]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
Merge branch 'master' into from-stable
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2007 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "mdadm.h"
21 #include "mdmon.h"
22 #include <values.h>
23 #include <scsi/sg.h>
24 #include <ctype.h>
25
26 /* MPB == Metadata Parameter Block */
27 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
28 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
29 #define MPB_VERSION_RAID0 "1.0.00"
30 #define MPB_VERSION_RAID1 "1.1.00"
31 #define MPB_VERSION_RAID5 "1.2.02"
32 #define MAX_SIGNATURE_LENGTH 32
33 #define MAX_RAID_SERIAL_LEN 16
34 #define MPB_SECTOR_CNT 418
35 #define IMSM_RESERVED_SECTORS 4096
36
37 /* Disk configuration info. */
38 #define IMSM_MAX_DEVICES 255
39 struct imsm_disk {
40 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
41 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
42 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
43 __u32 status; /* 0xF0 - 0xF3 */
44 #define SPARE_DISK 0x01 /* Spare */
45 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
46 #define FAILED_DISK 0x04 /* Permanent failure */
47 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
48
49 #define IMSM_DISK_FILLERS 5
50 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
51 };
52
53 /* RAID map configuration infos. */
54 struct imsm_map {
55 __u32 pba_of_lba0; /* start address of partition */
56 __u32 blocks_per_member;/* blocks per member */
57 __u32 num_data_stripes; /* number of data stripes */
58 __u16 blocks_per_strip;
59 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
60 #define IMSM_T_STATE_NORMAL 0
61 #define IMSM_T_STATE_UNINITIALIZED 1
62 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
63 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
64 __u8 raid_level;
65 #define IMSM_T_RAID0 0
66 #define IMSM_T_RAID1 1
67 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
68 __u8 num_members; /* number of member disks */
69 __u8 reserved[3];
70 __u32 filler[7]; /* expansion area */
71 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
72 top byte special */
73 } __attribute__ ((packed));
74
75 struct imsm_vol {
76 __u32 reserved[2];
77 __u8 migr_state; /* Normal or Migrating */
78 __u8 migr_type; /* Initializing, Rebuilding, ... */
79 __u8 dirty;
80 __u8 fill[1];
81 __u32 filler[5];
82 struct imsm_map map[1];
83 /* here comes another one if migr_state */
84 } __attribute__ ((packed));
85
86 struct imsm_dev {
87 __u8 volume[MAX_RAID_SERIAL_LEN];
88 __u32 size_low;
89 __u32 size_high;
90 __u32 status; /* Persistent RaidDev status */
91 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
92 #define IMSM_DEV_FILLERS 12
93 __u32 filler[IMSM_DEV_FILLERS];
94 struct imsm_vol vol;
95 } __attribute__ ((packed));
96
97 struct imsm_super {
98 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
99 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
100 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
101 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
102 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
103 __u32 reserved[2]; /* 0x30 - 0x37 */
104 __u8 num_disks; /* 0x38 Number of configured disks */
105 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
106 __u8 fill[2]; /* 0x3A - 0x3B */
107 #define IMSM_FILLERS 39
108 __u32 filler[IMSM_FILLERS]; /* 0x3C - 0xD7 RAID_MPB_FILLERS */
109 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
110 /* here comes imsm_dev[num_raid_devs] */
111 } __attribute__ ((packed));
112
113 #ifndef MDASSEMBLE
114 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
115 #endif
116
117 static unsigned int sector_count(__u32 bytes)
118 {
119 return ((bytes + (512-1)) & (~(512-1))) / 512;
120 }
121
122 static unsigned int mpb_sectors(struct imsm_super *mpb)
123 {
124 return sector_count(__le32_to_cpu(mpb->mpb_size));
125 }
126
127 /* internal representation of IMSM metadata */
128 struct intel_super {
129 union {
130 void *buf; /* O_DIRECT buffer for reading/writing metadata */
131 struct imsm_super *anchor; /* immovable parameters */
132 };
133 size_t len; /* size of the 'buf' allocation */
134 int updates_pending; /* count of pending updates for mdmon */
135 int creating_imsm; /* flag to indicate container creation */
136 int current_vol; /* index of raid device undergoing creation */
137 #define IMSM_MAX_DISKS 6
138 struct imsm_disk *disk_tbl[IMSM_MAX_DISKS];
139 #define IMSM_MAX_RAID_DEVS 2
140 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
141 struct dl {
142 struct dl *next;
143 int index;
144 __u8 serial[MAX_RAID_SERIAL_LEN];
145 int major, minor;
146 char *devname;
147 int fd;
148 } *disks;
149 };
150
151 struct extent {
152 unsigned long long start, size;
153 };
154
155 /* definition of messages passed to imsm_process_update */
156 enum imsm_update_type {
157 update_activate_spare,
158 update_create_array,
159 };
160
161 struct imsm_update_activate_spare {
162 enum imsm_update_type type;
163 int disk_idx;
164 int slot;
165 int array;
166 struct imsm_update_activate_spare *next;
167 };
168
169 struct imsm_update_create_array {
170 enum imsm_update_type type;
171 struct imsm_dev dev;
172 int dev_idx;
173 };
174
175 static int imsm_env_devname_as_serial(void)
176 {
177 char *val = getenv("IMSM_DEVNAME_AS_SERIAL");
178
179 if (val && atoi(val) == 1)
180 return 1;
181
182 return 0;
183 }
184
185
186 static struct supertype *match_metadata_desc_imsm(char *arg)
187 {
188 struct supertype *st;
189
190 if (strcmp(arg, "imsm") != 0 &&
191 strcmp(arg, "default") != 0
192 )
193 return NULL;
194
195 st = malloc(sizeof(*st));
196 memset(st, 0, sizeof(*st));
197 st->ss = &super_imsm;
198 st->max_devs = IMSM_MAX_DEVICES;
199 st->minor_version = 0;
200 st->sb = NULL;
201 return st;
202 }
203
204 static __u8 *get_imsm_version(struct imsm_super *mpb)
205 {
206 return &mpb->sig[MPB_SIG_LEN];
207 }
208
209 /* retrieve a disk directly from the anchor when the anchor is known to be
210 * up-to-date, currently only at load time
211 */
212 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
213 {
214 if (index >= mpb->num_disks)
215 return NULL;
216 return &mpb->disk[index];
217 }
218
219 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
220 {
221 if (index >= super->anchor->num_disks)
222 return NULL;
223 return super->disk_tbl[index];
224 }
225
226 /* generate a checksum directly from the anchor when the anchor is known to be
227 * up-to-date, currently only at load or write_super after coalescing
228 */
229 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
230 {
231 __u32 end = mpb->mpb_size / sizeof(end);
232 __u32 *p = (__u32 *) mpb;
233 __u32 sum = 0;
234
235 while (end--)
236 sum += __le32_to_cpu(*p++);
237
238 return sum - __le32_to_cpu(mpb->check_sum);
239 }
240
241 static size_t sizeof_imsm_dev(struct imsm_dev *dev)
242 {
243 size_t size = sizeof(*dev);
244
245 /* each map has disk_ord_tbl[num_members - 1] additional space */
246 size += sizeof(__u32) * (dev->vol.map[0].num_members - 1);
247
248 /* migrating means an additional map */
249 if (dev->vol.migr_state) {
250 size += sizeof(struct imsm_map);
251 size += sizeof(__u32) * (dev->vol.map[1].num_members - 1);
252 }
253
254 return size;
255 }
256
257 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
258 {
259 int offset;
260 int i;
261 void *_mpb = mpb;
262
263 if (index >= mpb->num_raid_devs)
264 return NULL;
265
266 /* devices start after all disks */
267 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
268
269 for (i = 0; i <= index; i++)
270 if (i == index)
271 return _mpb + offset;
272 else
273 offset += sizeof_imsm_dev(_mpb + offset);
274
275 return NULL;
276 }
277
278 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
279 {
280 if (index >= super->anchor->num_raid_devs)
281 return NULL;
282 return super->dev_tbl[index];
283 }
284
285 static __u32 get_imsm_disk_idx(struct imsm_map *map, int slot)
286 {
287 __u32 *ord_tbl = &map->disk_ord_tbl[slot];
288
289 /* top byte is 'special' */
290 return __le32_to_cpu(*ord_tbl & ~(0xff << 24));
291 }
292
293 static int get_imsm_raid_level(struct imsm_map *map)
294 {
295 if (map->raid_level == 1) {
296 if (map->num_members == 2)
297 return 1;
298 else
299 return 10;
300 }
301
302 return map->raid_level;
303 }
304
305 static int cmp_extent(const void *av, const void *bv)
306 {
307 const struct extent *a = av;
308 const struct extent *b = bv;
309 if (a->start < b->start)
310 return -1;
311 if (a->start > b->start)
312 return 1;
313 return 0;
314 }
315
316 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
317 {
318 /* find a list of used extents on the given physical device */
319 struct imsm_disk *disk;
320 struct extent *rv, *e;
321 int i, j;
322 int memberships = 0;
323
324 disk = get_imsm_disk(super, dl->index);
325 if (!disk)
326 return NULL;
327
328 for (i = 0; i < super->anchor->num_raid_devs; i++) {
329 struct imsm_dev *dev = get_imsm_dev(super, i);
330 struct imsm_map *map = dev->vol.map;
331
332 for (j = 0; j < map->num_members; j++) {
333 __u32 index = get_imsm_disk_idx(map, j);
334
335 if (index == dl->index)
336 memberships++;
337 }
338 }
339 rv = malloc(sizeof(struct extent) * (memberships + 1));
340 if (!rv)
341 return NULL;
342 e = rv;
343
344 for (i = 0; i < super->anchor->num_raid_devs; i++) {
345 struct imsm_dev *dev = get_imsm_dev(super, i);
346 struct imsm_map *map = dev->vol.map;
347
348 for (j = 0; j < map->num_members; j++) {
349 __u32 index = get_imsm_disk_idx(map, j);
350
351 if (index == dl->index) {
352 e->start = __le32_to_cpu(map->pba_of_lba0);
353 e->size = __le32_to_cpu(map->blocks_per_member);
354 e++;
355 }
356 }
357 }
358 qsort(rv, memberships, sizeof(*rv), cmp_extent);
359
360 e->start = __le32_to_cpu(disk->total_blocks) -
361 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
362 e->size = 0;
363 return rv;
364 }
365
366 #ifndef MDASSEMBLE
367 static void print_imsm_dev(struct imsm_dev *dev, int index)
368 {
369 __u64 sz;
370 int slot;
371 struct imsm_map *map = dev->vol.map;
372
373 printf("\n");
374 printf("[%s]:\n", dev->volume);
375 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
376 printf(" Members : %d\n", map->num_members);
377 for (slot = 0; slot < map->num_members; slot++)
378 if (index == get_imsm_disk_idx(map, slot))
379 break;
380 if (slot < map->num_members)
381 printf(" This Slot : %d\n", slot);
382 else
383 printf(" This Slot : ?\n");
384 sz = __le32_to_cpu(dev->size_high);
385 sz <<= 32;
386 sz += __le32_to_cpu(dev->size_low);
387 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
388 human_size(sz * 512));
389 sz = __le32_to_cpu(map->blocks_per_member);
390 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
391 human_size(sz * 512));
392 printf(" Sector Offset : %u\n",
393 __le32_to_cpu(map->pba_of_lba0));
394 printf(" Num Stripes : %u\n",
395 __le32_to_cpu(map->num_data_stripes));
396 printf(" Chunk Size : %u KiB\n",
397 __le16_to_cpu(map->blocks_per_strip) / 2);
398 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
399 printf(" Migrate State : %s\n", dev->vol.migr_state ? "migrating" : "idle");
400 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
401 printf(" Map State : %s\n", map_state_str[map->map_state]);
402 }
403
404 static void print_imsm_disk(struct imsm_super *mpb, int index)
405 {
406 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
407 char str[MAX_RAID_SERIAL_LEN];
408 __u32 s;
409 __u64 sz;
410
411 if (index < 0)
412 return;
413
414 printf("\n");
415 snprintf(str, MAX_RAID_SERIAL_LEN, "%s", disk->serial);
416 printf(" Disk%02d Serial : %s\n", index, str);
417 s = __le32_to_cpu(disk->status);
418 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
419 s&CONFIGURED_DISK ? " active" : "",
420 s&FAILED_DISK ? " failed" : "",
421 s&USABLE_DISK ? " usable" : "");
422 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
423 sz = __le32_to_cpu(disk->total_blocks) -
424 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS * mpb->num_raid_devs);
425 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
426 human_size(sz * 512));
427 }
428
429 static void examine_super_imsm(struct supertype *st, char *homehost)
430 {
431 struct intel_super *super = st->sb;
432 struct imsm_super *mpb = super->anchor;
433 char str[MAX_SIGNATURE_LENGTH];
434 int i;
435 __u32 sum;
436
437 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
438 printf(" Magic : %s\n", str);
439 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
440 printf(" Version : %s\n", get_imsm_version(mpb));
441 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
442 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
443 sum = __le32_to_cpu(mpb->check_sum);
444 printf(" Checksum : %08x %s\n", sum,
445 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
446 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
447 printf(" Disks : %d\n", mpb->num_disks);
448 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
449 print_imsm_disk(mpb, super->disks->index);
450 for (i = 0; i < mpb->num_raid_devs; i++)
451 print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
452 for (i = 0; i < mpb->num_disks; i++) {
453 if (i == super->disks->index)
454 continue;
455 print_imsm_disk(mpb, i);
456 }
457 }
458
459 static void brief_examine_super_imsm(struct supertype *st)
460 {
461 struct intel_super *super = st->sb;
462
463 printf("ARRAY /dev/imsm family=%08x metadata=external:imsm\n",
464 __le32_to_cpu(super->anchor->family_num));
465 }
466
467 static void detail_super_imsm(struct supertype *st, char *homehost)
468 {
469 printf("%s\n", __FUNCTION__);
470 }
471
472 static void brief_detail_super_imsm(struct supertype *st)
473 {
474 printf("%s\n", __FUNCTION__);
475 }
476 #endif
477
478 static int match_home_imsm(struct supertype *st, char *homehost)
479 {
480 printf("%s\n", __FUNCTION__);
481
482 return 0;
483 }
484
485 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
486 {
487 printf("%s\n", __FUNCTION__);
488 }
489
490 #if 0
491 static void
492 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
493 {
494 __u8 *v = get_imsm_version(mpb);
495 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
496 char major[] = { 0, 0, 0 };
497 char minor[] = { 0 ,0, 0 };
498 char patch[] = { 0, 0, 0 };
499 char *ver_parse[] = { major, minor, patch };
500 int i, j;
501
502 i = j = 0;
503 while (*v != '\0' && v < end) {
504 if (*v != '.' && j < 2)
505 ver_parse[i][j++] = *v;
506 else {
507 i++;
508 j = 0;
509 }
510 v++;
511 }
512
513 *m = strtol(minor, NULL, 0);
514 *p = strtol(patch, NULL, 0);
515 }
516 #endif
517
518 static int imsm_level_to_layout(int level)
519 {
520 switch (level) {
521 case 0:
522 case 1:
523 return 0;
524 case 5:
525 case 6:
526 return ALGORITHM_LEFT_SYMMETRIC;
527 case 10:
528 return 0x102; //FIXME is this correct?
529 }
530 return -1;
531 }
532
533 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
534 {
535 struct intel_super *super = st->sb;
536 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
537 struct imsm_map *map = &dev->vol.map[0];
538
539 info->container_member = super->current_vol;
540 info->array.raid_disks = map->num_members;
541 info->array.level = get_imsm_raid_level(map);
542 info->array.layout = imsm_level_to_layout(info->array.level);
543 info->array.md_minor = -1;
544 info->array.ctime = 0;
545 info->array.utime = 0;
546 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip * 512);
547
548 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
549 info->component_size = __le32_to_cpu(map->blocks_per_member);
550
551 info->disk.major = 0;
552 info->disk.minor = 0;
553
554 sprintf(info->text_version, "/%s/%d",
555 devnum2devname(st->container_dev),
556 info->container_member);
557 }
558
559
560 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
561 {
562 struct intel_super *super = st->sb;
563 struct imsm_disk *disk;
564 __u32 s;
565
566 if (super->current_vol >= 0) {
567 getinfo_super_imsm_volume(st, info);
568 return;
569 }
570 info->array.raid_disks = super->anchor->num_disks;
571 info->array.level = LEVEL_CONTAINER;
572 info->array.layout = 0;
573 info->array.md_minor = -1;
574 info->array.ctime = 0; /* N/A for imsm */
575 info->array.utime = 0;
576 info->array.chunk_size = 0;
577
578 info->disk.major = 0;
579 info->disk.minor = 0;
580 info->disk.raid_disk = -1;
581 info->reshape_active = 0;
582 strcpy(info->text_version, "imsm");
583 info->disk.number = -1;
584 info->disk.state = 0;
585
586 if (super->disks) {
587 disk = get_imsm_disk(super, super->disks->index);
588 if (!disk) {
589 info->disk.number = -1;
590 info->disk.raid_disk = -1;
591 return;
592 }
593 info->disk.number = super->disks->index;
594 info->disk.raid_disk = super->disks->index;
595 info->data_offset = __le32_to_cpu(disk->total_blocks) -
596 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
597 info->component_size = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
598 s = __le32_to_cpu(disk->status);
599 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
600 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
601 info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
602 }
603 }
604
605 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
606 char *update, char *devname, int verbose,
607 int uuid_set, char *homehost)
608 {
609 /* FIXME */
610
611 /* For 'assemble' and 'force' we need to return non-zero if any
612 * change was made. For others, the return value is ignored.
613 * Update options are:
614 * force-one : This device looks a bit old but needs to be included,
615 * update age info appropriately.
616 * assemble: clear any 'faulty' flag to allow this device to
617 * be assembled.
618 * force-array: Array is degraded but being forced, mark it clean
619 * if that will be needed to assemble it.
620 *
621 * newdev: not used ????
622 * grow: Array has gained a new device - this is currently for
623 * linear only
624 * resync: mark as dirty so a resync will happen.
625 * name: update the name - preserving the homehost
626 *
627 * Following are not relevant for this imsm:
628 * sparc2.2 : update from old dodgey metadata
629 * super-minor: change the preferred_minor number
630 * summaries: update redundant counters.
631 * uuid: Change the uuid of the array to match watch is given
632 * homehost: update the recorded homehost
633 * _reshape_progress: record new reshape_progress position.
634 */
635 int rv = 0;
636 //struct intel_super *super = st->sb;
637 //struct imsm_super *mpb = super->mpb;
638
639 if (strcmp(update, "grow") == 0) {
640 }
641 if (strcmp(update, "resync") == 0) {
642 /* dev->vol.dirty = 1; */
643 }
644
645 /* IMSM has no concept of UUID or homehost */
646
647 return rv;
648 }
649
650 static size_t disks_to_mpb_size(int disks)
651 {
652 size_t size;
653
654 size = sizeof(struct imsm_super);
655 size += (disks - 1) * sizeof(struct imsm_disk);
656 size += 2 * sizeof(struct imsm_dev);
657 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
658 size += (4 - 2) * sizeof(struct imsm_map);
659 /* 4 possible disk_ord_tbl's */
660 size += 4 * (disks - 1) * sizeof(__u32);
661
662 return size;
663 }
664
665 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
666 {
667 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
668 return 0;
669
670 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
671 }
672
673 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
674 {
675 /*
676 * return:
677 * 0 same, or first was empty, and second was copied
678 * 1 second had wrong number
679 * 2 wrong uuid
680 * 3 wrong other info
681 */
682 struct intel_super *first = st->sb;
683 struct intel_super *sec = tst->sb;
684
685 if (!first) {
686 st->sb = tst->sb;
687 tst->sb = NULL;
688 return 0;
689 }
690
691 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
692 return 3;
693 if (first->anchor->family_num != sec->anchor->family_num)
694 return 3;
695 if (first->anchor->mpb_size != sec->anchor->mpb_size)
696 return 3;
697 if (first->anchor->check_sum != sec->anchor->check_sum)
698 return 3;
699
700 return 0;
701 }
702
703 static void fd2devname(int fd, char *name)
704 {
705 struct stat st;
706 char path[256];
707 char dname[100];
708 char *nm;
709 int rv;
710
711 name[0] = '\0';
712 if (fstat(fd, &st) != 0)
713 return;
714 sprintf(path, "/sys/dev/block/%d:%d",
715 major(st.st_rdev), minor(st.st_rdev));
716
717 rv = readlink(path, dname, sizeof(dname));
718 if (rv <= 0)
719 return;
720
721 dname[rv] = '\0';
722 nm = strrchr(dname, '/');
723 nm++;
724 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
725 }
726
727
728 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
729
730 static int imsm_read_serial(int fd, char *devname,
731 __u8 serial[MAX_RAID_SERIAL_LEN])
732 {
733 unsigned char scsi_serial[255];
734 int rv;
735 int rsp_len;
736 int i, cnt;
737
738 memset(scsi_serial, 0, sizeof(scsi_serial));
739
740 if (imsm_env_devname_as_serial()) {
741 char name[MAX_RAID_SERIAL_LEN];
742
743 fd2devname(fd, name);
744 strcpy((char *) serial, name);
745 return 0;
746 }
747
748 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
749
750 if (rv != 0) {
751 if (devname)
752 fprintf(stderr,
753 Name ": Failed to retrieve serial for %s\n",
754 devname);
755 return rv;
756 }
757
758 rsp_len = scsi_serial[3];
759 for (i = 0, cnt = 0; i < rsp_len; i++) {
760 if (!isspace(scsi_serial[4 + i]))
761 serial[cnt++] = scsi_serial[4 + i];
762 if (cnt == MAX_RAID_SERIAL_LEN)
763 break;
764 }
765
766 serial[MAX_RAID_SERIAL_LEN - 1] = '\0';
767
768 return 0;
769 }
770
771 static int
772 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
773 {
774 struct dl *dl;
775 struct stat stb;
776 struct imsm_disk *disk;
777 int rv;
778 int i;
779
780 dl = malloc(sizeof(*dl));
781 disk = malloc(sizeof(*disk));
782 if (!dl || !disk) {
783 if (devname)
784 fprintf(stderr,
785 Name ": failed to allocate disk buffer for %s\n",
786 devname);
787 if (disk)
788 free(disk);
789 if (dl)
790 free(dl);
791 return 2;
792 }
793 memset(dl, 0, sizeof(*dl));
794 memset(disk, 0, sizeof(*disk));
795
796 fstat(fd, &stb);
797 dl->major = major(stb.st_rdev);
798 dl->minor = minor(stb.st_rdev);
799 dl->next = super->disks;
800 dl->fd = keep_fd ? fd : -1;
801 dl->devname = devname ? strdup(devname) : NULL;
802 dl->index = -1;
803 super->disks = dl;
804 rv = imsm_read_serial(fd, devname, dl->serial);
805
806 if (rv != 0)
807 return 2;
808
809 /* look up this disk's index */
810 for (i = 0; i < super->anchor->num_disks; i++) {
811 struct imsm_disk *disk_iter;
812
813 disk_iter = __get_imsm_disk(super->anchor, i);
814
815 if (memcmp(disk_iter->serial, dl->serial,
816 MAX_RAID_SERIAL_LEN) == 0) {
817 *disk = *disk_iter;
818 super->disk_tbl[i] = disk;
819 dl->index = i;
820 break;
821 }
822 }
823
824 if (i == super->anchor->num_disks) {
825 if (devname)
826 fprintf(stderr,
827 Name ": failed to match serial \'%s\' for %s\n",
828 dl->serial, devname);
829 free(disk);
830 return 0;
831 }
832
833 return 0;
834 }
835
836 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
837 {
838 int i;
839
840 *dest = *src;
841
842 for (i = 0; i < src->vol.map[0].num_members; i++)
843 dest->vol.map[0].disk_ord_tbl[i] = src->vol.map[0].disk_ord_tbl[i];
844
845 if (!src->vol.migr_state)
846 return;
847
848 dest->vol.map[1] = src->vol.map[1];
849 for (i = 0; i < src->vol.map[1].num_members; i++)
850 dest->vol.map[1].disk_ord_tbl[i] = src->vol.map[1].disk_ord_tbl[i];
851 }
852
853 static int parse_raid_devices(struct intel_super *super)
854 {
855 int i;
856 struct imsm_dev *dev_new;
857 size_t len;
858
859 for (i = 0; i < super->anchor->num_raid_devs; i++) {
860 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
861
862 len = sizeof_imsm_dev(dev_iter);
863 dev_new = malloc(len);
864 if (!dev_new)
865 return 1;
866 imsm_copy_dev(dev_new, dev_iter);
867 super->dev_tbl[i] = dev_new;
868 }
869
870 return 0;
871 }
872
873 static void __free_imsm(struct intel_super *super);
874
875 /* load_imsm_mpb - read matrix metadata
876 * allocates super->mpb to be freed by free_super
877 */
878 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
879 {
880 unsigned long long dsize;
881 unsigned long long sectors;
882 struct stat;
883 struct imsm_super *anchor;
884 __u32 check_sum;
885 int rc;
886
887 get_dev_size(fd, NULL, &dsize);
888
889 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
890 if (devname)
891 fprintf(stderr,
892 Name ": Cannot seek to anchor block on %s: %s\n",
893 devname, strerror(errno));
894 return 1;
895 }
896
897 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
898 if (devname)
899 fprintf(stderr,
900 Name ": Failed to allocate imsm anchor buffer"
901 " on %s\n", devname);
902 return 1;
903 }
904 if (read(fd, anchor, 512) != 512) {
905 if (devname)
906 fprintf(stderr,
907 Name ": Cannot read anchor block on %s: %s\n",
908 devname, strerror(errno));
909 free(anchor);
910 return 1;
911 }
912
913 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
914 if (devname)
915 fprintf(stderr,
916 Name ": no IMSM anchor on %s\n", devname);
917 free(anchor);
918 return 2;
919 }
920
921 __free_imsm(super);
922 super->len = __le32_to_cpu(anchor->mpb_size);
923 super->len = ROUND_UP(anchor->mpb_size, 512);
924 if (posix_memalign(&super->buf, 512, super->len) != 0) {
925 if (devname)
926 fprintf(stderr,
927 Name ": unable to allocate %zu byte mpb buffer\n",
928 super->len);
929 free(anchor);
930 return 2;
931 }
932 memcpy(super->buf, anchor, 512);
933
934 sectors = mpb_sectors(anchor) - 1;
935 free(anchor);
936 if (!sectors) {
937 rc = load_imsm_disk(fd, super, devname, 0);
938 if (rc == 0)
939 rc = parse_raid_devices(super);
940 return rc;
941 }
942
943 /* read the extended mpb */
944 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
945 if (devname)
946 fprintf(stderr,
947 Name ": Cannot seek to extended mpb on %s: %s\n",
948 devname, strerror(errno));
949 return 1;
950 }
951
952 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
953 if (devname)
954 fprintf(stderr,
955 Name ": Cannot read extended mpb on %s: %s\n",
956 devname, strerror(errno));
957 return 2;
958 }
959
960 check_sum = __gen_imsm_checksum(super->anchor);
961 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
962 if (devname)
963 fprintf(stderr,
964 Name ": IMSM checksum %x != %x on %s\n",
965 check_sum, __le32_to_cpu(super->anchor->check_sum),
966 devname);
967 return 2;
968 }
969
970 rc = load_imsm_disk(fd, super, devname, 0);
971 if (rc == 0)
972 rc = parse_raid_devices(super);
973 return rc;
974 }
975
976 static void free_imsm_disks(struct intel_super *super)
977 {
978 int i;
979
980 while (super->disks) {
981 struct dl *d = super->disks;
982
983 super->disks = d->next;
984 if (d->fd >= 0)
985 close(d->fd);
986 if (d->devname)
987 free(d->devname);
988 free(d);
989 }
990 for (i = 0; i < IMSM_MAX_DISKS; i++)
991 if (super->disk_tbl[i]) {
992 free(super->disk_tbl[i]);
993 super->disk_tbl[i] = NULL;
994 }
995 }
996
997 /* free all the pieces hanging off of a super pointer */
998 static void __free_imsm(struct intel_super *super)
999 {
1000 int i;
1001
1002 if (super->buf) {
1003 free(super->buf);
1004 super->buf = NULL;
1005 }
1006 free_imsm_disks(super);
1007 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1008 if (super->dev_tbl[i]) {
1009 free(super->dev_tbl[i]);
1010 super->dev_tbl[i] = NULL;
1011 }
1012 }
1013
1014 static void free_imsm(struct intel_super *super)
1015 {
1016 __free_imsm(super);
1017 free(super);
1018 }
1019
1020 static void free_super_imsm(struct supertype *st)
1021 {
1022 struct intel_super *super = st->sb;
1023
1024 if (!super)
1025 return;
1026
1027 free_imsm(super);
1028 st->sb = NULL;
1029 }
1030
1031 static struct intel_super *alloc_super(int creating_imsm)
1032 {
1033 struct intel_super *super = malloc(sizeof(*super));
1034
1035 if (super) {
1036 memset(super, 0, sizeof(*super));
1037 super->creating_imsm = creating_imsm;
1038 super->current_vol = -1;
1039 }
1040
1041 return super;
1042 }
1043
1044 #ifndef MDASSEMBLE
1045 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1046 char *devname, int keep_fd)
1047 {
1048 struct mdinfo *sra;
1049 struct intel_super *super;
1050 struct mdinfo *sd, *best = NULL;
1051 __u32 bestgen = 0;
1052 __u32 gen;
1053 char nm[20];
1054 int dfd;
1055 int rv;
1056
1057 /* check if this disk is a member of an active array */
1058 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1059 if (!sra)
1060 return 1;
1061
1062 if (sra->array.major_version != -1 ||
1063 sra->array.minor_version != -2 ||
1064 strcmp(sra->text_version, "imsm") != 0)
1065 return 1;
1066
1067 super = alloc_super(0);
1068 if (!super)
1069 return 1;
1070
1071 /* find the most up to date disk in this array */
1072 for (sd = sra->devs; sd; sd = sd->next) {
1073 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1074 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1075 if (!dfd) {
1076 free_imsm(super);
1077 return 2;
1078 }
1079 rv = load_imsm_mpb(dfd, super, NULL);
1080 if (!keep_fd)
1081 close(dfd);
1082 if (rv == 0) {
1083 gen = __le32_to_cpu(super->anchor->generation_num);
1084 if (!best || gen > bestgen) {
1085 bestgen = gen;
1086 best = sd;
1087 }
1088 } else {
1089 free_imsm(super);
1090 return 2;
1091 }
1092 }
1093
1094 if (!best) {
1095 free_imsm(super);
1096 return 1;
1097 }
1098
1099 /* load the most up to date anchor */
1100 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1101 dfd = dev_open(nm, O_RDONLY);
1102 if (!dfd) {
1103 free_imsm(super);
1104 return 1;
1105 }
1106 rv = load_imsm_mpb(dfd, super, NULL);
1107 close(dfd);
1108 if (rv != 0) {
1109 free_imsm(super);
1110 return 2;
1111 }
1112
1113 /* reset the disk list */
1114 free_imsm_disks(super);
1115
1116 /* populate disk list */
1117 for (sd = sra->devs ; sd ; sd = sd->next) {
1118 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1119 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1120 if (!dfd) {
1121 free_imsm(super);
1122 return 2;
1123 }
1124 load_imsm_disk(dfd, super, NULL, keep_fd);
1125 if (!keep_fd)
1126 close(dfd);
1127 }
1128
1129 if (st->subarray[0]) {
1130 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1131 super->current_vol = atoi(st->subarray);
1132 else
1133 return 1;
1134 }
1135
1136 *sbp = super;
1137 if (st->ss == NULL) {
1138 st->ss = &super_imsm;
1139 st->minor_version = 0;
1140 st->max_devs = IMSM_MAX_DEVICES;
1141 st->container_dev = fd2devnum(fd);
1142 }
1143
1144 return 0;
1145 }
1146 #endif
1147
1148 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1149 {
1150 struct intel_super *super;
1151 int rv;
1152
1153 #ifndef MDASSEMBLE
1154 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1155 return 0;
1156 #endif
1157 if (st->subarray[0])
1158 return 1; /* FIXME */
1159
1160 super = alloc_super(0);
1161 if (!super) {
1162 fprintf(stderr,
1163 Name ": malloc of %zu failed.\n",
1164 sizeof(*super));
1165 return 1;
1166 }
1167
1168 rv = load_imsm_mpb(fd, super, devname);
1169
1170 if (rv) {
1171 if (devname)
1172 fprintf(stderr,
1173 Name ": Failed to load all information "
1174 "sections on %s\n", devname);
1175 free_imsm(super);
1176 return rv;
1177 }
1178
1179 st->sb = super;
1180 if (st->ss == NULL) {
1181 st->ss = &super_imsm;
1182 st->minor_version = 0;
1183 st->max_devs = IMSM_MAX_DEVICES;
1184 }
1185
1186 return 0;
1187 }
1188
1189 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1190 {
1191 if (info->level == 1)
1192 return 128;
1193 return info->chunk_size >> 9;
1194 }
1195
1196 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1197 {
1198 __u32 num_stripes;
1199
1200 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1201 if (info->level == 1)
1202 num_stripes /= 2;
1203
1204 return num_stripes;
1205 }
1206
1207 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1208 {
1209 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1210 }
1211
1212 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1213 unsigned long long size, char *name,
1214 char *homehost, int *uuid)
1215 {
1216 /* We are creating a volume inside a pre-existing container.
1217 * so st->sb is already set.
1218 */
1219 struct intel_super *super = st->sb;
1220 struct imsm_super *mpb = super->anchor;
1221 struct imsm_dev *dev;
1222 struct imsm_vol *vol;
1223 struct imsm_map *map;
1224 int idx = mpb->num_raid_devs;
1225 int i;
1226 unsigned long long array_blocks;
1227 __u32 offset = 0;
1228 size_t size_old, size_new;
1229
1230 if (mpb->num_raid_devs >= 2) {
1231 fprintf(stderr, Name": This imsm-container already has the "
1232 "maximum of 2 volumes\n");
1233 return 0;
1234 }
1235
1236 /* ensure the mpb is large enough for the new data */
1237 size_old = __le32_to_cpu(mpb->mpb_size);
1238 size_new = disks_to_mpb_size(info->nr_disks);
1239 if (size_new > size_old) {
1240 void *mpb_new;
1241 size_t size_round = ROUND_UP(size_new, 512);
1242
1243 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1244 fprintf(stderr, Name": could not allocate new mpb\n");
1245 return 0;
1246 }
1247 memcpy(mpb_new, mpb, size_old);
1248 free(mpb);
1249 mpb = mpb_new;
1250 super->anchor = mpb_new;
1251 mpb->mpb_size = __cpu_to_le32(size_new);
1252 memset(mpb_new + size_old, 0, size_round - size_old);
1253 }
1254 super->current_vol = idx;
1255 sprintf(st->subarray, "%d", idx);
1256 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1257 if (!dev) {
1258 fprintf(stderr, Name": could not allocate raid device\n");
1259 return 0;
1260 }
1261 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1262 array_blocks = calc_array_size(info->level, info->raid_disks,
1263 info->layout, info->chunk_size,
1264 info->size*2);
1265 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1266 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1267 dev->status = __cpu_to_le32(0);
1268 dev->reserved_blocks = __cpu_to_le32(0);
1269 vol = &dev->vol;
1270 vol->migr_state = 0;
1271 vol->migr_type = 0;
1272 vol->dirty = 0;
1273 for (i = 0; i < idx; i++) {
1274 struct imsm_dev *prev = get_imsm_dev(super, i);
1275 struct imsm_map *pmap = &prev->vol.map[0];
1276
1277 offset += __le32_to_cpu(pmap->blocks_per_member);
1278 offset += IMSM_RESERVED_SECTORS;
1279 }
1280 map = &vol->map[0];
1281 map->pba_of_lba0 = __cpu_to_le32(offset);
1282 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1283 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1284 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1285 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1286 IMSM_T_STATE_NORMAL;
1287
1288 if (info->level == 1 && info->raid_disks > 2) {
1289 fprintf(stderr, Name": imsm does not support more than 2 disks"
1290 "in a raid1 volume\n");
1291 return 0;
1292 }
1293 if (info->level == 10)
1294 map->raid_level = 1;
1295 else
1296 map->raid_level = info->level;
1297
1298 map->num_members = info->raid_disks;
1299 for (i = 0; i < map->num_members; i++) {
1300 /* initialized in add_to_super */
1301 map->disk_ord_tbl[i] = __cpu_to_le32(0);
1302 }
1303 mpb->num_raid_devs++;
1304 super->dev_tbl[super->current_vol] = dev;
1305
1306 return 1;
1307 }
1308
1309 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1310 unsigned long long size, char *name,
1311 char *homehost, int *uuid)
1312 {
1313 /* This is primarily called by Create when creating a new array.
1314 * We will then get add_to_super called for each component, and then
1315 * write_init_super called to write it out to each device.
1316 * For IMSM, Create can create on fresh devices or on a pre-existing
1317 * array.
1318 * To create on a pre-existing array a different method will be called.
1319 * This one is just for fresh drives.
1320 */
1321 struct intel_super *super;
1322 struct imsm_super *mpb;
1323 size_t mpb_size;
1324
1325 if (!info) {
1326 st->sb = NULL;
1327 return 0;
1328 }
1329 if (st->sb)
1330 return init_super_imsm_volume(st, info, size, name, homehost,
1331 uuid);
1332
1333 super = alloc_super(1);
1334 if (!super)
1335 return 0;
1336 mpb_size = disks_to_mpb_size(info->nr_disks);
1337 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1338 free(super);
1339 return 0;
1340 }
1341 mpb = super->buf;
1342 memset(mpb, 0, mpb_size);
1343
1344 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1345 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1346 strlen(MPB_VERSION_RAID5));
1347 mpb->mpb_size = mpb_size;
1348
1349 st->sb = super;
1350 return 1;
1351 }
1352
1353 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1354 int fd, char *devname)
1355 {
1356 struct intel_super *super = st->sb;
1357 struct dl *dl;
1358 struct imsm_dev *dev;
1359 struct imsm_map *map;
1360 struct imsm_disk *disk;
1361 __u32 status;
1362
1363 dev = get_imsm_dev(super, super->current_vol);
1364 map = &dev->vol.map[0];
1365
1366 for (dl = super->disks; dl ; dl = dl->next)
1367 if (dl->major == dk->major &&
1368 dl->minor == dk->minor)
1369 break;
1370 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1371 return;
1372
1373 map->disk_ord_tbl[dk->number] = __cpu_to_le32(dl->index);
1374
1375 disk = get_imsm_disk(super, dl->index);
1376 status = CONFIGURED_DISK | USABLE_DISK;
1377 disk->status = __cpu_to_le32(status);
1378 }
1379
1380 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1381 int fd, char *devname)
1382 {
1383 struct intel_super *super = st->sb;
1384 struct imsm_super *mpb = super->anchor;
1385 struct imsm_disk *disk;
1386 struct dl *dd;
1387 unsigned long long size;
1388 __u32 status, id;
1389 int rv;
1390 struct stat stb;
1391
1392 if (super->current_vol >= 0) {
1393 add_to_super_imsm_volume(st, dk, fd, devname);
1394 return;
1395 }
1396
1397 fstat(fd, &stb);
1398 dd = malloc(sizeof(*dd));
1399 disk = malloc(sizeof(*disk));
1400 if (!dd || !disk) {
1401 fprintf(stderr,
1402 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1403 if (!dd)
1404 free(dd);
1405 if (!disk)
1406 free(disk);
1407 abort();
1408 }
1409 memset(dd, 0, sizeof(*dd));
1410 memset(disk, 0, sizeof(*disk));
1411 dd->major = major(stb.st_rdev);
1412 dd->minor = minor(stb.st_rdev);
1413 dd->index = dk->number;
1414 dd->devname = devname ? strdup(devname) : NULL;
1415 dd->next = super->disks;
1416 dd->fd = fd;
1417 rv = imsm_read_serial(fd, devname, dd->serial);
1418 if (rv) {
1419 fprintf(stderr,
1420 Name ": failed to retrieve scsi serial, aborting\n");
1421 free(dd);
1422 free(disk);
1423 abort();
1424 }
1425
1426 if (mpb->num_disks <= dk->number)
1427 mpb->num_disks = dk->number + 1;
1428
1429 get_dev_size(fd, NULL, &size);
1430 size /= 512;
1431 status = USABLE_DISK | SPARE_DISK;
1432 strcpy((char *) disk->serial, (char *) dd->serial);
1433 disk->total_blocks = __cpu_to_le32(size);
1434 disk->status = __cpu_to_le32(status);
1435 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1436 disk->scsi_id = __cpu_to_le32(id);
1437 else
1438 disk->scsi_id = __cpu_to_le32(0);
1439 super->disk_tbl[dd->index] = disk;
1440
1441 /* update the family number if we are creating a container */
1442 if (super->creating_imsm) {
1443 disk = __get_imsm_disk(mpb, dd->index);
1444 *disk = *super->disk_tbl[dd->index]; /* copy in new disk */
1445 mpb->family_num = __cpu_to_le32(__gen_imsm_checksum(mpb));
1446 }
1447
1448 super->disks = dd;
1449 }
1450
1451 static int store_imsm_mpb(int fd, struct intel_super *super);
1452
1453 static int write_super_imsm(struct intel_super *super, int doclose)
1454 {
1455 struct imsm_super *mpb = super->anchor;
1456 struct dl *d;
1457 __u32 generation;
1458 __u32 sum;
1459 int i;
1460
1461 /* 'generation' is incremented everytime the metadata is written */
1462 generation = __le32_to_cpu(mpb->generation_num);
1463 generation++;
1464 mpb->generation_num = __cpu_to_le32(generation);
1465
1466 for (i = 0; i < mpb->num_disks; i++)
1467 mpb->disk[i] = *super->disk_tbl[i];
1468 for (i = 0; i < mpb->num_raid_devs; i++) {
1469 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1470
1471 imsm_copy_dev(dev, super->dev_tbl[i]);
1472 }
1473
1474 /* recalculate checksum */
1475 sum = __gen_imsm_checksum(mpb);
1476 mpb->check_sum = __cpu_to_le32(sum);
1477
1478 for (d = super->disks; d ; d = d->next) {
1479 if (store_imsm_mpb(d->fd, super)) {
1480 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1481 __func__, d->major, d->minor, strerror(errno));
1482 return 0;
1483 }
1484 if (doclose) {
1485 close(d->fd);
1486 d->fd = -1;
1487 }
1488 }
1489
1490 return 1;
1491 }
1492
1493 static int write_init_super_imsm(struct supertype *st)
1494 {
1495 if (st->update_tail) {
1496 /* queue the recently created array as a metadata update */
1497 size_t len;
1498 struct imsm_update_create_array *u;
1499 struct intel_super *super = st->sb;
1500 struct imsm_dev *dev;
1501 struct dl *d;
1502
1503 if (super->current_vol < 0 ||
1504 !(dev = get_imsm_dev(super, super->current_vol))) {
1505 fprintf(stderr, "%s: could not determine sub-array\n",
1506 __func__);
1507 return 1;
1508 }
1509
1510
1511 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev);
1512 u = malloc(len);
1513 if (!u) {
1514 fprintf(stderr, "%s: failed to allocate update buffer\n",
1515 __func__);
1516 return 1;
1517 }
1518
1519 u->type = update_create_array;
1520 u->dev_idx = super->current_vol;
1521 imsm_copy_dev(&u->dev, dev);
1522 append_metadata_update(st, u, len);
1523
1524 for (d = super->disks; d ; d = d->next) {
1525 close(d->fd);
1526 d->fd = -1;
1527 }
1528
1529 return 0;
1530 } else
1531 return write_super_imsm(st->sb, 1);
1532 }
1533
1534 static int store_zero_imsm(struct supertype *st, int fd)
1535 {
1536 unsigned long long dsize;
1537 void *buf;
1538
1539 get_dev_size(fd, NULL, &dsize);
1540
1541 /* first block is stored on second to last sector of the disk */
1542 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1543 return 1;
1544
1545 if (posix_memalign(&buf, 512, 512) != 0)
1546 return 1;
1547
1548 memset(buf, 0, 512);
1549 if (write(fd, buf, 512) != 512)
1550 return 1;
1551 return 0;
1552 }
1553
1554 static int validate_geometry_imsm_container(struct supertype *st, int level,
1555 int layout, int raiddisks, int chunk,
1556 unsigned long long size, char *dev,
1557 unsigned long long *freesize,
1558 int verbose)
1559 {
1560 int fd;
1561 unsigned long long ldsize;
1562
1563 if (level != LEVEL_CONTAINER)
1564 return 0;
1565 if (!dev)
1566 return 1;
1567
1568 fd = open(dev, O_RDONLY|O_EXCL, 0);
1569 if (fd < 0) {
1570 if (verbose)
1571 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
1572 dev, strerror(errno));
1573 return 0;
1574 }
1575 if (!get_dev_size(fd, dev, &ldsize)) {
1576 close(fd);
1577 return 0;
1578 }
1579 close(fd);
1580
1581 *freesize = avail_size_imsm(st, ldsize >> 9);
1582
1583 return 1;
1584 }
1585
1586 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
1587 * FIX ME add ahci details
1588 */
1589 static int validate_geometry_imsm_volume(struct supertype *st, int level,
1590 int layout, int raiddisks, int chunk,
1591 unsigned long long size, char *dev,
1592 unsigned long long *freesize,
1593 int verbose)
1594 {
1595 struct stat stb;
1596 struct intel_super *super = st->sb;
1597 struct dl *dl;
1598 unsigned long long pos = 0;
1599 unsigned long long maxsize;
1600 struct extent *e;
1601 int i;
1602
1603 if (level == LEVEL_CONTAINER)
1604 return 0;
1605
1606 if (level == 1 && raiddisks > 2) {
1607 if (verbose)
1608 fprintf(stderr, Name ": imsm does not support more "
1609 "than 2 in a raid1 configuration\n");
1610 return 0;
1611 }
1612
1613 /* We must have the container info already read in. */
1614 if (!super)
1615 return 0;
1616
1617 if (!dev) {
1618 /* General test: make sure there is space for
1619 * 'raiddisks' device extents of size 'size' at a given
1620 * offset
1621 */
1622 unsigned long long minsize = size*2 /* convert to blocks */;
1623 unsigned long long start_offset = ~0ULL;
1624 int dcnt = 0;
1625 if (minsize == 0)
1626 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1627 for (dl = super->disks; dl ; dl = dl->next) {
1628 int found = 0;
1629
1630 pos = 0;
1631 i = 0;
1632 e = get_extents(super, dl);
1633 if (!e) continue;
1634 do {
1635 unsigned long long esize;
1636 esize = e[i].start - pos;
1637 if (esize >= minsize)
1638 found = 1;
1639 if (found && start_offset == ~0ULL) {
1640 start_offset = pos;
1641 break;
1642 } else if (found && pos != start_offset) {
1643 found = 0;
1644 break;
1645 }
1646 pos = e[i].start + e[i].size;
1647 i++;
1648 } while (e[i-1].size);
1649 if (found)
1650 dcnt++;
1651 free(e);
1652 }
1653 if (dcnt < raiddisks) {
1654 if (verbose)
1655 fprintf(stderr, Name ": imsm: Not enough "
1656 "devices with space for this array "
1657 "(%d < %d)\n",
1658 dcnt, raiddisks);
1659 return 0;
1660 }
1661 return 1;
1662 }
1663 /* This device must be a member of the set */
1664 if (stat(dev, &stb) < 0)
1665 return 0;
1666 if ((S_IFMT & stb.st_mode) != S_IFBLK)
1667 return 0;
1668 for (dl = super->disks ; dl ; dl = dl->next) {
1669 if (dl->major == major(stb.st_rdev) &&
1670 dl->minor == minor(stb.st_rdev))
1671 break;
1672 }
1673 if (!dl) {
1674 if (verbose)
1675 fprintf(stderr, Name ": %s is not in the "
1676 "same imsm set\n", dev);
1677 return 0;
1678 }
1679 e = get_extents(super, dl);
1680 maxsize = 0;
1681 i = 0;
1682 if (e) do {
1683 unsigned long long esize;
1684 esize = e[i].start - pos;
1685 if (esize >= maxsize)
1686 maxsize = esize;
1687 pos = e[i].start + e[i].size;
1688 i++;
1689 } while (e[i-1].size);
1690 *freesize = maxsize;
1691
1692 return 1;
1693 }
1694
1695 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
1696 int raiddisks, int chunk, unsigned long long size,
1697 char *dev, unsigned long long *freesize,
1698 int verbose)
1699 {
1700 int fd, cfd;
1701 struct mdinfo *sra;
1702
1703 /* if given unused devices create a container
1704 * if given given devices in a container create a member volume
1705 */
1706 if (level == LEVEL_CONTAINER) {
1707 /* Must be a fresh device to add to a container */
1708 return validate_geometry_imsm_container(st, level, layout,
1709 raiddisks, chunk, size,
1710 dev, freesize,
1711 verbose);
1712 }
1713
1714 if (st->sb) {
1715 /* creating in a given container */
1716 return validate_geometry_imsm_volume(st, level, layout,
1717 raiddisks, chunk, size,
1718 dev, freesize, verbose);
1719 }
1720
1721 /* limit creation to the following levels */
1722 if (!dev)
1723 switch (level) {
1724 case 0:
1725 case 1:
1726 case 10:
1727 case 5:
1728 break;
1729 default:
1730 return 1;
1731 }
1732
1733 /* This device needs to be a device in an 'imsm' container */
1734 fd = open(dev, O_RDONLY|O_EXCL, 0);
1735 if (fd >= 0) {
1736 if (verbose)
1737 fprintf(stderr,
1738 Name ": Cannot create this array on device %s\n",
1739 dev);
1740 close(fd);
1741 return 0;
1742 }
1743 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
1744 if (verbose)
1745 fprintf(stderr, Name ": Cannot open %s: %s\n",
1746 dev, strerror(errno));
1747 return 0;
1748 }
1749 /* Well, it is in use by someone, maybe an 'imsm' container. */
1750 cfd = open_container(fd);
1751 if (cfd < 0) {
1752 close(fd);
1753 if (verbose)
1754 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
1755 dev);
1756 return 0;
1757 }
1758 sra = sysfs_read(cfd, 0, GET_VERSION);
1759 close(fd);
1760 if (sra && sra->array.major_version == -1 &&
1761 strcmp(sra->text_version, "imsm") == 0) {
1762 /* This is a member of a imsm container. Load the container
1763 * and try to create a volume
1764 */
1765 struct intel_super *super;
1766
1767 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
1768 st->sb = super;
1769 st->container_dev = fd2devnum(cfd);
1770 close(cfd);
1771 return validate_geometry_imsm_volume(st, level, layout,
1772 raiddisks, chunk,
1773 size, dev,
1774 freesize, verbose);
1775 }
1776 close(cfd);
1777 } else /* may belong to another container */
1778 return 0;
1779
1780 return 1;
1781 }
1782
1783 static struct mdinfo *container_content_imsm(struct supertype *st)
1784 {
1785 /* Given a container loaded by load_super_imsm_all,
1786 * extract information about all the arrays into
1787 * an mdinfo tree.
1788 *
1789 * For each imsm_dev create an mdinfo, fill it in,
1790 * then look for matching devices in super->disks
1791 * and create appropriate device mdinfo.
1792 */
1793 struct intel_super *super = st->sb;
1794 struct imsm_super *mpb = super->anchor;
1795 struct mdinfo *rest = NULL;
1796 int i;
1797
1798 for (i = 0; i < mpb->num_raid_devs; i++) {
1799 struct imsm_dev *dev = get_imsm_dev(super, i);
1800 struct imsm_vol *vol = &dev->vol;
1801 struct imsm_map *map = vol->map;
1802 struct mdinfo *this;
1803 int slot;
1804
1805 this = malloc(sizeof(*this));
1806 memset(this, 0, sizeof(*this));
1807 this->next = rest;
1808 rest = this;
1809
1810 this->array.level = get_imsm_raid_level(map);
1811 this->array.raid_disks = map->num_members;
1812 this->array.layout = imsm_level_to_layout(this->array.level);
1813 this->array.md_minor = -1;
1814 this->array.ctime = 0;
1815 this->array.utime = 0;
1816 this->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1817 this->array.state = !vol->dirty;
1818 this->container_member = i;
1819 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
1820 this->resync_start = 0;
1821 else
1822 this->resync_start = ~0ULL;
1823
1824 strncpy(this->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1825 this->name[MAX_RAID_SERIAL_LEN] = 0;
1826
1827 sprintf(this->text_version, "/%s/%d",
1828 devnum2devname(st->container_dev),
1829 this->container_member);
1830
1831 memset(this->uuid, 0, sizeof(this->uuid));
1832
1833 this->component_size = __le32_to_cpu(map->blocks_per_member);
1834
1835 for (slot = 0 ; slot < map->num_members; slot++) {
1836 struct imsm_disk *disk;
1837 struct mdinfo *info_d;
1838 struct dl *d;
1839 int idx;
1840 __u32 s;
1841
1842 idx = __le32_to_cpu(map->disk_ord_tbl[slot] & ~(0xff << 24));
1843 for (d = super->disks; d ; d = d->next)
1844 if (d->index == idx)
1845 break;
1846
1847 if (d == NULL)
1848 break; /* shouldn't this be continue ?? */
1849
1850 info_d = malloc(sizeof(*info_d));
1851 if (!info_d)
1852 break; /* ditto ?? */
1853 memset(info_d, 0, sizeof(*info_d));
1854 info_d->next = this->devs;
1855 this->devs = info_d;
1856
1857 disk = get_imsm_disk(super, idx);
1858 s = __le32_to_cpu(disk->status);
1859
1860 info_d->disk.number = d->index;
1861 info_d->disk.major = d->major;
1862 info_d->disk.minor = d->minor;
1863 info_d->disk.raid_disk = slot;
1864 info_d->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
1865 info_d->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
1866 info_d->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
1867
1868 this->array.working_disks++;
1869
1870 info_d->events = __le32_to_cpu(mpb->generation_num);
1871 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
1872 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
1873 if (d->devname)
1874 strcpy(info_d->name, d->devname);
1875 }
1876 }
1877
1878 return rest;
1879 }
1880
1881
1882 static int imsm_open_new(struct supertype *c, struct active_array *a,
1883 char *inst)
1884 {
1885 struct intel_super *super = c->sb;
1886 struct imsm_super *mpb = super->anchor;
1887
1888 if (atoi(inst) >= mpb->num_raid_devs) {
1889 fprintf(stderr, "%s: subarry index %d, out of range\n",
1890 __func__, atoi(inst));
1891 return -ENODEV;
1892 }
1893
1894 dprintf("imsm: open_new %s\n", inst);
1895 a->info.container_member = atoi(inst);
1896 return 0;
1897 }
1898
1899 static __u8 imsm_check_degraded(struct intel_super *super, int n, int failed)
1900 {
1901 struct imsm_dev *dev = get_imsm_dev(super, n);
1902 struct imsm_map *map = dev->vol.map;
1903
1904 if (!failed)
1905 return map->map_state;
1906
1907 switch (get_imsm_raid_level(map)) {
1908 case 0:
1909 return IMSM_T_STATE_FAILED;
1910 break;
1911 case 1:
1912 if (failed < map->num_members)
1913 return IMSM_T_STATE_DEGRADED;
1914 else
1915 return IMSM_T_STATE_FAILED;
1916 break;
1917 case 10:
1918 {
1919 /**
1920 * check to see if any mirrors have failed,
1921 * otherwise we are degraded
1922 */
1923 int device_per_mirror = 2; /* FIXME is this always the case?
1924 * and are they always adjacent?
1925 */
1926 int failed = 0;
1927 int i;
1928
1929 for (i = 0; i < map->num_members; i++) {
1930 int idx = get_imsm_disk_idx(map, i);
1931 struct imsm_disk *disk = get_imsm_disk(super, idx);
1932
1933 if (__le32_to_cpu(disk->status) & FAILED_DISK)
1934 failed++;
1935
1936 if (failed >= device_per_mirror)
1937 return IMSM_T_STATE_FAILED;
1938
1939 /* reset 'failed' for next mirror set */
1940 if (!((i + 1) % device_per_mirror))
1941 failed = 0;
1942 }
1943
1944 return IMSM_T_STATE_DEGRADED;
1945 }
1946 case 5:
1947 if (failed < 2)
1948 return IMSM_T_STATE_DEGRADED;
1949 else
1950 return IMSM_T_STATE_FAILED;
1951 break;
1952 default:
1953 break;
1954 }
1955
1956 return map->map_state;
1957 }
1958
1959 static int imsm_count_failed(struct intel_super *super, struct imsm_map *map)
1960 {
1961 int i;
1962 int failed = 0;
1963 struct imsm_disk *disk;
1964
1965 for (i = 0; i < map->num_members; i++) {
1966 int idx = get_imsm_disk_idx(map, i);
1967
1968 disk = get_imsm_disk(super, idx);
1969 if (__le32_to_cpu(disk->status) & FAILED_DISK)
1970 failed++;
1971 }
1972
1973 return failed;
1974 }
1975
1976 static void imsm_set_array_state(struct active_array *a, int consistent)
1977 {
1978 int inst = a->info.container_member;
1979 struct intel_super *super = a->container->sb;
1980 struct imsm_dev *dev = get_imsm_dev(super, inst);
1981 struct imsm_map *map = &dev->vol.map[0];
1982 int dirty = !consistent;
1983 int failed;
1984 __u8 map_state;
1985
1986 if (a->resync_start == ~0ULL) {
1987 failed = imsm_count_failed(super, map);
1988 map_state = imsm_check_degraded(super, inst, failed);
1989 if (!failed)
1990 map_state = IMSM_T_STATE_NORMAL;
1991 if (map->map_state != map_state) {
1992 dprintf("imsm: map_state %d: %d\n",
1993 inst, map_state);
1994 map->map_state = map_state;
1995 super->updates_pending++;
1996 }
1997 }
1998
1999 if (dev->vol.dirty != dirty) {
2000 dprintf("imsm: mark '%s' (%llu)\n",
2001 dirty?"dirty":"clean", a->resync_start);
2002
2003 dev->vol.dirty = dirty;
2004 super->updates_pending++;
2005 }
2006 }
2007
2008 static void imsm_set_disk(struct active_array *a, int n, int state)
2009 {
2010 int inst = a->info.container_member;
2011 struct intel_super *super = a->container->sb;
2012 struct imsm_dev *dev = get_imsm_dev(super, inst);
2013 struct imsm_map *map = dev->vol.map;
2014 struct imsm_disk *disk;
2015 __u32 status;
2016 int failed = 0;
2017 int new_failure = 0;
2018
2019 if (n > map->num_members)
2020 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2021 n, map->num_members - 1);
2022
2023 if (n < 0)
2024 return;
2025
2026 dprintf("imsm: set_disk %d:%x\n", n, state);
2027
2028 disk = get_imsm_disk(super, get_imsm_disk_idx(map, n));
2029
2030 /* check for new failures */
2031 status = __le32_to_cpu(disk->status);
2032 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2033 status |= FAILED_DISK;
2034 disk->status = __cpu_to_le32(status);
2035 new_failure = 1;
2036 super->updates_pending++;
2037 }
2038
2039 /* the number of failures have changed, count up 'failed' to determine
2040 * degraded / failed status
2041 */
2042 if (new_failure && map->map_state != IMSM_T_STATE_FAILED)
2043 failed = imsm_count_failed(super, map);
2044
2045 /* determine map_state based on failed or in_sync count */
2046 if (failed)
2047 map->map_state = imsm_check_degraded(super, inst, failed);
2048 else if (map->map_state == IMSM_T_STATE_DEGRADED) {
2049 struct mdinfo *d;
2050 int working = 0;
2051
2052 for (d = a->info.devs ; d ; d = d->next)
2053 if (d->curr_state & DS_INSYNC)
2054 working++;
2055
2056 if (working == a->info.array.raid_disks) {
2057 map->map_state = IMSM_T_STATE_NORMAL;
2058 super->updates_pending++;
2059 }
2060 }
2061 }
2062
2063 static int store_imsm_mpb(int fd, struct intel_super *super)
2064 {
2065 struct imsm_super *mpb = super->anchor;
2066 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2067 unsigned long long dsize;
2068 unsigned long long sectors;
2069
2070 get_dev_size(fd, NULL, &dsize);
2071
2072 if (mpb_size > 512) {
2073 /* -1 to account for anchor */
2074 sectors = mpb_sectors(mpb) - 1;
2075
2076 /* write the extended mpb to the sectors preceeding the anchor */
2077 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2078 return 1;
2079
2080 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2081 return 1;
2082 }
2083
2084 /* first block is stored on second to last sector of the disk */
2085 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2086 return 1;
2087
2088 if (write(fd, super->buf, 512) != 512)
2089 return 1;
2090
2091 return 0;
2092 }
2093
2094 static void imsm_sync_metadata(struct supertype *container)
2095 {
2096 struct intel_super *super = container->sb;
2097
2098 if (!super->updates_pending)
2099 return;
2100
2101 write_super_imsm(super, 0);
2102
2103 super->updates_pending = 0;
2104 }
2105
2106 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2107 struct metadata_update **updates)
2108 {
2109 /**
2110 * Take a device that is marked spare in the metadata and use it to
2111 * replace a failed/vacant slot in an array. There may be a case where
2112 * a device is failed in one array but active in a second.
2113 * imsm_process_update catches this case and does not clear the SPARE_DISK
2114 * flag, allowing the second array to start using the device on failure.
2115 * SPARE_DISK is cleared when all arrays are using a device.
2116 *
2117 * FIXME: is this a valid use of SPARE_DISK?
2118 */
2119
2120 struct intel_super *super = a->container->sb;
2121 int inst = a->info.container_member;
2122 struct imsm_dev *dev = get_imsm_dev(super, inst);
2123 struct imsm_map *map = dev->vol.map;
2124 int failed = a->info.array.raid_disks;
2125 struct mdinfo *rv = NULL;
2126 struct mdinfo *d;
2127 struct mdinfo *di;
2128 struct metadata_update *mu;
2129 struct dl *dl;
2130 struct imsm_update_activate_spare *u;
2131 int num_spares = 0;
2132 int i;
2133
2134 for (d = a->info.devs ; d ; d = d->next) {
2135 if ((d->curr_state & DS_FAULTY) &&
2136 d->state_fd >= 0)
2137 /* wait for Removal to happen */
2138 return NULL;
2139 if (d->state_fd >= 0)
2140 failed--;
2141 }
2142
2143 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2144 inst, failed, a->info.array.raid_disks, a->info.array.level);
2145 if (imsm_check_degraded(super, inst, failed) != IMSM_T_STATE_DEGRADED)
2146 return NULL;
2147
2148 /* For each slot, if it is not working, find a spare */
2149 dl = super->disks;
2150 for (i = 0; i < a->info.array.raid_disks; i++) {
2151 for (d = a->info.devs ; d ; d = d->next)
2152 if (d->disk.raid_disk == i)
2153 break;
2154 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2155 if (d && (d->state_fd >= 0))
2156 continue;
2157
2158 /* OK, this device needs recovery. Find a spare */
2159 for ( ; dl ; dl = dl->next) {
2160 unsigned long long esize;
2161 unsigned long long pos;
2162 struct mdinfo *d2;
2163 struct extent *ex;
2164 struct imsm_disk *disk;
2165 int j;
2166 int found;
2167 __u32 array_start;
2168
2169 /* If in this array, skip */
2170 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
2171 if (d2->disk.major == dl->major &&
2172 d2->disk.minor == dl->minor) {
2173 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2174 break;
2175 }
2176 if (d2)
2177 continue;
2178
2179 /* is this unused device marked as a spare? */
2180 disk = get_imsm_disk(super, dl->index);
2181 if (!(__le32_to_cpu(disk->status) & SPARE_DISK))
2182 continue;
2183
2184 /* We are allowed to use this device - is there space?
2185 * We need a->info.component_size sectors */
2186 ex = get_extents(super, dl);
2187 if (!ex) {
2188 dprintf("cannot get extents\n");
2189 continue;
2190 }
2191 found = 0;
2192 j = 0;
2193 pos = 0;
2194 array_start = __le32_to_cpu(map->pba_of_lba0);
2195
2196 do {
2197 /* check that we can start at pba_of_lba0 with
2198 * a->info.component_size of space
2199 */
2200 esize = ex[j].start - pos;
2201 if (array_start >= pos &&
2202 array_start + a->info.component_size < ex[j].start) {
2203 found = 1;
2204 break;
2205 }
2206 pos = ex[j].start + ex[j].size;
2207 j++;
2208
2209 } while (ex[j-1].size);
2210
2211 free(ex);
2212 if (!found) {
2213 dprintf("%x:%x does not have %llu at %d\n",
2214 dl->major, dl->minor,
2215 a->info.component_size,
2216 __le32_to_cpu(map->pba_of_lba0));
2217 /* No room */
2218 continue;
2219 }
2220
2221 /* found a usable disk with enough space */
2222 di = malloc(sizeof(*di));
2223 memset(di, 0, sizeof(*di));
2224 di->disk.number = dl->index;
2225 di->disk.raid_disk = i;
2226 di->disk.major = dl->major;
2227 di->disk.minor = dl->minor;
2228 di->disk.state = 0;
2229 di->data_offset = array_start;
2230 di->component_size = a->info.component_size;
2231 di->container_member = inst;
2232 di->next = rv;
2233 rv = di;
2234 num_spares++;
2235 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2236 i, pos);
2237
2238 break;
2239 }
2240 }
2241
2242 if (!rv)
2243 /* No spares found */
2244 return rv;
2245 /* Now 'rv' has a list of devices to return.
2246 * Create a metadata_update record to update the
2247 * disk_ord_tbl for the array
2248 */
2249 mu = malloc(sizeof(*mu));
2250 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2251 mu->space = NULL;
2252 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2253 mu->next = *updates;
2254 u = (struct imsm_update_activate_spare *) mu->buf;
2255
2256 for (di = rv ; di ; di = di->next) {
2257 u->type = update_activate_spare;
2258 u->disk_idx = di->disk.number;
2259 u->slot = di->disk.raid_disk;
2260 u->array = inst;
2261 u->next = u + 1;
2262 u++;
2263 }
2264 (u-1)->next = NULL;
2265 *updates = mu;
2266
2267 return rv;
2268 }
2269
2270 static int weight(unsigned int field)
2271 {
2272 int weight;
2273
2274 for (weight = 0; field; weight++)
2275 field &= field - 1;
2276
2277 return weight;
2278 }
2279
2280 static int disks_overlap(struct imsm_map *m1, struct imsm_map *m2)
2281 {
2282 int i;
2283 int j;
2284 int idx;
2285
2286 for (i = 0; i < m1->num_members; i++) {
2287 idx = get_imsm_disk_idx(m1, i);
2288 for (j = 0; j < m2->num_members; j++)
2289 if (idx == get_imsm_disk_idx(m2, j))
2290 return 1;
2291 }
2292
2293 return 0;
2294 }
2295
2296 static void imsm_process_update(struct supertype *st,
2297 struct metadata_update *update)
2298 {
2299 /**
2300 * crack open the metadata_update envelope to find the update record
2301 * update can be one of:
2302 * update_activate_spare - a spare device has replaced a failed
2303 * device in an array, update the disk_ord_tbl. If this disk is
2304 * present in all member arrays then also clear the SPARE_DISK
2305 * flag
2306 */
2307 struct intel_super *super = st->sb;
2308 struct imsm_super *mpb = super->anchor;
2309 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2310
2311 switch (type) {
2312 case update_activate_spare: {
2313 struct imsm_update_activate_spare *u = (void *) update->buf;
2314 struct imsm_dev *dev = get_imsm_dev(super, u->array);
2315 struct imsm_map *map = &dev->vol.map[0];
2316 struct active_array *a;
2317 struct imsm_disk *disk;
2318 __u32 status;
2319 struct dl *dl;
2320 struct mdinfo *d;
2321 unsigned int members;
2322 unsigned int found;
2323 int victim;
2324 int i;
2325
2326 for (dl = super->disks; dl; dl = dl->next)
2327 if (dl->index == u->disk_idx)
2328 break;
2329
2330 if (!dl) {
2331 fprintf(stderr, "error: imsm_activate_spare passed "
2332 "an unknown disk_idx: %d\n", u->disk_idx);
2333 return;
2334 }
2335
2336 super->updates_pending++;
2337
2338 victim = get_imsm_disk_idx(map, u->slot);
2339 map->disk_ord_tbl[u->slot] = __cpu_to_le32(u->disk_idx);
2340 disk = get_imsm_disk(super, u->disk_idx);
2341 status = __le32_to_cpu(disk->status);
2342 status |= CONFIGURED_DISK;
2343 disk->status = __cpu_to_le32(status);
2344
2345 /* map unique/live arrays using the spare */
2346 members = 0;
2347 found = 0;
2348 for (a = st->arrays; a; a = a->next) {
2349 int inst = a->info.container_member;
2350
2351 dev = get_imsm_dev(super, inst);
2352 map = &dev->vol.map[0];
2353 if (map->raid_level > 0)
2354 members |= 1 << inst;
2355 for (d = a->info.devs; d; d = d->next)
2356 if (d->disk.major == dl->major &&
2357 d->disk.minor == dl->minor)
2358 found |= 1 << inst;
2359 }
2360
2361 /* until all arrays that can absorb this disk have absorbed
2362 * this disk it can still be considered a spare
2363 */
2364 if (weight(found) >= weight(members)) {
2365 status = __le32_to_cpu(disk->status);
2366 status &= ~SPARE_DISK;
2367 disk->status = __cpu_to_le32(status);
2368 }
2369
2370 /* count arrays using the victim in the metadata */
2371 found = 0;
2372 for (a = st->arrays; a ; a = a->next) {
2373 dev = get_imsm_dev(super, a->info.container_member);
2374 map = &dev->vol.map[0];
2375 for (i = 0; i < map->num_members; i++)
2376 if (victim == get_imsm_disk_idx(map, i))
2377 found++;
2378 }
2379
2380 /* clear some flags if the victim is no longer being
2381 * utilized anywhere
2382 */
2383 disk = get_imsm_disk(super, victim);
2384 if (!found) {
2385 status = __le32_to_cpu(disk->status);
2386 status &= ~(CONFIGURED_DISK | USABLE_DISK);
2387 disk->status = __cpu_to_le32(status);
2388 }
2389 break;
2390 }
2391 case update_create_array: {
2392 /* someone wants to create a new array, we need to be aware of
2393 * a few races/collisions:
2394 * 1/ 'Create' called by two separate instances of mdadm
2395 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
2396 * devices that have since been assimilated via
2397 * activate_spare.
2398 * In the event this update can not be carried out mdadm will
2399 * (FIX ME) notice that its update did not take hold.
2400 */
2401 struct imsm_update_create_array *u = (void *) update->buf;
2402 struct imsm_dev *dev;
2403 struct imsm_map *map, *new_map;
2404 unsigned long long start, end;
2405 unsigned long long new_start, new_end;
2406 int i;
2407 int overlap = 0;
2408
2409 /* handle racing creates: first come first serve */
2410 if (u->dev_idx < mpb->num_raid_devs) {
2411 dprintf("%s: subarray %d already defined\n",
2412 __func__, u->dev_idx);
2413 return;
2414 }
2415
2416 /* check update is next in sequence */
2417 if (u->dev_idx != mpb->num_raid_devs) {
2418 dprintf("%s: can not create arrays out of sequence\n",
2419 __func__);
2420 return;
2421 }
2422
2423 new_map = &u->dev.vol.map[0];
2424 new_start = __le32_to_cpu(new_map->pba_of_lba0);
2425 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
2426
2427 /* handle activate_spare versus create race:
2428 * check to make sure that overlapping arrays do not include
2429 * overalpping disks
2430 */
2431 for (i = 0; i < mpb->num_raid_devs; i++) {
2432 dev = get_imsm_dev(super, i);
2433 map = &dev->vol.map[0];
2434 start = __le32_to_cpu(map->pba_of_lba0);
2435 end = start + __le32_to_cpu(map->blocks_per_member);
2436 if ((new_start >= start && new_start <= end) ||
2437 (start >= new_start && start <= new_end))
2438 overlap = 1;
2439 if (overlap && disks_overlap(map, new_map)) {
2440 dprintf("%s: arrays overlap\n", __func__);
2441 return;
2442 }
2443 }
2444 /* check num_members sanity */
2445 if (new_map->num_members > mpb->num_disks) {
2446 dprintf("%s: num_disks out of range\n", __func__);
2447 return;
2448 }
2449
2450 /* check that prepare update was successful */
2451 if (!update->space) {
2452 dprintf("%s: prepare update failed\n", __func__);
2453 return;
2454 }
2455
2456 super->updates_pending++;
2457 dev = update->space;
2458 update->space = NULL;
2459 imsm_copy_dev(dev, &u->dev);
2460 super->dev_tbl[u->dev_idx] = dev;
2461 mpb->num_raid_devs++;
2462
2463 /* fix up flags, if arrays overlap then the drives can not be
2464 * spares
2465 */
2466 for (i = 0; i < map->num_members; i++) {
2467 struct imsm_disk *disk;
2468 __u32 status;
2469
2470 disk = get_imsm_disk(super, get_imsm_disk_idx(map, i));
2471 status = __le32_to_cpu(disk->status);
2472 status |= CONFIGURED_DISK;
2473 if (overlap)
2474 status &= ~SPARE_DISK;
2475 disk->status = __cpu_to_le32(status);
2476 }
2477 break;
2478 }
2479 }
2480 }
2481
2482 static void imsm_prepare_update(struct supertype *st,
2483 struct metadata_update *update)
2484 {
2485 /**
2486 * Allocate space to hold new disk entries, raid-device entries or a
2487 * new mpb if necessary. We currently maintain an mpb large enough to
2488 * hold 2 subarrays for the given number of disks. This may not be
2489 * sufficient when reshaping.
2490 *
2491 * FIX ME handle the reshape case.
2492 *
2493 * The monitor will be able to safely change super->mpb by arranging
2494 * for it to be freed in check_update_queue(). I.e. the monitor thread
2495 * will start using the new pointer and the manager can continue to use
2496 * the old value until check_update_queue() runs.
2497 */
2498 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2499
2500 switch (type) {
2501 case update_create_array: {
2502 struct imsm_update_create_array *u = (void *) update->buf;
2503 size_t len = sizeof_imsm_dev(&u->dev);
2504
2505 update->space = malloc(len);
2506 break;
2507 default:
2508 break;
2509 }
2510 }
2511
2512 return;
2513 }
2514
2515 struct superswitch super_imsm = {
2516 #ifndef MDASSEMBLE
2517 .examine_super = examine_super_imsm,
2518 .brief_examine_super = brief_examine_super_imsm,
2519 .detail_super = detail_super_imsm,
2520 .brief_detail_super = brief_detail_super_imsm,
2521 .write_init_super = write_init_super_imsm,
2522 #endif
2523 .match_home = match_home_imsm,
2524 .uuid_from_super= uuid_from_super_imsm,
2525 .getinfo_super = getinfo_super_imsm,
2526 .update_super = update_super_imsm,
2527
2528 .avail_size = avail_size_imsm,
2529
2530 .compare_super = compare_super_imsm,
2531
2532 .load_super = load_super_imsm,
2533 .init_super = init_super_imsm,
2534 .add_to_super = add_to_super_imsm,
2535 .store_super = store_zero_imsm,
2536 .free_super = free_super_imsm,
2537 .match_metadata_desc = match_metadata_desc_imsm,
2538 .container_content = container_content_imsm,
2539
2540 .validate_geometry = validate_geometry_imsm,
2541 .external = 1,
2542
2543 /* for mdmon */
2544 .open_new = imsm_open_new,
2545 .load_super = load_super_imsm,
2546 .set_array_state= imsm_set_array_state,
2547 .set_disk = imsm_set_disk,
2548 .sync_metadata = imsm_sync_metadata,
2549 .activate_spare = imsm_activate_spare,
2550 .process_update = imsm_process_update,
2551 .prepare_update = imsm_prepare_update,
2552 };