]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: FIX: Limit migration record operation by disk slot not by index
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 #define IMSM_DISK_FILLERS 4
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107 };
108
109 /* map selector for map managment
110 */
111 #define MAP_0 0
112 #define MAP_1 1
113 #define MAP_X -1
114
115 /* RAID map configuration infos. */
116 struct imsm_map {
117 __u32 pba_of_lba0; /* start address of partition */
118 __u32 blocks_per_member;/* blocks per member */
119 __u32 num_data_stripes; /* number of data stripes */
120 __u16 blocks_per_strip;
121 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
122 #define IMSM_T_STATE_NORMAL 0
123 #define IMSM_T_STATE_UNINITIALIZED 1
124 #define IMSM_T_STATE_DEGRADED 2
125 #define IMSM_T_STATE_FAILED 3
126 __u8 raid_level;
127 #define IMSM_T_RAID0 0
128 #define IMSM_T_RAID1 1
129 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
130 __u8 num_members; /* number of member disks */
131 __u8 num_domains; /* number of parity domains */
132 __u8 failed_disk_num; /* valid only when state is degraded */
133 __u8 ddf;
134 __u32 filler[7]; /* expansion area */
135 #define IMSM_ORD_REBUILD (1 << 24)
136 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
137 * top byte contains some flags
138 */
139 } __attribute__ ((packed));
140
141 struct imsm_vol {
142 __u32 curr_migr_unit;
143 __u32 checkpoint_id; /* id to access curr_migr_unit */
144 __u8 migr_state; /* Normal or Migrating */
145 #define MIGR_INIT 0
146 #define MIGR_REBUILD 1
147 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
148 #define MIGR_GEN_MIGR 3
149 #define MIGR_STATE_CHANGE 4
150 #define MIGR_REPAIR 5
151 __u8 migr_type; /* Initializing, Rebuilding, ... */
152 __u8 dirty;
153 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
154 __u16 verify_errors; /* number of mismatches */
155 __u16 bad_blocks; /* number of bad blocks during verify */
156 __u32 filler[4];
157 struct imsm_map map[1];
158 /* here comes another one if migr_state */
159 } __attribute__ ((packed));
160
161 struct imsm_dev {
162 __u8 volume[MAX_RAID_SERIAL_LEN];
163 __u32 size_low;
164 __u32 size_high;
165 #define DEV_BOOTABLE __cpu_to_le32(0x01)
166 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
167 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
168 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
169 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
170 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
171 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
172 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
173 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
174 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
175 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
176 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
177 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
178 __u32 status; /* Persistent RaidDev status */
179 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
180 __u8 migr_priority;
181 __u8 num_sub_vols;
182 __u8 tid;
183 __u8 cng_master_disk;
184 __u16 cache_policy;
185 __u8 cng_state;
186 __u8 cng_sub_state;
187 #define IMSM_DEV_FILLERS 10
188 __u32 filler[IMSM_DEV_FILLERS];
189 struct imsm_vol vol;
190 } __attribute__ ((packed));
191
192 struct imsm_super {
193 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
194 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
195 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
196 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
197 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
198 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
199 __u32 attributes; /* 0x34 - 0x37 */
200 __u8 num_disks; /* 0x38 Number of configured disks */
201 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
202 __u8 error_log_pos; /* 0x3A */
203 __u8 fill[1]; /* 0x3B */
204 __u32 cache_size; /* 0x3c - 0x40 in mb */
205 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
206 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
207 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
208 #define IMSM_FILLERS 35
209 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
210 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
211 /* here comes imsm_dev[num_raid_devs] */
212 /* here comes BBM logs */
213 } __attribute__ ((packed));
214
215 #define BBM_LOG_MAX_ENTRIES 254
216
217 struct bbm_log_entry {
218 __u64 defective_block_start;
219 #define UNREADABLE 0xFFFFFFFF
220 __u32 spare_block_offset;
221 __u16 remapped_marked_count;
222 __u16 disk_ordinal;
223 } __attribute__ ((__packed__));
224
225 struct bbm_log {
226 __u32 signature; /* 0xABADB10C */
227 __u32 entry_count;
228 __u32 reserved_spare_block_count; /* 0 */
229 __u32 reserved; /* 0xFFFF */
230 __u64 first_spare_lba;
231 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
232 } __attribute__ ((__packed__));
233
234
235 #ifndef MDASSEMBLE
236 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
237 #endif
238
239 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
240
241 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
242
243 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
244 * be recovered using srcMap */
245 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
246 * already been migrated and must
247 * be recovered from checkpoint area */
248 struct migr_record {
249 __u32 rec_status; /* Status used to determine how to restart
250 * migration in case it aborts
251 * in some fashion */
252 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
253 __u32 family_num; /* Family number of MPB
254 * containing the RaidDev
255 * that is migrating */
256 __u32 ascending_migr; /* True if migrating in increasing
257 * order of lbas */
258 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
259 __u32 dest_depth_per_unit; /* Num member blocks each destMap
260 * member disk
261 * advances per unit-of-operation */
262 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
263 __u32 dest_1st_member_lba; /* First member lba on first
264 * stripe of destination */
265 __u32 num_migr_units; /* Total num migration units-of-op */
266 __u32 post_migr_vol_cap; /* Size of volume after
267 * migration completes */
268 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
269 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
270 * migration ckpt record was read from
271 * (for recovered migrations) */
272 } __attribute__ ((__packed__));
273
274 static __u8 migr_type(struct imsm_dev *dev)
275 {
276 if (dev->vol.migr_type == MIGR_VERIFY &&
277 dev->status & DEV_VERIFY_AND_FIX)
278 return MIGR_REPAIR;
279 else
280 return dev->vol.migr_type;
281 }
282
283 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
284 {
285 /* for compatibility with older oroms convert MIGR_REPAIR, into
286 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
287 */
288 if (migr_type == MIGR_REPAIR) {
289 dev->vol.migr_type = MIGR_VERIFY;
290 dev->status |= DEV_VERIFY_AND_FIX;
291 } else {
292 dev->vol.migr_type = migr_type;
293 dev->status &= ~DEV_VERIFY_AND_FIX;
294 }
295 }
296
297 static unsigned int sector_count(__u32 bytes)
298 {
299 return ((bytes + (512-1)) & (~(512-1))) / 512;
300 }
301
302 static unsigned int mpb_sectors(struct imsm_super *mpb)
303 {
304 return sector_count(__le32_to_cpu(mpb->mpb_size));
305 }
306
307 struct intel_dev {
308 struct imsm_dev *dev;
309 struct intel_dev *next;
310 unsigned index;
311 };
312
313 struct intel_hba {
314 enum sys_dev_type type;
315 char *path;
316 char *pci_id;
317 struct intel_hba *next;
318 };
319
320 enum action {
321 DISK_REMOVE = 1,
322 DISK_ADD
323 };
324 /* internal representation of IMSM metadata */
325 struct intel_super {
326 union {
327 void *buf; /* O_DIRECT buffer for reading/writing metadata */
328 struct imsm_super *anchor; /* immovable parameters */
329 };
330 union {
331 void *migr_rec_buf; /* buffer for I/O operations */
332 struct migr_record *migr_rec; /* migration record */
333 };
334 size_t len; /* size of the 'buf' allocation */
335 void *next_buf; /* for realloc'ing buf from the manager */
336 size_t next_len;
337 int updates_pending; /* count of pending updates for mdmon */
338 int current_vol; /* index of raid device undergoing creation */
339 __u32 create_offset; /* common start for 'current_vol' */
340 __u32 random; /* random data for seeding new family numbers */
341 struct intel_dev *devlist;
342 struct dl {
343 struct dl *next;
344 int index;
345 __u8 serial[MAX_RAID_SERIAL_LEN];
346 int major, minor;
347 char *devname;
348 struct imsm_disk disk;
349 int fd;
350 int extent_cnt;
351 struct extent *e; /* for determining freespace @ create */
352 int raiddisk; /* slot to fill in autolayout */
353 enum action action;
354 } *disks, *current_disk;
355 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
356 active */
357 struct dl *missing; /* disks removed while we weren't looking */
358 struct bbm_log *bbm_log;
359 struct intel_hba *hba; /* device path of the raid controller for this metadata */
360 const struct imsm_orom *orom; /* platform firmware support */
361 struct intel_super *next; /* (temp) list for disambiguating family_num */
362 };
363
364 struct intel_disk {
365 struct imsm_disk disk;
366 #define IMSM_UNKNOWN_OWNER (-1)
367 int owner;
368 struct intel_disk *next;
369 };
370
371 struct extent {
372 unsigned long long start, size;
373 };
374
375 /* definitions of reshape process types */
376 enum imsm_reshape_type {
377 CH_TAKEOVER,
378 CH_MIGRATION,
379 };
380
381 /* definition of messages passed to imsm_process_update */
382 enum imsm_update_type {
383 update_activate_spare,
384 update_create_array,
385 update_kill_array,
386 update_rename_array,
387 update_add_remove_disk,
388 update_reshape_container_disks,
389 update_reshape_migration,
390 update_takeover,
391 update_general_migration_checkpoint,
392 };
393
394 struct imsm_update_activate_spare {
395 enum imsm_update_type type;
396 struct dl *dl;
397 int slot;
398 int array;
399 struct imsm_update_activate_spare *next;
400 };
401
402 struct geo_params {
403 int dev_id;
404 char *dev_name;
405 long long size;
406 int level;
407 int layout;
408 int chunksize;
409 int raid_disks;
410 };
411
412 enum takeover_direction {
413 R10_TO_R0,
414 R0_TO_R10
415 };
416 struct imsm_update_takeover {
417 enum imsm_update_type type;
418 int subarray;
419 enum takeover_direction direction;
420 };
421
422 struct imsm_update_reshape {
423 enum imsm_update_type type;
424 int old_raid_disks;
425 int new_raid_disks;
426
427 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
428 };
429
430 struct imsm_update_reshape_migration {
431 enum imsm_update_type type;
432 int old_raid_disks;
433 int new_raid_disks;
434 /* fields for array migration changes
435 */
436 int subdev;
437 int new_level;
438 int new_layout;
439 int new_chunksize;
440
441 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
442 };
443
444 struct imsm_update_general_migration_checkpoint {
445 enum imsm_update_type type;
446 __u32 curr_migr_unit;
447 };
448
449 struct disk_info {
450 __u8 serial[MAX_RAID_SERIAL_LEN];
451 };
452
453 struct imsm_update_create_array {
454 enum imsm_update_type type;
455 int dev_idx;
456 struct imsm_dev dev;
457 };
458
459 struct imsm_update_kill_array {
460 enum imsm_update_type type;
461 int dev_idx;
462 };
463
464 struct imsm_update_rename_array {
465 enum imsm_update_type type;
466 __u8 name[MAX_RAID_SERIAL_LEN];
467 int dev_idx;
468 };
469
470 struct imsm_update_add_remove_disk {
471 enum imsm_update_type type;
472 };
473
474
475 static const char *_sys_dev_type[] = {
476 [SYS_DEV_UNKNOWN] = "Unknown",
477 [SYS_DEV_SAS] = "SAS",
478 [SYS_DEV_SATA] = "SATA"
479 };
480
481 const char *get_sys_dev_type(enum sys_dev_type type)
482 {
483 if (type >= SYS_DEV_MAX)
484 type = SYS_DEV_UNKNOWN;
485
486 return _sys_dev_type[type];
487 }
488
489 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
490 {
491 struct intel_hba *result = malloc(sizeof(*result));
492 if (result) {
493 result->type = device->type;
494 result->path = strdup(device->path);
495 result->next = NULL;
496 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
497 result->pci_id++;
498 }
499 return result;
500 }
501
502 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
503 {
504 struct intel_hba *result=NULL;
505 for (result = hba; result; result = result->next) {
506 if (result->type == device->type && strcmp(result->path, device->path) == 0)
507 break;
508 }
509 return result;
510 }
511
512 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
513 {
514 struct intel_hba *hba;
515
516 /* check if disk attached to Intel HBA */
517 hba = find_intel_hba(super->hba, device);
518 if (hba != NULL)
519 return 1;
520 /* Check if HBA is already attached to super */
521 if (super->hba == NULL) {
522 super->hba = alloc_intel_hba(device);
523 return 1;
524 }
525
526 hba = super->hba;
527 /* Intel metadata allows for all disks attached to the same type HBA.
528 * Do not sypport odf HBA types mixing
529 */
530 if (device->type != hba->type)
531 return 2;
532
533 while (hba->next)
534 hba = hba->next;
535
536 hba->next = alloc_intel_hba(device);
537 return 1;
538 }
539
540 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
541 {
542 struct sys_dev *list, *elem, *prev;
543 char *disk_path;
544
545 if ((list = find_intel_devices()) == NULL)
546 return 0;
547
548 if (fd < 0)
549 disk_path = (char *) devname;
550 else
551 disk_path = diskfd_to_devpath(fd);
552
553 if (!disk_path) {
554 free_sys_dev(&list);
555 return 0;
556 }
557
558 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
559 if (path_attached_to_hba(disk_path, elem->path)) {
560 if (prev == NULL)
561 list = list->next;
562 else
563 prev->next = elem->next;
564 elem->next = NULL;
565 if (disk_path != devname)
566 free(disk_path);
567 free_sys_dev(&list);
568 return elem;
569 }
570 }
571 if (disk_path != devname)
572 free(disk_path);
573 free_sys_dev(&list);
574
575 return NULL;
576 }
577
578
579 static int find_intel_hba_capability(int fd, struct intel_super *super,
580 char *devname);
581
582 static struct supertype *match_metadata_desc_imsm(char *arg)
583 {
584 struct supertype *st;
585
586 if (strcmp(arg, "imsm") != 0 &&
587 strcmp(arg, "default") != 0
588 )
589 return NULL;
590
591 st = malloc(sizeof(*st));
592 if (!st)
593 return NULL;
594 memset(st, 0, sizeof(*st));
595 st->container_dev = NoMdDev;
596 st->ss = &super_imsm;
597 st->max_devs = IMSM_MAX_DEVICES;
598 st->minor_version = 0;
599 st->sb = NULL;
600 return st;
601 }
602
603 #ifndef MDASSEMBLE
604 static __u8 *get_imsm_version(struct imsm_super *mpb)
605 {
606 return &mpb->sig[MPB_SIG_LEN];
607 }
608 #endif
609
610 /* retrieve a disk directly from the anchor when the anchor is known to be
611 * up-to-date, currently only at load time
612 */
613 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
614 {
615 if (index >= mpb->num_disks)
616 return NULL;
617 return &mpb->disk[index];
618 }
619
620 /* retrieve the disk description based on a index of the disk
621 * in the sub-array
622 */
623 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
624 {
625 struct dl *d;
626
627 for (d = super->disks; d; d = d->next)
628 if (d->index == index)
629 return d;
630
631 return NULL;
632 }
633 /* retrieve a disk from the parsed metadata */
634 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
635 {
636 struct dl *dl;
637
638 dl = get_imsm_dl_disk(super, index);
639 if (dl)
640 return &dl->disk;
641
642 return NULL;
643 }
644
645 /* generate a checksum directly from the anchor when the anchor is known to be
646 * up-to-date, currently only at load or write_super after coalescing
647 */
648 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
649 {
650 __u32 end = mpb->mpb_size / sizeof(end);
651 __u32 *p = (__u32 *) mpb;
652 __u32 sum = 0;
653
654 while (end--) {
655 sum += __le32_to_cpu(*p);
656 p++;
657 }
658
659 return sum - __le32_to_cpu(mpb->check_sum);
660 }
661
662 static size_t sizeof_imsm_map(struct imsm_map *map)
663 {
664 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
665 }
666
667 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
668 {
669 /* A device can have 2 maps if it is in the middle of a migration.
670 * If second_map is:
671 * MAP_0 - we return the first map
672 * MAP_1 - we return the second map if it exists, else NULL
673 * MAP_X - we return the second map if it exists, else the first
674 */
675 struct imsm_map *map = &dev->vol.map[0];
676 struct imsm_map *map2 = NULL;
677
678 if (dev->vol.migr_state)
679 map2 = (void *)map + sizeof_imsm_map(map);
680
681 switch (second_map) {
682 case MAP_0:
683 break;
684 case MAP_1:
685 map = map2;
686 break;
687 case MAP_X:
688 if (map2)
689 map = map2;
690 break;
691 default:
692 map = NULL;
693 }
694 return map;
695
696 }
697
698 /* return the size of the device.
699 * migr_state increases the returned size if map[0] were to be duplicated
700 */
701 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
702 {
703 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
704 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
705
706 /* migrating means an additional map */
707 if (dev->vol.migr_state)
708 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
709 else if (migr_state)
710 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
711
712 return size;
713 }
714
715 #ifndef MDASSEMBLE
716 /* retrieve disk serial number list from a metadata update */
717 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
718 {
719 void *u = update;
720 struct disk_info *inf;
721
722 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
723 sizeof_imsm_dev(&update->dev, 0);
724
725 return inf;
726 }
727 #endif
728
729 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
730 {
731 int offset;
732 int i;
733 void *_mpb = mpb;
734
735 if (index >= mpb->num_raid_devs)
736 return NULL;
737
738 /* devices start after all disks */
739 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
740
741 for (i = 0; i <= index; i++)
742 if (i == index)
743 return _mpb + offset;
744 else
745 offset += sizeof_imsm_dev(_mpb + offset, 0);
746
747 return NULL;
748 }
749
750 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
751 {
752 struct intel_dev *dv;
753
754 if (index >= super->anchor->num_raid_devs)
755 return NULL;
756 for (dv = super->devlist; dv; dv = dv->next)
757 if (dv->index == index)
758 return dv->dev;
759 return NULL;
760 }
761
762 /*
763 * for second_map:
764 * == MAP_0 get first map
765 * == MAP_1 get second map
766 * == MAP_X than get map according to the current migr_state
767 */
768 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
769 int slot,
770 int second_map)
771 {
772 struct imsm_map *map;
773
774 map = get_imsm_map(dev, second_map);
775
776 /* top byte identifies disk under rebuild */
777 return __le32_to_cpu(map->disk_ord_tbl[slot]);
778 }
779
780 #define ord_to_idx(ord) (((ord) << 8) >> 8)
781 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
782 {
783 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
784
785 return ord_to_idx(ord);
786 }
787
788 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
789 {
790 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
791 }
792
793 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
794 {
795 int slot;
796 __u32 ord;
797
798 for (slot = 0; slot < map->num_members; slot++) {
799 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
800 if (ord_to_idx(ord) == idx)
801 return slot;
802 }
803
804 return -1;
805 }
806
807 static int get_imsm_raid_level(struct imsm_map *map)
808 {
809 if (map->raid_level == 1) {
810 if (map->num_members == 2)
811 return 1;
812 else
813 return 10;
814 }
815
816 return map->raid_level;
817 }
818
819 static int cmp_extent(const void *av, const void *bv)
820 {
821 const struct extent *a = av;
822 const struct extent *b = bv;
823 if (a->start < b->start)
824 return -1;
825 if (a->start > b->start)
826 return 1;
827 return 0;
828 }
829
830 static int count_memberships(struct dl *dl, struct intel_super *super)
831 {
832 int memberships = 0;
833 int i;
834
835 for (i = 0; i < super->anchor->num_raid_devs; i++) {
836 struct imsm_dev *dev = get_imsm_dev(super, i);
837 struct imsm_map *map = get_imsm_map(dev, MAP_0);
838
839 if (get_imsm_disk_slot(map, dl->index) >= 0)
840 memberships++;
841 }
842
843 return memberships;
844 }
845
846 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
847
848 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
849 {
850 /* find a list of used extents on the given physical device */
851 struct extent *rv, *e;
852 int i;
853 int memberships = count_memberships(dl, super);
854 __u32 reservation;
855
856 /* trim the reserved area for spares, so they can join any array
857 * regardless of whether the OROM has assigned sectors from the
858 * IMSM_RESERVED_SECTORS region
859 */
860 if (dl->index == -1)
861 reservation = imsm_min_reserved_sectors(super);
862 else
863 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
864
865 rv = malloc(sizeof(struct extent) * (memberships + 1));
866 if (!rv)
867 return NULL;
868 e = rv;
869
870 for (i = 0; i < super->anchor->num_raid_devs; i++) {
871 struct imsm_dev *dev = get_imsm_dev(super, i);
872 struct imsm_map *map = get_imsm_map(dev, MAP_0);
873
874 if (get_imsm_disk_slot(map, dl->index) >= 0) {
875 e->start = __le32_to_cpu(map->pba_of_lba0);
876 e->size = __le32_to_cpu(map->blocks_per_member);
877 e++;
878 }
879 }
880 qsort(rv, memberships, sizeof(*rv), cmp_extent);
881
882 /* determine the start of the metadata
883 * when no raid devices are defined use the default
884 * ...otherwise allow the metadata to truncate the value
885 * as is the case with older versions of imsm
886 */
887 if (memberships) {
888 struct extent *last = &rv[memberships - 1];
889 __u32 remainder;
890
891 remainder = __le32_to_cpu(dl->disk.total_blocks) -
892 (last->start + last->size);
893 /* round down to 1k block to satisfy precision of the kernel
894 * 'size' interface
895 */
896 remainder &= ~1UL;
897 /* make sure remainder is still sane */
898 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
899 remainder = ROUND_UP(super->len, 512) >> 9;
900 if (reservation > remainder)
901 reservation = remainder;
902 }
903 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
904 e->size = 0;
905 return rv;
906 }
907
908 /* try to determine how much space is reserved for metadata from
909 * the last get_extents() entry, otherwise fallback to the
910 * default
911 */
912 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
913 {
914 struct extent *e;
915 int i;
916 __u32 rv;
917
918 /* for spares just return a minimal reservation which will grow
919 * once the spare is picked up by an array
920 */
921 if (dl->index == -1)
922 return MPB_SECTOR_CNT;
923
924 e = get_extents(super, dl);
925 if (!e)
926 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
927
928 /* scroll to last entry */
929 for (i = 0; e[i].size; i++)
930 continue;
931
932 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
933
934 free(e);
935
936 return rv;
937 }
938
939 static int is_spare(struct imsm_disk *disk)
940 {
941 return (disk->status & SPARE_DISK) == SPARE_DISK;
942 }
943
944 static int is_configured(struct imsm_disk *disk)
945 {
946 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
947 }
948
949 static int is_failed(struct imsm_disk *disk)
950 {
951 return (disk->status & FAILED_DISK) == FAILED_DISK;
952 }
953
954 /* try to determine how much space is reserved for metadata from
955 * the last get_extents() entry on the smallest active disk,
956 * otherwise fallback to the default
957 */
958 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
959 {
960 struct extent *e;
961 int i;
962 __u32 min_active, remainder;
963 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
964 struct dl *dl, *dl_min = NULL;
965
966 if (!super)
967 return rv;
968
969 min_active = 0;
970 for (dl = super->disks; dl; dl = dl->next) {
971 if (dl->index < 0)
972 continue;
973 if (dl->disk.total_blocks < min_active || min_active == 0) {
974 dl_min = dl;
975 min_active = dl->disk.total_blocks;
976 }
977 }
978 if (!dl_min)
979 return rv;
980
981 /* find last lba used by subarrays on the smallest active disk */
982 e = get_extents(super, dl_min);
983 if (!e)
984 return rv;
985 for (i = 0; e[i].size; i++)
986 continue;
987
988 remainder = min_active - e[i].start;
989 free(e);
990
991 /* to give priority to recovery we should not require full
992 IMSM_RESERVED_SECTORS from the spare */
993 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
994
995 /* if real reservation is smaller use that value */
996 return (remainder < rv) ? remainder : rv;
997 }
998
999 /* Return minimum size of a spare that can be used in this array*/
1000 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1001 {
1002 struct intel_super *super = st->sb;
1003 struct dl *dl;
1004 struct extent *e;
1005 int i;
1006 unsigned long long rv = 0;
1007
1008 if (!super)
1009 return rv;
1010 /* find first active disk in array */
1011 dl = super->disks;
1012 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1013 dl = dl->next;
1014 if (!dl)
1015 return rv;
1016 /* find last lba used by subarrays */
1017 e = get_extents(super, dl);
1018 if (!e)
1019 return rv;
1020 for (i = 0; e[i].size; i++)
1021 continue;
1022 if (i > 0)
1023 rv = e[i-1].start + e[i-1].size;
1024 free(e);
1025
1026 /* add the amount of space needed for metadata */
1027 rv = rv + imsm_min_reserved_sectors(super);
1028
1029 return rv * 512;
1030 }
1031
1032 static int is_gen_migration(struct imsm_dev *dev);
1033
1034 #ifndef MDASSEMBLE
1035 static __u64 blocks_per_migr_unit(struct intel_super *super,
1036 struct imsm_dev *dev);
1037
1038 static void print_imsm_dev(struct intel_super *super,
1039 struct imsm_dev *dev,
1040 char *uuid,
1041 int disk_idx)
1042 {
1043 __u64 sz;
1044 int slot, i;
1045 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1046 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1047 __u32 ord;
1048
1049 printf("\n");
1050 printf("[%.16s]:\n", dev->volume);
1051 printf(" UUID : %s\n", uuid);
1052 printf(" RAID Level : %d", get_imsm_raid_level(map));
1053 if (map2)
1054 printf(" <-- %d", get_imsm_raid_level(map2));
1055 printf("\n");
1056 printf(" Members : %d", map->num_members);
1057 if (map2)
1058 printf(" <-- %d", map2->num_members);
1059 printf("\n");
1060 printf(" Slots : [");
1061 for (i = 0; i < map->num_members; i++) {
1062 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1063 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1064 }
1065 printf("]");
1066 if (map2) {
1067 printf(" <-- [");
1068 for (i = 0; i < map2->num_members; i++) {
1069 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1070 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1071 }
1072 printf("]");
1073 }
1074 printf("\n");
1075 printf(" Failed disk : ");
1076 if (map->failed_disk_num == 0xff)
1077 printf("none");
1078 else
1079 printf("%i", map->failed_disk_num);
1080 printf("\n");
1081 slot = get_imsm_disk_slot(map, disk_idx);
1082 if (slot >= 0) {
1083 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1084 printf(" This Slot : %d%s\n", slot,
1085 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1086 } else
1087 printf(" This Slot : ?\n");
1088 sz = __le32_to_cpu(dev->size_high);
1089 sz <<= 32;
1090 sz += __le32_to_cpu(dev->size_low);
1091 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1092 human_size(sz * 512));
1093 sz = __le32_to_cpu(map->blocks_per_member);
1094 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1095 human_size(sz * 512));
1096 printf(" Sector Offset : %u\n",
1097 __le32_to_cpu(map->pba_of_lba0));
1098 printf(" Num Stripes : %u\n",
1099 __le32_to_cpu(map->num_data_stripes));
1100 printf(" Chunk Size : %u KiB",
1101 __le16_to_cpu(map->blocks_per_strip) / 2);
1102 if (map2)
1103 printf(" <-- %u KiB",
1104 __le16_to_cpu(map2->blocks_per_strip) / 2);
1105 printf("\n");
1106 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1107 printf(" Migrate State : ");
1108 if (dev->vol.migr_state) {
1109 if (migr_type(dev) == MIGR_INIT)
1110 printf("initialize\n");
1111 else if (migr_type(dev) == MIGR_REBUILD)
1112 printf("rebuild\n");
1113 else if (migr_type(dev) == MIGR_VERIFY)
1114 printf("check\n");
1115 else if (migr_type(dev) == MIGR_GEN_MIGR)
1116 printf("general migration\n");
1117 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1118 printf("state change\n");
1119 else if (migr_type(dev) == MIGR_REPAIR)
1120 printf("repair\n");
1121 else
1122 printf("<unknown:%d>\n", migr_type(dev));
1123 } else
1124 printf("idle\n");
1125 printf(" Map State : %s", map_state_str[map->map_state]);
1126 if (dev->vol.migr_state) {
1127 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1128
1129 printf(" <-- %s", map_state_str[map->map_state]);
1130 printf("\n Checkpoint : %u ",
1131 __le32_to_cpu(dev->vol.curr_migr_unit));
1132 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
1133 printf("(N/A)");
1134 else
1135 printf("(%llu)", (unsigned long long)
1136 blocks_per_migr_unit(super, dev));
1137 }
1138 printf("\n");
1139 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1140 }
1141
1142 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1143 {
1144 char str[MAX_RAID_SERIAL_LEN + 1];
1145 __u64 sz;
1146
1147 if (index < -1 || !disk)
1148 return;
1149
1150 printf("\n");
1151 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1152 if (index >= 0)
1153 printf(" Disk%02d Serial : %s\n", index, str);
1154 else
1155 printf(" Disk Serial : %s\n", str);
1156 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1157 is_configured(disk) ? " active" : "",
1158 is_failed(disk) ? " failed" : "");
1159 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1160 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1161 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1162 human_size(sz * 512));
1163 }
1164
1165 void examine_migr_rec_imsm(struct intel_super *super)
1166 {
1167 struct migr_record *migr_rec = super->migr_rec;
1168 struct imsm_super *mpb = super->anchor;
1169 int i;
1170
1171 for (i = 0; i < mpb->num_raid_devs; i++) {
1172 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1173 struct imsm_map *map;
1174 int slot;
1175
1176 if (is_gen_migration(dev) == 0)
1177 continue;
1178
1179 printf("\nMigration Record Information:");
1180
1181 /* map under migration */
1182 map = get_imsm_map(dev, MAP_1);
1183 if (map)
1184 slot = get_imsm_disk_slot(map, super->disks->index);
1185 if ((map == NULL) || (slot > 1) || (slot < 0)) {
1186 printf(" Empty\n ");
1187 printf("Examine one of first two disks in array\n");
1188 break;
1189 }
1190 printf("\n Status : ");
1191 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1192 printf("Normal\n");
1193 else
1194 printf("Contains Data\n");
1195 printf(" Current Unit : %u\n",
1196 __le32_to_cpu(migr_rec->curr_migr_unit));
1197 printf(" Family : %u\n",
1198 __le32_to_cpu(migr_rec->family_num));
1199 printf(" Ascending : %u\n",
1200 __le32_to_cpu(migr_rec->ascending_migr));
1201 printf(" Blocks Per Unit : %u\n",
1202 __le32_to_cpu(migr_rec->blocks_per_unit));
1203 printf(" Dest. Depth Per Unit : %u\n",
1204 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1205 printf(" Checkpoint Area pba : %u\n",
1206 __le32_to_cpu(migr_rec->ckpt_area_pba));
1207 printf(" First member lba : %u\n",
1208 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1209 printf(" Total Number of Units : %u\n",
1210 __le32_to_cpu(migr_rec->num_migr_units));
1211 printf(" Size of volume : %u\n",
1212 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1213 printf(" Expansion space for LBA64 : %u\n",
1214 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1215 printf(" Record was read from : %u\n",
1216 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1217
1218 break;
1219 }
1220 }
1221 #endif /* MDASSEMBLE */
1222 /*******************************************************************************
1223 * function: imsm_check_attributes
1224 * Description: Function checks if features represented by attributes flags
1225 * are supported by mdadm.
1226 * Parameters:
1227 * attributes - Attributes read from metadata
1228 * Returns:
1229 * 0 - passed attributes contains unsupported features flags
1230 * 1 - all features are supported
1231 ******************************************************************************/
1232 static int imsm_check_attributes(__u32 attributes)
1233 {
1234 int ret_val = 1;
1235 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1236
1237 not_supported &= ~MPB_ATTRIB_IGNORED;
1238
1239 not_supported &= attributes;
1240 if (not_supported) {
1241 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1242 (unsigned)__le32_to_cpu(not_supported));
1243 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1244 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1245 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1246 }
1247 if (not_supported & MPB_ATTRIB_2TB) {
1248 dprintf("\t\tMPB_ATTRIB_2TB\n");
1249 not_supported ^= MPB_ATTRIB_2TB;
1250 }
1251 if (not_supported & MPB_ATTRIB_RAID0) {
1252 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1253 not_supported ^= MPB_ATTRIB_RAID0;
1254 }
1255 if (not_supported & MPB_ATTRIB_RAID1) {
1256 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1257 not_supported ^= MPB_ATTRIB_RAID1;
1258 }
1259 if (not_supported & MPB_ATTRIB_RAID10) {
1260 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1261 not_supported ^= MPB_ATTRIB_RAID10;
1262 }
1263 if (not_supported & MPB_ATTRIB_RAID1E) {
1264 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1265 not_supported ^= MPB_ATTRIB_RAID1E;
1266 }
1267 if (not_supported & MPB_ATTRIB_RAID5) {
1268 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1269 not_supported ^= MPB_ATTRIB_RAID5;
1270 }
1271 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1272 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1273 not_supported ^= MPB_ATTRIB_RAIDCNG;
1274 }
1275 if (not_supported & MPB_ATTRIB_BBM) {
1276 dprintf("\t\tMPB_ATTRIB_BBM\n");
1277 not_supported ^= MPB_ATTRIB_BBM;
1278 }
1279 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1280 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1281 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1282 }
1283 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1284 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1285 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1286 }
1287 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1288 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1289 not_supported ^= MPB_ATTRIB_2TB_DISK;
1290 }
1291 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1292 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1293 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1294 }
1295 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1296 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1297 not_supported ^= MPB_ATTRIB_NEVER_USE;
1298 }
1299
1300 if (not_supported)
1301 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1302
1303 ret_val = 0;
1304 }
1305
1306 return ret_val;
1307 }
1308
1309 #ifndef MDASSEMBLE
1310 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1311
1312 static void examine_super_imsm(struct supertype *st, char *homehost)
1313 {
1314 struct intel_super *super = st->sb;
1315 struct imsm_super *mpb = super->anchor;
1316 char str[MAX_SIGNATURE_LENGTH];
1317 int i;
1318 struct mdinfo info;
1319 char nbuf[64];
1320 __u32 sum;
1321 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1322 struct dl *dl;
1323
1324 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1325 printf(" Magic : %s\n", str);
1326 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1327 printf(" Version : %s\n", get_imsm_version(mpb));
1328 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1329 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1330 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1331 printf(" Attributes : ");
1332 if (imsm_check_attributes(mpb->attributes))
1333 printf("All supported\n");
1334 else
1335 printf("not supported\n");
1336 getinfo_super_imsm(st, &info, NULL);
1337 fname_from_uuid(st, &info, nbuf, ':');
1338 printf(" UUID : %s\n", nbuf + 5);
1339 sum = __le32_to_cpu(mpb->check_sum);
1340 printf(" Checksum : %08x %s\n", sum,
1341 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1342 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1343 printf(" Disks : %d\n", mpb->num_disks);
1344 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1345 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1346 if (super->bbm_log) {
1347 struct bbm_log *log = super->bbm_log;
1348
1349 printf("\n");
1350 printf("Bad Block Management Log:\n");
1351 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1352 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1353 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1354 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1355 printf(" First Spare : %llx\n",
1356 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1357 }
1358 for (i = 0; i < mpb->num_raid_devs; i++) {
1359 struct mdinfo info;
1360 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1361
1362 super->current_vol = i;
1363 getinfo_super_imsm(st, &info, NULL);
1364 fname_from_uuid(st, &info, nbuf, ':');
1365 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1366 }
1367 for (i = 0; i < mpb->num_disks; i++) {
1368 if (i == super->disks->index)
1369 continue;
1370 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1371 }
1372
1373 for (dl = super->disks; dl; dl = dl->next)
1374 if (dl->index == -1)
1375 print_imsm_disk(&dl->disk, -1, reserved);
1376
1377 examine_migr_rec_imsm(super);
1378 }
1379
1380 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1381 {
1382 /* We just write a generic IMSM ARRAY entry */
1383 struct mdinfo info;
1384 char nbuf[64];
1385 struct intel_super *super = st->sb;
1386
1387 if (!super->anchor->num_raid_devs) {
1388 printf("ARRAY metadata=imsm\n");
1389 return;
1390 }
1391
1392 getinfo_super_imsm(st, &info, NULL);
1393 fname_from_uuid(st, &info, nbuf, ':');
1394 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1395 }
1396
1397 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1398 {
1399 /* We just write a generic IMSM ARRAY entry */
1400 struct mdinfo info;
1401 char nbuf[64];
1402 char nbuf1[64];
1403 struct intel_super *super = st->sb;
1404 int i;
1405
1406 if (!super->anchor->num_raid_devs)
1407 return;
1408
1409 getinfo_super_imsm(st, &info, NULL);
1410 fname_from_uuid(st, &info, nbuf, ':');
1411 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1412 struct imsm_dev *dev = get_imsm_dev(super, i);
1413
1414 super->current_vol = i;
1415 getinfo_super_imsm(st, &info, NULL);
1416 fname_from_uuid(st, &info, nbuf1, ':');
1417 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1418 dev->volume, nbuf + 5, i, nbuf1 + 5);
1419 }
1420 }
1421
1422 static void export_examine_super_imsm(struct supertype *st)
1423 {
1424 struct intel_super *super = st->sb;
1425 struct imsm_super *mpb = super->anchor;
1426 struct mdinfo info;
1427 char nbuf[64];
1428
1429 getinfo_super_imsm(st, &info, NULL);
1430 fname_from_uuid(st, &info, nbuf, ':');
1431 printf("MD_METADATA=imsm\n");
1432 printf("MD_LEVEL=container\n");
1433 printf("MD_UUID=%s\n", nbuf+5);
1434 printf("MD_DEVICES=%u\n", mpb->num_disks);
1435 }
1436
1437 static void detail_super_imsm(struct supertype *st, char *homehost)
1438 {
1439 struct mdinfo info;
1440 char nbuf[64];
1441
1442 getinfo_super_imsm(st, &info, NULL);
1443 fname_from_uuid(st, &info, nbuf, ':');
1444 printf("\n UUID : %s\n", nbuf + 5);
1445 }
1446
1447 static void brief_detail_super_imsm(struct supertype *st)
1448 {
1449 struct mdinfo info;
1450 char nbuf[64];
1451 getinfo_super_imsm(st, &info, NULL);
1452 fname_from_uuid(st, &info, nbuf, ':');
1453 printf(" UUID=%s", nbuf + 5);
1454 }
1455
1456 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1457 static void fd2devname(int fd, char *name);
1458
1459 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1460 {
1461 /* dump an unsorted list of devices attached to AHCI Intel storage
1462 * controller, as well as non-connected ports
1463 */
1464 int hba_len = strlen(hba_path) + 1;
1465 struct dirent *ent;
1466 DIR *dir;
1467 char *path = NULL;
1468 int err = 0;
1469 unsigned long port_mask = (1 << port_count) - 1;
1470
1471 if (port_count > (int)sizeof(port_mask) * 8) {
1472 if (verbose)
1473 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1474 return 2;
1475 }
1476
1477 /* scroll through /sys/dev/block looking for devices attached to
1478 * this hba
1479 */
1480 dir = opendir("/sys/dev/block");
1481 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1482 int fd;
1483 char model[64];
1484 char vendor[64];
1485 char buf[1024];
1486 int major, minor;
1487 char *device;
1488 char *c;
1489 int port;
1490 int type;
1491
1492 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1493 continue;
1494 path = devt_to_devpath(makedev(major, minor));
1495 if (!path)
1496 continue;
1497 if (!path_attached_to_hba(path, hba_path)) {
1498 free(path);
1499 path = NULL;
1500 continue;
1501 }
1502
1503 /* retrieve the scsi device type */
1504 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1505 if (verbose)
1506 fprintf(stderr, Name ": failed to allocate 'device'\n");
1507 err = 2;
1508 break;
1509 }
1510 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1511 if (load_sys(device, buf) != 0) {
1512 if (verbose)
1513 fprintf(stderr, Name ": failed to read device type for %s\n",
1514 path);
1515 err = 2;
1516 free(device);
1517 break;
1518 }
1519 type = strtoul(buf, NULL, 10);
1520
1521 /* if it's not a disk print the vendor and model */
1522 if (!(type == 0 || type == 7 || type == 14)) {
1523 vendor[0] = '\0';
1524 model[0] = '\0';
1525 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1526 if (load_sys(device, buf) == 0) {
1527 strncpy(vendor, buf, sizeof(vendor));
1528 vendor[sizeof(vendor) - 1] = '\0';
1529 c = (char *) &vendor[sizeof(vendor) - 1];
1530 while (isspace(*c) || *c == '\0')
1531 *c-- = '\0';
1532
1533 }
1534 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1535 if (load_sys(device, buf) == 0) {
1536 strncpy(model, buf, sizeof(model));
1537 model[sizeof(model) - 1] = '\0';
1538 c = (char *) &model[sizeof(model) - 1];
1539 while (isspace(*c) || *c == '\0')
1540 *c-- = '\0';
1541 }
1542
1543 if (vendor[0] && model[0])
1544 sprintf(buf, "%.64s %.64s", vendor, model);
1545 else
1546 switch (type) { /* numbers from hald/linux/device.c */
1547 case 1: sprintf(buf, "tape"); break;
1548 case 2: sprintf(buf, "printer"); break;
1549 case 3: sprintf(buf, "processor"); break;
1550 case 4:
1551 case 5: sprintf(buf, "cdrom"); break;
1552 case 6: sprintf(buf, "scanner"); break;
1553 case 8: sprintf(buf, "media_changer"); break;
1554 case 9: sprintf(buf, "comm"); break;
1555 case 12: sprintf(buf, "raid"); break;
1556 default: sprintf(buf, "unknown");
1557 }
1558 } else
1559 buf[0] = '\0';
1560 free(device);
1561
1562 /* chop device path to 'host%d' and calculate the port number */
1563 c = strchr(&path[hba_len], '/');
1564 if (!c) {
1565 if (verbose)
1566 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1567 err = 2;
1568 break;
1569 }
1570 *c = '\0';
1571 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1572 port -= host_base;
1573 else {
1574 if (verbose) {
1575 *c = '/'; /* repair the full string */
1576 fprintf(stderr, Name ": failed to determine port number for %s\n",
1577 path);
1578 }
1579 err = 2;
1580 break;
1581 }
1582
1583 /* mark this port as used */
1584 port_mask &= ~(1 << port);
1585
1586 /* print out the device information */
1587 if (buf[0]) {
1588 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1589 continue;
1590 }
1591
1592 fd = dev_open(ent->d_name, O_RDONLY);
1593 if (fd < 0)
1594 printf(" Port%d : - disk info unavailable -\n", port);
1595 else {
1596 fd2devname(fd, buf);
1597 printf(" Port%d : %s", port, buf);
1598 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1599 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1600 else
1601 printf(" ()\n");
1602 close(fd);
1603 }
1604 free(path);
1605 path = NULL;
1606 }
1607 if (path)
1608 free(path);
1609 if (dir)
1610 closedir(dir);
1611 if (err == 0) {
1612 int i;
1613
1614 for (i = 0; i < port_count; i++)
1615 if (port_mask & (1 << i))
1616 printf(" Port%d : - no device attached -\n", i);
1617 }
1618
1619 return err;
1620 }
1621
1622 static void print_found_intel_controllers(struct sys_dev *elem)
1623 {
1624 for (; elem; elem = elem->next) {
1625 fprintf(stderr, Name ": found Intel(R) ");
1626 if (elem->type == SYS_DEV_SATA)
1627 fprintf(stderr, "SATA ");
1628 else if (elem->type == SYS_DEV_SAS)
1629 fprintf(stderr, "SAS ");
1630 fprintf(stderr, "RAID controller");
1631 if (elem->pci_id)
1632 fprintf(stderr, " at %s", elem->pci_id);
1633 fprintf(stderr, ".\n");
1634 }
1635 fflush(stderr);
1636 }
1637
1638 static int ahci_get_port_count(const char *hba_path, int *port_count)
1639 {
1640 struct dirent *ent;
1641 DIR *dir;
1642 int host_base = -1;
1643
1644 *port_count = 0;
1645 if ((dir = opendir(hba_path)) == NULL)
1646 return -1;
1647
1648 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1649 int host;
1650
1651 if (sscanf(ent->d_name, "host%d", &host) != 1)
1652 continue;
1653 if (*port_count == 0)
1654 host_base = host;
1655 else if (host < host_base)
1656 host_base = host;
1657
1658 if (host + 1 > *port_count + host_base)
1659 *port_count = host + 1 - host_base;
1660 }
1661 closedir(dir);
1662 return host_base;
1663 }
1664
1665 static void print_imsm_capability(const struct imsm_orom *orom)
1666 {
1667 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1668 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1669 orom->hotfix_ver, orom->build);
1670 printf(" RAID Levels :%s%s%s%s%s\n",
1671 imsm_orom_has_raid0(orom) ? " raid0" : "",
1672 imsm_orom_has_raid1(orom) ? " raid1" : "",
1673 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1674 imsm_orom_has_raid10(orom) ? " raid10" : "",
1675 imsm_orom_has_raid5(orom) ? " raid5" : "");
1676 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1677 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1678 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1679 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1680 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1681 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1682 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1683 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1684 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1685 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1686 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1687 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1688 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1689 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1690 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1691 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1692 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1693 printf(" Max Disks : %d\n", orom->tds);
1694 printf(" Max Volumes : %d\n", orom->vpa);
1695 return;
1696 }
1697
1698 static int detail_platform_imsm(int verbose, int enumerate_only)
1699 {
1700 /* There are two components to imsm platform support, the ahci SATA
1701 * controller and the option-rom. To find the SATA controller we
1702 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1703 * controller with the Intel vendor id is present. This approach
1704 * allows mdadm to leverage the kernel's ahci detection logic, with the
1705 * caveat that if ahci.ko is not loaded mdadm will not be able to
1706 * detect platform raid capabilities. The option-rom resides in a
1707 * platform "Adapter ROM". We scan for its signature to retrieve the
1708 * platform capabilities. If raid support is disabled in the BIOS the
1709 * option-rom capability structure will not be available.
1710 */
1711 const struct imsm_orom *orom;
1712 struct sys_dev *list, *hba;
1713 int host_base = 0;
1714 int port_count = 0;
1715 int result=0;
1716
1717 if (enumerate_only) {
1718 if (check_env("IMSM_NO_PLATFORM"))
1719 return 0;
1720 list = find_intel_devices();
1721 if (!list)
1722 return 2;
1723 for (hba = list; hba; hba = hba->next) {
1724 orom = find_imsm_capability(hba->type);
1725 if (!orom) {
1726 result = 2;
1727 break;
1728 }
1729 }
1730 free_sys_dev(&list);
1731 return result;
1732 }
1733
1734 list = find_intel_devices();
1735 if (!list) {
1736 if (verbose)
1737 fprintf(stderr, Name ": no active Intel(R) RAID "
1738 "controller found.\n");
1739 free_sys_dev(&list);
1740 return 2;
1741 } else if (verbose)
1742 print_found_intel_controllers(list);
1743
1744 for (hba = list; hba; hba = hba->next) {
1745 orom = find_imsm_capability(hba->type);
1746 if (!orom)
1747 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1748 hba->path, get_sys_dev_type(hba->type));
1749 else
1750 print_imsm_capability(orom);
1751 }
1752
1753 for (hba = list; hba; hba = hba->next) {
1754 printf(" I/O Controller : %s (%s)\n",
1755 hba->path, get_sys_dev_type(hba->type));
1756
1757 if (hba->type == SYS_DEV_SATA) {
1758 host_base = ahci_get_port_count(hba->path, &port_count);
1759 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1760 if (verbose)
1761 fprintf(stderr, Name ": failed to enumerate "
1762 "ports on SATA controller at %s.", hba->pci_id);
1763 result |= 2;
1764 }
1765 }
1766 }
1767
1768 free_sys_dev(&list);
1769 return result;
1770 }
1771 #endif
1772
1773 static int match_home_imsm(struct supertype *st, char *homehost)
1774 {
1775 /* the imsm metadata format does not specify any host
1776 * identification information. We return -1 since we can never
1777 * confirm nor deny whether a given array is "meant" for this
1778 * host. We rely on compare_super and the 'family_num' fields to
1779 * exclude member disks that do not belong, and we rely on
1780 * mdadm.conf to specify the arrays that should be assembled.
1781 * Auto-assembly may still pick up "foreign" arrays.
1782 */
1783
1784 return -1;
1785 }
1786
1787 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1788 {
1789 /* The uuid returned here is used for:
1790 * uuid to put into bitmap file (Create, Grow)
1791 * uuid for backup header when saving critical section (Grow)
1792 * comparing uuids when re-adding a device into an array
1793 * In these cases the uuid required is that of the data-array,
1794 * not the device-set.
1795 * uuid to recognise same set when adding a missing device back
1796 * to an array. This is a uuid for the device-set.
1797 *
1798 * For each of these we can make do with a truncated
1799 * or hashed uuid rather than the original, as long as
1800 * everyone agrees.
1801 * In each case the uuid required is that of the data-array,
1802 * not the device-set.
1803 */
1804 /* imsm does not track uuid's so we synthesis one using sha1 on
1805 * - The signature (Which is constant for all imsm array, but no matter)
1806 * - the orig_family_num of the container
1807 * - the index number of the volume
1808 * - the 'serial' number of the volume.
1809 * Hopefully these are all constant.
1810 */
1811 struct intel_super *super = st->sb;
1812
1813 char buf[20];
1814 struct sha1_ctx ctx;
1815 struct imsm_dev *dev = NULL;
1816 __u32 family_num;
1817
1818 /* some mdadm versions failed to set ->orig_family_num, in which
1819 * case fall back to ->family_num. orig_family_num will be
1820 * fixed up with the first metadata update.
1821 */
1822 family_num = super->anchor->orig_family_num;
1823 if (family_num == 0)
1824 family_num = super->anchor->family_num;
1825 sha1_init_ctx(&ctx);
1826 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1827 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1828 if (super->current_vol >= 0)
1829 dev = get_imsm_dev(super, super->current_vol);
1830 if (dev) {
1831 __u32 vol = super->current_vol;
1832 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1833 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1834 }
1835 sha1_finish_ctx(&ctx, buf);
1836 memcpy(uuid, buf, 4*4);
1837 }
1838
1839 #if 0
1840 static void
1841 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1842 {
1843 __u8 *v = get_imsm_version(mpb);
1844 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1845 char major[] = { 0, 0, 0 };
1846 char minor[] = { 0 ,0, 0 };
1847 char patch[] = { 0, 0, 0 };
1848 char *ver_parse[] = { major, minor, patch };
1849 int i, j;
1850
1851 i = j = 0;
1852 while (*v != '\0' && v < end) {
1853 if (*v != '.' && j < 2)
1854 ver_parse[i][j++] = *v;
1855 else {
1856 i++;
1857 j = 0;
1858 }
1859 v++;
1860 }
1861
1862 *m = strtol(minor, NULL, 0);
1863 *p = strtol(patch, NULL, 0);
1864 }
1865 #endif
1866
1867 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1868 {
1869 /* migr_strip_size when repairing or initializing parity */
1870 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1871 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1872
1873 switch (get_imsm_raid_level(map)) {
1874 case 5:
1875 case 10:
1876 return chunk;
1877 default:
1878 return 128*1024 >> 9;
1879 }
1880 }
1881
1882 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1883 {
1884 /* migr_strip_size when rebuilding a degraded disk, no idea why
1885 * this is different than migr_strip_size_resync(), but it's good
1886 * to be compatible
1887 */
1888 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1889 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1890
1891 switch (get_imsm_raid_level(map)) {
1892 case 1:
1893 case 10:
1894 if (map->num_members % map->num_domains == 0)
1895 return 128*1024 >> 9;
1896 else
1897 return chunk;
1898 case 5:
1899 return max((__u32) 64*1024 >> 9, chunk);
1900 default:
1901 return 128*1024 >> 9;
1902 }
1903 }
1904
1905 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1906 {
1907 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1908 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1909 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1910 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1911
1912 return max((__u32) 1, hi_chunk / lo_chunk);
1913 }
1914
1915 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1916 {
1917 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1918 int level = get_imsm_raid_level(lo);
1919
1920 if (level == 1 || level == 10) {
1921 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1922
1923 return hi->num_domains;
1924 } else
1925 return num_stripes_per_unit_resync(dev);
1926 }
1927
1928 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1929 {
1930 /* named 'imsm_' because raid0, raid1 and raid10
1931 * counter-intuitively have the same number of data disks
1932 */
1933 struct imsm_map *map = get_imsm_map(dev, second_map);
1934
1935 switch (get_imsm_raid_level(map)) {
1936 case 0:
1937 case 1:
1938 case 10:
1939 return map->num_members;
1940 case 5:
1941 return map->num_members - 1;
1942 default:
1943 dprintf("%s: unsupported raid level\n", __func__);
1944 return 0;
1945 }
1946 }
1947
1948 static __u32 parity_segment_depth(struct imsm_dev *dev)
1949 {
1950 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1951 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1952
1953 switch(get_imsm_raid_level(map)) {
1954 case 1:
1955 case 10:
1956 return chunk * map->num_domains;
1957 case 5:
1958 return chunk * map->num_members;
1959 default:
1960 return chunk;
1961 }
1962 }
1963
1964 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1965 {
1966 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1967 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1968 __u32 strip = block / chunk;
1969
1970 switch (get_imsm_raid_level(map)) {
1971 case 1:
1972 case 10: {
1973 __u32 vol_strip = (strip * map->num_domains) + 1;
1974 __u32 vol_stripe = vol_strip / map->num_members;
1975
1976 return vol_stripe * chunk + block % chunk;
1977 } case 5: {
1978 __u32 stripe = strip / (map->num_members - 1);
1979
1980 return stripe * chunk + block % chunk;
1981 }
1982 default:
1983 return 0;
1984 }
1985 }
1986
1987 static __u64 blocks_per_migr_unit(struct intel_super *super,
1988 struct imsm_dev *dev)
1989 {
1990 /* calculate the conversion factor between per member 'blocks'
1991 * (md/{resync,rebuild}_start) and imsm migration units, return
1992 * 0 for the 'not migrating' and 'unsupported migration' cases
1993 */
1994 if (!dev->vol.migr_state)
1995 return 0;
1996
1997 switch (migr_type(dev)) {
1998 case MIGR_GEN_MIGR: {
1999 struct migr_record *migr_rec = super->migr_rec;
2000 return __le32_to_cpu(migr_rec->blocks_per_unit);
2001 }
2002 case MIGR_VERIFY:
2003 case MIGR_REPAIR:
2004 case MIGR_INIT: {
2005 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2006 __u32 stripes_per_unit;
2007 __u32 blocks_per_unit;
2008 __u32 parity_depth;
2009 __u32 migr_chunk;
2010 __u32 block_map;
2011 __u32 block_rel;
2012 __u32 segment;
2013 __u32 stripe;
2014 __u8 disks;
2015
2016 /* yes, this is really the translation of migr_units to
2017 * per-member blocks in the 'resync' case
2018 */
2019 stripes_per_unit = num_stripes_per_unit_resync(dev);
2020 migr_chunk = migr_strip_blocks_resync(dev);
2021 disks = imsm_num_data_members(dev, MAP_0);
2022 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2023 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2024 segment = blocks_per_unit / stripe;
2025 block_rel = blocks_per_unit - segment * stripe;
2026 parity_depth = parity_segment_depth(dev);
2027 block_map = map_migr_block(dev, block_rel);
2028 return block_map + parity_depth * segment;
2029 }
2030 case MIGR_REBUILD: {
2031 __u32 stripes_per_unit;
2032 __u32 migr_chunk;
2033
2034 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2035 migr_chunk = migr_strip_blocks_rebuild(dev);
2036 return migr_chunk * stripes_per_unit;
2037 }
2038 case MIGR_STATE_CHANGE:
2039 default:
2040 return 0;
2041 }
2042 }
2043
2044 static int imsm_level_to_layout(int level)
2045 {
2046 switch (level) {
2047 case 0:
2048 case 1:
2049 return 0;
2050 case 5:
2051 case 6:
2052 return ALGORITHM_LEFT_ASYMMETRIC;
2053 case 10:
2054 return 0x102;
2055 }
2056 return UnSet;
2057 }
2058
2059 /*******************************************************************************
2060 * Function: read_imsm_migr_rec
2061 * Description: Function reads imsm migration record from last sector of disk
2062 * Parameters:
2063 * fd : disk descriptor
2064 * super : metadata info
2065 * Returns:
2066 * 0 : success,
2067 * -1 : fail
2068 ******************************************************************************/
2069 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2070 {
2071 int ret_val = -1;
2072 unsigned long long dsize;
2073
2074 get_dev_size(fd, NULL, &dsize);
2075 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2076 fprintf(stderr,
2077 Name ": Cannot seek to anchor block: %s\n",
2078 strerror(errno));
2079 goto out;
2080 }
2081 if (read(fd, super->migr_rec_buf, 512) != 512) {
2082 fprintf(stderr,
2083 Name ": Cannot read migr record block: %s\n",
2084 strerror(errno));
2085 goto out;
2086 }
2087 ret_val = 0;
2088
2089 out:
2090 return ret_val;
2091 }
2092
2093 static struct imsm_dev *imsm_get_device_during_migration(
2094 struct intel_super *super)
2095 {
2096
2097 struct intel_dev *dv;
2098
2099 for (dv = super->devlist; dv; dv = dv->next) {
2100 if (is_gen_migration(dv->dev))
2101 return dv->dev;
2102 }
2103 return NULL;
2104 }
2105
2106 /*******************************************************************************
2107 * Function: load_imsm_migr_rec
2108 * Description: Function reads imsm migration record (it is stored at the last
2109 * sector of disk)
2110 * Parameters:
2111 * super : imsm internal array info
2112 * info : general array info
2113 * Returns:
2114 * 0 : success
2115 * -1 : fail
2116 ******************************************************************************/
2117 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2118 {
2119 struct mdinfo *sd;
2120 struct dl *dl = NULL;
2121 char nm[30];
2122 int retval = -1;
2123 int fd = -1;
2124 struct imsm_dev *dev;
2125 struct imsm_map *map = NULL;
2126 int slot;
2127
2128 /* find map under migration */
2129 dev = imsm_get_device_during_migration(super);
2130 /* nothing to load,no migration in progress?
2131 */
2132 if (dev == NULL)
2133 return 0;
2134 map = get_imsm_map(dev, MAP_1);
2135
2136 if (info) {
2137 for (sd = info->devs ; sd ; sd = sd->next) {
2138 /* skip spare and failed disks
2139 */
2140 if (sd->disk.raid_disk < 0)
2141 continue;
2142 /* read only from one of the first two slots */
2143 if (map)
2144 slot = get_imsm_disk_slot(map,
2145 sd->disk.raid_disk);
2146 if ((map == NULL) || (slot > 1) || (slot < 0))
2147 continue;
2148
2149 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2150 fd = dev_open(nm, O_RDONLY);
2151 if (fd >= 0)
2152 break;
2153 }
2154 }
2155 if (fd < 0) {
2156 for (dl = super->disks; dl; dl = dl->next) {
2157 /* skip spare and failed disks
2158 */
2159 if (dl->index < 0)
2160 continue;
2161 /* read only from one of the first two slots */
2162 if (map)
2163 slot = get_imsm_disk_slot(map, dl->index);
2164 if ((map == NULL) || (slot > 1) || (slot < 0))
2165 continue;
2166 sprintf(nm, "%d:%d", dl->major, dl->minor);
2167 fd = dev_open(nm, O_RDONLY);
2168 if (fd >= 0)
2169 break;
2170 }
2171 }
2172 if (fd < 0)
2173 goto out;
2174 retval = read_imsm_migr_rec(fd, super);
2175
2176 out:
2177 if (fd >= 0)
2178 close(fd);
2179 return retval;
2180 }
2181
2182 #ifndef MDASSEMBLE
2183 /*******************************************************************************
2184 * function: imsm_create_metadata_checkpoint_update
2185 * Description: It creates update for checkpoint change.
2186 * Parameters:
2187 * super : imsm internal array info
2188 * u : pointer to prepared update
2189 * Returns:
2190 * Uptate length.
2191 * If length is equal to 0, input pointer u contains no update
2192 ******************************************************************************/
2193 static int imsm_create_metadata_checkpoint_update(
2194 struct intel_super *super,
2195 struct imsm_update_general_migration_checkpoint **u)
2196 {
2197
2198 int update_memory_size = 0;
2199
2200 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2201
2202 if (u == NULL)
2203 return 0;
2204 *u = NULL;
2205
2206 /* size of all update data without anchor */
2207 update_memory_size =
2208 sizeof(struct imsm_update_general_migration_checkpoint);
2209
2210 *u = calloc(1, update_memory_size);
2211 if (*u == NULL) {
2212 dprintf("error: cannot get memory for "
2213 "imsm_create_metadata_checkpoint_update update\n");
2214 return 0;
2215 }
2216 (*u)->type = update_general_migration_checkpoint;
2217 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2218 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2219 (*u)->curr_migr_unit);
2220
2221 return update_memory_size;
2222 }
2223
2224
2225 static void imsm_update_metadata_locally(struct supertype *st,
2226 void *buf, int len);
2227
2228 /*******************************************************************************
2229 * Function: write_imsm_migr_rec
2230 * Description: Function writes imsm migration record
2231 * (at the last sector of disk)
2232 * Parameters:
2233 * super : imsm internal array info
2234 * Returns:
2235 * 0 : success
2236 * -1 : if fail
2237 ******************************************************************************/
2238 static int write_imsm_migr_rec(struct supertype *st)
2239 {
2240 struct intel_super *super = st->sb;
2241 unsigned long long dsize;
2242 char nm[30];
2243 int fd = -1;
2244 int retval = -1;
2245 struct dl *sd;
2246 int len;
2247 struct imsm_update_general_migration_checkpoint *u;
2248 struct imsm_dev *dev;
2249 struct imsm_map *map = NULL;
2250
2251 /* find map under migration */
2252 dev = imsm_get_device_during_migration(super);
2253 /* if no migration, write buffer anyway to clear migr_record
2254 * on disk based on first available device
2255 */
2256 if (dev == NULL)
2257 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2258 super->current_vol);
2259
2260 map = get_imsm_map(dev, MAP_X);
2261
2262 for (sd = super->disks ; sd ; sd = sd->next) {
2263 int slot;
2264
2265 /* skip failed and spare devices */
2266 if (sd->index < 0)
2267 continue;
2268 /* write to 2 first slots only */
2269 if (map)
2270 slot = get_imsm_disk_slot(map, sd->index);
2271 if ((map == NULL) || (slot > 1) || (slot < 0))
2272 continue;
2273
2274 sprintf(nm, "%d:%d", sd->major, sd->minor);
2275 fd = dev_open(nm, O_RDWR);
2276 if (fd < 0)
2277 continue;
2278 get_dev_size(fd, NULL, &dsize);
2279 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2280 fprintf(stderr,
2281 Name ": Cannot seek to anchor block: %s\n",
2282 strerror(errno));
2283 goto out;
2284 }
2285 if (write(fd, super->migr_rec_buf, 512) != 512) {
2286 fprintf(stderr,
2287 Name ": Cannot write migr record block: %s\n",
2288 strerror(errno));
2289 goto out;
2290 }
2291 close(fd);
2292 fd = -1;
2293 }
2294 /* update checkpoint information in metadata */
2295 len = imsm_create_metadata_checkpoint_update(super, &u);
2296
2297 if (len <= 0) {
2298 dprintf("imsm: Cannot prepare update\n");
2299 goto out;
2300 }
2301 /* update metadata locally */
2302 imsm_update_metadata_locally(st, u, len);
2303 /* and possibly remotely */
2304 if (st->update_tail) {
2305 append_metadata_update(st, u, len);
2306 /* during reshape we do all work inside metadata handler
2307 * manage_reshape(), so metadata update has to be triggered
2308 * insida it
2309 */
2310 flush_metadata_updates(st);
2311 st->update_tail = &st->updates;
2312 } else
2313 free(u);
2314
2315 retval = 0;
2316 out:
2317 if (fd >= 0)
2318 close(fd);
2319 return retval;
2320 }
2321 #endif /* MDASSEMBLE */
2322
2323 /* spare/missing disks activations are not allowe when
2324 * array/container performs reshape operation, because
2325 * all arrays in container works on the same disks set
2326 */
2327 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2328 {
2329 int rv = 0;
2330 struct intel_dev *i_dev;
2331 struct imsm_dev *dev;
2332
2333 /* check whole container
2334 */
2335 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2336 dev = i_dev->dev;
2337 if (is_gen_migration(dev)) {
2338 /* No repair during any migration in container
2339 */
2340 rv = 1;
2341 break;
2342 }
2343 }
2344 return rv;
2345 }
2346
2347 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2348 {
2349 struct intel_super *super = st->sb;
2350 struct migr_record *migr_rec = super->migr_rec;
2351 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2352 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2353 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2354 struct imsm_map *map_to_analyse = map;
2355 struct dl *dl;
2356 char *devname;
2357 unsigned int component_size_alligment;
2358 int map_disks = info->array.raid_disks;
2359
2360 memset(info, 0, sizeof(*info));
2361 if (prev_map)
2362 map_to_analyse = prev_map;
2363
2364 dl = super->current_disk;
2365
2366 info->container_member = super->current_vol;
2367 info->array.raid_disks = map->num_members;
2368 info->array.level = get_imsm_raid_level(map_to_analyse);
2369 info->array.layout = imsm_level_to_layout(info->array.level);
2370 info->array.md_minor = -1;
2371 info->array.ctime = 0;
2372 info->array.utime = 0;
2373 info->array.chunk_size =
2374 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2375 info->array.state = !dev->vol.dirty;
2376 info->custom_array_size = __le32_to_cpu(dev->size_high);
2377 info->custom_array_size <<= 32;
2378 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2379 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2380
2381 if (is_gen_migration(dev)) {
2382 info->reshape_active = 1;
2383 info->new_level = get_imsm_raid_level(map);
2384 info->new_layout = imsm_level_to_layout(info->new_level);
2385 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2386 info->delta_disks = map->num_members - prev_map->num_members;
2387 if (info->delta_disks) {
2388 /* this needs to be applied to every array
2389 * in the container.
2390 */
2391 info->reshape_active = CONTAINER_RESHAPE;
2392 }
2393 /* We shape information that we give to md might have to be
2394 * modify to cope with md's requirement for reshaping arrays.
2395 * For example, when reshaping a RAID0, md requires it to be
2396 * presented as a degraded RAID4.
2397 * Also if a RAID0 is migrating to a RAID5 we need to specify
2398 * the array as already being RAID5, but the 'before' layout
2399 * is a RAID4-like layout.
2400 */
2401 switch (info->array.level) {
2402 case 0:
2403 switch(info->new_level) {
2404 case 0:
2405 /* conversion is happening as RAID4 */
2406 info->array.level = 4;
2407 info->array.raid_disks += 1;
2408 break;
2409 case 5:
2410 /* conversion is happening as RAID5 */
2411 info->array.level = 5;
2412 info->array.layout = ALGORITHM_PARITY_N;
2413 info->delta_disks -= 1;
2414 break;
2415 default:
2416 /* FIXME error message */
2417 info->array.level = UnSet;
2418 break;
2419 }
2420 break;
2421 }
2422 } else {
2423 info->new_level = UnSet;
2424 info->new_layout = UnSet;
2425 info->new_chunk = info->array.chunk_size;
2426 info->delta_disks = 0;
2427 }
2428
2429 if (dl) {
2430 info->disk.major = dl->major;
2431 info->disk.minor = dl->minor;
2432 info->disk.number = dl->index;
2433 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2434 dl->index);
2435 }
2436
2437 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2438 info->component_size =
2439 __le32_to_cpu(map_to_analyse->blocks_per_member);
2440
2441 /* check component size aligment
2442 */
2443 component_size_alligment =
2444 info->component_size % (info->array.chunk_size/512);
2445
2446 if (component_size_alligment &&
2447 (info->array.level != 1) && (info->array.level != UnSet)) {
2448 dprintf("imsm: reported component size alligned from %llu ",
2449 info->component_size);
2450 info->component_size -= component_size_alligment;
2451 dprintf("to %llu (%i).\n",
2452 info->component_size, component_size_alligment);
2453 }
2454
2455 memset(info->uuid, 0, sizeof(info->uuid));
2456 info->recovery_start = MaxSector;
2457
2458 info->reshape_progress = 0;
2459 info->resync_start = MaxSector;
2460 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2461 dev->vol.dirty) &&
2462 imsm_reshape_blocks_arrays_changes(super) == 0) {
2463 info->resync_start = 0;
2464 }
2465 if (dev->vol.migr_state) {
2466 switch (migr_type(dev)) {
2467 case MIGR_REPAIR:
2468 case MIGR_INIT: {
2469 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2470 dev);
2471 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2472
2473 info->resync_start = blocks_per_unit * units;
2474 break;
2475 }
2476 case MIGR_GEN_MIGR: {
2477 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2478 dev);
2479 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2480 unsigned long long array_blocks;
2481 int used_disks;
2482
2483 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2484 (units <
2485 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2486 (super->migr_rec->rec_status ==
2487 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2488 units++;
2489
2490 info->reshape_progress = blocks_per_unit * units;
2491
2492 dprintf("IMSM: General Migration checkpoint : %llu "
2493 "(%llu) -> read reshape progress : %llu\n",
2494 (unsigned long long)units,
2495 (unsigned long long)blocks_per_unit,
2496 info->reshape_progress);
2497
2498 used_disks = imsm_num_data_members(dev, MAP_1);
2499 if (used_disks > 0) {
2500 array_blocks = map->blocks_per_member *
2501 used_disks;
2502 /* round array size down to closest MB
2503 */
2504 info->custom_array_size = (array_blocks
2505 >> SECT_PER_MB_SHIFT)
2506 << SECT_PER_MB_SHIFT;
2507 }
2508 }
2509 case MIGR_VERIFY:
2510 /* we could emulate the checkpointing of
2511 * 'sync_action=check' migrations, but for now
2512 * we just immediately complete them
2513 */
2514 case MIGR_REBUILD:
2515 /* this is handled by container_content_imsm() */
2516 case MIGR_STATE_CHANGE:
2517 /* FIXME handle other migrations */
2518 default:
2519 /* we are not dirty, so... */
2520 info->resync_start = MaxSector;
2521 }
2522 }
2523
2524 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2525 info->name[MAX_RAID_SERIAL_LEN] = 0;
2526
2527 info->array.major_version = -1;
2528 info->array.minor_version = -2;
2529 devname = devnum2devname(st->container_dev);
2530 *info->text_version = '\0';
2531 if (devname)
2532 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2533 free(devname);
2534 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2535 uuid_from_super_imsm(st, info->uuid);
2536
2537 if (dmap) {
2538 int i, j;
2539 for (i=0; i<map_disks; i++) {
2540 dmap[i] = 0;
2541 if (i < info->array.raid_disks) {
2542 struct imsm_disk *dsk;
2543 j = get_imsm_disk_idx(dev, i, MAP_X);
2544 dsk = get_imsm_disk(super, j);
2545 if (dsk && (dsk->status & CONFIGURED_DISK))
2546 dmap[i] = 1;
2547 }
2548 }
2549 }
2550 }
2551
2552 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2553 int failed, int look_in_map);
2554
2555 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2556 int look_in_map);
2557
2558 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2559 {
2560 if (is_gen_migration(dev)) {
2561 int failed;
2562 __u8 map_state;
2563 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2564
2565 failed = imsm_count_failed(super, dev, MAP_1);
2566 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2567 if (map2->map_state != map_state) {
2568 map2->map_state = map_state;
2569 super->updates_pending++;
2570 }
2571 }
2572 }
2573
2574 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2575 {
2576 struct dl *d;
2577
2578 for (d = super->missing; d; d = d->next)
2579 if (d->index == index)
2580 return &d->disk;
2581 return NULL;
2582 }
2583
2584 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2585 {
2586 struct intel_super *super = st->sb;
2587 struct imsm_disk *disk;
2588 int map_disks = info->array.raid_disks;
2589 int max_enough = -1;
2590 int i;
2591 struct imsm_super *mpb;
2592
2593 if (super->current_vol >= 0) {
2594 getinfo_super_imsm_volume(st, info, map);
2595 return;
2596 }
2597 memset(info, 0, sizeof(*info));
2598
2599 /* Set raid_disks to zero so that Assemble will always pull in valid
2600 * spares
2601 */
2602 info->array.raid_disks = 0;
2603 info->array.level = LEVEL_CONTAINER;
2604 info->array.layout = 0;
2605 info->array.md_minor = -1;
2606 info->array.ctime = 0; /* N/A for imsm */
2607 info->array.utime = 0;
2608 info->array.chunk_size = 0;
2609
2610 info->disk.major = 0;
2611 info->disk.minor = 0;
2612 info->disk.raid_disk = -1;
2613 info->reshape_active = 0;
2614 info->array.major_version = -1;
2615 info->array.minor_version = -2;
2616 strcpy(info->text_version, "imsm");
2617 info->safe_mode_delay = 0;
2618 info->disk.number = -1;
2619 info->disk.state = 0;
2620 info->name[0] = 0;
2621 info->recovery_start = MaxSector;
2622 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2623
2624 /* do we have the all the insync disks that we expect? */
2625 mpb = super->anchor;
2626
2627 for (i = 0; i < mpb->num_raid_devs; i++) {
2628 struct imsm_dev *dev = get_imsm_dev(super, i);
2629 int failed, enough, j, missing = 0;
2630 struct imsm_map *map;
2631 __u8 state;
2632
2633 failed = imsm_count_failed(super, dev, MAP_0);
2634 state = imsm_check_degraded(super, dev, failed, MAP_0);
2635 map = get_imsm_map(dev, MAP_0);
2636
2637 /* any newly missing disks?
2638 * (catches single-degraded vs double-degraded)
2639 */
2640 for (j = 0; j < map->num_members; j++) {
2641 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2642 __u32 idx = ord_to_idx(ord);
2643
2644 if (!(ord & IMSM_ORD_REBUILD) &&
2645 get_imsm_missing(super, idx)) {
2646 missing = 1;
2647 break;
2648 }
2649 }
2650
2651 if (state == IMSM_T_STATE_FAILED)
2652 enough = -1;
2653 else if (state == IMSM_T_STATE_DEGRADED &&
2654 (state != map->map_state || missing))
2655 enough = 0;
2656 else /* we're normal, or already degraded */
2657 enough = 1;
2658
2659 /* in the missing/failed disk case check to see
2660 * if at least one array is runnable
2661 */
2662 max_enough = max(max_enough, enough);
2663 }
2664 dprintf("%s: enough: %d\n", __func__, max_enough);
2665 info->container_enough = max_enough;
2666
2667 if (super->disks) {
2668 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2669
2670 disk = &super->disks->disk;
2671 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2672 info->component_size = reserved;
2673 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2674 /* we don't change info->disk.raid_disk here because
2675 * this state will be finalized in mdmon after we have
2676 * found the 'most fresh' version of the metadata
2677 */
2678 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2679 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2680 }
2681
2682 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2683 * ->compare_super may have updated the 'num_raid_devs' field for spares
2684 */
2685 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2686 uuid_from_super_imsm(st, info->uuid);
2687 else
2688 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2689
2690 /* I don't know how to compute 'map' on imsm, so use safe default */
2691 if (map) {
2692 int i;
2693 for (i = 0; i < map_disks; i++)
2694 map[i] = 1;
2695 }
2696
2697 }
2698
2699 /* allocates memory and fills disk in mdinfo structure
2700 * for each disk in array */
2701 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2702 {
2703 struct mdinfo *mddev = NULL;
2704 struct intel_super *super = st->sb;
2705 struct imsm_disk *disk;
2706 int count = 0;
2707 struct dl *dl;
2708 if (!super || !super->disks)
2709 return NULL;
2710 dl = super->disks;
2711 mddev = malloc(sizeof(*mddev));
2712 if (!mddev) {
2713 fprintf(stderr, Name ": Failed to allocate memory.\n");
2714 return NULL;
2715 }
2716 memset(mddev, 0, sizeof(*mddev));
2717 while (dl) {
2718 struct mdinfo *tmp;
2719 disk = &dl->disk;
2720 tmp = malloc(sizeof(*tmp));
2721 if (!tmp) {
2722 fprintf(stderr, Name ": Failed to allocate memory.\n");
2723 if (mddev)
2724 sysfs_free(mddev);
2725 return NULL;
2726 }
2727 memset(tmp, 0, sizeof(*tmp));
2728 if (mddev->devs)
2729 tmp->next = mddev->devs;
2730 mddev->devs = tmp;
2731 tmp->disk.number = count++;
2732 tmp->disk.major = dl->major;
2733 tmp->disk.minor = dl->minor;
2734 tmp->disk.state = is_configured(disk) ?
2735 (1 << MD_DISK_ACTIVE) : 0;
2736 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2737 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2738 tmp->disk.raid_disk = -1;
2739 dl = dl->next;
2740 }
2741 return mddev;
2742 }
2743
2744 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2745 char *update, char *devname, int verbose,
2746 int uuid_set, char *homehost)
2747 {
2748 /* For 'assemble' and 'force' we need to return non-zero if any
2749 * change was made. For others, the return value is ignored.
2750 * Update options are:
2751 * force-one : This device looks a bit old but needs to be included,
2752 * update age info appropriately.
2753 * assemble: clear any 'faulty' flag to allow this device to
2754 * be assembled.
2755 * force-array: Array is degraded but being forced, mark it clean
2756 * if that will be needed to assemble it.
2757 *
2758 * newdev: not used ????
2759 * grow: Array has gained a new device - this is currently for
2760 * linear only
2761 * resync: mark as dirty so a resync will happen.
2762 * name: update the name - preserving the homehost
2763 * uuid: Change the uuid of the array to match watch is given
2764 *
2765 * Following are not relevant for this imsm:
2766 * sparc2.2 : update from old dodgey metadata
2767 * super-minor: change the preferred_minor number
2768 * summaries: update redundant counters.
2769 * homehost: update the recorded homehost
2770 * _reshape_progress: record new reshape_progress position.
2771 */
2772 int rv = 1;
2773 struct intel_super *super = st->sb;
2774 struct imsm_super *mpb;
2775
2776 /* we can only update container info */
2777 if (!super || super->current_vol >= 0 || !super->anchor)
2778 return 1;
2779
2780 mpb = super->anchor;
2781
2782 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2783 rv = -1;
2784 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2785 mpb->orig_family_num = *((__u32 *) info->update_private);
2786 rv = 0;
2787 } else if (strcmp(update, "uuid") == 0) {
2788 __u32 *new_family = malloc(sizeof(*new_family));
2789
2790 /* update orig_family_number with the incoming random
2791 * data, report the new effective uuid, and store the
2792 * new orig_family_num for future updates.
2793 */
2794 if (new_family) {
2795 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2796 uuid_from_super_imsm(st, info->uuid);
2797 *new_family = mpb->orig_family_num;
2798 info->update_private = new_family;
2799 rv = 0;
2800 }
2801 } else if (strcmp(update, "assemble") == 0)
2802 rv = 0;
2803 else
2804 rv = -1;
2805
2806 /* successful update? recompute checksum */
2807 if (rv == 0)
2808 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2809
2810 return rv;
2811 }
2812
2813 static size_t disks_to_mpb_size(int disks)
2814 {
2815 size_t size;
2816
2817 size = sizeof(struct imsm_super);
2818 size += (disks - 1) * sizeof(struct imsm_disk);
2819 size += 2 * sizeof(struct imsm_dev);
2820 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2821 size += (4 - 2) * sizeof(struct imsm_map);
2822 /* 4 possible disk_ord_tbl's */
2823 size += 4 * (disks - 1) * sizeof(__u32);
2824
2825 return size;
2826 }
2827
2828 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2829 {
2830 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2831 return 0;
2832
2833 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2834 }
2835
2836 static void free_devlist(struct intel_super *super)
2837 {
2838 struct intel_dev *dv;
2839
2840 while (super->devlist) {
2841 dv = super->devlist->next;
2842 free(super->devlist->dev);
2843 free(super->devlist);
2844 super->devlist = dv;
2845 }
2846 }
2847
2848 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2849 {
2850 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2851 }
2852
2853 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2854 {
2855 /*
2856 * return:
2857 * 0 same, or first was empty, and second was copied
2858 * 1 second had wrong number
2859 * 2 wrong uuid
2860 * 3 wrong other info
2861 */
2862 struct intel_super *first = st->sb;
2863 struct intel_super *sec = tst->sb;
2864
2865 if (!first) {
2866 st->sb = tst->sb;
2867 tst->sb = NULL;
2868 return 0;
2869 }
2870 /* in platform dependent environment test if the disks
2871 * use the same Intel hba
2872 */
2873 if (!check_env("IMSM_NO_PLATFORM")) {
2874 if (!first->hba || !sec->hba ||
2875 (first->hba->type != sec->hba->type)) {
2876 fprintf(stderr,
2877 "HBAs of devices does not match %s != %s\n",
2878 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2879 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2880 return 3;
2881 }
2882 }
2883
2884 /* if an anchor does not have num_raid_devs set then it is a free
2885 * floating spare
2886 */
2887 if (first->anchor->num_raid_devs > 0 &&
2888 sec->anchor->num_raid_devs > 0) {
2889 /* Determine if these disks might ever have been
2890 * related. Further disambiguation can only take place
2891 * in load_super_imsm_all
2892 */
2893 __u32 first_family = first->anchor->orig_family_num;
2894 __u32 sec_family = sec->anchor->orig_family_num;
2895
2896 if (memcmp(first->anchor->sig, sec->anchor->sig,
2897 MAX_SIGNATURE_LENGTH) != 0)
2898 return 3;
2899
2900 if (first_family == 0)
2901 first_family = first->anchor->family_num;
2902 if (sec_family == 0)
2903 sec_family = sec->anchor->family_num;
2904
2905 if (first_family != sec_family)
2906 return 3;
2907
2908 }
2909
2910
2911 /* if 'first' is a spare promote it to a populated mpb with sec's
2912 * family number
2913 */
2914 if (first->anchor->num_raid_devs == 0 &&
2915 sec->anchor->num_raid_devs > 0) {
2916 int i;
2917 struct intel_dev *dv;
2918 struct imsm_dev *dev;
2919
2920 /* we need to copy raid device info from sec if an allocation
2921 * fails here we don't associate the spare
2922 */
2923 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2924 dv = malloc(sizeof(*dv));
2925 if (!dv)
2926 break;
2927 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2928 if (!dev) {
2929 free(dv);
2930 break;
2931 }
2932 dv->dev = dev;
2933 dv->index = i;
2934 dv->next = first->devlist;
2935 first->devlist = dv;
2936 }
2937 if (i < sec->anchor->num_raid_devs) {
2938 /* allocation failure */
2939 free_devlist(first);
2940 fprintf(stderr, "imsm: failed to associate spare\n");
2941 return 3;
2942 }
2943 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2944 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2945 first->anchor->family_num = sec->anchor->family_num;
2946 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2947 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2948 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2949 }
2950
2951 return 0;
2952 }
2953
2954 static void fd2devname(int fd, char *name)
2955 {
2956 struct stat st;
2957 char path[256];
2958 char dname[PATH_MAX];
2959 char *nm;
2960 int rv;
2961
2962 name[0] = '\0';
2963 if (fstat(fd, &st) != 0)
2964 return;
2965 sprintf(path, "/sys/dev/block/%d:%d",
2966 major(st.st_rdev), minor(st.st_rdev));
2967
2968 rv = readlink(path, dname, sizeof(dname)-1);
2969 if (rv <= 0)
2970 return;
2971
2972 dname[rv] = '\0';
2973 nm = strrchr(dname, '/');
2974 if (nm) {
2975 nm++;
2976 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2977 }
2978 }
2979
2980 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2981
2982 static int imsm_read_serial(int fd, char *devname,
2983 __u8 serial[MAX_RAID_SERIAL_LEN])
2984 {
2985 unsigned char scsi_serial[255];
2986 int rv;
2987 int rsp_len;
2988 int len;
2989 char *dest;
2990 char *src;
2991 char *rsp_buf;
2992 int i;
2993
2994 memset(scsi_serial, 0, sizeof(scsi_serial));
2995
2996 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2997
2998 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2999 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3000 fd2devname(fd, (char *) serial);
3001 return 0;
3002 }
3003
3004 if (rv != 0) {
3005 if (devname)
3006 fprintf(stderr,
3007 Name ": Failed to retrieve serial for %s\n",
3008 devname);
3009 return rv;
3010 }
3011
3012 rsp_len = scsi_serial[3];
3013 if (!rsp_len) {
3014 if (devname)
3015 fprintf(stderr,
3016 Name ": Failed to retrieve serial for %s\n",
3017 devname);
3018 return 2;
3019 }
3020 rsp_buf = (char *) &scsi_serial[4];
3021
3022 /* trim all whitespace and non-printable characters and convert
3023 * ':' to ';'
3024 */
3025 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3026 src = &rsp_buf[i];
3027 if (*src > 0x20) {
3028 /* ':' is reserved for use in placeholder serial
3029 * numbers for missing disks
3030 */
3031 if (*src == ':')
3032 *dest++ = ';';
3033 else
3034 *dest++ = *src;
3035 }
3036 }
3037 len = dest - rsp_buf;
3038 dest = rsp_buf;
3039
3040 /* truncate leading characters */
3041 if (len > MAX_RAID_SERIAL_LEN) {
3042 dest += len - MAX_RAID_SERIAL_LEN;
3043 len = MAX_RAID_SERIAL_LEN;
3044 }
3045
3046 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3047 memcpy(serial, dest, len);
3048
3049 return 0;
3050 }
3051
3052 static int serialcmp(__u8 *s1, __u8 *s2)
3053 {
3054 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3055 }
3056
3057 static void serialcpy(__u8 *dest, __u8 *src)
3058 {
3059 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3060 }
3061
3062 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3063 {
3064 struct dl *dl;
3065
3066 for (dl = super->disks; dl; dl = dl->next)
3067 if (serialcmp(dl->serial, serial) == 0)
3068 break;
3069
3070 return dl;
3071 }
3072
3073 static struct imsm_disk *
3074 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3075 {
3076 int i;
3077
3078 for (i = 0; i < mpb->num_disks; i++) {
3079 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3080
3081 if (serialcmp(disk->serial, serial) == 0) {
3082 if (idx)
3083 *idx = i;
3084 return disk;
3085 }
3086 }
3087
3088 return NULL;
3089 }
3090
3091 static int
3092 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3093 {
3094 struct imsm_disk *disk;
3095 struct dl *dl;
3096 struct stat stb;
3097 int rv;
3098 char name[40];
3099 __u8 serial[MAX_RAID_SERIAL_LEN];
3100
3101 rv = imsm_read_serial(fd, devname, serial);
3102
3103 if (rv != 0)
3104 return 2;
3105
3106 dl = calloc(1, sizeof(*dl));
3107 if (!dl) {
3108 if (devname)
3109 fprintf(stderr,
3110 Name ": failed to allocate disk buffer for %s\n",
3111 devname);
3112 return 2;
3113 }
3114
3115 fstat(fd, &stb);
3116 dl->major = major(stb.st_rdev);
3117 dl->minor = minor(stb.st_rdev);
3118 dl->next = super->disks;
3119 dl->fd = keep_fd ? fd : -1;
3120 assert(super->disks == NULL);
3121 super->disks = dl;
3122 serialcpy(dl->serial, serial);
3123 dl->index = -2;
3124 dl->e = NULL;
3125 fd2devname(fd, name);
3126 if (devname)
3127 dl->devname = strdup(devname);
3128 else
3129 dl->devname = strdup(name);
3130
3131 /* look up this disk's index in the current anchor */
3132 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3133 if (disk) {
3134 dl->disk = *disk;
3135 /* only set index on disks that are a member of a
3136 * populated contianer, i.e. one with raid_devs
3137 */
3138 if (is_failed(&dl->disk))
3139 dl->index = -2;
3140 else if (is_spare(&dl->disk))
3141 dl->index = -1;
3142 }
3143
3144 return 0;
3145 }
3146
3147 #ifndef MDASSEMBLE
3148 /* When migrating map0 contains the 'destination' state while map1
3149 * contains the current state. When not migrating map0 contains the
3150 * current state. This routine assumes that map[0].map_state is set to
3151 * the current array state before being called.
3152 *
3153 * Migration is indicated by one of the following states
3154 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3155 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3156 * map1state=unitialized)
3157 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3158 * map1state=normal)
3159 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3160 * map1state=degraded)
3161 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3162 * map1state=normal)
3163 */
3164 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3165 __u8 to_state, int migr_type)
3166 {
3167 struct imsm_map *dest;
3168 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3169
3170 dev->vol.migr_state = 1;
3171 set_migr_type(dev, migr_type);
3172 dev->vol.curr_migr_unit = 0;
3173 dest = get_imsm_map(dev, MAP_1);
3174
3175 /* duplicate and then set the target end state in map[0] */
3176 memcpy(dest, src, sizeof_imsm_map(src));
3177 if ((migr_type == MIGR_REBUILD) ||
3178 (migr_type == MIGR_GEN_MIGR)) {
3179 __u32 ord;
3180 int i;
3181
3182 for (i = 0; i < src->num_members; i++) {
3183 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3184 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3185 }
3186 }
3187
3188 if (migr_type == MIGR_GEN_MIGR)
3189 /* Clear migration record */
3190 memset(super->migr_rec, 0, sizeof(struct migr_record));
3191
3192 src->map_state = to_state;
3193 }
3194
3195 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3196 __u8 map_state)
3197 {
3198 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3199 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3200 MAP_0 : MAP_1);
3201 int i, j;
3202
3203 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3204 * completed in the last migration.
3205 *
3206 * FIXME add support for raid-level-migration
3207 */
3208 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3209 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3210 /* when final map state is other than expected
3211 * merge maps (not for migration)
3212 */
3213 int failed;
3214
3215 for (i = 0; i < prev->num_members; i++)
3216 for (j = 0; j < map->num_members; j++)
3217 /* during online capacity expansion
3218 * disks position can be changed
3219 * if takeover is used
3220 */
3221 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3222 ord_to_idx(prev->disk_ord_tbl[i])) {
3223 map->disk_ord_tbl[j] |=
3224 prev->disk_ord_tbl[i];
3225 break;
3226 }
3227 failed = imsm_count_failed(super, dev, MAP_0);
3228 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3229 }
3230
3231 dev->vol.migr_state = 0;
3232 set_migr_type(dev, 0);
3233 dev->vol.curr_migr_unit = 0;
3234 map->map_state = map_state;
3235 }
3236 #endif
3237
3238 static int parse_raid_devices(struct intel_super *super)
3239 {
3240 int i;
3241 struct imsm_dev *dev_new;
3242 size_t len, len_migr;
3243 size_t max_len = 0;
3244 size_t space_needed = 0;
3245 struct imsm_super *mpb = super->anchor;
3246
3247 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3248 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3249 struct intel_dev *dv;
3250
3251 len = sizeof_imsm_dev(dev_iter, 0);
3252 len_migr = sizeof_imsm_dev(dev_iter, 1);
3253 if (len_migr > len)
3254 space_needed += len_migr - len;
3255
3256 dv = malloc(sizeof(*dv));
3257 if (!dv)
3258 return 1;
3259 if (max_len < len_migr)
3260 max_len = len_migr;
3261 if (max_len > len_migr)
3262 space_needed += max_len - len_migr;
3263 dev_new = malloc(max_len);
3264 if (!dev_new) {
3265 free(dv);
3266 return 1;
3267 }
3268 imsm_copy_dev(dev_new, dev_iter);
3269 dv->dev = dev_new;
3270 dv->index = i;
3271 dv->next = super->devlist;
3272 super->devlist = dv;
3273 }
3274
3275 /* ensure that super->buf is large enough when all raid devices
3276 * are migrating
3277 */
3278 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3279 void *buf;
3280
3281 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3282 if (posix_memalign(&buf, 512, len) != 0)
3283 return 1;
3284
3285 memcpy(buf, super->buf, super->len);
3286 memset(buf + super->len, 0, len - super->len);
3287 free(super->buf);
3288 super->buf = buf;
3289 super->len = len;
3290 }
3291
3292 return 0;
3293 }
3294
3295 /* retrieve a pointer to the bbm log which starts after all raid devices */
3296 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3297 {
3298 void *ptr = NULL;
3299
3300 if (__le32_to_cpu(mpb->bbm_log_size)) {
3301 ptr = mpb;
3302 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3303 }
3304
3305 return ptr;
3306 }
3307
3308 /*******************************************************************************
3309 * Function: check_mpb_migr_compatibility
3310 * Description: Function checks for unsupported migration features:
3311 * - migration optimization area (pba_of_lba0)
3312 * - descending reshape (ascending_migr)
3313 * Parameters:
3314 * super : imsm metadata information
3315 * Returns:
3316 * 0 : migration is compatible
3317 * -1 : migration is not compatible
3318 ******************************************************************************/
3319 int check_mpb_migr_compatibility(struct intel_super *super)
3320 {
3321 struct imsm_map *map0, *map1;
3322 struct migr_record *migr_rec = super->migr_rec;
3323 int i;
3324
3325 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3326 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3327
3328 if (dev_iter &&
3329 dev_iter->vol.migr_state == 1 &&
3330 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3331 /* This device is migrating */
3332 map0 = get_imsm_map(dev_iter, MAP_0);
3333 map1 = get_imsm_map(dev_iter, MAP_1);
3334 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3335 /* migration optimization area was used */
3336 return -1;
3337 if (migr_rec->ascending_migr == 0
3338 && migr_rec->dest_depth_per_unit > 0)
3339 /* descending reshape not supported yet */
3340 return -1;
3341 }
3342 }
3343 return 0;
3344 }
3345
3346 static void __free_imsm(struct intel_super *super, int free_disks);
3347
3348 /* load_imsm_mpb - read matrix metadata
3349 * allocates super->mpb to be freed by free_imsm
3350 */
3351 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3352 {
3353 unsigned long long dsize;
3354 unsigned long long sectors;
3355 struct stat;
3356 struct imsm_super *anchor;
3357 __u32 check_sum;
3358
3359 get_dev_size(fd, NULL, &dsize);
3360 if (dsize < 1024) {
3361 if (devname)
3362 fprintf(stderr,
3363 Name ": %s: device to small for imsm\n",
3364 devname);
3365 return 1;
3366 }
3367
3368 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3369 if (devname)
3370 fprintf(stderr, Name
3371 ": Cannot seek to anchor block on %s: %s\n",
3372 devname, strerror(errno));
3373 return 1;
3374 }
3375
3376 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3377 if (devname)
3378 fprintf(stderr,
3379 Name ": Failed to allocate imsm anchor buffer"
3380 " on %s\n", devname);
3381 return 1;
3382 }
3383 if (read(fd, anchor, 512) != 512) {
3384 if (devname)
3385 fprintf(stderr,
3386 Name ": Cannot read anchor block on %s: %s\n",
3387 devname, strerror(errno));
3388 free(anchor);
3389 return 1;
3390 }
3391
3392 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3393 if (devname)
3394 fprintf(stderr,
3395 Name ": no IMSM anchor on %s\n", devname);
3396 free(anchor);
3397 return 2;
3398 }
3399
3400 __free_imsm(super, 0);
3401 /* reload capability and hba */
3402
3403 /* capability and hba must be updated with new super allocation */
3404 find_intel_hba_capability(fd, super, devname);
3405 super->len = ROUND_UP(anchor->mpb_size, 512);
3406 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3407 if (devname)
3408 fprintf(stderr,
3409 Name ": unable to allocate %zu byte mpb buffer\n",
3410 super->len);
3411 free(anchor);
3412 return 2;
3413 }
3414 memcpy(super->buf, anchor, 512);
3415
3416 sectors = mpb_sectors(anchor) - 1;
3417 free(anchor);
3418
3419 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3420 fprintf(stderr, Name
3421 ": %s could not allocate migr_rec buffer\n", __func__);
3422 free(super->buf);
3423 return 2;
3424 }
3425
3426 if (!sectors) {
3427 check_sum = __gen_imsm_checksum(super->anchor);
3428 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3429 if (devname)
3430 fprintf(stderr,
3431 Name ": IMSM checksum %x != %x on %s\n",
3432 check_sum,
3433 __le32_to_cpu(super->anchor->check_sum),
3434 devname);
3435 return 2;
3436 }
3437
3438 return 0;
3439 }
3440
3441 /* read the extended mpb */
3442 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3443 if (devname)
3444 fprintf(stderr,
3445 Name ": Cannot seek to extended mpb on %s: %s\n",
3446 devname, strerror(errno));
3447 return 1;
3448 }
3449
3450 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3451 if (devname)
3452 fprintf(stderr,
3453 Name ": Cannot read extended mpb on %s: %s\n",
3454 devname, strerror(errno));
3455 return 2;
3456 }
3457
3458 check_sum = __gen_imsm_checksum(super->anchor);
3459 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3460 if (devname)
3461 fprintf(stderr,
3462 Name ": IMSM checksum %x != %x on %s\n",
3463 check_sum, __le32_to_cpu(super->anchor->check_sum),
3464 devname);
3465 return 3;
3466 }
3467
3468 /* FIXME the BBM log is disk specific so we cannot use this global
3469 * buffer for all disks. Ok for now since we only look at the global
3470 * bbm_log_size parameter to gate assembly
3471 */
3472 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3473
3474 return 0;
3475 }
3476
3477 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3478
3479 static int
3480 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3481 {
3482 int err;
3483
3484 err = load_imsm_mpb(fd, super, devname);
3485 if (err)
3486 return err;
3487 err = load_imsm_disk(fd, super, devname, keep_fd);
3488 if (err)
3489 return err;
3490 err = parse_raid_devices(super);
3491
3492 return err;
3493 }
3494
3495 static void __free_imsm_disk(struct dl *d)
3496 {
3497 if (d->fd >= 0)
3498 close(d->fd);
3499 if (d->devname)
3500 free(d->devname);
3501 if (d->e)
3502 free(d->e);
3503 free(d);
3504
3505 }
3506
3507 static void free_imsm_disks(struct intel_super *super)
3508 {
3509 struct dl *d;
3510
3511 while (super->disks) {
3512 d = super->disks;
3513 super->disks = d->next;
3514 __free_imsm_disk(d);
3515 }
3516 while (super->disk_mgmt_list) {
3517 d = super->disk_mgmt_list;
3518 super->disk_mgmt_list = d->next;
3519 __free_imsm_disk(d);
3520 }
3521 while (super->missing) {
3522 d = super->missing;
3523 super->missing = d->next;
3524 __free_imsm_disk(d);
3525 }
3526
3527 }
3528
3529 /* free all the pieces hanging off of a super pointer */
3530 static void __free_imsm(struct intel_super *super, int free_disks)
3531 {
3532 struct intel_hba *elem, *next;
3533
3534 if (super->buf) {
3535 free(super->buf);
3536 super->buf = NULL;
3537 }
3538 /* unlink capability description */
3539 super->orom = NULL;
3540 if (super->migr_rec_buf) {
3541 free(super->migr_rec_buf);
3542 super->migr_rec_buf = NULL;
3543 }
3544 if (free_disks)
3545 free_imsm_disks(super);
3546 free_devlist(super);
3547 elem = super->hba;
3548 while (elem) {
3549 if (elem->path)
3550 free((void *)elem->path);
3551 next = elem->next;
3552 free(elem);
3553 elem = next;
3554 }
3555 super->hba = NULL;
3556 }
3557
3558 static void free_imsm(struct intel_super *super)
3559 {
3560 __free_imsm(super, 1);
3561 free(super);
3562 }
3563
3564 static void free_super_imsm(struct supertype *st)
3565 {
3566 struct intel_super *super = st->sb;
3567
3568 if (!super)
3569 return;
3570
3571 free_imsm(super);
3572 st->sb = NULL;
3573 }
3574
3575 static struct intel_super *alloc_super(void)
3576 {
3577 struct intel_super *super = malloc(sizeof(*super));
3578
3579 if (super) {
3580 memset(super, 0, sizeof(*super));
3581 super->current_vol = -1;
3582 super->create_offset = ~((__u32 ) 0);
3583 }
3584 return super;
3585 }
3586
3587 /*
3588 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3589 */
3590 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3591 {
3592 struct sys_dev *hba_name;
3593 int rv = 0;
3594
3595 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3596 super->orom = NULL;
3597 super->hba = NULL;
3598 return 0;
3599 }
3600 hba_name = find_disk_attached_hba(fd, NULL);
3601 if (!hba_name) {
3602 if (devname)
3603 fprintf(stderr,
3604 Name ": %s is not attached to Intel(R) RAID controller.\n",
3605 devname);
3606 return 1;
3607 }
3608 rv = attach_hba_to_super(super, hba_name);
3609 if (rv == 2) {
3610 if (devname) {
3611 struct intel_hba *hba = super->hba;
3612
3613 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3614 "controller (%s),\n"
3615 " but the container is assigned to Intel(R) "
3616 "%s RAID controller (",
3617 devname,
3618 hba_name->path,
3619 hba_name->pci_id ? : "Err!",
3620 get_sys_dev_type(hba_name->type));
3621
3622 while (hba) {
3623 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3624 if (hba->next)
3625 fprintf(stderr, ", ");
3626 hba = hba->next;
3627 }
3628
3629 fprintf(stderr, ").\n"
3630 " Mixing devices attached to different controllers "
3631 "is not allowed.\n");
3632 }
3633 free_sys_dev(&hba_name);
3634 return 2;
3635 }
3636 super->orom = find_imsm_capability(hba_name->type);
3637 free_sys_dev(&hba_name);
3638 if (!super->orom)
3639 return 3;
3640 return 0;
3641 }
3642
3643 /* find_missing - helper routine for load_super_imsm_all that identifies
3644 * disks that have disappeared from the system. This routine relies on
3645 * the mpb being uptodate, which it is at load time.
3646 */
3647 static int find_missing(struct intel_super *super)
3648 {
3649 int i;
3650 struct imsm_super *mpb = super->anchor;
3651 struct dl *dl;
3652 struct imsm_disk *disk;
3653
3654 for (i = 0; i < mpb->num_disks; i++) {
3655 disk = __get_imsm_disk(mpb, i);
3656 dl = serial_to_dl(disk->serial, super);
3657 if (dl)
3658 continue;
3659
3660 dl = malloc(sizeof(*dl));
3661 if (!dl)
3662 return 1;
3663 dl->major = 0;
3664 dl->minor = 0;
3665 dl->fd = -1;
3666 dl->devname = strdup("missing");
3667 dl->index = i;
3668 serialcpy(dl->serial, disk->serial);
3669 dl->disk = *disk;
3670 dl->e = NULL;
3671 dl->next = super->missing;
3672 super->missing = dl;
3673 }
3674
3675 return 0;
3676 }
3677
3678 #ifndef MDASSEMBLE
3679 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3680 {
3681 struct intel_disk *idisk = disk_list;
3682
3683 while (idisk) {
3684 if (serialcmp(idisk->disk.serial, serial) == 0)
3685 break;
3686 idisk = idisk->next;
3687 }
3688
3689 return idisk;
3690 }
3691
3692 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3693 struct intel_super *super,
3694 struct intel_disk **disk_list)
3695 {
3696 struct imsm_disk *d = &super->disks->disk;
3697 struct imsm_super *mpb = super->anchor;
3698 int i, j;
3699
3700 for (i = 0; i < tbl_size; i++) {
3701 struct imsm_super *tbl_mpb = table[i]->anchor;
3702 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3703
3704 if (tbl_mpb->family_num == mpb->family_num) {
3705 if (tbl_mpb->check_sum == mpb->check_sum) {
3706 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3707 __func__, super->disks->major,
3708 super->disks->minor,
3709 table[i]->disks->major,
3710 table[i]->disks->minor);
3711 break;
3712 }
3713
3714 if (((is_configured(d) && !is_configured(tbl_d)) ||
3715 is_configured(d) == is_configured(tbl_d)) &&
3716 tbl_mpb->generation_num < mpb->generation_num) {
3717 /* current version of the mpb is a
3718 * better candidate than the one in
3719 * super_table, but copy over "cross
3720 * generational" status
3721 */
3722 struct intel_disk *idisk;
3723
3724 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3725 __func__, super->disks->major,
3726 super->disks->minor,
3727 table[i]->disks->major,
3728 table[i]->disks->minor);
3729
3730 idisk = disk_list_get(tbl_d->serial, *disk_list);
3731 if (idisk && is_failed(&idisk->disk))
3732 tbl_d->status |= FAILED_DISK;
3733 break;
3734 } else {
3735 struct intel_disk *idisk;
3736 struct imsm_disk *disk;
3737
3738 /* tbl_mpb is more up to date, but copy
3739 * over cross generational status before
3740 * returning
3741 */
3742 disk = __serial_to_disk(d->serial, mpb, NULL);
3743 if (disk && is_failed(disk))
3744 d->status |= FAILED_DISK;
3745
3746 idisk = disk_list_get(d->serial, *disk_list);
3747 if (idisk) {
3748 idisk->owner = i;
3749 if (disk && is_configured(disk))
3750 idisk->disk.status |= CONFIGURED_DISK;
3751 }
3752
3753 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3754 __func__, super->disks->major,
3755 super->disks->minor,
3756 table[i]->disks->major,
3757 table[i]->disks->minor);
3758
3759 return tbl_size;
3760 }
3761 }
3762 }
3763
3764 if (i >= tbl_size)
3765 table[tbl_size++] = super;
3766 else
3767 table[i] = super;
3768
3769 /* update/extend the merged list of imsm_disk records */
3770 for (j = 0; j < mpb->num_disks; j++) {
3771 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3772 struct intel_disk *idisk;
3773
3774 idisk = disk_list_get(disk->serial, *disk_list);
3775 if (idisk) {
3776 idisk->disk.status |= disk->status;
3777 if (is_configured(&idisk->disk) ||
3778 is_failed(&idisk->disk))
3779 idisk->disk.status &= ~(SPARE_DISK);
3780 } else {
3781 idisk = calloc(1, sizeof(*idisk));
3782 if (!idisk)
3783 return -1;
3784 idisk->owner = IMSM_UNKNOWN_OWNER;
3785 idisk->disk = *disk;
3786 idisk->next = *disk_list;
3787 *disk_list = idisk;
3788 }
3789
3790 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3791 idisk->owner = i;
3792 }
3793
3794 return tbl_size;
3795 }
3796
3797 static struct intel_super *
3798 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3799 const int owner)
3800 {
3801 struct imsm_super *mpb = super->anchor;
3802 int ok_count = 0;
3803 int i;
3804
3805 for (i = 0; i < mpb->num_disks; i++) {
3806 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3807 struct intel_disk *idisk;
3808
3809 idisk = disk_list_get(disk->serial, disk_list);
3810 if (idisk) {
3811 if (idisk->owner == owner ||
3812 idisk->owner == IMSM_UNKNOWN_OWNER)
3813 ok_count++;
3814 else
3815 dprintf("%s: '%.16s' owner %d != %d\n",
3816 __func__, disk->serial, idisk->owner,
3817 owner);
3818 } else {
3819 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3820 __func__, __le32_to_cpu(mpb->family_num), i,
3821 disk->serial);
3822 break;
3823 }
3824 }
3825
3826 if (ok_count == mpb->num_disks)
3827 return super;
3828 return NULL;
3829 }
3830
3831 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3832 {
3833 struct intel_super *s;
3834
3835 for (s = super_list; s; s = s->next) {
3836 if (family_num != s->anchor->family_num)
3837 continue;
3838 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3839 __le32_to_cpu(family_num), s->disks->devname);
3840 }
3841 }
3842
3843 static struct intel_super *
3844 imsm_thunderdome(struct intel_super **super_list, int len)
3845 {
3846 struct intel_super *super_table[len];
3847 struct intel_disk *disk_list = NULL;
3848 struct intel_super *champion, *spare;
3849 struct intel_super *s, **del;
3850 int tbl_size = 0;
3851 int conflict;
3852 int i;
3853
3854 memset(super_table, 0, sizeof(super_table));
3855 for (s = *super_list; s; s = s->next)
3856 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3857
3858 for (i = 0; i < tbl_size; i++) {
3859 struct imsm_disk *d;
3860 struct intel_disk *idisk;
3861 struct imsm_super *mpb = super_table[i]->anchor;
3862
3863 s = super_table[i];
3864 d = &s->disks->disk;
3865
3866 /* 'd' must appear in merged disk list for its
3867 * configuration to be valid
3868 */
3869 idisk = disk_list_get(d->serial, disk_list);
3870 if (idisk && idisk->owner == i)
3871 s = validate_members(s, disk_list, i);
3872 else
3873 s = NULL;
3874
3875 if (!s)
3876 dprintf("%s: marking family: %#x from %d:%d offline\n",
3877 __func__, mpb->family_num,
3878 super_table[i]->disks->major,
3879 super_table[i]->disks->minor);
3880 super_table[i] = s;
3881 }
3882
3883 /* This is where the mdadm implementation differs from the Windows
3884 * driver which has no strict concept of a container. We can only
3885 * assemble one family from a container, so when returning a prodigal
3886 * array member to this system the code will not be able to disambiguate
3887 * the container contents that should be assembled ("foreign" versus
3888 * "local"). It requires user intervention to set the orig_family_num
3889 * to a new value to establish a new container. The Windows driver in
3890 * this situation fixes up the volume name in place and manages the
3891 * foreign array as an independent entity.
3892 */
3893 s = NULL;
3894 spare = NULL;
3895 conflict = 0;
3896 for (i = 0; i < tbl_size; i++) {
3897 struct intel_super *tbl_ent = super_table[i];
3898 int is_spare = 0;
3899
3900 if (!tbl_ent)
3901 continue;
3902
3903 if (tbl_ent->anchor->num_raid_devs == 0) {
3904 spare = tbl_ent;
3905 is_spare = 1;
3906 }
3907
3908 if (s && !is_spare) {
3909 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3910 conflict++;
3911 } else if (!s && !is_spare)
3912 s = tbl_ent;
3913 }
3914
3915 if (!s)
3916 s = spare;
3917 if (!s) {
3918 champion = NULL;
3919 goto out;
3920 }
3921 champion = s;
3922
3923 if (conflict)
3924 fprintf(stderr, "Chose family %#x on '%s', "
3925 "assemble conflicts to new container with '--update=uuid'\n",
3926 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3927
3928 /* collect all dl's onto 'champion', and update them to
3929 * champion's version of the status
3930 */
3931 for (s = *super_list; s; s = s->next) {
3932 struct imsm_super *mpb = champion->anchor;
3933 struct dl *dl = s->disks;
3934
3935 if (s == champion)
3936 continue;
3937
3938 for (i = 0; i < mpb->num_disks; i++) {
3939 struct imsm_disk *disk;
3940
3941 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3942 if (disk) {
3943 dl->disk = *disk;
3944 /* only set index on disks that are a member of
3945 * a populated contianer, i.e. one with
3946 * raid_devs
3947 */
3948 if (is_failed(&dl->disk))
3949 dl->index = -2;
3950 else if (is_spare(&dl->disk))
3951 dl->index = -1;
3952 break;
3953 }
3954 }
3955
3956 if (i >= mpb->num_disks) {
3957 struct intel_disk *idisk;
3958
3959 idisk = disk_list_get(dl->serial, disk_list);
3960 if (idisk && is_spare(&idisk->disk) &&
3961 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3962 dl->index = -1;
3963 else {
3964 dl->index = -2;
3965 continue;
3966 }
3967 }
3968
3969 dl->next = champion->disks;
3970 champion->disks = dl;
3971 s->disks = NULL;
3972 }
3973
3974 /* delete 'champion' from super_list */
3975 for (del = super_list; *del; ) {
3976 if (*del == champion) {
3977 *del = (*del)->next;
3978 break;
3979 } else
3980 del = &(*del)->next;
3981 }
3982 champion->next = NULL;
3983
3984 out:
3985 while (disk_list) {
3986 struct intel_disk *idisk = disk_list;
3987
3988 disk_list = disk_list->next;
3989 free(idisk);
3990 }
3991
3992 return champion;
3993 }
3994
3995 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3996 char *devname)
3997 {
3998 struct mdinfo *sra;
3999 struct intel_super *super_list = NULL;
4000 struct intel_super *super = NULL;
4001 int devnum = fd2devnum(fd);
4002 struct mdinfo *sd;
4003 int retry;
4004 int err = 0;
4005 int i;
4006
4007 /* check if 'fd' an opened container */
4008 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4009 if (!sra)
4010 return 1;
4011
4012 if (sra->array.major_version != -1 ||
4013 sra->array.minor_version != -2 ||
4014 strcmp(sra->text_version, "imsm") != 0) {
4015 err = 1;
4016 goto error;
4017 }
4018 /* load all mpbs */
4019 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4020 struct intel_super *s = alloc_super();
4021 char nm[32];
4022 int dfd;
4023 int rv;
4024
4025 err = 1;
4026 if (!s)
4027 goto error;
4028 s->next = super_list;
4029 super_list = s;
4030
4031 err = 2;
4032 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
4033 dfd = dev_open(nm, O_RDWR);
4034 if (dfd < 0)
4035 goto error;
4036
4037 rv = find_intel_hba_capability(dfd, s, devname);
4038 /* no orom/efi or non-intel hba of the disk */
4039 if (rv != 0)
4040 goto error;
4041
4042 err = load_and_parse_mpb(dfd, s, NULL, 1);
4043
4044 /* retry the load if we might have raced against mdmon */
4045 if (err == 3 && mdmon_running(devnum))
4046 for (retry = 0; retry < 3; retry++) {
4047 usleep(3000);
4048 err = load_and_parse_mpb(dfd, s, NULL, 1);
4049 if (err != 3)
4050 break;
4051 }
4052 if (err)
4053 goto error;
4054 }
4055
4056 /* all mpbs enter, maybe one leaves */
4057 super = imsm_thunderdome(&super_list, i);
4058 if (!super) {
4059 err = 1;
4060 goto error;
4061 }
4062
4063 if (find_missing(super) != 0) {
4064 free_imsm(super);
4065 err = 2;
4066 goto error;
4067 }
4068
4069 /* load migration record */
4070 err = load_imsm_migr_rec(super, NULL);
4071 if (err) {
4072 err = 4;
4073 goto error;
4074 }
4075
4076 /* Check migration compatibility */
4077 if (check_mpb_migr_compatibility(super) != 0) {
4078 fprintf(stderr, Name ": Unsupported migration detected");
4079 if (devname)
4080 fprintf(stderr, " on %s\n", devname);
4081 else
4082 fprintf(stderr, " (IMSM).\n");
4083
4084 err = 5;
4085 goto error;
4086 }
4087
4088 err = 0;
4089
4090 error:
4091 while (super_list) {
4092 struct intel_super *s = super_list;
4093
4094 super_list = super_list->next;
4095 free_imsm(s);
4096 }
4097 sysfs_free(sra);
4098
4099 if (err)
4100 return err;
4101
4102 *sbp = super;
4103 st->container_dev = devnum;
4104 if (err == 0 && st->ss == NULL) {
4105 st->ss = &super_imsm;
4106 st->minor_version = 0;
4107 st->max_devs = IMSM_MAX_DEVICES;
4108 }
4109 return 0;
4110 }
4111
4112 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4113 {
4114 return load_super_imsm_all(st, fd, &st->sb, devname);
4115 }
4116 #endif
4117
4118 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4119 {
4120 struct intel_super *super;
4121 int rv;
4122
4123 if (test_partition(fd))
4124 /* IMSM not allowed on partitions */
4125 return 1;
4126
4127 free_super_imsm(st);
4128
4129 super = alloc_super();
4130 if (!super) {
4131 fprintf(stderr,
4132 Name ": malloc of %zu failed.\n",
4133 sizeof(*super));
4134 return 1;
4135 }
4136 /* Load hba and capabilities if they exist.
4137 * But do not preclude loading metadata in case capabilities or hba are
4138 * non-compliant and ignore_hw_compat is set.
4139 */
4140 rv = find_intel_hba_capability(fd, super, devname);
4141 /* no orom/efi or non-intel hba of the disk */
4142 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4143 if (devname)
4144 fprintf(stderr,
4145 Name ": No OROM/EFI properties for %s\n", devname);
4146 free_imsm(super);
4147 return 2;
4148 }
4149 rv = load_and_parse_mpb(fd, super, devname, 0);
4150
4151 if (rv) {
4152 if (devname)
4153 fprintf(stderr,
4154 Name ": Failed to load all information "
4155 "sections on %s\n", devname);
4156 free_imsm(super);
4157 return rv;
4158 }
4159
4160 st->sb = super;
4161 if (st->ss == NULL) {
4162 st->ss = &super_imsm;
4163 st->minor_version = 0;
4164 st->max_devs = IMSM_MAX_DEVICES;
4165 }
4166
4167 /* load migration record */
4168 if (load_imsm_migr_rec(super, NULL) == 0) {
4169 /* Check for unsupported migration features */
4170 if (check_mpb_migr_compatibility(super) != 0) {
4171 fprintf(stderr,
4172 Name ": Unsupported migration detected");
4173 if (devname)
4174 fprintf(stderr, " on %s\n", devname);
4175 else
4176 fprintf(stderr, " (IMSM).\n");
4177 return 3;
4178 }
4179 }
4180
4181 return 0;
4182 }
4183
4184 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4185 {
4186 if (info->level == 1)
4187 return 128;
4188 return info->chunk_size >> 9;
4189 }
4190
4191 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
4192 {
4193 __u32 num_stripes;
4194
4195 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
4196 num_stripes /= num_domains;
4197
4198 return num_stripes;
4199 }
4200
4201 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4202 {
4203 if (info->level == 1)
4204 return info->size * 2;
4205 else
4206 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4207 }
4208
4209 static void imsm_update_version_info(struct intel_super *super)
4210 {
4211 /* update the version and attributes */
4212 struct imsm_super *mpb = super->anchor;
4213 char *version;
4214 struct imsm_dev *dev;
4215 struct imsm_map *map;
4216 int i;
4217
4218 for (i = 0; i < mpb->num_raid_devs; i++) {
4219 dev = get_imsm_dev(super, i);
4220 map = get_imsm_map(dev, MAP_0);
4221 if (__le32_to_cpu(dev->size_high) > 0)
4222 mpb->attributes |= MPB_ATTRIB_2TB;
4223
4224 /* FIXME detect when an array spans a port multiplier */
4225 #if 0
4226 mpb->attributes |= MPB_ATTRIB_PM;
4227 #endif
4228
4229 if (mpb->num_raid_devs > 1 ||
4230 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4231 version = MPB_VERSION_ATTRIBS;
4232 switch (get_imsm_raid_level(map)) {
4233 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4234 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4235 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4236 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4237 }
4238 } else {
4239 if (map->num_members >= 5)
4240 version = MPB_VERSION_5OR6_DISK_ARRAY;
4241 else if (dev->status == DEV_CLONE_N_GO)
4242 version = MPB_VERSION_CNG;
4243 else if (get_imsm_raid_level(map) == 5)
4244 version = MPB_VERSION_RAID5;
4245 else if (map->num_members >= 3)
4246 version = MPB_VERSION_3OR4_DISK_ARRAY;
4247 else if (get_imsm_raid_level(map) == 1)
4248 version = MPB_VERSION_RAID1;
4249 else
4250 version = MPB_VERSION_RAID0;
4251 }
4252 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4253 }
4254 }
4255
4256 static int check_name(struct intel_super *super, char *name, int quiet)
4257 {
4258 struct imsm_super *mpb = super->anchor;
4259 char *reason = NULL;
4260 int i;
4261
4262 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4263 reason = "must be 16 characters or less";
4264
4265 for (i = 0; i < mpb->num_raid_devs; i++) {
4266 struct imsm_dev *dev = get_imsm_dev(super, i);
4267
4268 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4269 reason = "already exists";
4270 break;
4271 }
4272 }
4273
4274 if (reason && !quiet)
4275 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4276
4277 return !reason;
4278 }
4279
4280 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4281 unsigned long long size, char *name,
4282 char *homehost, int *uuid)
4283 {
4284 /* We are creating a volume inside a pre-existing container.
4285 * so st->sb is already set.
4286 */
4287 struct intel_super *super = st->sb;
4288 struct imsm_super *mpb = super->anchor;
4289 struct intel_dev *dv;
4290 struct imsm_dev *dev;
4291 struct imsm_vol *vol;
4292 struct imsm_map *map;
4293 int idx = mpb->num_raid_devs;
4294 int i;
4295 unsigned long long array_blocks;
4296 size_t size_old, size_new;
4297 __u32 num_data_stripes;
4298
4299 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4300 fprintf(stderr, Name": This imsm-container already has the "
4301 "maximum of %d volumes\n", super->orom->vpa);
4302 return 0;
4303 }
4304
4305 /* ensure the mpb is large enough for the new data */
4306 size_old = __le32_to_cpu(mpb->mpb_size);
4307 size_new = disks_to_mpb_size(info->nr_disks);
4308 if (size_new > size_old) {
4309 void *mpb_new;
4310 size_t size_round = ROUND_UP(size_new, 512);
4311
4312 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4313 fprintf(stderr, Name": could not allocate new mpb\n");
4314 return 0;
4315 }
4316 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4317 fprintf(stderr, Name
4318 ": %s could not allocate migr_rec buffer\n",
4319 __func__);
4320 free(super->buf);
4321 free(super);
4322 free(mpb_new);
4323 return 0;
4324 }
4325 memcpy(mpb_new, mpb, size_old);
4326 free(mpb);
4327 mpb = mpb_new;
4328 super->anchor = mpb_new;
4329 mpb->mpb_size = __cpu_to_le32(size_new);
4330 memset(mpb_new + size_old, 0, size_round - size_old);
4331 }
4332 super->current_vol = idx;
4333
4334 /* handle 'failed_disks' by either:
4335 * a) create dummy disk entries in the table if this the first
4336 * volume in the array. We add them here as this is the only
4337 * opportunity to add them. add_to_super_imsm_volume()
4338 * handles the non-failed disks and continues incrementing
4339 * mpb->num_disks.
4340 * b) validate that 'failed_disks' matches the current number
4341 * of missing disks if the container is populated
4342 */
4343 if (super->current_vol == 0) {
4344 mpb->num_disks = 0;
4345 for (i = 0; i < info->failed_disks; i++) {
4346 struct imsm_disk *disk;
4347
4348 mpb->num_disks++;
4349 disk = __get_imsm_disk(mpb, i);
4350 disk->status = CONFIGURED_DISK | FAILED_DISK;
4351 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4352 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4353 "missing:%d", i);
4354 }
4355 find_missing(super);
4356 } else {
4357 int missing = 0;
4358 struct dl *d;
4359
4360 for (d = super->missing; d; d = d->next)
4361 missing++;
4362 if (info->failed_disks > missing) {
4363 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4364 return 0;
4365 }
4366 }
4367
4368 if (!check_name(super, name, 0))
4369 return 0;
4370 dv = malloc(sizeof(*dv));
4371 if (!dv) {
4372 fprintf(stderr, Name ": failed to allocate device list entry\n");
4373 return 0;
4374 }
4375 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4376 if (!dev) {
4377 free(dv);
4378 fprintf(stderr, Name": could not allocate raid device\n");
4379 return 0;
4380 }
4381
4382 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4383 if (info->level == 1)
4384 array_blocks = info_to_blocks_per_member(info);
4385 else
4386 array_blocks = calc_array_size(info->level, info->raid_disks,
4387 info->layout, info->chunk_size,
4388 info->size*2);
4389 /* round array size down to closest MB */
4390 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4391
4392 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4393 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4394 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4395 vol = &dev->vol;
4396 vol->migr_state = 0;
4397 set_migr_type(dev, MIGR_INIT);
4398 vol->dirty = !info->state;
4399 vol->curr_migr_unit = 0;
4400 map = get_imsm_map(dev, MAP_0);
4401 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
4402 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
4403 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4404 map->failed_disk_num = ~0;
4405 if (info->level > 0)
4406 map->map_state = IMSM_T_STATE_UNINITIALIZED;
4407 else
4408 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4409 IMSM_T_STATE_NORMAL;
4410 map->ddf = 1;
4411
4412 if (info->level == 1 && info->raid_disks > 2) {
4413 free(dev);
4414 free(dv);
4415 fprintf(stderr, Name": imsm does not support more than 2 disks"
4416 "in a raid1 volume\n");
4417 return 0;
4418 }
4419
4420 map->raid_level = info->level;
4421 if (info->level == 10) {
4422 map->raid_level = 1;
4423 map->num_domains = info->raid_disks / 2;
4424 } else if (info->level == 1)
4425 map->num_domains = info->raid_disks;
4426 else
4427 map->num_domains = 1;
4428
4429 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4430 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
4431
4432 map->num_members = info->raid_disks;
4433 for (i = 0; i < map->num_members; i++) {
4434 /* initialized in add_to_super */
4435 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4436 }
4437 mpb->num_raid_devs++;
4438
4439 dv->dev = dev;
4440 dv->index = super->current_vol;
4441 dv->next = super->devlist;
4442 super->devlist = dv;
4443
4444 imsm_update_version_info(super);
4445
4446 return 1;
4447 }
4448
4449 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4450 unsigned long long size, char *name,
4451 char *homehost, int *uuid)
4452 {
4453 /* This is primarily called by Create when creating a new array.
4454 * We will then get add_to_super called for each component, and then
4455 * write_init_super called to write it out to each device.
4456 * For IMSM, Create can create on fresh devices or on a pre-existing
4457 * array.
4458 * To create on a pre-existing array a different method will be called.
4459 * This one is just for fresh drives.
4460 */
4461 struct intel_super *super;
4462 struct imsm_super *mpb;
4463 size_t mpb_size;
4464 char *version;
4465
4466 if (st->sb)
4467 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4468
4469 if (info)
4470 mpb_size = disks_to_mpb_size(info->nr_disks);
4471 else
4472 mpb_size = 512;
4473
4474 super = alloc_super();
4475 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4476 free(super);
4477 super = NULL;
4478 }
4479 if (!super) {
4480 fprintf(stderr, Name
4481 ": %s could not allocate superblock\n", __func__);
4482 return 0;
4483 }
4484 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4485 fprintf(stderr, Name
4486 ": %s could not allocate migr_rec buffer\n", __func__);
4487 free(super->buf);
4488 free(super);
4489 return 0;
4490 }
4491 memset(super->buf, 0, mpb_size);
4492 mpb = super->buf;
4493 mpb->mpb_size = __cpu_to_le32(mpb_size);
4494 st->sb = super;
4495
4496 if (info == NULL) {
4497 /* zeroing superblock */
4498 return 0;
4499 }
4500
4501 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4502
4503 version = (char *) mpb->sig;
4504 strcpy(version, MPB_SIGNATURE);
4505 version += strlen(MPB_SIGNATURE);
4506 strcpy(version, MPB_VERSION_RAID0);
4507
4508 return 1;
4509 }
4510
4511 #ifndef MDASSEMBLE
4512 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4513 int fd, char *devname)
4514 {
4515 struct intel_super *super = st->sb;
4516 struct imsm_super *mpb = super->anchor;
4517 struct imsm_disk *_disk;
4518 struct imsm_dev *dev;
4519 struct imsm_map *map;
4520 struct dl *dl, *df;
4521 int slot;
4522
4523 dev = get_imsm_dev(super, super->current_vol);
4524 map = get_imsm_map(dev, MAP_0);
4525
4526 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4527 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4528 devname);
4529 return 1;
4530 }
4531
4532 if (fd == -1) {
4533 /* we're doing autolayout so grab the pre-marked (in
4534 * validate_geometry) raid_disk
4535 */
4536 for (dl = super->disks; dl; dl = dl->next)
4537 if (dl->raiddisk == dk->raid_disk)
4538 break;
4539 } else {
4540 for (dl = super->disks; dl ; dl = dl->next)
4541 if (dl->major == dk->major &&
4542 dl->minor == dk->minor)
4543 break;
4544 }
4545
4546 if (!dl) {
4547 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4548 return 1;
4549 }
4550
4551 /* add a pristine spare to the metadata */
4552 if (dl->index < 0) {
4553 dl->index = super->anchor->num_disks;
4554 super->anchor->num_disks++;
4555 }
4556 /* Check the device has not already been added */
4557 slot = get_imsm_disk_slot(map, dl->index);
4558 if (slot >= 0 &&
4559 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
4560 fprintf(stderr, Name ": %s has been included in this array twice\n",
4561 devname);
4562 return 1;
4563 }
4564 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4565 dl->disk.status = CONFIGURED_DISK;
4566
4567 /* update size of 'missing' disks to be at least as large as the
4568 * largest acitve member (we only have dummy missing disks when
4569 * creating the first volume)
4570 */
4571 if (super->current_vol == 0) {
4572 for (df = super->missing; df; df = df->next) {
4573 if (dl->disk.total_blocks > df->disk.total_blocks)
4574 df->disk.total_blocks = dl->disk.total_blocks;
4575 _disk = __get_imsm_disk(mpb, df->index);
4576 *_disk = df->disk;
4577 }
4578 }
4579
4580 /* refresh unset/failed slots to point to valid 'missing' entries */
4581 for (df = super->missing; df; df = df->next)
4582 for (slot = 0; slot < mpb->num_disks; slot++) {
4583 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4584
4585 if ((ord & IMSM_ORD_REBUILD) == 0)
4586 continue;
4587 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4588 if (is_gen_migration(dev)) {
4589 struct imsm_map *map2 = get_imsm_map(dev,
4590 MAP_1);
4591 int slot2 = get_imsm_disk_slot(map2, df->index);
4592 if ((slot2 < map2->num_members) &&
4593 (slot2 >= 0)) {
4594 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4595 slot2,
4596 MAP_1);
4597 if ((unsigned)df->index ==
4598 ord_to_idx(ord2))
4599 set_imsm_ord_tbl_ent(map2,
4600 slot2,
4601 df->index |
4602 IMSM_ORD_REBUILD);
4603 }
4604 }
4605 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4606 break;
4607 }
4608
4609 /* if we are creating the first raid device update the family number */
4610 if (super->current_vol == 0) {
4611 __u32 sum;
4612 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4613
4614 _disk = __get_imsm_disk(mpb, dl->index);
4615 if (!_dev || !_disk) {
4616 fprintf(stderr, Name ": BUG mpb setup error\n");
4617 return 1;
4618 }
4619 *_dev = *dev;
4620 *_disk = dl->disk;
4621 sum = random32();
4622 sum += __gen_imsm_checksum(mpb);
4623 mpb->family_num = __cpu_to_le32(sum);
4624 mpb->orig_family_num = mpb->family_num;
4625 }
4626 super->current_disk = dl;
4627 return 0;
4628 }
4629
4630 /* mark_spare()
4631 * Function marks disk as spare and restores disk serial
4632 * in case it was previously marked as failed by takeover operation
4633 * reruns:
4634 * -1 : critical error
4635 * 0 : disk is marked as spare but serial is not set
4636 * 1 : success
4637 */
4638 int mark_spare(struct dl *disk)
4639 {
4640 __u8 serial[MAX_RAID_SERIAL_LEN];
4641 int ret_val = -1;
4642
4643 if (!disk)
4644 return ret_val;
4645
4646 ret_val = 0;
4647 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4648 /* Restore disk serial number, because takeover marks disk
4649 * as failed and adds to serial ':0' before it becomes
4650 * a spare disk.
4651 */
4652 serialcpy(disk->serial, serial);
4653 serialcpy(disk->disk.serial, serial);
4654 ret_val = 1;
4655 }
4656 disk->disk.status = SPARE_DISK;
4657 disk->index = -1;
4658
4659 return ret_val;
4660 }
4661
4662 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4663 int fd, char *devname)
4664 {
4665 struct intel_super *super = st->sb;
4666 struct dl *dd;
4667 unsigned long long size;
4668 __u32 id;
4669 int rv;
4670 struct stat stb;
4671
4672 /* If we are on an RAID enabled platform check that the disk is
4673 * attached to the raid controller.
4674 * We do not need to test disks attachment for container based additions,
4675 * they shall be already tested when container was created/assembled.
4676 */
4677 rv = find_intel_hba_capability(fd, super, devname);
4678 /* no orom/efi or non-intel hba of the disk */
4679 if (rv != 0) {
4680 dprintf("capability: %p fd: %d ret: %d\n",
4681 super->orom, fd, rv);
4682 return 1;
4683 }
4684
4685 if (super->current_vol >= 0)
4686 return add_to_super_imsm_volume(st, dk, fd, devname);
4687
4688 fstat(fd, &stb);
4689 dd = malloc(sizeof(*dd));
4690 if (!dd) {
4691 fprintf(stderr,
4692 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4693 return 1;
4694 }
4695 memset(dd, 0, sizeof(*dd));
4696 dd->major = major(stb.st_rdev);
4697 dd->minor = minor(stb.st_rdev);
4698 dd->devname = devname ? strdup(devname) : NULL;
4699 dd->fd = fd;
4700 dd->e = NULL;
4701 dd->action = DISK_ADD;
4702 rv = imsm_read_serial(fd, devname, dd->serial);
4703 if (rv) {
4704 fprintf(stderr,
4705 Name ": failed to retrieve scsi serial, aborting\n");
4706 free(dd);
4707 abort();
4708 }
4709
4710 get_dev_size(fd, NULL, &size);
4711 size /= 512;
4712 serialcpy(dd->disk.serial, dd->serial);
4713 dd->disk.total_blocks = __cpu_to_le32(size);
4714 mark_spare(dd);
4715 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4716 dd->disk.scsi_id = __cpu_to_le32(id);
4717 else
4718 dd->disk.scsi_id = __cpu_to_le32(0);
4719
4720 if (st->update_tail) {
4721 dd->next = super->disk_mgmt_list;
4722 super->disk_mgmt_list = dd;
4723 } else {
4724 dd->next = super->disks;
4725 super->disks = dd;
4726 super->updates_pending++;
4727 }
4728
4729 return 0;
4730 }
4731
4732
4733 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4734 {
4735 struct intel_super *super = st->sb;
4736 struct dl *dd;
4737
4738 /* remove from super works only in mdmon - for communication
4739 * manager - monitor. Check if communication memory buffer
4740 * is prepared.
4741 */
4742 if (!st->update_tail) {
4743 fprintf(stderr,
4744 Name ": %s shall be used in mdmon context only"
4745 "(line %d).\n", __func__, __LINE__);
4746 return 1;
4747 }
4748 dd = malloc(sizeof(*dd));
4749 if (!dd) {
4750 fprintf(stderr,
4751 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4752 return 1;
4753 }
4754 memset(dd, 0, sizeof(*dd));
4755 dd->major = dk->major;
4756 dd->minor = dk->minor;
4757 dd->fd = -1;
4758 mark_spare(dd);
4759 dd->action = DISK_REMOVE;
4760
4761 dd->next = super->disk_mgmt_list;
4762 super->disk_mgmt_list = dd;
4763
4764
4765 return 0;
4766 }
4767
4768 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4769
4770 static union {
4771 char buf[512];
4772 struct imsm_super anchor;
4773 } spare_record __attribute__ ((aligned(512)));
4774
4775 /* spare records have their own family number and do not have any defined raid
4776 * devices
4777 */
4778 static int write_super_imsm_spares(struct intel_super *super, int doclose)
4779 {
4780 struct imsm_super *mpb = super->anchor;
4781 struct imsm_super *spare = &spare_record.anchor;
4782 __u32 sum;
4783 struct dl *d;
4784
4785 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4786 spare->generation_num = __cpu_to_le32(1UL),
4787 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4788 spare->num_disks = 1,
4789 spare->num_raid_devs = 0,
4790 spare->cache_size = mpb->cache_size,
4791 spare->pwr_cycle_count = __cpu_to_le32(1),
4792
4793 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4794 MPB_SIGNATURE MPB_VERSION_RAID0);
4795
4796 for (d = super->disks; d; d = d->next) {
4797 if (d->index != -1)
4798 continue;
4799
4800 spare->disk[0] = d->disk;
4801 sum = __gen_imsm_checksum(spare);
4802 spare->family_num = __cpu_to_le32(sum);
4803 spare->orig_family_num = 0;
4804 sum = __gen_imsm_checksum(spare);
4805 spare->check_sum = __cpu_to_le32(sum);
4806
4807 if (store_imsm_mpb(d->fd, spare)) {
4808 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4809 __func__, d->major, d->minor, strerror(errno));
4810 return 1;
4811 }
4812 if (doclose) {
4813 close(d->fd);
4814 d->fd = -1;
4815 }
4816 }
4817
4818 return 0;
4819 }
4820
4821 static int write_super_imsm(struct supertype *st, int doclose)
4822 {
4823 struct intel_super *super = st->sb;
4824 struct imsm_super *mpb = super->anchor;
4825 struct dl *d;
4826 __u32 generation;
4827 __u32 sum;
4828 int spares = 0;
4829 int i;
4830 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
4831 int num_disks = 0;
4832 int clear_migration_record = 1;
4833
4834 /* 'generation' is incremented everytime the metadata is written */
4835 generation = __le32_to_cpu(mpb->generation_num);
4836 generation++;
4837 mpb->generation_num = __cpu_to_le32(generation);
4838
4839 /* fix up cases where previous mdadm releases failed to set
4840 * orig_family_num
4841 */
4842 if (mpb->orig_family_num == 0)
4843 mpb->orig_family_num = mpb->family_num;
4844
4845 for (d = super->disks; d; d = d->next) {
4846 if (d->index == -1)
4847 spares++;
4848 else {
4849 mpb->disk[d->index] = d->disk;
4850 num_disks++;
4851 }
4852 }
4853 for (d = super->missing; d; d = d->next) {
4854 mpb->disk[d->index] = d->disk;
4855 num_disks++;
4856 }
4857 mpb->num_disks = num_disks;
4858 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
4859
4860 for (i = 0; i < mpb->num_raid_devs; i++) {
4861 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
4862 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4863 if (dev && dev2) {
4864 imsm_copy_dev(dev, dev2);
4865 mpb_size += sizeof_imsm_dev(dev, 0);
4866 }
4867 if (is_gen_migration(dev2))
4868 clear_migration_record = 0;
4869 }
4870 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4871 mpb->mpb_size = __cpu_to_le32(mpb_size);
4872
4873 /* recalculate checksum */
4874 sum = __gen_imsm_checksum(mpb);
4875 mpb->check_sum = __cpu_to_le32(sum);
4876
4877 if (clear_migration_record)
4878 memset(super->migr_rec_buf, 0, 512);
4879
4880 /* write the mpb for disks that compose raid devices */
4881 for (d = super->disks; d ; d = d->next) {
4882 if (d->index < 0 || is_failed(&d->disk))
4883 continue;
4884 if (store_imsm_mpb(d->fd, mpb))
4885 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4886 __func__, d->major, d->minor, strerror(errno));
4887 if (clear_migration_record) {
4888 unsigned long long dsize;
4889
4890 get_dev_size(d->fd, NULL, &dsize);
4891 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4892 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4893 perror("Write migr_rec failed");
4894 }
4895 }
4896 if (doclose) {
4897 close(d->fd);
4898 d->fd = -1;
4899 }
4900 }
4901
4902 if (spares)
4903 return write_super_imsm_spares(super, doclose);
4904
4905 return 0;
4906 }
4907
4908
4909 static int create_array(struct supertype *st, int dev_idx)
4910 {
4911 size_t len;
4912 struct imsm_update_create_array *u;
4913 struct intel_super *super = st->sb;
4914 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4915 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4916 struct disk_info *inf;
4917 struct imsm_disk *disk;
4918 int i;
4919
4920 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4921 sizeof(*inf) * map->num_members;
4922 u = malloc(len);
4923 if (!u) {
4924 fprintf(stderr, "%s: failed to allocate update buffer\n",
4925 __func__);
4926 return 1;
4927 }
4928
4929 u->type = update_create_array;
4930 u->dev_idx = dev_idx;
4931 imsm_copy_dev(&u->dev, dev);
4932 inf = get_disk_info(u);
4933 for (i = 0; i < map->num_members; i++) {
4934 int idx = get_imsm_disk_idx(dev, i, MAP_X);
4935
4936 disk = get_imsm_disk(super, idx);
4937 serialcpy(inf[i].serial, disk->serial);
4938 }
4939 append_metadata_update(st, u, len);
4940
4941 return 0;
4942 }
4943
4944 static int mgmt_disk(struct supertype *st)
4945 {
4946 struct intel_super *super = st->sb;
4947 size_t len;
4948 struct imsm_update_add_remove_disk *u;
4949
4950 if (!super->disk_mgmt_list)
4951 return 0;
4952
4953 len = sizeof(*u);
4954 u = malloc(len);
4955 if (!u) {
4956 fprintf(stderr, "%s: failed to allocate update buffer\n",
4957 __func__);
4958 return 1;
4959 }
4960
4961 u->type = update_add_remove_disk;
4962 append_metadata_update(st, u, len);
4963
4964 return 0;
4965 }
4966
4967 static int write_init_super_imsm(struct supertype *st)
4968 {
4969 struct intel_super *super = st->sb;
4970 int current_vol = super->current_vol;
4971
4972 /* we are done with current_vol reset it to point st at the container */
4973 super->current_vol = -1;
4974
4975 if (st->update_tail) {
4976 /* queue the recently created array / added disk
4977 * as a metadata update */
4978 int rv;
4979
4980 /* determine if we are creating a volume or adding a disk */
4981 if (current_vol < 0) {
4982 /* in the mgmt (add/remove) disk case we are running
4983 * in mdmon context, so don't close fd's
4984 */
4985 return mgmt_disk(st);
4986 } else
4987 rv = create_array(st, current_vol);
4988
4989 return rv;
4990 } else {
4991 struct dl *d;
4992 for (d = super->disks; d; d = d->next)
4993 Kill(d->devname, NULL, 0, 1, 1);
4994 return write_super_imsm(st, 1);
4995 }
4996 }
4997 #endif
4998
4999 static int store_super_imsm(struct supertype *st, int fd)
5000 {
5001 struct intel_super *super = st->sb;
5002 struct imsm_super *mpb = super ? super->anchor : NULL;
5003
5004 if (!mpb)
5005 return 1;
5006
5007 #ifndef MDASSEMBLE
5008 return store_imsm_mpb(fd, mpb);
5009 #else
5010 return 1;
5011 #endif
5012 }
5013
5014 static int imsm_bbm_log_size(struct imsm_super *mpb)
5015 {
5016 return __le32_to_cpu(mpb->bbm_log_size);
5017 }
5018
5019 #ifndef MDASSEMBLE
5020 static int validate_geometry_imsm_container(struct supertype *st, int level,
5021 int layout, int raiddisks, int chunk,
5022 unsigned long long size, char *dev,
5023 unsigned long long *freesize,
5024 int verbose)
5025 {
5026 int fd;
5027 unsigned long long ldsize;
5028 struct intel_super *super=NULL;
5029 int rv = 0;
5030
5031 if (level != LEVEL_CONTAINER)
5032 return 0;
5033 if (!dev)
5034 return 1;
5035
5036 fd = open(dev, O_RDONLY|O_EXCL, 0);
5037 if (fd < 0) {
5038 if (verbose)
5039 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
5040 dev, strerror(errno));
5041 return 0;
5042 }
5043 if (!get_dev_size(fd, dev, &ldsize)) {
5044 close(fd);
5045 return 0;
5046 }
5047
5048 /* capabilities retrieve could be possible
5049 * note that there is no fd for the disks in array.
5050 */
5051 super = alloc_super();
5052 if (!super) {
5053 fprintf(stderr,
5054 Name ": malloc of %zu failed.\n",
5055 sizeof(*super));
5056 close(fd);
5057 return 0;
5058 }
5059
5060 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
5061 if (rv != 0) {
5062 #if DEBUG
5063 char str[256];
5064 fd2devname(fd, str);
5065 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5066 fd, str, super->orom, rv, raiddisks);
5067 #endif
5068 /* no orom/efi or non-intel hba of the disk */
5069 close(fd);
5070 free_imsm(super);
5071 return 0;
5072 }
5073 close(fd);
5074 if (super->orom && raiddisks > super->orom->tds) {
5075 if (verbose)
5076 fprintf(stderr, Name ": %d exceeds maximum number of"
5077 " platform supported disks: %d\n",
5078 raiddisks, super->orom->tds);
5079
5080 free_imsm(super);
5081 return 0;
5082 }
5083
5084 *freesize = avail_size_imsm(st, ldsize >> 9);
5085 free_imsm(super);
5086
5087 return 1;
5088 }
5089
5090 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5091 {
5092 const unsigned long long base_start = e[*idx].start;
5093 unsigned long long end = base_start + e[*idx].size;
5094 int i;
5095
5096 if (base_start == end)
5097 return 0;
5098
5099 *idx = *idx + 1;
5100 for (i = *idx; i < num_extents; i++) {
5101 /* extend overlapping extents */
5102 if (e[i].start >= base_start &&
5103 e[i].start <= end) {
5104 if (e[i].size == 0)
5105 return 0;
5106 if (e[i].start + e[i].size > end)
5107 end = e[i].start + e[i].size;
5108 } else if (e[i].start > end) {
5109 *idx = i;
5110 break;
5111 }
5112 }
5113
5114 return end - base_start;
5115 }
5116
5117 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5118 {
5119 /* build a composite disk with all known extents and generate a new
5120 * 'maxsize' given the "all disks in an array must share a common start
5121 * offset" constraint
5122 */
5123 struct extent *e = calloc(sum_extents, sizeof(*e));
5124 struct dl *dl;
5125 int i, j;
5126 int start_extent;
5127 unsigned long long pos;
5128 unsigned long long start = 0;
5129 unsigned long long maxsize;
5130 unsigned long reserve;
5131
5132 if (!e)
5133 return 0;
5134
5135 /* coalesce and sort all extents. also, check to see if we need to
5136 * reserve space between member arrays
5137 */
5138 j = 0;
5139 for (dl = super->disks; dl; dl = dl->next) {
5140 if (!dl->e)
5141 continue;
5142 for (i = 0; i < dl->extent_cnt; i++)
5143 e[j++] = dl->e[i];
5144 }
5145 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5146
5147 /* merge extents */
5148 i = 0;
5149 j = 0;
5150 while (i < sum_extents) {
5151 e[j].start = e[i].start;
5152 e[j].size = find_size(e, &i, sum_extents);
5153 j++;
5154 if (e[j-1].size == 0)
5155 break;
5156 }
5157
5158 pos = 0;
5159 maxsize = 0;
5160 start_extent = 0;
5161 i = 0;
5162 do {
5163 unsigned long long esize;
5164
5165 esize = e[i].start - pos;
5166 if (esize >= maxsize) {
5167 maxsize = esize;
5168 start = pos;
5169 start_extent = i;
5170 }
5171 pos = e[i].start + e[i].size;
5172 i++;
5173 } while (e[i-1].size);
5174 free(e);
5175
5176 if (maxsize == 0)
5177 return 0;
5178
5179 /* FIXME assumes volume at offset 0 is the first volume in a
5180 * container
5181 */
5182 if (start_extent > 0)
5183 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5184 else
5185 reserve = 0;
5186
5187 if (maxsize < reserve)
5188 return 0;
5189
5190 super->create_offset = ~((__u32) 0);
5191 if (start + reserve > super->create_offset)
5192 return 0; /* start overflows create_offset */
5193 super->create_offset = start + reserve;
5194
5195 return maxsize - reserve;
5196 }
5197
5198 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5199 {
5200 if (level < 0 || level == 6 || level == 4)
5201 return 0;
5202
5203 /* if we have an orom prevent invalid raid levels */
5204 if (orom)
5205 switch (level) {
5206 case 0: return imsm_orom_has_raid0(orom);
5207 case 1:
5208 if (raiddisks > 2)
5209 return imsm_orom_has_raid1e(orom);
5210 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5211 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5212 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5213 }
5214 else
5215 return 1; /* not on an Intel RAID platform so anything goes */
5216
5217 return 0;
5218 }
5219
5220 static int imsm_default_chunk(const struct imsm_orom *orom)
5221 {
5222 /* up to 512 if the plaform supports it, otherwise the platform max.
5223 * 128 if no platform detected
5224 */
5225 int fs = max(7, orom ? fls(orom->sss) : 0);
5226
5227 return min(512, (1 << fs));
5228 }
5229
5230 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
5231 static int
5232 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5233 int raiddisks, int *chunk, int verbose)
5234 {
5235 /* check/set platform and metadata limits/defaults */
5236 if (super->orom && raiddisks > super->orom->dpa) {
5237 pr_vrb(": platform supports a maximum of %d disks per array\n",
5238 super->orom->dpa);
5239 return 0;
5240 }
5241
5242 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5243 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5244 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5245 level, raiddisks, raiddisks > 1 ? "s" : "");
5246 return 0;
5247 }
5248
5249 if (chunk && (*chunk == 0 || *chunk == UnSet))
5250 *chunk = imsm_default_chunk(super->orom);
5251
5252 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5253 pr_vrb(": platform does not support a chunk size of: "
5254 "%d\n", *chunk);
5255 return 0;
5256 }
5257
5258 if (layout != imsm_level_to_layout(level)) {
5259 if (level == 5)
5260 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5261 else if (level == 10)
5262 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5263 else
5264 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5265 layout, level);
5266 return 0;
5267 }
5268 return 1;
5269 }
5270
5271 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5272 * FIX ME add ahci details
5273 */
5274 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5275 int layout, int raiddisks, int *chunk,
5276 unsigned long long size, char *dev,
5277 unsigned long long *freesize,
5278 int verbose)
5279 {
5280 struct stat stb;
5281 struct intel_super *super = st->sb;
5282 struct imsm_super *mpb;
5283 struct dl *dl;
5284 unsigned long long pos = 0;
5285 unsigned long long maxsize;
5286 struct extent *e;
5287 int i;
5288
5289 /* We must have the container info already read in. */
5290 if (!super)
5291 return 0;
5292
5293 mpb = super->anchor;
5294
5295 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5296 fprintf(stderr, Name ": the option-rom requires all "
5297 "member disks to be a member of all volumes.\n");
5298 return 0;
5299 }
5300
5301 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5302 fprintf(stderr, Name ": RAID gemetry validation failed. "
5303 "Cannot proceed with the action(s).\n");
5304 return 0;
5305 }
5306 if (!dev) {
5307 /* General test: make sure there is space for
5308 * 'raiddisks' device extents of size 'size' at a given
5309 * offset
5310 */
5311 unsigned long long minsize = size;
5312 unsigned long long start_offset = MaxSector;
5313 int dcnt = 0;
5314 if (minsize == 0)
5315 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5316 for (dl = super->disks; dl ; dl = dl->next) {
5317 int found = 0;
5318
5319 pos = 0;
5320 i = 0;
5321 e = get_extents(super, dl);
5322 if (!e) continue;
5323 do {
5324 unsigned long long esize;
5325 esize = e[i].start - pos;
5326 if (esize >= minsize)
5327 found = 1;
5328 if (found && start_offset == MaxSector) {
5329 start_offset = pos;
5330 break;
5331 } else if (found && pos != start_offset) {
5332 found = 0;
5333 break;
5334 }
5335 pos = e[i].start + e[i].size;
5336 i++;
5337 } while (e[i-1].size);
5338 if (found)
5339 dcnt++;
5340 free(e);
5341 }
5342 if (dcnt < raiddisks) {
5343 if (verbose)
5344 fprintf(stderr, Name ": imsm: Not enough "
5345 "devices with space for this array "
5346 "(%d < %d)\n",
5347 dcnt, raiddisks);
5348 return 0;
5349 }
5350 return 1;
5351 }
5352
5353 /* This device must be a member of the set */
5354 if (stat(dev, &stb) < 0)
5355 return 0;
5356 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5357 return 0;
5358 for (dl = super->disks ; dl ; dl = dl->next) {
5359 if (dl->major == (int)major(stb.st_rdev) &&
5360 dl->minor == (int)minor(stb.st_rdev))
5361 break;
5362 }
5363 if (!dl) {
5364 if (verbose)
5365 fprintf(stderr, Name ": %s is not in the "
5366 "same imsm set\n", dev);
5367 return 0;
5368 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5369 /* If a volume is present then the current creation attempt
5370 * cannot incorporate new spares because the orom may not
5371 * understand this configuration (all member disks must be
5372 * members of each array in the container).
5373 */
5374 fprintf(stderr, Name ": %s is a spare and a volume"
5375 " is already defined for this container\n", dev);
5376 fprintf(stderr, Name ": The option-rom requires all member"
5377 " disks to be a member of all volumes\n");
5378 return 0;
5379 }
5380
5381 /* retrieve the largest free space block */
5382 e = get_extents(super, dl);
5383 maxsize = 0;
5384 i = 0;
5385 if (e) {
5386 do {
5387 unsigned long long esize;
5388
5389 esize = e[i].start - pos;
5390 if (esize >= maxsize)
5391 maxsize = esize;
5392 pos = e[i].start + e[i].size;
5393 i++;
5394 } while (e[i-1].size);
5395 dl->e = e;
5396 dl->extent_cnt = i;
5397 } else {
5398 if (verbose)
5399 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5400 dev);
5401 return 0;
5402 }
5403 if (maxsize < size) {
5404 if (verbose)
5405 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5406 dev, maxsize, size);
5407 return 0;
5408 }
5409
5410 /* count total number of extents for merge */
5411 i = 0;
5412 for (dl = super->disks; dl; dl = dl->next)
5413 if (dl->e)
5414 i += dl->extent_cnt;
5415
5416 maxsize = merge_extents(super, i);
5417
5418 if (!check_env("IMSM_NO_PLATFORM") &&
5419 mpb->num_raid_devs > 0 && size && size != maxsize) {
5420 fprintf(stderr, Name ": attempting to create a second "
5421 "volume with size less then remaining space. "
5422 "Aborting...\n");
5423 return 0;
5424 }
5425
5426 if (maxsize < size || maxsize == 0) {
5427 if (verbose)
5428 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5429 maxsize, size);
5430 return 0;
5431 }
5432
5433 *freesize = maxsize;
5434
5435 return 1;
5436 }
5437
5438 static int reserve_space(struct supertype *st, int raiddisks,
5439 unsigned long long size, int chunk,
5440 unsigned long long *freesize)
5441 {
5442 struct intel_super *super = st->sb;
5443 struct imsm_super *mpb = super->anchor;
5444 struct dl *dl;
5445 int i;
5446 int extent_cnt;
5447 struct extent *e;
5448 unsigned long long maxsize;
5449 unsigned long long minsize;
5450 int cnt;
5451 int used;
5452
5453 /* find the largest common start free region of the possible disks */
5454 used = 0;
5455 extent_cnt = 0;
5456 cnt = 0;
5457 for (dl = super->disks; dl; dl = dl->next) {
5458 dl->raiddisk = -1;
5459
5460 if (dl->index >= 0)
5461 used++;
5462
5463 /* don't activate new spares if we are orom constrained
5464 * and there is already a volume active in the container
5465 */
5466 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5467 continue;
5468
5469 e = get_extents(super, dl);
5470 if (!e)
5471 continue;
5472 for (i = 1; e[i-1].size; i++)
5473 ;
5474 dl->e = e;
5475 dl->extent_cnt = i;
5476 extent_cnt += i;
5477 cnt++;
5478 }
5479
5480 maxsize = merge_extents(super, extent_cnt);
5481 minsize = size;
5482 if (size == 0)
5483 /* chunk is in K */
5484 minsize = chunk * 2;
5485
5486 if (cnt < raiddisks ||
5487 (super->orom && used && used != raiddisks) ||
5488 maxsize < minsize ||
5489 maxsize == 0) {
5490 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5491 return 0; /* No enough free spaces large enough */
5492 }
5493
5494 if (size == 0) {
5495 size = maxsize;
5496 if (chunk) {
5497 size /= 2 * chunk;
5498 size *= 2 * chunk;
5499 }
5500 }
5501
5502 cnt = 0;
5503 for (dl = super->disks; dl; dl = dl->next)
5504 if (dl->e)
5505 dl->raiddisk = cnt++;
5506
5507 *freesize = size;
5508
5509 return 1;
5510 }
5511
5512 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
5513 int raiddisks, int *chunk, unsigned long long size,
5514 char *dev, unsigned long long *freesize,
5515 int verbose)
5516 {
5517 int fd, cfd;
5518 struct mdinfo *sra;
5519 int is_member = 0;
5520
5521 /* load capability
5522 * if given unused devices create a container
5523 * if given given devices in a container create a member volume
5524 */
5525 if (level == LEVEL_CONTAINER) {
5526 /* Must be a fresh device to add to a container */
5527 return validate_geometry_imsm_container(st, level, layout,
5528 raiddisks,
5529 chunk?*chunk:0, size,
5530 dev, freesize,
5531 verbose);
5532 }
5533
5534 if (!dev) {
5535 if (st->sb) {
5536 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5537 raiddisks, chunk,
5538 verbose))
5539 return 0;
5540 /* we are being asked to automatically layout a
5541 * new volume based on the current contents of
5542 * the container. If the the parameters can be
5543 * satisfied reserve_space will record the disks,
5544 * start offset, and size of the volume to be
5545 * created. add_to_super and getinfo_super
5546 * detect when autolayout is in progress.
5547 */
5548 if (freesize)
5549 return reserve_space(st, raiddisks, size,
5550 chunk?*chunk:0, freesize);
5551 }
5552 return 1;
5553 }
5554 if (st->sb) {
5555 /* creating in a given container */
5556 return validate_geometry_imsm_volume(st, level, layout,
5557 raiddisks, chunk, size,
5558 dev, freesize, verbose);
5559 }
5560
5561 /* This device needs to be a device in an 'imsm' container */
5562 fd = open(dev, O_RDONLY|O_EXCL, 0);
5563 if (fd >= 0) {
5564 if (verbose)
5565 fprintf(stderr,
5566 Name ": Cannot create this array on device %s\n",
5567 dev);
5568 close(fd);
5569 return 0;
5570 }
5571 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5572 if (verbose)
5573 fprintf(stderr, Name ": Cannot open %s: %s\n",
5574 dev, strerror(errno));
5575 return 0;
5576 }
5577 /* Well, it is in use by someone, maybe an 'imsm' container. */
5578 cfd = open_container(fd);
5579 close(fd);
5580 if (cfd < 0) {
5581 if (verbose)
5582 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5583 dev);
5584 return 0;
5585 }
5586 sra = sysfs_read(cfd, 0, GET_VERSION);
5587 if (sra && sra->array.major_version == -1 &&
5588 strcmp(sra->text_version, "imsm") == 0)
5589 is_member = 1;
5590 sysfs_free(sra);
5591 if (is_member) {
5592 /* This is a member of a imsm container. Load the container
5593 * and try to create a volume
5594 */
5595 struct intel_super *super;
5596
5597 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
5598 st->sb = super;
5599 st->container_dev = fd2devnum(cfd);
5600 close(cfd);
5601 return validate_geometry_imsm_volume(st, level, layout,
5602 raiddisks, chunk,
5603 size, dev,
5604 freesize, 1)
5605 ? 1 : -1;
5606 }
5607 }
5608
5609 if (verbose)
5610 fprintf(stderr, Name ": failed container membership check\n");
5611
5612 close(cfd);
5613 return 0;
5614 }
5615
5616 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
5617 {
5618 struct intel_super *super = st->sb;
5619
5620 if (level && *level == UnSet)
5621 *level = LEVEL_CONTAINER;
5622
5623 if (level && layout && *layout == UnSet)
5624 *layout = imsm_level_to_layout(*level);
5625
5626 if (chunk && (*chunk == UnSet || *chunk == 0))
5627 *chunk = imsm_default_chunk(super->orom);
5628 }
5629
5630 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5631
5632 static int kill_subarray_imsm(struct supertype *st)
5633 {
5634 /* remove the subarray currently referenced by ->current_vol */
5635 __u8 i;
5636 struct intel_dev **dp;
5637 struct intel_super *super = st->sb;
5638 __u8 current_vol = super->current_vol;
5639 struct imsm_super *mpb = super->anchor;
5640
5641 if (super->current_vol < 0)
5642 return 2;
5643 super->current_vol = -1; /* invalidate subarray cursor */
5644
5645 /* block deletions that would change the uuid of active subarrays
5646 *
5647 * FIXME when immutable ids are available, but note that we'll
5648 * also need to fixup the invalidated/active subarray indexes in
5649 * mdstat
5650 */
5651 for (i = 0; i < mpb->num_raid_devs; i++) {
5652 char subarray[4];
5653
5654 if (i < current_vol)
5655 continue;
5656 sprintf(subarray, "%u", i);
5657 if (is_subarray_active(subarray, st->devname)) {
5658 fprintf(stderr,
5659 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5660 current_vol, i);
5661
5662 return 2;
5663 }
5664 }
5665
5666 if (st->update_tail) {
5667 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5668
5669 if (!u)
5670 return 2;
5671 u->type = update_kill_array;
5672 u->dev_idx = current_vol;
5673 append_metadata_update(st, u, sizeof(*u));
5674
5675 return 0;
5676 }
5677
5678 for (dp = &super->devlist; *dp;)
5679 if ((*dp)->index == current_vol) {
5680 *dp = (*dp)->next;
5681 } else {
5682 handle_missing(super, (*dp)->dev);
5683 if ((*dp)->index > current_vol)
5684 (*dp)->index--;
5685 dp = &(*dp)->next;
5686 }
5687
5688 /* no more raid devices, all active components are now spares,
5689 * but of course failed are still failed
5690 */
5691 if (--mpb->num_raid_devs == 0) {
5692 struct dl *d;
5693
5694 for (d = super->disks; d; d = d->next)
5695 if (d->index > -2)
5696 mark_spare(d);
5697 }
5698
5699 super->updates_pending++;
5700
5701 return 0;
5702 }
5703
5704 static int update_subarray_imsm(struct supertype *st, char *subarray,
5705 char *update, struct mddev_ident *ident)
5706 {
5707 /* update the subarray currently referenced by ->current_vol */
5708 struct intel_super *super = st->sb;
5709 struct imsm_super *mpb = super->anchor;
5710
5711 if (strcmp(update, "name") == 0) {
5712 char *name = ident->name;
5713 char *ep;
5714 int vol;
5715
5716 if (is_subarray_active(subarray, st->devname)) {
5717 fprintf(stderr,
5718 Name ": Unable to update name of active subarray\n");
5719 return 2;
5720 }
5721
5722 if (!check_name(super, name, 0))
5723 return 2;
5724
5725 vol = strtoul(subarray, &ep, 10);
5726 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5727 return 2;
5728
5729 if (st->update_tail) {
5730 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5731
5732 if (!u)
5733 return 2;
5734 u->type = update_rename_array;
5735 u->dev_idx = vol;
5736 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5737 append_metadata_update(st, u, sizeof(*u));
5738 } else {
5739 struct imsm_dev *dev;
5740 int i;
5741
5742 dev = get_imsm_dev(super, vol);
5743 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5744 for (i = 0; i < mpb->num_raid_devs; i++) {
5745 dev = get_imsm_dev(super, i);
5746 handle_missing(super, dev);
5747 }
5748 super->updates_pending++;
5749 }
5750 } else
5751 return 2;
5752
5753 return 0;
5754 }
5755 #endif /* MDASSEMBLE */
5756
5757 static int is_gen_migration(struct imsm_dev *dev)
5758 {
5759 if (dev == NULL)
5760 return 0;
5761
5762 if (!dev->vol.migr_state)
5763 return 0;
5764
5765 if (migr_type(dev) == MIGR_GEN_MIGR)
5766 return 1;
5767
5768 return 0;
5769 }
5770
5771 static int is_rebuilding(struct imsm_dev *dev)
5772 {
5773 struct imsm_map *migr_map;
5774
5775 if (!dev->vol.migr_state)
5776 return 0;
5777
5778 if (migr_type(dev) != MIGR_REBUILD)
5779 return 0;
5780
5781 migr_map = get_imsm_map(dev, MAP_1);
5782
5783 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5784 return 1;
5785 else
5786 return 0;
5787 }
5788
5789 static int is_initializing(struct imsm_dev *dev)
5790 {
5791 struct imsm_map *migr_map;
5792
5793 if (!dev->vol.migr_state)
5794 return 0;
5795
5796 if (migr_type(dev) != MIGR_INIT)
5797 return 0;
5798
5799 migr_map = get_imsm_map(dev, MAP_1);
5800
5801 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
5802 return 1;
5803
5804 return 0;
5805
5806 }
5807
5808 static void update_recovery_start(struct intel_super *super,
5809 struct imsm_dev *dev,
5810 struct mdinfo *array)
5811 {
5812 struct mdinfo *rebuild = NULL;
5813 struct mdinfo *d;
5814 __u32 units;
5815
5816 if (!is_rebuilding(dev))
5817 return;
5818
5819 /* Find the rebuild target, but punt on the dual rebuild case */
5820 for (d = array->devs; d; d = d->next)
5821 if (d->recovery_start == 0) {
5822 if (rebuild)
5823 return;
5824 rebuild = d;
5825 }
5826
5827 if (!rebuild) {
5828 /* (?) none of the disks are marked with
5829 * IMSM_ORD_REBUILD, so assume they are missing and the
5830 * disk_ord_tbl was not correctly updated
5831 */
5832 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5833 return;
5834 }
5835
5836 units = __le32_to_cpu(dev->vol.curr_migr_unit);
5837 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
5838 }
5839
5840 #ifndef MDASSEMBLE
5841 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
5842 #endif
5843
5844 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
5845 {
5846 /* Given a container loaded by load_super_imsm_all,
5847 * extract information about all the arrays into
5848 * an mdinfo tree.
5849 * If 'subarray' is given, just extract info about that array.
5850 *
5851 * For each imsm_dev create an mdinfo, fill it in,
5852 * then look for matching devices in super->disks
5853 * and create appropriate device mdinfo.
5854 */
5855 struct intel_super *super = st->sb;
5856 struct imsm_super *mpb = super->anchor;
5857 struct mdinfo *rest = NULL;
5858 unsigned int i;
5859 int sb_errors = 0;
5860 struct dl *d;
5861 int spare_disks = 0;
5862
5863 /* do not assemble arrays when not all attributes are supported */
5864 if (imsm_check_attributes(mpb->attributes) == 0) {
5865 sb_errors = 1;
5866 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
5867 "Arrays activation is blocked.\n");
5868 }
5869
5870 /* check for bad blocks */
5871 if (imsm_bbm_log_size(super->anchor)) {
5872 fprintf(stderr, Name ": BBM log found in IMSM metadata."
5873 "Arrays activation is blocked.\n");
5874 sb_errors = 1;
5875 }
5876
5877
5878 /* count spare devices, not used in maps
5879 */
5880 for (d = super->disks; d; d = d->next)
5881 if (d->index == -1)
5882 spare_disks++;
5883
5884 for (i = 0; i < mpb->num_raid_devs; i++) {
5885 struct imsm_dev *dev;
5886 struct imsm_map *map;
5887 struct imsm_map *map2;
5888 struct mdinfo *this;
5889 int slot, chunk;
5890 char *ep;
5891
5892 if (subarray &&
5893 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5894 continue;
5895
5896 dev = get_imsm_dev(super, i);
5897 map = get_imsm_map(dev, MAP_0);
5898 map2 = get_imsm_map(dev, MAP_1);
5899
5900 /* do not publish arrays that are in the middle of an
5901 * unsupported migration
5902 */
5903 if (dev->vol.migr_state &&
5904 (migr_type(dev) == MIGR_STATE_CHANGE)) {
5905 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5906 " unsupported migration in progress\n",
5907 dev->volume);
5908 continue;
5909 }
5910 /* do not publish arrays that are not support by controller's
5911 * OROM/EFI
5912 */
5913
5914 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
5915 this = malloc(sizeof(*this));
5916 if (!this) {
5917 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
5918 sizeof(*this));
5919 break;
5920 }
5921
5922 super->current_vol = i;
5923 getinfo_super_imsm_volume(st, this, NULL);
5924 this->next = rest;
5925 #ifndef MDASSEMBLE
5926 /* mdadm does not support all metadata features- set the bit in all arrays state */
5927 if (!validate_geometry_imsm_orom(super,
5928 get_imsm_raid_level(map), /* RAID level */
5929 imsm_level_to_layout(get_imsm_raid_level(map)),
5930 map->num_members, /* raid disks */
5931 &chunk,
5932 1 /* verbose */)) {
5933 fprintf(stderr, Name ": IMSM RAID geometry validation"
5934 " failed. Array %s activation is blocked.\n",
5935 dev->volume);
5936 this->array.state |=
5937 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5938 (1<<MD_SB_BLOCK_VOLUME);
5939 }
5940 #endif
5941
5942 /* if array has bad blocks, set suitable bit in all arrays state */
5943 if (sb_errors)
5944 this->array.state |=
5945 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5946 (1<<MD_SB_BLOCK_VOLUME);
5947
5948 for (slot = 0 ; slot < map->num_members; slot++) {
5949 unsigned long long recovery_start;
5950 struct mdinfo *info_d;
5951 struct dl *d;
5952 int idx;
5953 int skip;
5954 __u32 ord;
5955
5956 skip = 0;
5957 idx = get_imsm_disk_idx(dev, slot, MAP_0);
5958 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5959 for (d = super->disks; d ; d = d->next)
5960 if (d->index == idx)
5961 break;
5962
5963 recovery_start = MaxSector;
5964 if (d == NULL)
5965 skip = 1;
5966 if (d && is_failed(&d->disk))
5967 skip = 1;
5968 if (ord & IMSM_ORD_REBUILD)
5969 recovery_start = 0;
5970
5971 /*
5972 * if we skip some disks the array will be assmebled degraded;
5973 * reset resync start to avoid a dirty-degraded
5974 * situation when performing the intial sync
5975 *
5976 * FIXME handle dirty degraded
5977 */
5978 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5979 this->resync_start = MaxSector;
5980 if (skip)
5981 continue;
5982
5983 info_d = calloc(1, sizeof(*info_d));
5984 if (!info_d) {
5985 fprintf(stderr, Name ": failed to allocate disk"
5986 " for volume %.16s\n", dev->volume);
5987 info_d = this->devs;
5988 while (info_d) {
5989 struct mdinfo *d = info_d->next;
5990
5991 free(info_d);
5992 info_d = d;
5993 }
5994 free(this);
5995 this = rest;
5996 break;
5997 }
5998 info_d->next = this->devs;
5999 this->devs = info_d;
6000
6001 info_d->disk.number = d->index;
6002 info_d->disk.major = d->major;
6003 info_d->disk.minor = d->minor;
6004 info_d->disk.raid_disk = slot;
6005 info_d->recovery_start = recovery_start;
6006 if (map2) {
6007 if (slot < map2->num_members)
6008 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6009 else
6010 this->array.spare_disks++;
6011 } else {
6012 if (slot < map->num_members)
6013 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6014 else
6015 this->array.spare_disks++;
6016 }
6017 if (info_d->recovery_start == MaxSector)
6018 this->array.working_disks++;
6019
6020 info_d->events = __le32_to_cpu(mpb->generation_num);
6021 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
6022 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
6023 }
6024 /* now that the disk list is up-to-date fixup recovery_start */
6025 update_recovery_start(super, dev, this);
6026 this->array.spare_disks += spare_disks;
6027
6028 #ifndef MDASSEMBLE
6029 /* check for reshape */
6030 if (this->reshape_active == 1)
6031 recover_backup_imsm(st, this);
6032 #endif
6033 rest = this;
6034 }
6035
6036 return rest;
6037 }
6038
6039
6040 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6041 int failed, int look_in_map)
6042 {
6043 struct imsm_map *map;
6044
6045 map = get_imsm_map(dev, look_in_map);
6046
6047 if (!failed)
6048 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6049 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6050
6051 switch (get_imsm_raid_level(map)) {
6052 case 0:
6053 return IMSM_T_STATE_FAILED;
6054 break;
6055 case 1:
6056 if (failed < map->num_members)
6057 return IMSM_T_STATE_DEGRADED;
6058 else
6059 return IMSM_T_STATE_FAILED;
6060 break;
6061 case 10:
6062 {
6063 /**
6064 * check to see if any mirrors have failed, otherwise we
6065 * are degraded. Even numbered slots are mirrored on
6066 * slot+1
6067 */
6068 int i;
6069 /* gcc -Os complains that this is unused */
6070 int insync = insync;
6071
6072 for (i = 0; i < map->num_members; i++) {
6073 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6074 int idx = ord_to_idx(ord);
6075 struct imsm_disk *disk;
6076
6077 /* reset the potential in-sync count on even-numbered
6078 * slots. num_copies is always 2 for imsm raid10
6079 */
6080 if ((i & 1) == 0)
6081 insync = 2;
6082
6083 disk = get_imsm_disk(super, idx);
6084 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6085 insync--;
6086
6087 /* no in-sync disks left in this mirror the
6088 * array has failed
6089 */
6090 if (insync == 0)
6091 return IMSM_T_STATE_FAILED;
6092 }
6093
6094 return IMSM_T_STATE_DEGRADED;
6095 }
6096 case 5:
6097 if (failed < 2)
6098 return IMSM_T_STATE_DEGRADED;
6099 else
6100 return IMSM_T_STATE_FAILED;
6101 break;
6102 default:
6103 break;
6104 }
6105
6106 return map->map_state;
6107 }
6108
6109 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6110 int look_in_map)
6111 {
6112 int i;
6113 int failed = 0;
6114 struct imsm_disk *disk;
6115 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6116 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6117 struct imsm_map *map_for_loop;
6118 __u32 ord;
6119 int idx;
6120 int idx_1;
6121
6122 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6123 * disks that are being rebuilt. New failures are recorded to
6124 * map[0]. So we look through all the disks we started with and
6125 * see if any failures are still present, or if any new ones
6126 * have arrived
6127 */
6128 map_for_loop = map;
6129 if (prev && (map->num_members < prev->num_members))
6130 map_for_loop = prev;
6131
6132 for (i = 0; i < map_for_loop->num_members; i++) {
6133 idx_1 = -255;
6134 /* when MAP_X is passed both maps failures are counted
6135 */
6136 if (prev &&
6137 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6138 (i < prev->num_members)) {
6139 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6140 idx_1 = ord_to_idx(ord);
6141
6142 disk = get_imsm_disk(super, idx_1);
6143 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6144 failed++;
6145 }
6146 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6147 (i < map->num_members)) {
6148 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6149 idx = ord_to_idx(ord);
6150
6151 if (idx != idx_1) {
6152 disk = get_imsm_disk(super, idx);
6153 if (!disk || is_failed(disk) ||
6154 ord & IMSM_ORD_REBUILD)
6155 failed++;
6156 }
6157 }
6158 }
6159
6160 return failed;
6161 }
6162
6163 #ifndef MDASSEMBLE
6164 static int imsm_open_new(struct supertype *c, struct active_array *a,
6165 char *inst)
6166 {
6167 struct intel_super *super = c->sb;
6168 struct imsm_super *mpb = super->anchor;
6169
6170 if (atoi(inst) >= mpb->num_raid_devs) {
6171 fprintf(stderr, "%s: subarry index %d, out of range\n",
6172 __func__, atoi(inst));
6173 return -ENODEV;
6174 }
6175
6176 dprintf("imsm: open_new %s\n", inst);
6177 a->info.container_member = atoi(inst);
6178 return 0;
6179 }
6180
6181 static int is_resyncing(struct imsm_dev *dev)
6182 {
6183 struct imsm_map *migr_map;
6184
6185 if (!dev->vol.migr_state)
6186 return 0;
6187
6188 if (migr_type(dev) == MIGR_INIT ||
6189 migr_type(dev) == MIGR_REPAIR)
6190 return 1;
6191
6192 if (migr_type(dev) == MIGR_GEN_MIGR)
6193 return 0;
6194
6195 migr_map = get_imsm_map(dev, MAP_1);
6196
6197 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6198 (dev->vol.migr_type != MIGR_GEN_MIGR))
6199 return 1;
6200 else
6201 return 0;
6202 }
6203
6204 /* return true if we recorded new information */
6205 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6206 {
6207 __u32 ord;
6208 int slot;
6209 struct imsm_map *map;
6210 char buf[MAX_RAID_SERIAL_LEN+3];
6211 unsigned int len, shift = 0;
6212
6213 /* new failures are always set in map[0] */
6214 map = get_imsm_map(dev, MAP_0);
6215
6216 slot = get_imsm_disk_slot(map, idx);
6217 if (slot < 0)
6218 return 0;
6219
6220 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6221 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6222 return 0;
6223
6224 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6225 buf[MAX_RAID_SERIAL_LEN] = '\000';
6226 strcat(buf, ":0");
6227 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6228 shift = len - MAX_RAID_SERIAL_LEN + 1;
6229 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6230
6231 disk->status |= FAILED_DISK;
6232 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6233 /* mark failures in second map if second map exists and this disk
6234 * in this slot.
6235 * This is valid for migration, initialization and rebuild
6236 */
6237 if (dev->vol.migr_state) {
6238 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
6239 int slot2 = get_imsm_disk_slot(map2, idx);
6240
6241 if ((slot2 < map2->num_members) &&
6242 (slot2 >= 0))
6243 set_imsm_ord_tbl_ent(map2, slot2,
6244 idx | IMSM_ORD_REBUILD);
6245 }
6246 if (map->failed_disk_num == 0xff)
6247 map->failed_disk_num = slot;
6248 return 1;
6249 }
6250
6251 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6252 {
6253 mark_failure(dev, disk, idx);
6254
6255 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6256 return;
6257
6258 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6259 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6260 }
6261
6262 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6263 {
6264 struct dl *dl;
6265
6266 if (!super->missing)
6267 return;
6268
6269 dprintf("imsm: mark missing\n");
6270 /* end process for initialization and rebuild only
6271 */
6272 if (is_gen_migration(dev) == 0) {
6273 __u8 map_state;
6274 int failed;
6275
6276 failed = imsm_count_failed(super, dev, MAP_0);
6277 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6278
6279 end_migration(dev, super, map_state);
6280 }
6281 for (dl = super->missing; dl; dl = dl->next)
6282 mark_missing(dev, &dl->disk, dl->index);
6283 super->updates_pending++;
6284 }
6285
6286 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6287 {
6288 int used_disks = imsm_num_data_members(dev, MAP_0);
6289 unsigned long long array_blocks;
6290 struct imsm_map *map;
6291
6292 if (used_disks == 0) {
6293 /* when problems occures
6294 * return current array_blocks value
6295 */
6296 array_blocks = __le32_to_cpu(dev->size_high);
6297 array_blocks = array_blocks << 32;
6298 array_blocks += __le32_to_cpu(dev->size_low);
6299
6300 return array_blocks;
6301 }
6302
6303 /* set array size in metadata
6304 */
6305 map = get_imsm_map(dev, MAP_0);
6306 array_blocks = map->blocks_per_member * used_disks;
6307
6308 /* round array size down to closest MB
6309 */
6310 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6311 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6312 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6313
6314 return array_blocks;
6315 }
6316
6317 static void imsm_set_disk(struct active_array *a, int n, int state);
6318
6319 static void imsm_progress_container_reshape(struct intel_super *super)
6320 {
6321 /* if no device has a migr_state, but some device has a
6322 * different number of members than the previous device, start
6323 * changing the number of devices in this device to match
6324 * previous.
6325 */
6326 struct imsm_super *mpb = super->anchor;
6327 int prev_disks = -1;
6328 int i;
6329 int copy_map_size;
6330
6331 for (i = 0; i < mpb->num_raid_devs; i++) {
6332 struct imsm_dev *dev = get_imsm_dev(super, i);
6333 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6334 struct imsm_map *map2;
6335 int prev_num_members;
6336
6337 if (dev->vol.migr_state)
6338 return;
6339
6340 if (prev_disks == -1)
6341 prev_disks = map->num_members;
6342 if (prev_disks == map->num_members)
6343 continue;
6344
6345 /* OK, this array needs to enter reshape mode.
6346 * i.e it needs a migr_state
6347 */
6348
6349 copy_map_size = sizeof_imsm_map(map);
6350 prev_num_members = map->num_members;
6351 map->num_members = prev_disks;
6352 dev->vol.migr_state = 1;
6353 dev->vol.curr_migr_unit = 0;
6354 set_migr_type(dev, MIGR_GEN_MIGR);
6355 for (i = prev_num_members;
6356 i < map->num_members; i++)
6357 set_imsm_ord_tbl_ent(map, i, i);
6358 map2 = get_imsm_map(dev, MAP_1);
6359 /* Copy the current map */
6360 memcpy(map2, map, copy_map_size);
6361 map2->num_members = prev_num_members;
6362
6363 imsm_set_array_size(dev);
6364 super->updates_pending++;
6365 }
6366 }
6367
6368 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
6369 * states are handled in imsm_set_disk() with one exception, when a
6370 * resync is stopped due to a new failure this routine will set the
6371 * 'degraded' state for the array.
6372 */
6373 static int imsm_set_array_state(struct active_array *a, int consistent)
6374 {
6375 int inst = a->info.container_member;
6376 struct intel_super *super = a->container->sb;
6377 struct imsm_dev *dev = get_imsm_dev(super, inst);
6378 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6379 int failed = imsm_count_failed(super, dev, MAP_0);
6380 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6381 __u32 blocks_per_unit;
6382
6383 if (dev->vol.migr_state &&
6384 dev->vol.migr_type == MIGR_GEN_MIGR) {
6385 /* array state change is blocked due to reshape action
6386 * We might need to
6387 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6388 * - finish the reshape (if last_checkpoint is big and action != reshape)
6389 * - update curr_migr_unit
6390 */
6391 if (a->curr_action == reshape) {
6392 /* still reshaping, maybe update curr_migr_unit */
6393 goto mark_checkpoint;
6394 } else {
6395 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6396 /* for some reason we aborted the reshape.
6397 *
6398 * disable automatic metadata rollback
6399 * user action is required to recover process
6400 */
6401 if (0) {
6402 struct imsm_map *map2 =
6403 get_imsm_map(dev, MAP_1);
6404 dev->vol.migr_state = 0;
6405 set_migr_type(dev, 0);
6406 dev->vol.curr_migr_unit = 0;
6407 memcpy(map, map2,
6408 sizeof_imsm_map(map2));
6409 super->updates_pending++;
6410 }
6411 }
6412 if (a->last_checkpoint >= a->info.component_size) {
6413 unsigned long long array_blocks;
6414 int used_disks;
6415 struct mdinfo *mdi;
6416
6417 used_disks = imsm_num_data_members(dev, MAP_0);
6418 if (used_disks > 0) {
6419 array_blocks =
6420 map->blocks_per_member *
6421 used_disks;
6422 /* round array size down to closest MB
6423 */
6424 array_blocks = (array_blocks
6425 >> SECT_PER_MB_SHIFT)
6426 << SECT_PER_MB_SHIFT;
6427 a->info.custom_array_size = array_blocks;
6428 /* encourage manager to update array
6429 * size
6430 */
6431
6432 a->check_reshape = 1;
6433 }
6434 /* finalize online capacity expansion/reshape */
6435 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6436 imsm_set_disk(a,
6437 mdi->disk.raid_disk,
6438 mdi->curr_state);
6439
6440 imsm_progress_container_reshape(super);
6441 }
6442 }
6443 }
6444
6445 /* before we activate this array handle any missing disks */
6446 if (consistent == 2)
6447 handle_missing(super, dev);
6448
6449 if (consistent == 2 &&
6450 (!is_resync_complete(&a->info) ||
6451 map_state != IMSM_T_STATE_NORMAL ||
6452 dev->vol.migr_state))
6453 consistent = 0;
6454
6455 if (is_resync_complete(&a->info)) {
6456 /* complete intialization / resync,
6457 * recovery and interrupted recovery is completed in
6458 * ->set_disk
6459 */
6460 if (is_resyncing(dev)) {
6461 dprintf("imsm: mark resync done\n");
6462 end_migration(dev, super, map_state);
6463 super->updates_pending++;
6464 a->last_checkpoint = 0;
6465 }
6466 } else if ((!is_resyncing(dev) && !failed) &&
6467 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
6468 /* mark the start of the init process if nothing is failed */
6469 dprintf("imsm: mark resync start\n");
6470 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
6471 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
6472 else
6473 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
6474 super->updates_pending++;
6475 }
6476
6477 mark_checkpoint:
6478 /* skip checkpointing for general migration,
6479 * it is controlled in mdadm
6480 */
6481 if (is_gen_migration(dev))
6482 goto skip_mark_checkpoint;
6483
6484 /* check if we can update curr_migr_unit from resync_start, recovery_start */
6485 blocks_per_unit = blocks_per_migr_unit(super, dev);
6486 if (blocks_per_unit) {
6487 __u32 units32;
6488 __u64 units;
6489
6490 units = a->last_checkpoint / blocks_per_unit;
6491 units32 = units;
6492
6493 /* check that we did not overflow 32-bits, and that
6494 * curr_migr_unit needs updating
6495 */
6496 if (units32 == units &&
6497 units32 != 0 &&
6498 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6499 dprintf("imsm: mark checkpoint (%u)\n", units32);
6500 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6501 super->updates_pending++;
6502 }
6503 }
6504
6505 skip_mark_checkpoint:
6506 /* mark dirty / clean */
6507 if (dev->vol.dirty != !consistent) {
6508 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
6509 if (consistent)
6510 dev->vol.dirty = 0;
6511 else
6512 dev->vol.dirty = 1;
6513 super->updates_pending++;
6514 }
6515
6516 return consistent;
6517 }
6518
6519 static void imsm_set_disk(struct active_array *a, int n, int state)
6520 {
6521 int inst = a->info.container_member;
6522 struct intel_super *super = a->container->sb;
6523 struct imsm_dev *dev = get_imsm_dev(super, inst);
6524 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6525 struct imsm_disk *disk;
6526 int failed;
6527 __u32 ord;
6528 __u8 map_state;
6529
6530 if (n > map->num_members)
6531 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6532 n, map->num_members - 1);
6533
6534 if (n < 0)
6535 return;
6536
6537 dprintf("imsm: set_disk %d:%x\n", n, state);
6538
6539 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
6540 disk = get_imsm_disk(super, ord_to_idx(ord));
6541
6542 /* check for new failures */
6543 if (state & DS_FAULTY) {
6544 if (mark_failure(dev, disk, ord_to_idx(ord)))
6545 super->updates_pending++;
6546 }
6547
6548 /* check if in_sync */
6549 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
6550 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
6551
6552 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
6553 super->updates_pending++;
6554 }
6555
6556 failed = imsm_count_failed(super, dev, MAP_0);
6557 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6558
6559 /* check if recovery complete, newly degraded, or failed */
6560 dprintf("imsm: Detected transition to state ");
6561 switch (map_state) {
6562 case IMSM_T_STATE_NORMAL: /* transition to normal state */
6563 dprintf("normal: ");
6564 if (is_rebuilding(dev)) {
6565 dprintf("while rebuilding");
6566 end_migration(dev, super, map_state);
6567 map = get_imsm_map(dev, MAP_0);
6568 map->failed_disk_num = ~0;
6569 super->updates_pending++;
6570 a->last_checkpoint = 0;
6571 break;
6572 }
6573 if (is_gen_migration(dev)) {
6574 dprintf("while general migration");
6575 if (a->last_checkpoint >= a->info.component_size)
6576 end_migration(dev, super, map_state);
6577 else
6578 map->map_state = map_state;
6579 map = get_imsm_map(dev, MAP_0);
6580 map->failed_disk_num = ~0;
6581 super->updates_pending++;
6582 break;
6583 }
6584 break;
6585 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
6586 dprintf("degraded: ");
6587 if ((map->map_state != map_state) &&
6588 !dev->vol.migr_state) {
6589 dprintf("mark degraded");
6590 map->map_state = map_state;
6591 super->updates_pending++;
6592 a->last_checkpoint = 0;
6593 break;
6594 }
6595 if (is_rebuilding(dev)) {
6596 dprintf("while rebuilding.");
6597 if (map->map_state != map_state) {
6598 dprintf(" Map state change");
6599 end_migration(dev, super, map_state);
6600 super->updates_pending++;
6601 }
6602 break;
6603 }
6604 if (is_gen_migration(dev)) {
6605 dprintf("while general migration");
6606 if (a->last_checkpoint >= a->info.component_size)
6607 end_migration(dev, super, map_state);
6608 else {
6609 map->map_state = map_state;
6610 manage_second_map(super, dev);
6611 }
6612 super->updates_pending++;
6613 break;
6614 }
6615 if (is_initializing(dev)) {
6616 dprintf("while initialization.");
6617 map->map_state = map_state;
6618 super->updates_pending++;
6619 break;
6620 }
6621 break;
6622 case IMSM_T_STATE_FAILED: /* transition to failed state */
6623 dprintf("failed: ");
6624 if (is_gen_migration(dev)) {
6625 dprintf("while general migration");
6626 map->map_state = map_state;
6627 super->updates_pending++;
6628 break;
6629 }
6630 if (map->map_state != map_state) {
6631 dprintf("mark failed");
6632 end_migration(dev, super, map_state);
6633 super->updates_pending++;
6634 a->last_checkpoint = 0;
6635 break;
6636 }
6637 break;
6638 default:
6639 dprintf("state %i\n", map_state);
6640 }
6641 dprintf("\n");
6642
6643 }
6644
6645 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
6646 {
6647 void *buf = mpb;
6648 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6649 unsigned long long dsize;
6650 unsigned long long sectors;
6651
6652 get_dev_size(fd, NULL, &dsize);
6653
6654 if (mpb_size > 512) {
6655 /* -1 to account for anchor */
6656 sectors = mpb_sectors(mpb) - 1;
6657
6658 /* write the extended mpb to the sectors preceeding the anchor */
6659 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6660 return 1;
6661
6662 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6663 != 512 * sectors)
6664 return 1;
6665 }
6666
6667 /* first block is stored on second to last sector of the disk */
6668 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
6669 return 1;
6670
6671 if (write(fd, buf, 512) != 512)
6672 return 1;
6673
6674 return 0;
6675 }
6676
6677 static void imsm_sync_metadata(struct supertype *container)
6678 {
6679 struct intel_super *super = container->sb;
6680
6681 dprintf("sync metadata: %d\n", super->updates_pending);
6682 if (!super->updates_pending)
6683 return;
6684
6685 write_super_imsm(container, 0);
6686
6687 super->updates_pending = 0;
6688 }
6689
6690 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6691 {
6692 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6693 int i = get_imsm_disk_idx(dev, idx, MAP_X);
6694 struct dl *dl;
6695
6696 for (dl = super->disks; dl; dl = dl->next)
6697 if (dl->index == i)
6698 break;
6699
6700 if (dl && is_failed(&dl->disk))
6701 dl = NULL;
6702
6703 if (dl)
6704 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6705
6706 return dl;
6707 }
6708
6709 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
6710 struct active_array *a, int activate_new,
6711 struct mdinfo *additional_test_list)
6712 {
6713 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6714 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
6715 struct imsm_super *mpb = super->anchor;
6716 struct imsm_map *map;
6717 unsigned long long pos;
6718 struct mdinfo *d;
6719 struct extent *ex;
6720 int i, j;
6721 int found;
6722 __u32 array_start = 0;
6723 __u32 array_end = 0;
6724 struct dl *dl;
6725 struct mdinfo *test_list;
6726
6727 for (dl = super->disks; dl; dl = dl->next) {
6728 /* If in this array, skip */
6729 for (d = a->info.devs ; d ; d = d->next)
6730 if (d->state_fd >= 0 &&
6731 d->disk.major == dl->major &&
6732 d->disk.minor == dl->minor) {
6733 dprintf("%x:%x already in array\n",
6734 dl->major, dl->minor);
6735 break;
6736 }
6737 if (d)
6738 continue;
6739 test_list = additional_test_list;
6740 while (test_list) {
6741 if (test_list->disk.major == dl->major &&
6742 test_list->disk.minor == dl->minor) {
6743 dprintf("%x:%x already in additional test list\n",
6744 dl->major, dl->minor);
6745 break;
6746 }
6747 test_list = test_list->next;
6748 }
6749 if (test_list)
6750 continue;
6751
6752 /* skip in use or failed drives */
6753 if (is_failed(&dl->disk) || idx == dl->index ||
6754 dl->index == -2) {
6755 dprintf("%x:%x status (failed: %d index: %d)\n",
6756 dl->major, dl->minor, is_failed(&dl->disk), idx);
6757 continue;
6758 }
6759
6760 /* skip pure spares when we are looking for partially
6761 * assimilated drives
6762 */
6763 if (dl->index == -1 && !activate_new)
6764 continue;
6765
6766 /* Does this unused device have the requisite free space?
6767 * It needs to be able to cover all member volumes
6768 */
6769 ex = get_extents(super, dl);
6770 if (!ex) {
6771 dprintf("cannot get extents\n");
6772 continue;
6773 }
6774 for (i = 0; i < mpb->num_raid_devs; i++) {
6775 dev = get_imsm_dev(super, i);
6776 map = get_imsm_map(dev, MAP_0);
6777
6778 /* check if this disk is already a member of
6779 * this array
6780 */
6781 if (get_imsm_disk_slot(map, dl->index) >= 0)
6782 continue;
6783
6784 found = 0;
6785 j = 0;
6786 pos = 0;
6787 array_start = __le32_to_cpu(map->pba_of_lba0);
6788 array_end = array_start +
6789 __le32_to_cpu(map->blocks_per_member) - 1;
6790
6791 do {
6792 /* check that we can start at pba_of_lba0 with
6793 * blocks_per_member of space
6794 */
6795 if (array_start >= pos && array_end < ex[j].start) {
6796 found = 1;
6797 break;
6798 }
6799 pos = ex[j].start + ex[j].size;
6800 j++;
6801 } while (ex[j-1].size);
6802
6803 if (!found)
6804 break;
6805 }
6806
6807 free(ex);
6808 if (i < mpb->num_raid_devs) {
6809 dprintf("%x:%x does not have %u to %u available\n",
6810 dl->major, dl->minor, array_start, array_end);
6811 /* No room */
6812 continue;
6813 }
6814 return dl;
6815 }
6816
6817 return dl;
6818 }
6819
6820
6821 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6822 {
6823 struct imsm_dev *dev2;
6824 struct imsm_map *map;
6825 struct dl *idisk;
6826 int slot;
6827 int idx;
6828 __u8 state;
6829
6830 dev2 = get_imsm_dev(cont->sb, dev_idx);
6831 if (dev2) {
6832 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
6833 if (state == IMSM_T_STATE_FAILED) {
6834 map = get_imsm_map(dev2, MAP_0);
6835 if (!map)
6836 return 1;
6837 for (slot = 0; slot < map->num_members; slot++) {
6838 /*
6839 * Check if failed disks are deleted from intel
6840 * disk list or are marked to be deleted
6841 */
6842 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
6843 idisk = get_imsm_dl_disk(cont->sb, idx);
6844 /*
6845 * Do not rebuild the array if failed disks
6846 * from failed sub-array are not removed from
6847 * container.
6848 */
6849 if (idisk &&
6850 is_failed(&idisk->disk) &&
6851 (idisk->action != DISK_REMOVE))
6852 return 0;
6853 }
6854 }
6855 }
6856 return 1;
6857 }
6858
6859 static struct mdinfo *imsm_activate_spare(struct active_array *a,
6860 struct metadata_update **updates)
6861 {
6862 /**
6863 * Find a device with unused free space and use it to replace a
6864 * failed/vacant region in an array. We replace failed regions one a
6865 * array at a time. The result is that a new spare disk will be added
6866 * to the first failed array and after the monitor has finished
6867 * propagating failures the remainder will be consumed.
6868 *
6869 * FIXME add a capability for mdmon to request spares from another
6870 * container.
6871 */
6872
6873 struct intel_super *super = a->container->sb;
6874 int inst = a->info.container_member;
6875 struct imsm_dev *dev = get_imsm_dev(super, inst);
6876 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6877 int failed = a->info.array.raid_disks;
6878 struct mdinfo *rv = NULL;
6879 struct mdinfo *d;
6880 struct mdinfo *di;
6881 struct metadata_update *mu;
6882 struct dl *dl;
6883 struct imsm_update_activate_spare *u;
6884 int num_spares = 0;
6885 int i;
6886 int allowed;
6887
6888 for (d = a->info.devs ; d ; d = d->next) {
6889 if ((d->curr_state & DS_FAULTY) &&
6890 d->state_fd >= 0)
6891 /* wait for Removal to happen */
6892 return NULL;
6893 if (d->state_fd >= 0)
6894 failed--;
6895 }
6896
6897 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6898 inst, failed, a->info.array.raid_disks, a->info.array.level);
6899
6900 if (imsm_reshape_blocks_arrays_changes(super))
6901 return NULL;
6902
6903 /* Cannot activate another spare if rebuild is in progress already
6904 */
6905 if (is_rebuilding(dev)) {
6906 dprintf("imsm: No spare activation allowed. "
6907 "Rebuild in progress already.\n");
6908 return NULL;
6909 }
6910
6911 if (a->info.array.level == 4)
6912 /* No repair for takeovered array
6913 * imsm doesn't support raid4
6914 */
6915 return NULL;
6916
6917 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
6918 IMSM_T_STATE_DEGRADED)
6919 return NULL;
6920
6921 /*
6922 * If there are any failed disks check state of the other volume.
6923 * Block rebuild if the another one is failed until failed disks
6924 * are removed from container.
6925 */
6926 if (failed) {
6927 dprintf("found failed disks in %.*s, check if there another"
6928 "failed sub-array.\n",
6929 MAX_RAID_SERIAL_LEN, dev->volume);
6930 /* check if states of the other volumes allow for rebuild */
6931 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6932 if (i != inst) {
6933 allowed = imsm_rebuild_allowed(a->container,
6934 i, failed);
6935 if (!allowed)
6936 return NULL;
6937 }
6938 }
6939 }
6940
6941 /* For each slot, if it is not working, find a spare */
6942 for (i = 0; i < a->info.array.raid_disks; i++) {
6943 for (d = a->info.devs ; d ; d = d->next)
6944 if (d->disk.raid_disk == i)
6945 break;
6946 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6947 if (d && (d->state_fd >= 0))
6948 continue;
6949
6950 /*
6951 * OK, this device needs recovery. Try to re-add the
6952 * previous occupant of this slot, if this fails see if
6953 * we can continue the assimilation of a spare that was
6954 * partially assimilated, finally try to activate a new
6955 * spare.
6956 */
6957 dl = imsm_readd(super, i, a);
6958 if (!dl)
6959 dl = imsm_add_spare(super, i, a, 0, rv);
6960 if (!dl)
6961 dl = imsm_add_spare(super, i, a, 1, rv);
6962 if (!dl)
6963 continue;
6964
6965 /* found a usable disk with enough space */
6966 di = malloc(sizeof(*di));
6967 if (!di)
6968 continue;
6969 memset(di, 0, sizeof(*di));
6970
6971 /* dl->index will be -1 in the case we are activating a
6972 * pristine spare. imsm_process_update() will create a
6973 * new index in this case. Once a disk is found to be
6974 * failed in all member arrays it is kicked from the
6975 * metadata
6976 */
6977 di->disk.number = dl->index;
6978
6979 /* (ab)use di->devs to store a pointer to the device
6980 * we chose
6981 */
6982 di->devs = (struct mdinfo *) dl;
6983
6984 di->disk.raid_disk = i;
6985 di->disk.major = dl->major;
6986 di->disk.minor = dl->minor;
6987 di->disk.state = 0;
6988 di->recovery_start = 0;
6989 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6990 di->component_size = a->info.component_size;
6991 di->container_member = inst;
6992 super->random = random32();
6993 di->next = rv;
6994 rv = di;
6995 num_spares++;
6996 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6997 i, di->data_offset);
6998 }
6999
7000 if (!rv)
7001 /* No spares found */
7002 return rv;
7003 /* Now 'rv' has a list of devices to return.
7004 * Create a metadata_update record to update the
7005 * disk_ord_tbl for the array
7006 */
7007 mu = malloc(sizeof(*mu));
7008 if (mu) {
7009 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
7010 if (mu->buf == NULL) {
7011 free(mu);
7012 mu = NULL;
7013 }
7014 }
7015 if (!mu) {
7016 while (rv) {
7017 struct mdinfo *n = rv->next;
7018
7019 free(rv);
7020 rv = n;
7021 }
7022 return NULL;
7023 }
7024
7025 mu->space = NULL;
7026 mu->space_list = NULL;
7027 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7028 mu->next = *updates;
7029 u = (struct imsm_update_activate_spare *) mu->buf;
7030
7031 for (di = rv ; di ; di = di->next) {
7032 u->type = update_activate_spare;
7033 u->dl = (struct dl *) di->devs;
7034 di->devs = NULL;
7035 u->slot = di->disk.raid_disk;
7036 u->array = inst;
7037 u->next = u + 1;
7038 u++;
7039 }
7040 (u-1)->next = NULL;
7041 *updates = mu;
7042
7043 return rv;
7044 }
7045
7046 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7047 {
7048 struct imsm_dev *dev = get_imsm_dev(super, idx);
7049 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7050 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7051 struct disk_info *inf = get_disk_info(u);
7052 struct imsm_disk *disk;
7053 int i;
7054 int j;
7055
7056 for (i = 0; i < map->num_members; i++) {
7057 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7058 for (j = 0; j < new_map->num_members; j++)
7059 if (serialcmp(disk->serial, inf[j].serial) == 0)
7060 return 1;
7061 }
7062
7063 return 0;
7064 }
7065
7066
7067 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7068 {
7069 struct dl *dl = NULL;
7070 for (dl = super->disks; dl; dl = dl->next)
7071 if ((dl->major == major) && (dl->minor == minor))
7072 return dl;
7073 return NULL;
7074 }
7075
7076 static int remove_disk_super(struct intel_super *super, int major, int minor)
7077 {
7078 struct dl *prev = NULL;
7079 struct dl *dl;
7080
7081 prev = NULL;
7082 for (dl = super->disks; dl; dl = dl->next) {
7083 if ((dl->major == major) && (dl->minor == minor)) {
7084 /* remove */
7085 if (prev)
7086 prev->next = dl->next;
7087 else
7088 super->disks = dl->next;
7089 dl->next = NULL;
7090 __free_imsm_disk(dl);
7091 dprintf("%s: removed %x:%x\n",
7092 __func__, major, minor);
7093 break;
7094 }
7095 prev = dl;
7096 }
7097 return 0;
7098 }
7099
7100 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7101
7102 static int add_remove_disk_update(struct intel_super *super)
7103 {
7104 int check_degraded = 0;
7105 struct dl *disk = NULL;
7106 /* add/remove some spares to/from the metadata/contrainer */
7107 while (super->disk_mgmt_list) {
7108 struct dl *disk_cfg;
7109
7110 disk_cfg = super->disk_mgmt_list;
7111 super->disk_mgmt_list = disk_cfg->next;
7112 disk_cfg->next = NULL;
7113
7114 if (disk_cfg->action == DISK_ADD) {
7115 disk_cfg->next = super->disks;
7116 super->disks = disk_cfg;
7117 check_degraded = 1;
7118 dprintf("%s: added %x:%x\n",
7119 __func__, disk_cfg->major,
7120 disk_cfg->minor);
7121 } else if (disk_cfg->action == DISK_REMOVE) {
7122 dprintf("Disk remove action processed: %x.%x\n",
7123 disk_cfg->major, disk_cfg->minor);
7124 disk = get_disk_super(super,
7125 disk_cfg->major,
7126 disk_cfg->minor);
7127 if (disk) {
7128 /* store action status */
7129 disk->action = DISK_REMOVE;
7130 /* remove spare disks only */
7131 if (disk->index == -1) {
7132 remove_disk_super(super,
7133 disk_cfg->major,
7134 disk_cfg->minor);
7135 }
7136 }
7137 /* release allocate disk structure */
7138 __free_imsm_disk(disk_cfg);
7139 }
7140 }
7141 return check_degraded;
7142 }
7143
7144
7145 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7146 struct intel_super *super,
7147 void ***space_list)
7148 {
7149 struct intel_dev *id;
7150 void **tofree = NULL;
7151 int ret_val = 0;
7152
7153 dprintf("apply_reshape_migration_update()\n");
7154 if ((u->subdev < 0) ||
7155 (u->subdev > 1)) {
7156 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7157 return ret_val;
7158 }
7159 if ((space_list == NULL) || (*space_list == NULL)) {
7160 dprintf("imsm: Error: Memory is not allocated\n");
7161 return ret_val;
7162 }
7163
7164 for (id = super->devlist ; id; id = id->next) {
7165 if (id->index == (unsigned)u->subdev) {
7166 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7167 struct imsm_map *map;
7168 struct imsm_dev *new_dev =
7169 (struct imsm_dev *)*space_list;
7170 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7171 int to_state;
7172 struct dl *new_disk;
7173
7174 if (new_dev == NULL)
7175 return ret_val;
7176 *space_list = **space_list;
7177 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
7178 map = get_imsm_map(new_dev, MAP_0);
7179 if (migr_map) {
7180 dprintf("imsm: Error: migration in progress");
7181 return ret_val;
7182 }
7183
7184 to_state = map->map_state;
7185 if ((u->new_level == 5) && (map->raid_level == 0)) {
7186 map->num_members++;
7187 /* this should not happen */
7188 if (u->new_disks[0] < 0) {
7189 map->failed_disk_num =
7190 map->num_members - 1;
7191 to_state = IMSM_T_STATE_DEGRADED;
7192 } else
7193 to_state = IMSM_T_STATE_NORMAL;
7194 }
7195 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
7196 if (u->new_level > -1)
7197 map->raid_level = u->new_level;
7198 migr_map = get_imsm_map(new_dev, MAP_1);
7199 if ((u->new_level == 5) &&
7200 (migr_map->raid_level == 0)) {
7201 int ord = map->num_members - 1;
7202 migr_map->num_members--;
7203 if (u->new_disks[0] < 0)
7204 ord |= IMSM_ORD_REBUILD;
7205 set_imsm_ord_tbl_ent(map,
7206 map->num_members - 1,
7207 ord);
7208 }
7209 id->dev = new_dev;
7210 tofree = (void **)dev;
7211
7212 /* update chunk size
7213 */
7214 if (u->new_chunksize > 0)
7215 map->blocks_per_strip =
7216 __cpu_to_le16(u->new_chunksize * 2);
7217
7218 /* add disk
7219 */
7220 if ((u->new_level != 5) ||
7221 (migr_map->raid_level != 0) ||
7222 (migr_map->raid_level == map->raid_level))
7223 goto skip_disk_add;
7224
7225 if (u->new_disks[0] >= 0) {
7226 /* use passes spare
7227 */
7228 new_disk = get_disk_super(super,
7229 major(u->new_disks[0]),
7230 minor(u->new_disks[0]));
7231 dprintf("imsm: new disk for reshape is: %i:%i "
7232 "(%p, index = %i)\n",
7233 major(u->new_disks[0]),
7234 minor(u->new_disks[0]),
7235 new_disk, new_disk->index);
7236 if (new_disk == NULL)
7237 goto error_disk_add;
7238
7239 new_disk->index = map->num_members - 1;
7240 /* slot to fill in autolayout
7241 */
7242 new_disk->raiddisk = new_disk->index;
7243 new_disk->disk.status |= CONFIGURED_DISK;
7244 new_disk->disk.status &= ~SPARE_DISK;
7245 } else
7246 goto error_disk_add;
7247
7248 skip_disk_add:
7249 *tofree = *space_list;
7250 /* calculate new size
7251 */
7252 imsm_set_array_size(new_dev);
7253
7254 ret_val = 1;
7255 }
7256 }
7257
7258 if (tofree)
7259 *space_list = tofree;
7260 return ret_val;
7261
7262 error_disk_add:
7263 dprintf("Error: imsm: Cannot find disk.\n");
7264 return ret_val;
7265 }
7266
7267 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7268 struct intel_super *super,
7269 struct active_array *active_array)
7270 {
7271 struct imsm_super *mpb = super->anchor;
7272 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7273 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7274 struct imsm_map *migr_map;
7275 struct active_array *a;
7276 struct imsm_disk *disk;
7277 __u8 to_state;
7278 struct dl *dl;
7279 unsigned int found;
7280 int failed;
7281 int victim;
7282 int i;
7283 int second_map_created = 0;
7284
7285 for (; u; u = u->next) {
7286 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
7287
7288 if (victim < 0)
7289 return 0;
7290
7291 for (dl = super->disks; dl; dl = dl->next)
7292 if (dl == u->dl)
7293 break;
7294
7295 if (!dl) {
7296 fprintf(stderr, "error: imsm_activate_spare passed "
7297 "an unknown disk (index: %d)\n",
7298 u->dl->index);
7299 return 0;
7300 }
7301
7302 /* count failures (excluding rebuilds and the victim)
7303 * to determine map[0] state
7304 */
7305 failed = 0;
7306 for (i = 0; i < map->num_members; i++) {
7307 if (i == u->slot)
7308 continue;
7309 disk = get_imsm_disk(super,
7310 get_imsm_disk_idx(dev, i, MAP_X));
7311 if (!disk || is_failed(disk))
7312 failed++;
7313 }
7314
7315 /* adding a pristine spare, assign a new index */
7316 if (dl->index < 0) {
7317 dl->index = super->anchor->num_disks;
7318 super->anchor->num_disks++;
7319 }
7320 disk = &dl->disk;
7321 disk->status |= CONFIGURED_DISK;
7322 disk->status &= ~SPARE_DISK;
7323
7324 /* mark rebuild */
7325 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
7326 if (!second_map_created) {
7327 second_map_created = 1;
7328 map->map_state = IMSM_T_STATE_DEGRADED;
7329 migrate(dev, super, to_state, MIGR_REBUILD);
7330 } else
7331 map->map_state = to_state;
7332 migr_map = get_imsm_map(dev, MAP_1);
7333 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7334 set_imsm_ord_tbl_ent(migr_map, u->slot,
7335 dl->index | IMSM_ORD_REBUILD);
7336
7337 /* update the family_num to mark a new container
7338 * generation, being careful to record the existing
7339 * family_num in orig_family_num to clean up after
7340 * earlier mdadm versions that neglected to set it.
7341 */
7342 if (mpb->orig_family_num == 0)
7343 mpb->orig_family_num = mpb->family_num;
7344 mpb->family_num += super->random;
7345
7346 /* count arrays using the victim in the metadata */
7347 found = 0;
7348 for (a = active_array; a ; a = a->next) {
7349 dev = get_imsm_dev(super, a->info.container_member);
7350 map = get_imsm_map(dev, MAP_0);
7351
7352 if (get_imsm_disk_slot(map, victim) >= 0)
7353 found++;
7354 }
7355
7356 /* delete the victim if it is no longer being
7357 * utilized anywhere
7358 */
7359 if (!found) {
7360 struct dl **dlp;
7361
7362 /* We know that 'manager' isn't touching anything,
7363 * so it is safe to delete
7364 */
7365 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
7366 if ((*dlp)->index == victim)
7367 break;
7368
7369 /* victim may be on the missing list */
7370 if (!*dlp)
7371 for (dlp = &super->missing; *dlp;
7372 dlp = &(*dlp)->next)
7373 if ((*dlp)->index == victim)
7374 break;
7375 imsm_delete(super, dlp, victim);
7376 }
7377 }
7378
7379 return 1;
7380 }
7381
7382 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7383 struct intel_super *super,
7384 void ***space_list)
7385 {
7386 struct dl *new_disk;
7387 struct intel_dev *id;
7388 int i;
7389 int delta_disks = u->new_raid_disks - u->old_raid_disks;
7390 int disk_count = u->old_raid_disks;
7391 void **tofree = NULL;
7392 int devices_to_reshape = 1;
7393 struct imsm_super *mpb = super->anchor;
7394 int ret_val = 0;
7395 unsigned int dev_id;
7396
7397 dprintf("imsm: apply_reshape_container_disks_update()\n");
7398
7399 /* enable spares to use in array */
7400 for (i = 0; i < delta_disks; i++) {
7401 new_disk = get_disk_super(super,
7402 major(u->new_disks[i]),
7403 minor(u->new_disks[i]));
7404 dprintf("imsm: new disk for reshape is: %i:%i "
7405 "(%p, index = %i)\n",
7406 major(u->new_disks[i]), minor(u->new_disks[i]),
7407 new_disk, new_disk->index);
7408 if ((new_disk == NULL) ||
7409 ((new_disk->index >= 0) &&
7410 (new_disk->index < u->old_raid_disks)))
7411 goto update_reshape_exit;
7412 new_disk->index = disk_count++;
7413 /* slot to fill in autolayout
7414 */
7415 new_disk->raiddisk = new_disk->index;
7416 new_disk->disk.status |=
7417 CONFIGURED_DISK;
7418 new_disk->disk.status &= ~SPARE_DISK;
7419 }
7420
7421 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7422 mpb->num_raid_devs);
7423 /* manage changes in volume
7424 */
7425 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
7426 void **sp = *space_list;
7427 struct imsm_dev *newdev;
7428 struct imsm_map *newmap, *oldmap;
7429
7430 for (id = super->devlist ; id; id = id->next) {
7431 if (id->index == dev_id)
7432 break;
7433 }
7434 if (id == NULL)
7435 break;
7436 if (!sp)
7437 continue;
7438 *space_list = *sp;
7439 newdev = (void*)sp;
7440 /* Copy the dev, but not (all of) the map */
7441 memcpy(newdev, id->dev, sizeof(*newdev));
7442 oldmap = get_imsm_map(id->dev, MAP_0);
7443 newmap = get_imsm_map(newdev, MAP_0);
7444 /* Copy the current map */
7445 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7446 /* update one device only
7447 */
7448 if (devices_to_reshape) {
7449 dprintf("imsm: modifying subdev: %i\n",
7450 id->index);
7451 devices_to_reshape--;
7452 newdev->vol.migr_state = 1;
7453 newdev->vol.curr_migr_unit = 0;
7454 set_migr_type(newdev, MIGR_GEN_MIGR);
7455 newmap->num_members = u->new_raid_disks;
7456 for (i = 0; i < delta_disks; i++) {
7457 set_imsm_ord_tbl_ent(newmap,
7458 u->old_raid_disks + i,
7459 u->old_raid_disks + i);
7460 }
7461 /* New map is correct, now need to save old map
7462 */
7463 newmap = get_imsm_map(newdev, MAP_1);
7464 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7465
7466 imsm_set_array_size(newdev);
7467 }
7468
7469 sp = (void **)id->dev;
7470 id->dev = newdev;
7471 *sp = tofree;
7472 tofree = sp;
7473
7474 /* Clear migration record */
7475 memset(super->migr_rec, 0, sizeof(struct migr_record));
7476 }
7477 if (tofree)
7478 *space_list = tofree;
7479 ret_val = 1;
7480
7481 update_reshape_exit:
7482
7483 return ret_val;
7484 }
7485
7486 static int apply_takeover_update(struct imsm_update_takeover *u,
7487 struct intel_super *super,
7488 void ***space_list)
7489 {
7490 struct imsm_dev *dev = NULL;
7491 struct intel_dev *dv;
7492 struct imsm_dev *dev_new;
7493 struct imsm_map *map;
7494 struct dl *dm, *du;
7495 int i;
7496
7497 for (dv = super->devlist; dv; dv = dv->next)
7498 if (dv->index == (unsigned int)u->subarray) {
7499 dev = dv->dev;
7500 break;
7501 }
7502
7503 if (dev == NULL)
7504 return 0;
7505
7506 map = get_imsm_map(dev, MAP_0);
7507
7508 if (u->direction == R10_TO_R0) {
7509 /* Number of failed disks must be half of initial disk number */
7510 if (imsm_count_failed(super, dev, MAP_0) !=
7511 (map->num_members / 2))
7512 return 0;
7513
7514 /* iterate through devices to mark removed disks as spare */
7515 for (dm = super->disks; dm; dm = dm->next) {
7516 if (dm->disk.status & FAILED_DISK) {
7517 int idx = dm->index;
7518 /* update indexes on the disk list */
7519 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7520 the index values will end up being correct.... NB */
7521 for (du = super->disks; du; du = du->next)
7522 if (du->index > idx)
7523 du->index--;
7524 /* mark as spare disk */
7525 mark_spare(dm);
7526 }
7527 }
7528 /* update map */
7529 map->num_members = map->num_members / 2;
7530 map->map_state = IMSM_T_STATE_NORMAL;
7531 map->num_domains = 1;
7532 map->raid_level = 0;
7533 map->failed_disk_num = -1;
7534 }
7535
7536 if (u->direction == R0_TO_R10) {
7537 void **space;
7538 /* update slots in current disk list */
7539 for (dm = super->disks; dm; dm = dm->next) {
7540 if (dm->index >= 0)
7541 dm->index *= 2;
7542 }
7543 /* create new *missing* disks */
7544 for (i = 0; i < map->num_members; i++) {
7545 space = *space_list;
7546 if (!space)
7547 continue;
7548 *space_list = *space;
7549 du = (void *)space;
7550 memcpy(du, super->disks, sizeof(*du));
7551 du->fd = -1;
7552 du->minor = 0;
7553 du->major = 0;
7554 du->index = (i * 2) + 1;
7555 sprintf((char *)du->disk.serial,
7556 " MISSING_%d", du->index);
7557 sprintf((char *)du->serial,
7558 "MISSING_%d", du->index);
7559 du->next = super->missing;
7560 super->missing = du;
7561 }
7562 /* create new dev and map */
7563 space = *space_list;
7564 if (!space)
7565 return 0;
7566 *space_list = *space;
7567 dev_new = (void *)space;
7568 memcpy(dev_new, dev, sizeof(*dev));
7569 /* update new map */
7570 map = get_imsm_map(dev_new, MAP_0);
7571 map->num_members = map->num_members * 2;
7572 map->map_state = IMSM_T_STATE_DEGRADED;
7573 map->num_domains = 2;
7574 map->raid_level = 1;
7575 /* replace dev<->dev_new */
7576 dv->dev = dev_new;
7577 }
7578 /* update disk order table */
7579 for (du = super->disks; du; du = du->next)
7580 if (du->index >= 0)
7581 set_imsm_ord_tbl_ent(map, du->index, du->index);
7582 for (du = super->missing; du; du = du->next)
7583 if (du->index >= 0) {
7584 set_imsm_ord_tbl_ent(map, du->index, du->index);
7585 mark_missing(dv->dev, &du->disk, du->index);
7586 }
7587
7588 return 1;
7589 }
7590
7591 static void imsm_process_update(struct supertype *st,
7592 struct metadata_update *update)
7593 {
7594 /**
7595 * crack open the metadata_update envelope to find the update record
7596 * update can be one of:
7597 * update_reshape_container_disks - all the arrays in the container
7598 * are being reshaped to have more devices. We need to mark
7599 * the arrays for general migration and convert selected spares
7600 * into active devices.
7601 * update_activate_spare - a spare device has replaced a failed
7602 * device in an array, update the disk_ord_tbl. If this disk is
7603 * present in all member arrays then also clear the SPARE_DISK
7604 * flag
7605 * update_create_array
7606 * update_kill_array
7607 * update_rename_array
7608 * update_add_remove_disk
7609 */
7610 struct intel_super *super = st->sb;
7611 struct imsm_super *mpb;
7612 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7613
7614 /* update requires a larger buf but the allocation failed */
7615 if (super->next_len && !super->next_buf) {
7616 super->next_len = 0;
7617 return;
7618 }
7619
7620 if (super->next_buf) {
7621 memcpy(super->next_buf, super->buf, super->len);
7622 free(super->buf);
7623 super->len = super->next_len;
7624 super->buf = super->next_buf;
7625
7626 super->next_len = 0;
7627 super->next_buf = NULL;
7628 }
7629
7630 mpb = super->anchor;
7631
7632 switch (type) {
7633 case update_general_migration_checkpoint: {
7634 struct intel_dev *id;
7635 struct imsm_update_general_migration_checkpoint *u =
7636 (void *)update->buf;
7637
7638 dprintf("imsm: process_update() "
7639 "for update_general_migration_checkpoint called\n");
7640
7641 /* find device under general migration */
7642 for (id = super->devlist ; id; id = id->next) {
7643 if (is_gen_migration(id->dev)) {
7644 id->dev->vol.curr_migr_unit =
7645 __cpu_to_le32(u->curr_migr_unit);
7646 super->updates_pending++;
7647 }
7648 }
7649 break;
7650 }
7651 case update_takeover: {
7652 struct imsm_update_takeover *u = (void *)update->buf;
7653 if (apply_takeover_update(u, super, &update->space_list)) {
7654 imsm_update_version_info(super);
7655 super->updates_pending++;
7656 }
7657 break;
7658 }
7659
7660 case update_reshape_container_disks: {
7661 struct imsm_update_reshape *u = (void *)update->buf;
7662 if (apply_reshape_container_disks_update(
7663 u, super, &update->space_list))
7664 super->updates_pending++;
7665 break;
7666 }
7667 case update_reshape_migration: {
7668 struct imsm_update_reshape_migration *u = (void *)update->buf;
7669 if (apply_reshape_migration_update(
7670 u, super, &update->space_list))
7671 super->updates_pending++;
7672 break;
7673 }
7674 case update_activate_spare: {
7675 struct imsm_update_activate_spare *u = (void *) update->buf;
7676 if (apply_update_activate_spare(u, super, st->arrays))
7677 super->updates_pending++;
7678 break;
7679 }
7680 case update_create_array: {
7681 /* someone wants to create a new array, we need to be aware of
7682 * a few races/collisions:
7683 * 1/ 'Create' called by two separate instances of mdadm
7684 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7685 * devices that have since been assimilated via
7686 * activate_spare.
7687 * In the event this update can not be carried out mdadm will
7688 * (FIX ME) notice that its update did not take hold.
7689 */
7690 struct imsm_update_create_array *u = (void *) update->buf;
7691 struct intel_dev *dv;
7692 struct imsm_dev *dev;
7693 struct imsm_map *map, *new_map;
7694 unsigned long long start, end;
7695 unsigned long long new_start, new_end;
7696 int i;
7697 struct disk_info *inf;
7698 struct dl *dl;
7699
7700 /* handle racing creates: first come first serve */
7701 if (u->dev_idx < mpb->num_raid_devs) {
7702 dprintf("%s: subarray %d already defined\n",
7703 __func__, u->dev_idx);
7704 goto create_error;
7705 }
7706
7707 /* check update is next in sequence */
7708 if (u->dev_idx != mpb->num_raid_devs) {
7709 dprintf("%s: can not create array %d expected index %d\n",
7710 __func__, u->dev_idx, mpb->num_raid_devs);
7711 goto create_error;
7712 }
7713
7714 new_map = get_imsm_map(&u->dev, MAP_0);
7715 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7716 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
7717 inf = get_disk_info(u);
7718
7719 /* handle activate_spare versus create race:
7720 * check to make sure that overlapping arrays do not include
7721 * overalpping disks
7722 */
7723 for (i = 0; i < mpb->num_raid_devs; i++) {
7724 dev = get_imsm_dev(super, i);
7725 map = get_imsm_map(dev, MAP_0);
7726 start = __le32_to_cpu(map->pba_of_lba0);
7727 end = start + __le32_to_cpu(map->blocks_per_member);
7728 if ((new_start >= start && new_start <= end) ||
7729 (start >= new_start && start <= new_end))
7730 /* overlap */;
7731 else
7732 continue;
7733
7734 if (disks_overlap(super, i, u)) {
7735 dprintf("%s: arrays overlap\n", __func__);
7736 goto create_error;
7737 }
7738 }
7739
7740 /* check that prepare update was successful */
7741 if (!update->space) {
7742 dprintf("%s: prepare update failed\n", __func__);
7743 goto create_error;
7744 }
7745
7746 /* check that all disks are still active before committing
7747 * changes. FIXME: could we instead handle this by creating a
7748 * degraded array? That's probably not what the user expects,
7749 * so better to drop this update on the floor.
7750 */
7751 for (i = 0; i < new_map->num_members; i++) {
7752 dl = serial_to_dl(inf[i].serial, super);
7753 if (!dl) {
7754 dprintf("%s: disk disappeared\n", __func__);
7755 goto create_error;
7756 }
7757 }
7758
7759 super->updates_pending++;
7760
7761 /* convert spares to members and fixup ord_tbl */
7762 for (i = 0; i < new_map->num_members; i++) {
7763 dl = serial_to_dl(inf[i].serial, super);
7764 if (dl->index == -1) {
7765 dl->index = mpb->num_disks;
7766 mpb->num_disks++;
7767 dl->disk.status |= CONFIGURED_DISK;
7768 dl->disk.status &= ~SPARE_DISK;
7769 }
7770 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7771 }
7772
7773 dv = update->space;
7774 dev = dv->dev;
7775 update->space = NULL;
7776 imsm_copy_dev(dev, &u->dev);
7777 dv->index = u->dev_idx;
7778 dv->next = super->devlist;
7779 super->devlist = dv;
7780 mpb->num_raid_devs++;
7781
7782 imsm_update_version_info(super);
7783 break;
7784 create_error:
7785 /* mdmon knows how to release update->space, but not
7786 * ((struct intel_dev *) update->space)->dev
7787 */
7788 if (update->space) {
7789 dv = update->space;
7790 free(dv->dev);
7791 }
7792 break;
7793 }
7794 case update_kill_array: {
7795 struct imsm_update_kill_array *u = (void *) update->buf;
7796 int victim = u->dev_idx;
7797 struct active_array *a;
7798 struct intel_dev **dp;
7799 struct imsm_dev *dev;
7800
7801 /* sanity check that we are not affecting the uuid of
7802 * active arrays, or deleting an active array
7803 *
7804 * FIXME when immutable ids are available, but note that
7805 * we'll also need to fixup the invalidated/active
7806 * subarray indexes in mdstat
7807 */
7808 for (a = st->arrays; a; a = a->next)
7809 if (a->info.container_member >= victim)
7810 break;
7811 /* by definition if mdmon is running at least one array
7812 * is active in the container, so checking
7813 * mpb->num_raid_devs is just extra paranoia
7814 */
7815 dev = get_imsm_dev(super, victim);
7816 if (a || !dev || mpb->num_raid_devs == 1) {
7817 dprintf("failed to delete subarray-%d\n", victim);
7818 break;
7819 }
7820
7821 for (dp = &super->devlist; *dp;)
7822 if ((*dp)->index == (unsigned)super->current_vol) {
7823 *dp = (*dp)->next;
7824 } else {
7825 if ((*dp)->index > (unsigned)victim)
7826 (*dp)->index--;
7827 dp = &(*dp)->next;
7828 }
7829 mpb->num_raid_devs--;
7830 super->updates_pending++;
7831 break;
7832 }
7833 case update_rename_array: {
7834 struct imsm_update_rename_array *u = (void *) update->buf;
7835 char name[MAX_RAID_SERIAL_LEN+1];
7836 int target = u->dev_idx;
7837 struct active_array *a;
7838 struct imsm_dev *dev;
7839
7840 /* sanity check that we are not affecting the uuid of
7841 * an active array
7842 */
7843 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7844 name[MAX_RAID_SERIAL_LEN] = '\0';
7845 for (a = st->arrays; a; a = a->next)
7846 if (a->info.container_member == target)
7847 break;
7848 dev = get_imsm_dev(super, u->dev_idx);
7849 if (a || !dev || !check_name(super, name, 1)) {
7850 dprintf("failed to rename subarray-%d\n", target);
7851 break;
7852 }
7853
7854 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7855 super->updates_pending++;
7856 break;
7857 }
7858 case update_add_remove_disk: {
7859 /* we may be able to repair some arrays if disks are
7860 * being added, check teh status of add_remove_disk
7861 * if discs has been added.
7862 */
7863 if (add_remove_disk_update(super)) {
7864 struct active_array *a;
7865
7866 super->updates_pending++;
7867 for (a = st->arrays; a; a = a->next)
7868 a->check_degraded = 1;
7869 }
7870 break;
7871 }
7872 default:
7873 fprintf(stderr, "error: unsuported process update type:"
7874 "(type: %d)\n", type);
7875 }
7876 }
7877
7878 static struct mdinfo *get_spares_for_grow(struct supertype *st);
7879
7880 static void imsm_prepare_update(struct supertype *st,
7881 struct metadata_update *update)
7882 {
7883 /**
7884 * Allocate space to hold new disk entries, raid-device entries or a new
7885 * mpb if necessary. The manager synchronously waits for updates to
7886 * complete in the monitor, so new mpb buffers allocated here can be
7887 * integrated by the monitor thread without worrying about live pointers
7888 * in the manager thread.
7889 */
7890 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7891 struct intel_super *super = st->sb;
7892 struct imsm_super *mpb = super->anchor;
7893 size_t buf_len;
7894 size_t len = 0;
7895
7896 switch (type) {
7897 case update_general_migration_checkpoint:
7898 dprintf("imsm: prepare_update() "
7899 "for update_general_migration_checkpoint called\n");
7900 break;
7901 case update_takeover: {
7902 struct imsm_update_takeover *u = (void *)update->buf;
7903 if (u->direction == R0_TO_R10) {
7904 void **tail = (void **)&update->space_list;
7905 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7906 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7907 int num_members = map->num_members;
7908 void *space;
7909 int size, i;
7910 int err = 0;
7911 /* allocate memory for added disks */
7912 for (i = 0; i < num_members; i++) {
7913 size = sizeof(struct dl);
7914 space = malloc(size);
7915 if (!space) {
7916 err++;
7917 break;
7918 }
7919 *tail = space;
7920 tail = space;
7921 *tail = NULL;
7922 }
7923 /* allocate memory for new device */
7924 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7925 (num_members * sizeof(__u32));
7926 space = malloc(size);
7927 if (!space)
7928 err++;
7929 else {
7930 *tail = space;
7931 tail = space;
7932 *tail = NULL;
7933 }
7934 if (!err) {
7935 len = disks_to_mpb_size(num_members * 2);
7936 } else {
7937 /* if allocation didn't success, free buffer */
7938 while (update->space_list) {
7939 void **sp = update->space_list;
7940 update->space_list = *sp;
7941 free(sp);
7942 }
7943 }
7944 }
7945
7946 break;
7947 }
7948 case update_reshape_container_disks: {
7949 /* Every raid device in the container is about to
7950 * gain some more devices, and we will enter a
7951 * reconfiguration.
7952 * So each 'imsm_map' will be bigger, and the imsm_vol
7953 * will now hold 2 of them.
7954 * Thus we need new 'struct imsm_dev' allocations sized
7955 * as sizeof_imsm_dev but with more devices in both maps.
7956 */
7957 struct imsm_update_reshape *u = (void *)update->buf;
7958 struct intel_dev *dl;
7959 void **space_tail = (void**)&update->space_list;
7960
7961 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7962
7963 for (dl = super->devlist; dl; dl = dl->next) {
7964 int size = sizeof_imsm_dev(dl->dev, 1);
7965 void *s;
7966 if (u->new_raid_disks > u->old_raid_disks)
7967 size += sizeof(__u32)*2*
7968 (u->new_raid_disks - u->old_raid_disks);
7969 s = malloc(size);
7970 if (!s)
7971 break;
7972 *space_tail = s;
7973 space_tail = s;
7974 *space_tail = NULL;
7975 }
7976
7977 len = disks_to_mpb_size(u->new_raid_disks);
7978 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7979 break;
7980 }
7981 case update_reshape_migration: {
7982 /* for migration level 0->5 we need to add disks
7983 * so the same as for container operation we will copy
7984 * device to the bigger location.
7985 * in memory prepared device and new disk area are prepared
7986 * for usage in process update
7987 */
7988 struct imsm_update_reshape_migration *u = (void *)update->buf;
7989 struct intel_dev *id;
7990 void **space_tail = (void **)&update->space_list;
7991 int size;
7992 void *s;
7993 int current_level = -1;
7994
7995 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7996
7997 /* add space for bigger array in update
7998 */
7999 for (id = super->devlist; id; id = id->next) {
8000 if (id->index == (unsigned)u->subdev) {
8001 size = sizeof_imsm_dev(id->dev, 1);
8002 if (u->new_raid_disks > u->old_raid_disks)
8003 size += sizeof(__u32)*2*
8004 (u->new_raid_disks - u->old_raid_disks);
8005 s = malloc(size);
8006 if (!s)
8007 break;
8008 *space_tail = s;
8009 space_tail = s;
8010 *space_tail = NULL;
8011 break;
8012 }
8013 }
8014 if (update->space_list == NULL)
8015 break;
8016
8017 /* add space for disk in update
8018 */
8019 size = sizeof(struct dl);
8020 s = malloc(size);
8021 if (!s) {
8022 free(update->space_list);
8023 update->space_list = NULL;
8024 break;
8025 }
8026 *space_tail = s;
8027 space_tail = s;
8028 *space_tail = NULL;
8029
8030 /* add spare device to update
8031 */
8032 for (id = super->devlist ; id; id = id->next)
8033 if (id->index == (unsigned)u->subdev) {
8034 struct imsm_dev *dev;
8035 struct imsm_map *map;
8036
8037 dev = get_imsm_dev(super, u->subdev);
8038 map = get_imsm_map(dev, MAP_0);
8039 current_level = map->raid_level;
8040 break;
8041 }
8042 if ((u->new_level == 5) && (u->new_level != current_level)) {
8043 struct mdinfo *spares;
8044
8045 spares = get_spares_for_grow(st);
8046 if (spares) {
8047 struct dl *dl;
8048 struct mdinfo *dev;
8049
8050 dev = spares->devs;
8051 if (dev) {
8052 u->new_disks[0] =
8053 makedev(dev->disk.major,
8054 dev->disk.minor);
8055 dl = get_disk_super(super,
8056 dev->disk.major,
8057 dev->disk.minor);
8058 dl->index = u->old_raid_disks;
8059 dev = dev->next;
8060 }
8061 sysfs_free(spares);
8062 }
8063 }
8064 len = disks_to_mpb_size(u->new_raid_disks);
8065 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8066 break;
8067 }
8068 case update_create_array: {
8069 struct imsm_update_create_array *u = (void *) update->buf;
8070 struct intel_dev *dv;
8071 struct imsm_dev *dev = &u->dev;
8072 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8073 struct dl *dl;
8074 struct disk_info *inf;
8075 int i;
8076 int activate = 0;
8077
8078 inf = get_disk_info(u);
8079 len = sizeof_imsm_dev(dev, 1);
8080 /* allocate a new super->devlist entry */
8081 dv = malloc(sizeof(*dv));
8082 if (dv) {
8083 dv->dev = malloc(len);
8084 if (dv->dev)
8085 update->space = dv;
8086 else {
8087 free(dv);
8088 update->space = NULL;
8089 }
8090 }
8091
8092 /* count how many spares will be converted to members */
8093 for (i = 0; i < map->num_members; i++) {
8094 dl = serial_to_dl(inf[i].serial, super);
8095 if (!dl) {
8096 /* hmm maybe it failed?, nothing we can do about
8097 * it here
8098 */
8099 continue;
8100 }
8101 if (count_memberships(dl, super) == 0)
8102 activate++;
8103 }
8104 len += activate * sizeof(struct imsm_disk);
8105 break;
8106 default:
8107 break;
8108 }
8109 }
8110
8111 /* check if we need a larger metadata buffer */
8112 if (super->next_buf)
8113 buf_len = super->next_len;
8114 else
8115 buf_len = super->len;
8116
8117 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8118 /* ok we need a larger buf than what is currently allocated
8119 * if this allocation fails process_update will notice that
8120 * ->next_len is set and ->next_buf is NULL
8121 */
8122 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8123 if (super->next_buf)
8124 free(super->next_buf);
8125
8126 super->next_len = buf_len;
8127 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
8128 memset(super->next_buf, 0, buf_len);
8129 else
8130 super->next_buf = NULL;
8131 }
8132 }
8133
8134 /* must be called while manager is quiesced */
8135 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
8136 {
8137 struct imsm_super *mpb = super->anchor;
8138 struct dl *iter;
8139 struct imsm_dev *dev;
8140 struct imsm_map *map;
8141 int i, j, num_members;
8142 __u32 ord;
8143
8144 dprintf("%s: deleting device[%d] from imsm_super\n",
8145 __func__, index);
8146
8147 /* shift all indexes down one */
8148 for (iter = super->disks; iter; iter = iter->next)
8149 if (iter->index > (int)index)
8150 iter->index--;
8151 for (iter = super->missing; iter; iter = iter->next)
8152 if (iter->index > (int)index)
8153 iter->index--;
8154
8155 for (i = 0; i < mpb->num_raid_devs; i++) {
8156 dev = get_imsm_dev(super, i);
8157 map = get_imsm_map(dev, MAP_0);
8158 num_members = map->num_members;
8159 for (j = 0; j < num_members; j++) {
8160 /* update ord entries being careful not to propagate
8161 * ord-flags to the first map
8162 */
8163 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
8164
8165 if (ord_to_idx(ord) <= index)
8166 continue;
8167
8168 map = get_imsm_map(dev, MAP_0);
8169 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
8170 map = get_imsm_map(dev, MAP_1);
8171 if (map)
8172 set_imsm_ord_tbl_ent(map, j, ord - 1);
8173 }
8174 }
8175
8176 mpb->num_disks--;
8177 super->updates_pending++;
8178 if (*dlp) {
8179 struct dl *dl = *dlp;
8180
8181 *dlp = (*dlp)->next;
8182 __free_imsm_disk(dl);
8183 }
8184 }
8185 #endif /* MDASSEMBLE */
8186
8187 static void close_targets(int *targets, int new_disks)
8188 {
8189 int i;
8190
8191 if (!targets)
8192 return;
8193
8194 for (i = 0; i < new_disks; i++) {
8195 if (targets[i] >= 0) {
8196 close(targets[i]);
8197 targets[i] = -1;
8198 }
8199 }
8200 }
8201
8202 static int imsm_get_allowed_degradation(int level, int raid_disks,
8203 struct intel_super *super,
8204 struct imsm_dev *dev)
8205 {
8206 switch (level) {
8207 case 10:{
8208 int ret_val = 0;
8209 struct imsm_map *map;
8210 int i;
8211
8212 ret_val = raid_disks/2;
8213 /* check map if all disks pairs not failed
8214 * in both maps
8215 */
8216 map = get_imsm_map(dev, MAP_0);
8217 for (i = 0; i < ret_val; i++) {
8218 int degradation = 0;
8219 if (get_imsm_disk(super, i) == NULL)
8220 degradation++;
8221 if (get_imsm_disk(super, i + 1) == NULL)
8222 degradation++;
8223 if (degradation == 2)
8224 return 0;
8225 }
8226 map = get_imsm_map(dev, MAP_1);
8227 /* if there is no second map
8228 * result can be returned
8229 */
8230 if (map == NULL)
8231 return ret_val;
8232 /* check degradation in second map
8233 */
8234 for (i = 0; i < ret_val; i++) {
8235 int degradation = 0;
8236 if (get_imsm_disk(super, i) == NULL)
8237 degradation++;
8238 if (get_imsm_disk(super, i + 1) == NULL)
8239 degradation++;
8240 if (degradation == 2)
8241 return 0;
8242 }
8243 return ret_val;
8244 }
8245 case 5:
8246 return 1;
8247 case 6:
8248 return 2;
8249 default:
8250 return 0;
8251 }
8252 }
8253
8254
8255 /*******************************************************************************
8256 * Function: open_backup_targets
8257 * Description: Function opens file descriptors for all devices given in
8258 * info->devs
8259 * Parameters:
8260 * info : general array info
8261 * raid_disks : number of disks
8262 * raid_fds : table of device's file descriptors
8263 * super : intel super for raid10 degradation check
8264 * dev : intel device for raid10 degradation check
8265 * Returns:
8266 * 0 : success
8267 * -1 : fail
8268 ******************************************************************************/
8269 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
8270 struct intel_super *super, struct imsm_dev *dev)
8271 {
8272 struct mdinfo *sd;
8273 int i;
8274 int opened = 0;
8275
8276 for (i = 0; i < raid_disks; i++)
8277 raid_fds[i] = -1;
8278
8279 for (sd = info->devs ; sd ; sd = sd->next) {
8280 char *dn;
8281
8282 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
8283 dprintf("disk is faulty!!\n");
8284 continue;
8285 }
8286
8287 if ((sd->disk.raid_disk >= raid_disks) ||
8288 (sd->disk.raid_disk < 0))
8289 continue;
8290
8291 dn = map_dev(sd->disk.major,
8292 sd->disk.minor, 1);
8293 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8294 if (raid_fds[sd->disk.raid_disk] < 0) {
8295 fprintf(stderr, "cannot open component\n");
8296 continue;
8297 }
8298 opened++;
8299 }
8300 /* check if maximum array degradation level is not exceeded
8301 */
8302 if ((raid_disks - opened) >
8303 imsm_get_allowed_degradation(info->new_level,
8304 raid_disks,
8305 super, dev)) {
8306 fprintf(stderr, "Not enough disks can be opened.\n");
8307 close_targets(raid_fds, raid_disks);
8308 return -2;
8309 }
8310 return 0;
8311 }
8312
8313 #ifndef MDASSEMBLE
8314 /*******************************************************************************
8315 * Function: init_migr_record_imsm
8316 * Description: Function inits imsm migration record
8317 * Parameters:
8318 * super : imsm internal array info
8319 * dev : device under migration
8320 * info : general array info to find the smallest device
8321 * Returns:
8322 * none
8323 ******************************************************************************/
8324 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
8325 struct mdinfo *info)
8326 {
8327 struct intel_super *super = st->sb;
8328 struct migr_record *migr_rec = super->migr_rec;
8329 int new_data_disks;
8330 unsigned long long dsize, dev_sectors;
8331 long long unsigned min_dev_sectors = -1LLU;
8332 struct mdinfo *sd;
8333 char nm[30];
8334 int fd;
8335 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
8336 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
8337 unsigned long long num_migr_units;
8338 unsigned long long array_blocks;
8339
8340 memset(migr_rec, 0, sizeof(struct migr_record));
8341 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
8342
8343 /* only ascending reshape supported now */
8344 migr_rec->ascending_migr = __cpu_to_le32(1);
8345
8346 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
8347 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8348 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
8349 new_data_disks = imsm_num_data_members(dev, MAP_0);
8350 migr_rec->blocks_per_unit =
8351 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8352 migr_rec->dest_depth_per_unit =
8353 __cpu_to_le32(migr_rec->dest_depth_per_unit);
8354 array_blocks = info->component_size * new_data_disks;
8355 num_migr_units =
8356 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
8357
8358 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
8359 num_migr_units++;
8360 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
8361
8362 migr_rec->post_migr_vol_cap = dev->size_low;
8363 migr_rec->post_migr_vol_cap_hi = dev->size_high;
8364
8365
8366 /* Find the smallest dev */
8367 for (sd = info->devs ; sd ; sd = sd->next) {
8368 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
8369 fd = dev_open(nm, O_RDONLY);
8370 if (fd < 0)
8371 continue;
8372 get_dev_size(fd, NULL, &dsize);
8373 dev_sectors = dsize / 512;
8374 if (dev_sectors < min_dev_sectors)
8375 min_dev_sectors = dev_sectors;
8376 close(fd);
8377 }
8378 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8379 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8380
8381 write_imsm_migr_rec(st);
8382
8383 return;
8384 }
8385
8386 /*******************************************************************************
8387 * Function: save_backup_imsm
8388 * Description: Function saves critical data stripes to Migration Copy Area
8389 * and updates the current migration unit status.
8390 * Use restore_stripes() to form a destination stripe,
8391 * and to write it to the Copy Area.
8392 * Parameters:
8393 * st : supertype information
8394 * dev : imsm device that backup is saved for
8395 * info : general array info
8396 * buf : input buffer
8397 * length : length of data to backup (blocks_per_unit)
8398 * Returns:
8399 * 0 : success
8400 *, -1 : fail
8401 ******************************************************************************/
8402 int save_backup_imsm(struct supertype *st,
8403 struct imsm_dev *dev,
8404 struct mdinfo *info,
8405 void *buf,
8406 int length)
8407 {
8408 int rv = -1;
8409 struct intel_super *super = st->sb;
8410 unsigned long long *target_offsets = NULL;
8411 int *targets = NULL;
8412 int i;
8413 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
8414 int new_disks = map_dest->num_members;
8415 int dest_layout = 0;
8416 int dest_chunk;
8417 unsigned long long start;
8418 int data_disks = imsm_num_data_members(dev, MAP_0);
8419
8420 targets = malloc(new_disks * sizeof(int));
8421 if (!targets)
8422 goto abort;
8423
8424 for (i = 0; i < new_disks; i++)
8425 targets[i] = -1;
8426
8427 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8428 if (!target_offsets)
8429 goto abort;
8430
8431 start = info->reshape_progress * 512;
8432 for (i = 0; i < new_disks; i++) {
8433 target_offsets[i] = (unsigned long long)
8434 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
8435 /* move back copy area adderss, it will be moved forward
8436 * in restore_stripes() using start input variable
8437 */
8438 target_offsets[i] -= start/data_disks;
8439 }
8440
8441 if (open_backup_targets(info, new_disks, targets,
8442 super, dev))
8443 goto abort;
8444
8445 dest_layout = imsm_level_to_layout(map_dest->raid_level);
8446 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8447
8448 if (restore_stripes(targets, /* list of dest devices */
8449 target_offsets, /* migration record offsets */
8450 new_disks,
8451 dest_chunk,
8452 map_dest->raid_level,
8453 dest_layout,
8454 -1, /* source backup file descriptor */
8455 0, /* input buf offset
8456 * always 0 buf is already offseted */
8457 start,
8458 length,
8459 buf) != 0) {
8460 fprintf(stderr, Name ": Error restoring stripes\n");
8461 goto abort;
8462 }
8463
8464 rv = 0;
8465
8466 abort:
8467 if (targets) {
8468 close_targets(targets, new_disks);
8469 free(targets);
8470 }
8471 free(target_offsets);
8472
8473 return rv;
8474 }
8475
8476 /*******************************************************************************
8477 * Function: save_checkpoint_imsm
8478 * Description: Function called for current unit status update
8479 * in the migration record. It writes it to disk.
8480 * Parameters:
8481 * super : imsm internal array info
8482 * info : general array info
8483 * Returns:
8484 * 0: success
8485 * 1: failure
8486 * 2: failure, means no valid migration record
8487 * / no general migration in progress /
8488 ******************************************************************************/
8489 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8490 {
8491 struct intel_super *super = st->sb;
8492 unsigned long long blocks_per_unit;
8493 unsigned long long curr_migr_unit;
8494
8495 if (load_imsm_migr_rec(super, info) != 0) {
8496 dprintf("imsm: ERROR: Cannot read migration record "
8497 "for checkpoint save.\n");
8498 return 1;
8499 }
8500
8501 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8502 if (blocks_per_unit == 0) {
8503 dprintf("imsm: no migration in progress.\n");
8504 return 2;
8505 }
8506 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8507 /* check if array is alligned to copy area
8508 * if it is not alligned, add one to current migration unit value
8509 * this can happend on array reshape finish only
8510 */
8511 if (info->reshape_progress % blocks_per_unit)
8512 curr_migr_unit++;
8513
8514 super->migr_rec->curr_migr_unit =
8515 __cpu_to_le32(curr_migr_unit);
8516 super->migr_rec->rec_status = __cpu_to_le32(state);
8517 super->migr_rec->dest_1st_member_lba =
8518 __cpu_to_le32(curr_migr_unit *
8519 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
8520 if (write_imsm_migr_rec(st) < 0) {
8521 dprintf("imsm: Cannot write migration record "
8522 "outside backup area\n");
8523 return 1;
8524 }
8525
8526 return 0;
8527 }
8528
8529 /*******************************************************************************
8530 * Function: recover_backup_imsm
8531 * Description: Function recovers critical data from the Migration Copy Area
8532 * while assembling an array.
8533 * Parameters:
8534 * super : imsm internal array info
8535 * info : general array info
8536 * Returns:
8537 * 0 : success (or there is no data to recover)
8538 * 1 : fail
8539 ******************************************************************************/
8540 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8541 {
8542 struct intel_super *super = st->sb;
8543 struct migr_record *migr_rec = super->migr_rec;
8544 struct imsm_map *map_dest = NULL;
8545 struct intel_dev *id = NULL;
8546 unsigned long long read_offset;
8547 unsigned long long write_offset;
8548 unsigned unit_len;
8549 int *targets = NULL;
8550 int new_disks, i, err;
8551 char *buf = NULL;
8552 int retval = 1;
8553 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8554 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
8555 char buffer[20];
8556 int skipped_disks = 0;
8557
8558 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8559 if (err < 1)
8560 return 1;
8561
8562 /* recover data only during assemblation */
8563 if (strncmp(buffer, "inactive", 8) != 0)
8564 return 0;
8565 /* no data to recover */
8566 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8567 return 0;
8568 if (curr_migr_unit >= num_migr_units)
8569 return 1;
8570
8571 /* find device during reshape */
8572 for (id = super->devlist; id; id = id->next)
8573 if (is_gen_migration(id->dev))
8574 break;
8575 if (id == NULL)
8576 return 1;
8577
8578 map_dest = get_imsm_map(id->dev, MAP_0);
8579 new_disks = map_dest->num_members;
8580
8581 read_offset = (unsigned long long)
8582 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8583
8584 write_offset = ((unsigned long long)
8585 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
8586 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
8587
8588 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8589 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8590 goto abort;
8591 targets = malloc(new_disks * sizeof(int));
8592 if (!targets)
8593 goto abort;
8594
8595 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
8596 fprintf(stderr,
8597 Name ": Cannot open some devices belonging to array.\n");
8598 goto abort;
8599 }
8600
8601 for (i = 0; i < new_disks; i++) {
8602 if (targets[i] < 0) {
8603 skipped_disks++;
8604 continue;
8605 }
8606 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8607 fprintf(stderr,
8608 Name ": Cannot seek to block: %s\n",
8609 strerror(errno));
8610 skipped_disks++;
8611 continue;
8612 }
8613 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
8614 fprintf(stderr,
8615 Name ": Cannot read copy area block: %s\n",
8616 strerror(errno));
8617 skipped_disks++;
8618 continue;
8619 }
8620 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8621 fprintf(stderr,
8622 Name ": Cannot seek to block: %s\n",
8623 strerror(errno));
8624 skipped_disks++;
8625 continue;
8626 }
8627 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
8628 fprintf(stderr,
8629 Name ": Cannot restore block: %s\n",
8630 strerror(errno));
8631 skipped_disks++;
8632 continue;
8633 }
8634 }
8635
8636 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
8637 new_disks,
8638 super,
8639 id->dev)) {
8640 fprintf(stderr,
8641 Name ": Cannot restore data from backup."
8642 " Too many failed disks\n");
8643 goto abort;
8644 }
8645
8646 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8647 /* ignore error == 2, this can mean end of reshape here
8648 */
8649 dprintf("imsm: Cannot write checkpoint to "
8650 "migration record (UNIT_SRC_NORMAL) during restart\n");
8651 } else
8652 retval = 0;
8653
8654 abort:
8655 if (targets) {
8656 for (i = 0; i < new_disks; i++)
8657 if (targets[i])
8658 close(targets[i]);
8659 free(targets);
8660 }
8661 free(buf);
8662 return retval;
8663 }
8664
8665 static char disk_by_path[] = "/dev/disk/by-path/";
8666
8667 static const char *imsm_get_disk_controller_domain(const char *path)
8668 {
8669 char disk_path[PATH_MAX];
8670 char *drv=NULL;
8671 struct stat st;
8672
8673 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8674 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8675 if (stat(disk_path, &st) == 0) {
8676 struct sys_dev* hba;
8677 char *path=NULL;
8678
8679 path = devt_to_devpath(st.st_rdev);
8680 if (path == NULL)
8681 return "unknown";
8682 hba = find_disk_attached_hba(-1, path);
8683 if (hba && hba->type == SYS_DEV_SAS)
8684 drv = "isci";
8685 else if (hba && hba->type == SYS_DEV_SATA)
8686 drv = "ahci";
8687 else
8688 drv = "unknown";
8689 dprintf("path: %s hba: %s attached: %s\n",
8690 path, (hba) ? hba->path : "NULL", drv);
8691 free(path);
8692 if (hba)
8693 free_sys_dev(&hba);
8694 }
8695 return drv;
8696 }
8697
8698 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8699 {
8700 char subdev_name[20];
8701 struct mdstat_ent *mdstat;
8702
8703 sprintf(subdev_name, "%d", subdev);
8704 mdstat = mdstat_by_subdev(subdev_name, container);
8705 if (!mdstat)
8706 return -1;
8707
8708 *minor = mdstat->devnum;
8709 free_mdstat(mdstat);
8710 return 0;
8711 }
8712
8713 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8714 struct geo_params *geo,
8715 int *old_raid_disks)
8716 {
8717 /* currently we only support increasing the number of devices
8718 * for a container. This increases the number of device for each
8719 * member array. They must all be RAID0 or RAID5.
8720 */
8721 int ret_val = 0;
8722 struct mdinfo *info, *member;
8723 int devices_that_can_grow = 0;
8724
8725 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8726 "st->devnum = (%i)\n",
8727 st->devnum);
8728
8729 if (geo->size != -1 ||
8730 geo->level != UnSet ||
8731 geo->layout != UnSet ||
8732 geo->chunksize != 0 ||
8733 geo->raid_disks == UnSet) {
8734 dprintf("imsm: Container operation is allowed for "
8735 "raid disks number change only.\n");
8736 return ret_val;
8737 }
8738
8739 info = container_content_imsm(st, NULL);
8740 for (member = info; member; member = member->next) {
8741 int result;
8742 int minor;
8743
8744 dprintf("imsm: checking device_num: %i\n",
8745 member->container_member);
8746
8747 if (geo->raid_disks <= member->array.raid_disks) {
8748 /* we work on container for Online Capacity Expansion
8749 * only so raid_disks has to grow
8750 */
8751 dprintf("imsm: for container operation raid disks "
8752 "increase is required\n");
8753 break;
8754 }
8755
8756 if ((info->array.level != 0) &&
8757 (info->array.level != 5)) {
8758 /* we cannot use this container with other raid level
8759 */
8760 dprintf("imsm: for container operation wrong"
8761 " raid level (%i) detected\n",
8762 info->array.level);
8763 break;
8764 } else {
8765 /* check for platform support
8766 * for this raid level configuration
8767 */
8768 struct intel_super *super = st->sb;
8769 if (!is_raid_level_supported(super->orom,
8770 member->array.level,
8771 geo->raid_disks)) {
8772 dprintf("platform does not support raid%d with"
8773 " %d disk%s\n",
8774 info->array.level,
8775 geo->raid_disks,
8776 geo->raid_disks > 1 ? "s" : "");
8777 break;
8778 }
8779 /* check if component size is aligned to chunk size
8780 */
8781 if (info->component_size %
8782 (info->array.chunk_size/512)) {
8783 dprintf("Component size is not aligned to "
8784 "chunk size\n");
8785 break;
8786 }
8787 }
8788
8789 if (*old_raid_disks &&
8790 info->array.raid_disks != *old_raid_disks)
8791 break;
8792 *old_raid_disks = info->array.raid_disks;
8793
8794 /* All raid5 and raid0 volumes in container
8795 * have to be ready for Online Capacity Expansion
8796 * so they need to be assembled. We have already
8797 * checked that no recovery etc is happening.
8798 */
8799 result = imsm_find_array_minor_by_subdev(member->container_member,
8800 st->container_dev,
8801 &minor);
8802 if (result < 0) {
8803 dprintf("imsm: cannot find array\n");
8804 break;
8805 }
8806 devices_that_can_grow++;
8807 }
8808 sysfs_free(info);
8809 if (!member && devices_that_can_grow)
8810 ret_val = 1;
8811
8812 if (ret_val)
8813 dprintf("\tContainer operation allowed\n");
8814 else
8815 dprintf("\tError: %i\n", ret_val);
8816
8817 return ret_val;
8818 }
8819
8820 /* Function: get_spares_for_grow
8821 * Description: Allocates memory and creates list of spare devices
8822 * avaliable in container. Checks if spare drive size is acceptable.
8823 * Parameters: Pointer to the supertype structure
8824 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8825 * NULL if fail
8826 */
8827 static struct mdinfo *get_spares_for_grow(struct supertype *st)
8828 {
8829 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
8830 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
8831 }
8832
8833 /******************************************************************************
8834 * function: imsm_create_metadata_update_for_reshape
8835 * Function creates update for whole IMSM container.
8836 *
8837 ******************************************************************************/
8838 static int imsm_create_metadata_update_for_reshape(
8839 struct supertype *st,
8840 struct geo_params *geo,
8841 int old_raid_disks,
8842 struct imsm_update_reshape **updatep)
8843 {
8844 struct intel_super *super = st->sb;
8845 struct imsm_super *mpb = super->anchor;
8846 int update_memory_size = 0;
8847 struct imsm_update_reshape *u = NULL;
8848 struct mdinfo *spares = NULL;
8849 int i;
8850 int delta_disks = 0;
8851 struct mdinfo *dev;
8852
8853 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8854 geo->raid_disks);
8855
8856 delta_disks = geo->raid_disks - old_raid_disks;
8857
8858 /* size of all update data without anchor */
8859 update_memory_size = sizeof(struct imsm_update_reshape);
8860
8861 /* now add space for spare disks that we need to add. */
8862 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8863
8864 u = calloc(1, update_memory_size);
8865 if (u == NULL) {
8866 dprintf("error: "
8867 "cannot get memory for imsm_update_reshape update\n");
8868 return 0;
8869 }
8870 u->type = update_reshape_container_disks;
8871 u->old_raid_disks = old_raid_disks;
8872 u->new_raid_disks = geo->raid_disks;
8873
8874 /* now get spare disks list
8875 */
8876 spares = get_spares_for_grow(st);
8877
8878 if (spares == NULL
8879 || delta_disks > spares->array.spare_disks) {
8880 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8881 "for %s.\n", geo->dev_name);
8882 i = -1;
8883 goto abort;
8884 }
8885
8886 /* we have got spares
8887 * update disk list in imsm_disk list table in anchor
8888 */
8889 dprintf("imsm: %i spares are available.\n\n",
8890 spares->array.spare_disks);
8891
8892 dev = spares->devs;
8893 for (i = 0; i < delta_disks; i++) {
8894 struct dl *dl;
8895
8896 if (dev == NULL)
8897 break;
8898 u->new_disks[i] = makedev(dev->disk.major,
8899 dev->disk.minor);
8900 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
8901 dl->index = mpb->num_disks;
8902 mpb->num_disks++;
8903 dev = dev->next;
8904 }
8905
8906 abort:
8907 /* free spares
8908 */
8909 sysfs_free(spares);
8910
8911 dprintf("imsm: reshape update preparation :");
8912 if (i == delta_disks) {
8913 dprintf(" OK\n");
8914 *updatep = u;
8915 return update_memory_size;
8916 }
8917 free(u);
8918 dprintf(" Error\n");
8919
8920 return 0;
8921 }
8922
8923 /******************************************************************************
8924 * function: imsm_create_metadata_update_for_migration()
8925 * Creates update for IMSM array.
8926 *
8927 ******************************************************************************/
8928 static int imsm_create_metadata_update_for_migration(
8929 struct supertype *st,
8930 struct geo_params *geo,
8931 struct imsm_update_reshape_migration **updatep)
8932 {
8933 struct intel_super *super = st->sb;
8934 int update_memory_size = 0;
8935 struct imsm_update_reshape_migration *u = NULL;
8936 struct imsm_dev *dev;
8937 int previous_level = -1;
8938
8939 dprintf("imsm_create_metadata_update_for_migration(enter)"
8940 " New Level = %i\n", geo->level);
8941
8942 /* size of all update data without anchor */
8943 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8944
8945 u = calloc(1, update_memory_size);
8946 if (u == NULL) {
8947 dprintf("error: cannot get memory for "
8948 "imsm_create_metadata_update_for_migration\n");
8949 return 0;
8950 }
8951 u->type = update_reshape_migration;
8952 u->subdev = super->current_vol;
8953 u->new_level = geo->level;
8954 u->new_layout = geo->layout;
8955 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8956 u->new_disks[0] = -1;
8957 u->new_chunksize = -1;
8958
8959 dev = get_imsm_dev(super, u->subdev);
8960 if (dev) {
8961 struct imsm_map *map;
8962
8963 map = get_imsm_map(dev, MAP_0);
8964 if (map) {
8965 int current_chunk_size =
8966 __le16_to_cpu(map->blocks_per_strip) / 2;
8967
8968 if (geo->chunksize != current_chunk_size) {
8969 u->new_chunksize = geo->chunksize / 1024;
8970 dprintf("imsm: "
8971 "chunk size change from %i to %i\n",
8972 current_chunk_size, u->new_chunksize);
8973 }
8974 previous_level = map->raid_level;
8975 }
8976 }
8977 if ((geo->level == 5) && (previous_level == 0)) {
8978 struct mdinfo *spares = NULL;
8979
8980 u->new_raid_disks++;
8981 spares = get_spares_for_grow(st);
8982 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8983 free(u);
8984 sysfs_free(spares);
8985 update_memory_size = 0;
8986 dprintf("error: cannot get spare device "
8987 "for requested migration");
8988 return 0;
8989 }
8990 sysfs_free(spares);
8991 }
8992 dprintf("imsm: reshape update preparation : OK\n");
8993 *updatep = u;
8994
8995 return update_memory_size;
8996 }
8997
8998 static void imsm_update_metadata_locally(struct supertype *st,
8999 void *buf, int len)
9000 {
9001 struct metadata_update mu;
9002
9003 mu.buf = buf;
9004 mu.len = len;
9005 mu.space = NULL;
9006 mu.space_list = NULL;
9007 mu.next = NULL;
9008 imsm_prepare_update(st, &mu);
9009 imsm_process_update(st, &mu);
9010
9011 while (mu.space_list) {
9012 void **space = mu.space_list;
9013 mu.space_list = *space;
9014 free(space);
9015 }
9016 }
9017
9018 /***************************************************************************
9019 * Function: imsm_analyze_change
9020 * Description: Function analyze change for single volume
9021 * and validate if transition is supported
9022 * Parameters: Geometry parameters, supertype structure
9023 * Returns: Operation type code on success, -1 if fail
9024 ****************************************************************************/
9025 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9026 struct geo_params *geo)
9027 {
9028 struct mdinfo info;
9029 int change = -1;
9030 int check_devs = 0;
9031 int chunk;
9032 int devNumChange=0;
9033 int layout = -1;
9034
9035 getinfo_super_imsm_volume(st, &info, NULL);
9036 if ((geo->level != info.array.level) &&
9037 (geo->level >= 0) &&
9038 (geo->level != UnSet)) {
9039 switch (info.array.level) {
9040 case 0:
9041 if (geo->level == 5) {
9042 change = CH_MIGRATION;
9043 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
9044 fprintf(stderr,
9045 Name " Error. Requested Layout "
9046 "not supported (left-asymmetric layout "
9047 "is supported only)!\n");
9048 change = -1;
9049 goto analyse_change_exit;
9050 }
9051 layout = geo->layout;
9052 check_devs = 1;
9053 devNumChange = 1; /* parity disk added */
9054 } else if (geo->level == 10) {
9055 change = CH_TAKEOVER;
9056 check_devs = 1;
9057 devNumChange = 2; /* two mirrors added */
9058 layout = 0x102; /* imsm supported layout */
9059 }
9060 break;
9061 case 1:
9062 case 10:
9063 if (geo->level == 0) {
9064 change = CH_TAKEOVER;
9065 check_devs = 1;
9066 devNumChange = -(geo->raid_disks/2);
9067 layout = 0; /* imsm raid0 layout */
9068 }
9069 break;
9070 }
9071 if (change == -1) {
9072 fprintf(stderr,
9073 Name " Error. Level Migration from %d to %d "
9074 "not supported!\n",
9075 info.array.level, geo->level);
9076 goto analyse_change_exit;
9077 }
9078 } else
9079 geo->level = info.array.level;
9080
9081 if ((geo->layout != info.array.layout)
9082 && ((geo->layout != UnSet) && (geo->layout != -1))) {
9083 change = CH_MIGRATION;
9084 if ((info.array.layout == 0)
9085 && (info.array.level == 5)
9086 && (geo->layout == 5)) {
9087 /* reshape 5 -> 4 */
9088 } else if ((info.array.layout == 5)
9089 && (info.array.level == 5)
9090 && (geo->layout == 0)) {
9091 /* reshape 4 -> 5 */
9092 geo->layout = 0;
9093 geo->level = 5;
9094 } else {
9095 fprintf(stderr,
9096 Name " Error. Layout Migration from %d to %d "
9097 "not supported!\n",
9098 info.array.layout, geo->layout);
9099 change = -1;
9100 goto analyse_change_exit;
9101 }
9102 } else
9103 geo->layout = info.array.layout;
9104
9105 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
9106 && (geo->chunksize != info.array.chunk_size))
9107 change = CH_MIGRATION;
9108 else
9109 geo->chunksize = info.array.chunk_size;
9110
9111 chunk = geo->chunksize / 1024;
9112 if (!validate_geometry_imsm(st,
9113 geo->level,
9114 layout,
9115 geo->raid_disks + devNumChange,
9116 &chunk,
9117 geo->size,
9118 0, 0, 1))
9119 change = -1;
9120
9121 if (check_devs) {
9122 struct intel_super *super = st->sb;
9123 struct imsm_super *mpb = super->anchor;
9124
9125 if (mpb->num_raid_devs > 1) {
9126 fprintf(stderr,
9127 Name " Error. Cannot perform operation on %s"
9128 "- for this operation it MUST be single "
9129 "array in container\n",
9130 geo->dev_name);
9131 change = -1;
9132 }
9133 }
9134
9135 analyse_change_exit:
9136
9137 return change;
9138 }
9139
9140 int imsm_takeover(struct supertype *st, struct geo_params *geo)
9141 {
9142 struct intel_super *super = st->sb;
9143 struct imsm_update_takeover *u;
9144
9145 u = malloc(sizeof(struct imsm_update_takeover));
9146 if (u == NULL)
9147 return 1;
9148
9149 u->type = update_takeover;
9150 u->subarray = super->current_vol;
9151
9152 /* 10->0 transition */
9153 if (geo->level == 0)
9154 u->direction = R10_TO_R0;
9155
9156 /* 0->10 transition */
9157 if (geo->level == 10)
9158 u->direction = R0_TO_R10;
9159
9160 /* update metadata locally */
9161 imsm_update_metadata_locally(st, u,
9162 sizeof(struct imsm_update_takeover));
9163 /* and possibly remotely */
9164 if (st->update_tail)
9165 append_metadata_update(st, u,
9166 sizeof(struct imsm_update_takeover));
9167 else
9168 free(u);
9169
9170 return 0;
9171 }
9172
9173 static int imsm_reshape_super(struct supertype *st, long long size, int level,
9174 int layout, int chunksize, int raid_disks,
9175 int delta_disks, char *backup, char *dev,
9176 int verbose)
9177 {
9178 int ret_val = 1;
9179 struct geo_params geo;
9180
9181 dprintf("imsm: reshape_super called.\n");
9182
9183 memset(&geo, 0, sizeof(struct geo_params));
9184
9185 geo.dev_name = dev;
9186 geo.dev_id = st->devnum;
9187 geo.size = size;
9188 geo.level = level;
9189 geo.layout = layout;
9190 geo.chunksize = chunksize;
9191 geo.raid_disks = raid_disks;
9192 if (delta_disks != UnSet)
9193 geo.raid_disks += delta_disks;
9194
9195 dprintf("\tfor level : %i\n", geo.level);
9196 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
9197
9198 if (experimental() == 0)
9199 return ret_val;
9200
9201 if (st->container_dev == st->devnum) {
9202 /* On container level we can only increase number of devices. */
9203 dprintf("imsm: info: Container operation\n");
9204 int old_raid_disks = 0;
9205
9206 if (imsm_reshape_is_allowed_on_container(
9207 st, &geo, &old_raid_disks)) {
9208 struct imsm_update_reshape *u = NULL;
9209 int len;
9210
9211 len = imsm_create_metadata_update_for_reshape(
9212 st, &geo, old_raid_disks, &u);
9213
9214 if (len <= 0) {
9215 dprintf("imsm: Cannot prepare update\n");
9216 goto exit_imsm_reshape_super;
9217 }
9218
9219 ret_val = 0;
9220 /* update metadata locally */
9221 imsm_update_metadata_locally(st, u, len);
9222 /* and possibly remotely */
9223 if (st->update_tail)
9224 append_metadata_update(st, u, len);
9225 else
9226 free(u);
9227
9228 } else {
9229 fprintf(stderr, Name ": (imsm) Operation "
9230 "is not allowed on this container\n");
9231 }
9232 } else {
9233 /* On volume level we support following operations
9234 * - takeover: raid10 -> raid0; raid0 -> raid10
9235 * - chunk size migration
9236 * - migration: raid5 -> raid0; raid0 -> raid5
9237 */
9238 struct intel_super *super = st->sb;
9239 struct intel_dev *dev = super->devlist;
9240 int change, devnum;
9241 dprintf("imsm: info: Volume operation\n");
9242 /* find requested device */
9243 while (dev) {
9244 if (imsm_find_array_minor_by_subdev(
9245 dev->index, st->container_dev, &devnum) == 0
9246 && devnum == geo.dev_id)
9247 break;
9248 dev = dev->next;
9249 }
9250 if (dev == NULL) {
9251 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
9252 geo.dev_name, geo.dev_id);
9253 goto exit_imsm_reshape_super;
9254 }
9255 super->current_vol = dev->index;
9256 change = imsm_analyze_change(st, &geo);
9257 switch (change) {
9258 case CH_TAKEOVER:
9259 ret_val = imsm_takeover(st, &geo);
9260 break;
9261 case CH_MIGRATION: {
9262 struct imsm_update_reshape_migration *u = NULL;
9263 int len =
9264 imsm_create_metadata_update_for_migration(
9265 st, &geo, &u);
9266 if (len < 1) {
9267 dprintf("imsm: "
9268 "Cannot prepare update\n");
9269 break;
9270 }
9271 ret_val = 0;
9272 /* update metadata locally */
9273 imsm_update_metadata_locally(st, u, len);
9274 /* and possibly remotely */
9275 if (st->update_tail)
9276 append_metadata_update(st, u, len);
9277 else
9278 free(u);
9279 }
9280 break;
9281 default:
9282 ret_val = 1;
9283 }
9284 }
9285
9286 exit_imsm_reshape_super:
9287 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
9288 return ret_val;
9289 }
9290
9291 /*******************************************************************************
9292 * Function: wait_for_reshape_imsm
9293 * Description: Function writes new sync_max value and waits until
9294 * reshape process reach new position
9295 * Parameters:
9296 * sra : general array info
9297 * ndata : number of disks in new array's layout
9298 * Returns:
9299 * 0 : success,
9300 * 1 : there is no reshape in progress,
9301 * -1 : fail
9302 ******************************************************************************/
9303 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
9304 {
9305 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
9306 unsigned long long completed;
9307 /* to_complete : new sync_max position */
9308 unsigned long long to_complete = sra->reshape_progress;
9309 unsigned long long position_to_set = to_complete / ndata;
9310
9311 if (fd < 0) {
9312 dprintf("imsm: wait_for_reshape_imsm() "
9313 "cannot open reshape_position\n");
9314 return 1;
9315 }
9316
9317 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9318 dprintf("imsm: wait_for_reshape_imsm() "
9319 "cannot read reshape_position (no reshape in progres)\n");
9320 close(fd);
9321 return 0;
9322 }
9323
9324 if (completed > to_complete) {
9325 dprintf("imsm: wait_for_reshape_imsm() "
9326 "wrong next position to set %llu (%llu)\n",
9327 to_complete, completed);
9328 close(fd);
9329 return -1;
9330 }
9331 dprintf("Position set: %llu\n", position_to_set);
9332 if (sysfs_set_num(sra, NULL, "sync_max",
9333 position_to_set) != 0) {
9334 dprintf("imsm: wait_for_reshape_imsm() "
9335 "cannot set reshape position to %llu\n",
9336 position_to_set);
9337 close(fd);
9338 return -1;
9339 }
9340
9341 do {
9342 char action[20];
9343 fd_set rfds;
9344 FD_ZERO(&rfds);
9345 FD_SET(fd, &rfds);
9346 select(fd+1, &rfds, NULL, NULL, NULL);
9347 if (sysfs_get_str(sra, NULL, "sync_action",
9348 action, 20) > 0 &&
9349 strncmp(action, "reshape", 7) != 0)
9350 break;
9351 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9352 dprintf("imsm: wait_for_reshape_imsm() "
9353 "cannot read reshape_position (in loop)\n");
9354 close(fd);
9355 return 1;
9356 }
9357 } while (completed < to_complete);
9358 close(fd);
9359 return 0;
9360
9361 }
9362
9363 /*******************************************************************************
9364 * Function: check_degradation_change
9365 * Description: Check that array hasn't become failed.
9366 * Parameters:
9367 * info : for sysfs access
9368 * sources : source disks descriptors
9369 * degraded: previous degradation level
9370 * Returns:
9371 * degradation level
9372 ******************************************************************************/
9373 int check_degradation_change(struct mdinfo *info,
9374 int *sources,
9375 int degraded)
9376 {
9377 unsigned long long new_degraded;
9378 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
9379 if (new_degraded != (unsigned long long)degraded) {
9380 /* check each device to ensure it is still working */
9381 struct mdinfo *sd;
9382 new_degraded = 0;
9383 for (sd = info->devs ; sd ; sd = sd->next) {
9384 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9385 continue;
9386 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9387 char sbuf[20];
9388 if (sysfs_get_str(info,
9389 sd, "state", sbuf, 20) < 0 ||
9390 strstr(sbuf, "faulty") ||
9391 strstr(sbuf, "in_sync") == NULL) {
9392 /* this device is dead */
9393 sd->disk.state = (1<<MD_DISK_FAULTY);
9394 if (sd->disk.raid_disk >= 0 &&
9395 sources[sd->disk.raid_disk] >= 0) {
9396 close(sources[
9397 sd->disk.raid_disk]);
9398 sources[sd->disk.raid_disk] =
9399 -1;
9400 }
9401 new_degraded++;
9402 }
9403 }
9404 }
9405 }
9406
9407 return new_degraded;
9408 }
9409
9410 /*******************************************************************************
9411 * Function: imsm_manage_reshape
9412 * Description: Function finds array under reshape and it manages reshape
9413 * process. It creates stripes backups (if required) and sets
9414 * checheckpoits.
9415 * Parameters:
9416 * afd : Backup handle (nattive) - not used
9417 * sra : general array info
9418 * reshape : reshape parameters - not used
9419 * st : supertype structure
9420 * blocks : size of critical section [blocks]
9421 * fds : table of source device descriptor
9422 * offsets : start of array (offest per devices)
9423 * dests : not used
9424 * destfd : table of destination device descriptor
9425 * destoffsets : table of destination offsets (per device)
9426 * Returns:
9427 * 1 : success, reshape is done
9428 * 0 : fail
9429 ******************************************************************************/
9430 static int imsm_manage_reshape(
9431 int afd, struct mdinfo *sra, struct reshape *reshape,
9432 struct supertype *st, unsigned long backup_blocks,
9433 int *fds, unsigned long long *offsets,
9434 int dests, int *destfd, unsigned long long *destoffsets)
9435 {
9436 int ret_val = 0;
9437 struct intel_super *super = st->sb;
9438 struct intel_dev *dv = NULL;
9439 struct imsm_dev *dev = NULL;
9440 struct imsm_map *map_src;
9441 int migr_vol_qan = 0;
9442 int ndata, odata; /* [bytes] */
9443 int chunk; /* [bytes] */
9444 struct migr_record *migr_rec;
9445 char *buf = NULL;
9446 unsigned int buf_size; /* [bytes] */
9447 unsigned long long max_position; /* array size [bytes] */
9448 unsigned long long next_step; /* [blocks]/[bytes] */
9449 unsigned long long old_data_stripe_length;
9450 unsigned long long start_src; /* [bytes] */
9451 unsigned long long start; /* [bytes] */
9452 unsigned long long start_buf_shift; /* [bytes] */
9453 int degraded = 0;
9454 int source_layout = 0;
9455
9456 if (!fds || !offsets || !sra)
9457 goto abort;
9458
9459 /* Find volume during the reshape */
9460 for (dv = super->devlist; dv; dv = dv->next) {
9461 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9462 && dv->dev->vol.migr_state == 1) {
9463 dev = dv->dev;
9464 migr_vol_qan++;
9465 }
9466 }
9467 /* Only one volume can migrate at the same time */
9468 if (migr_vol_qan != 1) {
9469 fprintf(stderr, Name " : %s", migr_vol_qan ?
9470 "Number of migrating volumes greater than 1\n" :
9471 "There is no volume during migrationg\n");
9472 goto abort;
9473 }
9474
9475 map_src = get_imsm_map(dev, MAP_1);
9476 if (map_src == NULL)
9477 goto abort;
9478
9479 ndata = imsm_num_data_members(dev, MAP_0);
9480 odata = imsm_num_data_members(dev, MAP_1);
9481
9482 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
9483 old_data_stripe_length = odata * chunk;
9484
9485 migr_rec = super->migr_rec;
9486
9487 /* initialize migration record for start condition */
9488 if (sra->reshape_progress == 0)
9489 init_migr_record_imsm(st, dev, sra);
9490 else {
9491 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9492 dprintf("imsm: cannot restart migration when data "
9493 "are present in copy area.\n");
9494 goto abort;
9495 }
9496 }
9497
9498 /* size for data */
9499 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9500 /* extend buffer size for parity disk */
9501 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9502 /* add space for stripe aligment */
9503 buf_size += old_data_stripe_length;
9504 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9505 dprintf("imsm: Cannot allocate checpoint buffer\n");
9506 goto abort;
9507 }
9508
9509 max_position = sra->component_size * ndata;
9510 source_layout = imsm_level_to_layout(map_src->raid_level);
9511
9512 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9513 __le32_to_cpu(migr_rec->num_migr_units)) {
9514 /* current reshape position [blocks] */
9515 unsigned long long current_position =
9516 __le32_to_cpu(migr_rec->blocks_per_unit)
9517 * __le32_to_cpu(migr_rec->curr_migr_unit);
9518 unsigned long long border;
9519
9520 /* Check that array hasn't become failed.
9521 */
9522 degraded = check_degradation_change(sra, fds, degraded);
9523 if (degraded > 1) {
9524 dprintf("imsm: Abort reshape due to degradation"
9525 " level (%i)\n", degraded);
9526 goto abort;
9527 }
9528
9529 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9530
9531 if ((current_position + next_step) > max_position)
9532 next_step = max_position - current_position;
9533
9534 start = current_position * 512;
9535
9536 /* allign reading start to old geometry */
9537 start_buf_shift = start % old_data_stripe_length;
9538 start_src = start - start_buf_shift;
9539
9540 border = (start_src / odata) - (start / ndata);
9541 border /= 512;
9542 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9543 /* save critical stripes to buf
9544 * start - start address of current unit
9545 * to backup [bytes]
9546 * start_src - start address of current unit
9547 * to backup alligned to source array
9548 * [bytes]
9549 */
9550 unsigned long long next_step_filler = 0;
9551 unsigned long long copy_length = next_step * 512;
9552
9553 /* allign copy area length to stripe in old geometry */
9554 next_step_filler = ((copy_length + start_buf_shift)
9555 % old_data_stripe_length);
9556 if (next_step_filler)
9557 next_step_filler = (old_data_stripe_length
9558 - next_step_filler);
9559 dprintf("save_stripes() parameters: start = %llu,"
9560 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9561 "\tstart_in_buf_shift = %llu,"
9562 "\tnext_step_filler = %llu\n",
9563 start, start_src, copy_length,
9564 start_buf_shift, next_step_filler);
9565
9566 if (save_stripes(fds, offsets, map_src->num_members,
9567 chunk, map_src->raid_level,
9568 source_layout, 0, NULL, start_src,
9569 copy_length +
9570 next_step_filler + start_buf_shift,
9571 buf)) {
9572 dprintf("imsm: Cannot save stripes"
9573 " to buffer\n");
9574 goto abort;
9575 }
9576 /* Convert data to destination format and store it
9577 * in backup general migration area
9578 */
9579 if (save_backup_imsm(st, dev, sra,
9580 buf + start_buf_shift, copy_length)) {
9581 dprintf("imsm: Cannot save stripes to "
9582 "target devices\n");
9583 goto abort;
9584 }
9585 if (save_checkpoint_imsm(st, sra,
9586 UNIT_SRC_IN_CP_AREA)) {
9587 dprintf("imsm: Cannot write checkpoint to "
9588 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9589 goto abort;
9590 }
9591 } else {
9592 /* set next step to use whole border area */
9593 border /= next_step;
9594 if (border > 1)
9595 next_step *= border;
9596 }
9597 /* When data backed up, checkpoint stored,
9598 * kick the kernel to reshape unit of data
9599 */
9600 next_step = next_step + sra->reshape_progress;
9601 /* limit next step to array max position */
9602 if (next_step > max_position)
9603 next_step = max_position;
9604 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9605 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
9606 sra->reshape_progress = next_step;
9607
9608 /* wait until reshape finish */
9609 if (wait_for_reshape_imsm(sra, ndata) < 0) {
9610 dprintf("wait_for_reshape_imsm returned error!\n");
9611 goto abort;
9612 }
9613
9614 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9615 /* ignore error == 2, this can mean end of reshape here
9616 */
9617 dprintf("imsm: Cannot write checkpoint to "
9618 "migration record (UNIT_SRC_NORMAL)\n");
9619 goto abort;
9620 }
9621
9622 }
9623
9624 /* return '1' if done */
9625 ret_val = 1;
9626 abort:
9627 free(buf);
9628 abort_reshape(sra);
9629
9630 return ret_val;
9631 }
9632 #endif /* MDASSEMBLE */
9633
9634 struct superswitch super_imsm = {
9635 #ifndef MDASSEMBLE
9636 .examine_super = examine_super_imsm,
9637 .brief_examine_super = brief_examine_super_imsm,
9638 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9639 .export_examine_super = export_examine_super_imsm,
9640 .detail_super = detail_super_imsm,
9641 .brief_detail_super = brief_detail_super_imsm,
9642 .write_init_super = write_init_super_imsm,
9643 .validate_geometry = validate_geometry_imsm,
9644 .add_to_super = add_to_super_imsm,
9645 .remove_from_super = remove_from_super_imsm,
9646 .detail_platform = detail_platform_imsm,
9647 .kill_subarray = kill_subarray_imsm,
9648 .update_subarray = update_subarray_imsm,
9649 .load_container = load_container_imsm,
9650 .default_geometry = default_geometry_imsm,
9651 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9652 .reshape_super = imsm_reshape_super,
9653 .manage_reshape = imsm_manage_reshape,
9654 .recover_backup = recover_backup_imsm,
9655 #endif
9656 .match_home = match_home_imsm,
9657 .uuid_from_super= uuid_from_super_imsm,
9658 .getinfo_super = getinfo_super_imsm,
9659 .getinfo_super_disks = getinfo_super_disks_imsm,
9660 .update_super = update_super_imsm,
9661
9662 .avail_size = avail_size_imsm,
9663 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
9664
9665 .compare_super = compare_super_imsm,
9666
9667 .load_super = load_super_imsm,
9668 .init_super = init_super_imsm,
9669 .store_super = store_super_imsm,
9670 .free_super = free_super_imsm,
9671 .match_metadata_desc = match_metadata_desc_imsm,
9672 .container_content = container_content_imsm,
9673
9674
9675 .external = 1,
9676 .name = "imsm",
9677
9678 #ifndef MDASSEMBLE
9679 /* for mdmon */
9680 .open_new = imsm_open_new,
9681 .set_array_state= imsm_set_array_state,
9682 .set_disk = imsm_set_disk,
9683 .sync_metadata = imsm_sync_metadata,
9684 .activate_spare = imsm_activate_spare,
9685 .process_update = imsm_process_update,
9686 .prepare_update = imsm_prepare_update,
9687 #endif /* MDASSEMBLE */
9688 };