintf("path: %s hba: %s attached: %s\n",
8700 path, (hba) ? hba->path : "NULL", drv);
8701 free(path);
8702 if (hba)
8703 free_sys_dev(&hba);
8704 }
8705 return drv;
8706 }
8707
8708 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8709 {
8710 char subdev_name[20];
8711 struct mdstat_ent *mdstat;
8712
8713 sprintf(subdev_name, "%d", subdev);
8714 mdstat = mdstat_by_subdev(subdev_name, container);
8715 if (!mdstat)
8716 return -1;
8717
8718 *minor = mdstat->devnum;
8719 free_mdstat(mdstat);
8720 return 0;
8721 }
8722
8723 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8724 struct geo_params *geo,
8725 int *old_raid_disks)
8726 {
8727 /* currently we only support increasing the number of devices
8728 * for a container. This increases the number of device for each
8729 * member array. They must all be RAID0 or RAID5.
8730 */
8731 int ret_val = 0;
8732 struct mdinfo *info, *member;
8733 int devices_that_can_grow = 0;
8734
8735 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8736 "st->devnum = (%i)\n",
8737 st->devnum);
8738
8739 if (geo->size != -1 ||
8740 geo->level != UnSet ||
8741 geo->layout != UnSet ||
8742 geo->chunksize != 0 ||
8743 geo->raid_disks == UnSet) {
8744 dprintf("imsm: Container operation is allowed for "
8745 "raid disks number change only.\n");
8746 return ret_val;
8747 }
8748
8749 info = container_content_imsm(st, NULL);
8750 for (member = info; member; member = member->next) {
8751 int result;
8752 int minor;
8753
8754 dprintf("imsm: checking device_num: %i\n",
8755 member->container_member);
8756
8757 if (geo->raid_disks <= member->array.raid_disks) {
8758 /* we work on container for Online Capacity Expansion
8759 * only so raid_disks has to grow
8760 */
8761 dprintf("imsm: for container operation raid disks "
8762 "increase is required\n");
8763 break;
8764 }
8765
8766 if ((info->array.level != 0) &&
8767 (info->array.level != 5)) {
8768 /* we cannot use this container with other raid level
8769 */
8770 dprintf("imsm: for container operation wrong"
8771 " raid level (%i) detected\n",
8772 info->array.level);
8773 break;
8774 } else {
8775 /* check for platform support
8776 * for this raid level configuration
8777 */
8778 struct intel_super *super = st->sb;
8779 if (!is_raid_level_supported(super->orom,
8780 member->array.level,
8781 geo->raid_disks)) {
8782 dprintf("platform does not support raid%d with"
8783 " %d disk%s\n",
8784 info->array.level,
8785 geo->raid_disks,
8786 geo->raid_disks > 1 ? "s" : "");
8787 break;
8788 }
8789 /* check if component size is aligned to chunk size
8790 */
8791 if (info->component_size %
8792 (info->array.chunk_size/512)) {
8793 dprintf("Component size is not aligned to "
8794 "chunk size\n");
8795 break;
8796 }
8797 }
8798
8799 if (*old_raid_disks &&
8800 info->array.raid_disks != *old_raid_disks)
8801 break;
8802 *old_raid_disks = info->array.raid_disks;
8803
8804 /* All raid5 and raid0 volumes in container
8805 * have to be ready for Online Capacity Expansion
8806 * so they need to be assembled. We have already
8807 * checked that no recovery etc is happening.
8808 */
8809 result = imsm_find_array_minor_by_subdev(member->container_member,
8810 st->container_dev,
8811 &minor);
8812 if (result < 0) {
8813 dprintf("imsm: cannot find array\n");
8814 break;
8815 }
8816 devices_that_can_grow++;
8817 }
8818 sysfs_free(info);
8819 if (!member && devices_that_can_grow)
8820 ret_val = 1;
8821
8822 if (ret_val)
8823 dprintf("\tContainer operation allowed\n");
8824 else
8825 dprintf("\tError: %i\n", ret_val);
8826
8827 return ret_val;
8828 }
8829
8830 /* Function: get_spares_for_grow
8831 * Description: Allocates memory and creates list of spare devices
8832 * avaliable in container. Checks if spare drive size is acceptable.
8833 * Parameters: Pointer to the supertype structure
8834 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8835 * NULL if fail
8836 */
8837 static struct mdinfo *get_spares_for_grow(struct supertype *st)
8838 {
8839 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
8840 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
8841 }
8842
8843 /******************************************************************************
8844 * function: imsm_create_metadata_update_for_reshape
8845 * Function creates update for whole IMSM container.
8846 *
8847 ******************************************************************************/
8848 static int imsm_create_metadata_update_for_reshape(
8849 struct supertype *st,
8850 struct geo_params *geo,
8851 int old_raid_disks,
8852 struct imsm_update_reshape **updatep)
8853 {
8854 struct intel_super *super = st->sb;
8855 struct imsm_super *mpb = super->anchor;
8856 int update_memory_size = 0;
8857 struct imsm_update_reshape *u = NULL;
8858 struct mdinfo *spares = NULL;
8859 int i;
8860 int delta_disks = 0;
8861 struct mdinfo *dev;
8862
8863 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8864 geo->raid_disks);
8865
8866 delta_disks = geo->raid_disks - old_raid_disks;
8867
8868 /* size of all update data without anchor */
8869 update_memory_size = sizeof(struct imsm_update_reshape);
8870
8871 /* now add space for spare disks that we need to add. */
8872 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8873
8874 u = calloc(1, update_memory_size);
8875 if (u == NULL) {
8876 dprintf("error: "
8877 "cannot get memory for imsm_update_reshape update\n");
8878 return 0;
8879 }
8880 u->type = update_reshape_container_disks;
8881 u->old_raid_disks = old_raid_disks;
8882 u->new_raid_disks = geo->raid_disks;
8883
8884 /* now get spare disks list
8885 */
8886 spares = get_spares_for_grow(st);
8887
8888 if (spares == NULL
8889 || delta_disks > spares->array.spare_disks) {
8890 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8891 "for %s.\n", geo->dev_name);
8892 i = -1;
8893 goto abort;
8894 }
8895
8896 /* we have got spares
8897 * update disk list in imsm_disk list table in anchor
8898 */
8899 dprintf("imsm: %i spares are available.\n\n",
8900 spares->array.spare_disks);
8901
8902 dev = spares->devs;
8903 for (i = 0; i < delta_disks; i++) {
8904 struct dl *dl;
8905
8906 if (dev == NULL)
8907 break;
8908 u->new_disks[i] = makedev(dev->disk.major,
8909 dev->disk.minor);
8910 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
8911 dl->index = mpb->num_disks;
8912 mpb->num_disks++;
8913 dev = dev->next;
8914 }
8915
8916 abort:
8917 /* free spares
8918 */
8919 sysfs_free(spares);
8920
8921 dprintf("imsm: reshape update preparation :");
8922 if (i == delta_disks) {
8923 dprintf(" OK\n");
8924 *updatep = u;
8925 return update_memory_size;
8926 }
8927 free(u);
8928 dprintf(" Error\n");
8929
8930 return 0;
8931 }
8932
8933 /******************************************************************************
8934 * function: imsm_create_metadata_update_for_migration()
8935 * Creates update for IMSM array.
8936 *
8937 ******************************************************************************/
8938 static int imsm_create_metadata_update_for_migration(
8939 struct supertype *st,
8940 struct geo_params *geo,
8941 struct imsm_update_reshape_migration **updatep)
8942 {
8943 struct intel_super *super = st->sb;
8944 int update_memory_size = 0;
8945 struct imsm_update_reshape_migration *u = NULL;
8946 struct imsm_dev *dev;
8947 int previous_level = -1;
8948
8949 dprintf("imsm_create_metadata_update_for_migration(enter)"
8950 " New Level = %i\n", geo->level);
8951
8952 /* size of all update data without anchor */
8953 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8954
8955 u = calloc(1, update_memory_size);
8956 if (u == NULL) {
8957 dprintf("error: cannot get memory for "
8958 "imsm_create_metadata_update_for_migration\n");
8959 return 0;
8960 }
8961 u->type = update_reshape_migration;
8962 u->subdev = super->current_vol;
8963 u->new_level = geo->level;
8964 u->new_layout = geo->layout;
8965 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8966 u->new_disks[0] = -1;
8967 u->new_chunksize = -1;
8968
8969 dev = get_imsm_dev(super, u->subdev);
8970 if (dev) {
8971 struct imsm_map *map;
8972
8973 map = get_imsm_map(dev, MAP_0);
8974 if (map) {
8975 int current_chunk_size =
8976 __le16_to_cpu(map->blocks_per_strip) / 2;
8977
8978 if (geo->chunksize != current_chunk_size) {
8979 u->new_chunksize = geo->chunksize / 1024;
8980 dprintf("imsm: "
8981 "chunk size change from %i to %i\n",
8982 current_chunk_size, u->new_chunksize);
8983 }
8984 previous_level = map->raid_level;
8985 }
8986 }
8987 if ((geo->level == 5) && (previous_level == 0)) {
8988 struct mdinfo *spares = NULL;
8989
8990 u->new_raid_disks++;
8991 spares = get_spares_for_grow(st);
8992 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8993 free(u);
8994 sysfs_free(spares);
8995 update_memory_size = 0;
8996 dprintf("error: cannot get spare device "
8997 "for requested migration");
8998 return 0;
8999 }
9000 sysfs_free(spares);
9001 }
9002 dprintf("imsm: reshape update preparation : OK\n");
9003 *updatep = u;
9004
9005 return update_memory_size;
9006 }
9007
9008 static void imsm_update_metadata_locally(struct supertype *st,
9009 void *buf, int len)
9010 {
9011 struct metadata_update mu;
9012
9013 mu.buf = buf;
9014 mu.len = len;
9015 mu.space = NULL;
9016 mu.space_list = NULL;
9017 mu.next = NULL;
9018 imsm_prepare_update(st, &mu);
9019 imsm_process_update(st, &mu);
9020
9021 while (mu.space_list) {
9022 void **space = mu.space_list;
9023 mu.space_list = *space;
9024 free(space);
9025 }
9026 }
9027
9028 /***************************************************************************
9029 * Function: imsm_analyze_change
9030 * Description: Function analyze change for single volume
9031 * and validate if transition is supported
9032 * Parameters: Geometry parameters, supertype structure
9033 * Returns: Operation type code on success, -1 if fail
9034 ****************************************************************************/
9035 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9036 struct geo_params *geo)
9037 {
9038 struct mdinfo info;
9039 int change = -1;
9040 int check_devs = 0;
9041 int chunk;
9042 int devNumChange=0;
9043 int layout = -1;
9044
9045 getinfo_super_imsm_volume(st, &info, NULL);
9046 if ((geo->level != info.array.level) &&
9047 (geo->level >= 0) &&
9048 (geo->level != UnSet)) {
9049 switch (info.array.level) {
9050 case 0:
9051 if (geo->level == 5) {
9052 change = CH_MIGRATION;
9053 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
9054 fprintf(stderr,
9055 Name " Error. Requested Layout "
9056 "not supported (left-asymmetric layout "
9057 "is supported only)!\n");
9058 change = -1;
9059 goto analyse_change_exit;
9060 }
9061 layout = geo->layout;
9062 check_devs = 1;
9063 devNumChange = 1; /* parity disk added */
9064 } else if (geo->level == 10) {
9065 change = CH_TAKEOVER;
9066 check_devs = 1;
9067 devNumChange = 2; /* two mirrors added */
9068 layout = 0x102; /* imsm supported layout */
9069 }
9070 break;
9071 case 1:
9072 case 10:
9073 if (geo->level == 0) {
9074 change = CH_TAKEOVER;
9075 check_devs = 1;
9076 devNumChange = -(geo->raid_disks/2);
9077 layout = 0; /* imsm raid0 layout */
9078 }
9079 break;
9080 }
9081 if (change == -1) {
9082 fprintf(stderr,
9083 Name " Error. Level Migration from %d to %d "
9084 "not supported!\n",
9085 info.array.level, geo->level);
9086 goto analyse_change_exit;
9087 }
9088 } else
9089 geo->level = info.array.level;
9090
9091 if ((geo->layout != info.array.layout)
9092 && ((geo->layout != UnSet) && (geo->layout != -1))) {
9093 change = CH_MIGRATION;
9094 if ((info.array.layout == 0)
9095 && (info.array.level == 5)
9096 && (geo->layout == 5)) {
9097 /* reshape 5 -> 4 */
9098 } else if ((info.array.layout == 5)
9099 && (info.array.level == 5)
9100 && (geo->layout == 0)) {
9101 /* reshape 4 -> 5 */
9102 geo->layout = 0;
9103 geo->level = 5;
9104 } else {
9105 fprintf(stderr,
9106 Name " Error. Layout Migration from %d to %d "
9107 "not supported!\n",
9108 info.array.layout, geo->layout);
9109 change = -1;
9110 goto analyse_change_exit;
9111 }
9112 } else
9113 geo->layout = info.array.layout;
9114
9115 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
9116 && (geo->chunksize != info.array.chunk_size))
9117 change = CH_MIGRATION;
9118 else
9119 geo->chunksize = info.array.chunk_size;
9120
9121 chunk = geo->chunksize / 1024;
9122 if (!validate_geometry_imsm(st,
9123 geo->level,
9124 layout,
9125 geo->raid_disks + devNumChange,
9126 &chunk,
9127 geo->size,
9128 0, 0, 1))
9129 change = -1;
9130
9131 if (check_devs) {
9132 struct intel_super *super = st->sb;
9133 struct imsm_super *mpb = super->anchor;
9134
9135 if (mpb->num_raid_devs > 1) {
9136 fprintf(stderr,
9137 Name " Error. Cannot perform operation on %s"
9138 "- for this operation it MUST be single "
9139 "array in container\n",
9140 geo->dev_name);
9141 change = -1;
9142 }
9143 }
9144
9145 analyse_change_exit:
9146
9147 return change;
9148 }
9149
9150 int imsm_takeover(struct supertype *st, struct geo_params *geo)
9151 {
9152 struct intel_super *super = st->sb;
9153 struct imsm_update_takeover *u;
9154
9155 u = malloc(sizeof(struct imsm_update_takeover));
9156 if (u == NULL)
9157 return 1;
9158
9159 u->type = update_takeover;
9160 u->subarray = super->current_vol;
9161
9162 /* 10->0 transition */
9163 if (geo->level == 0)
9164 u->direction = R10_TO_R0;
9165
9166 /* 0->10 transition */
9167 if (geo->level == 10)
9168 u->direction = R0_TO_R10;
9169
9170 /* update metadata locally */
9171 imsm_update_metadata_locally(st, u,
9172 sizeof(struct imsm_update_takeover));
9173 /* and possibly remotely */
9174 if (st->update_tail)
9175 append_metadata_update(st, u,
9176 sizeof(struct imsm_update_takeover));
9177 else
9178 free(u);
9179
9180 return 0;
9181 }
9182
9183 static int imsm_reshape_super(struct supertype *st, long long size, int level,
9184 int layout, int chunksize, int raid_disks,
9185 int delta_disks, char *backup, char *dev,
9186 int verbose)
9187 {
9188 int ret_val = 1;
9189 struct geo_params geo;
9190
9191 dprintf("imsm: reshape_super called.\n");
9192
9193 memset(&geo, 0, sizeof(struct geo_params));
9194
9195 geo.dev_name = dev;
9196 geo.dev_id = st->devnum;
9197 geo.size = size;
9198 geo.level = level;
9199 geo.layout = layout;
9200 geo.chunksize = chunksize;
9201 geo.raid_disks = raid_disks;
9202 if (delta_disks != UnSet)
9203 geo.raid_disks += delta_disks;
9204
9205 dprintf("\tfor level : %i\n", geo.level);
9206 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
9207
9208 if (experimental() == 0)
9209 return ret_val;
9210
9211 if (st->container_dev == st->devnum) {
9212 /* On container level we can only increase number of devices. */
9213 dprintf("imsm: info: Container operation\n");
9214 int old_raid_disks = 0;
9215
9216 if (imsm_reshape_is_allowed_on_container(
9217 st, &geo, &old_raid_disks)) {
9218 struct imsm_update_reshape *u = NULL;
9219 int len;
9220
9221 len = imsm_create_metadata_update_for_reshape(
9222 st, &geo, old_raid_disks, &u);
9223
9224 if (len <= 0) {
9225 dprintf("imsm: Cannot prepare update\n");
9226 goto exit_imsm_reshape_super;
9227 }
9228
9229 ret_val = 0;
9230 /* update metadata locally */
9231 imsm_update_metadata_locally(st, u, len);
9232 /* and possibly remotely */
9233 if (st->update_tail)
9234 append_metadata_update(st, u, len);
9235 else
9236 free(u);
9237
9238 } else {
9239 fprintf(stderr, Name ": (imsm) Operation "
9240 "is not allowed on this container\n");
9241 }
9242 } else {
9243 /* On volume level we support following operations
9244 * - takeover: raid10 -> raid0; raid0 -> raid10
9245 * - chunk size migration
9246 * - migration: raid5 -> raid0; raid0 -> raid5
9247 */
9248 struct intel_super *super = st->sb;
9249 struct intel_dev *dev = super->devlist;
9250 int change, devnum;
9251 dprintf("imsm: info: Volume operation\n");
9252 /* find requested device */
9253 while (dev) {
9254 if (imsm_find_array_minor_by_subdev(
9255 dev->index, st->container_dev, &devnum) == 0
9256 && devnum == geo.dev_id)
9257 break;
9258 dev = dev->next;
9259 }
9260 if (dev == NULL) {
9261 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
9262 geo.dev_name, geo.dev_id);
9263 goto exit_imsm_reshape_super;
9264 }
9265 super->current_vol = dev->index;
9266 change = imsm_analyze_change(st, &geo);
9267 switch (change) {
9268 case CH_TAKEOVER:
9269 ret_val = imsm_takeover(st, &geo);
9270 break;
9271 case CH_MIGRATION: {
9272 struct imsm_update_reshape_migration *u = NULL;
9273 int len =
9274 imsm_create_metadata_update_for_migration(
9275 st, &geo, &u);
9276 if (len < 1) {
9277 dprintf("imsm: "
9278 "Cannot prepare update\n");
9279 break;
9280 }
9281 ret_val = 0;
9282 /* update metadata locally */
9283 imsm_update_metadata_locally(st, u, len);
9284 /* and possibly remotely */
9285 if (st->update_tail)
9286 append_metadata_update(st, u, len);
9287 else
9288 free(u);
9289 }
9290 break;
9291 default:
9292 ret_val = 1;
9293 }
9294 }
9295
9296 exit_imsm_reshape_super:
9297 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
9298 return ret_val;
9299 }
9300
9301 /*******************************************************************************
9302 * Function: wait_for_reshape_imsm
9303 * Description: Function writes new sync_max value and waits until
9304 * reshape process reach new position
9305 * Parameters:
9306 * sra : general array info
9307 * ndata : number of disks in new array's layout
9308 * Returns:
9309 * 0 : success,
9310 * 1 : there is no reshape in progress,
9311 * -1 : fail
9312 ******************************************************************************/
9313 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
9314 {
9315 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
9316 unsigned long long completed;
9317 /* to_complete : new sync_max position */
9318 unsigned long long to_complete = sra->reshape_progress;
9319 unsigned long long position_to_set = to_complete / ndata;
9320
9321 if (fd < 0) {
9322 dprintf("imsm: wait_for_reshape_imsm() "
9323 "cannot open reshape_position\n");
9324 return 1;
9325 }
9326
9327 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9328 dprintf("imsm: wait_for_reshape_imsm() "
9329 "cannot read reshape_position (no reshape in progres)\n");
9330 close(fd);
9331 return 0;
9332 }
9333
9334 if (completed > to_complete) {
9335 dprintf("imsm: wait_for_reshape_imsm() "
9336 "wrong next position to set %llu (%llu)\n",
9337 to_complete, completed);
9338 close(fd);
9339 return -1;
9340 }
9341 dprintf("Position set: %llu\n", position_to_set);
9342 if (sysfs_set_num(sra, NULL, "sync_max",
9343 position_to_set) != 0) {
9344 dprintf("imsm: wait_for_reshape_imsm() "
9345 "cannot set reshape position to %llu\n",
9346 position_to_set);
9347 close(fd);
9348 return -1;
9349 }
9350
9351 do {
9352 char action[20];
9353 fd_set rfds;
9354 FD_ZERO(&rfds);
9355 FD_SET(fd, &rfds);
9356 select(fd+1, &rfds, NULL, NULL, NULL);
9357 if (sysfs_get_str(sra, NULL, "sync_action",
9358 action, 20) > 0 &&
9359 strncmp(action, "reshape", 7) != 0)
9360 break;
9361 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9362 dprintf("imsm: wait_for_reshape_imsm() "
9363 "cannot read reshape_position (in loop)\n");
9364 close(fd);
9365 return 1;
9366 }
9367 } while (completed < to_complete);
9368 close(fd);
9369 return 0;
9370
9371 }
9372
9373 /*******************************************************************************
9374 * Function: check_degradation_change
9375 * Description: Check that array hasn't become failed.
9376 * Parameters:
9377 * info : for sysfs access
9378 * sources : source disks descriptors
9379 * degraded: previous degradation level
9380 * Returns:
9381 * degradation level
9382 ******************************************************************************/
9383 int check_degradation_change(struct mdinfo *info,
9384 int *sources,
9385 int degraded)
9386 {
9387 unsigned long long new_degraded;
9388 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
9389 if (new_degraded != (unsigned long long)degraded) {
9390 /* check each device to ensure it is still working */
9391 struct mdinfo *sd;
9392 new_degraded = 0;
9393 for (sd = info->devs ; sd ; sd = sd->next) {
9394 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9395 continue;
9396 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9397 char sbuf[20];
9398 if (sysfs_get_str(info,
9399 sd, "state", sbuf, 20) < 0 ||
9400 strstr(sbuf, "faulty") ||
9401 strstr(sbuf, "in_sync") == NULL) {
9402 /* this device is dead */
9403 sd->disk.state = (1<<MD_DISK_FAULTY);
9404 if (sd->disk.raid_disk >= 0 &&
9405 sources[sd->disk.raid_disk] >= 0) {
9406 close(sources[
9407 sd->disk.raid_disk]);
9408 sources[sd->disk.raid_disk] =
9409 -1;
9410 }
9411 new_degraded++;
9412 }
9413 }
9414 }
9415 }
9416
9417 return new_degraded;
9418 }
9419
9420 /*******************************************************************************
9421 * Function: imsm_manage_reshape
9422 * Description: Function finds array under reshape and it manages reshape
9423 * process. It creates stripes backups (if required) and sets
9424 * checheckpoits.
9425 * Parameters:
9426 * afd : Backup handle (nattive) - not used
9427 * sra : general array info
9428 * reshape : reshape parameters - not used
9429 * st : supertype structure
9430 * blocks : size of critical section [blocks]
9431 * fds : table of source device descriptor
9432 * offsets : start of array (offest per devices)
9433 * dests : not used
9434 * destfd : table of destination device descriptor
9435 * destoffsets : table of destination offsets (per device)
9436 * Returns:
9437 * 1 : success, reshape is done
9438 * 0 : fail
9439 ******************************************************************************/
9440 static int imsm_manage_reshape(
9441 int afd, struct mdinfo *sra, struct reshape *reshape,
9442 struct supertype *st, unsigned long backup_blocks,
9443 int *fds, unsigned long long *offsets,
9444 int dests, int *destfd, unsigned long long *destoffsets)
9445 {
9446 int ret_val = 0;
9447 struct intel_super *super = st->sb;
9448 struct intel_dev *dv = NULL;
9449 struct imsm_dev *dev = NULL;
9450 struct imsm_map *map_src;
9451 int migr_vol_qan = 0;
9452 int ndata, odata; /* [bytes] */
9453 int chunk; /* [bytes] */
9454 struct migr_record *migr_rec;
9455 char *buf = NULL;
9456 unsigned int buf_size; /* [bytes] */
9457 unsigned long long max_position; /* array size [bytes] */
9458 unsigned long long next_step; /* [blocks]/[bytes] */
9459 unsigned long long old_data_stripe_length;
9460 unsigned long long start_src; /* [bytes] */
9461 unsigned long long start; /* [bytes] */
9462 unsigned long long start_buf_shift; /* [bytes] */
9463 int degraded = 0;
9464 int source_layout = 0;
9465
9466 if (!fds || !offsets || !sra)
9467 goto abort;
9468
9469 /* Find volume during the reshape */
9470 for (dv = super->devlist; dv; dv = dv->next) {
9471 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9472 && dv->dev->vol.migr_state == 1) {
9473 dev = dv->dev;
9474 migr_vol_qan++;
9475 }
9476 }
9477 /* Only one volume can migrate at the same time */
9478 if (migr_vol_qan != 1) {
9479 fprintf(stderr, Name " : %s", migr_vol_qan ?
9480 "Number of migrating volumes greater than 1\n" :
9481 "There is no volume during migrationg\n");
9482 goto abort;
9483 }
9484
9485 map_src = get_imsm_map(dev, MAP_1);
9486 if (map_src == NULL)
9487 goto abort;
9488
9489 ndata = imsm_num_data_members(dev, MAP_0);
9490 odata = imsm_num_data_members(dev, MAP_1);
9491
9492 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
9493 old_data_stripe_length = odata * chunk;
9494
9495 migr_rec = super->migr_rec;
9496
9497 /* initialize migration record for start condition */
9498 if (sra->reshape_progress == 0)
9499 init_migr_record_imsm(st, dev, sra);
9500 else {
9501 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9502 dprintf("imsm: cannot restart migration when data "
9503 "are present in copy area.\n");
9504 goto abort;
9505 }
9506 }
9507
9508 /* size for data */
9509 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9510 /* extend buffer size for parity disk */
9511 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9512 /* add space for stripe aligment */
9513 buf_size += old_data_stripe_length;
9514 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9515 dprintf("imsm: Cannot allocate checpoint buffer\n");
9516 goto abort;
9517 }
9518
9519 max_position = sra->component_size * ndata;
9520 source_layout = imsm_level_to_layout(map_src->raid_level);
9521
9522 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9523 __le32_to_cpu(migr_rec->num_migr_units)) {
9524 /* current reshape position [blocks] */
9525 unsigned long long current_position =
9526 __le32_to_cpu(migr_rec->blocks_per_unit)
9527 * __le32_to_cpu(migr_rec->curr_migr_unit);
9528 unsigned long long border;
9529
9530 /* Check that array hasn't become failed.
9531 */
9532 degraded = check_degradation_change(sra, fds, degraded);
9533 if (degraded > 1) {
9534 dprintf("imsm: Abort reshape due to degradation"
9535 " level (%i)\n", degraded);
9536 goto abort;
9537 }
9538
9539 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9540
9541 if ((current_position + next_step) > max_position)
9542 next_step = max_position - current_position;
9543
9544 start = current_position * 512;
9545
9546 /* allign reading start to old geometry */
9547 start_buf_shift = start % old_data_stripe_length;
9548 start_src = start - start_buf_shift;
9549
9550 border = (start_src / odata) - (start / ndata);
9551 border /= 512;
9552 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9553 /* save critical stripes to buf
9554 * start - start address of current unit
9555 * to backup [bytes]
9556 * start_src - start address of current unit
9557 * to backup alligned to source array
9558 * [bytes]
9559 */
9560 unsigned long long next_step_filler = 0;
9561 unsigned long long copy_length = next_step * 512;
9562
9563 /* allign copy area length to stripe in old geometry */
9564 next_step_filler = ((copy_length + start_buf_shift)
9565 % old_data_stripe_length);
9566 if (next_step_filler)
9567 next_step_filler = (old_data_stripe_length
9568 - next_step_filler);
9569 dprintf("save_stripes() parameters: start = %llu,"
9570 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9571 "\tstart_in_buf_shift = %llu,"
9572 "\tnext_step_filler = %llu\n",
9573 start, start_src, copy_length,
9574 start_buf_shift, next_step_filler);
9575
9576 if (save_stripes(fds, offsets, map_src->num_members,
9577 chunk, map_src->raid_level,
9578 source_layout, 0, NULL, start_src,
9579 copy_length +
9580 next_step_filler + start_buf_shift,
9581 buf)) {
9582 dprintf("imsm: Cannot save stripes"
9583 " to buffer\n");
9584 goto abort;
9585 }
9586 /* Convert data to destination format and store it
9587 * in backup general migration area
9588 */
9589 if (save_backup_imsm(st, dev, sra,
9590 buf + start_buf_shift, copy_length)) {
9591 dprintf("imsm: Cannot save stripes to "
9592 "target devices\n");
9593 goto abort;
9594 }
9595 if (save_checkpoint_imsm(st, sra,
9596 UNIT_SRC_IN_CP_AREA)) {
9597 dprintf("imsm: Cannot write checkpoint to "
9598 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9599 goto abort;
9600 }
9601 } else {
9602 /* set next step to use whole border area */
9603 border /= next_step;
9604 if (border > 1)
9605 next_step *= border;
9606 }
9607 /* When data backed up, checkpoint stored,
9608 * kick the kernel to reshape unit of data
9609 */
9610 next_step = next_step + sra->reshape_progress;
9611 /* limit next step to array max position */
9612 if (next_step > max_position)
9613 next_step = max_position;
9614 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9615 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
9616 sra->reshape_progress = next_step;
9617
9618 /* wait until reshape finish */
9619 if (wait_for_reshape_imsm(sra, ndata) < 0) {
9620 dprintf("wait_for_reshape_imsm returned error!\n");
9621 goto abort;
9622 }
9623
9624 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9625 /* ignore error == 2, this can mean end of reshape here
9626 */
9627 dprintf("imsm: Cannot write checkpoint to "
9628 "migration record (UNIT_SRC_NORMAL)\n");
9629 goto abort;
9630 }
9631
9632 }
9633
9634 /* return '1' if done */
9635 ret_val = 1;
9636 abort:
9637 free(buf);
9638 abort_reshape(sra);
9639
9640 return ret_val;
9641 }
9642 #endif /* MDASSEMBLE */
9643
9644 struct superswitch super_imsm = {
9645 #ifndef MDASSEMBLE
9646 .examine_super = examine_super_imsm,
9647 .brief_examine_super = brief_examine_super_imsm,
9648 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9649 .export_examine_super = export_examine_super_imsm,
9650 .detail_super = detail_super_imsm,
9651 .brief_detail_super = brief_detail_super_imsm,
9652 .write_init_super = write_init_super_imsm,
9653 .validate_geometry = validate_geometry_imsm,
9654 .add_to_super = add_to_super_imsm,
9655 .remove_from_super = remove_from_super_imsm,
9656 .detail_platform = detail_platform_imsm,
9657 .kill_subarray = kill_subarray_imsm,
9658 .update_subarray = update_subarray_imsm,
9659 .load_container = load_container_imsm,
9660 .default_geometry = default_geometry_imsm,
9661 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9662 .reshape_super = imsm_reshape_super,
9663 .manage_reshape = imsm_manage_reshape,
9664 .recover_backup = recover_backup_imsm,
9665 #endif
9666 .match_home = match_home_imsm,
9667 .uuid_from_super= uuid_from_super_imsm,
9668 .getinfo_super = getinfo_super_imsm,
9669 .getinfo_super_disks = getinfo_super_disks_imsm,
9670 .update_super = update_super_imsm,
9671
9672 .avail_size = avail_size_imsm,
9673 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
9674
9675 .compare_super = compare_super_imsm,
9676
9677 .load_super = load_super_imsm,
9678 .init_super = init_super_imsm,
9679 .store_super = store_super_imsm,
9680 .free_super = free_super_imsm,
9681 .match_metadata_desc = match_metadata_desc_imsm,
9682 .container_content = container_content_imsm,
9683
9684
9685 .external = 1,
9686 .name = "imsm",
9687
9688 #ifndef MDASSEMBLE
9689 /* for mdmon */
9690 .open_new = imsm_open_new,
9691 .set_array_state= imsm_set_array_state,
9692 .set_disk = imsm_set_disk,
9693 .sync_metadata = imsm_sync_metadata,
9694 .activate_spare = imsm_activate_spare,
9695 .process_update = imsm_process_update,
9696 .prepare_update = imsm_prepare_update,
9697 #endif /* MDASSEMBLE */
9698 };