]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
show 2TB volumes/disks support in --detail-platform
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
106 #define IMSM_DISK_FILLERS 3
107 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
108 };
109
110 /* map selector for map managment
111 */
112 #define MAP_0 0
113 #define MAP_1 1
114 #define MAP_X -1
115
116 /* RAID map configuration infos. */
117 struct imsm_map {
118 __u32 pba_of_lba0_lo; /* start address of partition */
119 __u32 blocks_per_member_lo;/* blocks per member */
120 __u32 num_data_stripes_lo; /* number of data stripes */
121 __u16 blocks_per_strip;
122 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
123 #define IMSM_T_STATE_NORMAL 0
124 #define IMSM_T_STATE_UNINITIALIZED 1
125 #define IMSM_T_STATE_DEGRADED 2
126 #define IMSM_T_STATE_FAILED 3
127 __u8 raid_level;
128 #define IMSM_T_RAID0 0
129 #define IMSM_T_RAID1 1
130 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
131 __u8 num_members; /* number of member disks */
132 __u8 num_domains; /* number of parity domains */
133 __u8 failed_disk_num; /* valid only when state is degraded */
134 __u8 ddf;
135 __u32 pba_of_lba0_hi;
136 __u32 blocks_per_member_hi;
137 __u32 num_data_stripes_hi;
138 __u32 filler[4]; /* expansion area */
139 #define IMSM_ORD_REBUILD (1 << 24)
140 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
141 * top byte contains some flags
142 */
143 } __attribute__ ((packed));
144
145 struct imsm_vol {
146 __u32 curr_migr_unit;
147 __u32 checkpoint_id; /* id to access curr_migr_unit */
148 __u8 migr_state; /* Normal or Migrating */
149 #define MIGR_INIT 0
150 #define MIGR_REBUILD 1
151 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
152 #define MIGR_GEN_MIGR 3
153 #define MIGR_STATE_CHANGE 4
154 #define MIGR_REPAIR 5
155 __u8 migr_type; /* Initializing, Rebuilding, ... */
156 __u8 dirty;
157 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
158 __u16 verify_errors; /* number of mismatches */
159 __u16 bad_blocks; /* number of bad blocks during verify */
160 __u32 filler[4];
161 struct imsm_map map[1];
162 /* here comes another one if migr_state */
163 } __attribute__ ((packed));
164
165 struct imsm_dev {
166 __u8 volume[MAX_RAID_SERIAL_LEN];
167 __u32 size_low;
168 __u32 size_high;
169 #define DEV_BOOTABLE __cpu_to_le32(0x01)
170 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
171 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
172 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
173 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
174 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
175 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
176 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
177 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
178 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
179 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
180 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
181 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
182 __u32 status; /* Persistent RaidDev status */
183 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
184 __u8 migr_priority;
185 __u8 num_sub_vols;
186 __u8 tid;
187 __u8 cng_master_disk;
188 __u16 cache_policy;
189 __u8 cng_state;
190 __u8 cng_sub_state;
191 #define IMSM_DEV_FILLERS 10
192 __u32 filler[IMSM_DEV_FILLERS];
193 struct imsm_vol vol;
194 } __attribute__ ((packed));
195
196 struct imsm_super {
197 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
198 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
199 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
200 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
201 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
202 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
203 __u32 attributes; /* 0x34 - 0x37 */
204 __u8 num_disks; /* 0x38 Number of configured disks */
205 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
206 __u8 error_log_pos; /* 0x3A */
207 __u8 fill[1]; /* 0x3B */
208 __u32 cache_size; /* 0x3c - 0x40 in mb */
209 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
210 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
211 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
212 #define IMSM_FILLERS 35
213 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
214 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
215 /* here comes imsm_dev[num_raid_devs] */
216 /* here comes BBM logs */
217 } __attribute__ ((packed));
218
219 #define BBM_LOG_MAX_ENTRIES 254
220
221 struct bbm_log_entry {
222 __u64 defective_block_start;
223 #define UNREADABLE 0xFFFFFFFF
224 __u32 spare_block_offset;
225 __u16 remapped_marked_count;
226 __u16 disk_ordinal;
227 } __attribute__ ((__packed__));
228
229 struct bbm_log {
230 __u32 signature; /* 0xABADB10C */
231 __u32 entry_count;
232 __u32 reserved_spare_block_count; /* 0 */
233 __u32 reserved; /* 0xFFFF */
234 __u64 first_spare_lba;
235 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
236 } __attribute__ ((__packed__));
237
238
239 #ifndef MDASSEMBLE
240 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
241 #endif
242
243 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
244
245 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
246
247 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
248 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
249 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
250 */
251
252
253 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
254 * be recovered using srcMap */
255 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
256 * already been migrated and must
257 * be recovered from checkpoint area */
258 struct migr_record {
259 __u32 rec_status; /* Status used to determine how to restart
260 * migration in case it aborts
261 * in some fashion */
262 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
263 __u32 family_num; /* Family number of MPB
264 * containing the RaidDev
265 * that is migrating */
266 __u32 ascending_migr; /* True if migrating in increasing
267 * order of lbas */
268 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
269 __u32 dest_depth_per_unit; /* Num member blocks each destMap
270 * member disk
271 * advances per unit-of-operation */
272 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
273 __u32 dest_1st_member_lba; /* First member lba on first
274 * stripe of destination */
275 __u32 num_migr_units; /* Total num migration units-of-op */
276 __u32 post_migr_vol_cap; /* Size of volume after
277 * migration completes */
278 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
279 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
280 * migration ckpt record was read from
281 * (for recovered migrations) */
282 } __attribute__ ((__packed__));
283
284 struct md_list {
285 /* usage marker:
286 * 1: load metadata
287 * 2: metadata does not match
288 * 4: already checked
289 */
290 int used;
291 char *devname;
292 int found;
293 int container;
294 dev_t st_rdev;
295 struct md_list *next;
296 };
297
298 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
299
300 static __u8 migr_type(struct imsm_dev *dev)
301 {
302 if (dev->vol.migr_type == MIGR_VERIFY &&
303 dev->status & DEV_VERIFY_AND_FIX)
304 return MIGR_REPAIR;
305 else
306 return dev->vol.migr_type;
307 }
308
309 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
310 {
311 /* for compatibility with older oroms convert MIGR_REPAIR, into
312 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
313 */
314 if (migr_type == MIGR_REPAIR) {
315 dev->vol.migr_type = MIGR_VERIFY;
316 dev->status |= DEV_VERIFY_AND_FIX;
317 } else {
318 dev->vol.migr_type = migr_type;
319 dev->status &= ~DEV_VERIFY_AND_FIX;
320 }
321 }
322
323 static unsigned int sector_count(__u32 bytes)
324 {
325 return ROUND_UP(bytes, 512) / 512;
326 }
327
328 static unsigned int mpb_sectors(struct imsm_super *mpb)
329 {
330 return sector_count(__le32_to_cpu(mpb->mpb_size));
331 }
332
333 struct intel_dev {
334 struct imsm_dev *dev;
335 struct intel_dev *next;
336 unsigned index;
337 };
338
339 struct intel_hba {
340 enum sys_dev_type type;
341 char *path;
342 char *pci_id;
343 struct intel_hba *next;
344 };
345
346 enum action {
347 DISK_REMOVE = 1,
348 DISK_ADD
349 };
350 /* internal representation of IMSM metadata */
351 struct intel_super {
352 union {
353 void *buf; /* O_DIRECT buffer for reading/writing metadata */
354 struct imsm_super *anchor; /* immovable parameters */
355 };
356 union {
357 void *migr_rec_buf; /* buffer for I/O operations */
358 struct migr_record *migr_rec; /* migration record */
359 };
360 int clean_migration_record_by_mdmon; /* when reshape is switched to next
361 array, it indicates that mdmon is allowed to clean migration
362 record */
363 size_t len; /* size of the 'buf' allocation */
364 void *next_buf; /* for realloc'ing buf from the manager */
365 size_t next_len;
366 int updates_pending; /* count of pending updates for mdmon */
367 int current_vol; /* index of raid device undergoing creation */
368 unsigned long long create_offset; /* common start for 'current_vol' */
369 __u32 random; /* random data for seeding new family numbers */
370 struct intel_dev *devlist;
371 struct dl {
372 struct dl *next;
373 int index;
374 __u8 serial[MAX_RAID_SERIAL_LEN];
375 int major, minor;
376 char *devname;
377 struct imsm_disk disk;
378 int fd;
379 int extent_cnt;
380 struct extent *e; /* for determining freespace @ create */
381 int raiddisk; /* slot to fill in autolayout */
382 enum action action;
383 } *disks, *current_disk;
384 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
385 active */
386 struct dl *missing; /* disks removed while we weren't looking */
387 struct bbm_log *bbm_log;
388 struct intel_hba *hba; /* device path of the raid controller for this metadata */
389 const struct imsm_orom *orom; /* platform firmware support */
390 struct intel_super *next; /* (temp) list for disambiguating family_num */
391 };
392
393 struct intel_disk {
394 struct imsm_disk disk;
395 #define IMSM_UNKNOWN_OWNER (-1)
396 int owner;
397 struct intel_disk *next;
398 };
399
400 struct extent {
401 unsigned long long start, size;
402 };
403
404 /* definitions of reshape process types */
405 enum imsm_reshape_type {
406 CH_TAKEOVER,
407 CH_MIGRATION,
408 };
409
410 /* definition of messages passed to imsm_process_update */
411 enum imsm_update_type {
412 update_activate_spare,
413 update_create_array,
414 update_kill_array,
415 update_rename_array,
416 update_add_remove_disk,
417 update_reshape_container_disks,
418 update_reshape_migration,
419 update_takeover,
420 update_general_migration_checkpoint,
421 };
422
423 struct imsm_update_activate_spare {
424 enum imsm_update_type type;
425 struct dl *dl;
426 int slot;
427 int array;
428 struct imsm_update_activate_spare *next;
429 };
430
431 struct geo_params {
432 int dev_id;
433 char *dev_name;
434 long long size;
435 int level;
436 int layout;
437 int chunksize;
438 int raid_disks;
439 };
440
441 enum takeover_direction {
442 R10_TO_R0,
443 R0_TO_R10
444 };
445 struct imsm_update_takeover {
446 enum imsm_update_type type;
447 int subarray;
448 enum takeover_direction direction;
449 };
450
451 struct imsm_update_reshape {
452 enum imsm_update_type type;
453 int old_raid_disks;
454 int new_raid_disks;
455
456 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
457 };
458
459 struct imsm_update_reshape_migration {
460 enum imsm_update_type type;
461 int old_raid_disks;
462 int new_raid_disks;
463 /* fields for array migration changes
464 */
465 int subdev;
466 int new_level;
467 int new_layout;
468 int new_chunksize;
469
470 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
471 };
472
473 struct imsm_update_general_migration_checkpoint {
474 enum imsm_update_type type;
475 __u32 curr_migr_unit;
476 };
477
478 struct disk_info {
479 __u8 serial[MAX_RAID_SERIAL_LEN];
480 };
481
482 struct imsm_update_create_array {
483 enum imsm_update_type type;
484 int dev_idx;
485 struct imsm_dev dev;
486 };
487
488 struct imsm_update_kill_array {
489 enum imsm_update_type type;
490 int dev_idx;
491 };
492
493 struct imsm_update_rename_array {
494 enum imsm_update_type type;
495 __u8 name[MAX_RAID_SERIAL_LEN];
496 int dev_idx;
497 };
498
499 struct imsm_update_add_remove_disk {
500 enum imsm_update_type type;
501 };
502
503
504 static const char *_sys_dev_type[] = {
505 [SYS_DEV_UNKNOWN] = "Unknown",
506 [SYS_DEV_SAS] = "SAS",
507 [SYS_DEV_SATA] = "SATA"
508 };
509
510 const char *get_sys_dev_type(enum sys_dev_type type)
511 {
512 if (type >= SYS_DEV_MAX)
513 type = SYS_DEV_UNKNOWN;
514
515 return _sys_dev_type[type];
516 }
517
518 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
519 {
520 struct intel_hba *result = malloc(sizeof(*result));
521 if (result) {
522 result->type = device->type;
523 result->path = strdup(device->path);
524 result->next = NULL;
525 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
526 result->pci_id++;
527 }
528 return result;
529 }
530
531 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
532 {
533 struct intel_hba *result=NULL;
534 for (result = hba; result; result = result->next) {
535 if (result->type == device->type && strcmp(result->path, device->path) == 0)
536 break;
537 }
538 return result;
539 }
540
541 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
542 {
543 struct intel_hba *hba;
544
545 /* check if disk attached to Intel HBA */
546 hba = find_intel_hba(super->hba, device);
547 if (hba != NULL)
548 return 1;
549 /* Check if HBA is already attached to super */
550 if (super->hba == NULL) {
551 super->hba = alloc_intel_hba(device);
552 return 1;
553 }
554
555 hba = super->hba;
556 /* Intel metadata allows for all disks attached to the same type HBA.
557 * Do not sypport odf HBA types mixing
558 */
559 if (device->type != hba->type)
560 return 2;
561
562 while (hba->next)
563 hba = hba->next;
564
565 hba->next = alloc_intel_hba(device);
566 return 1;
567 }
568
569 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
570 {
571 struct sys_dev *list, *elem, *prev;
572 char *disk_path;
573
574 if ((list = find_intel_devices()) == NULL)
575 return 0;
576
577 if (fd < 0)
578 disk_path = (char *) devname;
579 else
580 disk_path = diskfd_to_devpath(fd);
581
582 if (!disk_path) {
583 free_sys_dev(&list);
584 return 0;
585 }
586
587 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
588 if (path_attached_to_hba(disk_path, elem->path)) {
589 if (prev == NULL)
590 list = list->next;
591 else
592 prev->next = elem->next;
593 elem->next = NULL;
594 if (disk_path != devname)
595 free(disk_path);
596 free_sys_dev(&list);
597 return elem;
598 }
599 }
600 if (disk_path != devname)
601 free(disk_path);
602 free_sys_dev(&list);
603
604 return NULL;
605 }
606
607
608 static int find_intel_hba_capability(int fd, struct intel_super *super,
609 char *devname);
610
611 static struct supertype *match_metadata_desc_imsm(char *arg)
612 {
613 struct supertype *st;
614
615 if (strcmp(arg, "imsm") != 0 &&
616 strcmp(arg, "default") != 0
617 )
618 return NULL;
619
620 st = malloc(sizeof(*st));
621 if (!st)
622 return NULL;
623 memset(st, 0, sizeof(*st));
624 st->container_dev = NoMdDev;
625 st->ss = &super_imsm;
626 st->max_devs = IMSM_MAX_DEVICES;
627 st->minor_version = 0;
628 st->sb = NULL;
629 return st;
630 }
631
632 #ifndef MDASSEMBLE
633 static __u8 *get_imsm_version(struct imsm_super *mpb)
634 {
635 return &mpb->sig[MPB_SIG_LEN];
636 }
637 #endif
638
639 /* retrieve a disk directly from the anchor when the anchor is known to be
640 * up-to-date, currently only at load time
641 */
642 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
643 {
644 if (index >= mpb->num_disks)
645 return NULL;
646 return &mpb->disk[index];
647 }
648
649 /* retrieve the disk description based on a index of the disk
650 * in the sub-array
651 */
652 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
653 {
654 struct dl *d;
655
656 for (d = super->disks; d; d = d->next)
657 if (d->index == index)
658 return d;
659
660 return NULL;
661 }
662 /* retrieve a disk from the parsed metadata */
663 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
664 {
665 struct dl *dl;
666
667 dl = get_imsm_dl_disk(super, index);
668 if (dl)
669 return &dl->disk;
670
671 return NULL;
672 }
673
674 /* generate a checksum directly from the anchor when the anchor is known to be
675 * up-to-date, currently only at load or write_super after coalescing
676 */
677 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
678 {
679 __u32 end = mpb->mpb_size / sizeof(end);
680 __u32 *p = (__u32 *) mpb;
681 __u32 sum = 0;
682
683 while (end--) {
684 sum += __le32_to_cpu(*p);
685 p++;
686 }
687
688 return sum - __le32_to_cpu(mpb->check_sum);
689 }
690
691 static size_t sizeof_imsm_map(struct imsm_map *map)
692 {
693 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
694 }
695
696 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
697 {
698 /* A device can have 2 maps if it is in the middle of a migration.
699 * If second_map is:
700 * MAP_0 - we return the first map
701 * MAP_1 - we return the second map if it exists, else NULL
702 * MAP_X - we return the second map if it exists, else the first
703 */
704 struct imsm_map *map = &dev->vol.map[0];
705 struct imsm_map *map2 = NULL;
706
707 if (dev->vol.migr_state)
708 map2 = (void *)map + sizeof_imsm_map(map);
709
710 switch (second_map) {
711 case MAP_0:
712 break;
713 case MAP_1:
714 map = map2;
715 break;
716 case MAP_X:
717 if (map2)
718 map = map2;
719 break;
720 default:
721 map = NULL;
722 }
723 return map;
724
725 }
726
727 /* return the size of the device.
728 * migr_state increases the returned size if map[0] were to be duplicated
729 */
730 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
731 {
732 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
733 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
734
735 /* migrating means an additional map */
736 if (dev->vol.migr_state)
737 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
738 else if (migr_state)
739 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
740
741 return size;
742 }
743
744 #ifndef MDASSEMBLE
745 /* retrieve disk serial number list from a metadata update */
746 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
747 {
748 void *u = update;
749 struct disk_info *inf;
750
751 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
752 sizeof_imsm_dev(&update->dev, 0);
753
754 return inf;
755 }
756 #endif
757
758 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
759 {
760 int offset;
761 int i;
762 void *_mpb = mpb;
763
764 if (index >= mpb->num_raid_devs)
765 return NULL;
766
767 /* devices start after all disks */
768 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
769
770 for (i = 0; i <= index; i++)
771 if (i == index)
772 return _mpb + offset;
773 else
774 offset += sizeof_imsm_dev(_mpb + offset, 0);
775
776 return NULL;
777 }
778
779 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
780 {
781 struct intel_dev *dv;
782
783 if (index >= super->anchor->num_raid_devs)
784 return NULL;
785 for (dv = super->devlist; dv; dv = dv->next)
786 if (dv->index == index)
787 return dv->dev;
788 return NULL;
789 }
790
791 /*
792 * for second_map:
793 * == MAP_0 get first map
794 * == MAP_1 get second map
795 * == MAP_X than get map according to the current migr_state
796 */
797 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
798 int slot,
799 int second_map)
800 {
801 struct imsm_map *map;
802
803 map = get_imsm_map(dev, second_map);
804
805 /* top byte identifies disk under rebuild */
806 return __le32_to_cpu(map->disk_ord_tbl[slot]);
807 }
808
809 #define ord_to_idx(ord) (((ord) << 8) >> 8)
810 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
811 {
812 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
813
814 return ord_to_idx(ord);
815 }
816
817 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
818 {
819 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
820 }
821
822 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
823 {
824 int slot;
825 __u32 ord;
826
827 for (slot = 0; slot < map->num_members; slot++) {
828 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
829 if (ord_to_idx(ord) == idx)
830 return slot;
831 }
832
833 return -1;
834 }
835
836 static int get_imsm_raid_level(struct imsm_map *map)
837 {
838 if (map->raid_level == 1) {
839 if (map->num_members == 2)
840 return 1;
841 else
842 return 10;
843 }
844
845 return map->raid_level;
846 }
847
848 static int cmp_extent(const void *av, const void *bv)
849 {
850 const struct extent *a = av;
851 const struct extent *b = bv;
852 if (a->start < b->start)
853 return -1;
854 if (a->start > b->start)
855 return 1;
856 return 0;
857 }
858
859 static int count_memberships(struct dl *dl, struct intel_super *super)
860 {
861 int memberships = 0;
862 int i;
863
864 for (i = 0; i < super->anchor->num_raid_devs; i++) {
865 struct imsm_dev *dev = get_imsm_dev(super, i);
866 struct imsm_map *map = get_imsm_map(dev, MAP_0);
867
868 if (get_imsm_disk_slot(map, dl->index) >= 0)
869 memberships++;
870 }
871
872 return memberships;
873 }
874
875 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
876
877 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
878 {
879 if (lo == 0 || hi == 0)
880 return 1;
881 *lo = __le32_to_cpu((unsigned)n);
882 *hi = __le32_to_cpu((unsigned)(n >> 32));
883 return 0;
884 }
885
886 static unsigned long long join_u32(__u32 lo, __u32 hi)
887 {
888 return (unsigned long long)__le32_to_cpu(lo) |
889 (((unsigned long long)__le32_to_cpu(hi)) << 32);
890 }
891
892 static unsigned long long total_blocks(struct imsm_disk *disk)
893 {
894 if (disk == NULL)
895 return 0;
896 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
897 }
898
899 static unsigned long long pba_of_lba0(struct imsm_map *map)
900 {
901 if (map == NULL)
902 return 0;
903 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
904 }
905
906 static unsigned long long blocks_per_member(struct imsm_map *map)
907 {
908 if (map == NULL)
909 return 0;
910 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
911 }
912
913 static unsigned long long num_data_stripes(struct imsm_map *map)
914 {
915 if (map == NULL)
916 return 0;
917 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
918 }
919
920 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
921 {
922 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
923 }
924
925 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
926 {
927 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
928 }
929
930 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
931 {
932 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
933 }
934
935 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
936 {
937 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
938 }
939
940 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
941 {
942 /* find a list of used extents on the given physical device */
943 struct extent *rv, *e;
944 int i;
945 int memberships = count_memberships(dl, super);
946 __u32 reservation;
947
948 /* trim the reserved area for spares, so they can join any array
949 * regardless of whether the OROM has assigned sectors from the
950 * IMSM_RESERVED_SECTORS region
951 */
952 if (dl->index == -1)
953 reservation = imsm_min_reserved_sectors(super);
954 else
955 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
956
957 rv = malloc(sizeof(struct extent) * (memberships + 1));
958 if (!rv)
959 return NULL;
960 e = rv;
961
962 for (i = 0; i < super->anchor->num_raid_devs; i++) {
963 struct imsm_dev *dev = get_imsm_dev(super, i);
964 struct imsm_map *map = get_imsm_map(dev, MAP_0);
965
966 if (get_imsm_disk_slot(map, dl->index) >= 0) {
967 e->start = pba_of_lba0(map);
968 e->size = blocks_per_member(map);
969 e++;
970 }
971 }
972 qsort(rv, memberships, sizeof(*rv), cmp_extent);
973
974 /* determine the start of the metadata
975 * when no raid devices are defined use the default
976 * ...otherwise allow the metadata to truncate the value
977 * as is the case with older versions of imsm
978 */
979 if (memberships) {
980 struct extent *last = &rv[memberships - 1];
981 unsigned long long remainder;
982
983 remainder = total_blocks(&dl->disk) - (last->start + last->size);
984 /* round down to 1k block to satisfy precision of the kernel
985 * 'size' interface
986 */
987 remainder &= ~1UL;
988 /* make sure remainder is still sane */
989 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
990 remainder = ROUND_UP(super->len, 512) >> 9;
991 if (reservation > remainder)
992 reservation = remainder;
993 }
994 e->start = total_blocks(&dl->disk) - reservation;
995 e->size = 0;
996 return rv;
997 }
998
999 /* try to determine how much space is reserved for metadata from
1000 * the last get_extents() entry, otherwise fallback to the
1001 * default
1002 */
1003 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1004 {
1005 struct extent *e;
1006 int i;
1007 __u32 rv;
1008
1009 /* for spares just return a minimal reservation which will grow
1010 * once the spare is picked up by an array
1011 */
1012 if (dl->index == -1)
1013 return MPB_SECTOR_CNT;
1014
1015 e = get_extents(super, dl);
1016 if (!e)
1017 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1018
1019 /* scroll to last entry */
1020 for (i = 0; e[i].size; i++)
1021 continue;
1022
1023 rv = total_blocks(&dl->disk) - e[i].start;
1024
1025 free(e);
1026
1027 return rv;
1028 }
1029
1030 static int is_spare(struct imsm_disk *disk)
1031 {
1032 return (disk->status & SPARE_DISK) == SPARE_DISK;
1033 }
1034
1035 static int is_configured(struct imsm_disk *disk)
1036 {
1037 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1038 }
1039
1040 static int is_failed(struct imsm_disk *disk)
1041 {
1042 return (disk->status & FAILED_DISK) == FAILED_DISK;
1043 }
1044
1045 /* try to determine how much space is reserved for metadata from
1046 * the last get_extents() entry on the smallest active disk,
1047 * otherwise fallback to the default
1048 */
1049 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1050 {
1051 struct extent *e;
1052 int i;
1053 unsigned long long min_active;
1054 __u32 remainder;
1055 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1056 struct dl *dl, *dl_min = NULL;
1057
1058 if (!super)
1059 return rv;
1060
1061 min_active = 0;
1062 for (dl = super->disks; dl; dl = dl->next) {
1063 if (dl->index < 0)
1064 continue;
1065 unsigned long long blocks = total_blocks(&dl->disk);
1066 if (blocks < min_active || min_active == 0) {
1067 dl_min = dl;
1068 min_active = blocks;
1069 }
1070 }
1071 if (!dl_min)
1072 return rv;
1073
1074 /* find last lba used by subarrays on the smallest active disk */
1075 e = get_extents(super, dl_min);
1076 if (!e)
1077 return rv;
1078 for (i = 0; e[i].size; i++)
1079 continue;
1080
1081 remainder = min_active - e[i].start;
1082 free(e);
1083
1084 /* to give priority to recovery we should not require full
1085 IMSM_RESERVED_SECTORS from the spare */
1086 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1087
1088 /* if real reservation is smaller use that value */
1089 return (remainder < rv) ? remainder : rv;
1090 }
1091
1092 /* Return minimum size of a spare that can be used in this array*/
1093 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1094 {
1095 struct intel_super *super = st->sb;
1096 struct dl *dl;
1097 struct extent *e;
1098 int i;
1099 unsigned long long rv = 0;
1100
1101 if (!super)
1102 return rv;
1103 /* find first active disk in array */
1104 dl = super->disks;
1105 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1106 dl = dl->next;
1107 if (!dl)
1108 return rv;
1109 /* find last lba used by subarrays */
1110 e = get_extents(super, dl);
1111 if (!e)
1112 return rv;
1113 for (i = 0; e[i].size; i++)
1114 continue;
1115 if (i > 0)
1116 rv = e[i-1].start + e[i-1].size;
1117 free(e);
1118
1119 /* add the amount of space needed for metadata */
1120 rv = rv + imsm_min_reserved_sectors(super);
1121
1122 return rv * 512;
1123 }
1124
1125 static int is_gen_migration(struct imsm_dev *dev);
1126
1127 #ifndef MDASSEMBLE
1128 static __u64 blocks_per_migr_unit(struct intel_super *super,
1129 struct imsm_dev *dev);
1130
1131 static void print_imsm_dev(struct intel_super *super,
1132 struct imsm_dev *dev,
1133 char *uuid,
1134 int disk_idx)
1135 {
1136 __u64 sz;
1137 int slot, i;
1138 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1139 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1140 __u32 ord;
1141
1142 printf("\n");
1143 printf("[%.16s]:\n", dev->volume);
1144 printf(" UUID : %s\n", uuid);
1145 printf(" RAID Level : %d", get_imsm_raid_level(map));
1146 if (map2)
1147 printf(" <-- %d", get_imsm_raid_level(map2));
1148 printf("\n");
1149 printf(" Members : %d", map->num_members);
1150 if (map2)
1151 printf(" <-- %d", map2->num_members);
1152 printf("\n");
1153 printf(" Slots : [");
1154 for (i = 0; i < map->num_members; i++) {
1155 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1156 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1157 }
1158 printf("]");
1159 if (map2) {
1160 printf(" <-- [");
1161 for (i = 0; i < map2->num_members; i++) {
1162 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1163 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1164 }
1165 printf("]");
1166 }
1167 printf("\n");
1168 printf(" Failed disk : ");
1169 if (map->failed_disk_num == 0xff)
1170 printf("none");
1171 else
1172 printf("%i", map->failed_disk_num);
1173 printf("\n");
1174 slot = get_imsm_disk_slot(map, disk_idx);
1175 if (slot >= 0) {
1176 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1177 printf(" This Slot : %d%s\n", slot,
1178 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1179 } else
1180 printf(" This Slot : ?\n");
1181 sz = __le32_to_cpu(dev->size_high);
1182 sz <<= 32;
1183 sz += __le32_to_cpu(dev->size_low);
1184 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1185 human_size(sz * 512));
1186 sz = blocks_per_member(map);
1187 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1188 human_size(sz * 512));
1189 printf(" Sector Offset : %llu\n",
1190 pba_of_lba0(map));
1191 printf(" Num Stripes : %llu\n",
1192 num_data_stripes(map));
1193 printf(" Chunk Size : %u KiB",
1194 __le16_to_cpu(map->blocks_per_strip) / 2);
1195 if (map2)
1196 printf(" <-- %u KiB",
1197 __le16_to_cpu(map2->blocks_per_strip) / 2);
1198 printf("\n");
1199 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1200 printf(" Migrate State : ");
1201 if (dev->vol.migr_state) {
1202 if (migr_type(dev) == MIGR_INIT)
1203 printf("initialize\n");
1204 else if (migr_type(dev) == MIGR_REBUILD)
1205 printf("rebuild\n");
1206 else if (migr_type(dev) == MIGR_VERIFY)
1207 printf("check\n");
1208 else if (migr_type(dev) == MIGR_GEN_MIGR)
1209 printf("general migration\n");
1210 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1211 printf("state change\n");
1212 else if (migr_type(dev) == MIGR_REPAIR)
1213 printf("repair\n");
1214 else
1215 printf("<unknown:%d>\n", migr_type(dev));
1216 } else
1217 printf("idle\n");
1218 printf(" Map State : %s", map_state_str[map->map_state]);
1219 if (dev->vol.migr_state) {
1220 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1221
1222 printf(" <-- %s", map_state_str[map->map_state]);
1223 printf("\n Checkpoint : %u ",
1224 __le32_to_cpu(dev->vol.curr_migr_unit));
1225 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
1226 printf("(N/A)");
1227 else
1228 printf("(%llu)", (unsigned long long)
1229 blocks_per_migr_unit(super, dev));
1230 }
1231 printf("\n");
1232 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1233 }
1234
1235 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1236 {
1237 char str[MAX_RAID_SERIAL_LEN + 1];
1238 __u64 sz;
1239
1240 if (index < -1 || !disk)
1241 return;
1242
1243 printf("\n");
1244 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1245 if (index >= 0)
1246 printf(" Disk%02d Serial : %s\n", index, str);
1247 else
1248 printf(" Disk Serial : %s\n", str);
1249 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1250 is_configured(disk) ? " active" : "",
1251 is_failed(disk) ? " failed" : "");
1252 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1253 sz = total_blocks(disk) - reserved;
1254 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1255 human_size(sz * 512));
1256 }
1257
1258 void examine_migr_rec_imsm(struct intel_super *super)
1259 {
1260 struct migr_record *migr_rec = super->migr_rec;
1261 struct imsm_super *mpb = super->anchor;
1262 int i;
1263
1264 for (i = 0; i < mpb->num_raid_devs; i++) {
1265 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1266 struct imsm_map *map;
1267 int slot = -1;
1268
1269 if (is_gen_migration(dev) == 0)
1270 continue;
1271
1272 printf("\nMigration Record Information:");
1273
1274 /* first map under migration */
1275 map = get_imsm_map(dev, MAP_0);
1276 if (map)
1277 slot = get_imsm_disk_slot(map, super->disks->index);
1278 if ((map == NULL) || (slot > 1) || (slot < 0)) {
1279 printf(" Empty\n ");
1280 printf("Examine one of first two disks in array\n");
1281 break;
1282 }
1283 printf("\n Status : ");
1284 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1285 printf("Normal\n");
1286 else
1287 printf("Contains Data\n");
1288 printf(" Current Unit : %u\n",
1289 __le32_to_cpu(migr_rec->curr_migr_unit));
1290 printf(" Family : %u\n",
1291 __le32_to_cpu(migr_rec->family_num));
1292 printf(" Ascending : %u\n",
1293 __le32_to_cpu(migr_rec->ascending_migr));
1294 printf(" Blocks Per Unit : %u\n",
1295 __le32_to_cpu(migr_rec->blocks_per_unit));
1296 printf(" Dest. Depth Per Unit : %u\n",
1297 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1298 printf(" Checkpoint Area pba : %u\n",
1299 __le32_to_cpu(migr_rec->ckpt_area_pba));
1300 printf(" First member lba : %u\n",
1301 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1302 printf(" Total Number of Units : %u\n",
1303 __le32_to_cpu(migr_rec->num_migr_units));
1304 printf(" Size of volume : %u\n",
1305 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1306 printf(" Expansion space for LBA64 : %u\n",
1307 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1308 printf(" Record was read from : %u\n",
1309 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1310
1311 break;
1312 }
1313 }
1314 #endif /* MDASSEMBLE */
1315 /*******************************************************************************
1316 * function: imsm_check_attributes
1317 * Description: Function checks if features represented by attributes flags
1318 * are supported by mdadm.
1319 * Parameters:
1320 * attributes - Attributes read from metadata
1321 * Returns:
1322 * 0 - passed attributes contains unsupported features flags
1323 * 1 - all features are supported
1324 ******************************************************************************/
1325 static int imsm_check_attributes(__u32 attributes)
1326 {
1327 int ret_val = 1;
1328 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1329
1330 not_supported &= ~MPB_ATTRIB_IGNORED;
1331
1332 not_supported &= attributes;
1333 if (not_supported) {
1334 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1335 (unsigned)__le32_to_cpu(not_supported));
1336 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1337 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1338 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1339 }
1340 if (not_supported & MPB_ATTRIB_2TB) {
1341 dprintf("\t\tMPB_ATTRIB_2TB\n");
1342 not_supported ^= MPB_ATTRIB_2TB;
1343 }
1344 if (not_supported & MPB_ATTRIB_RAID0) {
1345 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1346 not_supported ^= MPB_ATTRIB_RAID0;
1347 }
1348 if (not_supported & MPB_ATTRIB_RAID1) {
1349 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1350 not_supported ^= MPB_ATTRIB_RAID1;
1351 }
1352 if (not_supported & MPB_ATTRIB_RAID10) {
1353 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1354 not_supported ^= MPB_ATTRIB_RAID10;
1355 }
1356 if (not_supported & MPB_ATTRIB_RAID1E) {
1357 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1358 not_supported ^= MPB_ATTRIB_RAID1E;
1359 }
1360 if (not_supported & MPB_ATTRIB_RAID5) {
1361 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1362 not_supported ^= MPB_ATTRIB_RAID5;
1363 }
1364 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1365 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1366 not_supported ^= MPB_ATTRIB_RAIDCNG;
1367 }
1368 if (not_supported & MPB_ATTRIB_BBM) {
1369 dprintf("\t\tMPB_ATTRIB_BBM\n");
1370 not_supported ^= MPB_ATTRIB_BBM;
1371 }
1372 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1373 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1374 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1375 }
1376 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1377 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1378 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1379 }
1380 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1381 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1382 not_supported ^= MPB_ATTRIB_2TB_DISK;
1383 }
1384 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1385 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1386 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1387 }
1388 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1389 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1390 not_supported ^= MPB_ATTRIB_NEVER_USE;
1391 }
1392
1393 if (not_supported)
1394 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1395
1396 ret_val = 0;
1397 }
1398
1399 return ret_val;
1400 }
1401
1402 #ifndef MDASSEMBLE
1403 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1404
1405 static void examine_super_imsm(struct supertype *st, char *homehost)
1406 {
1407 struct intel_super *super = st->sb;
1408 struct imsm_super *mpb = super->anchor;
1409 char str[MAX_SIGNATURE_LENGTH];
1410 int i;
1411 struct mdinfo info;
1412 char nbuf[64];
1413 __u32 sum;
1414 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1415 struct dl *dl;
1416
1417 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1418 printf(" Magic : %s\n", str);
1419 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1420 printf(" Version : %s\n", get_imsm_version(mpb));
1421 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1422 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1423 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1424 printf(" Attributes : ");
1425 if (imsm_check_attributes(mpb->attributes))
1426 printf("All supported\n");
1427 else
1428 printf("not supported\n");
1429 getinfo_super_imsm(st, &info, NULL);
1430 fname_from_uuid(st, &info, nbuf, ':');
1431 printf(" UUID : %s\n", nbuf + 5);
1432 sum = __le32_to_cpu(mpb->check_sum);
1433 printf(" Checksum : %08x %s\n", sum,
1434 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1435 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1436 printf(" Disks : %d\n", mpb->num_disks);
1437 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1438 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1439 if (super->bbm_log) {
1440 struct bbm_log *log = super->bbm_log;
1441
1442 printf("\n");
1443 printf("Bad Block Management Log:\n");
1444 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1445 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1446 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1447 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1448 printf(" First Spare : %llx\n",
1449 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1450 }
1451 for (i = 0; i < mpb->num_raid_devs; i++) {
1452 struct mdinfo info;
1453 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1454
1455 super->current_vol = i;
1456 getinfo_super_imsm(st, &info, NULL);
1457 fname_from_uuid(st, &info, nbuf, ':');
1458 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1459 }
1460 for (i = 0; i < mpb->num_disks; i++) {
1461 if (i == super->disks->index)
1462 continue;
1463 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1464 }
1465
1466 for (dl = super->disks; dl; dl = dl->next)
1467 if (dl->index == -1)
1468 print_imsm_disk(&dl->disk, -1, reserved);
1469
1470 examine_migr_rec_imsm(super);
1471 }
1472
1473 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1474 {
1475 /* We just write a generic IMSM ARRAY entry */
1476 struct mdinfo info;
1477 char nbuf[64];
1478 struct intel_super *super = st->sb;
1479
1480 if (!super->anchor->num_raid_devs) {
1481 printf("ARRAY metadata=imsm\n");
1482 return;
1483 }
1484
1485 getinfo_super_imsm(st, &info, NULL);
1486 fname_from_uuid(st, &info, nbuf, ':');
1487 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1488 }
1489
1490 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1491 {
1492 /* We just write a generic IMSM ARRAY entry */
1493 struct mdinfo info;
1494 char nbuf[64];
1495 char nbuf1[64];
1496 struct intel_super *super = st->sb;
1497 int i;
1498
1499 if (!super->anchor->num_raid_devs)
1500 return;
1501
1502 getinfo_super_imsm(st, &info, NULL);
1503 fname_from_uuid(st, &info, nbuf, ':');
1504 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1505 struct imsm_dev *dev = get_imsm_dev(super, i);
1506
1507 super->current_vol = i;
1508 getinfo_super_imsm(st, &info, NULL);
1509 fname_from_uuid(st, &info, nbuf1, ':');
1510 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1511 dev->volume, nbuf + 5, i, nbuf1 + 5);
1512 }
1513 }
1514
1515 static void export_examine_super_imsm(struct supertype *st)
1516 {
1517 struct intel_super *super = st->sb;
1518 struct imsm_super *mpb = super->anchor;
1519 struct mdinfo info;
1520 char nbuf[64];
1521
1522 getinfo_super_imsm(st, &info, NULL);
1523 fname_from_uuid(st, &info, nbuf, ':');
1524 printf("MD_METADATA=imsm\n");
1525 printf("MD_LEVEL=container\n");
1526 printf("MD_UUID=%s\n", nbuf+5);
1527 printf("MD_DEVICES=%u\n", mpb->num_disks);
1528 }
1529
1530 static void detail_super_imsm(struct supertype *st, char *homehost)
1531 {
1532 struct mdinfo info;
1533 char nbuf[64];
1534
1535 getinfo_super_imsm(st, &info, NULL);
1536 fname_from_uuid(st, &info, nbuf, ':');
1537 printf("\n UUID : %s\n", nbuf + 5);
1538 }
1539
1540 static void brief_detail_super_imsm(struct supertype *st)
1541 {
1542 struct mdinfo info;
1543 char nbuf[64];
1544 getinfo_super_imsm(st, &info, NULL);
1545 fname_from_uuid(st, &info, nbuf, ':');
1546 printf(" UUID=%s", nbuf + 5);
1547 }
1548
1549 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1550 static void fd2devname(int fd, char *name);
1551
1552 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1553 {
1554 /* dump an unsorted list of devices attached to AHCI Intel storage
1555 * controller, as well as non-connected ports
1556 */
1557 int hba_len = strlen(hba_path) + 1;
1558 struct dirent *ent;
1559 DIR *dir;
1560 char *path = NULL;
1561 int err = 0;
1562 unsigned long port_mask = (1 << port_count) - 1;
1563
1564 if (port_count > (int)sizeof(port_mask) * 8) {
1565 if (verbose)
1566 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1567 return 2;
1568 }
1569
1570 /* scroll through /sys/dev/block looking for devices attached to
1571 * this hba
1572 */
1573 dir = opendir("/sys/dev/block");
1574 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1575 int fd;
1576 char model[64];
1577 char vendor[64];
1578 char buf[1024];
1579 int major, minor;
1580 char *device;
1581 char *c;
1582 int port;
1583 int type;
1584
1585 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1586 continue;
1587 path = devt_to_devpath(makedev(major, minor));
1588 if (!path)
1589 continue;
1590 if (!path_attached_to_hba(path, hba_path)) {
1591 free(path);
1592 path = NULL;
1593 continue;
1594 }
1595
1596 /* retrieve the scsi device type */
1597 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1598 if (verbose)
1599 fprintf(stderr, Name ": failed to allocate 'device'\n");
1600 err = 2;
1601 break;
1602 }
1603 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1604 if (load_sys(device, buf) != 0) {
1605 if (verbose)
1606 fprintf(stderr, Name ": failed to read device type for %s\n",
1607 path);
1608 err = 2;
1609 free(device);
1610 break;
1611 }
1612 type = strtoul(buf, NULL, 10);
1613
1614 /* if it's not a disk print the vendor and model */
1615 if (!(type == 0 || type == 7 || type == 14)) {
1616 vendor[0] = '\0';
1617 model[0] = '\0';
1618 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1619 if (load_sys(device, buf) == 0) {
1620 strncpy(vendor, buf, sizeof(vendor));
1621 vendor[sizeof(vendor) - 1] = '\0';
1622 c = (char *) &vendor[sizeof(vendor) - 1];
1623 while (isspace(*c) || *c == '\0')
1624 *c-- = '\0';
1625
1626 }
1627 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1628 if (load_sys(device, buf) == 0) {
1629 strncpy(model, buf, sizeof(model));
1630 model[sizeof(model) - 1] = '\0';
1631 c = (char *) &model[sizeof(model) - 1];
1632 while (isspace(*c) || *c == '\0')
1633 *c-- = '\0';
1634 }
1635
1636 if (vendor[0] && model[0])
1637 sprintf(buf, "%.64s %.64s", vendor, model);
1638 else
1639 switch (type) { /* numbers from hald/linux/device.c */
1640 case 1: sprintf(buf, "tape"); break;
1641 case 2: sprintf(buf, "printer"); break;
1642 case 3: sprintf(buf, "processor"); break;
1643 case 4:
1644 case 5: sprintf(buf, "cdrom"); break;
1645 case 6: sprintf(buf, "scanner"); break;
1646 case 8: sprintf(buf, "media_changer"); break;
1647 case 9: sprintf(buf, "comm"); break;
1648 case 12: sprintf(buf, "raid"); break;
1649 default: sprintf(buf, "unknown");
1650 }
1651 } else
1652 buf[0] = '\0';
1653 free(device);
1654
1655 /* chop device path to 'host%d' and calculate the port number */
1656 c = strchr(&path[hba_len], '/');
1657 if (!c) {
1658 if (verbose)
1659 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1660 err = 2;
1661 break;
1662 }
1663 *c = '\0';
1664 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1665 port -= host_base;
1666 else {
1667 if (verbose) {
1668 *c = '/'; /* repair the full string */
1669 fprintf(stderr, Name ": failed to determine port number for %s\n",
1670 path);
1671 }
1672 err = 2;
1673 break;
1674 }
1675
1676 /* mark this port as used */
1677 port_mask &= ~(1 << port);
1678
1679 /* print out the device information */
1680 if (buf[0]) {
1681 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1682 continue;
1683 }
1684
1685 fd = dev_open(ent->d_name, O_RDONLY);
1686 if (fd < 0)
1687 printf(" Port%d : - disk info unavailable -\n", port);
1688 else {
1689 fd2devname(fd, buf);
1690 printf(" Port%d : %s", port, buf);
1691 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1692 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1693 else
1694 printf(" ()\n");
1695 close(fd);
1696 }
1697 free(path);
1698 path = NULL;
1699 }
1700 if (path)
1701 free(path);
1702 if (dir)
1703 closedir(dir);
1704 if (err == 0) {
1705 int i;
1706
1707 for (i = 0; i < port_count; i++)
1708 if (port_mask & (1 << i))
1709 printf(" Port%d : - no device attached -\n", i);
1710 }
1711
1712 return err;
1713 }
1714
1715 static void print_found_intel_controllers(struct sys_dev *elem)
1716 {
1717 for (; elem; elem = elem->next) {
1718 fprintf(stderr, Name ": found Intel(R) ");
1719 if (elem->type == SYS_DEV_SATA)
1720 fprintf(stderr, "SATA ");
1721 else if (elem->type == SYS_DEV_SAS)
1722 fprintf(stderr, "SAS ");
1723 fprintf(stderr, "RAID controller");
1724 if (elem->pci_id)
1725 fprintf(stderr, " at %s", elem->pci_id);
1726 fprintf(stderr, ".\n");
1727 }
1728 fflush(stderr);
1729 }
1730
1731 static int ahci_get_port_count(const char *hba_path, int *port_count)
1732 {
1733 struct dirent *ent;
1734 DIR *dir;
1735 int host_base = -1;
1736
1737 *port_count = 0;
1738 if ((dir = opendir(hba_path)) == NULL)
1739 return -1;
1740
1741 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1742 int host;
1743
1744 if (sscanf(ent->d_name, "host%d", &host) != 1)
1745 continue;
1746 if (*port_count == 0)
1747 host_base = host;
1748 else if (host < host_base)
1749 host_base = host;
1750
1751 if (host + 1 > *port_count + host_base)
1752 *port_count = host + 1 - host_base;
1753 }
1754 closedir(dir);
1755 return host_base;
1756 }
1757
1758 static void print_imsm_capability(const struct imsm_orom *orom)
1759 {
1760 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1761 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1762 orom->hotfix_ver, orom->build);
1763 printf(" RAID Levels :%s%s%s%s%s\n",
1764 imsm_orom_has_raid0(orom) ? " raid0" : "",
1765 imsm_orom_has_raid1(orom) ? " raid1" : "",
1766 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1767 imsm_orom_has_raid10(orom) ? " raid10" : "",
1768 imsm_orom_has_raid5(orom) ? " raid5" : "");
1769 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1770 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1771 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1772 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1773 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1774 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1775 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1776 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1777 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1778 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1779 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1780 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1781 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1782 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1783 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1784 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1785 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1786 printf(" Max Disks : %d\n", orom->tds);
1787 printf(" Max Volumes : %d\n", orom->vpa);
1788 printf(" 2TB volumes :%s supported\n",
1789 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
1790 printf(" 2TB disks :%s supported\n",
1791 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
1792 return;
1793 }
1794
1795 static int detail_platform_imsm(int verbose, int enumerate_only)
1796 {
1797 /* There are two components to imsm platform support, the ahci SATA
1798 * controller and the option-rom. To find the SATA controller we
1799 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1800 * controller with the Intel vendor id is present. This approach
1801 * allows mdadm to leverage the kernel's ahci detection logic, with the
1802 * caveat that if ahci.ko is not loaded mdadm will not be able to
1803 * detect platform raid capabilities. The option-rom resides in a
1804 * platform "Adapter ROM". We scan for its signature to retrieve the
1805 * platform capabilities. If raid support is disabled in the BIOS the
1806 * option-rom capability structure will not be available.
1807 */
1808 const struct imsm_orom *orom;
1809 struct sys_dev *list, *hba;
1810 int host_base = 0;
1811 int port_count = 0;
1812 int result=0;
1813
1814 if (enumerate_only) {
1815 if (check_env("IMSM_NO_PLATFORM"))
1816 return 0;
1817 list = find_intel_devices();
1818 if (!list)
1819 return 2;
1820 for (hba = list; hba; hba = hba->next) {
1821 orom = find_imsm_capability(hba->type);
1822 if (!orom) {
1823 result = 2;
1824 break;
1825 }
1826 }
1827 free_sys_dev(&list);
1828 return result;
1829 }
1830
1831 list = find_intel_devices();
1832 if (!list) {
1833 if (verbose)
1834 fprintf(stderr, Name ": no active Intel(R) RAID "
1835 "controller found.\n");
1836 free_sys_dev(&list);
1837 return 2;
1838 } else if (verbose)
1839 print_found_intel_controllers(list);
1840
1841 for (hba = list; hba; hba = hba->next) {
1842 orom = find_imsm_capability(hba->type);
1843 if (!orom)
1844 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1845 hba->path, get_sys_dev_type(hba->type));
1846 else
1847 print_imsm_capability(orom);
1848 }
1849
1850 for (hba = list; hba; hba = hba->next) {
1851 printf(" I/O Controller : %s (%s)\n",
1852 hba->path, get_sys_dev_type(hba->type));
1853
1854 if (hba->type == SYS_DEV_SATA) {
1855 host_base = ahci_get_port_count(hba->path, &port_count);
1856 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1857 if (verbose)
1858 fprintf(stderr, Name ": failed to enumerate "
1859 "ports on SATA controller at %s.", hba->pci_id);
1860 result |= 2;
1861 }
1862 }
1863 }
1864
1865 free_sys_dev(&list);
1866 return result;
1867 }
1868 #endif
1869
1870 static int match_home_imsm(struct supertype *st, char *homehost)
1871 {
1872 /* the imsm metadata format does not specify any host
1873 * identification information. We return -1 since we can never
1874 * confirm nor deny whether a given array is "meant" for this
1875 * host. We rely on compare_super and the 'family_num' fields to
1876 * exclude member disks that do not belong, and we rely on
1877 * mdadm.conf to specify the arrays that should be assembled.
1878 * Auto-assembly may still pick up "foreign" arrays.
1879 */
1880
1881 return -1;
1882 }
1883
1884 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1885 {
1886 /* The uuid returned here is used for:
1887 * uuid to put into bitmap file (Create, Grow)
1888 * uuid for backup header when saving critical section (Grow)
1889 * comparing uuids when re-adding a device into an array
1890 * In these cases the uuid required is that of the data-array,
1891 * not the device-set.
1892 * uuid to recognise same set when adding a missing device back
1893 * to an array. This is a uuid for the device-set.
1894 *
1895 * For each of these we can make do with a truncated
1896 * or hashed uuid rather than the original, as long as
1897 * everyone agrees.
1898 * In each case the uuid required is that of the data-array,
1899 * not the device-set.
1900 */
1901 /* imsm does not track uuid's so we synthesis one using sha1 on
1902 * - The signature (Which is constant for all imsm array, but no matter)
1903 * - the orig_family_num of the container
1904 * - the index number of the volume
1905 * - the 'serial' number of the volume.
1906 * Hopefully these are all constant.
1907 */
1908 struct intel_super *super = st->sb;
1909
1910 char buf[20];
1911 struct sha1_ctx ctx;
1912 struct imsm_dev *dev = NULL;
1913 __u32 family_num;
1914
1915 /* some mdadm versions failed to set ->orig_family_num, in which
1916 * case fall back to ->family_num. orig_family_num will be
1917 * fixed up with the first metadata update.
1918 */
1919 family_num = super->anchor->orig_family_num;
1920 if (family_num == 0)
1921 family_num = super->anchor->family_num;
1922 sha1_init_ctx(&ctx);
1923 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1924 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1925 if (super->current_vol >= 0)
1926 dev = get_imsm_dev(super, super->current_vol);
1927 if (dev) {
1928 __u32 vol = super->current_vol;
1929 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1930 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1931 }
1932 sha1_finish_ctx(&ctx, buf);
1933 memcpy(uuid, buf, 4*4);
1934 }
1935
1936 #if 0
1937 static void
1938 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1939 {
1940 __u8 *v = get_imsm_version(mpb);
1941 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1942 char major[] = { 0, 0, 0 };
1943 char minor[] = { 0 ,0, 0 };
1944 char patch[] = { 0, 0, 0 };
1945 char *ver_parse[] = { major, minor, patch };
1946 int i, j;
1947
1948 i = j = 0;
1949 while (*v != '\0' && v < end) {
1950 if (*v != '.' && j < 2)
1951 ver_parse[i][j++] = *v;
1952 else {
1953 i++;
1954 j = 0;
1955 }
1956 v++;
1957 }
1958
1959 *m = strtol(minor, NULL, 0);
1960 *p = strtol(patch, NULL, 0);
1961 }
1962 #endif
1963
1964 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1965 {
1966 /* migr_strip_size when repairing or initializing parity */
1967 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1968 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1969
1970 switch (get_imsm_raid_level(map)) {
1971 case 5:
1972 case 10:
1973 return chunk;
1974 default:
1975 return 128*1024 >> 9;
1976 }
1977 }
1978
1979 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1980 {
1981 /* migr_strip_size when rebuilding a degraded disk, no idea why
1982 * this is different than migr_strip_size_resync(), but it's good
1983 * to be compatible
1984 */
1985 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1986 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1987
1988 switch (get_imsm_raid_level(map)) {
1989 case 1:
1990 case 10:
1991 if (map->num_members % map->num_domains == 0)
1992 return 128*1024 >> 9;
1993 else
1994 return chunk;
1995 case 5:
1996 return max((__u32) 64*1024 >> 9, chunk);
1997 default:
1998 return 128*1024 >> 9;
1999 }
2000 }
2001
2002 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2003 {
2004 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2005 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2006 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2007 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2008
2009 return max((__u32) 1, hi_chunk / lo_chunk);
2010 }
2011
2012 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2013 {
2014 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2015 int level = get_imsm_raid_level(lo);
2016
2017 if (level == 1 || level == 10) {
2018 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2019
2020 return hi->num_domains;
2021 } else
2022 return num_stripes_per_unit_resync(dev);
2023 }
2024
2025 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2026 {
2027 /* named 'imsm_' because raid0, raid1 and raid10
2028 * counter-intuitively have the same number of data disks
2029 */
2030 struct imsm_map *map = get_imsm_map(dev, second_map);
2031
2032 switch (get_imsm_raid_level(map)) {
2033 case 0:
2034 case 1:
2035 case 10:
2036 return map->num_members;
2037 case 5:
2038 return map->num_members - 1;
2039 default:
2040 dprintf("%s: unsupported raid level\n", __func__);
2041 return 0;
2042 }
2043 }
2044
2045 static __u32 parity_segment_depth(struct imsm_dev *dev)
2046 {
2047 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2048 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2049
2050 switch(get_imsm_raid_level(map)) {
2051 case 1:
2052 case 10:
2053 return chunk * map->num_domains;
2054 case 5:
2055 return chunk * map->num_members;
2056 default:
2057 return chunk;
2058 }
2059 }
2060
2061 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2062 {
2063 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2064 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2065 __u32 strip = block / chunk;
2066
2067 switch (get_imsm_raid_level(map)) {
2068 case 1:
2069 case 10: {
2070 __u32 vol_strip = (strip * map->num_domains) + 1;
2071 __u32 vol_stripe = vol_strip / map->num_members;
2072
2073 return vol_stripe * chunk + block % chunk;
2074 } case 5: {
2075 __u32 stripe = strip / (map->num_members - 1);
2076
2077 return stripe * chunk + block % chunk;
2078 }
2079 default:
2080 return 0;
2081 }
2082 }
2083
2084 static __u64 blocks_per_migr_unit(struct intel_super *super,
2085 struct imsm_dev *dev)
2086 {
2087 /* calculate the conversion factor between per member 'blocks'
2088 * (md/{resync,rebuild}_start) and imsm migration units, return
2089 * 0 for the 'not migrating' and 'unsupported migration' cases
2090 */
2091 if (!dev->vol.migr_state)
2092 return 0;
2093
2094 switch (migr_type(dev)) {
2095 case MIGR_GEN_MIGR: {
2096 struct migr_record *migr_rec = super->migr_rec;
2097 return __le32_to_cpu(migr_rec->blocks_per_unit);
2098 }
2099 case MIGR_VERIFY:
2100 case MIGR_REPAIR:
2101 case MIGR_INIT: {
2102 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2103 __u32 stripes_per_unit;
2104 __u32 blocks_per_unit;
2105 __u32 parity_depth;
2106 __u32 migr_chunk;
2107 __u32 block_map;
2108 __u32 block_rel;
2109 __u32 segment;
2110 __u32 stripe;
2111 __u8 disks;
2112
2113 /* yes, this is really the translation of migr_units to
2114 * per-member blocks in the 'resync' case
2115 */
2116 stripes_per_unit = num_stripes_per_unit_resync(dev);
2117 migr_chunk = migr_strip_blocks_resync(dev);
2118 disks = imsm_num_data_members(dev, MAP_0);
2119 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2120 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2121 segment = blocks_per_unit / stripe;
2122 block_rel = blocks_per_unit - segment * stripe;
2123 parity_depth = parity_segment_depth(dev);
2124 block_map = map_migr_block(dev, block_rel);
2125 return block_map + parity_depth * segment;
2126 }
2127 case MIGR_REBUILD: {
2128 __u32 stripes_per_unit;
2129 __u32 migr_chunk;
2130
2131 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2132 migr_chunk = migr_strip_blocks_rebuild(dev);
2133 return migr_chunk * stripes_per_unit;
2134 }
2135 case MIGR_STATE_CHANGE:
2136 default:
2137 return 0;
2138 }
2139 }
2140
2141 static int imsm_level_to_layout(int level)
2142 {
2143 switch (level) {
2144 case 0:
2145 case 1:
2146 return 0;
2147 case 5:
2148 case 6:
2149 return ALGORITHM_LEFT_ASYMMETRIC;
2150 case 10:
2151 return 0x102;
2152 }
2153 return UnSet;
2154 }
2155
2156 /*******************************************************************************
2157 * Function: read_imsm_migr_rec
2158 * Description: Function reads imsm migration record from last sector of disk
2159 * Parameters:
2160 * fd : disk descriptor
2161 * super : metadata info
2162 * Returns:
2163 * 0 : success,
2164 * -1 : fail
2165 ******************************************************************************/
2166 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2167 {
2168 int ret_val = -1;
2169 unsigned long long dsize;
2170
2171 get_dev_size(fd, NULL, &dsize);
2172 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2173 fprintf(stderr,
2174 Name ": Cannot seek to anchor block: %s\n",
2175 strerror(errno));
2176 goto out;
2177 }
2178 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2179 MIGR_REC_BUF_SIZE) {
2180 fprintf(stderr,
2181 Name ": Cannot read migr record block: %s\n",
2182 strerror(errno));
2183 goto out;
2184 }
2185 ret_val = 0;
2186
2187 out:
2188 return ret_val;
2189 }
2190
2191 static struct imsm_dev *imsm_get_device_during_migration(
2192 struct intel_super *super)
2193 {
2194
2195 struct intel_dev *dv;
2196
2197 for (dv = super->devlist; dv; dv = dv->next) {
2198 if (is_gen_migration(dv->dev))
2199 return dv->dev;
2200 }
2201 return NULL;
2202 }
2203
2204 /*******************************************************************************
2205 * Function: load_imsm_migr_rec
2206 * Description: Function reads imsm migration record (it is stored at the last
2207 * sector of disk)
2208 * Parameters:
2209 * super : imsm internal array info
2210 * info : general array info
2211 * Returns:
2212 * 0 : success
2213 * -1 : fail
2214 * -2 : no migration in progress
2215 ******************************************************************************/
2216 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2217 {
2218 struct mdinfo *sd;
2219 struct dl *dl = NULL;
2220 char nm[30];
2221 int retval = -1;
2222 int fd = -1;
2223 struct imsm_dev *dev;
2224 struct imsm_map *map = NULL;
2225 int slot = -1;
2226
2227 /* find map under migration */
2228 dev = imsm_get_device_during_migration(super);
2229 /* nothing to load,no migration in progress?
2230 */
2231 if (dev == NULL)
2232 return -2;
2233 map = get_imsm_map(dev, MAP_0);
2234
2235 if (info) {
2236 for (sd = info->devs ; sd ; sd = sd->next) {
2237 /* skip spare and failed disks
2238 */
2239 if (sd->disk.raid_disk < 0)
2240 continue;
2241 /* read only from one of the first two slots */
2242 if (map)
2243 slot = get_imsm_disk_slot(map,
2244 sd->disk.raid_disk);
2245 if ((map == NULL) || (slot > 1) || (slot < 0))
2246 continue;
2247
2248 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2249 fd = dev_open(nm, O_RDONLY);
2250 if (fd >= 0)
2251 break;
2252 }
2253 }
2254 if (fd < 0) {
2255 for (dl = super->disks; dl; dl = dl->next) {
2256 /* skip spare and failed disks
2257 */
2258 if (dl->index < 0)
2259 continue;
2260 /* read only from one of the first two slots */
2261 if (map)
2262 slot = get_imsm_disk_slot(map, dl->index);
2263 if ((map == NULL) || (slot > 1) || (slot < 0))
2264 continue;
2265 sprintf(nm, "%d:%d", dl->major, dl->minor);
2266 fd = dev_open(nm, O_RDONLY);
2267 if (fd >= 0)
2268 break;
2269 }
2270 }
2271 if (fd < 0)
2272 goto out;
2273 retval = read_imsm_migr_rec(fd, super);
2274
2275 out:
2276 if (fd >= 0)
2277 close(fd);
2278 return retval;
2279 }
2280
2281 #ifndef MDASSEMBLE
2282 /*******************************************************************************
2283 * function: imsm_create_metadata_checkpoint_update
2284 * Description: It creates update for checkpoint change.
2285 * Parameters:
2286 * super : imsm internal array info
2287 * u : pointer to prepared update
2288 * Returns:
2289 * Uptate length.
2290 * If length is equal to 0, input pointer u contains no update
2291 ******************************************************************************/
2292 static int imsm_create_metadata_checkpoint_update(
2293 struct intel_super *super,
2294 struct imsm_update_general_migration_checkpoint **u)
2295 {
2296
2297 int update_memory_size = 0;
2298
2299 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2300
2301 if (u == NULL)
2302 return 0;
2303 *u = NULL;
2304
2305 /* size of all update data without anchor */
2306 update_memory_size =
2307 sizeof(struct imsm_update_general_migration_checkpoint);
2308
2309 *u = calloc(1, update_memory_size);
2310 if (*u == NULL) {
2311 dprintf("error: cannot get memory for "
2312 "imsm_create_metadata_checkpoint_update update\n");
2313 return 0;
2314 }
2315 (*u)->type = update_general_migration_checkpoint;
2316 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2317 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2318 (*u)->curr_migr_unit);
2319
2320 return update_memory_size;
2321 }
2322
2323
2324 static void imsm_update_metadata_locally(struct supertype *st,
2325 void *buf, int len);
2326
2327 /*******************************************************************************
2328 * Function: write_imsm_migr_rec
2329 * Description: Function writes imsm migration record
2330 * (at the last sector of disk)
2331 * Parameters:
2332 * super : imsm internal array info
2333 * Returns:
2334 * 0 : success
2335 * -1 : if fail
2336 ******************************************************************************/
2337 static int write_imsm_migr_rec(struct supertype *st)
2338 {
2339 struct intel_super *super = st->sb;
2340 unsigned long long dsize;
2341 char nm[30];
2342 int fd = -1;
2343 int retval = -1;
2344 struct dl *sd;
2345 int len;
2346 struct imsm_update_general_migration_checkpoint *u;
2347 struct imsm_dev *dev;
2348 struct imsm_map *map = NULL;
2349
2350 /* find map under migration */
2351 dev = imsm_get_device_during_migration(super);
2352 /* if no migration, write buffer anyway to clear migr_record
2353 * on disk based on first available device
2354 */
2355 if (dev == NULL)
2356 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2357 super->current_vol);
2358
2359 map = get_imsm_map(dev, MAP_0);
2360
2361 for (sd = super->disks ; sd ; sd = sd->next) {
2362 int slot = -1;
2363
2364 /* skip failed and spare devices */
2365 if (sd->index < 0)
2366 continue;
2367 /* write to 2 first slots only */
2368 if (map)
2369 slot = get_imsm_disk_slot(map, sd->index);
2370 if ((map == NULL) || (slot > 1) || (slot < 0))
2371 continue;
2372
2373 sprintf(nm, "%d:%d", sd->major, sd->minor);
2374 fd = dev_open(nm, O_RDWR);
2375 if (fd < 0)
2376 continue;
2377 get_dev_size(fd, NULL, &dsize);
2378 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2379 fprintf(stderr,
2380 Name ": Cannot seek to anchor block: %s\n",
2381 strerror(errno));
2382 goto out;
2383 }
2384 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2385 MIGR_REC_BUF_SIZE) {
2386 fprintf(stderr,
2387 Name ": Cannot write migr record block: %s\n",
2388 strerror(errno));
2389 goto out;
2390 }
2391 close(fd);
2392 fd = -1;
2393 }
2394 /* update checkpoint information in metadata */
2395 len = imsm_create_metadata_checkpoint_update(super, &u);
2396
2397 if (len <= 0) {
2398 dprintf("imsm: Cannot prepare update\n");
2399 goto out;
2400 }
2401 /* update metadata locally */
2402 imsm_update_metadata_locally(st, u, len);
2403 /* and possibly remotely */
2404 if (st->update_tail) {
2405 append_metadata_update(st, u, len);
2406 /* during reshape we do all work inside metadata handler
2407 * manage_reshape(), so metadata update has to be triggered
2408 * insida it
2409 */
2410 flush_metadata_updates(st);
2411 st->update_tail = &st->updates;
2412 } else
2413 free(u);
2414
2415 retval = 0;
2416 out:
2417 if (fd >= 0)
2418 close(fd);
2419 return retval;
2420 }
2421 #endif /* MDASSEMBLE */
2422
2423 /* spare/missing disks activations are not allowe when
2424 * array/container performs reshape operation, because
2425 * all arrays in container works on the same disks set
2426 */
2427 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2428 {
2429 int rv = 0;
2430 struct intel_dev *i_dev;
2431 struct imsm_dev *dev;
2432
2433 /* check whole container
2434 */
2435 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2436 dev = i_dev->dev;
2437 if (is_gen_migration(dev)) {
2438 /* No repair during any migration in container
2439 */
2440 rv = 1;
2441 break;
2442 }
2443 }
2444 return rv;
2445 }
2446
2447 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2448 {
2449 struct intel_super *super = st->sb;
2450 struct migr_record *migr_rec = super->migr_rec;
2451 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2452 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2453 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2454 struct imsm_map *map_to_analyse = map;
2455 struct dl *dl;
2456 char *devname;
2457 unsigned int component_size_alligment;
2458 int map_disks = info->array.raid_disks;
2459
2460 memset(info, 0, sizeof(*info));
2461 if (prev_map)
2462 map_to_analyse = prev_map;
2463
2464 dl = super->current_disk;
2465
2466 info->container_member = super->current_vol;
2467 info->array.raid_disks = map->num_members;
2468 info->array.level = get_imsm_raid_level(map_to_analyse);
2469 info->array.layout = imsm_level_to_layout(info->array.level);
2470 info->array.md_minor = -1;
2471 info->array.ctime = 0;
2472 info->array.utime = 0;
2473 info->array.chunk_size =
2474 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2475 info->array.state = !dev->vol.dirty;
2476 info->custom_array_size = __le32_to_cpu(dev->size_high);
2477 info->custom_array_size <<= 32;
2478 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2479 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2480
2481 if (is_gen_migration(dev)) {
2482 info->reshape_active = 1;
2483 info->new_level = get_imsm_raid_level(map);
2484 info->new_layout = imsm_level_to_layout(info->new_level);
2485 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2486 info->delta_disks = map->num_members - prev_map->num_members;
2487 if (info->delta_disks) {
2488 /* this needs to be applied to every array
2489 * in the container.
2490 */
2491 info->reshape_active = CONTAINER_RESHAPE;
2492 }
2493 /* We shape information that we give to md might have to be
2494 * modify to cope with md's requirement for reshaping arrays.
2495 * For example, when reshaping a RAID0, md requires it to be
2496 * presented as a degraded RAID4.
2497 * Also if a RAID0 is migrating to a RAID5 we need to specify
2498 * the array as already being RAID5, but the 'before' layout
2499 * is a RAID4-like layout.
2500 */
2501 switch (info->array.level) {
2502 case 0:
2503 switch(info->new_level) {
2504 case 0:
2505 /* conversion is happening as RAID4 */
2506 info->array.level = 4;
2507 info->array.raid_disks += 1;
2508 break;
2509 case 5:
2510 /* conversion is happening as RAID5 */
2511 info->array.level = 5;
2512 info->array.layout = ALGORITHM_PARITY_N;
2513 info->delta_disks -= 1;
2514 break;
2515 default:
2516 /* FIXME error message */
2517 info->array.level = UnSet;
2518 break;
2519 }
2520 break;
2521 }
2522 } else {
2523 info->new_level = UnSet;
2524 info->new_layout = UnSet;
2525 info->new_chunk = info->array.chunk_size;
2526 info->delta_disks = 0;
2527 }
2528
2529 if (dl) {
2530 info->disk.major = dl->major;
2531 info->disk.minor = dl->minor;
2532 info->disk.number = dl->index;
2533 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2534 dl->index);
2535 }
2536
2537 info->data_offset = pba_of_lba0(map_to_analyse);
2538 info->component_size = blocks_per_member(map_to_analyse);
2539
2540 /* check component size aligment
2541 */
2542 component_size_alligment =
2543 info->component_size % (info->array.chunk_size/512);
2544
2545 if (component_size_alligment &&
2546 (info->array.level != 1) && (info->array.level != UnSet)) {
2547 dprintf("imsm: reported component size alligned from %llu ",
2548 info->component_size);
2549 info->component_size -= component_size_alligment;
2550 dprintf("to %llu (%i).\n",
2551 info->component_size, component_size_alligment);
2552 }
2553
2554 memset(info->uuid, 0, sizeof(info->uuid));
2555 info->recovery_start = MaxSector;
2556
2557 info->reshape_progress = 0;
2558 info->resync_start = MaxSector;
2559 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2560 dev->vol.dirty) &&
2561 imsm_reshape_blocks_arrays_changes(super) == 0) {
2562 info->resync_start = 0;
2563 }
2564 if (dev->vol.migr_state) {
2565 switch (migr_type(dev)) {
2566 case MIGR_REPAIR:
2567 case MIGR_INIT: {
2568 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2569 dev);
2570 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2571
2572 info->resync_start = blocks_per_unit * units;
2573 break;
2574 }
2575 case MIGR_GEN_MIGR: {
2576 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2577 dev);
2578 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2579 unsigned long long array_blocks;
2580 int used_disks;
2581
2582 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2583 (units <
2584 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2585 (super->migr_rec->rec_status ==
2586 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2587 units++;
2588
2589 info->reshape_progress = blocks_per_unit * units;
2590
2591 dprintf("IMSM: General Migration checkpoint : %llu "
2592 "(%llu) -> read reshape progress : %llu\n",
2593 (unsigned long long)units,
2594 (unsigned long long)blocks_per_unit,
2595 info->reshape_progress);
2596
2597 used_disks = imsm_num_data_members(dev, MAP_1);
2598 if (used_disks > 0) {
2599 array_blocks = blocks_per_member(map) *
2600 used_disks;
2601 /* round array size down to closest MB
2602 */
2603 info->custom_array_size = (array_blocks
2604 >> SECT_PER_MB_SHIFT)
2605 << SECT_PER_MB_SHIFT;
2606 }
2607 }
2608 case MIGR_VERIFY:
2609 /* we could emulate the checkpointing of
2610 * 'sync_action=check' migrations, but for now
2611 * we just immediately complete them
2612 */
2613 case MIGR_REBUILD:
2614 /* this is handled by container_content_imsm() */
2615 case MIGR_STATE_CHANGE:
2616 /* FIXME handle other migrations */
2617 default:
2618 /* we are not dirty, so... */
2619 info->resync_start = MaxSector;
2620 }
2621 }
2622
2623 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2624 info->name[MAX_RAID_SERIAL_LEN] = 0;
2625
2626 info->array.major_version = -1;
2627 info->array.minor_version = -2;
2628 devname = devnum2devname(st->container_dev);
2629 *info->text_version = '\0';
2630 if (devname)
2631 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2632 free(devname);
2633 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2634 uuid_from_super_imsm(st, info->uuid);
2635
2636 if (dmap) {
2637 int i, j;
2638 for (i=0; i<map_disks; i++) {
2639 dmap[i] = 0;
2640 if (i < info->array.raid_disks) {
2641 struct imsm_disk *dsk;
2642 j = get_imsm_disk_idx(dev, i, MAP_X);
2643 dsk = get_imsm_disk(super, j);
2644 if (dsk && (dsk->status & CONFIGURED_DISK))
2645 dmap[i] = 1;
2646 }
2647 }
2648 }
2649 }
2650
2651 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2652 int failed, int look_in_map);
2653
2654 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2655 int look_in_map);
2656
2657
2658 #ifndef MDASSEMBLE
2659 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2660 {
2661 if (is_gen_migration(dev)) {
2662 int failed;
2663 __u8 map_state;
2664 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2665
2666 failed = imsm_count_failed(super, dev, MAP_1);
2667 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2668 if (map2->map_state != map_state) {
2669 map2->map_state = map_state;
2670 super->updates_pending++;
2671 }
2672 }
2673 }
2674 #endif
2675
2676 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2677 {
2678 struct dl *d;
2679
2680 for (d = super->missing; d; d = d->next)
2681 if (d->index == index)
2682 return &d->disk;
2683 return NULL;
2684 }
2685
2686 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2687 {
2688 struct intel_super *super = st->sb;
2689 struct imsm_disk *disk;
2690 int map_disks = info->array.raid_disks;
2691 int max_enough = -1;
2692 int i;
2693 struct imsm_super *mpb;
2694
2695 if (super->current_vol >= 0) {
2696 getinfo_super_imsm_volume(st, info, map);
2697 return;
2698 }
2699 memset(info, 0, sizeof(*info));
2700
2701 /* Set raid_disks to zero so that Assemble will always pull in valid
2702 * spares
2703 */
2704 info->array.raid_disks = 0;
2705 info->array.level = LEVEL_CONTAINER;
2706 info->array.layout = 0;
2707 info->array.md_minor = -1;
2708 info->array.ctime = 0; /* N/A for imsm */
2709 info->array.utime = 0;
2710 info->array.chunk_size = 0;
2711
2712 info->disk.major = 0;
2713 info->disk.minor = 0;
2714 info->disk.raid_disk = -1;
2715 info->reshape_active = 0;
2716 info->array.major_version = -1;
2717 info->array.minor_version = -2;
2718 strcpy(info->text_version, "imsm");
2719 info->safe_mode_delay = 0;
2720 info->disk.number = -1;
2721 info->disk.state = 0;
2722 info->name[0] = 0;
2723 info->recovery_start = MaxSector;
2724 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2725
2726 /* do we have the all the insync disks that we expect? */
2727 mpb = super->anchor;
2728
2729 for (i = 0; i < mpb->num_raid_devs; i++) {
2730 struct imsm_dev *dev = get_imsm_dev(super, i);
2731 int failed, enough, j, missing = 0;
2732 struct imsm_map *map;
2733 __u8 state;
2734
2735 failed = imsm_count_failed(super, dev, MAP_0);
2736 state = imsm_check_degraded(super, dev, failed, MAP_0);
2737 map = get_imsm_map(dev, MAP_0);
2738
2739 /* any newly missing disks?
2740 * (catches single-degraded vs double-degraded)
2741 */
2742 for (j = 0; j < map->num_members; j++) {
2743 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2744 __u32 idx = ord_to_idx(ord);
2745
2746 if (!(ord & IMSM_ORD_REBUILD) &&
2747 get_imsm_missing(super, idx)) {
2748 missing = 1;
2749 break;
2750 }
2751 }
2752
2753 if (state == IMSM_T_STATE_FAILED)
2754 enough = -1;
2755 else if (state == IMSM_T_STATE_DEGRADED &&
2756 (state != map->map_state || missing))
2757 enough = 0;
2758 else /* we're normal, or already degraded */
2759 enough = 1;
2760 if (is_gen_migration(dev) && missing) {
2761 /* during general migration we need all disks
2762 * that process is running on.
2763 * No new missing disk is allowed.
2764 */
2765 max_enough = -1;
2766 enough = -1;
2767 /* no more checks necessary
2768 */
2769 break;
2770 }
2771 /* in the missing/failed disk case check to see
2772 * if at least one array is runnable
2773 */
2774 max_enough = max(max_enough, enough);
2775 }
2776 dprintf("%s: enough: %d\n", __func__, max_enough);
2777 info->container_enough = max_enough;
2778
2779 if (super->disks) {
2780 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2781
2782 disk = &super->disks->disk;
2783 info->data_offset = total_blocks(&super->disks->disk) - reserved;
2784 info->component_size = reserved;
2785 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2786 /* we don't change info->disk.raid_disk here because
2787 * this state will be finalized in mdmon after we have
2788 * found the 'most fresh' version of the metadata
2789 */
2790 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2791 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2792 }
2793
2794 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2795 * ->compare_super may have updated the 'num_raid_devs' field for spares
2796 */
2797 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2798 uuid_from_super_imsm(st, info->uuid);
2799 else
2800 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2801
2802 /* I don't know how to compute 'map' on imsm, so use safe default */
2803 if (map) {
2804 int i;
2805 for (i = 0; i < map_disks; i++)
2806 map[i] = 1;
2807 }
2808
2809 }
2810
2811 /* allocates memory and fills disk in mdinfo structure
2812 * for each disk in array */
2813 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2814 {
2815 struct mdinfo *mddev = NULL;
2816 struct intel_super *super = st->sb;
2817 struct imsm_disk *disk;
2818 int count = 0;
2819 struct dl *dl;
2820 if (!super || !super->disks)
2821 return NULL;
2822 dl = super->disks;
2823 mddev = malloc(sizeof(*mddev));
2824 if (!mddev) {
2825 fprintf(stderr, Name ": Failed to allocate memory.\n");
2826 return NULL;
2827 }
2828 memset(mddev, 0, sizeof(*mddev));
2829 while (dl) {
2830 struct mdinfo *tmp;
2831 disk = &dl->disk;
2832 tmp = malloc(sizeof(*tmp));
2833 if (!tmp) {
2834 fprintf(stderr, Name ": Failed to allocate memory.\n");
2835 if (mddev)
2836 sysfs_free(mddev);
2837 return NULL;
2838 }
2839 memset(tmp, 0, sizeof(*tmp));
2840 if (mddev->devs)
2841 tmp->next = mddev->devs;
2842 mddev->devs = tmp;
2843 tmp->disk.number = count++;
2844 tmp->disk.major = dl->major;
2845 tmp->disk.minor = dl->minor;
2846 tmp->disk.state = is_configured(disk) ?
2847 (1 << MD_DISK_ACTIVE) : 0;
2848 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2849 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2850 tmp->disk.raid_disk = -1;
2851 dl = dl->next;
2852 }
2853 return mddev;
2854 }
2855
2856 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2857 char *update, char *devname, int verbose,
2858 int uuid_set, char *homehost)
2859 {
2860 /* For 'assemble' and 'force' we need to return non-zero if any
2861 * change was made. For others, the return value is ignored.
2862 * Update options are:
2863 * force-one : This device looks a bit old but needs to be included,
2864 * update age info appropriately.
2865 * assemble: clear any 'faulty' flag to allow this device to
2866 * be assembled.
2867 * force-array: Array is degraded but being forced, mark it clean
2868 * if that will be needed to assemble it.
2869 *
2870 * newdev: not used ????
2871 * grow: Array has gained a new device - this is currently for
2872 * linear only
2873 * resync: mark as dirty so a resync will happen.
2874 * name: update the name - preserving the homehost
2875 * uuid: Change the uuid of the array to match watch is given
2876 *
2877 * Following are not relevant for this imsm:
2878 * sparc2.2 : update from old dodgey metadata
2879 * super-minor: change the preferred_minor number
2880 * summaries: update redundant counters.
2881 * homehost: update the recorded homehost
2882 * _reshape_progress: record new reshape_progress position.
2883 */
2884 int rv = 1;
2885 struct intel_super *super = st->sb;
2886 struct imsm_super *mpb;
2887
2888 /* we can only update container info */
2889 if (!super || super->current_vol >= 0 || !super->anchor)
2890 return 1;
2891
2892 mpb = super->anchor;
2893
2894 if (strcmp(update, "uuid") == 0) {
2895 /* We take this to mean that the family_num should be updated.
2896 * However that is much smaller than the uuid so we cannot really
2897 * allow an explicit uuid to be given. And it is hard to reliably
2898 * know if one was.
2899 * So if !uuid_set we know the current uuid is random and just used
2900 * the first 'int' and copy it to the other 3 positions.
2901 * Otherwise we require the 4 'int's to be the same as would be the
2902 * case if we are using a random uuid. So an explicit uuid will be
2903 * accepted as long as all for ints are the same... which shouldn't hurt
2904 */
2905 if (!uuid_set) {
2906 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
2907 rv = 0;
2908 } else {
2909 if (info->uuid[0] != info->uuid[1] ||
2910 info->uuid[1] != info->uuid[2] ||
2911 info->uuid[2] != info->uuid[3])
2912 rv = -1;
2913 else
2914 rv = 0;
2915 }
2916 if (rv == 0)
2917 mpb->orig_family_num = info->uuid[0];
2918 } else if (strcmp(update, "assemble") == 0)
2919 rv = 0;
2920 else
2921 rv = -1;
2922
2923 /* successful update? recompute checksum */
2924 if (rv == 0)
2925 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2926
2927 return rv;
2928 }
2929
2930 static size_t disks_to_mpb_size(int disks)
2931 {
2932 size_t size;
2933
2934 size = sizeof(struct imsm_super);
2935 size += (disks - 1) * sizeof(struct imsm_disk);
2936 size += 2 * sizeof(struct imsm_dev);
2937 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2938 size += (4 - 2) * sizeof(struct imsm_map);
2939 /* 4 possible disk_ord_tbl's */
2940 size += 4 * (disks - 1) * sizeof(__u32);
2941
2942 return size;
2943 }
2944
2945 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2946 {
2947 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2948 return 0;
2949
2950 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2951 }
2952
2953 static void free_devlist(struct intel_super *super)
2954 {
2955 struct intel_dev *dv;
2956
2957 while (super->devlist) {
2958 dv = super->devlist->next;
2959 free(super->devlist->dev);
2960 free(super->devlist);
2961 super->devlist = dv;
2962 }
2963 }
2964
2965 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2966 {
2967 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2968 }
2969
2970 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2971 {
2972 /*
2973 * return:
2974 * 0 same, or first was empty, and second was copied
2975 * 1 second had wrong number
2976 * 2 wrong uuid
2977 * 3 wrong other info
2978 */
2979 struct intel_super *first = st->sb;
2980 struct intel_super *sec = tst->sb;
2981
2982 if (!first) {
2983 st->sb = tst->sb;
2984 tst->sb = NULL;
2985 return 0;
2986 }
2987 /* in platform dependent environment test if the disks
2988 * use the same Intel hba
2989 */
2990 if (!check_env("IMSM_NO_PLATFORM")) {
2991 if (!first->hba || !sec->hba ||
2992 (first->hba->type != sec->hba->type)) {
2993 fprintf(stderr,
2994 "HBAs of devices does not match %s != %s\n",
2995 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2996 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2997 return 3;
2998 }
2999 }
3000
3001 /* if an anchor does not have num_raid_devs set then it is a free
3002 * floating spare
3003 */
3004 if (first->anchor->num_raid_devs > 0 &&
3005 sec->anchor->num_raid_devs > 0) {
3006 /* Determine if these disks might ever have been
3007 * related. Further disambiguation can only take place
3008 * in load_super_imsm_all
3009 */
3010 __u32 first_family = first->anchor->orig_family_num;
3011 __u32 sec_family = sec->anchor->orig_family_num;
3012
3013 if (memcmp(first->anchor->sig, sec->anchor->sig,
3014 MAX_SIGNATURE_LENGTH) != 0)
3015 return 3;
3016
3017 if (first_family == 0)
3018 first_family = first->anchor->family_num;
3019 if (sec_family == 0)
3020 sec_family = sec->anchor->family_num;
3021
3022 if (first_family != sec_family)
3023 return 3;
3024
3025 }
3026
3027
3028 /* if 'first' is a spare promote it to a populated mpb with sec's
3029 * family number
3030 */
3031 if (first->anchor->num_raid_devs == 0 &&
3032 sec->anchor->num_raid_devs > 0) {
3033 int i;
3034 struct intel_dev *dv;
3035 struct imsm_dev *dev;
3036
3037 /* we need to copy raid device info from sec if an allocation
3038 * fails here we don't associate the spare
3039 */
3040 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3041 dv = malloc(sizeof(*dv));
3042 if (!dv)
3043 break;
3044 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3045 if (!dev) {
3046 free(dv);
3047 break;
3048 }
3049 dv->dev = dev;
3050 dv->index = i;
3051 dv->next = first->devlist;
3052 first->devlist = dv;
3053 }
3054 if (i < sec->anchor->num_raid_devs) {
3055 /* allocation failure */
3056 free_devlist(first);
3057 fprintf(stderr, "imsm: failed to associate spare\n");
3058 return 3;
3059 }
3060 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3061 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3062 first->anchor->family_num = sec->anchor->family_num;
3063 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3064 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3065 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3066 }
3067
3068 return 0;
3069 }
3070
3071 static void fd2devname(int fd, char *name)
3072 {
3073 struct stat st;
3074 char path[256];
3075 char dname[PATH_MAX];
3076 char *nm;
3077 int rv;
3078
3079 name[0] = '\0';
3080 if (fstat(fd, &st) != 0)
3081 return;
3082 sprintf(path, "/sys/dev/block/%d:%d",
3083 major(st.st_rdev), minor(st.st_rdev));
3084
3085 rv = readlink(path, dname, sizeof(dname)-1);
3086 if (rv <= 0)
3087 return;
3088
3089 dname[rv] = '\0';
3090 nm = strrchr(dname, '/');
3091 if (nm) {
3092 nm++;
3093 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3094 }
3095 }
3096
3097 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3098
3099 static int imsm_read_serial(int fd, char *devname,
3100 __u8 serial[MAX_RAID_SERIAL_LEN])
3101 {
3102 unsigned char scsi_serial[255];
3103 int rv;
3104 int rsp_len;
3105 int len;
3106 char *dest;
3107 char *src;
3108 char *rsp_buf;
3109 int i;
3110
3111 memset(scsi_serial, 0, sizeof(scsi_serial));
3112
3113 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3114
3115 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3116 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3117 fd2devname(fd, (char *) serial);
3118 return 0;
3119 }
3120
3121 if (rv != 0) {
3122 if (devname)
3123 fprintf(stderr,
3124 Name ": Failed to retrieve serial for %s\n",
3125 devname);
3126 return rv;
3127 }
3128
3129 rsp_len = scsi_serial[3];
3130 if (!rsp_len) {
3131 if (devname)
3132 fprintf(stderr,
3133 Name ": Failed to retrieve serial for %s\n",
3134 devname);
3135 return 2;
3136 }
3137 rsp_buf = (char *) &scsi_serial[4];
3138
3139 /* trim all whitespace and non-printable characters and convert
3140 * ':' to ';'
3141 */
3142 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3143 src = &rsp_buf[i];
3144 if (*src > 0x20) {
3145 /* ':' is reserved for use in placeholder serial
3146 * numbers for missing disks
3147 */
3148 if (*src == ':')
3149 *dest++ = ';';
3150 else
3151 *dest++ = *src;
3152 }
3153 }
3154 len = dest - rsp_buf;
3155 dest = rsp_buf;
3156
3157 /* truncate leading characters */
3158 if (len > MAX_RAID_SERIAL_LEN) {
3159 dest += len - MAX_RAID_SERIAL_LEN;
3160 len = MAX_RAID_SERIAL_LEN;
3161 }
3162
3163 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3164 memcpy(serial, dest, len);
3165
3166 return 0;
3167 }
3168
3169 static int serialcmp(__u8 *s1, __u8 *s2)
3170 {
3171 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3172 }
3173
3174 static void serialcpy(__u8 *dest, __u8 *src)
3175 {
3176 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3177 }
3178
3179 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3180 {
3181 struct dl *dl;
3182
3183 for (dl = super->disks; dl; dl = dl->next)
3184 if (serialcmp(dl->serial, serial) == 0)
3185 break;
3186
3187 return dl;
3188 }
3189
3190 static struct imsm_disk *
3191 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3192 {
3193 int i;
3194
3195 for (i = 0; i < mpb->num_disks; i++) {
3196 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3197
3198 if (serialcmp(disk->serial, serial) == 0) {
3199 if (idx)
3200 *idx = i;
3201 return disk;
3202 }
3203 }
3204
3205 return NULL;
3206 }
3207
3208 static int
3209 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3210 {
3211 struct imsm_disk *disk;
3212 struct dl *dl;
3213 struct stat stb;
3214 int rv;
3215 char name[40];
3216 __u8 serial[MAX_RAID_SERIAL_LEN];
3217
3218 rv = imsm_read_serial(fd, devname, serial);
3219
3220 if (rv != 0)
3221 return 2;
3222
3223 dl = calloc(1, sizeof(*dl));
3224 if (!dl) {
3225 if (devname)
3226 fprintf(stderr,
3227 Name ": failed to allocate disk buffer for %s\n",
3228 devname);
3229 return 2;
3230 }
3231
3232 fstat(fd, &stb);
3233 dl->major = major(stb.st_rdev);
3234 dl->minor = minor(stb.st_rdev);
3235 dl->next = super->disks;
3236 dl->fd = keep_fd ? fd : -1;
3237 assert(super->disks == NULL);
3238 super->disks = dl;
3239 serialcpy(dl->serial, serial);
3240 dl->index = -2;
3241 dl->e = NULL;
3242 fd2devname(fd, name);
3243 if (devname)
3244 dl->devname = strdup(devname);
3245 else
3246 dl->devname = strdup(name);
3247
3248 /* look up this disk's index in the current anchor */
3249 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3250 if (disk) {
3251 dl->disk = *disk;
3252 /* only set index on disks that are a member of a
3253 * populated contianer, i.e. one with raid_devs
3254 */
3255 if (is_failed(&dl->disk))
3256 dl->index = -2;
3257 else if (is_spare(&dl->disk))
3258 dl->index = -1;
3259 }
3260
3261 return 0;
3262 }
3263
3264 #ifndef MDASSEMBLE
3265 /* When migrating map0 contains the 'destination' state while map1
3266 * contains the current state. When not migrating map0 contains the
3267 * current state. This routine assumes that map[0].map_state is set to
3268 * the current array state before being called.
3269 *
3270 * Migration is indicated by one of the following states
3271 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3272 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3273 * map1state=unitialized)
3274 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3275 * map1state=normal)
3276 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3277 * map1state=degraded)
3278 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3279 * map1state=normal)
3280 */
3281 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3282 __u8 to_state, int migr_type)
3283 {
3284 struct imsm_map *dest;
3285 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3286
3287 dev->vol.migr_state = 1;
3288 set_migr_type(dev, migr_type);
3289 dev->vol.curr_migr_unit = 0;
3290 dest = get_imsm_map(dev, MAP_1);
3291
3292 /* duplicate and then set the target end state in map[0] */
3293 memcpy(dest, src, sizeof_imsm_map(src));
3294 if ((migr_type == MIGR_REBUILD) ||
3295 (migr_type == MIGR_GEN_MIGR)) {
3296 __u32 ord;
3297 int i;
3298
3299 for (i = 0; i < src->num_members; i++) {
3300 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3301 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3302 }
3303 }
3304
3305 if (migr_type == MIGR_GEN_MIGR)
3306 /* Clear migration record */
3307 memset(super->migr_rec, 0, sizeof(struct migr_record));
3308
3309 src->map_state = to_state;
3310 }
3311
3312 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3313 __u8 map_state)
3314 {
3315 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3316 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3317 MAP_0 : MAP_1);
3318 int i, j;
3319
3320 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3321 * completed in the last migration.
3322 *
3323 * FIXME add support for raid-level-migration
3324 */
3325 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3326 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3327 /* when final map state is other than expected
3328 * merge maps (not for migration)
3329 */
3330 int failed;
3331
3332 for (i = 0; i < prev->num_members; i++)
3333 for (j = 0; j < map->num_members; j++)
3334 /* during online capacity expansion
3335 * disks position can be changed
3336 * if takeover is used
3337 */
3338 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3339 ord_to_idx(prev->disk_ord_tbl[i])) {
3340 map->disk_ord_tbl[j] |=
3341 prev->disk_ord_tbl[i];
3342 break;
3343 }
3344 failed = imsm_count_failed(super, dev, MAP_0);
3345 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3346 }
3347
3348 dev->vol.migr_state = 0;
3349 set_migr_type(dev, 0);
3350 dev->vol.curr_migr_unit = 0;
3351 map->map_state = map_state;
3352 }
3353 #endif
3354
3355 static int parse_raid_devices(struct intel_super *super)
3356 {
3357 int i;
3358 struct imsm_dev *dev_new;
3359 size_t len, len_migr;
3360 size_t max_len = 0;
3361 size_t space_needed = 0;
3362 struct imsm_super *mpb = super->anchor;
3363
3364 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3365 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3366 struct intel_dev *dv;
3367
3368 len = sizeof_imsm_dev(dev_iter, 0);
3369 len_migr = sizeof_imsm_dev(dev_iter, 1);
3370 if (len_migr > len)
3371 space_needed += len_migr - len;
3372
3373 dv = malloc(sizeof(*dv));
3374 if (!dv)
3375 return 1;
3376 if (max_len < len_migr)
3377 max_len = len_migr;
3378 if (max_len > len_migr)
3379 space_needed += max_len - len_migr;
3380 dev_new = malloc(max_len);
3381 if (!dev_new) {
3382 free(dv);
3383 return 1;
3384 }
3385 imsm_copy_dev(dev_new, dev_iter);
3386 dv->dev = dev_new;
3387 dv->index = i;
3388 dv->next = super->devlist;
3389 super->devlist = dv;
3390 }
3391
3392 /* ensure that super->buf is large enough when all raid devices
3393 * are migrating
3394 */
3395 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3396 void *buf;
3397
3398 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3399 if (posix_memalign(&buf, 512, len) != 0)
3400 return 1;
3401
3402 memcpy(buf, super->buf, super->len);
3403 memset(buf + super->len, 0, len - super->len);
3404 free(super->buf);
3405 super->buf = buf;
3406 super->len = len;
3407 }
3408
3409 return 0;
3410 }
3411
3412 /* retrieve a pointer to the bbm log which starts after all raid devices */
3413 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3414 {
3415 void *ptr = NULL;
3416
3417 if (__le32_to_cpu(mpb->bbm_log_size)) {
3418 ptr = mpb;
3419 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3420 }
3421
3422 return ptr;
3423 }
3424
3425 /*******************************************************************************
3426 * Function: check_mpb_migr_compatibility
3427 * Description: Function checks for unsupported migration features:
3428 * - migration optimization area (pba_of_lba0)
3429 * - descending reshape (ascending_migr)
3430 * Parameters:
3431 * super : imsm metadata information
3432 * Returns:
3433 * 0 : migration is compatible
3434 * -1 : migration is not compatible
3435 ******************************************************************************/
3436 int check_mpb_migr_compatibility(struct intel_super *super)
3437 {
3438 struct imsm_map *map0, *map1;
3439 struct migr_record *migr_rec = super->migr_rec;
3440 int i;
3441
3442 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3443 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3444
3445 if (dev_iter &&
3446 dev_iter->vol.migr_state == 1 &&
3447 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3448 /* This device is migrating */
3449 map0 = get_imsm_map(dev_iter, MAP_0);
3450 map1 = get_imsm_map(dev_iter, MAP_1);
3451 if (pba_of_lba0(map0) != pba_of_lba0(map1))
3452 /* migration optimization area was used */
3453 return -1;
3454 if (migr_rec->ascending_migr == 0
3455 && migr_rec->dest_depth_per_unit > 0)
3456 /* descending reshape not supported yet */
3457 return -1;
3458 }
3459 }
3460 return 0;
3461 }
3462
3463 static void __free_imsm(struct intel_super *super, int free_disks);
3464
3465 /* load_imsm_mpb - read matrix metadata
3466 * allocates super->mpb to be freed by free_imsm
3467 */
3468 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3469 {
3470 unsigned long long dsize;
3471 unsigned long long sectors;
3472 struct stat;
3473 struct imsm_super *anchor;
3474 __u32 check_sum;
3475
3476 get_dev_size(fd, NULL, &dsize);
3477 if (dsize < 1024) {
3478 if (devname)
3479 fprintf(stderr,
3480 Name ": %s: device to small for imsm\n",
3481 devname);
3482 return 1;
3483 }
3484
3485 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3486 if (devname)
3487 fprintf(stderr, Name
3488 ": Cannot seek to anchor block on %s: %s\n",
3489 devname, strerror(errno));
3490 return 1;
3491 }
3492
3493 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3494 if (devname)
3495 fprintf(stderr,
3496 Name ": Failed to allocate imsm anchor buffer"
3497 " on %s\n", devname);
3498 return 1;
3499 }
3500 if (read(fd, anchor, 512) != 512) {
3501 if (devname)
3502 fprintf(stderr,
3503 Name ": Cannot read anchor block on %s: %s\n",
3504 devname, strerror(errno));
3505 free(anchor);
3506 return 1;
3507 }
3508
3509 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3510 if (devname)
3511 fprintf(stderr,
3512 Name ": no IMSM anchor on %s\n", devname);
3513 free(anchor);
3514 return 2;
3515 }
3516
3517 __free_imsm(super, 0);
3518 /* reload capability and hba */
3519
3520 /* capability and hba must be updated with new super allocation */
3521 find_intel_hba_capability(fd, super, devname);
3522 super->len = ROUND_UP(anchor->mpb_size, 512);
3523 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3524 if (devname)
3525 fprintf(stderr,
3526 Name ": unable to allocate %zu byte mpb buffer\n",
3527 super->len);
3528 free(anchor);
3529 return 2;
3530 }
3531 memcpy(super->buf, anchor, 512);
3532
3533 sectors = mpb_sectors(anchor) - 1;
3534 free(anchor);
3535
3536 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3537 fprintf(stderr, Name
3538 ": %s could not allocate migr_rec buffer\n", __func__);
3539 free(super->buf);
3540 return 2;
3541 }
3542 super->clean_migration_record_by_mdmon = 0;
3543
3544 if (!sectors) {
3545 check_sum = __gen_imsm_checksum(super->anchor);
3546 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3547 if (devname)
3548 fprintf(stderr,
3549 Name ": IMSM checksum %x != %x on %s\n",
3550 check_sum,
3551 __le32_to_cpu(super->anchor->check_sum),
3552 devname);
3553 return 2;
3554 }
3555
3556 return 0;
3557 }
3558
3559 /* read the extended mpb */
3560 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3561 if (devname)
3562 fprintf(stderr,
3563 Name ": Cannot seek to extended mpb on %s: %s\n",
3564 devname, strerror(errno));
3565 return 1;
3566 }
3567
3568 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3569 if (devname)
3570 fprintf(stderr,
3571 Name ": Cannot read extended mpb on %s: %s\n",
3572 devname, strerror(errno));
3573 return 2;
3574 }
3575
3576 check_sum = __gen_imsm_checksum(super->anchor);
3577 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3578 if (devname)
3579 fprintf(stderr,
3580 Name ": IMSM checksum %x != %x on %s\n",
3581 check_sum, __le32_to_cpu(super->anchor->check_sum),
3582 devname);
3583 return 3;
3584 }
3585
3586 /* FIXME the BBM log is disk specific so we cannot use this global
3587 * buffer for all disks. Ok for now since we only look at the global
3588 * bbm_log_size parameter to gate assembly
3589 */
3590 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3591
3592 return 0;
3593 }
3594
3595 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3596
3597 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
3598 static void clear_hi(struct intel_super *super)
3599 {
3600 struct imsm_super *mpb = super->anchor;
3601 int i, n;
3602 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
3603 return;
3604 for (i = 0; i < mpb->num_disks; ++i) {
3605 struct imsm_disk *disk = &mpb->disk[i];
3606 disk->total_blocks_hi = 0;
3607 }
3608 for (i = 0; i < mpb->num_raid_devs; ++i) {
3609 struct imsm_dev *dev = get_imsm_dev(super, i);
3610 if (!dev)
3611 return;
3612 for (n = 0; n < 2; ++n) {
3613 struct imsm_map *map = get_imsm_map(dev, n);
3614 if (!map)
3615 continue;
3616 map->pba_of_lba0_hi = 0;
3617 map->blocks_per_member_hi = 0;
3618 map->num_data_stripes_hi = 0;
3619 }
3620 }
3621 }
3622
3623 static int
3624 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3625 {
3626 int err;
3627
3628 err = load_imsm_mpb(fd, super, devname);
3629 if (err)
3630 return err;
3631 err = load_imsm_disk(fd, super, devname, keep_fd);
3632 if (err)
3633 return err;
3634 err = parse_raid_devices(super);
3635 clear_hi(super);
3636 return err;
3637 }
3638
3639 static void __free_imsm_disk(struct dl *d)
3640 {
3641 if (d->fd >= 0)
3642 close(d->fd);
3643 if (d->devname)
3644 free(d->devname);
3645 if (d->e)
3646 free(d->e);
3647 free(d);
3648
3649 }
3650
3651 static void free_imsm_disks(struct intel_super *super)
3652 {
3653 struct dl *d;
3654
3655 while (super->disks) {
3656 d = super->disks;
3657 super->disks = d->next;
3658 __free_imsm_disk(d);
3659 }
3660 while (super->disk_mgmt_list) {
3661 d = super->disk_mgmt_list;
3662 super->disk_mgmt_list = d->next;
3663 __free_imsm_disk(d);
3664 }
3665 while (super->missing) {
3666 d = super->missing;
3667 super->missing = d->next;
3668 __free_imsm_disk(d);
3669 }
3670
3671 }
3672
3673 /* free all the pieces hanging off of a super pointer */
3674 static void __free_imsm(struct intel_super *super, int free_disks)
3675 {
3676 struct intel_hba *elem, *next;
3677
3678 if (super->buf) {
3679 free(super->buf);
3680 super->buf = NULL;
3681 }
3682 /* unlink capability description */
3683 super->orom = NULL;
3684 if (super->migr_rec_buf) {
3685 free(super->migr_rec_buf);
3686 super->migr_rec_buf = NULL;
3687 }
3688 if (free_disks)
3689 free_imsm_disks(super);
3690 free_devlist(super);
3691 elem = super->hba;
3692 while (elem) {
3693 if (elem->path)
3694 free((void *)elem->path);
3695 next = elem->next;
3696 free(elem);
3697 elem = next;
3698 }
3699 super->hba = NULL;
3700 }
3701
3702 static void free_imsm(struct intel_super *super)
3703 {
3704 __free_imsm(super, 1);
3705 free(super);
3706 }
3707
3708 static void free_super_imsm(struct supertype *st)
3709 {
3710 struct intel_super *super = st->sb;
3711
3712 if (!super)
3713 return;
3714
3715 free_imsm(super);
3716 st->sb = NULL;
3717 }
3718
3719 static struct intel_super *alloc_super(void)
3720 {
3721 struct intel_super *super = malloc(sizeof(*super));
3722
3723 if (super) {
3724 memset(super, 0, sizeof(*super));
3725 super->current_vol = -1;
3726 super->create_offset = ~((unsigned long long) 0);
3727 }
3728 return super;
3729 }
3730
3731 /*
3732 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3733 */
3734 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3735 {
3736 struct sys_dev *hba_name;
3737 int rv = 0;
3738
3739 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3740 super->orom = NULL;
3741 super->hba = NULL;
3742 return 0;
3743 }
3744 hba_name = find_disk_attached_hba(fd, NULL);
3745 if (!hba_name) {
3746 if (devname)
3747 fprintf(stderr,
3748 Name ": %s is not attached to Intel(R) RAID controller.\n",
3749 devname);
3750 return 1;
3751 }
3752 rv = attach_hba_to_super(super, hba_name);
3753 if (rv == 2) {
3754 if (devname) {
3755 struct intel_hba *hba = super->hba;
3756
3757 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3758 "controller (%s),\n"
3759 " but the container is assigned to Intel(R) "
3760 "%s RAID controller (",
3761 devname,
3762 hba_name->path,
3763 hba_name->pci_id ? : "Err!",
3764 get_sys_dev_type(hba_name->type));
3765
3766 while (hba) {
3767 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3768 if (hba->next)
3769 fprintf(stderr, ", ");
3770 hba = hba->next;
3771 }
3772
3773 fprintf(stderr, ").\n"
3774 " Mixing devices attached to different controllers "
3775 "is not allowed.\n");
3776 }
3777 free_sys_dev(&hba_name);
3778 return 2;
3779 }
3780 super->orom = find_imsm_capability(hba_name->type);
3781 free_sys_dev(&hba_name);
3782 if (!super->orom)
3783 return 3;
3784 return 0;
3785 }
3786
3787 /* find_missing - helper routine for load_super_imsm_all that identifies
3788 * disks that have disappeared from the system. This routine relies on
3789 * the mpb being uptodate, which it is at load time.
3790 */
3791 static int find_missing(struct intel_super *super)
3792 {
3793 int i;
3794 struct imsm_super *mpb = super->anchor;
3795 struct dl *dl;
3796 struct imsm_disk *disk;
3797
3798 for (i = 0; i < mpb->num_disks; i++) {
3799 disk = __get_imsm_disk(mpb, i);
3800 dl = serial_to_dl(disk->serial, super);
3801 if (dl)
3802 continue;
3803
3804 dl = malloc(sizeof(*dl));
3805 if (!dl)
3806 return 1;
3807 dl->major = 0;
3808 dl->minor = 0;
3809 dl->fd = -1;
3810 dl->devname = strdup("missing");
3811 dl->index = i;
3812 serialcpy(dl->serial, disk->serial);
3813 dl->disk = *disk;
3814 dl->e = NULL;
3815 dl->next = super->missing;
3816 super->missing = dl;
3817 }
3818
3819 return 0;
3820 }
3821
3822 #ifndef MDASSEMBLE
3823 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3824 {
3825 struct intel_disk *idisk = disk_list;
3826
3827 while (idisk) {
3828 if (serialcmp(idisk->disk.serial, serial) == 0)
3829 break;
3830 idisk = idisk->next;
3831 }
3832
3833 return idisk;
3834 }
3835
3836 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3837 struct intel_super *super,
3838 struct intel_disk **disk_list)
3839 {
3840 struct imsm_disk *d = &super->disks->disk;
3841 struct imsm_super *mpb = super->anchor;
3842 int i, j;
3843
3844 for (i = 0; i < tbl_size; i++) {
3845 struct imsm_super *tbl_mpb = table[i]->anchor;
3846 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3847
3848 if (tbl_mpb->family_num == mpb->family_num) {
3849 if (tbl_mpb->check_sum == mpb->check_sum) {
3850 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3851 __func__, super->disks->major,
3852 super->disks->minor,
3853 table[i]->disks->major,
3854 table[i]->disks->minor);
3855 break;
3856 }
3857
3858 if (((is_configured(d) && !is_configured(tbl_d)) ||
3859 is_configured(d) == is_configured(tbl_d)) &&
3860 tbl_mpb->generation_num < mpb->generation_num) {
3861 /* current version of the mpb is a
3862 * better candidate than the one in
3863 * super_table, but copy over "cross
3864 * generational" status
3865 */
3866 struct intel_disk *idisk;
3867
3868 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3869 __func__, super->disks->major,
3870 super->disks->minor,
3871 table[i]->disks->major,
3872 table[i]->disks->minor);
3873
3874 idisk = disk_list_get(tbl_d->serial, *disk_list);
3875 if (idisk && is_failed(&idisk->disk))
3876 tbl_d->status |= FAILED_DISK;
3877 break;
3878 } else {
3879 struct intel_disk *idisk;
3880 struct imsm_disk *disk;
3881
3882 /* tbl_mpb is more up to date, but copy
3883 * over cross generational status before
3884 * returning
3885 */
3886 disk = __serial_to_disk(d->serial, mpb, NULL);
3887 if (disk && is_failed(disk))
3888 d->status |= FAILED_DISK;
3889
3890 idisk = disk_list_get(d->serial, *disk_list);
3891 if (idisk) {
3892 idisk->owner = i;
3893 if (disk && is_configured(disk))
3894 idisk->disk.status |= CONFIGURED_DISK;
3895 }
3896
3897 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3898 __func__, super->disks->major,
3899 super->disks->minor,
3900 table[i]->disks->major,
3901 table[i]->disks->minor);
3902
3903 return tbl_size;
3904 }
3905 }
3906 }
3907
3908 if (i >= tbl_size)
3909 table[tbl_size++] = super;
3910 else
3911 table[i] = super;
3912
3913 /* update/extend the merged list of imsm_disk records */
3914 for (j = 0; j < mpb->num_disks; j++) {
3915 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3916 struct intel_disk *idisk;
3917
3918 idisk = disk_list_get(disk->serial, *disk_list);
3919 if (idisk) {
3920 idisk->disk.status |= disk->status;
3921 if (is_configured(&idisk->disk) ||
3922 is_failed(&idisk->disk))
3923 idisk->disk.status &= ~(SPARE_DISK);
3924 } else {
3925 idisk = calloc(1, sizeof(*idisk));
3926 if (!idisk)
3927 return -1;
3928 idisk->owner = IMSM_UNKNOWN_OWNER;
3929 idisk->disk = *disk;
3930 idisk->next = *disk_list;
3931 *disk_list = idisk;
3932 }
3933
3934 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3935 idisk->owner = i;
3936 }
3937
3938 return tbl_size;
3939 }
3940
3941 static struct intel_super *
3942 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3943 const int owner)
3944 {
3945 struct imsm_super *mpb = super->anchor;
3946 int ok_count = 0;
3947 int i;
3948
3949 for (i = 0; i < mpb->num_disks; i++) {
3950 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3951 struct intel_disk *idisk;
3952
3953 idisk = disk_list_get(disk->serial, disk_list);
3954 if (idisk) {
3955 if (idisk->owner == owner ||
3956 idisk->owner == IMSM_UNKNOWN_OWNER)
3957 ok_count++;
3958 else
3959 dprintf("%s: '%.16s' owner %d != %d\n",
3960 __func__, disk->serial, idisk->owner,
3961 owner);
3962 } else {
3963 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3964 __func__, __le32_to_cpu(mpb->family_num), i,
3965 disk->serial);
3966 break;
3967 }
3968 }
3969
3970 if (ok_count == mpb->num_disks)
3971 return super;
3972 return NULL;
3973 }
3974
3975 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3976 {
3977 struct intel_super *s;
3978
3979 for (s = super_list; s; s = s->next) {
3980 if (family_num != s->anchor->family_num)
3981 continue;
3982 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3983 __le32_to_cpu(family_num), s->disks->devname);
3984 }
3985 }
3986
3987 static struct intel_super *
3988 imsm_thunderdome(struct intel_super **super_list, int len)
3989 {
3990 struct intel_super *super_table[len];
3991 struct intel_disk *disk_list = NULL;
3992 struct intel_super *champion, *spare;
3993 struct intel_super *s, **del;
3994 int tbl_size = 0;
3995 int conflict;
3996 int i;
3997
3998 memset(super_table, 0, sizeof(super_table));
3999 for (s = *super_list; s; s = s->next)
4000 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4001
4002 for (i = 0; i < tbl_size; i++) {
4003 struct imsm_disk *d;
4004 struct intel_disk *idisk;
4005 struct imsm_super *mpb = super_table[i]->anchor;
4006
4007 s = super_table[i];
4008 d = &s->disks->disk;
4009
4010 /* 'd' must appear in merged disk list for its
4011 * configuration to be valid
4012 */
4013 idisk = disk_list_get(d->serial, disk_list);
4014 if (idisk && idisk->owner == i)
4015 s = validate_members(s, disk_list, i);
4016 else
4017 s = NULL;
4018
4019 if (!s)
4020 dprintf("%s: marking family: %#x from %d:%d offline\n",
4021 __func__, mpb->family_num,
4022 super_table[i]->disks->major,
4023 super_table[i]->disks->minor);
4024 super_table[i] = s;
4025 }
4026
4027 /* This is where the mdadm implementation differs from the Windows
4028 * driver which has no strict concept of a container. We can only
4029 * assemble one family from a container, so when returning a prodigal
4030 * array member to this system the code will not be able to disambiguate
4031 * the container contents that should be assembled ("foreign" versus
4032 * "local"). It requires user intervention to set the orig_family_num
4033 * to a new value to establish a new container. The Windows driver in
4034 * this situation fixes up the volume name in place and manages the
4035 * foreign array as an independent entity.
4036 */
4037 s = NULL;
4038 spare = NULL;
4039 conflict = 0;
4040 for (i = 0; i < tbl_size; i++) {
4041 struct intel_super *tbl_ent = super_table[i];
4042 int is_spare = 0;
4043
4044 if (!tbl_ent)
4045 continue;
4046
4047 if (tbl_ent->anchor->num_raid_devs == 0) {
4048 spare = tbl_ent;
4049 is_spare = 1;
4050 }
4051
4052 if (s && !is_spare) {
4053 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4054 conflict++;
4055 } else if (!s && !is_spare)
4056 s = tbl_ent;
4057 }
4058
4059 if (!s)
4060 s = spare;
4061 if (!s) {
4062 champion = NULL;
4063 goto out;
4064 }
4065 champion = s;
4066
4067 if (conflict)
4068 fprintf(stderr, "Chose family %#x on '%s', "
4069 "assemble conflicts to new container with '--update=uuid'\n",
4070 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4071
4072 /* collect all dl's onto 'champion', and update them to
4073 * champion's version of the status
4074 */
4075 for (s = *super_list; s; s = s->next) {
4076 struct imsm_super *mpb = champion->anchor;
4077 struct dl *dl = s->disks;
4078
4079 if (s == champion)
4080 continue;
4081
4082 for (i = 0; i < mpb->num_disks; i++) {
4083 struct imsm_disk *disk;
4084
4085 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4086 if (disk) {
4087 dl->disk = *disk;
4088 /* only set index on disks that are a member of
4089 * a populated contianer, i.e. one with
4090 * raid_devs
4091 */
4092 if (is_failed(&dl->disk))
4093 dl->index = -2;
4094 else if (is_spare(&dl->disk))
4095 dl->index = -1;
4096 break;
4097 }
4098 }
4099
4100 if (i >= mpb->num_disks) {
4101 struct intel_disk *idisk;
4102
4103 idisk = disk_list_get(dl->serial, disk_list);
4104 if (idisk && is_spare(&idisk->disk) &&
4105 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4106 dl->index = -1;
4107 else {
4108 dl->index = -2;
4109 continue;
4110 }
4111 }
4112
4113 dl->next = champion->disks;
4114 champion->disks = dl;
4115 s->disks = NULL;
4116 }
4117
4118 /* delete 'champion' from super_list */
4119 for (del = super_list; *del; ) {
4120 if (*del == champion) {
4121 *del = (*del)->next;
4122 break;
4123 } else
4124 del = &(*del)->next;
4125 }
4126 champion->next = NULL;
4127
4128 out:
4129 while (disk_list) {
4130 struct intel_disk *idisk = disk_list;
4131
4132 disk_list = disk_list->next;
4133 free(idisk);
4134 }
4135
4136 return champion;
4137 }
4138
4139
4140 static int
4141 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4142 static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4143 int major, int minor, int keep_fd);
4144 static int
4145 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4146 int *max, int keep_fd);
4147
4148
4149 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4150 char *devname, struct md_list *devlist,
4151 int keep_fd)
4152 {
4153 struct intel_super *super_list = NULL;
4154 struct intel_super *super = NULL;
4155 int err = 0;
4156 int i = 0;
4157
4158 if (fd >= 0)
4159 /* 'fd' is an opened container */
4160 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4161 else
4162 /* get super block from devlist devices */
4163 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4164 if (err)
4165 goto error;
4166 /* all mpbs enter, maybe one leaves */
4167 super = imsm_thunderdome(&super_list, i);
4168 if (!super) {
4169 err = 1;
4170 goto error;
4171 }
4172
4173 if (find_missing(super) != 0) {
4174 free_imsm(super);
4175 err = 2;
4176 goto error;
4177 }
4178
4179 /* load migration record */
4180 err = load_imsm_migr_rec(super, NULL);
4181 if (err == -1) {
4182 /* migration is in progress,
4183 * but migr_rec cannot be loaded,
4184 */
4185 err = 4;
4186 goto error;
4187 }
4188
4189 /* Check migration compatibility */
4190 if ((err == 0) && (check_mpb_migr_compatibility(super) != 0)) {
4191 fprintf(stderr, Name ": Unsupported migration detected");
4192 if (devname)
4193 fprintf(stderr, " on %s\n", devname);
4194 else
4195 fprintf(stderr, " (IMSM).\n");
4196
4197 err = 5;
4198 goto error;
4199 }
4200
4201 err = 0;
4202
4203 error:
4204 while (super_list) {
4205 struct intel_super *s = super_list;
4206
4207 super_list = super_list->next;
4208 free_imsm(s);
4209 }
4210
4211
4212 if (err)
4213 return err;
4214
4215 *sbp = super;
4216 if (fd >= 0)
4217 st->container_dev = fd2devnum(fd);
4218 else
4219 st->container_dev = NoMdDev;
4220 if (err == 0 && st->ss == NULL) {
4221 st->ss = &super_imsm;
4222 st->minor_version = 0;
4223 st->max_devs = IMSM_MAX_DEVICES;
4224 }
4225 return 0;
4226 }
4227
4228
4229 static int
4230 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4231 int *max, int keep_fd)
4232 {
4233 struct md_list *tmpdev;
4234 int err = 0;
4235 int i = 0;
4236
4237 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4238 if (tmpdev->used != 1)
4239 continue;
4240 if (tmpdev->container == 1) {
4241 int lmax = 0;
4242 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4243 if (fd < 0) {
4244 fprintf(stderr, Name ": cannot open device %s: %s\n",
4245 tmpdev->devname, strerror(errno));
4246 err = 8;
4247 goto error;
4248 }
4249 err = get_sra_super_block(fd, super_list,
4250 tmpdev->devname, &lmax,
4251 keep_fd);
4252 i += lmax;
4253 close(fd);
4254 if (err) {
4255 err = 7;
4256 goto error;
4257 }
4258 } else {
4259 int major = major(tmpdev->st_rdev);
4260 int minor = minor(tmpdev->st_rdev);
4261 err = get_super_block(super_list,
4262 -1,
4263 tmpdev->devname,
4264 major, minor,
4265 keep_fd);
4266 i++;
4267 if (err) {
4268 err = 6;
4269 goto error;
4270 }
4271 }
4272 }
4273 error:
4274 *max = i;
4275 return err;
4276 }
4277
4278 static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4279 int major, int minor, int keep_fd)
4280 {
4281 struct intel_super*s = NULL;
4282 char nm[32];
4283 int dfd = -1;
4284 int rv;
4285 int err = 0;
4286 int retry;
4287
4288 s = alloc_super();
4289 if (!s) {
4290 err = 1;
4291 goto error;
4292 }
4293
4294 sprintf(nm, "%d:%d", major, minor);
4295 dfd = dev_open(nm, O_RDWR);
4296 if (dfd < 0) {
4297 err = 2;
4298 goto error;
4299 }
4300
4301 rv = find_intel_hba_capability(dfd, s, devname);
4302 /* no orom/efi or non-intel hba of the disk */
4303 if (rv != 0) {
4304 err = 4;
4305 goto error;
4306 }
4307
4308 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4309
4310 /* retry the load if we might have raced against mdmon */
4311 if (err == 3 && (devnum != -1) && mdmon_running(devnum))
4312 for (retry = 0; retry < 3; retry++) {
4313 usleep(3000);
4314 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4315 if (err != 3)
4316 break;
4317 }
4318 error:
4319 if (!err) {
4320 s->next = *super_list;
4321 *super_list = s;
4322 } else {
4323 if (s)
4324 free(s);
4325 if (dfd)
4326 close(dfd);
4327 }
4328 if ((dfd >= 0) && (!keep_fd))
4329 close(dfd);
4330 return err;
4331
4332 }
4333
4334 static int
4335 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4336 {
4337 struct mdinfo *sra;
4338 int devnum;
4339 struct mdinfo *sd;
4340 int err = 0;
4341 int i = 0;
4342 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4343 if (!sra)
4344 return 1;
4345
4346 if (sra->array.major_version != -1 ||
4347 sra->array.minor_version != -2 ||
4348 strcmp(sra->text_version, "imsm") != 0) {
4349 err = 1;
4350 goto error;
4351 }
4352 /* load all mpbs */
4353 devnum = fd2devnum(fd);
4354 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4355 if (get_super_block(super_list, devnum, devname,
4356 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4357 err = 7;
4358 goto error;
4359 }
4360 }
4361 error:
4362 sysfs_free(sra);
4363 *max = i;
4364 return err;
4365 }
4366
4367 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4368 {
4369 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
4370 }
4371 #endif
4372
4373 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4374 {
4375 struct intel_super *super;
4376 int rv;
4377
4378 if (test_partition(fd))
4379 /* IMSM not allowed on partitions */
4380 return 1;
4381
4382 free_super_imsm(st);
4383
4384 super = alloc_super();
4385 if (!super) {
4386 fprintf(stderr,
4387 Name ": malloc of %zu failed.\n",
4388 sizeof(*super));
4389 return 1;
4390 }
4391 /* Load hba and capabilities if they exist.
4392 * But do not preclude loading metadata in case capabilities or hba are
4393 * non-compliant and ignore_hw_compat is set.
4394 */
4395 rv = find_intel_hba_capability(fd, super, devname);
4396 /* no orom/efi or non-intel hba of the disk */
4397 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4398 if (devname)
4399 fprintf(stderr,
4400 Name ": No OROM/EFI properties for %s\n", devname);
4401 free_imsm(super);
4402 return 2;
4403 }
4404 rv = load_and_parse_mpb(fd, super, devname, 0);
4405
4406 if (rv) {
4407 if (devname)
4408 fprintf(stderr,
4409 Name ": Failed to load all information "
4410 "sections on %s\n", devname);
4411 free_imsm(super);
4412 return rv;
4413 }
4414
4415 st->sb = super;
4416 if (st->ss == NULL) {
4417 st->ss = &super_imsm;
4418 st->minor_version = 0;
4419 st->max_devs = IMSM_MAX_DEVICES;
4420 }
4421
4422 /* load migration record */
4423 if (load_imsm_migr_rec(super, NULL) == 0) {
4424 /* Check for unsupported migration features */
4425 if (check_mpb_migr_compatibility(super) != 0) {
4426 fprintf(stderr,
4427 Name ": Unsupported migration detected");
4428 if (devname)
4429 fprintf(stderr, " on %s\n", devname);
4430 else
4431 fprintf(stderr, " (IMSM).\n");
4432 return 3;
4433 }
4434 }
4435
4436 return 0;
4437 }
4438
4439 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4440 {
4441 if (info->level == 1)
4442 return 128;
4443 return info->chunk_size >> 9;
4444 }
4445
4446 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4447 unsigned long long size)
4448 {
4449 if (info->level == 1)
4450 return size * 2;
4451 else
4452 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4453 }
4454
4455 static void imsm_update_version_info(struct intel_super *super)
4456 {
4457 /* update the version and attributes */
4458 struct imsm_super *mpb = super->anchor;
4459 char *version;
4460 struct imsm_dev *dev;
4461 struct imsm_map *map;
4462 int i;
4463
4464 for (i = 0; i < mpb->num_raid_devs; i++) {
4465 dev = get_imsm_dev(super, i);
4466 map = get_imsm_map(dev, MAP_0);
4467 if (__le32_to_cpu(dev->size_high) > 0)
4468 mpb->attributes |= MPB_ATTRIB_2TB;
4469
4470 /* FIXME detect when an array spans a port multiplier */
4471 #if 0
4472 mpb->attributes |= MPB_ATTRIB_PM;
4473 #endif
4474
4475 if (mpb->num_raid_devs > 1 ||
4476 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4477 version = MPB_VERSION_ATTRIBS;
4478 switch (get_imsm_raid_level(map)) {
4479 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4480 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4481 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4482 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4483 }
4484 } else {
4485 if (map->num_members >= 5)
4486 version = MPB_VERSION_5OR6_DISK_ARRAY;
4487 else if (dev->status == DEV_CLONE_N_GO)
4488 version = MPB_VERSION_CNG;
4489 else if (get_imsm_raid_level(map) == 5)
4490 version = MPB_VERSION_RAID5;
4491 else if (map->num_members >= 3)
4492 version = MPB_VERSION_3OR4_DISK_ARRAY;
4493 else if (get_imsm_raid_level(map) == 1)
4494 version = MPB_VERSION_RAID1;
4495 else
4496 version = MPB_VERSION_RAID0;
4497 }
4498 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4499 }
4500 }
4501
4502 static int check_name(struct intel_super *super, char *name, int quiet)
4503 {
4504 struct imsm_super *mpb = super->anchor;
4505 char *reason = NULL;
4506 int i;
4507
4508 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4509 reason = "must be 16 characters or less";
4510
4511 for (i = 0; i < mpb->num_raid_devs; i++) {
4512 struct imsm_dev *dev = get_imsm_dev(super, i);
4513
4514 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4515 reason = "already exists";
4516 break;
4517 }
4518 }
4519
4520 if (reason && !quiet)
4521 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4522
4523 return !reason;
4524 }
4525
4526 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4527 unsigned long long size, char *name,
4528 char *homehost, int *uuid)
4529 {
4530 /* We are creating a volume inside a pre-existing container.
4531 * so st->sb is already set.
4532 */
4533 struct intel_super *super = st->sb;
4534 struct imsm_super *mpb = super->anchor;
4535 struct intel_dev *dv;
4536 struct imsm_dev *dev;
4537 struct imsm_vol *vol;
4538 struct imsm_map *map;
4539 int idx = mpb->num_raid_devs;
4540 int i;
4541 unsigned long long array_blocks;
4542 size_t size_old, size_new;
4543 unsigned long long num_data_stripes;
4544
4545 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4546 fprintf(stderr, Name": This imsm-container already has the "
4547 "maximum of %d volumes\n", super->orom->vpa);
4548 return 0;
4549 }
4550
4551 /* ensure the mpb is large enough for the new data */
4552 size_old = __le32_to_cpu(mpb->mpb_size);
4553 size_new = disks_to_mpb_size(info->nr_disks);
4554 if (size_new > size_old) {
4555 void *mpb_new;
4556 size_t size_round = ROUND_UP(size_new, 512);
4557
4558 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4559 fprintf(stderr, Name": could not allocate new mpb\n");
4560 return 0;
4561 }
4562 if (posix_memalign(&super->migr_rec_buf, 512,
4563 MIGR_REC_BUF_SIZE) != 0) {
4564 fprintf(stderr, Name
4565 ": %s could not allocate migr_rec buffer\n",
4566 __func__);
4567 free(super->buf);
4568 free(super);
4569 free(mpb_new);
4570 return 0;
4571 }
4572 memcpy(mpb_new, mpb, size_old);
4573 free(mpb);
4574 mpb = mpb_new;
4575 super->anchor = mpb_new;
4576 mpb->mpb_size = __cpu_to_le32(size_new);
4577 memset(mpb_new + size_old, 0, size_round - size_old);
4578 }
4579 super->current_vol = idx;
4580
4581 /* handle 'failed_disks' by either:
4582 * a) create dummy disk entries in the table if this the first
4583 * volume in the array. We add them here as this is the only
4584 * opportunity to add them. add_to_super_imsm_volume()
4585 * handles the non-failed disks and continues incrementing
4586 * mpb->num_disks.
4587 * b) validate that 'failed_disks' matches the current number
4588 * of missing disks if the container is populated
4589 */
4590 if (super->current_vol == 0) {
4591 mpb->num_disks = 0;
4592 for (i = 0; i < info->failed_disks; i++) {
4593 struct imsm_disk *disk;
4594
4595 mpb->num_disks++;
4596 disk = __get_imsm_disk(mpb, i);
4597 disk->status = CONFIGURED_DISK | FAILED_DISK;
4598 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4599 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4600 "missing:%d", i);
4601 }
4602 find_missing(super);
4603 } else {
4604 int missing = 0;
4605 struct dl *d;
4606
4607 for (d = super->missing; d; d = d->next)
4608 missing++;
4609 if (info->failed_disks > missing) {
4610 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4611 return 0;
4612 }
4613 }
4614
4615 if (!check_name(super, name, 0))
4616 return 0;
4617 dv = malloc(sizeof(*dv));
4618 if (!dv) {
4619 fprintf(stderr, Name ": failed to allocate device list entry\n");
4620 return 0;
4621 }
4622 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4623 if (!dev) {
4624 free(dv);
4625 fprintf(stderr, Name": could not allocate raid device\n");
4626 return 0;
4627 }
4628
4629 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4630 array_blocks = calc_array_size(info->level, info->raid_disks,
4631 info->layout, info->chunk_size,
4632 size * 2);
4633 /* round array size down to closest MB */
4634 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4635
4636 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4637 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4638 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4639 vol = &dev->vol;
4640 vol->migr_state = 0;
4641 set_migr_type(dev, MIGR_INIT);
4642 vol->dirty = !info->state;
4643 vol->curr_migr_unit = 0;
4644 map = get_imsm_map(dev, MAP_0);
4645 set_pba_of_lba0(map, super->create_offset);
4646 set_blocks_per_member(map, info_to_blocks_per_member(info, size));
4647 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4648 map->failed_disk_num = ~0;
4649 if (info->level > 0)
4650 map->map_state = IMSM_T_STATE_UNINITIALIZED;
4651 else
4652 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4653 IMSM_T_STATE_NORMAL;
4654 map->ddf = 1;
4655
4656 if (info->level == 1 && info->raid_disks > 2) {
4657 free(dev);
4658 free(dv);
4659 fprintf(stderr, Name": imsm does not support more than 2 disks"
4660 "in a raid1 volume\n");
4661 return 0;
4662 }
4663
4664 map->raid_level = info->level;
4665 if (info->level == 10) {
4666 map->raid_level = 1;
4667 map->num_domains = info->raid_disks / 2;
4668 } else if (info->level == 1)
4669 map->num_domains = info->raid_disks;
4670 else
4671 map->num_domains = 1;
4672
4673 /* info->size is only int so use the 'size' parameter instead */
4674 num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4675 num_data_stripes /= map->num_domains;
4676 set_num_data_stripes(map, num_data_stripes);
4677
4678 map->num_members = info->raid_disks;
4679 for (i = 0; i < map->num_members; i++) {
4680 /* initialized in add_to_super */
4681 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4682 }
4683 mpb->num_raid_devs++;
4684
4685 dv->dev = dev;
4686 dv->index = super->current_vol;
4687 dv->next = super->devlist;
4688 super->devlist = dv;
4689
4690 imsm_update_version_info(super);
4691
4692 return 1;
4693 }
4694
4695 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4696 unsigned long long size, char *name,
4697 char *homehost, int *uuid)
4698 {
4699 /* This is primarily called by Create when creating a new array.
4700 * We will then get add_to_super called for each component, and then
4701 * write_init_super called to write it out to each device.
4702 * For IMSM, Create can create on fresh devices or on a pre-existing
4703 * array.
4704 * To create on a pre-existing array a different method will be called.
4705 * This one is just for fresh drives.
4706 */
4707 struct intel_super *super;
4708 struct imsm_super *mpb;
4709 size_t mpb_size;
4710 char *version;
4711
4712 if (st->sb)
4713 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4714
4715 if (info)
4716 mpb_size = disks_to_mpb_size(info->nr_disks);
4717 else
4718 mpb_size = 512;
4719
4720 super = alloc_super();
4721 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4722 free(super);
4723 super = NULL;
4724 }
4725 if (!super) {
4726 fprintf(stderr, Name
4727 ": %s could not allocate superblock\n", __func__);
4728 return 0;
4729 }
4730 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
4731 fprintf(stderr, Name
4732 ": %s could not allocate migr_rec buffer\n", __func__);
4733 free(super->buf);
4734 free(super);
4735 return 0;
4736 }
4737 memset(super->buf, 0, mpb_size);
4738 mpb = super->buf;
4739 mpb->mpb_size = __cpu_to_le32(mpb_size);
4740 st->sb = super;
4741
4742 if (info == NULL) {
4743 /* zeroing superblock */
4744 return 0;
4745 }
4746
4747 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4748
4749 version = (char *) mpb->sig;
4750 strcpy(version, MPB_SIGNATURE);
4751 version += strlen(MPB_SIGNATURE);
4752 strcpy(version, MPB_VERSION_RAID0);
4753
4754 return 1;
4755 }
4756
4757 #ifndef MDASSEMBLE
4758 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4759 int fd, char *devname)
4760 {
4761 struct intel_super *super = st->sb;
4762 struct imsm_super *mpb = super->anchor;
4763 struct imsm_disk *_disk;
4764 struct imsm_dev *dev;
4765 struct imsm_map *map;
4766 struct dl *dl, *df;
4767 int slot;
4768
4769 dev = get_imsm_dev(super, super->current_vol);
4770 map = get_imsm_map(dev, MAP_0);
4771
4772 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4773 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4774 devname);
4775 return 1;
4776 }
4777
4778 if (fd == -1) {
4779 /* we're doing autolayout so grab the pre-marked (in
4780 * validate_geometry) raid_disk
4781 */
4782 for (dl = super->disks; dl; dl = dl->next)
4783 if (dl->raiddisk == dk->raid_disk)
4784 break;
4785 } else {
4786 for (dl = super->disks; dl ; dl = dl->next)
4787 if (dl->major == dk->major &&
4788 dl->minor == dk->minor)
4789 break;
4790 }
4791
4792 if (!dl) {
4793 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4794 return 1;
4795 }
4796
4797 /* add a pristine spare to the metadata */
4798 if (dl->index < 0) {
4799 dl->index = super->anchor->num_disks;
4800 super->anchor->num_disks++;
4801 }
4802 /* Check the device has not already been added */
4803 slot = get_imsm_disk_slot(map, dl->index);
4804 if (slot >= 0 &&
4805 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
4806 fprintf(stderr, Name ": %s has been included in this array twice\n",
4807 devname);
4808 return 1;
4809 }
4810 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4811 dl->disk.status = CONFIGURED_DISK;
4812
4813 /* update size of 'missing' disks to be at least as large as the
4814 * largest acitve member (we only have dummy missing disks when
4815 * creating the first volume)
4816 */
4817 if (super->current_vol == 0) {
4818 for (df = super->missing; df; df = df->next) {
4819 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
4820 set_total_blocks(&df->disk, total_blocks(&dl->disk));
4821 _disk = __get_imsm_disk(mpb, df->index);
4822 *_disk = df->disk;
4823 }
4824 }
4825
4826 /* refresh unset/failed slots to point to valid 'missing' entries */
4827 for (df = super->missing; df; df = df->next)
4828 for (slot = 0; slot < mpb->num_disks; slot++) {
4829 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4830
4831 if ((ord & IMSM_ORD_REBUILD) == 0)
4832 continue;
4833 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4834 if (is_gen_migration(dev)) {
4835 struct imsm_map *map2 = get_imsm_map(dev,
4836 MAP_1);
4837 int slot2 = get_imsm_disk_slot(map2, df->index);
4838 if ((slot2 < map2->num_members) &&
4839 (slot2 >= 0)) {
4840 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4841 slot2,
4842 MAP_1);
4843 if ((unsigned)df->index ==
4844 ord_to_idx(ord2))
4845 set_imsm_ord_tbl_ent(map2,
4846 slot2,
4847 df->index |
4848 IMSM_ORD_REBUILD);
4849 }
4850 }
4851 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4852 break;
4853 }
4854
4855 /* if we are creating the first raid device update the family number */
4856 if (super->current_vol == 0) {
4857 __u32 sum;
4858 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4859
4860 _disk = __get_imsm_disk(mpb, dl->index);
4861 if (!_dev || !_disk) {
4862 fprintf(stderr, Name ": BUG mpb setup error\n");
4863 return 1;
4864 }
4865 *_dev = *dev;
4866 *_disk = dl->disk;
4867 sum = random32();
4868 sum += __gen_imsm_checksum(mpb);
4869 mpb->family_num = __cpu_to_le32(sum);
4870 mpb->orig_family_num = mpb->family_num;
4871 }
4872 super->current_disk = dl;
4873 return 0;
4874 }
4875
4876 /* mark_spare()
4877 * Function marks disk as spare and restores disk serial
4878 * in case it was previously marked as failed by takeover operation
4879 * reruns:
4880 * -1 : critical error
4881 * 0 : disk is marked as spare but serial is not set
4882 * 1 : success
4883 */
4884 int mark_spare(struct dl *disk)
4885 {
4886 __u8 serial[MAX_RAID_SERIAL_LEN];
4887 int ret_val = -1;
4888
4889 if (!disk)
4890 return ret_val;
4891
4892 ret_val = 0;
4893 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4894 /* Restore disk serial number, because takeover marks disk
4895 * as failed and adds to serial ':0' before it becomes
4896 * a spare disk.
4897 */
4898 serialcpy(disk->serial, serial);
4899 serialcpy(disk->disk.serial, serial);
4900 ret_val = 1;
4901 }
4902 disk->disk.status = SPARE_DISK;
4903 disk->index = -1;
4904
4905 return ret_val;
4906 }
4907
4908 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4909 int fd, char *devname)
4910 {
4911 struct intel_super *super = st->sb;
4912 struct dl *dd;
4913 unsigned long long size;
4914 __u32 id;
4915 int rv;
4916 struct stat stb;
4917
4918 /* If we are on an RAID enabled platform check that the disk is
4919 * attached to the raid controller.
4920 * We do not need to test disks attachment for container based additions,
4921 * they shall be already tested when container was created/assembled.
4922 */
4923 rv = find_intel_hba_capability(fd, super, devname);
4924 /* no orom/efi or non-intel hba of the disk */
4925 if (rv != 0) {
4926 dprintf("capability: %p fd: %d ret: %d\n",
4927 super->orom, fd, rv);
4928 return 1;
4929 }
4930
4931 if (super->current_vol >= 0)
4932 return add_to_super_imsm_volume(st, dk, fd, devname);
4933
4934 fstat(fd, &stb);
4935 dd = malloc(sizeof(*dd));
4936 if (!dd) {
4937 fprintf(stderr,
4938 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4939 return 1;
4940 }
4941 memset(dd, 0, sizeof(*dd));
4942 dd->major = major(stb.st_rdev);
4943 dd->minor = minor(stb.st_rdev);
4944 dd->devname = devname ? strdup(devname) : NULL;
4945 dd->fd = fd;
4946 dd->e = NULL;
4947 dd->action = DISK_ADD;
4948 rv = imsm_read_serial(fd, devname, dd->serial);
4949 if (rv) {
4950 fprintf(stderr,
4951 Name ": failed to retrieve scsi serial, aborting\n");
4952 free(dd);
4953 abort();
4954 }
4955
4956 get_dev_size(fd, NULL, &size);
4957 size /= 512;
4958 serialcpy(dd->disk.serial, dd->serial);
4959 set_total_blocks(&dd->disk, size);
4960 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
4961 struct imsm_super *mpb = super->anchor;
4962 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
4963 }
4964 mark_spare(dd);
4965 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4966 dd->disk.scsi_id = __cpu_to_le32(id);
4967 else
4968 dd->disk.scsi_id = __cpu_to_le32(0);
4969
4970 if (st->update_tail) {
4971 dd->next = super->disk_mgmt_list;
4972 super->disk_mgmt_list = dd;
4973 } else {
4974 dd->next = super->disks;
4975 super->disks = dd;
4976 super->updates_pending++;
4977 }
4978
4979 return 0;
4980 }
4981
4982
4983 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4984 {
4985 struct intel_super *super = st->sb;
4986 struct dl *dd;
4987
4988 /* remove from super works only in mdmon - for communication
4989 * manager - monitor. Check if communication memory buffer
4990 * is prepared.
4991 */
4992 if (!st->update_tail) {
4993 fprintf(stderr,
4994 Name ": %s shall be used in mdmon context only"
4995 "(line %d).\n", __func__, __LINE__);
4996 return 1;
4997 }
4998 dd = malloc(sizeof(*dd));
4999 if (!dd) {
5000 fprintf(stderr,
5001 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
5002 return 1;
5003 }
5004 memset(dd, 0, sizeof(*dd));
5005 dd->major = dk->major;
5006 dd->minor = dk->minor;
5007 dd->fd = -1;
5008 mark_spare(dd);
5009 dd->action = DISK_REMOVE;
5010
5011 dd->next = super->disk_mgmt_list;
5012 super->disk_mgmt_list = dd;
5013
5014
5015 return 0;
5016 }
5017
5018 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5019
5020 static union {
5021 char buf[512];
5022 struct imsm_super anchor;
5023 } spare_record __attribute__ ((aligned(512)));
5024
5025 /* spare records have their own family number and do not have any defined raid
5026 * devices
5027 */
5028 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5029 {
5030 struct imsm_super *mpb = super->anchor;
5031 struct imsm_super *spare = &spare_record.anchor;
5032 __u32 sum;
5033 struct dl *d;
5034
5035 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
5036 spare->generation_num = __cpu_to_le32(1UL),
5037 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5038 spare->num_disks = 1,
5039 spare->num_raid_devs = 0,
5040 spare->cache_size = mpb->cache_size,
5041 spare->pwr_cycle_count = __cpu_to_le32(1),
5042
5043 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5044 MPB_SIGNATURE MPB_VERSION_RAID0);
5045
5046 for (d = super->disks; d; d = d->next) {
5047 if (d->index != -1)
5048 continue;
5049
5050 spare->disk[0] = d->disk;
5051 sum = __gen_imsm_checksum(spare);
5052 spare->family_num = __cpu_to_le32(sum);
5053 spare->orig_family_num = 0;
5054 sum = __gen_imsm_checksum(spare);
5055 spare->check_sum = __cpu_to_le32(sum);
5056
5057 if (store_imsm_mpb(d->fd, spare)) {
5058 fprintf(stderr, "%s: failed for device %d:%d %s\n",
5059 __func__, d->major, d->minor, strerror(errno));
5060 return 1;
5061 }
5062 if (doclose) {
5063 close(d->fd);
5064 d->fd = -1;
5065 }
5066 }
5067
5068 return 0;
5069 }
5070
5071 static int write_super_imsm(struct supertype *st, int doclose)
5072 {
5073 struct intel_super *super = st->sb;
5074 struct imsm_super *mpb = super->anchor;
5075 struct dl *d;
5076 __u32 generation;
5077 __u32 sum;
5078 int spares = 0;
5079 int i;
5080 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5081 int num_disks = 0;
5082 int clear_migration_record = 1;
5083
5084 /* 'generation' is incremented everytime the metadata is written */
5085 generation = __le32_to_cpu(mpb->generation_num);
5086 generation++;
5087 mpb->generation_num = __cpu_to_le32(generation);
5088
5089 /* fix up cases where previous mdadm releases failed to set
5090 * orig_family_num
5091 */
5092 if (mpb->orig_family_num == 0)
5093 mpb->orig_family_num = mpb->family_num;
5094
5095 for (d = super->disks; d; d = d->next) {
5096 if (d->index == -1)
5097 spares++;
5098 else {
5099 mpb->disk[d->index] = d->disk;
5100 num_disks++;
5101 }
5102 }
5103 for (d = super->missing; d; d = d->next) {
5104 mpb->disk[d->index] = d->disk;
5105 num_disks++;
5106 }
5107 mpb->num_disks = num_disks;
5108 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5109
5110 for (i = 0; i < mpb->num_raid_devs; i++) {
5111 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5112 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5113 if (dev && dev2) {
5114 imsm_copy_dev(dev, dev2);
5115 mpb_size += sizeof_imsm_dev(dev, 0);
5116 }
5117 if (is_gen_migration(dev2))
5118 clear_migration_record = 0;
5119 }
5120 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5121 mpb->mpb_size = __cpu_to_le32(mpb_size);
5122
5123 /* recalculate checksum */
5124 sum = __gen_imsm_checksum(mpb);
5125 mpb->check_sum = __cpu_to_le32(sum);
5126
5127 if (super->clean_migration_record_by_mdmon) {
5128 clear_migration_record = 1;
5129 super->clean_migration_record_by_mdmon = 0;
5130 }
5131 if (clear_migration_record)
5132 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5133
5134 /* write the mpb for disks that compose raid devices */
5135 for (d = super->disks; d ; d = d->next) {
5136 if (d->index < 0 || is_failed(&d->disk))
5137 continue;
5138
5139 if (clear_migration_record) {
5140 unsigned long long dsize;
5141
5142 get_dev_size(d->fd, NULL, &dsize);
5143 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
5144 if (write(d->fd, super->migr_rec_buf,
5145 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5146 perror("Write migr_rec failed");
5147 }
5148 }
5149
5150 if (store_imsm_mpb(d->fd, mpb))
5151 fprintf(stderr,
5152 "%s: failed for device %d:%d (fd: %d)%s\n",
5153 __func__, d->major, d->minor,
5154 d->fd, strerror(errno));
5155
5156 if (doclose) {
5157 close(d->fd);
5158 d->fd = -1;
5159 }
5160 }
5161
5162 if (spares)
5163 return write_super_imsm_spares(super, doclose);
5164
5165 return 0;
5166 }
5167
5168
5169 static int create_array(struct supertype *st, int dev_idx)
5170 {
5171 size_t len;
5172 struct imsm_update_create_array *u;
5173 struct intel_super *super = st->sb;
5174 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5175 struct imsm_map *map = get_imsm_map(dev, MAP_0);
5176 struct disk_info *inf;
5177 struct imsm_disk *disk;
5178 int i;
5179
5180 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5181 sizeof(*inf) * map->num_members;
5182 u = malloc(len);
5183 if (!u) {
5184 fprintf(stderr, "%s: failed to allocate update buffer\n",
5185 __func__);
5186 return 1;
5187 }
5188
5189 u->type = update_create_array;
5190 u->dev_idx = dev_idx;
5191 imsm_copy_dev(&u->dev, dev);
5192 inf = get_disk_info(u);
5193 for (i = 0; i < map->num_members; i++) {
5194 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5195
5196 disk = get_imsm_disk(super, idx);
5197 serialcpy(inf[i].serial, disk->serial);
5198 }
5199 append_metadata_update(st, u, len);
5200
5201 return 0;
5202 }
5203
5204 static int mgmt_disk(struct supertype *st)
5205 {
5206 struct intel_super *super = st->sb;
5207 size_t len;
5208 struct imsm_update_add_remove_disk *u;
5209
5210 if (!super->disk_mgmt_list)
5211 return 0;
5212
5213 len = sizeof(*u);
5214 u = malloc(len);
5215 if (!u) {
5216 fprintf(stderr, "%s: failed to allocate update buffer\n",
5217 __func__);
5218 return 1;
5219 }
5220
5221 u->type = update_add_remove_disk;
5222 append_metadata_update(st, u, len);
5223
5224 return 0;
5225 }
5226
5227 static int write_init_super_imsm(struct supertype *st)
5228 {
5229 struct intel_super *super = st->sb;
5230 int current_vol = super->current_vol;
5231
5232 /* we are done with current_vol reset it to point st at the container */
5233 super->current_vol = -1;
5234
5235 if (st->update_tail) {
5236 /* queue the recently created array / added disk
5237 * as a metadata update */
5238 int rv;
5239
5240 /* determine if we are creating a volume or adding a disk */
5241 if (current_vol < 0) {
5242 /* in the mgmt (add/remove) disk case we are running
5243 * in mdmon context, so don't close fd's
5244 */
5245 return mgmt_disk(st);
5246 } else
5247 rv = create_array(st, current_vol);
5248
5249 return rv;
5250 } else {
5251 struct dl *d;
5252 for (d = super->disks; d; d = d->next)
5253 Kill(d->devname, NULL, 0, 1, 1);
5254 return write_super_imsm(st, 1);
5255 }
5256 }
5257 #endif
5258
5259 static int store_super_imsm(struct supertype *st, int fd)
5260 {
5261 struct intel_super *super = st->sb;
5262 struct imsm_super *mpb = super ? super->anchor : NULL;
5263
5264 if (!mpb)
5265 return 1;
5266
5267 #ifndef MDASSEMBLE
5268 return store_imsm_mpb(fd, mpb);
5269 #else
5270 return 1;
5271 #endif
5272 }
5273
5274 static int imsm_bbm_log_size(struct imsm_super *mpb)
5275 {
5276 return __le32_to_cpu(mpb->bbm_log_size);
5277 }
5278
5279 #ifndef MDASSEMBLE
5280 static int validate_geometry_imsm_container(struct supertype *st, int level,
5281 int layout, int raiddisks, int chunk,
5282 unsigned long long size, char *dev,
5283 unsigned long long *freesize,
5284 int verbose)
5285 {
5286 int fd;
5287 unsigned long long ldsize;
5288 struct intel_super *super=NULL;
5289 int rv = 0;
5290
5291 if (level != LEVEL_CONTAINER)
5292 return 0;
5293 if (!dev)
5294 return 1;
5295
5296 fd = open(dev, O_RDONLY|O_EXCL, 0);
5297 if (fd < 0) {
5298 if (verbose)
5299 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
5300 dev, strerror(errno));
5301 return 0;
5302 }
5303 if (!get_dev_size(fd, dev, &ldsize)) {
5304 close(fd);
5305 return 0;
5306 }
5307
5308 /* capabilities retrieve could be possible
5309 * note that there is no fd for the disks in array.
5310 */
5311 super = alloc_super();
5312 if (!super) {
5313 fprintf(stderr,
5314 Name ": malloc of %zu failed.\n",
5315 sizeof(*super));
5316 close(fd);
5317 return 0;
5318 }
5319
5320 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
5321 if (rv != 0) {
5322 #if DEBUG
5323 char str[256];
5324 fd2devname(fd, str);
5325 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5326 fd, str, super->orom, rv, raiddisks);
5327 #endif
5328 /* no orom/efi or non-intel hba of the disk */
5329 close(fd);
5330 free_imsm(super);
5331 return 0;
5332 }
5333 close(fd);
5334 if (super->orom && raiddisks > super->orom->tds) {
5335 if (verbose)
5336 fprintf(stderr, Name ": %d exceeds maximum number of"
5337 " platform supported disks: %d\n",
5338 raiddisks, super->orom->tds);
5339
5340 free_imsm(super);
5341 return 0;
5342 }
5343
5344 *freesize = avail_size_imsm(st, ldsize >> 9);
5345 free_imsm(super);
5346
5347 return 1;
5348 }
5349
5350 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5351 {
5352 const unsigned long long base_start = e[*idx].start;
5353 unsigned long long end = base_start + e[*idx].size;
5354 int i;
5355
5356 if (base_start == end)
5357 return 0;
5358
5359 *idx = *idx + 1;
5360 for (i = *idx; i < num_extents; i++) {
5361 /* extend overlapping extents */
5362 if (e[i].start >= base_start &&
5363 e[i].start <= end) {
5364 if (e[i].size == 0)
5365 return 0;
5366 if (e[i].start + e[i].size > end)
5367 end = e[i].start + e[i].size;
5368 } else if (e[i].start > end) {
5369 *idx = i;
5370 break;
5371 }
5372 }
5373
5374 return end - base_start;
5375 }
5376
5377 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5378 {
5379 /* build a composite disk with all known extents and generate a new
5380 * 'maxsize' given the "all disks in an array must share a common start
5381 * offset" constraint
5382 */
5383 struct extent *e = calloc(sum_extents, sizeof(*e));
5384 struct dl *dl;
5385 int i, j;
5386 int start_extent;
5387 unsigned long long pos;
5388 unsigned long long start = 0;
5389 unsigned long long maxsize;
5390 unsigned long reserve;
5391
5392 if (!e)
5393 return 0;
5394
5395 /* coalesce and sort all extents. also, check to see if we need to
5396 * reserve space between member arrays
5397 */
5398 j = 0;
5399 for (dl = super->disks; dl; dl = dl->next) {
5400 if (!dl->e)
5401 continue;
5402 for (i = 0; i < dl->extent_cnt; i++)
5403 e[j++] = dl->e[i];
5404 }
5405 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5406
5407 /* merge extents */
5408 i = 0;
5409 j = 0;
5410 while (i < sum_extents) {
5411 e[j].start = e[i].start;
5412 e[j].size = find_size(e, &i, sum_extents);
5413 j++;
5414 if (e[j-1].size == 0)
5415 break;
5416 }
5417
5418 pos = 0;
5419 maxsize = 0;
5420 start_extent = 0;
5421 i = 0;
5422 do {
5423 unsigned long long esize;
5424
5425 esize = e[i].start - pos;
5426 if (esize >= maxsize) {
5427 maxsize = esize;
5428 start = pos;
5429 start_extent = i;
5430 }
5431 pos = e[i].start + e[i].size;
5432 i++;
5433 } while (e[i-1].size);
5434 free(e);
5435
5436 if (maxsize == 0)
5437 return 0;
5438
5439 /* FIXME assumes volume at offset 0 is the first volume in a
5440 * container
5441 */
5442 if (start_extent > 0)
5443 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5444 else
5445 reserve = 0;
5446
5447 if (maxsize < reserve)
5448 return 0;
5449
5450 super->create_offset = ~((unsigned long long) 0);
5451 if (start + reserve > super->create_offset)
5452 return 0; /* start overflows create_offset */
5453 super->create_offset = start + reserve;
5454
5455 return maxsize - reserve;
5456 }
5457
5458 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5459 {
5460 if (level < 0 || level == 6 || level == 4)
5461 return 0;
5462
5463 /* if we have an orom prevent invalid raid levels */
5464 if (orom)
5465 switch (level) {
5466 case 0: return imsm_orom_has_raid0(orom);
5467 case 1:
5468 if (raiddisks > 2)
5469 return imsm_orom_has_raid1e(orom);
5470 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5471 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5472 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5473 }
5474 else
5475 return 1; /* not on an Intel RAID platform so anything goes */
5476
5477 return 0;
5478 }
5479
5480
5481 static int
5482 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5483 int dpa, int verbose)
5484 {
5485 struct mdstat_ent *mdstat = mdstat_read(0, 0);
5486 struct mdstat_ent *memb = NULL;
5487 int count = 0;
5488 int num = 0;
5489 struct md_list *dv = NULL;
5490 int found;
5491
5492 for (memb = mdstat ; memb ; memb = memb->next) {
5493 if (memb->metadata_version &&
5494 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
5495 (strcmp(&memb->metadata_version[9], name) == 0) &&
5496 !is_subarray(memb->metadata_version+9) &&
5497 memb->members) {
5498 struct dev_member *dev = memb->members;
5499 int fd = -1;
5500 while(dev && (fd < 0)) {
5501 char *path = malloc(strlen(dev->name) + strlen("/dev/") + 1);
5502 if (path) {
5503 num = sprintf(path, "%s%s", "/dev/", dev->name);
5504 if (num > 0)
5505 fd = open(path, O_RDONLY, 0);
5506 if ((num <= 0) || (fd < 0)) {
5507 pr_vrb(": Cannot open %s: %s\n",
5508 dev->name, strerror(errno));
5509 }
5510 free(path);
5511 }
5512 dev = dev->next;
5513 }
5514 found = 0;
5515 if ((fd >= 0) && disk_attached_to_hba(fd, hba)) {
5516 struct mdstat_ent *vol;
5517 for (vol = mdstat ; vol ; vol = vol->next) {
5518 if ((vol->active > 0) &&
5519 vol->metadata_version &&
5520 is_container_member(vol, memb->dev)) {
5521 found++;
5522 count++;
5523 }
5524 }
5525 if (*devlist && (found < dpa)) {
5526 dv = calloc(1, sizeof(*dv));
5527 if (dv == NULL)
5528 fprintf(stderr, Name ": calloc failed\n");
5529 else {
5530 dv->devname = malloc(strlen(memb->dev) + strlen("/dev/") + 1);
5531 if (dv->devname != NULL) {
5532 sprintf(dv->devname, "%s%s", "/dev/", memb->dev);
5533 dv->found = found;
5534 dv->used = 0;
5535 dv->next = *devlist;
5536 *devlist = dv;
5537 } else
5538 free(dv);
5539 }
5540 }
5541 }
5542 if (fd >= 0)
5543 close(fd);
5544 }
5545 }
5546 free_mdstat(mdstat);
5547 return count;
5548 }
5549
5550 #ifdef DEBUG_LOOP
5551 static struct md_list*
5552 get_loop_devices(void)
5553 {
5554 int i;
5555 struct md_list *devlist = NULL;
5556 struct md_list *dv = NULL;
5557
5558 for(i = 0; i < 12; i++) {
5559 dv = calloc(1, sizeof(*dv));
5560 if (dv == NULL) {
5561 fprintf(stderr, Name ": calloc failed\n");
5562 break;
5563 }
5564 dv->devname = malloc(40);
5565 if (dv->devname == NULL) {
5566 fprintf(stderr, Name ": malloc failed\n");
5567 free(dv);
5568 break;
5569 }
5570 sprintf(dv->devname, "/dev/loop%d", i);
5571 dv->next = devlist;
5572 devlist = dv;
5573 }
5574 return devlist;
5575 }
5576 #endif
5577
5578 static struct md_list*
5579 get_devices(const char *hba_path)
5580 {
5581 struct md_list *devlist = NULL;
5582 struct md_list *dv = NULL;
5583 struct dirent *ent;
5584 DIR *dir;
5585 int err = 0;
5586
5587 #if DEBUG_LOOP
5588 devlist = get_loop_devices();
5589 return devlist;
5590 #endif
5591 /* scroll through /sys/dev/block looking for devices attached to
5592 * this hba
5593 */
5594 dir = opendir("/sys/dev/block");
5595 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5596 int fd;
5597 char buf[1024];
5598 int major, minor;
5599 char *path = NULL;
5600 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5601 continue;
5602 path = devt_to_devpath(makedev(major, minor));
5603 if (!path)
5604 continue;
5605 if (!path_attached_to_hba(path, hba_path)) {
5606 free(path);
5607 path = NULL;
5608 continue;
5609 }
5610 free(path);
5611 path = NULL;
5612 fd = dev_open(ent->d_name, O_RDONLY);
5613 if (fd >= 0) {
5614 fd2devname(fd, buf);
5615 close(fd);
5616 } else {
5617 fprintf(stderr, Name ": cannot open device: %s\n",
5618 ent->d_name);
5619 continue;
5620 }
5621
5622
5623 dv = calloc(1, sizeof(*dv));
5624 if (dv == NULL) {
5625 fprintf(stderr, Name ": malloc failed\n");
5626 err = 1;
5627 break;
5628 }
5629 dv->devname = strdup(buf);
5630 if (dv->devname == NULL) {
5631 fprintf(stderr, Name ": malloc failed\n");
5632 err = 1;
5633 free(dv);
5634 break;
5635 }
5636 dv->next = devlist;
5637 devlist = dv;
5638 }
5639 if (err) {
5640 while(devlist) {
5641 dv = devlist;
5642 devlist = devlist->next;
5643 free(dv->devname);
5644 free(dv);
5645 }
5646 }
5647 return devlist;
5648 }
5649
5650 static int
5651 count_volumes_list(struct md_list *devlist, char *homehost,
5652 int verbose, int *found)
5653 {
5654 struct md_list *tmpdev;
5655 int count = 0;
5656 struct supertype *st = NULL;
5657
5658 /* first walk the list of devices to find a consistent set
5659 * that match the criterea, if that is possible.
5660 * We flag the ones we like with 'used'.
5661 */
5662 *found = 0;
5663 st = match_metadata_desc_imsm("imsm");
5664 if (st == NULL) {
5665 pr_vrb(": cannot allocate memory for imsm supertype\n");
5666 return 0;
5667 }
5668
5669 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5670 char *devname = tmpdev->devname;
5671 struct stat stb;
5672 struct supertype *tst;
5673 int dfd;
5674 if (tmpdev->used > 1)
5675 continue;
5676 tst = dup_super(st);
5677 if (tst == NULL) {
5678 pr_vrb(": cannot allocate memory for imsm supertype\n");
5679 goto err_1;
5680 }
5681 tmpdev->container = 0;
5682 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5683 if (dfd < 0) {
5684 dprintf(": cannot open device %s: %s\n",
5685 devname, strerror(errno));
5686 tmpdev->used = 2;
5687 } else if (fstat(dfd, &stb)< 0) {
5688 /* Impossible! */
5689 dprintf(": fstat failed for %s: %s\n",
5690 devname, strerror(errno));
5691 tmpdev->used = 2;
5692 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
5693 dprintf(": %s is not a block device.\n",
5694 devname);
5695 tmpdev->used = 2;
5696 } else if (must_be_container(dfd)) {
5697 struct supertype *cst;
5698 cst = super_by_fd(dfd, NULL);
5699 if (cst == NULL) {
5700 dprintf(": cannot recognize container type %s\n",
5701 devname);
5702 tmpdev->used = 2;
5703 } else if (tst->ss != st->ss) {
5704 dprintf(": non-imsm container - ignore it: %s\n",
5705 devname);
5706 tmpdev->used = 2;
5707 } else if (!tst->ss->load_container ||
5708 tst->ss->load_container(tst, dfd, NULL))
5709 tmpdev->used = 2;
5710 else {
5711 tmpdev->container = 1;
5712 }
5713 if (cst)
5714 cst->ss->free_super(cst);
5715 } else {
5716 tmpdev->st_rdev = stb.st_rdev;
5717 if (tst->ss->load_super(tst,dfd, NULL)) {
5718 dprintf(": no RAID superblock on %s\n",
5719 devname);
5720 tmpdev->used = 2;
5721 } else if (tst->ss->compare_super == NULL) {
5722 dprintf(": Cannot assemble %s metadata on %s\n",
5723 tst->ss->name, devname);
5724 tmpdev->used = 2;
5725 }
5726 }
5727 if (dfd >= 0)
5728 close(dfd);
5729 if (tmpdev->used == 2 || tmpdev->used == 4) {
5730 /* Ignore unrecognised devices during auto-assembly */
5731 goto loop;
5732 }
5733 else {
5734 struct mdinfo info;
5735 tst->ss->getinfo_super(tst, &info, NULL);
5736
5737 if (st->minor_version == -1)
5738 st->minor_version = tst->minor_version;
5739
5740 if (memcmp(info.uuid, uuid_zero,
5741 sizeof(int[4])) == 0) {
5742 /* this is a floating spare. It cannot define
5743 * an array unless there are no more arrays of
5744 * this type to be found. It can be included
5745 * in an array of this type though.
5746 */
5747 tmpdev->used = 3;
5748 goto loop;
5749 }
5750
5751 if (st->ss != tst->ss ||
5752 st->minor_version != tst->minor_version ||
5753 st->ss->compare_super(st, tst) != 0) {
5754 /* Some mismatch. If exactly one array matches this host,
5755 * we can resolve on that one.
5756 * Or, if we are auto assembling, we just ignore the second
5757 * for now.
5758 */
5759 dprintf(": superblock on %s doesn't match others - assembly aborted\n",
5760 devname);
5761 goto loop;
5762 }
5763 tmpdev->used = 1;
5764 *found = 1;
5765 dprintf("found: devname: %s\n", devname);
5766 }
5767 loop:
5768 if (tst)
5769 tst->ss->free_super(tst);
5770 }
5771 if (*found != 0) {
5772 int err;
5773 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
5774 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
5775 for (iter = head; iter; iter = iter->next) {
5776 dprintf("content->text_version: %s vol\n",
5777 iter->text_version);
5778 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
5779 /* do not assemble arrays with unsupported
5780 configurations */
5781 dprintf(": Cannot activate member %s.\n",
5782 iter->text_version);
5783 } else
5784 count++;
5785 }
5786 sysfs_free(head);
5787
5788 } else {
5789 dprintf(" no valid super block on device list: err: %d %p\n",
5790 err, st->sb);
5791 }
5792 } else {
5793 dprintf(" no more devices to examin\n");
5794 }
5795
5796 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5797 if ((tmpdev->used == 1) && (tmpdev->found)) {
5798 if (count) {
5799 if (count < tmpdev->found)
5800 count = 0;
5801 else
5802 count -= tmpdev->found;
5803 }
5804 }
5805 if (tmpdev->used == 1)
5806 tmpdev->used = 4;
5807 }
5808 err_1:
5809 if (st)
5810 st->ss->free_super(st);
5811 return count;
5812 }
5813
5814
5815 static int
5816 count_volumes(char *hba, int dpa, int verbose)
5817 {
5818 struct md_list *devlist = NULL;
5819 int count = 0;
5820 int found = 0;;
5821
5822 devlist = get_devices(hba);
5823 /* if no intel devices return zero volumes */
5824 if (devlist == NULL)
5825 return 0;
5826
5827 count = active_arrays_by_format("imsm", hba, &devlist, dpa, verbose);
5828 dprintf(" path: %s active arrays: %d\n", hba, count);
5829 if (devlist == NULL)
5830 return 0;
5831 do {
5832 found = 0;
5833 count += count_volumes_list(devlist,
5834 NULL,
5835 verbose,
5836 &found);
5837 dprintf("found %d count: %d\n", found, count);
5838 } while (found);
5839
5840 dprintf("path: %s total number of volumes: %d\n", hba, count);
5841
5842 while(devlist) {
5843 struct md_list *dv = devlist;
5844 devlist = devlist->next;
5845 free(dv->devname);
5846 free(dv);
5847 }
5848 return count;
5849 }
5850
5851 static int imsm_default_chunk(const struct imsm_orom *orom)
5852 {
5853 /* up to 512 if the plaform supports it, otherwise the platform max.
5854 * 128 if no platform detected
5855 */
5856 int fs = max(7, orom ? fls(orom->sss) : 0);
5857
5858 return min(512, (1 << fs));
5859 }
5860
5861 static int
5862 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5863 int raiddisks, int *chunk, int verbose)
5864 {
5865 /* check/set platform and metadata limits/defaults */
5866 if (super->orom && raiddisks > super->orom->dpa) {
5867 pr_vrb(": platform supports a maximum of %d disks per array\n",
5868 super->orom->dpa);
5869 return 0;
5870 }
5871
5872 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5873 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5874 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5875 level, raiddisks, raiddisks > 1 ? "s" : "");
5876 return 0;
5877 }
5878
5879 if (chunk && (*chunk == 0 || *chunk == UnSet))
5880 *chunk = imsm_default_chunk(super->orom);
5881
5882 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5883 pr_vrb(": platform does not support a chunk size of: "
5884 "%d\n", *chunk);
5885 return 0;
5886 }
5887
5888 if (layout != imsm_level_to_layout(level)) {
5889 if (level == 5)
5890 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5891 else if (level == 10)
5892 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5893 else
5894 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5895 layout, level);
5896 return 0;
5897 }
5898 return 1;
5899 }
5900
5901 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5902 * FIX ME add ahci details
5903 */
5904 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5905 int layout, int raiddisks, int *chunk,
5906 unsigned long long size, char *dev,
5907 unsigned long long *freesize,
5908 int verbose)
5909 {
5910 struct stat stb;
5911 struct intel_super *super = st->sb;
5912 struct imsm_super *mpb;
5913 struct dl *dl;
5914 unsigned long long pos = 0;
5915 unsigned long long maxsize;
5916 struct extent *e;
5917 int i;
5918
5919 /* We must have the container info already read in. */
5920 if (!super)
5921 return 0;
5922
5923 mpb = super->anchor;
5924
5925 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5926 fprintf(stderr, Name ": RAID gemetry validation failed. "
5927 "Cannot proceed with the action(s).\n");
5928 return 0;
5929 }
5930 if (!dev) {
5931 /* General test: make sure there is space for
5932 * 'raiddisks' device extents of size 'size' at a given
5933 * offset
5934 */
5935 unsigned long long minsize = size;
5936 unsigned long long start_offset = MaxSector;
5937 int dcnt = 0;
5938 if (minsize == 0)
5939 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5940 for (dl = super->disks; dl ; dl = dl->next) {
5941 int found = 0;
5942
5943 pos = 0;
5944 i = 0;
5945 e = get_extents(super, dl);
5946 if (!e) continue;
5947 do {
5948 unsigned long long esize;
5949 esize = e[i].start - pos;
5950 if (esize >= minsize)
5951 found = 1;
5952 if (found && start_offset == MaxSector) {
5953 start_offset = pos;
5954 break;
5955 } else if (found && pos != start_offset) {
5956 found = 0;
5957 break;
5958 }
5959 pos = e[i].start + e[i].size;
5960 i++;
5961 } while (e[i-1].size);
5962 if (found)
5963 dcnt++;
5964 free(e);
5965 }
5966 if (dcnt < raiddisks) {
5967 if (verbose)
5968 fprintf(stderr, Name ": imsm: Not enough "
5969 "devices with space for this array "
5970 "(%d < %d)\n",
5971 dcnt, raiddisks);
5972 return 0;
5973 }
5974 return 1;
5975 }
5976
5977 /* This device must be a member of the set */
5978 if (stat(dev, &stb) < 0)
5979 return 0;
5980 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5981 return 0;
5982 for (dl = super->disks ; dl ; dl = dl->next) {
5983 if (dl->major == (int)major(stb.st_rdev) &&
5984 dl->minor == (int)minor(stb.st_rdev))
5985 break;
5986 }
5987 if (!dl) {
5988 if (verbose)
5989 fprintf(stderr, Name ": %s is not in the "
5990 "same imsm set\n", dev);
5991 return 0;
5992 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5993 /* If a volume is present then the current creation attempt
5994 * cannot incorporate new spares because the orom may not
5995 * understand this configuration (all member disks must be
5996 * members of each array in the container).
5997 */
5998 fprintf(stderr, Name ": %s is a spare and a volume"
5999 " is already defined for this container\n", dev);
6000 fprintf(stderr, Name ": The option-rom requires all member"
6001 " disks to be a member of all volumes\n");
6002 return 0;
6003 } else if (super->orom && mpb->num_raid_devs > 0 &&
6004 mpb->num_disks != raiddisks) {
6005 fprintf(stderr, Name ": The option-rom requires all member"
6006 " disks to be a member of all volumes\n");
6007 return 0;
6008 }
6009
6010 /* retrieve the largest free space block */
6011 e = get_extents(super, dl);
6012 maxsize = 0;
6013 i = 0;
6014 if (e) {
6015 do {
6016 unsigned long long esize;
6017
6018 esize = e[i].start - pos;
6019 if (esize >= maxsize)
6020 maxsize = esize;
6021 pos = e[i].start + e[i].size;
6022 i++;
6023 } while (e[i-1].size);
6024 dl->e = e;
6025 dl->extent_cnt = i;
6026 } else {
6027 if (verbose)
6028 fprintf(stderr, Name ": unable to determine free space for: %s\n",
6029 dev);
6030 return 0;
6031 }
6032 if (maxsize < size) {
6033 if (verbose)
6034 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
6035 dev, maxsize, size);
6036 return 0;
6037 }
6038
6039 /* count total number of extents for merge */
6040 i = 0;
6041 for (dl = super->disks; dl; dl = dl->next)
6042 if (dl->e)
6043 i += dl->extent_cnt;
6044
6045 maxsize = merge_extents(super, i);
6046
6047 if (!check_env("IMSM_NO_PLATFORM") &&
6048 mpb->num_raid_devs > 0 && size && size != maxsize) {
6049 fprintf(stderr, Name ": attempting to create a second "
6050 "volume with size less then remaining space. "
6051 "Aborting...\n");
6052 return 0;
6053 }
6054
6055 if (maxsize < size || maxsize == 0) {
6056 if (verbose) {
6057 if (maxsize == 0)
6058 fprintf(stderr, Name ": no free space"
6059 " left on device. Aborting...\n");
6060 else
6061 fprintf(stderr, Name ": not enough space"
6062 " to create volume of given size"
6063 " (%llu < %llu). Aborting...\n",
6064 maxsize, size);
6065 }
6066 return 0;
6067 }
6068
6069 *freesize = maxsize;
6070
6071 if (super->orom) {
6072 int count = count_volumes(super->hba->path,
6073 super->orom->dpa, verbose);
6074 if (super->orom->vphba <= count) {
6075 pr_vrb(": platform does not support more then %d raid volumes.\n",
6076 super->orom->vphba);
6077 return 0;
6078 }
6079 }
6080 return 1;
6081 }
6082
6083 static int reserve_space(struct supertype *st, int raiddisks,
6084 unsigned long long size, int chunk,
6085 unsigned long long *freesize)
6086 {
6087 struct intel_super *super = st->sb;
6088 struct imsm_super *mpb = super->anchor;
6089 struct dl *dl;
6090 int i;
6091 int extent_cnt;
6092 struct extent *e;
6093 unsigned long long maxsize;
6094 unsigned long long minsize;
6095 int cnt;
6096 int used;
6097
6098 /* find the largest common start free region of the possible disks */
6099 used = 0;
6100 extent_cnt = 0;
6101 cnt = 0;
6102 for (dl = super->disks; dl; dl = dl->next) {
6103 dl->raiddisk = -1;
6104
6105 if (dl->index >= 0)
6106 used++;
6107
6108 /* don't activate new spares if we are orom constrained
6109 * and there is already a volume active in the container
6110 */
6111 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6112 continue;
6113
6114 e = get_extents(super, dl);
6115 if (!e)
6116 continue;
6117 for (i = 1; e[i-1].size; i++)
6118 ;
6119 dl->e = e;
6120 dl->extent_cnt = i;
6121 extent_cnt += i;
6122 cnt++;
6123 }
6124
6125 maxsize = merge_extents(super, extent_cnt);
6126 minsize = size;
6127 if (size == 0)
6128 /* chunk is in K */
6129 minsize = chunk * 2;
6130
6131 if (cnt < raiddisks ||
6132 (super->orom && used && used != raiddisks) ||
6133 maxsize < minsize ||
6134 maxsize == 0) {
6135 fprintf(stderr, Name ": not enough devices with space to create array.\n");
6136 return 0; /* No enough free spaces large enough */
6137 }
6138
6139 if (size == 0) {
6140 size = maxsize;
6141 if (chunk) {
6142 size /= 2 * chunk;
6143 size *= 2 * chunk;
6144 }
6145 maxsize = size;
6146 }
6147 if (!check_env("IMSM_NO_PLATFORM") &&
6148 mpb->num_raid_devs > 0 && size && size != maxsize) {
6149 fprintf(stderr, Name ": attempting to create a second "
6150 "volume with size less then remaining space. "
6151 "Aborting...\n");
6152 return 0;
6153 }
6154 cnt = 0;
6155 for (dl = super->disks; dl; dl = dl->next)
6156 if (dl->e)
6157 dl->raiddisk = cnt++;
6158
6159 *freesize = size;
6160
6161 return 1;
6162 }
6163
6164 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
6165 int raiddisks, int *chunk, unsigned long long size,
6166 char *dev, unsigned long long *freesize,
6167 int verbose)
6168 {
6169 int fd, cfd;
6170 struct mdinfo *sra;
6171 int is_member = 0;
6172
6173 /* load capability
6174 * if given unused devices create a container
6175 * if given given devices in a container create a member volume
6176 */
6177 if (level == LEVEL_CONTAINER) {
6178 /* Must be a fresh device to add to a container */
6179 return validate_geometry_imsm_container(st, level, layout,
6180 raiddisks,
6181 chunk?*chunk:0, size,
6182 dev, freesize,
6183 verbose);
6184 }
6185
6186 if (!dev) {
6187 if (st->sb) {
6188 struct intel_super *super = st->sb;
6189 if (!validate_geometry_imsm_orom(st->sb, level, layout,
6190 raiddisks, chunk,
6191 verbose))
6192 return 0;
6193 /* we are being asked to automatically layout a
6194 * new volume based on the current contents of
6195 * the container. If the the parameters can be
6196 * satisfied reserve_space will record the disks,
6197 * start offset, and size of the volume to be
6198 * created. add_to_super and getinfo_super
6199 * detect when autolayout is in progress.
6200 */
6201 /* assuming that freesize is always given when array is
6202 created */
6203 if (super->orom && freesize) {
6204 int count;
6205 count = count_volumes(super->hba->path,
6206 super->orom->dpa, verbose);
6207 if (super->orom->vphba <= count) {
6208 pr_vrb(": platform does not support more"
6209 "then %d raid volumes.\n",
6210 super->orom->vphba);
6211 return 0;
6212 }
6213 }
6214 if (freesize)
6215 return reserve_space(st, raiddisks, size,
6216 chunk?*chunk:0, freesize);
6217 }
6218 return 1;
6219 }
6220 if (st->sb) {
6221 /* creating in a given container */
6222 return validate_geometry_imsm_volume(st, level, layout,
6223 raiddisks, chunk, size,
6224 dev, freesize, verbose);
6225 }
6226
6227 /* This device needs to be a device in an 'imsm' container */
6228 fd = open(dev, O_RDONLY|O_EXCL, 0);
6229 if (fd >= 0) {
6230 if (verbose)
6231 fprintf(stderr,
6232 Name ": Cannot create this array on device %s\n",
6233 dev);
6234 close(fd);
6235 return 0;
6236 }
6237 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6238 if (verbose)
6239 fprintf(stderr, Name ": Cannot open %s: %s\n",
6240 dev, strerror(errno));
6241 return 0;
6242 }
6243 /* Well, it is in use by someone, maybe an 'imsm' container. */
6244 cfd = open_container(fd);
6245 close(fd);
6246 if (cfd < 0) {
6247 if (verbose)
6248 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
6249 dev);
6250 return 0;
6251 }
6252 sra = sysfs_read(cfd, 0, GET_VERSION);
6253 if (sra && sra->array.major_version == -1 &&
6254 strcmp(sra->text_version, "imsm") == 0)
6255 is_member = 1;
6256 sysfs_free(sra);
6257 if (is_member) {
6258 /* This is a member of a imsm container. Load the container
6259 * and try to create a volume
6260 */
6261 struct intel_super *super;
6262
6263 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
6264 st->sb = super;
6265 st->container_dev = fd2devnum(cfd);
6266 close(cfd);
6267 return validate_geometry_imsm_volume(st, level, layout,
6268 raiddisks, chunk,
6269 size, dev,
6270 freesize, 1)
6271 ? 1 : -1;
6272 }
6273 }
6274
6275 if (verbose)
6276 fprintf(stderr, Name ": failed container membership check\n");
6277
6278 close(cfd);
6279 return 0;
6280 }
6281
6282 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
6283 {
6284 struct intel_super *super = st->sb;
6285
6286 if (level && *level == UnSet)
6287 *level = LEVEL_CONTAINER;
6288
6289 if (level && layout && *layout == UnSet)
6290 *layout = imsm_level_to_layout(*level);
6291
6292 if (chunk && (*chunk == UnSet || *chunk == 0))
6293 *chunk = imsm_default_chunk(super->orom);
6294 }
6295
6296 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6297
6298 static int kill_subarray_imsm(struct supertype *st)
6299 {
6300 /* remove the subarray currently referenced by ->current_vol */
6301 __u8 i;
6302 struct intel_dev **dp;
6303 struct intel_super *super = st->sb;
6304 __u8 current_vol = super->current_vol;
6305 struct imsm_super *mpb = super->anchor;
6306
6307 if (super->current_vol < 0)
6308 return 2;
6309 super->current_vol = -1; /* invalidate subarray cursor */
6310
6311 /* block deletions that would change the uuid of active subarrays
6312 *
6313 * FIXME when immutable ids are available, but note that we'll
6314 * also need to fixup the invalidated/active subarray indexes in
6315 * mdstat
6316 */
6317 for (i = 0; i < mpb->num_raid_devs; i++) {
6318 char subarray[4];
6319
6320 if (i < current_vol)
6321 continue;
6322 sprintf(subarray, "%u", i);
6323 if (is_subarray_active(subarray, st->devname)) {
6324 fprintf(stderr,
6325 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6326 current_vol, i);
6327
6328 return 2;
6329 }
6330 }
6331
6332 if (st->update_tail) {
6333 struct imsm_update_kill_array *u = malloc(sizeof(*u));
6334
6335 if (!u)
6336 return 2;
6337 u->type = update_kill_array;
6338 u->dev_idx = current_vol;
6339 append_metadata_update(st, u, sizeof(*u));
6340
6341 return 0;
6342 }
6343
6344 for (dp = &super->devlist; *dp;)
6345 if ((*dp)->index == current_vol) {
6346 *dp = (*dp)->next;
6347 } else {
6348 handle_missing(super, (*dp)->dev);
6349 if ((*dp)->index > current_vol)
6350 (*dp)->index--;
6351 dp = &(*dp)->next;
6352 }
6353
6354 /* no more raid devices, all active components are now spares,
6355 * but of course failed are still failed
6356 */
6357 if (--mpb->num_raid_devs == 0) {
6358 struct dl *d;
6359
6360 for (d = super->disks; d; d = d->next)
6361 if (d->index > -2)
6362 mark_spare(d);
6363 }
6364
6365 super->updates_pending++;
6366
6367 return 0;
6368 }
6369
6370 static int update_subarray_imsm(struct supertype *st, char *subarray,
6371 char *update, struct mddev_ident *ident)
6372 {
6373 /* update the subarray currently referenced by ->current_vol */
6374 struct intel_super *super = st->sb;
6375 struct imsm_super *mpb = super->anchor;
6376
6377 if (strcmp(update, "name") == 0) {
6378 char *name = ident->name;
6379 char *ep;
6380 int vol;
6381
6382 if (is_subarray_active(subarray, st->devname)) {
6383 fprintf(stderr,
6384 Name ": Unable to update name of active subarray\n");
6385 return 2;
6386 }
6387
6388 if (!check_name(super, name, 0))
6389 return 2;
6390
6391 vol = strtoul(subarray, &ep, 10);
6392 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6393 return 2;
6394
6395 if (st->update_tail) {
6396 struct imsm_update_rename_array *u = malloc(sizeof(*u));
6397
6398 if (!u)
6399 return 2;
6400 u->type = update_rename_array;
6401 u->dev_idx = vol;
6402 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6403 append_metadata_update(st, u, sizeof(*u));
6404 } else {
6405 struct imsm_dev *dev;
6406 int i;
6407
6408 dev = get_imsm_dev(super, vol);
6409 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6410 for (i = 0; i < mpb->num_raid_devs; i++) {
6411 dev = get_imsm_dev(super, i);
6412 handle_missing(super, dev);
6413 }
6414 super->updates_pending++;
6415 }
6416 } else
6417 return 2;
6418
6419 return 0;
6420 }
6421 #endif /* MDASSEMBLE */
6422
6423 static int is_gen_migration(struct imsm_dev *dev)
6424 {
6425 if (dev == NULL)
6426 return 0;
6427
6428 if (!dev->vol.migr_state)
6429 return 0;
6430
6431 if (migr_type(dev) == MIGR_GEN_MIGR)
6432 return 1;
6433
6434 return 0;
6435 }
6436
6437 static int is_rebuilding(struct imsm_dev *dev)
6438 {
6439 struct imsm_map *migr_map;
6440
6441 if (!dev->vol.migr_state)
6442 return 0;
6443
6444 if (migr_type(dev) != MIGR_REBUILD)
6445 return 0;
6446
6447 migr_map = get_imsm_map(dev, MAP_1);
6448
6449 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6450 return 1;
6451 else
6452 return 0;
6453 }
6454
6455 #ifndef MDASSEMBLE
6456 static int is_initializing(struct imsm_dev *dev)
6457 {
6458 struct imsm_map *migr_map;
6459
6460 if (!dev->vol.migr_state)
6461 return 0;
6462
6463 if (migr_type(dev) != MIGR_INIT)
6464 return 0;
6465
6466 migr_map = get_imsm_map(dev, MAP_1);
6467
6468 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6469 return 1;
6470
6471 return 0;
6472 }
6473 #endif
6474
6475 static void update_recovery_start(struct intel_super *super,
6476 struct imsm_dev *dev,
6477 struct mdinfo *array)
6478 {
6479 struct mdinfo *rebuild = NULL;
6480 struct mdinfo *d;
6481 __u32 units;
6482
6483 if (!is_rebuilding(dev))
6484 return;
6485
6486 /* Find the rebuild target, but punt on the dual rebuild case */
6487 for (d = array->devs; d; d = d->next)
6488 if (d->recovery_start == 0) {
6489 if (rebuild)
6490 return;
6491 rebuild = d;
6492 }
6493
6494 if (!rebuild) {
6495 /* (?) none of the disks are marked with
6496 * IMSM_ORD_REBUILD, so assume they are missing and the
6497 * disk_ord_tbl was not correctly updated
6498 */
6499 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
6500 return;
6501 }
6502
6503 units = __le32_to_cpu(dev->vol.curr_migr_unit);
6504 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
6505 }
6506
6507 #ifndef MDASSEMBLE
6508 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
6509 #endif
6510
6511 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
6512 {
6513 /* Given a container loaded by load_super_imsm_all,
6514 * extract information about all the arrays into
6515 * an mdinfo tree.
6516 * If 'subarray' is given, just extract info about that array.
6517 *
6518 * For each imsm_dev create an mdinfo, fill it in,
6519 * then look for matching devices in super->disks
6520 * and create appropriate device mdinfo.
6521 */
6522 struct intel_super *super = st->sb;
6523 struct imsm_super *mpb = super->anchor;
6524 struct mdinfo *rest = NULL;
6525 unsigned int i;
6526 int sb_errors = 0;
6527 struct dl *d;
6528 int spare_disks = 0;
6529
6530 /* do not assemble arrays when not all attributes are supported */
6531 if (imsm_check_attributes(mpb->attributes) == 0) {
6532 sb_errors = 1;
6533 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
6534 "Arrays activation is blocked.\n");
6535 }
6536
6537 /* check for bad blocks */
6538 if (imsm_bbm_log_size(super->anchor)) {
6539 fprintf(stderr, Name ": BBM log found in IMSM metadata."
6540 "Arrays activation is blocked.\n");
6541 sb_errors = 1;
6542 }
6543
6544
6545 /* count spare devices, not used in maps
6546 */
6547 for (d = super->disks; d; d = d->next)
6548 if (d->index == -1)
6549 spare_disks++;
6550
6551 for (i = 0; i < mpb->num_raid_devs; i++) {
6552 struct imsm_dev *dev;
6553 struct imsm_map *map;
6554 struct imsm_map *map2;
6555 struct mdinfo *this;
6556 int slot;
6557 #ifndef MDASSEMBLE
6558 int chunk;
6559 #endif
6560 char *ep;
6561
6562 if (subarray &&
6563 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6564 continue;
6565
6566 dev = get_imsm_dev(super, i);
6567 map = get_imsm_map(dev, MAP_0);
6568 map2 = get_imsm_map(dev, MAP_1);
6569
6570 /* do not publish arrays that are in the middle of an
6571 * unsupported migration
6572 */
6573 if (dev->vol.migr_state &&
6574 (migr_type(dev) == MIGR_STATE_CHANGE)) {
6575 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
6576 " unsupported migration in progress\n",
6577 dev->volume);
6578 continue;
6579 }
6580 /* do not publish arrays that are not support by controller's
6581 * OROM/EFI
6582 */
6583
6584 this = malloc(sizeof(*this));
6585 if (!this) {
6586 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
6587 sizeof(*this));
6588 break;
6589 }
6590
6591 super->current_vol = i;
6592 getinfo_super_imsm_volume(st, this, NULL);
6593 this->next = rest;
6594 #ifndef MDASSEMBLE
6595 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
6596 /* mdadm does not support all metadata features- set the bit in all arrays state */
6597 if (!validate_geometry_imsm_orom(super,
6598 get_imsm_raid_level(map), /* RAID level */
6599 imsm_level_to_layout(get_imsm_raid_level(map)),
6600 map->num_members, /* raid disks */
6601 &chunk,
6602 1 /* verbose */)) {
6603 fprintf(stderr, Name ": IMSM RAID geometry validation"
6604 " failed. Array %s activation is blocked.\n",
6605 dev->volume);
6606 this->array.state |=
6607 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6608 (1<<MD_SB_BLOCK_VOLUME);
6609 }
6610 #endif
6611
6612 /* if array has bad blocks, set suitable bit in all arrays state */
6613 if (sb_errors)
6614 this->array.state |=
6615 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6616 (1<<MD_SB_BLOCK_VOLUME);
6617
6618 for (slot = 0 ; slot < map->num_members; slot++) {
6619 unsigned long long recovery_start;
6620 struct mdinfo *info_d;
6621 struct dl *d;
6622 int idx;
6623 int skip;
6624 __u32 ord;
6625
6626 skip = 0;
6627 idx = get_imsm_disk_idx(dev, slot, MAP_0);
6628 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
6629 for (d = super->disks; d ; d = d->next)
6630 if (d->index == idx)
6631 break;
6632
6633 recovery_start = MaxSector;
6634 if (d == NULL)
6635 skip = 1;
6636 if (d && is_failed(&d->disk))
6637 skip = 1;
6638 if (ord & IMSM_ORD_REBUILD)
6639 recovery_start = 0;
6640
6641 /*
6642 * if we skip some disks the array will be assmebled degraded;
6643 * reset resync start to avoid a dirty-degraded
6644 * situation when performing the intial sync
6645 *
6646 * FIXME handle dirty degraded
6647 */
6648 if ((skip || recovery_start == 0) && !dev->vol.dirty)
6649 this->resync_start = MaxSector;
6650 if (skip)
6651 continue;
6652
6653 info_d = calloc(1, sizeof(*info_d));
6654 if (!info_d) {
6655 fprintf(stderr, Name ": failed to allocate disk"
6656 " for volume %.16s\n", dev->volume);
6657 info_d = this->devs;
6658 while (info_d) {
6659 struct mdinfo *d = info_d->next;
6660
6661 free(info_d);
6662 info_d = d;
6663 }
6664 free(this);
6665 this = rest;
6666 break;
6667 }
6668 info_d->next = this->devs;
6669 this->devs = info_d;
6670
6671 info_d->disk.number = d->index;
6672 info_d->disk.major = d->major;
6673 info_d->disk.minor = d->minor;
6674 info_d->disk.raid_disk = slot;
6675 info_d->recovery_start = recovery_start;
6676 if (map2) {
6677 if (slot < map2->num_members)
6678 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6679 else
6680 this->array.spare_disks++;
6681 } else {
6682 if (slot < map->num_members)
6683 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6684 else
6685 this->array.spare_disks++;
6686 }
6687 if (info_d->recovery_start == MaxSector)
6688 this->array.working_disks++;
6689
6690 info_d->events = __le32_to_cpu(mpb->generation_num);
6691 info_d->data_offset = pba_of_lba0(map);
6692 info_d->component_size = blocks_per_member(map);
6693 }
6694 /* now that the disk list is up-to-date fixup recovery_start */
6695 update_recovery_start(super, dev, this);
6696 this->array.spare_disks += spare_disks;
6697
6698 #ifndef MDASSEMBLE
6699 /* check for reshape */
6700 if (this->reshape_active == 1)
6701 recover_backup_imsm(st, this);
6702 #endif
6703 rest = this;
6704 }
6705
6706 return rest;
6707 }
6708
6709
6710 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6711 int failed, int look_in_map)
6712 {
6713 struct imsm_map *map;
6714
6715 map = get_imsm_map(dev, look_in_map);
6716
6717 if (!failed)
6718 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6719 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6720
6721 switch (get_imsm_raid_level(map)) {
6722 case 0:
6723 return IMSM_T_STATE_FAILED;
6724 break;
6725 case 1:
6726 if (failed < map->num_members)
6727 return IMSM_T_STATE_DEGRADED;
6728 else
6729 return IMSM_T_STATE_FAILED;
6730 break;
6731 case 10:
6732 {
6733 /**
6734 * check to see if any mirrors have failed, otherwise we
6735 * are degraded. Even numbered slots are mirrored on
6736 * slot+1
6737 */
6738 int i;
6739 /* gcc -Os complains that this is unused */
6740 int insync = insync;
6741
6742 for (i = 0; i < map->num_members; i++) {
6743 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6744 int idx = ord_to_idx(ord);
6745 struct imsm_disk *disk;
6746
6747 /* reset the potential in-sync count on even-numbered
6748 * slots. num_copies is always 2 for imsm raid10
6749 */
6750 if ((i & 1) == 0)
6751 insync = 2;
6752
6753 disk = get_imsm_disk(super, idx);
6754 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6755 insync--;
6756
6757 /* no in-sync disks left in this mirror the
6758 * array has failed
6759 */
6760 if (insync == 0)
6761 return IMSM_T_STATE_FAILED;
6762 }
6763
6764 return IMSM_T_STATE_DEGRADED;
6765 }
6766 case 5:
6767 if (failed < 2)
6768 return IMSM_T_STATE_DEGRADED;
6769 else
6770 return IMSM_T_STATE_FAILED;
6771 break;
6772 default:
6773 break;
6774 }
6775
6776 return map->map_state;
6777 }
6778
6779 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6780 int look_in_map)
6781 {
6782 int i;
6783 int failed = 0;
6784 struct imsm_disk *disk;
6785 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6786 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6787 struct imsm_map *map_for_loop;
6788 __u32 ord;
6789 int idx;
6790 int idx_1;
6791
6792 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6793 * disks that are being rebuilt. New failures are recorded to
6794 * map[0]. So we look through all the disks we started with and
6795 * see if any failures are still present, or if any new ones
6796 * have arrived
6797 */
6798 map_for_loop = map;
6799 if (prev && (map->num_members < prev->num_members))
6800 map_for_loop = prev;
6801
6802 for (i = 0; i < map_for_loop->num_members; i++) {
6803 idx_1 = -255;
6804 /* when MAP_X is passed both maps failures are counted
6805 */
6806 if (prev &&
6807 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6808 (i < prev->num_members)) {
6809 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6810 idx_1 = ord_to_idx(ord);
6811
6812 disk = get_imsm_disk(super, idx_1);
6813 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6814 failed++;
6815 }
6816 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6817 (i < map->num_members)) {
6818 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6819 idx = ord_to_idx(ord);
6820
6821 if (idx != idx_1) {
6822 disk = get_imsm_disk(super, idx);
6823 if (!disk || is_failed(disk) ||
6824 ord & IMSM_ORD_REBUILD)
6825 failed++;
6826 }
6827 }
6828 }
6829
6830 return failed;
6831 }
6832
6833 #ifndef MDASSEMBLE
6834 static int imsm_open_new(struct supertype *c, struct active_array *a,
6835 char *inst)
6836 {
6837 struct intel_super *super = c->sb;
6838 struct imsm_super *mpb = super->anchor;
6839
6840 if (atoi(inst) >= mpb->num_raid_devs) {
6841 fprintf(stderr, "%s: subarry index %d, out of range\n",
6842 __func__, atoi(inst));
6843 return -ENODEV;
6844 }
6845
6846 dprintf("imsm: open_new %s\n", inst);
6847 a->info.container_member = atoi(inst);
6848 return 0;
6849 }
6850
6851 static int is_resyncing(struct imsm_dev *dev)
6852 {
6853 struct imsm_map *migr_map;
6854
6855 if (!dev->vol.migr_state)
6856 return 0;
6857
6858 if (migr_type(dev) == MIGR_INIT ||
6859 migr_type(dev) == MIGR_REPAIR)
6860 return 1;
6861
6862 if (migr_type(dev) == MIGR_GEN_MIGR)
6863 return 0;
6864
6865 migr_map = get_imsm_map(dev, MAP_1);
6866
6867 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6868 (dev->vol.migr_type != MIGR_GEN_MIGR))
6869 return 1;
6870 else
6871 return 0;
6872 }
6873
6874 /* return true if we recorded new information */
6875 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6876 {
6877 __u32 ord;
6878 int slot;
6879 struct imsm_map *map;
6880 char buf[MAX_RAID_SERIAL_LEN+3];
6881 unsigned int len, shift = 0;
6882
6883 /* new failures are always set in map[0] */
6884 map = get_imsm_map(dev, MAP_0);
6885
6886 slot = get_imsm_disk_slot(map, idx);
6887 if (slot < 0)
6888 return 0;
6889
6890 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6891 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6892 return 0;
6893
6894 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6895 buf[MAX_RAID_SERIAL_LEN] = '\000';
6896 strcat(buf, ":0");
6897 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6898 shift = len - MAX_RAID_SERIAL_LEN + 1;
6899 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6900
6901 disk->status |= FAILED_DISK;
6902 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6903 /* mark failures in second map if second map exists and this disk
6904 * in this slot.
6905 * This is valid for migration, initialization and rebuild
6906 */
6907 if (dev->vol.migr_state) {
6908 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
6909 int slot2 = get_imsm_disk_slot(map2, idx);
6910
6911 if ((slot2 < map2->num_members) &&
6912 (slot2 >= 0))
6913 set_imsm_ord_tbl_ent(map2, slot2,
6914 idx | IMSM_ORD_REBUILD);
6915 }
6916 if (map->failed_disk_num == 0xff)
6917 map->failed_disk_num = slot;
6918 return 1;
6919 }
6920
6921 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6922 {
6923 mark_failure(dev, disk, idx);
6924
6925 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6926 return;
6927
6928 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6929 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6930 }
6931
6932 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6933 {
6934 struct dl *dl;
6935
6936 if (!super->missing)
6937 return;
6938
6939 dprintf("imsm: mark missing\n");
6940 /* end process for initialization and rebuild only
6941 */
6942 if (is_gen_migration(dev) == 0) {
6943 __u8 map_state;
6944 int failed;
6945
6946 failed = imsm_count_failed(super, dev, MAP_0);
6947 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6948
6949 end_migration(dev, super, map_state);
6950 }
6951 for (dl = super->missing; dl; dl = dl->next)
6952 mark_missing(dev, &dl->disk, dl->index);
6953 super->updates_pending++;
6954 }
6955
6956 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6957 {
6958 int used_disks = imsm_num_data_members(dev, MAP_0);
6959 unsigned long long array_blocks;
6960 struct imsm_map *map;
6961
6962 if (used_disks == 0) {
6963 /* when problems occures
6964 * return current array_blocks value
6965 */
6966 array_blocks = __le32_to_cpu(dev->size_high);
6967 array_blocks = array_blocks << 32;
6968 array_blocks += __le32_to_cpu(dev->size_low);
6969
6970 return array_blocks;
6971 }
6972
6973 /* set array size in metadata
6974 */
6975 map = get_imsm_map(dev, MAP_0);
6976 array_blocks = blocks_per_member(map) * used_disks;
6977
6978 /* round array size down to closest MB
6979 */
6980 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6981 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6982 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6983
6984 return array_blocks;
6985 }
6986
6987 static void imsm_set_disk(struct active_array *a, int n, int state);
6988
6989 static void imsm_progress_container_reshape(struct intel_super *super)
6990 {
6991 /* if no device has a migr_state, but some device has a
6992 * different number of members than the previous device, start
6993 * changing the number of devices in this device to match
6994 * previous.
6995 */
6996 struct imsm_super *mpb = super->anchor;
6997 int prev_disks = -1;
6998 int i;
6999 int copy_map_size;
7000
7001 for (i = 0; i < mpb->num_raid_devs; i++) {
7002 struct imsm_dev *dev = get_imsm_dev(super, i);
7003 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7004 struct imsm_map *map2;
7005 int prev_num_members;
7006
7007 if (dev->vol.migr_state)
7008 return;
7009
7010 if (prev_disks == -1)
7011 prev_disks = map->num_members;
7012 if (prev_disks == map->num_members)
7013 continue;
7014
7015 /* OK, this array needs to enter reshape mode.
7016 * i.e it needs a migr_state
7017 */
7018
7019 copy_map_size = sizeof_imsm_map(map);
7020 prev_num_members = map->num_members;
7021 map->num_members = prev_disks;
7022 dev->vol.migr_state = 1;
7023 dev->vol.curr_migr_unit = 0;
7024 set_migr_type(dev, MIGR_GEN_MIGR);
7025 for (i = prev_num_members;
7026 i < map->num_members; i++)
7027 set_imsm_ord_tbl_ent(map, i, i);
7028 map2 = get_imsm_map(dev, MAP_1);
7029 /* Copy the current map */
7030 memcpy(map2, map, copy_map_size);
7031 map2->num_members = prev_num_members;
7032
7033 imsm_set_array_size(dev);
7034 super->clean_migration_record_by_mdmon = 1;
7035 super->updates_pending++;
7036 }
7037 }
7038
7039 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
7040 * states are handled in imsm_set_disk() with one exception, when a
7041 * resync is stopped due to a new failure this routine will set the
7042 * 'degraded' state for the array.
7043 */
7044 static int imsm_set_array_state(struct active_array *a, int consistent)
7045 {
7046 int inst = a->info.container_member;
7047 struct intel_super *super = a->container->sb;
7048 struct imsm_dev *dev = get_imsm_dev(super, inst);
7049 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7050 int failed = imsm_count_failed(super, dev, MAP_0);
7051 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7052 __u32 blocks_per_unit;
7053
7054 if (dev->vol.migr_state &&
7055 dev->vol.migr_type == MIGR_GEN_MIGR) {
7056 /* array state change is blocked due to reshape action
7057 * We might need to
7058 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7059 * - finish the reshape (if last_checkpoint is big and action != reshape)
7060 * - update curr_migr_unit
7061 */
7062 if (a->curr_action == reshape) {
7063 /* still reshaping, maybe update curr_migr_unit */
7064 goto mark_checkpoint;
7065 } else {
7066 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7067 /* for some reason we aborted the reshape.
7068 *
7069 * disable automatic metadata rollback
7070 * user action is required to recover process
7071 */
7072 if (0) {
7073 struct imsm_map *map2 =
7074 get_imsm_map(dev, MAP_1);
7075 dev->vol.migr_state = 0;
7076 set_migr_type(dev, 0);
7077 dev->vol.curr_migr_unit = 0;
7078 memcpy(map, map2,
7079 sizeof_imsm_map(map2));
7080 super->updates_pending++;
7081 }
7082 }
7083 if (a->last_checkpoint >= a->info.component_size) {
7084 unsigned long long array_blocks;
7085 int used_disks;
7086 struct mdinfo *mdi;
7087
7088 used_disks = imsm_num_data_members(dev, MAP_0);
7089 if (used_disks > 0) {
7090 array_blocks =
7091 blocks_per_member(map) *
7092 used_disks;
7093 /* round array size down to closest MB
7094 */
7095 array_blocks = (array_blocks
7096 >> SECT_PER_MB_SHIFT)
7097 << SECT_PER_MB_SHIFT;
7098 a->info.custom_array_size = array_blocks;
7099 /* encourage manager to update array
7100 * size
7101 */
7102
7103 a->check_reshape = 1;
7104 }
7105 /* finalize online capacity expansion/reshape */
7106 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7107 imsm_set_disk(a,
7108 mdi->disk.raid_disk,
7109 mdi->curr_state);
7110
7111 imsm_progress_container_reshape(super);
7112 }
7113 }
7114 }
7115
7116 /* before we activate this array handle any missing disks */
7117 if (consistent == 2)
7118 handle_missing(super, dev);
7119
7120 if (consistent == 2 &&
7121 (!is_resync_complete(&a->info) ||
7122 map_state != IMSM_T_STATE_NORMAL ||
7123 dev->vol.migr_state))
7124 consistent = 0;
7125
7126 if (is_resync_complete(&a->info)) {
7127 /* complete intialization / resync,
7128 * recovery and interrupted recovery is completed in
7129 * ->set_disk
7130 */
7131 if (is_resyncing(dev)) {
7132 dprintf("imsm: mark resync done\n");
7133 end_migration(dev, super, map_state);
7134 super->updates_pending++;
7135 a->last_checkpoint = 0;
7136 }
7137 } else if ((!is_resyncing(dev) && !failed) &&
7138 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
7139 /* mark the start of the init process if nothing is failed */
7140 dprintf("imsm: mark resync start\n");
7141 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
7142 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
7143 else
7144 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
7145 super->updates_pending++;
7146 }
7147
7148 mark_checkpoint:
7149 /* skip checkpointing for general migration,
7150 * it is controlled in mdadm
7151 */
7152 if (is_gen_migration(dev))
7153 goto skip_mark_checkpoint;
7154
7155 /* check if we can update curr_migr_unit from resync_start, recovery_start */
7156 blocks_per_unit = blocks_per_migr_unit(super, dev);
7157 if (blocks_per_unit) {
7158 __u32 units32;
7159 __u64 units;
7160
7161 units = a->last_checkpoint / blocks_per_unit;
7162 units32 = units;
7163
7164 /* check that we did not overflow 32-bits, and that
7165 * curr_migr_unit needs updating
7166 */
7167 if (units32 == units &&
7168 units32 != 0 &&
7169 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7170 dprintf("imsm: mark checkpoint (%u)\n", units32);
7171 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7172 super->updates_pending++;
7173 }
7174 }
7175
7176 skip_mark_checkpoint:
7177 /* mark dirty / clean */
7178 if (dev->vol.dirty != !consistent) {
7179 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
7180 if (consistent)
7181 dev->vol.dirty = 0;
7182 else
7183 dev->vol.dirty = 1;
7184 super->updates_pending++;
7185 }
7186
7187 return consistent;
7188 }
7189
7190 static void imsm_set_disk(struct active_array *a, int n, int state)
7191 {
7192 int inst = a->info.container_member;
7193 struct intel_super *super = a->container->sb;
7194 struct imsm_dev *dev = get_imsm_dev(super, inst);
7195 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7196 struct imsm_disk *disk;
7197 int failed;
7198 __u32 ord;
7199 __u8 map_state;
7200
7201 if (n > map->num_members)
7202 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
7203 n, map->num_members - 1);
7204
7205 if (n < 0)
7206 return;
7207
7208 dprintf("imsm: set_disk %d:%x\n", n, state);
7209
7210 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
7211 disk = get_imsm_disk(super, ord_to_idx(ord));
7212
7213 /* check for new failures */
7214 if (state & DS_FAULTY) {
7215 if (mark_failure(dev, disk, ord_to_idx(ord)))
7216 super->updates_pending++;
7217 }
7218
7219 /* check if in_sync */
7220 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
7221 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7222
7223 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
7224 super->updates_pending++;
7225 }
7226
7227 failed = imsm_count_failed(super, dev, MAP_0);
7228 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7229
7230 /* check if recovery complete, newly degraded, or failed */
7231 dprintf("imsm: Detected transition to state ");
7232 switch (map_state) {
7233 case IMSM_T_STATE_NORMAL: /* transition to normal state */
7234 dprintf("normal: ");
7235 if (is_rebuilding(dev)) {
7236 dprintf("while rebuilding");
7237 end_migration(dev, super, map_state);
7238 map = get_imsm_map(dev, MAP_0);
7239 map->failed_disk_num = ~0;
7240 super->updates_pending++;
7241 a->last_checkpoint = 0;
7242 break;
7243 }
7244 if (is_gen_migration(dev)) {
7245 dprintf("while general migration");
7246 if (a->last_checkpoint >= a->info.component_size)
7247 end_migration(dev, super, map_state);
7248 else
7249 map->map_state = map_state;
7250 map = get_imsm_map(dev, MAP_0);
7251 map->failed_disk_num = ~0;
7252 super->updates_pending++;
7253 break;
7254 }
7255 break;
7256 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
7257 dprintf("degraded: ");
7258 if ((map->map_state != map_state) &&
7259 !dev->vol.migr_state) {
7260 dprintf("mark degraded");
7261 map->map_state = map_state;
7262 super->updates_pending++;
7263 a->last_checkpoint = 0;
7264 break;
7265 }
7266 if (is_rebuilding(dev)) {
7267 dprintf("while rebuilding.");
7268 if (map->map_state != map_state) {
7269 dprintf(" Map state change");
7270 end_migration(dev, super, map_state);
7271 super->updates_pending++;
7272 }
7273 break;
7274 }
7275 if (is_gen_migration(dev)) {
7276 dprintf("while general migration");
7277 if (a->last_checkpoint >= a->info.component_size)
7278 end_migration(dev, super, map_state);
7279 else {
7280 map->map_state = map_state;
7281 manage_second_map(super, dev);
7282 }
7283 super->updates_pending++;
7284 break;
7285 }
7286 if (is_initializing(dev)) {
7287 dprintf("while initialization.");
7288 map->map_state = map_state;
7289 super->updates_pending++;
7290 break;
7291 }
7292 break;
7293 case IMSM_T_STATE_FAILED: /* transition to failed state */
7294 dprintf("failed: ");
7295 if (is_gen_migration(dev)) {
7296 dprintf("while general migration");
7297 map->map_state = map_state;
7298 super->updates_pending++;
7299 break;
7300 }
7301 if (map->map_state != map_state) {
7302 dprintf("mark failed");
7303 end_migration(dev, super, map_state);
7304 super->updates_pending++;
7305 a->last_checkpoint = 0;
7306 break;
7307 }
7308 break;
7309 default:
7310 dprintf("state %i\n", map_state);
7311 }
7312 dprintf("\n");
7313
7314 }
7315
7316 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
7317 {
7318 void *buf = mpb;
7319 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7320 unsigned long long dsize;
7321 unsigned long long sectors;
7322
7323 get_dev_size(fd, NULL, &dsize);
7324
7325 if (mpb_size > 512) {
7326 /* -1 to account for anchor */
7327 sectors = mpb_sectors(mpb) - 1;
7328
7329 /* write the extended mpb to the sectors preceeding the anchor */
7330 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
7331 return 1;
7332
7333 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
7334 != 512 * sectors)
7335 return 1;
7336 }
7337
7338 /* first block is stored on second to last sector of the disk */
7339 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
7340 return 1;
7341
7342 if (write(fd, buf, 512) != 512)
7343 return 1;
7344
7345 return 0;
7346 }
7347
7348 static void imsm_sync_metadata(struct supertype *container)
7349 {
7350 struct intel_super *super = container->sb;
7351
7352 dprintf("sync metadata: %d\n", super->updates_pending);
7353 if (!super->updates_pending)
7354 return;
7355
7356 write_super_imsm(container, 0);
7357
7358 super->updates_pending = 0;
7359 }
7360
7361 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7362 {
7363 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7364 int i = get_imsm_disk_idx(dev, idx, MAP_X);
7365 struct dl *dl;
7366
7367 for (dl = super->disks; dl; dl = dl->next)
7368 if (dl->index == i)
7369 break;
7370
7371 if (dl && is_failed(&dl->disk))
7372 dl = NULL;
7373
7374 if (dl)
7375 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
7376
7377 return dl;
7378 }
7379
7380 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
7381 struct active_array *a, int activate_new,
7382 struct mdinfo *additional_test_list)
7383 {
7384 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7385 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
7386 struct imsm_super *mpb = super->anchor;
7387 struct imsm_map *map;
7388 unsigned long long pos;
7389 struct mdinfo *d;
7390 struct extent *ex;
7391 int i, j;
7392 int found;
7393 __u32 array_start = 0;
7394 __u32 array_end = 0;
7395 struct dl *dl;
7396 struct mdinfo *test_list;
7397
7398 for (dl = super->disks; dl; dl = dl->next) {
7399 /* If in this array, skip */
7400 for (d = a->info.devs ; d ; d = d->next)
7401 if (d->state_fd >= 0 &&
7402 d->disk.major == dl->major &&
7403 d->disk.minor == dl->minor) {
7404 dprintf("%x:%x already in array\n",
7405 dl->major, dl->minor);
7406 break;
7407 }
7408 if (d)
7409 continue;
7410 test_list = additional_test_list;
7411 while (test_list) {
7412 if (test_list->disk.major == dl->major &&
7413 test_list->disk.minor == dl->minor) {
7414 dprintf("%x:%x already in additional test list\n",
7415 dl->major, dl->minor);
7416 break;
7417 }
7418 test_list = test_list->next;
7419 }
7420 if (test_list)
7421 continue;
7422
7423 /* skip in use or failed drives */
7424 if (is_failed(&dl->disk) || idx == dl->index ||
7425 dl->index == -2) {
7426 dprintf("%x:%x status (failed: %d index: %d)\n",
7427 dl->major, dl->minor, is_failed(&dl->disk), idx);
7428 continue;
7429 }
7430
7431 /* skip pure spares when we are looking for partially
7432 * assimilated drives
7433 */
7434 if (dl->index == -1 && !activate_new)
7435 continue;
7436
7437 /* Does this unused device have the requisite free space?
7438 * It needs to be able to cover all member volumes
7439 */
7440 ex = get_extents(super, dl);
7441 if (!ex) {
7442 dprintf("cannot get extents\n");
7443 continue;
7444 }
7445 for (i = 0; i < mpb->num_raid_devs; i++) {
7446 dev = get_imsm_dev(super, i);
7447 map = get_imsm_map(dev, MAP_0);
7448
7449 /* check if this disk is already a member of
7450 * this array
7451 */
7452 if (get_imsm_disk_slot(map, dl->index) >= 0)
7453 continue;
7454
7455 found = 0;
7456 j = 0;
7457 pos = 0;
7458 array_start = pba_of_lba0(map);
7459 array_end = array_start +
7460 blocks_per_member(map) - 1;
7461
7462 do {
7463 /* check that we can start at pba_of_lba0 with
7464 * blocks_per_member of space
7465 */
7466 if (array_start >= pos && array_end < ex[j].start) {
7467 found = 1;
7468 break;
7469 }
7470 pos = ex[j].start + ex[j].size;
7471 j++;
7472 } while (ex[j-1].size);
7473
7474 if (!found)
7475 break;
7476 }
7477
7478 free(ex);
7479 if (i < mpb->num_raid_devs) {
7480 dprintf("%x:%x does not have %u to %u available\n",
7481 dl->major, dl->minor, array_start, array_end);
7482 /* No room */
7483 continue;
7484 }
7485 return dl;
7486 }
7487
7488 return dl;
7489 }
7490
7491
7492 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7493 {
7494 struct imsm_dev *dev2;
7495 struct imsm_map *map;
7496 struct dl *idisk;
7497 int slot;
7498 int idx;
7499 __u8 state;
7500
7501 dev2 = get_imsm_dev(cont->sb, dev_idx);
7502 if (dev2) {
7503 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
7504 if (state == IMSM_T_STATE_FAILED) {
7505 map = get_imsm_map(dev2, MAP_0);
7506 if (!map)
7507 return 1;
7508 for (slot = 0; slot < map->num_members; slot++) {
7509 /*
7510 * Check if failed disks are deleted from intel
7511 * disk list or are marked to be deleted
7512 */
7513 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
7514 idisk = get_imsm_dl_disk(cont->sb, idx);
7515 /*
7516 * Do not rebuild the array if failed disks
7517 * from failed sub-array are not removed from
7518 * container.
7519 */
7520 if (idisk &&
7521 is_failed(&idisk->disk) &&
7522 (idisk->action != DISK_REMOVE))
7523 return 0;
7524 }
7525 }
7526 }
7527 return 1;
7528 }
7529
7530 static struct mdinfo *imsm_activate_spare(struct active_array *a,
7531 struct metadata_update **updates)
7532 {
7533 /**
7534 * Find a device with unused free space and use it to replace a
7535 * failed/vacant region in an array. We replace failed regions one a
7536 * array at a time. The result is that a new spare disk will be added
7537 * to the first failed array and after the monitor has finished
7538 * propagating failures the remainder will be consumed.
7539 *
7540 * FIXME add a capability for mdmon to request spares from another
7541 * container.
7542 */
7543
7544 struct intel_super *super = a->container->sb;
7545 int inst = a->info.container_member;
7546 struct imsm_dev *dev = get_imsm_dev(super, inst);
7547 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7548 int failed = a->info.array.raid_disks;
7549 struct mdinfo *rv = NULL;
7550 struct mdinfo *d;
7551 struct mdinfo *di;
7552 struct metadata_update *mu;
7553 struct dl *dl;
7554 struct imsm_update_activate_spare *u;
7555 int num_spares = 0;
7556 int i;
7557 int allowed;
7558
7559 for (d = a->info.devs ; d ; d = d->next) {
7560 if ((d->curr_state & DS_FAULTY) &&
7561 d->state_fd >= 0)
7562 /* wait for Removal to happen */
7563 return NULL;
7564 if (d->state_fd >= 0)
7565 failed--;
7566 }
7567
7568 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7569 inst, failed, a->info.array.raid_disks, a->info.array.level);
7570
7571 if (imsm_reshape_blocks_arrays_changes(super))
7572 return NULL;
7573
7574 /* Cannot activate another spare if rebuild is in progress already
7575 */
7576 if (is_rebuilding(dev)) {
7577 dprintf("imsm: No spare activation allowed. "
7578 "Rebuild in progress already.\n");
7579 return NULL;
7580 }
7581
7582 if (a->info.array.level == 4)
7583 /* No repair for takeovered array
7584 * imsm doesn't support raid4
7585 */
7586 return NULL;
7587
7588 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7589 IMSM_T_STATE_DEGRADED)
7590 return NULL;
7591
7592 /*
7593 * If there are any failed disks check state of the other volume.
7594 * Block rebuild if the another one is failed until failed disks
7595 * are removed from container.
7596 */
7597 if (failed) {
7598 dprintf("found failed disks in %.*s, check if there another"
7599 "failed sub-array.\n",
7600 MAX_RAID_SERIAL_LEN, dev->volume);
7601 /* check if states of the other volumes allow for rebuild */
7602 for (i = 0; i < super->anchor->num_raid_devs; i++) {
7603 if (i != inst) {
7604 allowed = imsm_rebuild_allowed(a->container,
7605 i, failed);
7606 if (!allowed)
7607 return NULL;
7608 }
7609 }
7610 }
7611
7612 /* For each slot, if it is not working, find a spare */
7613 for (i = 0; i < a->info.array.raid_disks; i++) {
7614 for (d = a->info.devs ; d ; d = d->next)
7615 if (d->disk.raid_disk == i)
7616 break;
7617 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7618 if (d && (d->state_fd >= 0))
7619 continue;
7620
7621 /*
7622 * OK, this device needs recovery. Try to re-add the
7623 * previous occupant of this slot, if this fails see if
7624 * we can continue the assimilation of a spare that was
7625 * partially assimilated, finally try to activate a new
7626 * spare.
7627 */
7628 dl = imsm_readd(super, i, a);
7629 if (!dl)
7630 dl = imsm_add_spare(super, i, a, 0, rv);
7631 if (!dl)
7632 dl = imsm_add_spare(super, i, a, 1, rv);
7633 if (!dl)
7634 continue;
7635
7636 /* found a usable disk with enough space */
7637 di = malloc(sizeof(*di));
7638 if (!di)
7639 continue;
7640 memset(di, 0, sizeof(*di));
7641
7642 /* dl->index will be -1 in the case we are activating a
7643 * pristine spare. imsm_process_update() will create a
7644 * new index in this case. Once a disk is found to be
7645 * failed in all member arrays it is kicked from the
7646 * metadata
7647 */
7648 di->disk.number = dl->index;
7649
7650 /* (ab)use di->devs to store a pointer to the device
7651 * we chose
7652 */
7653 di->devs = (struct mdinfo *) dl;
7654
7655 di->disk.raid_disk = i;
7656 di->disk.major = dl->major;
7657 di->disk.minor = dl->minor;
7658 di->disk.state = 0;
7659 di->recovery_start = 0;
7660 di->data_offset = pba_of_lba0(map);
7661 di->component_size = a->info.component_size;
7662 di->container_member = inst;
7663 super->random = random32();
7664 di->next = rv;
7665 rv = di;
7666 num_spares++;
7667 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7668 i, di->data_offset);
7669 }
7670
7671 if (!rv)
7672 /* No spares found */
7673 return rv;
7674 /* Now 'rv' has a list of devices to return.
7675 * Create a metadata_update record to update the
7676 * disk_ord_tbl for the array
7677 */
7678 mu = malloc(sizeof(*mu));
7679 if (mu) {
7680 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
7681 if (mu->buf == NULL) {
7682 free(mu);
7683 mu = NULL;
7684 }
7685 }
7686 if (!mu) {
7687 while (rv) {
7688 struct mdinfo *n = rv->next;
7689
7690 free(rv);
7691 rv = n;
7692 }
7693 return NULL;
7694 }
7695
7696 mu->space = NULL;
7697 mu->space_list = NULL;
7698 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7699 mu->next = *updates;
7700 u = (struct imsm_update_activate_spare *) mu->buf;
7701
7702 for (di = rv ; di ; di = di->next) {
7703 u->type = update_activate_spare;
7704 u->dl = (struct dl *) di->devs;
7705 di->devs = NULL;
7706 u->slot = di->disk.raid_disk;
7707 u->array = inst;
7708 u->next = u + 1;
7709 u++;
7710 }
7711 (u-1)->next = NULL;
7712 *updates = mu;
7713
7714 return rv;
7715 }
7716
7717 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7718 {
7719 struct imsm_dev *dev = get_imsm_dev(super, idx);
7720 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7721 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7722 struct disk_info *inf = get_disk_info(u);
7723 struct imsm_disk *disk;
7724 int i;
7725 int j;
7726
7727 for (i = 0; i < map->num_members; i++) {
7728 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7729 for (j = 0; j < new_map->num_members; j++)
7730 if (serialcmp(disk->serial, inf[j].serial) == 0)
7731 return 1;
7732 }
7733
7734 return 0;
7735 }
7736
7737
7738 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7739 {
7740 struct dl *dl = NULL;
7741 for (dl = super->disks; dl; dl = dl->next)
7742 if ((dl->major == major) && (dl->minor == minor))
7743 return dl;
7744 return NULL;
7745 }
7746
7747 static int remove_disk_super(struct intel_super *super, int major, int minor)
7748 {
7749 struct dl *prev = NULL;
7750 struct dl *dl;
7751
7752 prev = NULL;
7753 for (dl = super->disks; dl; dl = dl->next) {
7754 if ((dl->major == major) && (dl->minor == minor)) {
7755 /* remove */
7756 if (prev)
7757 prev->next = dl->next;
7758 else
7759 super->disks = dl->next;
7760 dl->next = NULL;
7761 __free_imsm_disk(dl);
7762 dprintf("%s: removed %x:%x\n",
7763 __func__, major, minor);
7764 break;
7765 }
7766 prev = dl;
7767 }
7768 return 0;
7769 }
7770
7771 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7772
7773 static int add_remove_disk_update(struct intel_super *super)
7774 {
7775 int check_degraded = 0;
7776 struct dl *disk = NULL;
7777 /* add/remove some spares to/from the metadata/contrainer */
7778 while (super->disk_mgmt_list) {
7779 struct dl *disk_cfg;
7780
7781 disk_cfg = super->disk_mgmt_list;
7782 super->disk_mgmt_list = disk_cfg->next;
7783 disk_cfg->next = NULL;
7784
7785 if (disk_cfg->action == DISK_ADD) {
7786 disk_cfg->next = super->disks;
7787 super->disks = disk_cfg;
7788 check_degraded = 1;
7789 dprintf("%s: added %x:%x\n",
7790 __func__, disk_cfg->major,
7791 disk_cfg->minor);
7792 } else if (disk_cfg->action == DISK_REMOVE) {
7793 dprintf("Disk remove action processed: %x.%x\n",
7794 disk_cfg->major, disk_cfg->minor);
7795 disk = get_disk_super(super,
7796 disk_cfg->major,
7797 disk_cfg->minor);
7798 if (disk) {
7799 /* store action status */
7800 disk->action = DISK_REMOVE;
7801 /* remove spare disks only */
7802 if (disk->index == -1) {
7803 remove_disk_super(super,
7804 disk_cfg->major,
7805 disk_cfg->minor);
7806 }
7807 }
7808 /* release allocate disk structure */
7809 __free_imsm_disk(disk_cfg);
7810 }
7811 }
7812 return check_degraded;
7813 }
7814
7815
7816 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7817 struct intel_super *super,
7818 void ***space_list)
7819 {
7820 struct intel_dev *id;
7821 void **tofree = NULL;
7822 int ret_val = 0;
7823
7824 dprintf("apply_reshape_migration_update()\n");
7825 if ((u->subdev < 0) ||
7826 (u->subdev > 1)) {
7827 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7828 return ret_val;
7829 }
7830 if ((space_list == NULL) || (*space_list == NULL)) {
7831 dprintf("imsm: Error: Memory is not allocated\n");
7832 return ret_val;
7833 }
7834
7835 for (id = super->devlist ; id; id = id->next) {
7836 if (id->index == (unsigned)u->subdev) {
7837 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7838 struct imsm_map *map;
7839 struct imsm_dev *new_dev =
7840 (struct imsm_dev *)*space_list;
7841 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7842 int to_state;
7843 struct dl *new_disk;
7844
7845 if (new_dev == NULL)
7846 return ret_val;
7847 *space_list = **space_list;
7848 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
7849 map = get_imsm_map(new_dev, MAP_0);
7850 if (migr_map) {
7851 dprintf("imsm: Error: migration in progress");
7852 return ret_val;
7853 }
7854
7855 to_state = map->map_state;
7856 if ((u->new_level == 5) && (map->raid_level == 0)) {
7857 map->num_members++;
7858 /* this should not happen */
7859 if (u->new_disks[0] < 0) {
7860 map->failed_disk_num =
7861 map->num_members - 1;
7862 to_state = IMSM_T_STATE_DEGRADED;
7863 } else
7864 to_state = IMSM_T_STATE_NORMAL;
7865 }
7866 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
7867 if (u->new_level > -1)
7868 map->raid_level = u->new_level;
7869 migr_map = get_imsm_map(new_dev, MAP_1);
7870 if ((u->new_level == 5) &&
7871 (migr_map->raid_level == 0)) {
7872 int ord = map->num_members - 1;
7873 migr_map->num_members--;
7874 if (u->new_disks[0] < 0)
7875 ord |= IMSM_ORD_REBUILD;
7876 set_imsm_ord_tbl_ent(map,
7877 map->num_members - 1,
7878 ord);
7879 }
7880 id->dev = new_dev;
7881 tofree = (void **)dev;
7882
7883 /* update chunk size
7884 */
7885 if (u->new_chunksize > 0)
7886 map->blocks_per_strip =
7887 __cpu_to_le16(u->new_chunksize * 2);
7888
7889 /* add disk
7890 */
7891 if ((u->new_level != 5) ||
7892 (migr_map->raid_level != 0) ||
7893 (migr_map->raid_level == map->raid_level))
7894 goto skip_disk_add;
7895
7896 if (u->new_disks[0] >= 0) {
7897 /* use passes spare
7898 */
7899 new_disk = get_disk_super(super,
7900 major(u->new_disks[0]),
7901 minor(u->new_disks[0]));
7902 dprintf("imsm: new disk for reshape is: %i:%i "
7903 "(%p, index = %i)\n",
7904 major(u->new_disks[0]),
7905 minor(u->new_disks[0]),
7906 new_disk, new_disk->index);
7907 if (new_disk == NULL)
7908 goto error_disk_add;
7909
7910 new_disk->index = map->num_members - 1;
7911 /* slot to fill in autolayout
7912 */
7913 new_disk->raiddisk = new_disk->index;
7914 new_disk->disk.status |= CONFIGURED_DISK;
7915 new_disk->disk.status &= ~SPARE_DISK;
7916 } else
7917 goto error_disk_add;
7918
7919 skip_disk_add:
7920 *tofree = *space_list;
7921 /* calculate new size
7922 */
7923 imsm_set_array_size(new_dev);
7924
7925 ret_val = 1;
7926 }
7927 }
7928
7929 if (tofree)
7930 *space_list = tofree;
7931 return ret_val;
7932
7933 error_disk_add:
7934 dprintf("Error: imsm: Cannot find disk.\n");
7935 return ret_val;
7936 }
7937
7938 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7939 struct intel_super *super,
7940 struct active_array *active_array)
7941 {
7942 struct imsm_super *mpb = super->anchor;
7943 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7944 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7945 struct imsm_map *migr_map;
7946 struct active_array *a;
7947 struct imsm_disk *disk;
7948 __u8 to_state;
7949 struct dl *dl;
7950 unsigned int found;
7951 int failed;
7952 int victim;
7953 int i;
7954 int second_map_created = 0;
7955
7956 for (; u; u = u->next) {
7957 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
7958
7959 if (victim < 0)
7960 return 0;
7961
7962 for (dl = super->disks; dl; dl = dl->next)
7963 if (dl == u->dl)
7964 break;
7965
7966 if (!dl) {
7967 fprintf(stderr, "error: imsm_activate_spare passed "
7968 "an unknown disk (index: %d)\n",
7969 u->dl->index);
7970 return 0;
7971 }
7972
7973 /* count failures (excluding rebuilds and the victim)
7974 * to determine map[0] state
7975 */
7976 failed = 0;
7977 for (i = 0; i < map->num_members; i++) {
7978 if (i == u->slot)
7979 continue;
7980 disk = get_imsm_disk(super,
7981 get_imsm_disk_idx(dev, i, MAP_X));
7982 if (!disk || is_failed(disk))
7983 failed++;
7984 }
7985
7986 /* adding a pristine spare, assign a new index */
7987 if (dl->index < 0) {
7988 dl->index = super->anchor->num_disks;
7989 super->anchor->num_disks++;
7990 }
7991 disk = &dl->disk;
7992 disk->status |= CONFIGURED_DISK;
7993 disk->status &= ~SPARE_DISK;
7994
7995 /* mark rebuild */
7996 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
7997 if (!second_map_created) {
7998 second_map_created = 1;
7999 map->map_state = IMSM_T_STATE_DEGRADED;
8000 migrate(dev, super, to_state, MIGR_REBUILD);
8001 } else
8002 map->map_state = to_state;
8003 migr_map = get_imsm_map(dev, MAP_1);
8004 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8005 set_imsm_ord_tbl_ent(migr_map, u->slot,
8006 dl->index | IMSM_ORD_REBUILD);
8007
8008 /* update the family_num to mark a new container
8009 * generation, being careful to record the existing
8010 * family_num in orig_family_num to clean up after
8011 * earlier mdadm versions that neglected to set it.
8012 */
8013 if (mpb->orig_family_num == 0)
8014 mpb->orig_family_num = mpb->family_num;
8015 mpb->family_num += super->random;
8016
8017 /* count arrays using the victim in the metadata */
8018 found = 0;
8019 for (a = active_array; a ; a = a->next) {
8020 dev = get_imsm_dev(super, a->info.container_member);
8021 map = get_imsm_map(dev, MAP_0);
8022
8023 if (get_imsm_disk_slot(map, victim) >= 0)
8024 found++;
8025 }
8026
8027 /* delete the victim if it is no longer being
8028 * utilized anywhere
8029 */
8030 if (!found) {
8031 struct dl **dlp;
8032
8033 /* We know that 'manager' isn't touching anything,
8034 * so it is safe to delete
8035 */
8036 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
8037 if ((*dlp)->index == victim)
8038 break;
8039
8040 /* victim may be on the missing list */
8041 if (!*dlp)
8042 for (dlp = &super->missing; *dlp;
8043 dlp = &(*dlp)->next)
8044 if ((*dlp)->index == victim)
8045 break;
8046 imsm_delete(super, dlp, victim);
8047 }
8048 }
8049
8050 return 1;
8051 }
8052
8053 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8054 struct intel_super *super,
8055 void ***space_list)
8056 {
8057 struct dl *new_disk;
8058 struct intel_dev *id;
8059 int i;
8060 int delta_disks = u->new_raid_disks - u->old_raid_disks;
8061 int disk_count = u->old_raid_disks;
8062 void **tofree = NULL;
8063 int devices_to_reshape = 1;
8064 struct imsm_super *mpb = super->anchor;
8065 int ret_val = 0;
8066 unsigned int dev_id;
8067
8068 dprintf("imsm: apply_reshape_container_disks_update()\n");
8069
8070 /* enable spares to use in array */
8071 for (i = 0; i < delta_disks; i++) {
8072 new_disk = get_disk_super(super,
8073 major(u->new_disks[i]),
8074 minor(u->new_disks[i]));
8075 dprintf("imsm: new disk for reshape is: %i:%i "
8076 "(%p, index = %i)\n",
8077 major(u->new_disks[i]), minor(u->new_disks[i]),
8078 new_disk, new_disk->index);
8079 if ((new_disk == NULL) ||
8080 ((new_disk->index >= 0) &&
8081 (new_disk->index < u->old_raid_disks)))
8082 goto update_reshape_exit;
8083 new_disk->index = disk_count++;
8084 /* slot to fill in autolayout
8085 */
8086 new_disk->raiddisk = new_disk->index;
8087 new_disk->disk.status |=
8088 CONFIGURED_DISK;
8089 new_disk->disk.status &= ~SPARE_DISK;
8090 }
8091
8092 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8093 mpb->num_raid_devs);
8094 /* manage changes in volume
8095 */
8096 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
8097 void **sp = *space_list;
8098 struct imsm_dev *newdev;
8099 struct imsm_map *newmap, *oldmap;
8100
8101 for (id = super->devlist ; id; id = id->next) {
8102 if (id->index == dev_id)
8103 break;
8104 }
8105 if (id == NULL)
8106 break;
8107 if (!sp)
8108 continue;
8109 *space_list = *sp;
8110 newdev = (void*)sp;
8111 /* Copy the dev, but not (all of) the map */
8112 memcpy(newdev, id->dev, sizeof(*newdev));
8113 oldmap = get_imsm_map(id->dev, MAP_0);
8114 newmap = get_imsm_map(newdev, MAP_0);
8115 /* Copy the current map */
8116 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8117 /* update one device only
8118 */
8119 if (devices_to_reshape) {
8120 dprintf("imsm: modifying subdev: %i\n",
8121 id->index);
8122 devices_to_reshape--;
8123 newdev->vol.migr_state = 1;
8124 newdev->vol.curr_migr_unit = 0;
8125 set_migr_type(newdev, MIGR_GEN_MIGR);
8126 newmap->num_members = u->new_raid_disks;
8127 for (i = 0; i < delta_disks; i++) {
8128 set_imsm_ord_tbl_ent(newmap,
8129 u->old_raid_disks + i,
8130 u->old_raid_disks + i);
8131 }
8132 /* New map is correct, now need to save old map
8133 */
8134 newmap = get_imsm_map(newdev, MAP_1);
8135 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8136
8137 imsm_set_array_size(newdev);
8138 }
8139
8140 sp = (void **)id->dev;
8141 id->dev = newdev;
8142 *sp = tofree;
8143 tofree = sp;
8144
8145 /* Clear migration record */
8146 memset(super->migr_rec, 0, sizeof(struct migr_record));
8147 }
8148 if (tofree)
8149 *space_list = tofree;
8150 ret_val = 1;
8151
8152 update_reshape_exit:
8153
8154 return ret_val;
8155 }
8156
8157 static int apply_takeover_update(struct imsm_update_takeover *u,
8158 struct intel_super *super,
8159 void ***space_list)
8160 {
8161 struct imsm_dev *dev = NULL;
8162 struct intel_dev *dv;
8163 struct imsm_dev *dev_new;
8164 struct imsm_map *map;
8165 struct dl *dm, *du;
8166 int i;
8167
8168 for (dv = super->devlist; dv; dv = dv->next)
8169 if (dv->index == (unsigned int)u->subarray) {
8170 dev = dv->dev;
8171 break;
8172 }
8173
8174 if (dev == NULL)
8175 return 0;
8176
8177 map = get_imsm_map(dev, MAP_0);
8178
8179 if (u->direction == R10_TO_R0) {
8180 /* Number of failed disks must be half of initial disk number */
8181 if (imsm_count_failed(super, dev, MAP_0) !=
8182 (map->num_members / 2))
8183 return 0;
8184
8185 /* iterate through devices to mark removed disks as spare */
8186 for (dm = super->disks; dm; dm = dm->next) {
8187 if (dm->disk.status & FAILED_DISK) {
8188 int idx = dm->index;
8189 /* update indexes on the disk list */
8190 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
8191 the index values will end up being correct.... NB */
8192 for (du = super->disks; du; du = du->next)
8193 if (du->index > idx)
8194 du->index--;
8195 /* mark as spare disk */
8196 mark_spare(dm);
8197 }
8198 }
8199 /* update map */
8200 map->num_members = map->num_members / 2;
8201 map->map_state = IMSM_T_STATE_NORMAL;
8202 map->num_domains = 1;
8203 map->raid_level = 0;
8204 map->failed_disk_num = -1;
8205 }
8206
8207 if (u->direction == R0_TO_R10) {
8208 void **space;
8209 /* update slots in current disk list */
8210 for (dm = super->disks; dm; dm = dm->next) {
8211 if (dm->index >= 0)
8212 dm->index *= 2;
8213 }
8214 /* create new *missing* disks */
8215 for (i = 0; i < map->num_members; i++) {
8216 space = *space_list;
8217 if (!space)
8218 continue;
8219 *space_list = *space;
8220 du = (void *)space;
8221 memcpy(du, super->disks, sizeof(*du));
8222 du->fd = -1;
8223 du->minor = 0;
8224 du->major = 0;
8225 du->index = (i * 2) + 1;
8226 sprintf((char *)du->disk.serial,
8227 " MISSING_%d", du->index);
8228 sprintf((char *)du->serial,
8229 "MISSING_%d", du->index);
8230 du->next = super->missing;
8231 super->missing = du;
8232 }
8233 /* create new dev and map */
8234 space = *space_list;
8235 if (!space)
8236 return 0;
8237 *space_list = *space;
8238 dev_new = (void *)space;
8239 memcpy(dev_new, dev, sizeof(*dev));
8240 /* update new map */
8241 map = get_imsm_map(dev_new, MAP_0);
8242 map->num_members = map->num_members * 2;
8243 map->map_state = IMSM_T_STATE_DEGRADED;
8244 map->num_domains = 2;
8245 map->raid_level = 1;
8246 /* replace dev<->dev_new */
8247 dv->dev = dev_new;
8248 }
8249 /* update disk order table */
8250 for (du = super->disks; du; du = du->next)
8251 if (du->index >= 0)
8252 set_imsm_ord_tbl_ent(map, du->index, du->index);
8253 for (du = super->missing; du; du = du->next)
8254 if (du->index >= 0) {
8255 set_imsm_ord_tbl_ent(map, du->index, du->index);
8256 mark_missing(dv->dev, &du->disk, du->index);
8257 }
8258
8259 return 1;
8260 }
8261
8262 static void imsm_process_update(struct supertype *st,
8263 struct metadata_update *update)
8264 {
8265 /**
8266 * crack open the metadata_update envelope to find the update record
8267 * update can be one of:
8268 * update_reshape_container_disks - all the arrays in the container
8269 * are being reshaped to have more devices. We need to mark
8270 * the arrays for general migration and convert selected spares
8271 * into active devices.
8272 * update_activate_spare - a spare device has replaced a failed
8273 * device in an array, update the disk_ord_tbl. If this disk is
8274 * present in all member arrays then also clear the SPARE_DISK
8275 * flag
8276 * update_create_array
8277 * update_kill_array
8278 * update_rename_array
8279 * update_add_remove_disk
8280 */
8281 struct intel_super *super = st->sb;
8282 struct imsm_super *mpb;
8283 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8284
8285 /* update requires a larger buf but the allocation failed */
8286 if (super->next_len && !super->next_buf) {
8287 super->next_len = 0;
8288 return;
8289 }
8290
8291 if (super->next_buf) {
8292 memcpy(super->next_buf, super->buf, super->len);
8293 free(super->buf);
8294 super->len = super->next_len;
8295 super->buf = super->next_buf;
8296
8297 super->next_len = 0;
8298 super->next_buf = NULL;
8299 }
8300
8301 mpb = super->anchor;
8302
8303 switch (type) {
8304 case update_general_migration_checkpoint: {
8305 struct intel_dev *id;
8306 struct imsm_update_general_migration_checkpoint *u =
8307 (void *)update->buf;
8308
8309 dprintf("imsm: process_update() "
8310 "for update_general_migration_checkpoint called\n");
8311
8312 /* find device under general migration */
8313 for (id = super->devlist ; id; id = id->next) {
8314 if (is_gen_migration(id->dev)) {
8315 id->dev->vol.curr_migr_unit =
8316 __cpu_to_le32(u->curr_migr_unit);
8317 super->updates_pending++;
8318 }
8319 }
8320 break;
8321 }
8322 case update_takeover: {
8323 struct imsm_update_takeover *u = (void *)update->buf;
8324 if (apply_takeover_update(u, super, &update->space_list)) {
8325 imsm_update_version_info(super);
8326 super->updates_pending++;
8327 }
8328 break;
8329 }
8330
8331 case update_reshape_container_disks: {
8332 struct imsm_update_reshape *u = (void *)update->buf;
8333 if (apply_reshape_container_disks_update(
8334 u, super, &update->space_list))
8335 super->updates_pending++;
8336 break;
8337 }
8338 case update_reshape_migration: {
8339 struct imsm_update_reshape_migration *u = (void *)update->buf;
8340 if (apply_reshape_migration_update(
8341 u, super, &update->space_list))
8342 super->updates_pending++;
8343 break;
8344 }
8345 case update_activate_spare: {
8346 struct imsm_update_activate_spare *u = (void *) update->buf;
8347 if (apply_update_activate_spare(u, super, st->arrays))
8348 super->updates_pending++;
8349 break;
8350 }
8351 case update_create_array: {
8352 /* someone wants to create a new array, we need to be aware of
8353 * a few races/collisions:
8354 * 1/ 'Create' called by two separate instances of mdadm
8355 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8356 * devices that have since been assimilated via
8357 * activate_spare.
8358 * In the event this update can not be carried out mdadm will
8359 * (FIX ME) notice that its update did not take hold.
8360 */
8361 struct imsm_update_create_array *u = (void *) update->buf;
8362 struct intel_dev *dv;
8363 struct imsm_dev *dev;
8364 struct imsm_map *map, *new_map;
8365 unsigned long long start, end;
8366 unsigned long long new_start, new_end;
8367 int i;
8368 struct disk_info *inf;
8369 struct dl *dl;
8370
8371 /* handle racing creates: first come first serve */
8372 if (u->dev_idx < mpb->num_raid_devs) {
8373 dprintf("%s: subarray %d already defined\n",
8374 __func__, u->dev_idx);
8375 goto create_error;
8376 }
8377
8378 /* check update is next in sequence */
8379 if (u->dev_idx != mpb->num_raid_devs) {
8380 dprintf("%s: can not create array %d expected index %d\n",
8381 __func__, u->dev_idx, mpb->num_raid_devs);
8382 goto create_error;
8383 }
8384
8385 new_map = get_imsm_map(&u->dev, MAP_0);
8386 new_start = pba_of_lba0(new_map);
8387 new_end = new_start + blocks_per_member(new_map);
8388 inf = get_disk_info(u);
8389
8390 /* handle activate_spare versus create race:
8391 * check to make sure that overlapping arrays do not include
8392 * overalpping disks
8393 */
8394 for (i = 0; i < mpb->num_raid_devs; i++) {
8395 dev = get_imsm_dev(super, i);
8396 map = get_imsm_map(dev, MAP_0);
8397 start = pba_of_lba0(map);
8398 end = start + blocks_per_member(map);
8399 if ((new_start >= start && new_start <= end) ||
8400 (start >= new_start && start <= new_end))
8401 /* overlap */;
8402 else
8403 continue;
8404
8405 if (disks_overlap(super, i, u)) {
8406 dprintf("%s: arrays overlap\n", __func__);
8407 goto create_error;
8408 }
8409 }
8410
8411 /* check that prepare update was successful */
8412 if (!update->space) {
8413 dprintf("%s: prepare update failed\n", __func__);
8414 goto create_error;
8415 }
8416
8417 /* check that all disks are still active before committing
8418 * changes. FIXME: could we instead handle this by creating a
8419 * degraded array? That's probably not what the user expects,
8420 * so better to drop this update on the floor.
8421 */
8422 for (i = 0; i < new_map->num_members; i++) {
8423 dl = serial_to_dl(inf[i].serial, super);
8424 if (!dl) {
8425 dprintf("%s: disk disappeared\n", __func__);
8426 goto create_error;
8427 }
8428 }
8429
8430 super->updates_pending++;
8431
8432 /* convert spares to members and fixup ord_tbl */
8433 for (i = 0; i < new_map->num_members; i++) {
8434 dl = serial_to_dl(inf[i].serial, super);
8435 if (dl->index == -1) {
8436 dl->index = mpb->num_disks;
8437 mpb->num_disks++;
8438 dl->disk.status |= CONFIGURED_DISK;
8439 dl->disk.status &= ~SPARE_DISK;
8440 }
8441 set_imsm_ord_tbl_ent(new_map, i, dl->index);
8442 }
8443
8444 dv = update->space;
8445 dev = dv->dev;
8446 update->space = NULL;
8447 imsm_copy_dev(dev, &u->dev);
8448 dv->index = u->dev_idx;
8449 dv->next = super->devlist;
8450 super->devlist = dv;
8451 mpb->num_raid_devs++;
8452
8453 imsm_update_version_info(super);
8454 break;
8455 create_error:
8456 /* mdmon knows how to release update->space, but not
8457 * ((struct intel_dev *) update->space)->dev
8458 */
8459 if (update->space) {
8460 dv = update->space;
8461 free(dv->dev);
8462 }
8463 break;
8464 }
8465 case update_kill_array: {
8466 struct imsm_update_kill_array *u = (void *) update->buf;
8467 int victim = u->dev_idx;
8468 struct active_array *a;
8469 struct intel_dev **dp;
8470 struct imsm_dev *dev;
8471
8472 /* sanity check that we are not affecting the uuid of
8473 * active arrays, or deleting an active array
8474 *
8475 * FIXME when immutable ids are available, but note that
8476 * we'll also need to fixup the invalidated/active
8477 * subarray indexes in mdstat
8478 */
8479 for (a = st->arrays; a; a = a->next)
8480 if (a->info.container_member >= victim)
8481 break;
8482 /* by definition if mdmon is running at least one array
8483 * is active in the container, so checking
8484 * mpb->num_raid_devs is just extra paranoia
8485 */
8486 dev = get_imsm_dev(super, victim);
8487 if (a || !dev || mpb->num_raid_devs == 1) {
8488 dprintf("failed to delete subarray-%d\n", victim);
8489 break;
8490 }
8491
8492 for (dp = &super->devlist; *dp;)
8493 if ((*dp)->index == (unsigned)super->current_vol) {
8494 *dp = (*dp)->next;
8495 } else {
8496 if ((*dp)->index > (unsigned)victim)
8497 (*dp)->index--;
8498 dp = &(*dp)->next;
8499 }
8500 mpb->num_raid_devs--;
8501 super->updates_pending++;
8502 break;
8503 }
8504 case update_rename_array: {
8505 struct imsm_update_rename_array *u = (void *) update->buf;
8506 char name[MAX_RAID_SERIAL_LEN+1];
8507 int target = u->dev_idx;
8508 struct active_array *a;
8509 struct imsm_dev *dev;
8510
8511 /* sanity check that we are not affecting the uuid of
8512 * an active array
8513 */
8514 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8515 name[MAX_RAID_SERIAL_LEN] = '\0';
8516 for (a = st->arrays; a; a = a->next)
8517 if (a->info.container_member == target)
8518 break;
8519 dev = get_imsm_dev(super, u->dev_idx);
8520 if (a || !dev || !check_name(super, name, 1)) {
8521 dprintf("failed to rename subarray-%d\n", target);
8522 break;
8523 }
8524
8525 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
8526 super->updates_pending++;
8527 break;
8528 }
8529 case update_add_remove_disk: {
8530 /* we may be able to repair some arrays if disks are
8531 * being added, check teh status of add_remove_disk
8532 * if discs has been added.
8533 */
8534 if (add_remove_disk_update(super)) {
8535 struct active_array *a;
8536
8537 super->updates_pending++;
8538 for (a = st->arrays; a; a = a->next)
8539 a->check_degraded = 1;
8540 }
8541 break;
8542 }
8543 default:
8544 fprintf(stderr, "error: unsuported process update type:"
8545 "(type: %d)\n", type);
8546 }
8547 }
8548
8549 static struct mdinfo *get_spares_for_grow(struct supertype *st);
8550
8551 static void imsm_prepare_update(struct supertype *st,
8552 struct metadata_update *update)
8553 {
8554 /**
8555 * Allocate space to hold new disk entries, raid-device entries or a new
8556 * mpb if necessary. The manager synchronously waits for updates to
8557 * complete in the monitor, so new mpb buffers allocated here can be
8558 * integrated by the monitor thread without worrying about live pointers
8559 * in the manager thread.
8560 */
8561 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8562 struct intel_super *super = st->sb;
8563 struct imsm_super *mpb = super->anchor;
8564 size_t buf_len;
8565 size_t len = 0;
8566
8567 switch (type) {
8568 case update_general_migration_checkpoint:
8569 dprintf("imsm: prepare_update() "
8570 "for update_general_migration_checkpoint called\n");
8571 break;
8572 case update_takeover: {
8573 struct imsm_update_takeover *u = (void *)update->buf;
8574 if (u->direction == R0_TO_R10) {
8575 void **tail = (void **)&update->space_list;
8576 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
8577 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8578 int num_members = map->num_members;
8579 void *space;
8580 int size, i;
8581 int err = 0;
8582 /* allocate memory for added disks */
8583 for (i = 0; i < num_members; i++) {
8584 size = sizeof(struct dl);
8585 space = malloc(size);
8586 if (!space) {
8587 err++;
8588 break;
8589 }
8590 *tail = space;
8591 tail = space;
8592 *tail = NULL;
8593 }
8594 /* allocate memory for new device */
8595 size = sizeof_imsm_dev(super->devlist->dev, 0) +
8596 (num_members * sizeof(__u32));
8597 space = malloc(size);
8598 if (!space)
8599 err++;
8600 else {
8601 *tail = space;
8602 tail = space;
8603 *tail = NULL;
8604 }
8605 if (!err) {
8606 len = disks_to_mpb_size(num_members * 2);
8607 } else {
8608 /* if allocation didn't success, free buffer */
8609 while (update->space_list) {
8610 void **sp = update->space_list;
8611 update->space_list = *sp;
8612 free(sp);
8613 }
8614 }
8615 }
8616
8617 break;
8618 }
8619 case update_reshape_container_disks: {
8620 /* Every raid device in the container is about to
8621 * gain some more devices, and we will enter a
8622 * reconfiguration.
8623 * So each 'imsm_map' will be bigger, and the imsm_vol
8624 * will now hold 2 of them.
8625 * Thus we need new 'struct imsm_dev' allocations sized
8626 * as sizeof_imsm_dev but with more devices in both maps.
8627 */
8628 struct imsm_update_reshape *u = (void *)update->buf;
8629 struct intel_dev *dl;
8630 void **space_tail = (void**)&update->space_list;
8631
8632 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8633
8634 for (dl = super->devlist; dl; dl = dl->next) {
8635 int size = sizeof_imsm_dev(dl->dev, 1);
8636 void *s;
8637 if (u->new_raid_disks > u->old_raid_disks)
8638 size += sizeof(__u32)*2*
8639 (u->new_raid_disks - u->old_raid_disks);
8640 s = malloc(size);
8641 if (!s)
8642 break;
8643 *space_tail = s;
8644 space_tail = s;
8645 *space_tail = NULL;
8646 }
8647
8648 len = disks_to_mpb_size(u->new_raid_disks);
8649 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8650 break;
8651 }
8652 case update_reshape_migration: {
8653 /* for migration level 0->5 we need to add disks
8654 * so the same as for container operation we will copy
8655 * device to the bigger location.
8656 * in memory prepared device and new disk area are prepared
8657 * for usage in process update
8658 */
8659 struct imsm_update_reshape_migration *u = (void *)update->buf;
8660 struct intel_dev *id;
8661 void **space_tail = (void **)&update->space_list;
8662 int size;
8663 void *s;
8664 int current_level = -1;
8665
8666 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8667
8668 /* add space for bigger array in update
8669 */
8670 for (id = super->devlist; id; id = id->next) {
8671 if (id->index == (unsigned)u->subdev) {
8672 size = sizeof_imsm_dev(id->dev, 1);
8673 if (u->new_raid_disks > u->old_raid_disks)
8674 size += sizeof(__u32)*2*
8675 (u->new_raid_disks - u->old_raid_disks);
8676 s = malloc(size);
8677 if (!s)
8678 break;
8679 *space_tail = s;
8680 space_tail = s;
8681 *space_tail = NULL;
8682 break;
8683 }
8684 }
8685 if (update->space_list == NULL)
8686 break;
8687
8688 /* add space for disk in update
8689 */
8690 size = sizeof(struct dl);
8691 s = malloc(size);
8692 if (!s) {
8693 free(update->space_list);
8694 update->space_list = NULL;
8695 break;
8696 }
8697 *space_tail = s;
8698 space_tail = s;
8699 *space_tail = NULL;
8700
8701 /* add spare device to update
8702 */
8703 for (id = super->devlist ; id; id = id->next)
8704 if (id->index == (unsigned)u->subdev) {
8705 struct imsm_dev *dev;
8706 struct imsm_map *map;
8707
8708 dev = get_imsm_dev(super, u->subdev);
8709 map = get_imsm_map(dev, MAP_0);
8710 current_level = map->raid_level;
8711 break;
8712 }
8713 if ((u->new_level == 5) && (u->new_level != current_level)) {
8714 struct mdinfo *spares;
8715
8716 spares = get_spares_for_grow(st);
8717 if (spares) {
8718 struct dl *dl;
8719 struct mdinfo *dev;
8720
8721 dev = spares->devs;
8722 if (dev) {
8723 u->new_disks[0] =
8724 makedev(dev->disk.major,
8725 dev->disk.minor);
8726 dl = get_disk_super(super,
8727 dev->disk.major,
8728 dev->disk.minor);
8729 dl->index = u->old_raid_disks;
8730 dev = dev->next;
8731 }
8732 sysfs_free(spares);
8733 }
8734 }
8735 len = disks_to_mpb_size(u->new_raid_disks);
8736 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8737 break;
8738 }
8739 case update_create_array: {
8740 struct imsm_update_create_array *u = (void *) update->buf;
8741 struct intel_dev *dv;
8742 struct imsm_dev *dev = &u->dev;
8743 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8744 struct dl *dl;
8745 struct disk_info *inf;
8746 int i;
8747 int activate = 0;
8748
8749 inf = get_disk_info(u);
8750 len = sizeof_imsm_dev(dev, 1);
8751 /* allocate a new super->devlist entry */
8752 dv = malloc(sizeof(*dv));
8753 if (dv) {
8754 dv->dev = malloc(len);
8755 if (dv->dev)
8756 update->space = dv;
8757 else {
8758 free(dv);
8759 update->space = NULL;
8760 }
8761 }
8762
8763 /* count how many spares will be converted to members */
8764 for (i = 0; i < map->num_members; i++) {
8765 dl = serial_to_dl(inf[i].serial, super);
8766 if (!dl) {
8767 /* hmm maybe it failed?, nothing we can do about
8768 * it here
8769 */
8770 continue;
8771 }
8772 if (count_memberships(dl, super) == 0)
8773 activate++;
8774 }
8775 len += activate * sizeof(struct imsm_disk);
8776 break;
8777 default:
8778 break;
8779 }
8780 }
8781
8782 /* check if we need a larger metadata buffer */
8783 if (super->next_buf)
8784 buf_len = super->next_len;
8785 else
8786 buf_len = super->len;
8787
8788 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8789 /* ok we need a larger buf than what is currently allocated
8790 * if this allocation fails process_update will notice that
8791 * ->next_len is set and ->next_buf is NULL
8792 */
8793 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8794 if (super->next_buf)
8795 free(super->next_buf);
8796
8797 super->next_len = buf_len;
8798 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
8799 memset(super->next_buf, 0, buf_len);
8800 else
8801 super->next_buf = NULL;
8802 }
8803 }
8804
8805 /* must be called while manager is quiesced */
8806 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
8807 {
8808 struct imsm_super *mpb = super->anchor;
8809 struct dl *iter;
8810 struct imsm_dev *dev;
8811 struct imsm_map *map;
8812 int i, j, num_members;
8813 __u32 ord;
8814
8815 dprintf("%s: deleting device[%d] from imsm_super\n",
8816 __func__, index);
8817
8818 /* shift all indexes down one */
8819 for (iter = super->disks; iter; iter = iter->next)
8820 if (iter->index > (int)index)
8821 iter->index--;
8822 for (iter = super->missing; iter; iter = iter->next)
8823 if (iter->index > (int)index)
8824 iter->index--;
8825
8826 for (i = 0; i < mpb->num_raid_devs; i++) {
8827 dev = get_imsm_dev(super, i);
8828 map = get_imsm_map(dev, MAP_0);
8829 num_members = map->num_members;
8830 for (j = 0; j < num_members; j++) {
8831 /* update ord entries being careful not to propagate
8832 * ord-flags to the first map
8833 */
8834 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
8835
8836 if (ord_to_idx(ord) <= index)
8837 continue;
8838
8839 map = get_imsm_map(dev, MAP_0);
8840 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
8841 map = get_imsm_map(dev, MAP_1);
8842 if (map)
8843 set_imsm_ord_tbl_ent(map, j, ord - 1);
8844 }
8845 }
8846
8847 mpb->num_disks--;
8848 super->updates_pending++;
8849 if (*dlp) {
8850 struct dl *dl = *dlp;
8851
8852 *dlp = (*dlp)->next;
8853 __free_imsm_disk(dl);
8854 }
8855 }
8856 #endif /* MDASSEMBLE */
8857
8858 static void close_targets(int *targets, int new_disks)
8859 {
8860 int i;
8861
8862 if (!targets)
8863 return;
8864
8865 for (i = 0; i < new_disks; i++) {
8866 if (targets[i] >= 0) {
8867 close(targets[i]);
8868 targets[i] = -1;
8869 }
8870 }
8871 }
8872
8873 static int imsm_get_allowed_degradation(int level, int raid_disks,
8874 struct intel_super *super,
8875 struct imsm_dev *dev)
8876 {
8877 switch (level) {
8878 case 1:
8879 case 10:{
8880 int ret_val = 0;
8881 struct imsm_map *map;
8882 int i;
8883
8884 ret_val = raid_disks/2;
8885 /* check map if all disks pairs not failed
8886 * in both maps
8887 */
8888 map = get_imsm_map(dev, MAP_0);
8889 for (i = 0; i < ret_val; i++) {
8890 int degradation = 0;
8891 if (get_imsm_disk(super, i) == NULL)
8892 degradation++;
8893 if (get_imsm_disk(super, i + 1) == NULL)
8894 degradation++;
8895 if (degradation == 2)
8896 return 0;
8897 }
8898 map = get_imsm_map(dev, MAP_1);
8899 /* if there is no second map
8900 * result can be returned
8901 */
8902 if (map == NULL)
8903 return ret_val;
8904 /* check degradation in second map
8905 */
8906 for (i = 0; i < ret_val; i++) {
8907 int degradation = 0;
8908 if (get_imsm_disk(super, i) == NULL)
8909 degradation++;
8910 if (get_imsm_disk(super, i + 1) == NULL)
8911 degradation++;
8912 if (degradation == 2)
8913 return 0;
8914 }
8915 return ret_val;
8916 }
8917 case 5:
8918 return 1;
8919 case 6:
8920 return 2;
8921 default:
8922 return 0;
8923 }
8924 }
8925
8926
8927 /*******************************************************************************
8928 * Function: open_backup_targets
8929 * Description: Function opens file descriptors for all devices given in
8930 * info->devs
8931 * Parameters:
8932 * info : general array info
8933 * raid_disks : number of disks
8934 * raid_fds : table of device's file descriptors
8935 * super : intel super for raid10 degradation check
8936 * dev : intel device for raid10 degradation check
8937 * Returns:
8938 * 0 : success
8939 * -1 : fail
8940 ******************************************************************************/
8941 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
8942 struct intel_super *super, struct imsm_dev *dev)
8943 {
8944 struct mdinfo *sd;
8945 int i;
8946 int opened = 0;
8947
8948 for (i = 0; i < raid_disks; i++)
8949 raid_fds[i] = -1;
8950
8951 for (sd = info->devs ; sd ; sd = sd->next) {
8952 char *dn;
8953
8954 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
8955 dprintf("disk is faulty!!\n");
8956 continue;
8957 }
8958
8959 if ((sd->disk.raid_disk >= raid_disks) ||
8960 (sd->disk.raid_disk < 0))
8961 continue;
8962
8963 dn = map_dev(sd->disk.major,
8964 sd->disk.minor, 1);
8965 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8966 if (raid_fds[sd->disk.raid_disk] < 0) {
8967 fprintf(stderr, "cannot open component\n");
8968 continue;
8969 }
8970 opened++;
8971 }
8972 /* check if maximum array degradation level is not exceeded
8973 */
8974 if ((raid_disks - opened) >
8975 imsm_get_allowed_degradation(info->new_level,
8976 raid_disks,
8977 super, dev)) {
8978 fprintf(stderr, "Not enough disks can be opened.\n");
8979 close_targets(raid_fds, raid_disks);
8980 return -2;
8981 }
8982 return 0;
8983 }
8984
8985 #ifndef MDASSEMBLE
8986 /*******************************************************************************
8987 * Function: init_migr_record_imsm
8988 * Description: Function inits imsm migration record
8989 * Parameters:
8990 * super : imsm internal array info
8991 * dev : device under migration
8992 * info : general array info to find the smallest device
8993 * Returns:
8994 * none
8995 ******************************************************************************/
8996 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
8997 struct mdinfo *info)
8998 {
8999 struct intel_super *super = st->sb;
9000 struct migr_record *migr_rec = super->migr_rec;
9001 int new_data_disks;
9002 unsigned long long dsize, dev_sectors;
9003 long long unsigned min_dev_sectors = -1LLU;
9004 struct mdinfo *sd;
9005 char nm[30];
9006 int fd;
9007 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9008 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
9009 unsigned long long num_migr_units;
9010 unsigned long long array_blocks;
9011
9012 memset(migr_rec, 0, sizeof(struct migr_record));
9013 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9014
9015 /* only ascending reshape supported now */
9016 migr_rec->ascending_migr = __cpu_to_le32(1);
9017
9018 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9019 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9020 migr_rec->dest_depth_per_unit *=
9021 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9022 new_data_disks = imsm_num_data_members(dev, MAP_0);
9023 migr_rec->blocks_per_unit =
9024 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9025 migr_rec->dest_depth_per_unit =
9026 __cpu_to_le32(migr_rec->dest_depth_per_unit);
9027 array_blocks = info->component_size * new_data_disks;
9028 num_migr_units =
9029 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9030
9031 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9032 num_migr_units++;
9033 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9034
9035 migr_rec->post_migr_vol_cap = dev->size_low;
9036 migr_rec->post_migr_vol_cap_hi = dev->size_high;
9037
9038
9039 /* Find the smallest dev */
9040 for (sd = info->devs ; sd ; sd = sd->next) {
9041 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9042 fd = dev_open(nm, O_RDONLY);
9043 if (fd < 0)
9044 continue;
9045 get_dev_size(fd, NULL, &dsize);
9046 dev_sectors = dsize / 512;
9047 if (dev_sectors < min_dev_sectors)
9048 min_dev_sectors = dev_sectors;
9049 close(fd);
9050 }
9051 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9052 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9053
9054 write_imsm_migr_rec(st);
9055
9056 return;
9057 }
9058
9059 /*******************************************************************************
9060 * Function: save_backup_imsm
9061 * Description: Function saves critical data stripes to Migration Copy Area
9062 * and updates the current migration unit status.
9063 * Use restore_stripes() to form a destination stripe,
9064 * and to write it to the Copy Area.
9065 * Parameters:
9066 * st : supertype information
9067 * dev : imsm device that backup is saved for
9068 * info : general array info
9069 * buf : input buffer
9070 * length : length of data to backup (blocks_per_unit)
9071 * Returns:
9072 * 0 : success
9073 *, -1 : fail
9074 ******************************************************************************/
9075 int save_backup_imsm(struct supertype *st,
9076 struct imsm_dev *dev,
9077 struct mdinfo *info,
9078 void *buf,
9079 int length)
9080 {
9081 int rv = -1;
9082 struct intel_super *super = st->sb;
9083 unsigned long long *target_offsets = NULL;
9084 int *targets = NULL;
9085 int i;
9086 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9087 int new_disks = map_dest->num_members;
9088 int dest_layout = 0;
9089 int dest_chunk;
9090 unsigned long long start;
9091 int data_disks = imsm_num_data_members(dev, MAP_0);
9092
9093 targets = malloc(new_disks * sizeof(int));
9094 if (!targets)
9095 goto abort;
9096
9097 for (i = 0; i < new_disks; i++)
9098 targets[i] = -1;
9099
9100 target_offsets = malloc(new_disks * sizeof(unsigned long long));
9101 if (!target_offsets)
9102 goto abort;
9103
9104 start = info->reshape_progress * 512;
9105 for (i = 0; i < new_disks; i++) {
9106 target_offsets[i] = (unsigned long long)
9107 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
9108 /* move back copy area adderss, it will be moved forward
9109 * in restore_stripes() using start input variable
9110 */
9111 target_offsets[i] -= start/data_disks;
9112 }
9113
9114 if (open_backup_targets(info, new_disks, targets,
9115 super, dev))
9116 goto abort;
9117
9118 dest_layout = imsm_level_to_layout(map_dest->raid_level);
9119 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9120
9121 if (restore_stripes(targets, /* list of dest devices */
9122 target_offsets, /* migration record offsets */
9123 new_disks,
9124 dest_chunk,
9125 map_dest->raid_level,
9126 dest_layout,
9127 -1, /* source backup file descriptor */
9128 0, /* input buf offset
9129 * always 0 buf is already offseted */
9130 start,
9131 length,
9132 buf) != 0) {
9133 fprintf(stderr, Name ": Error restoring stripes\n");
9134 goto abort;
9135 }
9136
9137 rv = 0;
9138
9139 abort:
9140 if (targets) {
9141 close_targets(targets, new_disks);
9142 free(targets);
9143 }
9144 free(target_offsets);
9145
9146 return rv;
9147 }
9148
9149 /*******************************************************************************
9150 * Function: save_checkpoint_imsm
9151 * Description: Function called for current unit status update
9152 * in the migration record. It writes it to disk.
9153 * Parameters:
9154 * super : imsm internal array info
9155 * info : general array info
9156 * Returns:
9157 * 0: success
9158 * 1: failure
9159 * 2: failure, means no valid migration record
9160 * / no general migration in progress /
9161 ******************************************************************************/
9162 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9163 {
9164 struct intel_super *super = st->sb;
9165 unsigned long long blocks_per_unit;
9166 unsigned long long curr_migr_unit;
9167
9168 if (load_imsm_migr_rec(super, info) != 0) {
9169 dprintf("imsm: ERROR: Cannot read migration record "
9170 "for checkpoint save.\n");
9171 return 1;
9172 }
9173
9174 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9175 if (blocks_per_unit == 0) {
9176 dprintf("imsm: no migration in progress.\n");
9177 return 2;
9178 }
9179 curr_migr_unit = info->reshape_progress / blocks_per_unit;
9180 /* check if array is alligned to copy area
9181 * if it is not alligned, add one to current migration unit value
9182 * this can happend on array reshape finish only
9183 */
9184 if (info->reshape_progress % blocks_per_unit)
9185 curr_migr_unit++;
9186
9187 super->migr_rec->curr_migr_unit =
9188 __cpu_to_le32(curr_migr_unit);
9189 super->migr_rec->rec_status = __cpu_to_le32(state);
9190 super->migr_rec->dest_1st_member_lba =
9191 __cpu_to_le32(curr_migr_unit *
9192 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
9193 if (write_imsm_migr_rec(st) < 0) {
9194 dprintf("imsm: Cannot write migration record "
9195 "outside backup area\n");
9196 return 1;
9197 }
9198
9199 return 0;
9200 }
9201
9202 /*******************************************************************************
9203 * Function: recover_backup_imsm
9204 * Description: Function recovers critical data from the Migration Copy Area
9205 * while assembling an array.
9206 * Parameters:
9207 * super : imsm internal array info
9208 * info : general array info
9209 * Returns:
9210 * 0 : success (or there is no data to recover)
9211 * 1 : fail
9212 ******************************************************************************/
9213 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9214 {
9215 struct intel_super *super = st->sb;
9216 struct migr_record *migr_rec = super->migr_rec;
9217 struct imsm_map *map_dest = NULL;
9218 struct intel_dev *id = NULL;
9219 unsigned long long read_offset;
9220 unsigned long long write_offset;
9221 unsigned unit_len;
9222 int *targets = NULL;
9223 int new_disks, i, err;
9224 char *buf = NULL;
9225 int retval = 1;
9226 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9227 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
9228 char buffer[20];
9229 int skipped_disks = 0;
9230
9231 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9232 if (err < 1)
9233 return 1;
9234
9235 /* recover data only during assemblation */
9236 if (strncmp(buffer, "inactive", 8) != 0)
9237 return 0;
9238 /* no data to recover */
9239 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9240 return 0;
9241 if (curr_migr_unit >= num_migr_units)
9242 return 1;
9243
9244 /* find device during reshape */
9245 for (id = super->devlist; id; id = id->next)
9246 if (is_gen_migration(id->dev))
9247 break;
9248 if (id == NULL)
9249 return 1;
9250
9251 map_dest = get_imsm_map(id->dev, MAP_0);
9252 new_disks = map_dest->num_members;
9253
9254 read_offset = (unsigned long long)
9255 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9256
9257 write_offset = ((unsigned long long)
9258 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
9259 pba_of_lba0(map_dest)) * 512;
9260
9261 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9262 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
9263 goto abort;
9264 targets = malloc(new_disks * sizeof(int));
9265 if (!targets)
9266 goto abort;
9267
9268 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
9269 fprintf(stderr,
9270 Name ": Cannot open some devices belonging to array.\n");
9271 goto abort;
9272 }
9273
9274 for (i = 0; i < new_disks; i++) {
9275 if (targets[i] < 0) {
9276 skipped_disks++;
9277 continue;
9278 }
9279 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
9280 fprintf(stderr,
9281 Name ": Cannot seek to block: %s\n",
9282 strerror(errno));
9283 skipped_disks++;
9284 continue;
9285 }
9286 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
9287 fprintf(stderr,
9288 Name ": Cannot read copy area block: %s\n",
9289 strerror(errno));
9290 skipped_disks++;
9291 continue;
9292 }
9293 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
9294 fprintf(stderr,
9295 Name ": Cannot seek to block: %s\n",
9296 strerror(errno));
9297 skipped_disks++;
9298 continue;
9299 }
9300 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
9301 fprintf(stderr,
9302 Name ": Cannot restore block: %s\n",
9303 strerror(errno));
9304 skipped_disks++;
9305 continue;
9306 }
9307 }
9308
9309 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9310 new_disks,
9311 super,
9312 id->dev)) {
9313 fprintf(stderr,
9314 Name ": Cannot restore data from backup."
9315 " Too many failed disks\n");
9316 goto abort;
9317 }
9318
9319 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9320 /* ignore error == 2, this can mean end of reshape here
9321 */
9322 dprintf("imsm: Cannot write checkpoint to "
9323 "migration record (UNIT_SRC_NORMAL) during restart\n");
9324 } else
9325 retval = 0;
9326
9327 abort:
9328 if (targets) {
9329 for (i = 0; i < new_disks; i++)
9330 if (targets[i])
9331 close(targets[i]);
9332 free(targets);
9333 }
9334 free(buf);
9335 return retval;
9336 }
9337
9338 static char disk_by_path[] = "/dev/disk/by-path/";
9339
9340 static const char *imsm_get_disk_controller_domain(const char *path)
9341 {
9342 char disk_path[PATH_MAX];
9343 char *drv=NULL;
9344 struct stat st;
9345
9346 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
9347 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9348 if (stat(disk_path, &st) == 0) {
9349 struct sys_dev* hba;
9350 char *path=NULL;
9351
9352 path = devt_to_devpath(st.st_rdev);
9353 if (path == NULL)
9354 return "unknown";
9355 hba = find_disk_attached_hba(-1, path);
9356 if (hba && hba->type == SYS_DEV_SAS)
9357 drv = "isci";
9358 else if (hba && hba->type == SYS_DEV_SATA)
9359 drv = "ahci";
9360 else
9361 drv = "unknown";
9362 dprintf("path: %s hba: %s attached: %s\n",
9363 path, (hba) ? hba->path : "NULL", drv);
9364 free(path);
9365 if (hba)
9366 free_sys_dev(&hba);
9367 }
9368 return drv;
9369 }
9370
9371 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
9372 {
9373 char subdev_name[20];
9374 struct mdstat_ent *mdstat;
9375
9376 sprintf(subdev_name, "%d", subdev);
9377 mdstat = mdstat_by_subdev(subdev_name, container);
9378 if (!mdstat)
9379 return -1;
9380
9381 *minor = mdstat->devnum;
9382 free_mdstat(mdstat);
9383 return 0;
9384 }
9385
9386 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9387 struct geo_params *geo,
9388 int *old_raid_disks)
9389 {
9390 /* currently we only support increasing the number of devices
9391 * for a container. This increases the number of device for each
9392 * member array. They must all be RAID0 or RAID5.
9393 */
9394 int ret_val = 0;
9395 struct mdinfo *info, *member;
9396 int devices_that_can_grow = 0;
9397
9398 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
9399 "st->devnum = (%i)\n",
9400 st->devnum);
9401
9402 if (geo->size != -1 ||
9403 geo->level != UnSet ||
9404 geo->layout != UnSet ||
9405 geo->chunksize != 0 ||
9406 geo->raid_disks == UnSet) {
9407 dprintf("imsm: Container operation is allowed for "
9408 "raid disks number change only.\n");
9409 return ret_val;
9410 }
9411
9412 info = container_content_imsm(st, NULL);
9413 for (member = info; member; member = member->next) {
9414 int result;
9415 int minor;
9416
9417 dprintf("imsm: checking device_num: %i\n",
9418 member->container_member);
9419
9420 if (geo->raid_disks <= member->array.raid_disks) {
9421 /* we work on container for Online Capacity Expansion
9422 * only so raid_disks has to grow
9423 */
9424 dprintf("imsm: for container operation raid disks "
9425 "increase is required\n");
9426 break;
9427 }
9428
9429 if ((info->array.level != 0) &&
9430 (info->array.level != 5)) {
9431 /* we cannot use this container with other raid level
9432 */
9433 dprintf("imsm: for container operation wrong"
9434 " raid level (%i) detected\n",
9435 info->array.level);
9436 break;
9437 } else {
9438 /* check for platform support
9439 * for this raid level configuration
9440 */
9441 struct intel_super *super = st->sb;
9442 if (!is_raid_level_supported(super->orom,
9443 member->array.level,
9444 geo->raid_disks)) {
9445 dprintf("platform does not support raid%d with"
9446 " %d disk%s\n",
9447 info->array.level,
9448 geo->raid_disks,
9449 geo->raid_disks > 1 ? "s" : "");
9450 break;
9451 }
9452 /* check if component size is aligned to chunk size
9453 */
9454 if (info->component_size %
9455 (info->array.chunk_size/512)) {
9456 dprintf("Component size is not aligned to "
9457 "chunk size\n");
9458 break;
9459 }
9460 }
9461
9462 if (*old_raid_disks &&
9463 info->array.raid_disks != *old_raid_disks)
9464 break;
9465 *old_raid_disks = info->array.raid_disks;
9466
9467 /* All raid5 and raid0 volumes in container
9468 * have to be ready for Online Capacity Expansion
9469 * so they need to be assembled. We have already
9470 * checked that no recovery etc is happening.
9471 */
9472 result = imsm_find_array_minor_by_subdev(member->container_member,
9473 st->container_dev,
9474 &minor);
9475 if (result < 0) {
9476 dprintf("imsm: cannot find array\n");
9477 break;
9478 }
9479 devices_that_can_grow++;
9480 }
9481 sysfs_free(info);
9482 if (!member && devices_that_can_grow)
9483 ret_val = 1;
9484
9485 if (ret_val)
9486 dprintf("\tContainer operation allowed\n");
9487 else
9488 dprintf("\tError: %i\n", ret_val);
9489
9490 return ret_val;
9491 }
9492
9493 /* Function: get_spares_for_grow
9494 * Description: Allocates memory and creates list of spare devices
9495 * avaliable in container. Checks if spare drive size is acceptable.
9496 * Parameters: Pointer to the supertype structure
9497 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
9498 * NULL if fail
9499 */
9500 static struct mdinfo *get_spares_for_grow(struct supertype *st)
9501 {
9502 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
9503 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
9504 }
9505
9506 /******************************************************************************
9507 * function: imsm_create_metadata_update_for_reshape
9508 * Function creates update for whole IMSM container.
9509 *
9510 ******************************************************************************/
9511 static int imsm_create_metadata_update_for_reshape(
9512 struct supertype *st,
9513 struct geo_params *geo,
9514 int old_raid_disks,
9515 struct imsm_update_reshape **updatep)
9516 {
9517 struct intel_super *super = st->sb;
9518 struct imsm_super *mpb = super->anchor;
9519 int update_memory_size = 0;
9520 struct imsm_update_reshape *u = NULL;
9521 struct mdinfo *spares = NULL;
9522 int i;
9523 int delta_disks = 0;
9524 struct mdinfo *dev;
9525
9526 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
9527 geo->raid_disks);
9528
9529 delta_disks = geo->raid_disks - old_raid_disks;
9530
9531 /* size of all update data without anchor */
9532 update_memory_size = sizeof(struct imsm_update_reshape);
9533
9534 /* now add space for spare disks that we need to add. */
9535 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9536
9537 u = calloc(1, update_memory_size);
9538 if (u == NULL) {
9539 dprintf("error: "
9540 "cannot get memory for imsm_update_reshape update\n");
9541 return 0;
9542 }
9543 u->type = update_reshape_container_disks;
9544 u->old_raid_disks = old_raid_disks;
9545 u->new_raid_disks = geo->raid_disks;
9546
9547 /* now get spare disks list
9548 */
9549 spares = get_spares_for_grow(st);
9550
9551 if (spares == NULL
9552 || delta_disks > spares->array.spare_disks) {
9553 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
9554 "for %s.\n", geo->dev_name);
9555 i = -1;
9556 goto abort;
9557 }
9558
9559 /* we have got spares
9560 * update disk list in imsm_disk list table in anchor
9561 */
9562 dprintf("imsm: %i spares are available.\n\n",
9563 spares->array.spare_disks);
9564
9565 dev = spares->devs;
9566 for (i = 0; i < delta_disks; i++) {
9567 struct dl *dl;
9568
9569 if (dev == NULL)
9570 break;
9571 u->new_disks[i] = makedev(dev->disk.major,
9572 dev->disk.minor);
9573 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
9574 dl->index = mpb->num_disks;
9575 mpb->num_disks++;
9576 dev = dev->next;
9577 }
9578
9579 abort:
9580 /* free spares
9581 */
9582 sysfs_free(spares);
9583
9584 dprintf("imsm: reshape update preparation :");
9585 if (i == delta_disks) {
9586 dprintf(" OK\n");
9587 *updatep = u;
9588 return update_memory_size;
9589 }
9590 free(u);
9591 dprintf(" Error\n");
9592
9593 return 0;
9594 }
9595
9596 /******************************************************************************
9597 * function: imsm_create_metadata_update_for_migration()
9598 * Creates update for IMSM array.
9599 *
9600 ******************************************************************************/
9601 static int imsm_create_metadata_update_for_migration(
9602 struct supertype *st,
9603 struct geo_params *geo,
9604 struct imsm_update_reshape_migration **updatep)
9605 {
9606 struct intel_super *super = st->sb;
9607 int update_memory_size = 0;
9608 struct imsm_update_reshape_migration *u = NULL;
9609 struct imsm_dev *dev;
9610 int previous_level = -1;
9611
9612 dprintf("imsm_create_metadata_update_for_migration(enter)"
9613 " New Level = %i\n", geo->level);
9614
9615 /* size of all update data without anchor */
9616 update_memory_size = sizeof(struct imsm_update_reshape_migration);
9617
9618 u = calloc(1, update_memory_size);
9619 if (u == NULL) {
9620 dprintf("error: cannot get memory for "
9621 "imsm_create_metadata_update_for_migration\n");
9622 return 0;
9623 }
9624 u->type = update_reshape_migration;
9625 u->subdev = super->current_vol;
9626 u->new_level = geo->level;
9627 u->new_layout = geo->layout;
9628 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
9629 u->new_disks[0] = -1;
9630 u->new_chunksize = -1;
9631
9632 dev = get_imsm_dev(super, u->subdev);
9633 if (dev) {
9634 struct imsm_map *map;
9635
9636 map = get_imsm_map(dev, MAP_0);
9637 if (map) {
9638 int current_chunk_size =
9639 __le16_to_cpu(map->blocks_per_strip) / 2;
9640
9641 if (geo->chunksize != current_chunk_size) {
9642 u->new_chunksize = geo->chunksize / 1024;
9643 dprintf("imsm: "
9644 "chunk size change from %i to %i\n",
9645 current_chunk_size, u->new_chunksize);
9646 }
9647 previous_level = map->raid_level;
9648 }
9649 }
9650 if ((geo->level == 5) && (previous_level == 0)) {
9651 struct mdinfo *spares = NULL;
9652
9653 u->new_raid_disks++;
9654 spares = get_spares_for_grow(st);
9655 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9656 free(u);
9657 sysfs_free(spares);
9658 update_memory_size = 0;
9659 dprintf("error: cannot get spare device "
9660 "for requested migration");
9661 return 0;
9662 }
9663 sysfs_free(spares);
9664 }
9665 dprintf("imsm: reshape update preparation : OK\n");
9666 *updatep = u;
9667
9668 return update_memory_size;
9669 }
9670
9671 static void imsm_update_metadata_locally(struct supertype *st,
9672 void *buf, int len)
9673 {
9674 struct metadata_update mu;
9675
9676 mu.buf = buf;
9677 mu.len = len;
9678 mu.space = NULL;
9679 mu.space_list = NULL;
9680 mu.next = NULL;
9681 imsm_prepare_update(st, &mu);
9682 imsm_process_update(st, &mu);
9683
9684 while (mu.space_list) {
9685 void **space = mu.space_list;
9686 mu.space_list = *space;
9687 free(space);
9688 }
9689 }
9690
9691 /***************************************************************************
9692 * Function: imsm_analyze_change
9693 * Description: Function analyze change for single volume
9694 * and validate if transition is supported
9695 * Parameters: Geometry parameters, supertype structure
9696 * Returns: Operation type code on success, -1 if fail
9697 ****************************************************************************/
9698 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9699 struct geo_params *geo)
9700 {
9701 struct mdinfo info;
9702 int change = -1;
9703 int check_devs = 0;
9704 int chunk;
9705 /* number of added/removed disks in operation result */
9706 int devNumChange = 0;
9707 /* imsm compatible layout value for array geometry verification */
9708 int imsm_layout = -1;
9709
9710 getinfo_super_imsm_volume(st, &info, NULL);
9711 if ((geo->level != info.array.level) &&
9712 (geo->level >= 0) &&
9713 (geo->level != UnSet)) {
9714 switch (info.array.level) {
9715 case 0:
9716 if (geo->level == 5) {
9717 change = CH_MIGRATION;
9718 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
9719 fprintf(stderr,
9720 Name " Error. Requested Layout "
9721 "not supported (left-asymmetric layout "
9722 "is supported only)!\n");
9723 change = -1;
9724 goto analyse_change_exit;
9725 }
9726 imsm_layout = geo->layout;
9727 check_devs = 1;
9728 devNumChange = 1; /* parity disk added */
9729 } else if (geo->level == 10) {
9730 change = CH_TAKEOVER;
9731 check_devs = 1;
9732 devNumChange = 2; /* two mirrors added */
9733 imsm_layout = 0x102; /* imsm supported layout */
9734 }
9735 break;
9736 case 1:
9737 case 10:
9738 if (geo->level == 0) {
9739 change = CH_TAKEOVER;
9740 check_devs = 1;
9741 devNumChange = -(geo->raid_disks/2);
9742 imsm_layout = 0; /* imsm raid0 layout */
9743 }
9744 break;
9745 }
9746 if (change == -1) {
9747 fprintf(stderr,
9748 Name " Error. Level Migration from %d to %d "
9749 "not supported!\n",
9750 info.array.level, geo->level);
9751 goto analyse_change_exit;
9752 }
9753 } else
9754 geo->level = info.array.level;
9755
9756 if ((geo->layout != info.array.layout)
9757 && ((geo->layout != UnSet) && (geo->layout != -1))) {
9758 change = CH_MIGRATION;
9759 if ((info.array.layout == 0)
9760 && (info.array.level == 5)
9761 && (geo->layout == 5)) {
9762 /* reshape 5 -> 4 */
9763 } else if ((info.array.layout == 5)
9764 && (info.array.level == 5)
9765 && (geo->layout == 0)) {
9766 /* reshape 4 -> 5 */
9767 geo->layout = 0;
9768 geo->level = 5;
9769 } else {
9770 fprintf(stderr,
9771 Name " Error. Layout Migration from %d to %d "
9772 "not supported!\n",
9773 info.array.layout, geo->layout);
9774 change = -1;
9775 goto analyse_change_exit;
9776 }
9777 } else {
9778 geo->layout = info.array.layout;
9779 if (imsm_layout == -1)
9780 imsm_layout = info.array.layout;
9781 }
9782
9783 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
9784 && (geo->chunksize != info.array.chunk_size))
9785 change = CH_MIGRATION;
9786 else
9787 geo->chunksize = info.array.chunk_size;
9788
9789 chunk = geo->chunksize / 1024;
9790 if (!validate_geometry_imsm(st,
9791 geo->level,
9792 imsm_layout,
9793 geo->raid_disks + devNumChange,
9794 &chunk,
9795 geo->size,
9796 0, 0, 1))
9797 change = -1;
9798
9799 if (check_devs) {
9800 struct intel_super *super = st->sb;
9801 struct imsm_super *mpb = super->anchor;
9802
9803 if (mpb->num_raid_devs > 1) {
9804 fprintf(stderr,
9805 Name " Error. Cannot perform operation on %s"
9806 "- for this operation it MUST be single "
9807 "array in container\n",
9808 geo->dev_name);
9809 change = -1;
9810 }
9811 }
9812
9813 analyse_change_exit:
9814
9815 return change;
9816 }
9817
9818 int imsm_takeover(struct supertype *st, struct geo_params *geo)
9819 {
9820 struct intel_super *super = st->sb;
9821 struct imsm_update_takeover *u;
9822
9823 u = malloc(sizeof(struct imsm_update_takeover));
9824 if (u == NULL)
9825 return 1;
9826
9827 u->type = update_takeover;
9828 u->subarray = super->current_vol;
9829
9830 /* 10->0 transition */
9831 if (geo->level == 0)
9832 u->direction = R10_TO_R0;
9833
9834 /* 0->10 transition */
9835 if (geo->level == 10)
9836 u->direction = R0_TO_R10;
9837
9838 /* update metadata locally */
9839 imsm_update_metadata_locally(st, u,
9840 sizeof(struct imsm_update_takeover));
9841 /* and possibly remotely */
9842 if (st->update_tail)
9843 append_metadata_update(st, u,
9844 sizeof(struct imsm_update_takeover));
9845 else
9846 free(u);
9847
9848 return 0;
9849 }
9850
9851 static int imsm_reshape_super(struct supertype *st, long long size, int level,
9852 int layout, int chunksize, int raid_disks,
9853 int delta_disks, char *backup, char *dev,
9854 int verbose)
9855 {
9856 int ret_val = 1;
9857 struct geo_params geo;
9858
9859 dprintf("imsm: reshape_super called.\n");
9860
9861 memset(&geo, 0, sizeof(struct geo_params));
9862
9863 geo.dev_name = dev;
9864 geo.dev_id = st->devnum;
9865 geo.size = size;
9866 geo.level = level;
9867 geo.layout = layout;
9868 geo.chunksize = chunksize;
9869 geo.raid_disks = raid_disks;
9870 if (delta_disks != UnSet)
9871 geo.raid_disks += delta_disks;
9872
9873 dprintf("\tfor level : %i\n", geo.level);
9874 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
9875
9876 if (experimental() == 0)
9877 return ret_val;
9878
9879 if (st->container_dev == st->devnum) {
9880 /* On container level we can only increase number of devices. */
9881 dprintf("imsm: info: Container operation\n");
9882 int old_raid_disks = 0;
9883
9884 if (imsm_reshape_is_allowed_on_container(
9885 st, &geo, &old_raid_disks)) {
9886 struct imsm_update_reshape *u = NULL;
9887 int len;
9888
9889 len = imsm_create_metadata_update_for_reshape(
9890 st, &geo, old_raid_disks, &u);
9891
9892 if (len <= 0) {
9893 dprintf("imsm: Cannot prepare update\n");
9894 goto exit_imsm_reshape_super;
9895 }
9896
9897 ret_val = 0;
9898 /* update metadata locally */
9899 imsm_update_metadata_locally(st, u, len);
9900 /* and possibly remotely */
9901 if (st->update_tail)
9902 append_metadata_update(st, u, len);
9903 else
9904 free(u);
9905
9906 } else {
9907 fprintf(stderr, Name ": (imsm) Operation "
9908 "is not allowed on this container\n");
9909 }
9910 } else {
9911 /* On volume level we support following operations
9912 * - takeover: raid10 -> raid0; raid0 -> raid10
9913 * - chunk size migration
9914 * - migration: raid5 -> raid0; raid0 -> raid5
9915 */
9916 struct intel_super *super = st->sb;
9917 struct intel_dev *dev = super->devlist;
9918 int change, devnum;
9919 dprintf("imsm: info: Volume operation\n");
9920 /* find requested device */
9921 while (dev) {
9922 if (imsm_find_array_minor_by_subdev(
9923 dev->index, st->container_dev, &devnum) == 0
9924 && devnum == geo.dev_id)
9925 break;
9926 dev = dev->next;
9927 }
9928 if (dev == NULL) {
9929 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
9930 geo.dev_name, geo.dev_id);
9931 goto exit_imsm_reshape_super;
9932 }
9933 super->current_vol = dev->index;
9934 change = imsm_analyze_change(st, &geo);
9935 switch (change) {
9936 case CH_TAKEOVER:
9937 ret_val = imsm_takeover(st, &geo);
9938 break;
9939 case CH_MIGRATION: {
9940 struct imsm_update_reshape_migration *u = NULL;
9941 int len =
9942 imsm_create_metadata_update_for_migration(
9943 st, &geo, &u);
9944 if (len < 1) {
9945 dprintf("imsm: "
9946 "Cannot prepare update\n");
9947 break;
9948 }
9949 ret_val = 0;
9950 /* update metadata locally */
9951 imsm_update_metadata_locally(st, u, len);
9952 /* and possibly remotely */
9953 if (st->update_tail)
9954 append_metadata_update(st, u, len);
9955 else
9956 free(u);
9957 }
9958 break;
9959 default:
9960 ret_val = 1;
9961 }
9962 }
9963
9964 exit_imsm_reshape_super:
9965 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
9966 return ret_val;
9967 }
9968
9969 /*******************************************************************************
9970 * Function: wait_for_reshape_imsm
9971 * Description: Function writes new sync_max value and waits until
9972 * reshape process reach new position
9973 * Parameters:
9974 * sra : general array info
9975 * ndata : number of disks in new array's layout
9976 * Returns:
9977 * 0 : success,
9978 * 1 : there is no reshape in progress,
9979 * -1 : fail
9980 ******************************************************************************/
9981 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
9982 {
9983 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
9984 unsigned long long completed;
9985 /* to_complete : new sync_max position */
9986 unsigned long long to_complete = sra->reshape_progress;
9987 unsigned long long position_to_set = to_complete / ndata;
9988
9989 if (fd < 0) {
9990 dprintf("imsm: wait_for_reshape_imsm() "
9991 "cannot open reshape_position\n");
9992 return 1;
9993 }
9994
9995 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9996 dprintf("imsm: wait_for_reshape_imsm() "
9997 "cannot read reshape_position (no reshape in progres)\n");
9998 close(fd);
9999 return 0;
10000 }
10001
10002 if (completed > to_complete) {
10003 dprintf("imsm: wait_for_reshape_imsm() "
10004 "wrong next position to set %llu (%llu)\n",
10005 to_complete, completed);
10006 close(fd);
10007 return -1;
10008 }
10009 dprintf("Position set: %llu\n", position_to_set);
10010 if (sysfs_set_num(sra, NULL, "sync_max",
10011 position_to_set) != 0) {
10012 dprintf("imsm: wait_for_reshape_imsm() "
10013 "cannot set reshape position to %llu\n",
10014 position_to_set);
10015 close(fd);
10016 return -1;
10017 }
10018
10019 do {
10020 char action[20];
10021 fd_set rfds;
10022 FD_ZERO(&rfds);
10023 FD_SET(fd, &rfds);
10024 select(fd+1, &rfds, NULL, NULL, NULL);
10025 if (sysfs_get_str(sra, NULL, "sync_action",
10026 action, 20) > 0 &&
10027 strncmp(action, "reshape", 7) != 0)
10028 break;
10029 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10030 dprintf("imsm: wait_for_reshape_imsm() "
10031 "cannot read reshape_position (in loop)\n");
10032 close(fd);
10033 return 1;
10034 }
10035 } while (completed < to_complete);
10036 close(fd);
10037 return 0;
10038
10039 }
10040
10041 /*******************************************************************************
10042 * Function: check_degradation_change
10043 * Description: Check that array hasn't become failed.
10044 * Parameters:
10045 * info : for sysfs access
10046 * sources : source disks descriptors
10047 * degraded: previous degradation level
10048 * Returns:
10049 * degradation level
10050 ******************************************************************************/
10051 int check_degradation_change(struct mdinfo *info,
10052 int *sources,
10053 int degraded)
10054 {
10055 unsigned long long new_degraded;
10056 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10057 if (new_degraded != (unsigned long long)degraded) {
10058 /* check each device to ensure it is still working */
10059 struct mdinfo *sd;
10060 new_degraded = 0;
10061 for (sd = info->devs ; sd ; sd = sd->next) {
10062 if (sd->disk.state & (1<<MD_DISK_FAULTY))
10063 continue;
10064 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10065 char sbuf[20];
10066 if (sysfs_get_str(info,
10067 sd, "state", sbuf, 20) < 0 ||
10068 strstr(sbuf, "faulty") ||
10069 strstr(sbuf, "in_sync") == NULL) {
10070 /* this device is dead */
10071 sd->disk.state = (1<<MD_DISK_FAULTY);
10072 if (sd->disk.raid_disk >= 0 &&
10073 sources[sd->disk.raid_disk] >= 0) {
10074 close(sources[
10075 sd->disk.raid_disk]);
10076 sources[sd->disk.raid_disk] =
10077 -1;
10078 }
10079 new_degraded++;
10080 }
10081 }
10082 }
10083 }
10084
10085 return new_degraded;
10086 }
10087
10088 /*******************************************************************************
10089 * Function: imsm_manage_reshape
10090 * Description: Function finds array under reshape and it manages reshape
10091 * process. It creates stripes backups (if required) and sets
10092 * checheckpoits.
10093 * Parameters:
10094 * afd : Backup handle (nattive) - not used
10095 * sra : general array info
10096 * reshape : reshape parameters - not used
10097 * st : supertype structure
10098 * blocks : size of critical section [blocks]
10099 * fds : table of source device descriptor
10100 * offsets : start of array (offest per devices)
10101 * dests : not used
10102 * destfd : table of destination device descriptor
10103 * destoffsets : table of destination offsets (per device)
10104 * Returns:
10105 * 1 : success, reshape is done
10106 * 0 : fail
10107 ******************************************************************************/
10108 static int imsm_manage_reshape(
10109 int afd, struct mdinfo *sra, struct reshape *reshape,
10110 struct supertype *st, unsigned long backup_blocks,
10111 int *fds, unsigned long long *offsets,
10112 int dests, int *destfd, unsigned long long *destoffsets)
10113 {
10114 int ret_val = 0;
10115 struct intel_super *super = st->sb;
10116 struct intel_dev *dv = NULL;
10117 struct imsm_dev *dev = NULL;
10118 struct imsm_map *map_src;
10119 int migr_vol_qan = 0;
10120 int ndata, odata; /* [bytes] */
10121 int chunk; /* [bytes] */
10122 struct migr_record *migr_rec;
10123 char *buf = NULL;
10124 unsigned int buf_size; /* [bytes] */
10125 unsigned long long max_position; /* array size [bytes] */
10126 unsigned long long next_step; /* [blocks]/[bytes] */
10127 unsigned long long old_data_stripe_length;
10128 unsigned long long start_src; /* [bytes] */
10129 unsigned long long start; /* [bytes] */
10130 unsigned long long start_buf_shift; /* [bytes] */
10131 int degraded = 0;
10132 int source_layout = 0;
10133
10134 if (!fds || !offsets || !sra)
10135 goto abort;
10136
10137 /* Find volume during the reshape */
10138 for (dv = super->devlist; dv; dv = dv->next) {
10139 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10140 && dv->dev->vol.migr_state == 1) {
10141 dev = dv->dev;
10142 migr_vol_qan++;
10143 }
10144 }
10145 /* Only one volume can migrate at the same time */
10146 if (migr_vol_qan != 1) {
10147 fprintf(stderr, Name " : %s", migr_vol_qan ?
10148 "Number of migrating volumes greater than 1\n" :
10149 "There is no volume during migrationg\n");
10150 goto abort;
10151 }
10152
10153 map_src = get_imsm_map(dev, MAP_1);
10154 if (map_src == NULL)
10155 goto abort;
10156
10157 ndata = imsm_num_data_members(dev, MAP_0);
10158 odata = imsm_num_data_members(dev, MAP_1);
10159
10160 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10161 old_data_stripe_length = odata * chunk;
10162
10163 migr_rec = super->migr_rec;
10164
10165 /* initialize migration record for start condition */
10166 if (sra->reshape_progress == 0)
10167 init_migr_record_imsm(st, dev, sra);
10168 else {
10169 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
10170 dprintf("imsm: cannot restart migration when data "
10171 "are present in copy area.\n");
10172 goto abort;
10173 }
10174 /* Save checkpoint to update migration record for current
10175 * reshape position (in md). It can be farther than current
10176 * reshape position in metadata.
10177 */
10178 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10179 /* ignore error == 2, this can mean end of reshape here
10180 */
10181 dprintf("imsm: Cannot write checkpoint to "
10182 "migration record (UNIT_SRC_NORMAL, "
10183 "initial save)\n");
10184 goto abort;
10185 }
10186 }
10187
10188 /* size for data */
10189 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10190 /* extend buffer size for parity disk */
10191 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10192 /* add space for stripe aligment */
10193 buf_size += old_data_stripe_length;
10194 if (posix_memalign((void **)&buf, 4096, buf_size)) {
10195 dprintf("imsm: Cannot allocate checpoint buffer\n");
10196 goto abort;
10197 }
10198
10199 max_position = sra->component_size * ndata;
10200 source_layout = imsm_level_to_layout(map_src->raid_level);
10201
10202 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10203 __le32_to_cpu(migr_rec->num_migr_units)) {
10204 /* current reshape position [blocks] */
10205 unsigned long long current_position =
10206 __le32_to_cpu(migr_rec->blocks_per_unit)
10207 * __le32_to_cpu(migr_rec->curr_migr_unit);
10208 unsigned long long border;
10209
10210 /* Check that array hasn't become failed.
10211 */
10212 degraded = check_degradation_change(sra, fds, degraded);
10213 if (degraded > 1) {
10214 dprintf("imsm: Abort reshape due to degradation"
10215 " level (%i)\n", degraded);
10216 goto abort;
10217 }
10218
10219 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10220
10221 if ((current_position + next_step) > max_position)
10222 next_step = max_position - current_position;
10223
10224 start = current_position * 512;
10225
10226 /* allign reading start to old geometry */
10227 start_buf_shift = start % old_data_stripe_length;
10228 start_src = start - start_buf_shift;
10229
10230 border = (start_src / odata) - (start / ndata);
10231 border /= 512;
10232 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10233 /* save critical stripes to buf
10234 * start - start address of current unit
10235 * to backup [bytes]
10236 * start_src - start address of current unit
10237 * to backup alligned to source array
10238 * [bytes]
10239 */
10240 unsigned long long next_step_filler = 0;
10241 unsigned long long copy_length = next_step * 512;
10242
10243 /* allign copy area length to stripe in old geometry */
10244 next_step_filler = ((copy_length + start_buf_shift)
10245 % old_data_stripe_length);
10246 if (next_step_filler)
10247 next_step_filler = (old_data_stripe_length
10248 - next_step_filler);
10249 dprintf("save_stripes() parameters: start = %llu,"
10250 "\tstart_src = %llu,\tnext_step*512 = %llu,"
10251 "\tstart_in_buf_shift = %llu,"
10252 "\tnext_step_filler = %llu\n",
10253 start, start_src, copy_length,
10254 start_buf_shift, next_step_filler);
10255
10256 if (save_stripes(fds, offsets, map_src->num_members,
10257 chunk, map_src->raid_level,
10258 source_layout, 0, NULL, start_src,
10259 copy_length +
10260 next_step_filler + start_buf_shift,
10261 buf)) {
10262 dprintf("imsm: Cannot save stripes"
10263 " to buffer\n");
10264 goto abort;
10265 }
10266 /* Convert data to destination format and store it
10267 * in backup general migration area
10268 */
10269 if (save_backup_imsm(st, dev, sra,
10270 buf + start_buf_shift, copy_length)) {
10271 dprintf("imsm: Cannot save stripes to "
10272 "target devices\n");
10273 goto abort;
10274 }
10275 if (save_checkpoint_imsm(st, sra,
10276 UNIT_SRC_IN_CP_AREA)) {
10277 dprintf("imsm: Cannot write checkpoint to "
10278 "migration record (UNIT_SRC_IN_CP_AREA)\n");
10279 goto abort;
10280 }
10281 } else {
10282 /* set next step to use whole border area */
10283 border /= next_step;
10284 if (border > 1)
10285 next_step *= border;
10286 }
10287 /* When data backed up, checkpoint stored,
10288 * kick the kernel to reshape unit of data
10289 */
10290 next_step = next_step + sra->reshape_progress;
10291 /* limit next step to array max position */
10292 if (next_step > max_position)
10293 next_step = max_position;
10294 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10295 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
10296 sra->reshape_progress = next_step;
10297
10298 /* wait until reshape finish */
10299 if (wait_for_reshape_imsm(sra, ndata) < 0) {
10300 dprintf("wait_for_reshape_imsm returned error!\n");
10301 goto abort;
10302 }
10303
10304 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10305 /* ignore error == 2, this can mean end of reshape here
10306 */
10307 dprintf("imsm: Cannot write checkpoint to "
10308 "migration record (UNIT_SRC_NORMAL)\n");
10309 goto abort;
10310 }
10311
10312 }
10313
10314 /* return '1' if done */
10315 ret_val = 1;
10316 abort:
10317 free(buf);
10318 abort_reshape(sra);
10319
10320 return ret_val;
10321 }
10322 #endif /* MDASSEMBLE */
10323
10324 struct superswitch super_imsm = {
10325 #ifndef MDASSEMBLE
10326 .examine_super = examine_super_imsm,
10327 .brief_examine_super = brief_examine_super_imsm,
10328 .brief_examine_subarrays = brief_examine_subarrays_imsm,
10329 .export_examine_super = export_examine_super_imsm,
10330 .detail_super = detail_super_imsm,
10331 .brief_detail_super = brief_detail_super_imsm,
10332 .write_init_super = write_init_super_imsm,
10333 .validate_geometry = validate_geometry_imsm,
10334 .add_to_super = add_to_super_imsm,
10335 .remove_from_super = remove_from_super_imsm,
10336 .detail_platform = detail_platform_imsm,
10337 .kill_subarray = kill_subarray_imsm,
10338 .update_subarray = update_subarray_imsm,
10339 .load_container = load_container_imsm,
10340 .default_geometry = default_geometry_imsm,
10341 .get_disk_controller_domain = imsm_get_disk_controller_domain,
10342 .reshape_super = imsm_reshape_super,
10343 .manage_reshape = imsm_manage_reshape,
10344 .recover_backup = recover_backup_imsm,
10345 #endif
10346 .match_home = match_home_imsm,
10347 .uuid_from_super= uuid_from_super_imsm,
10348 .getinfo_super = getinfo_super_imsm,
10349 .getinfo_super_disks = getinfo_super_disks_imsm,
10350 .update_super = update_super_imsm,
10351
10352 .avail_size = avail_size_imsm,
10353 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
10354
10355 .compare_super = compare_super_imsm,
10356
10357 .load_super = load_super_imsm,
10358 .init_super = init_super_imsm,
10359 .store_super = store_super_imsm,
10360 .free_super = free_super_imsm,
10361 .match_metadata_desc = match_metadata_desc_imsm,
10362 .container_content = container_content_imsm,
10363
10364
10365 .external = 1,
10366 .name = "imsm",
10367
10368 #ifndef MDASSEMBLE
10369 /* for mdmon */
10370 .open_new = imsm_open_new,
10371 .set_array_state= imsm_set_array_state,
10372 .set_disk = imsm_set_disk,
10373 .sync_metadata = imsm_sync_metadata,
10374 .activate_spare = imsm_activate_spare,
10375 .process_update = imsm_process_update,
10376 .prepare_update = imsm_prepare_update,
10377 #endif /* MDASSEMBLE */
10378 };