]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: fix up compare_super_imsm() to match family_num for populated mpb's
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2007 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "mdadm.h"
21 #include "mdmon.h"
22 #include <values.h>
23 #include <scsi/sg.h>
24 #include <ctype.h>
25
26 /* MPB == Metadata Parameter Block */
27 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
28 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
29 #define MPB_VERSION_RAID0 "1.0.00"
30 #define MPB_VERSION_RAID1 "1.1.00"
31 #define MPB_VERSION_RAID5 "1.2.02"
32 #define MAX_SIGNATURE_LENGTH 32
33 #define MAX_RAID_SERIAL_LEN 16
34 #define MPB_SECTOR_CNT 418
35 #define IMSM_RESERVED_SECTORS 4096
36
37 /* Disk configuration info. */
38 #define IMSM_MAX_DEVICES 255
39 struct imsm_disk {
40 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
41 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
42 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
43 __u32 status; /* 0xF0 - 0xF3 */
44 #define SPARE_DISK 0x01 /* Spare */
45 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
46 #define FAILED_DISK 0x04 /* Permanent failure */
47 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
48
49 #define IMSM_DISK_FILLERS 5
50 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
51 };
52
53 /* RAID map configuration infos. */
54 struct imsm_map {
55 __u32 pba_of_lba0; /* start address of partition */
56 __u32 blocks_per_member;/* blocks per member */
57 __u32 num_data_stripes; /* number of data stripes */
58 __u16 blocks_per_strip;
59 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
60 #define IMSM_T_STATE_NORMAL 0
61 #define IMSM_T_STATE_UNINITIALIZED 1
62 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
63 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
64 __u8 raid_level;
65 #define IMSM_T_RAID0 0
66 #define IMSM_T_RAID1 1
67 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
68 __u8 num_members; /* number of member disks */
69 __u8 reserved[3];
70 __u32 filler[7]; /* expansion area */
71 #define IMSM_ORD_REBUILD (1 << 24)
72 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
73 * top byte contains some flags
74 */
75 } __attribute__ ((packed));
76
77 struct imsm_vol {
78 __u32 reserved[2];
79 __u8 migr_state; /* Normal or Migrating */
80 __u8 migr_type; /* Initializing, Rebuilding, ... */
81 __u8 dirty;
82 __u8 fill[1];
83 __u32 filler[5];
84 struct imsm_map map[1];
85 /* here comes another one if migr_state */
86 } __attribute__ ((packed));
87
88 struct imsm_dev {
89 __u8 volume[MAX_RAID_SERIAL_LEN];
90 __u32 size_low;
91 __u32 size_high;
92 __u32 status; /* Persistent RaidDev status */
93 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
94 #define IMSM_DEV_FILLERS 12
95 __u32 filler[IMSM_DEV_FILLERS];
96 struct imsm_vol vol;
97 } __attribute__ ((packed));
98
99 struct imsm_super {
100 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
101 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
102 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
103 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
104 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
105 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
106 __u32 attributes; /* 0x34 - 0x37 */
107 __u8 num_disks; /* 0x38 Number of configured disks */
108 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
109 __u8 error_log_pos; /* 0x3A */
110 __u8 fill[1]; /* 0x3B */
111 __u32 cache_size; /* 0x3c - 0x40 in mb */
112 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
113 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
114 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
115 #define IMSM_FILLERS 35
116 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
117 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
118 /* here comes imsm_dev[num_raid_devs] */
119 /* here comes BBM logs */
120 } __attribute__ ((packed));
121
122 #define BBM_LOG_MAX_ENTRIES 254
123
124 struct bbm_log_entry {
125 __u64 defective_block_start;
126 #define UNREADABLE 0xFFFFFFFF
127 __u32 spare_block_offset;
128 __u16 remapped_marked_count;
129 __u16 disk_ordinal;
130 } __attribute__ ((__packed__));
131
132 struct bbm_log {
133 __u32 signature; /* 0xABADB10C */
134 __u32 entry_count;
135 __u32 reserved_spare_block_count; /* 0 */
136 __u32 reserved; /* 0xFFFF */
137 __u64 first_spare_lba;
138 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
139 } __attribute__ ((__packed__));
140
141
142 #ifndef MDASSEMBLE
143 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
144 #endif
145
146 static unsigned int sector_count(__u32 bytes)
147 {
148 return ((bytes + (512-1)) & (~(512-1))) / 512;
149 }
150
151 static unsigned int mpb_sectors(struct imsm_super *mpb)
152 {
153 return sector_count(__le32_to_cpu(mpb->mpb_size));
154 }
155
156 /* internal representation of IMSM metadata */
157 struct intel_super {
158 union {
159 void *buf; /* O_DIRECT buffer for reading/writing metadata */
160 struct imsm_super *anchor; /* immovable parameters */
161 };
162 size_t len; /* size of the 'buf' allocation */
163 void *next_buf; /* for realloc'ing buf from the manager */
164 size_t next_len;
165 int updates_pending; /* count of pending updates for mdmon */
166 int creating_imsm; /* flag to indicate container creation */
167 int current_vol; /* index of raid device undergoing creation */
168 #define IMSM_MAX_RAID_DEVS 2
169 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
170 struct dl {
171 struct dl *next;
172 int index;
173 __u8 serial[MAX_RAID_SERIAL_LEN];
174 int major, minor;
175 char *devname;
176 struct imsm_disk disk;
177 int fd;
178 } *disks;
179 struct dl *add; /* list of disks to add while mdmon active */
180 struct bbm_log *bbm_log;
181 };
182
183 struct extent {
184 unsigned long long start, size;
185 };
186
187 /* definition of messages passed to imsm_process_update */
188 enum imsm_update_type {
189 update_activate_spare,
190 update_create_array,
191 update_add_disk,
192 };
193
194 struct imsm_update_activate_spare {
195 enum imsm_update_type type;
196 struct dl *dl;
197 int slot;
198 int array;
199 struct imsm_update_activate_spare *next;
200 };
201
202 struct imsm_update_create_array {
203 enum imsm_update_type type;
204 int dev_idx;
205 struct imsm_dev dev;
206 };
207
208 struct imsm_update_add_disk {
209 enum imsm_update_type type;
210 };
211
212 static int imsm_env_devname_as_serial(void)
213 {
214 char *val = getenv("IMSM_DEVNAME_AS_SERIAL");
215
216 if (val && atoi(val) == 1)
217 return 1;
218
219 return 0;
220 }
221
222
223 static struct supertype *match_metadata_desc_imsm(char *arg)
224 {
225 struct supertype *st;
226
227 if (strcmp(arg, "imsm") != 0 &&
228 strcmp(arg, "default") != 0
229 )
230 return NULL;
231
232 st = malloc(sizeof(*st));
233 memset(st, 0, sizeof(*st));
234 st->ss = &super_imsm;
235 st->max_devs = IMSM_MAX_DEVICES;
236 st->minor_version = 0;
237 st->sb = NULL;
238 return st;
239 }
240
241 static __u8 *get_imsm_version(struct imsm_super *mpb)
242 {
243 return &mpb->sig[MPB_SIG_LEN];
244 }
245
246 /* retrieve a disk directly from the anchor when the anchor is known to be
247 * up-to-date, currently only at load time
248 */
249 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
250 {
251 if (index >= mpb->num_disks)
252 return NULL;
253 return &mpb->disk[index];
254 }
255
256 /* retrieve a disk from the parsed metadata */
257 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
258 {
259 struct dl *d;
260
261 for (d = super->disks; d; d = d->next)
262 if (d->index == index)
263 return &d->disk;
264
265 return NULL;
266 }
267
268 /* generate a checksum directly from the anchor when the anchor is known to be
269 * up-to-date, currently only at load or write_super after coalescing
270 */
271 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
272 {
273 __u32 end = mpb->mpb_size / sizeof(end);
274 __u32 *p = (__u32 *) mpb;
275 __u32 sum = 0;
276
277 while (end--)
278 sum += __le32_to_cpu(*p++);
279
280 return sum - __le32_to_cpu(mpb->check_sum);
281 }
282
283 static size_t sizeof_imsm_map(struct imsm_map *map)
284 {
285 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
286 }
287
288 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
289 {
290 struct imsm_map *map = &dev->vol.map[0];
291
292 if (second_map && !dev->vol.migr_state)
293 return NULL;
294 else if (second_map) {
295 void *ptr = map;
296
297 return ptr + sizeof_imsm_map(map);
298 } else
299 return map;
300
301 }
302
303 /* return the size of the device.
304 * migr_state increases the returned size if map[0] were to be duplicated
305 */
306 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
307 {
308 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
309 sizeof_imsm_map(get_imsm_map(dev, 0));
310
311 /* migrating means an additional map */
312 if (dev->vol.migr_state)
313 size += sizeof_imsm_map(get_imsm_map(dev, 1));
314 else if (migr_state)
315 size += sizeof_imsm_map(get_imsm_map(dev, 0));
316
317 return size;
318 }
319
320 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
321 {
322 int offset;
323 int i;
324 void *_mpb = mpb;
325
326 if (index >= mpb->num_raid_devs)
327 return NULL;
328
329 /* devices start after all disks */
330 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
331
332 for (i = 0; i <= index; i++)
333 if (i == index)
334 return _mpb + offset;
335 else
336 offset += sizeof_imsm_dev(_mpb + offset, 0);
337
338 return NULL;
339 }
340
341 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
342 {
343 if (index >= super->anchor->num_raid_devs)
344 return NULL;
345 return super->dev_tbl[index];
346 }
347
348 static __u32 get_imsm_disk_idx(struct imsm_map *map, int slot)
349 {
350 __u32 *ord_tbl = &map->disk_ord_tbl[slot];
351
352 /* top byte identifies disk under rebuild
353 * why not just use the USABLE bit... oh well.
354 */
355 return __le32_to_cpu(*ord_tbl & ~(0xff << 24));
356 }
357
358 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
359 {
360 struct imsm_map *map;
361
362 if (dev->vol.migr_state)
363 map = get_imsm_map(dev, 1);
364 else
365 map = get_imsm_map(dev, 0);
366
367 return map->disk_ord_tbl[slot];
368 }
369
370 static int get_imsm_raid_level(struct imsm_map *map)
371 {
372 if (map->raid_level == 1) {
373 if (map->num_members == 2)
374 return 1;
375 else
376 return 10;
377 }
378
379 return map->raid_level;
380 }
381
382 static int cmp_extent(const void *av, const void *bv)
383 {
384 const struct extent *a = av;
385 const struct extent *b = bv;
386 if (a->start < b->start)
387 return -1;
388 if (a->start > b->start)
389 return 1;
390 return 0;
391 }
392
393 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
394 {
395 /* find a list of used extents on the given physical device */
396 struct extent *rv, *e;
397 int i, j;
398 int memberships = 0;
399
400 for (i = 0; i < super->anchor->num_raid_devs; i++) {
401 struct imsm_dev *dev = get_imsm_dev(super, i);
402 struct imsm_map *map = get_imsm_map(dev, 0);
403
404 for (j = 0; j < map->num_members; j++) {
405 __u32 index = get_imsm_disk_idx(map, j);
406
407 if (index == dl->index)
408 memberships++;
409 }
410 }
411 rv = malloc(sizeof(struct extent) * (memberships + 1));
412 if (!rv)
413 return NULL;
414 e = rv;
415
416 for (i = 0; i < super->anchor->num_raid_devs; i++) {
417 struct imsm_dev *dev = get_imsm_dev(super, i);
418 struct imsm_map *map = get_imsm_map(dev, 0);
419
420 for (j = 0; j < map->num_members; j++) {
421 __u32 index = get_imsm_disk_idx(map, j);
422
423 if (index == dl->index) {
424 e->start = __le32_to_cpu(map->pba_of_lba0);
425 e->size = __le32_to_cpu(map->blocks_per_member);
426 e++;
427 }
428 }
429 }
430 qsort(rv, memberships, sizeof(*rv), cmp_extent);
431
432 e->start = __le32_to_cpu(dl->disk.total_blocks) -
433 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
434 e->size = 0;
435 return rv;
436 }
437
438 #ifndef MDASSEMBLE
439 static void print_imsm_dev(struct imsm_dev *dev, int index)
440 {
441 __u64 sz;
442 int slot;
443 struct imsm_map *map = get_imsm_map(dev, 0);
444
445 printf("\n");
446 printf("[%s]:\n", dev->volume);
447 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
448 printf(" Members : %d\n", map->num_members);
449 for (slot = 0; slot < map->num_members; slot++)
450 if (index == get_imsm_disk_idx(map, slot))
451 break;
452 if (slot < map->num_members)
453 printf(" This Slot : %d\n", slot);
454 else
455 printf(" This Slot : ?\n");
456 sz = __le32_to_cpu(dev->size_high);
457 sz <<= 32;
458 sz += __le32_to_cpu(dev->size_low);
459 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
460 human_size(sz * 512));
461 sz = __le32_to_cpu(map->blocks_per_member);
462 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
463 human_size(sz * 512));
464 printf(" Sector Offset : %u\n",
465 __le32_to_cpu(map->pba_of_lba0));
466 printf(" Num Stripes : %u\n",
467 __le32_to_cpu(map->num_data_stripes));
468 printf(" Chunk Size : %u KiB\n",
469 __le16_to_cpu(map->blocks_per_strip) / 2);
470 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
471 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
472 if (dev->vol.migr_state)
473 printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
474 printf("\n");
475 printf(" Map State : %s", map_state_str[map->map_state]);
476 if (dev->vol.migr_state) {
477 struct imsm_map *map = get_imsm_map(dev, 1);
478 printf(", %s", map_state_str[map->map_state]);
479 }
480 printf("\n");
481 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
482 }
483
484 static void print_imsm_disk(struct imsm_super *mpb, int index)
485 {
486 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
487 char str[MAX_RAID_SERIAL_LEN];
488 __u32 s;
489 __u64 sz;
490
491 if (index < 0)
492 return;
493
494 printf("\n");
495 snprintf(str, MAX_RAID_SERIAL_LEN, "%s", disk->serial);
496 printf(" Disk%02d Serial : %s\n", index, str);
497 s = __le32_to_cpu(disk->status);
498 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
499 s&CONFIGURED_DISK ? " active" : "",
500 s&FAILED_DISK ? " failed" : "",
501 s&USABLE_DISK ? " usable" : "");
502 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
503 sz = __le32_to_cpu(disk->total_blocks) -
504 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS * mpb->num_raid_devs);
505 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
506 human_size(sz * 512));
507 }
508
509 static void examine_super_imsm(struct supertype *st, char *homehost)
510 {
511 struct intel_super *super = st->sb;
512 struct imsm_super *mpb = super->anchor;
513 char str[MAX_SIGNATURE_LENGTH];
514 int i;
515 __u32 sum;
516
517 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
518 printf(" Magic : %s\n", str);
519 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
520 printf(" Version : %s\n", get_imsm_version(mpb));
521 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
522 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
523 sum = __le32_to_cpu(mpb->check_sum);
524 printf(" Checksum : %08x %s\n", sum,
525 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
526 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
527 printf(" Disks : %d\n", mpb->num_disks);
528 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
529 print_imsm_disk(mpb, super->disks->index);
530 if (super->bbm_log) {
531 struct bbm_log *log = super->bbm_log;
532
533 printf("\n");
534 printf("Bad Block Management Log:\n");
535 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
536 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
537 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
538 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
539 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
540 }
541 for (i = 0; i < mpb->num_raid_devs; i++)
542 print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
543 for (i = 0; i < mpb->num_disks; i++) {
544 if (i == super->disks->index)
545 continue;
546 print_imsm_disk(mpb, i);
547 }
548 }
549
550 static void brief_examine_super_imsm(struct supertype *st)
551 {
552 printf("ARRAY /dev/imsm metadata=imsm\n");
553 }
554
555 static void detail_super_imsm(struct supertype *st, char *homehost)
556 {
557 printf("%s\n", __FUNCTION__);
558 }
559
560 static void brief_detail_super_imsm(struct supertype *st)
561 {
562 printf("%s\n", __FUNCTION__);
563 }
564 #endif
565
566 static int match_home_imsm(struct supertype *st, char *homehost)
567 {
568 printf("%s\n", __FUNCTION__);
569
570 return 0;
571 }
572
573 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
574 {
575 /* imsm does not track uuid's so just make sure we never return
576 * the same value twice to break uuid matching in Manage_subdevs
577 * FIXME what about the use of uuid's with bitmap's?
578 */
579 static int dummy_id = 0;
580
581 uuid[0] = dummy_id++;
582 }
583
584 #if 0
585 static void
586 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
587 {
588 __u8 *v = get_imsm_version(mpb);
589 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
590 char major[] = { 0, 0, 0 };
591 char minor[] = { 0 ,0, 0 };
592 char patch[] = { 0, 0, 0 };
593 char *ver_parse[] = { major, minor, patch };
594 int i, j;
595
596 i = j = 0;
597 while (*v != '\0' && v < end) {
598 if (*v != '.' && j < 2)
599 ver_parse[i][j++] = *v;
600 else {
601 i++;
602 j = 0;
603 }
604 v++;
605 }
606
607 *m = strtol(minor, NULL, 0);
608 *p = strtol(patch, NULL, 0);
609 }
610 #endif
611
612 static int imsm_level_to_layout(int level)
613 {
614 switch (level) {
615 case 0:
616 case 1:
617 return 0;
618 case 5:
619 case 6:
620 return ALGORITHM_LEFT_ASYMMETRIC;
621 case 10:
622 return 0x102; //FIXME is this correct?
623 }
624 return -1;
625 }
626
627 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
628 {
629 struct intel_super *super = st->sb;
630 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
631 struct imsm_map *map = get_imsm_map(dev, 0);
632
633 info->container_member = super->current_vol;
634 info->array.raid_disks = map->num_members;
635 info->array.level = get_imsm_raid_level(map);
636 info->array.layout = imsm_level_to_layout(info->array.level);
637 info->array.md_minor = -1;
638 info->array.ctime = 0;
639 info->array.utime = 0;
640 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip * 512);
641
642 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
643 info->component_size = __le32_to_cpu(map->blocks_per_member);
644
645 info->disk.major = 0;
646 info->disk.minor = 0;
647
648 sprintf(info->text_version, "/%s/%d",
649 devnum2devname(st->container_dev),
650 info->container_member);
651 }
652
653
654 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
655 {
656 struct intel_super *super = st->sb;
657 struct imsm_disk *disk;
658 __u32 s;
659
660 if (super->current_vol >= 0) {
661 getinfo_super_imsm_volume(st, info);
662 return;
663 }
664
665 /* Set raid_disks to zero so that Assemble will always pull in valid
666 * spares
667 */
668 info->array.raid_disks = 0;
669 info->array.level = LEVEL_CONTAINER;
670 info->array.layout = 0;
671 info->array.md_minor = -1;
672 info->array.ctime = 0; /* N/A for imsm */
673 info->array.utime = 0;
674 info->array.chunk_size = 0;
675
676 info->disk.major = 0;
677 info->disk.minor = 0;
678 info->disk.raid_disk = -1;
679 info->reshape_active = 0;
680 strcpy(info->text_version, "imsm");
681 info->disk.number = -1;
682 info->disk.state = 0;
683
684 if (super->disks) {
685 disk = &super->disks->disk;
686 info->disk.number = super->disks->index;
687 info->disk.raid_disk = super->disks->index;
688 info->data_offset = __le32_to_cpu(disk->total_blocks) -
689 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
690 info->component_size = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
691 s = __le32_to_cpu(disk->status);
692 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
693 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
694 info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
695 }
696 }
697
698 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
699 char *update, char *devname, int verbose,
700 int uuid_set, char *homehost)
701 {
702 /* FIXME */
703
704 /* For 'assemble' and 'force' we need to return non-zero if any
705 * change was made. For others, the return value is ignored.
706 * Update options are:
707 * force-one : This device looks a bit old but needs to be included,
708 * update age info appropriately.
709 * assemble: clear any 'faulty' flag to allow this device to
710 * be assembled.
711 * force-array: Array is degraded but being forced, mark it clean
712 * if that will be needed to assemble it.
713 *
714 * newdev: not used ????
715 * grow: Array has gained a new device - this is currently for
716 * linear only
717 * resync: mark as dirty so a resync will happen.
718 * name: update the name - preserving the homehost
719 *
720 * Following are not relevant for this imsm:
721 * sparc2.2 : update from old dodgey metadata
722 * super-minor: change the preferred_minor number
723 * summaries: update redundant counters.
724 * uuid: Change the uuid of the array to match watch is given
725 * homehost: update the recorded homehost
726 * _reshape_progress: record new reshape_progress position.
727 */
728 int rv = 0;
729 //struct intel_super *super = st->sb;
730 //struct imsm_super *mpb = super->mpb;
731
732 if (strcmp(update, "grow") == 0) {
733 }
734 if (strcmp(update, "resync") == 0) {
735 /* dev->vol.dirty = 1; */
736 }
737
738 /* IMSM has no concept of UUID or homehost */
739
740 return rv;
741 }
742
743 static size_t disks_to_mpb_size(int disks)
744 {
745 size_t size;
746
747 size = sizeof(struct imsm_super);
748 size += (disks - 1) * sizeof(struct imsm_disk);
749 size += 2 * sizeof(struct imsm_dev);
750 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
751 size += (4 - 2) * sizeof(struct imsm_map);
752 /* 4 possible disk_ord_tbl's */
753 size += 4 * (disks - 1) * sizeof(__u32);
754
755 return size;
756 }
757
758 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
759 {
760 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
761 return 0;
762
763 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
764 }
765
766 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
767 {
768 /*
769 * return:
770 * 0 same, or first was empty, and second was copied
771 * 1 second had wrong number
772 * 2 wrong uuid
773 * 3 wrong other info
774 */
775 struct intel_super *first = st->sb;
776 struct intel_super *sec = tst->sb;
777
778 if (!first) {
779 st->sb = tst->sb;
780 tst->sb = NULL;
781 return 0;
782 }
783
784 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
785 return 3;
786
787 /* if an anchor does not have num_raid_devs set then it is a free
788 * floating spare
789 */
790 if (first->anchor->num_raid_devs > 0 &&
791 sec->anchor->num_raid_devs > 0) {
792 if (first->anchor->family_num != sec->anchor->family_num)
793 return 3;
794 }
795
796 /* if 'first' is a spare promote it to a populated mpb with sec's
797 * family number
798 */
799 if (first->anchor->num_raid_devs == 0 &&
800 sec->anchor->num_raid_devs > 0) {
801 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
802 first->anchor->family_num = sec->anchor->family_num;
803 }
804
805 return 0;
806 }
807
808 static void fd2devname(int fd, char *name)
809 {
810 struct stat st;
811 char path[256];
812 char dname[100];
813 char *nm;
814 int rv;
815
816 name[0] = '\0';
817 if (fstat(fd, &st) != 0)
818 return;
819 sprintf(path, "/sys/dev/block/%d:%d",
820 major(st.st_rdev), minor(st.st_rdev));
821
822 rv = readlink(path, dname, sizeof(dname));
823 if (rv <= 0)
824 return;
825
826 dname[rv] = '\0';
827 nm = strrchr(dname, '/');
828 nm++;
829 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
830 }
831
832
833 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
834
835 static int imsm_read_serial(int fd, char *devname,
836 __u8 serial[MAX_RAID_SERIAL_LEN])
837 {
838 unsigned char scsi_serial[255];
839 int rv;
840 int rsp_len;
841 int i, cnt;
842
843 memset(scsi_serial, 0, sizeof(scsi_serial));
844
845 if (imsm_env_devname_as_serial()) {
846 char name[MAX_RAID_SERIAL_LEN];
847
848 fd2devname(fd, name);
849 strcpy((char *) serial, name);
850 return 0;
851 }
852
853 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
854
855 if (rv != 0) {
856 if (devname)
857 fprintf(stderr,
858 Name ": Failed to retrieve serial for %s\n",
859 devname);
860 return rv;
861 }
862
863 rsp_len = scsi_serial[3];
864 for (i = 0, cnt = 0; i < rsp_len; i++) {
865 if (!isspace(scsi_serial[4 + i]))
866 serial[cnt++] = scsi_serial[4 + i];
867 if (cnt == MAX_RAID_SERIAL_LEN)
868 break;
869 }
870
871 serial[MAX_RAID_SERIAL_LEN - 1] = '\0';
872
873 return 0;
874 }
875
876 static int
877 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
878 {
879 struct dl *dl;
880 struct stat stb;
881 int rv;
882 int i;
883 int alloc = 1;
884 __u8 serial[MAX_RAID_SERIAL_LEN];
885
886 rv = imsm_read_serial(fd, devname, serial);
887
888 if (rv != 0)
889 return 2;
890
891 /* check if this is a disk we have seen before. it may be a spare in
892 * super->disks while the current anchor believes it is a raid member,
893 * check if we need to update dl->index
894 */
895 for (dl = super->disks; dl; dl = dl->next)
896 if (memcmp(dl->serial, serial, MAX_RAID_SERIAL_LEN) == 0)
897 break;
898
899 if (!dl)
900 dl = malloc(sizeof(*dl));
901 else
902 alloc = 0;
903
904 if (!dl) {
905 if (devname)
906 fprintf(stderr,
907 Name ": failed to allocate disk buffer for %s\n",
908 devname);
909 return 2;
910 }
911
912 if (alloc) {
913 fstat(fd, &stb);
914 dl->major = major(stb.st_rdev);
915 dl->minor = minor(stb.st_rdev);
916 dl->next = super->disks;
917 dl->fd = keep_fd ? fd : -1;
918 dl->devname = devname ? strdup(devname) : NULL;
919 strncpy((char *) dl->serial, (char *) serial, MAX_RAID_SERIAL_LEN);
920 dl->index = -2;
921 } else if (keep_fd) {
922 close(dl->fd);
923 dl->fd = fd;
924 }
925
926 /* look up this disk's index in the current anchor */
927 for (i = 0; i < super->anchor->num_disks; i++) {
928 struct imsm_disk *disk_iter;
929
930 disk_iter = __get_imsm_disk(super->anchor, i);
931
932 if (memcmp(disk_iter->serial, dl->serial,
933 MAX_RAID_SERIAL_LEN) == 0) {
934 __u32 status;
935
936 dl->disk = *disk_iter;
937 status = __le32_to_cpu(dl->disk.status);
938 /* only set index on disks that are a member of a
939 * populated contianer, i.e. one with raid_devs
940 */
941 if (status & FAILED_DISK)
942 dl->index = -2;
943 else if (status & SPARE_DISK)
944 dl->index = -1;
945 else
946 dl->index = i;
947
948 break;
949 }
950 }
951
952 if (alloc)
953 super->disks = dl;
954
955 return 0;
956 }
957
958 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
959 {
960 memcpy(dest, src, sizeof_imsm_dev(src, 0));
961 }
962
963 static void dup_map(struct imsm_dev *dev)
964 {
965 struct imsm_map *dest = get_imsm_map(dev, 1);
966 struct imsm_map *src = get_imsm_map(dev, 0);
967
968 memcpy(dest, src, sizeof_imsm_map(src));
969 }
970
971 static int parse_raid_devices(struct intel_super *super)
972 {
973 int i;
974 struct imsm_dev *dev_new;
975 size_t len, len_migr;
976 size_t space_needed = 0;
977 struct imsm_super *mpb = super->anchor;
978
979 for (i = 0; i < super->anchor->num_raid_devs; i++) {
980 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
981
982 len = sizeof_imsm_dev(dev_iter, 0);
983 len_migr = sizeof_imsm_dev(dev_iter, 1);
984 if (len_migr > len)
985 space_needed += len_migr - len;
986
987 dev_new = malloc(len_migr);
988 if (!dev_new)
989 return 1;
990 imsm_copy_dev(dev_new, dev_iter);
991 super->dev_tbl[i] = dev_new;
992 }
993
994 /* ensure that super->buf is large enough when all raid devices
995 * are migrating
996 */
997 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
998 void *buf;
999
1000 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1001 if (posix_memalign(&buf, 512, len) != 0)
1002 return 1;
1003
1004 memcpy(buf, super->buf, len);
1005 free(super->buf);
1006 super->buf = buf;
1007 super->len = len;
1008 }
1009
1010 return 0;
1011 }
1012
1013 /* retrieve a pointer to the bbm log which starts after all raid devices */
1014 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1015 {
1016 void *ptr = NULL;
1017
1018 if (__le32_to_cpu(mpb->bbm_log_size)) {
1019 ptr = mpb;
1020 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1021 }
1022
1023 return ptr;
1024 }
1025
1026 static void __free_imsm(struct intel_super *super, int free_disks);
1027
1028 /* load_imsm_mpb - read matrix metadata
1029 * allocates super->mpb to be freed by free_super
1030 */
1031 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1032 {
1033 unsigned long long dsize;
1034 unsigned long long sectors;
1035 struct stat;
1036 struct imsm_super *anchor;
1037 __u32 check_sum;
1038 int rc;
1039
1040 get_dev_size(fd, NULL, &dsize);
1041
1042 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1043 if (devname)
1044 fprintf(stderr,
1045 Name ": Cannot seek to anchor block on %s: %s\n",
1046 devname, strerror(errno));
1047 return 1;
1048 }
1049
1050 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1051 if (devname)
1052 fprintf(stderr,
1053 Name ": Failed to allocate imsm anchor buffer"
1054 " on %s\n", devname);
1055 return 1;
1056 }
1057 if (read(fd, anchor, 512) != 512) {
1058 if (devname)
1059 fprintf(stderr,
1060 Name ": Cannot read anchor block on %s: %s\n",
1061 devname, strerror(errno));
1062 free(anchor);
1063 return 1;
1064 }
1065
1066 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1067 if (devname)
1068 fprintf(stderr,
1069 Name ": no IMSM anchor on %s\n", devname);
1070 free(anchor);
1071 return 2;
1072 }
1073
1074 __free_imsm(super, 0);
1075 super->len = ROUND_UP(anchor->mpb_size, 512);
1076 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1077 if (devname)
1078 fprintf(stderr,
1079 Name ": unable to allocate %zu byte mpb buffer\n",
1080 super->len);
1081 free(anchor);
1082 return 2;
1083 }
1084 memcpy(super->buf, anchor, 512);
1085
1086 sectors = mpb_sectors(anchor) - 1;
1087 free(anchor);
1088 if (!sectors) {
1089 rc = load_imsm_disk(fd, super, devname, 0);
1090 if (rc == 0)
1091 rc = parse_raid_devices(super);
1092 return rc;
1093 }
1094
1095 /* read the extended mpb */
1096 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1097 if (devname)
1098 fprintf(stderr,
1099 Name ": Cannot seek to extended mpb on %s: %s\n",
1100 devname, strerror(errno));
1101 return 1;
1102 }
1103
1104 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1105 if (devname)
1106 fprintf(stderr,
1107 Name ": Cannot read extended mpb on %s: %s\n",
1108 devname, strerror(errno));
1109 return 2;
1110 }
1111
1112 check_sum = __gen_imsm_checksum(super->anchor);
1113 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1114 if (devname)
1115 fprintf(stderr,
1116 Name ": IMSM checksum %x != %x on %s\n",
1117 check_sum, __le32_to_cpu(super->anchor->check_sum),
1118 devname);
1119 return 2;
1120 }
1121
1122 /* FIXME the BBM log is disk specific so we cannot use this global
1123 * buffer for all disks. Ok for now since we only look at the global
1124 * bbm_log_size parameter to gate assembly
1125 */
1126 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1127
1128 rc = load_imsm_disk(fd, super, devname, 0);
1129 if (rc == 0)
1130 rc = parse_raid_devices(super);
1131
1132 return rc;
1133 }
1134
1135 static void __free_imsm_disk(struct dl *d)
1136 {
1137 if (d->fd >= 0)
1138 close(d->fd);
1139 if (d->devname)
1140 free(d->devname);
1141 free(d);
1142
1143 }
1144 static void free_imsm_disks(struct intel_super *super)
1145 {
1146 while (super->disks) {
1147 struct dl *d = super->disks;
1148
1149 super->disks = d->next;
1150 __free_imsm_disk(d);
1151 }
1152 }
1153
1154 /* free all the pieces hanging off of a super pointer */
1155 static void __free_imsm(struct intel_super *super, int free_disks)
1156 {
1157 int i;
1158
1159 if (super->buf) {
1160 free(super->buf);
1161 super->buf = NULL;
1162 }
1163 if (free_disks)
1164 free_imsm_disks(super);
1165 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1166 if (super->dev_tbl[i]) {
1167 free(super->dev_tbl[i]);
1168 super->dev_tbl[i] = NULL;
1169 }
1170 }
1171
1172 static void free_imsm(struct intel_super *super)
1173 {
1174 __free_imsm(super, 1);
1175 free(super);
1176 }
1177
1178 static void free_super_imsm(struct supertype *st)
1179 {
1180 struct intel_super *super = st->sb;
1181
1182 if (!super)
1183 return;
1184
1185 free_imsm(super);
1186 st->sb = NULL;
1187 }
1188
1189 static struct intel_super *alloc_super(int creating_imsm)
1190 {
1191 struct intel_super *super = malloc(sizeof(*super));
1192
1193 if (super) {
1194 memset(super, 0, sizeof(*super));
1195 super->creating_imsm = creating_imsm;
1196 super->current_vol = -1;
1197 }
1198
1199 return super;
1200 }
1201
1202 #ifndef MDASSEMBLE
1203 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1204 char *devname, int keep_fd)
1205 {
1206 struct mdinfo *sra;
1207 struct intel_super *super;
1208 struct mdinfo *sd, *best = NULL;
1209 __u32 bestgen = 0;
1210 __u32 gen;
1211 char nm[20];
1212 int dfd;
1213 int rv;
1214
1215 /* check if this disk is a member of an active array */
1216 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1217 if (!sra)
1218 return 1;
1219
1220 if (sra->array.major_version != -1 ||
1221 sra->array.minor_version != -2 ||
1222 strcmp(sra->text_version, "imsm") != 0)
1223 return 1;
1224
1225 super = alloc_super(0);
1226 if (!super)
1227 return 1;
1228
1229 /* find the most up to date disk in this array, skipping spares */
1230 for (sd = sra->devs; sd; sd = sd->next) {
1231 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1232 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1233 if (!dfd) {
1234 free_imsm(super);
1235 return 2;
1236 }
1237 rv = load_imsm_mpb(dfd, super, NULL);
1238 if (!keep_fd)
1239 close(dfd);
1240 if (rv == 0) {
1241 if (super->anchor->num_raid_devs == 0)
1242 gen = 0;
1243 else
1244 gen = __le32_to_cpu(super->anchor->generation_num);
1245 if (!best || gen > bestgen) {
1246 bestgen = gen;
1247 best = sd;
1248 }
1249 } else {
1250 free_imsm(super);
1251 return 2;
1252 }
1253 }
1254
1255 if (!best) {
1256 free_imsm(super);
1257 return 1;
1258 }
1259
1260 /* load the most up to date anchor */
1261 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1262 dfd = dev_open(nm, O_RDONLY);
1263 if (!dfd) {
1264 free_imsm(super);
1265 return 1;
1266 }
1267 rv = load_imsm_mpb(dfd, super, NULL);
1268 close(dfd);
1269 if (rv != 0) {
1270 free_imsm(super);
1271 return 2;
1272 }
1273
1274 /* re-parse the disk list with the current anchor */
1275 for (sd = sra->devs ; sd ; sd = sd->next) {
1276 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1277 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1278 if (!dfd) {
1279 free_imsm(super);
1280 return 2;
1281 }
1282 load_imsm_disk(dfd, super, NULL, keep_fd);
1283 if (!keep_fd)
1284 close(dfd);
1285 }
1286
1287 if (st->subarray[0]) {
1288 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1289 super->current_vol = atoi(st->subarray);
1290 else
1291 return 1;
1292 }
1293
1294 *sbp = super;
1295 st->container_dev = fd2devnum(fd);
1296 if (st->ss == NULL) {
1297 st->ss = &super_imsm;
1298 st->minor_version = 0;
1299 st->max_devs = IMSM_MAX_DEVICES;
1300 }
1301
1302 return 0;
1303 }
1304 #endif
1305
1306 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1307 {
1308 struct intel_super *super;
1309 int rv;
1310
1311 #ifndef MDASSEMBLE
1312 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1313 return 0;
1314 #endif
1315 if (st->subarray[0])
1316 return 1; /* FIXME */
1317
1318 super = alloc_super(0);
1319 if (!super) {
1320 fprintf(stderr,
1321 Name ": malloc of %zu failed.\n",
1322 sizeof(*super));
1323 return 1;
1324 }
1325
1326 rv = load_imsm_mpb(fd, super, devname);
1327
1328 if (rv) {
1329 if (devname)
1330 fprintf(stderr,
1331 Name ": Failed to load all information "
1332 "sections on %s\n", devname);
1333 free_imsm(super);
1334 return rv;
1335 }
1336
1337 st->sb = super;
1338 if (st->ss == NULL) {
1339 st->ss = &super_imsm;
1340 st->minor_version = 0;
1341 st->max_devs = IMSM_MAX_DEVICES;
1342 }
1343
1344 return 0;
1345 }
1346
1347 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1348 {
1349 if (info->level == 1)
1350 return 128;
1351 return info->chunk_size >> 9;
1352 }
1353
1354 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1355 {
1356 __u32 num_stripes;
1357
1358 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1359 if (info->level == 1)
1360 num_stripes /= 2;
1361
1362 return num_stripes;
1363 }
1364
1365 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1366 {
1367 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1368 }
1369
1370 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1371 unsigned long long size, char *name,
1372 char *homehost, int *uuid)
1373 {
1374 /* We are creating a volume inside a pre-existing container.
1375 * so st->sb is already set.
1376 */
1377 struct intel_super *super = st->sb;
1378 struct imsm_super *mpb = super->anchor;
1379 struct imsm_dev *dev;
1380 struct imsm_vol *vol;
1381 struct imsm_map *map;
1382 int idx = mpb->num_raid_devs;
1383 int i;
1384 unsigned long long array_blocks;
1385 __u32 offset = 0;
1386 size_t size_old, size_new;
1387
1388 if (mpb->num_raid_devs >= 2) {
1389 fprintf(stderr, Name": This imsm-container already has the "
1390 "maximum of 2 volumes\n");
1391 return 0;
1392 }
1393
1394 /* ensure the mpb is large enough for the new data */
1395 size_old = __le32_to_cpu(mpb->mpb_size);
1396 size_new = disks_to_mpb_size(info->nr_disks);
1397 if (size_new > size_old) {
1398 void *mpb_new;
1399 size_t size_round = ROUND_UP(size_new, 512);
1400
1401 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1402 fprintf(stderr, Name": could not allocate new mpb\n");
1403 return 0;
1404 }
1405 memcpy(mpb_new, mpb, size_old);
1406 free(mpb);
1407 mpb = mpb_new;
1408 super->anchor = mpb_new;
1409 mpb->mpb_size = __cpu_to_le32(size_new);
1410 memset(mpb_new + size_old, 0, size_round - size_old);
1411 }
1412 super->current_vol = idx;
1413 /* when creating the first raid device in this container set num_disks
1414 * to zero, i.e. delete this spare and add raid member devices in
1415 * add_to_super_imsm_volume()
1416 */
1417 if (super->current_vol == 0)
1418 mpb->num_disks = 0;
1419 sprintf(st->subarray, "%d", idx);
1420 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1421 if (!dev) {
1422 fprintf(stderr, Name": could not allocate raid device\n");
1423 return 0;
1424 }
1425 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1426 array_blocks = calc_array_size(info->level, info->raid_disks,
1427 info->layout, info->chunk_size,
1428 info->size*2);
1429 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1430 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1431 dev->status = __cpu_to_le32(0);
1432 dev->reserved_blocks = __cpu_to_le32(0);
1433 vol = &dev->vol;
1434 vol->migr_state = 0;
1435 vol->migr_type = 0;
1436 vol->dirty = 0;
1437 for (i = 0; i < idx; i++) {
1438 struct imsm_dev *prev = get_imsm_dev(super, i);
1439 struct imsm_map *pmap = get_imsm_map(prev, 0);
1440
1441 offset += __le32_to_cpu(pmap->blocks_per_member);
1442 offset += IMSM_RESERVED_SECTORS;
1443 }
1444 map = get_imsm_map(dev, 0);
1445 map->pba_of_lba0 = __cpu_to_le32(offset);
1446 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1447 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1448 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1449 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1450 IMSM_T_STATE_NORMAL;
1451
1452 if (info->level == 1 && info->raid_disks > 2) {
1453 fprintf(stderr, Name": imsm does not support more than 2 disks"
1454 "in a raid1 volume\n");
1455 return 0;
1456 }
1457 if (info->level == 10)
1458 map->raid_level = 1;
1459 else
1460 map->raid_level = info->level;
1461
1462 map->num_members = info->raid_disks;
1463 for (i = 0; i < map->num_members; i++) {
1464 /* initialized in add_to_super */
1465 map->disk_ord_tbl[i] = __cpu_to_le32(0);
1466 }
1467 mpb->num_raid_devs++;
1468 super->dev_tbl[super->current_vol] = dev;
1469
1470 return 1;
1471 }
1472
1473 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1474 unsigned long long size, char *name,
1475 char *homehost, int *uuid)
1476 {
1477 /* This is primarily called by Create when creating a new array.
1478 * We will then get add_to_super called for each component, and then
1479 * write_init_super called to write it out to each device.
1480 * For IMSM, Create can create on fresh devices or on a pre-existing
1481 * array.
1482 * To create on a pre-existing array a different method will be called.
1483 * This one is just for fresh drives.
1484 */
1485 struct intel_super *super;
1486 struct imsm_super *mpb;
1487 size_t mpb_size;
1488
1489 if (!info) {
1490 st->sb = NULL;
1491 return 0;
1492 }
1493 if (st->sb)
1494 return init_super_imsm_volume(st, info, size, name, homehost,
1495 uuid);
1496
1497 super = alloc_super(1);
1498 if (!super)
1499 return 0;
1500 mpb_size = disks_to_mpb_size(info->nr_disks);
1501 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1502 free(super);
1503 return 0;
1504 }
1505 mpb = super->buf;
1506 memset(mpb, 0, mpb_size);
1507
1508 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1509 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1510 strlen(MPB_VERSION_RAID5));
1511 mpb->mpb_size = mpb_size;
1512
1513 st->sb = super;
1514 return 1;
1515 }
1516
1517 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1518 int fd, char *devname)
1519 {
1520 struct intel_super *super = st->sb;
1521 struct imsm_super *mpb = super->anchor;
1522 struct dl *dl;
1523 struct imsm_dev *dev;
1524 struct imsm_map *map;
1525 __u32 status;
1526
1527 dev = get_imsm_dev(super, super->current_vol);
1528 map = get_imsm_map(dev, 0);
1529
1530 for (dl = super->disks; dl ; dl = dl->next)
1531 if (dl->major == dk->major &&
1532 dl->minor == dk->minor)
1533 break;
1534
1535 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1536 return;
1537
1538 /* add a pristine spare to the metadata */
1539 if (dl->index < 0) {
1540 dl->index = super->anchor->num_disks;
1541 super->anchor->num_disks++;
1542 }
1543 map->disk_ord_tbl[dk->number] = __cpu_to_le32(dl->index);
1544 status = CONFIGURED_DISK | USABLE_DISK;
1545 dl->disk.status = __cpu_to_le32(status);
1546
1547 /* if we are creating the first raid device update the family number */
1548 if (super->current_vol == 0) {
1549 __u32 sum;
1550 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1551 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1552
1553 *_dev = *dev;
1554 *_disk = dl->disk;
1555 sum = __gen_imsm_checksum(mpb);
1556 mpb->family_num = __cpu_to_le32(sum);
1557 }
1558 }
1559
1560 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1561 int fd, char *devname)
1562 {
1563 struct intel_super *super = st->sb;
1564 struct dl *dd;
1565 unsigned long long size;
1566 __u32 status, id;
1567 int rv;
1568 struct stat stb;
1569
1570 if (super->current_vol >= 0) {
1571 add_to_super_imsm_volume(st, dk, fd, devname);
1572 return;
1573 }
1574
1575 fstat(fd, &stb);
1576 dd = malloc(sizeof(*dd));
1577 if (!dd) {
1578 fprintf(stderr,
1579 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1580 abort();
1581 }
1582 memset(dd, 0, sizeof(*dd));
1583 dd->major = major(stb.st_rdev);
1584 dd->minor = minor(stb.st_rdev);
1585 dd->index = -1;
1586 dd->devname = devname ? strdup(devname) : NULL;
1587 dd->fd = fd;
1588 rv = imsm_read_serial(fd, devname, dd->serial);
1589 if (rv) {
1590 fprintf(stderr,
1591 Name ": failed to retrieve scsi serial, aborting\n");
1592 free(dd);
1593 abort();
1594 }
1595
1596 get_dev_size(fd, NULL, &size);
1597 size /= 512;
1598 status = USABLE_DISK | SPARE_DISK;
1599 strcpy((char *) dd->disk.serial, (char *) dd->serial);
1600 dd->disk.total_blocks = __cpu_to_le32(size);
1601 dd->disk.status = __cpu_to_le32(status);
1602 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1603 dd->disk.scsi_id = __cpu_to_le32(id);
1604 else
1605 dd->disk.scsi_id = __cpu_to_le32(0);
1606
1607 if (st->update_tail) {
1608 dd->next = super->add;
1609 super->add = dd;
1610 } else {
1611 dd->next = super->disks;
1612 super->disks = dd;
1613 }
1614 }
1615
1616 static int store_imsm_mpb(int fd, struct intel_super *super);
1617
1618 /* spare records have their own family number and do not have any defined raid
1619 * devices
1620 */
1621 static int write_super_imsm_spares(struct intel_super *super, int doclose)
1622 {
1623 struct imsm_super mpb_save;
1624 struct imsm_super *mpb = super->anchor;
1625 __u32 sum;
1626 struct dl *d;
1627
1628 mpb_save = *mpb;
1629 mpb->num_raid_devs = 0;
1630 mpb->num_disks = 1;
1631 mpb->mpb_size = sizeof(struct imsm_super);
1632 mpb->generation_num = __cpu_to_le32(1UL);
1633
1634 for (d = super->disks; d; d = d->next) {
1635 if (d->index != -1)
1636 continue;
1637
1638 mpb->disk[0] = d->disk;
1639 sum = __gen_imsm_checksum(mpb);
1640 mpb->family_num = __cpu_to_le32(sum);
1641 sum = __gen_imsm_checksum(mpb);
1642 mpb->check_sum = __cpu_to_le32(sum);
1643
1644 if (store_imsm_mpb(d->fd, super)) {
1645 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1646 __func__, d->major, d->minor, strerror(errno));
1647 *mpb = mpb_save;
1648 return 1;
1649 }
1650 if (doclose) {
1651 close(d->fd);
1652 d->fd = -1;
1653 }
1654 }
1655
1656 *mpb = mpb_save;
1657 return 0;
1658 }
1659
1660 static int write_super_imsm(struct intel_super *super, int doclose)
1661 {
1662 struct imsm_super *mpb = super->anchor;
1663 struct dl *d;
1664 __u32 generation;
1665 __u32 sum;
1666 int spares = 0;
1667 int i;
1668 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
1669
1670 /* 'generation' is incremented everytime the metadata is written */
1671 generation = __le32_to_cpu(mpb->generation_num);
1672 generation++;
1673 mpb->generation_num = __cpu_to_le32(generation);
1674
1675 for (d = super->disks; d; d = d->next) {
1676 if (d->index == -1)
1677 spares++;
1678 else {
1679 mpb->disk[d->index] = d->disk;
1680 mpb_size += sizeof(struct imsm_disk);
1681 }
1682 }
1683
1684 for (i = 0; i < mpb->num_raid_devs; i++) {
1685 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1686
1687 imsm_copy_dev(dev, super->dev_tbl[i]);
1688 mpb_size += sizeof_imsm_dev(dev, 0);
1689 }
1690 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
1691 mpb->mpb_size = __cpu_to_le32(mpb_size);
1692
1693 /* recalculate checksum */
1694 sum = __gen_imsm_checksum(mpb);
1695 mpb->check_sum = __cpu_to_le32(sum);
1696
1697 /* write the mpb for disks that compose raid devices */
1698 for (d = super->disks; d ; d = d->next) {
1699 if (d->index < 0)
1700 continue;
1701 if (store_imsm_mpb(d->fd, super))
1702 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1703 __func__, d->major, d->minor, strerror(errno));
1704 if (doclose) {
1705 close(d->fd);
1706 d->fd = -1;
1707 }
1708 }
1709
1710 if (spares)
1711 return write_super_imsm_spares(super, doclose);
1712
1713 return 0;
1714 }
1715
1716 static int create_array(struct supertype *st)
1717 {
1718 size_t len;
1719 struct imsm_update_create_array *u;
1720 struct intel_super *super = st->sb;
1721 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1722
1723 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0);
1724 u = malloc(len);
1725 if (!u) {
1726 fprintf(stderr, "%s: failed to allocate update buffer\n",
1727 __func__);
1728 return 1;
1729 }
1730
1731 u->type = update_create_array;
1732 u->dev_idx = super->current_vol;
1733 imsm_copy_dev(&u->dev, dev);
1734 append_metadata_update(st, u, len);
1735
1736 return 0;
1737 }
1738
1739 static int add_disk(struct supertype *st)
1740 {
1741 struct intel_super *super = st->sb;
1742 size_t len;
1743 struct imsm_update_add_disk *u;
1744
1745 if (!super->add)
1746 return 0;
1747
1748 len = sizeof(*u);
1749 u = malloc(len);
1750 if (!u) {
1751 fprintf(stderr, "%s: failed to allocate update buffer\n",
1752 __func__);
1753 return 1;
1754 }
1755
1756 u->type = update_add_disk;
1757 append_metadata_update(st, u, len);
1758
1759 return 0;
1760 }
1761
1762 static int write_init_super_imsm(struct supertype *st)
1763 {
1764 if (st->update_tail) {
1765 /* queue the recently created array / added disk
1766 * as a metadata update */
1767 struct intel_super *super = st->sb;
1768 struct dl *d;
1769 int rv;
1770
1771 /* determine if we are creating a volume or adding a disk */
1772 if (super->current_vol < 0) {
1773 /* in the add disk case we are running in mdmon
1774 * context, so don't close fd's
1775 */
1776 return add_disk(st);
1777 } else
1778 rv = create_array(st);
1779
1780 for (d = super->disks; d ; d = d->next) {
1781 close(d->fd);
1782 d->fd = -1;
1783 }
1784
1785 return rv;
1786 } else
1787 return write_super_imsm(st->sb, 1);
1788 }
1789
1790 static int store_zero_imsm(struct supertype *st, int fd)
1791 {
1792 unsigned long long dsize;
1793 void *buf;
1794
1795 get_dev_size(fd, NULL, &dsize);
1796
1797 /* first block is stored on second to last sector of the disk */
1798 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1799 return 1;
1800
1801 if (posix_memalign(&buf, 512, 512) != 0)
1802 return 1;
1803
1804 memset(buf, 0, 512);
1805 if (write(fd, buf, 512) != 512)
1806 return 1;
1807 return 0;
1808 }
1809
1810 static int validate_geometry_imsm_container(struct supertype *st, int level,
1811 int layout, int raiddisks, int chunk,
1812 unsigned long long size, char *dev,
1813 unsigned long long *freesize,
1814 int verbose)
1815 {
1816 int fd;
1817 unsigned long long ldsize;
1818
1819 if (level != LEVEL_CONTAINER)
1820 return 0;
1821 if (!dev)
1822 return 1;
1823
1824 fd = open(dev, O_RDONLY|O_EXCL, 0);
1825 if (fd < 0) {
1826 if (verbose)
1827 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
1828 dev, strerror(errno));
1829 return 0;
1830 }
1831 if (!get_dev_size(fd, dev, &ldsize)) {
1832 close(fd);
1833 return 0;
1834 }
1835 close(fd);
1836
1837 *freesize = avail_size_imsm(st, ldsize >> 9);
1838
1839 return 1;
1840 }
1841
1842 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
1843 * FIX ME add ahci details
1844 */
1845 static int validate_geometry_imsm_volume(struct supertype *st, int level,
1846 int layout, int raiddisks, int chunk,
1847 unsigned long long size, char *dev,
1848 unsigned long long *freesize,
1849 int verbose)
1850 {
1851 struct stat stb;
1852 struct intel_super *super = st->sb;
1853 struct dl *dl;
1854 unsigned long long pos = 0;
1855 unsigned long long maxsize;
1856 struct extent *e;
1857 int i;
1858
1859 if (level == LEVEL_CONTAINER)
1860 return 0;
1861
1862 if (level == 1 && raiddisks > 2) {
1863 if (verbose)
1864 fprintf(stderr, Name ": imsm does not support more "
1865 "than 2 in a raid1 configuration\n");
1866 return 0;
1867 }
1868
1869 /* We must have the container info already read in. */
1870 if (!super)
1871 return 0;
1872
1873 if (!dev) {
1874 /* General test: make sure there is space for
1875 * 'raiddisks' device extents of size 'size' at a given
1876 * offset
1877 */
1878 unsigned long long minsize = size*2 /* convert to blocks */;
1879 unsigned long long start_offset = ~0ULL;
1880 int dcnt = 0;
1881 if (minsize == 0)
1882 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1883 for (dl = super->disks; dl ; dl = dl->next) {
1884 int found = 0;
1885
1886 pos = 0;
1887 i = 0;
1888 e = get_extents(super, dl);
1889 if (!e) continue;
1890 do {
1891 unsigned long long esize;
1892 esize = e[i].start - pos;
1893 if (esize >= minsize)
1894 found = 1;
1895 if (found && start_offset == ~0ULL) {
1896 start_offset = pos;
1897 break;
1898 } else if (found && pos != start_offset) {
1899 found = 0;
1900 break;
1901 }
1902 pos = e[i].start + e[i].size;
1903 i++;
1904 } while (e[i-1].size);
1905 if (found)
1906 dcnt++;
1907 free(e);
1908 }
1909 if (dcnt < raiddisks) {
1910 if (verbose)
1911 fprintf(stderr, Name ": imsm: Not enough "
1912 "devices with space for this array "
1913 "(%d < %d)\n",
1914 dcnt, raiddisks);
1915 return 0;
1916 }
1917 return 1;
1918 }
1919 /* This device must be a member of the set */
1920 if (stat(dev, &stb) < 0)
1921 return 0;
1922 if ((S_IFMT & stb.st_mode) != S_IFBLK)
1923 return 0;
1924 for (dl = super->disks ; dl ; dl = dl->next) {
1925 if (dl->major == major(stb.st_rdev) &&
1926 dl->minor == minor(stb.st_rdev))
1927 break;
1928 }
1929 if (!dl) {
1930 if (verbose)
1931 fprintf(stderr, Name ": %s is not in the "
1932 "same imsm set\n", dev);
1933 return 0;
1934 }
1935 e = get_extents(super, dl);
1936 maxsize = 0;
1937 i = 0;
1938 if (e) do {
1939 unsigned long long esize;
1940 esize = e[i].start - pos;
1941 if (esize >= maxsize)
1942 maxsize = esize;
1943 pos = e[i].start + e[i].size;
1944 i++;
1945 } while (e[i-1].size);
1946 *freesize = maxsize;
1947
1948 return 1;
1949 }
1950
1951 int imsm_bbm_log_size(struct imsm_super *mpb)
1952 {
1953 return __le32_to_cpu(mpb->bbm_log_size);
1954 }
1955
1956 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
1957 int raiddisks, int chunk, unsigned long long size,
1958 char *dev, unsigned long long *freesize,
1959 int verbose)
1960 {
1961 int fd, cfd;
1962 struct mdinfo *sra;
1963
1964 /* if given unused devices create a container
1965 * if given given devices in a container create a member volume
1966 */
1967 if (level == LEVEL_CONTAINER) {
1968 /* Must be a fresh device to add to a container */
1969 return validate_geometry_imsm_container(st, level, layout,
1970 raiddisks, chunk, size,
1971 dev, freesize,
1972 verbose);
1973 }
1974
1975 if (st->sb) {
1976 /* creating in a given container */
1977 return validate_geometry_imsm_volume(st, level, layout,
1978 raiddisks, chunk, size,
1979 dev, freesize, verbose);
1980 }
1981
1982 /* limit creation to the following levels */
1983 if (!dev)
1984 switch (level) {
1985 case 0:
1986 case 1:
1987 case 10:
1988 case 5:
1989 break;
1990 default:
1991 return 1;
1992 }
1993
1994 /* This device needs to be a device in an 'imsm' container */
1995 fd = open(dev, O_RDONLY|O_EXCL, 0);
1996 if (fd >= 0) {
1997 if (verbose)
1998 fprintf(stderr,
1999 Name ": Cannot create this array on device %s\n",
2000 dev);
2001 close(fd);
2002 return 0;
2003 }
2004 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2005 if (verbose)
2006 fprintf(stderr, Name ": Cannot open %s: %s\n",
2007 dev, strerror(errno));
2008 return 0;
2009 }
2010 /* Well, it is in use by someone, maybe an 'imsm' container. */
2011 cfd = open_container(fd);
2012 if (cfd < 0) {
2013 close(fd);
2014 if (verbose)
2015 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
2016 dev);
2017 return 0;
2018 }
2019 sra = sysfs_read(cfd, 0, GET_VERSION);
2020 close(fd);
2021 if (sra && sra->array.major_version == -1 &&
2022 strcmp(sra->text_version, "imsm") == 0) {
2023 /* This is a member of a imsm container. Load the container
2024 * and try to create a volume
2025 */
2026 struct intel_super *super;
2027
2028 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
2029 st->sb = super;
2030 st->container_dev = fd2devnum(cfd);
2031 close(cfd);
2032 return validate_geometry_imsm_volume(st, level, layout,
2033 raiddisks, chunk,
2034 size, dev,
2035 freesize, verbose);
2036 }
2037 close(cfd);
2038 } else /* may belong to another container */
2039 return 0;
2040
2041 return 1;
2042 }
2043
2044 static struct mdinfo *container_content_imsm(struct supertype *st)
2045 {
2046 /* Given a container loaded by load_super_imsm_all,
2047 * extract information about all the arrays into
2048 * an mdinfo tree.
2049 *
2050 * For each imsm_dev create an mdinfo, fill it in,
2051 * then look for matching devices in super->disks
2052 * and create appropriate device mdinfo.
2053 */
2054 struct intel_super *super = st->sb;
2055 struct imsm_super *mpb = super->anchor;
2056 struct mdinfo *rest = NULL;
2057 int i;
2058
2059 /* do not assemble arrays that might have bad blocks */
2060 if (imsm_bbm_log_size(super->anchor)) {
2061 fprintf(stderr, Name ": BBM log found in metadata. "
2062 "Cannot activate array(s).\n");
2063 return NULL;
2064 }
2065
2066 for (i = 0; i < mpb->num_raid_devs; i++) {
2067 struct imsm_dev *dev = get_imsm_dev(super, i);
2068 struct imsm_vol *vol = &dev->vol;
2069 struct imsm_map *map = get_imsm_map(dev, 0);
2070 struct mdinfo *this;
2071 int slot;
2072
2073 this = malloc(sizeof(*this));
2074 memset(this, 0, sizeof(*this));
2075 this->next = rest;
2076
2077 this->array.level = get_imsm_raid_level(map);
2078 this->array.raid_disks = map->num_members;
2079 this->array.layout = imsm_level_to_layout(this->array.level);
2080 this->array.md_minor = -1;
2081 this->array.ctime = 0;
2082 this->array.utime = 0;
2083 this->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
2084 this->array.state = !vol->dirty;
2085 this->container_member = i;
2086 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
2087 dev->vol.dirty || dev->vol.migr_state)
2088 this->resync_start = 0;
2089 else
2090 this->resync_start = ~0ULL;
2091
2092 strncpy(this->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2093 this->name[MAX_RAID_SERIAL_LEN] = 0;
2094
2095 sprintf(this->text_version, "/%s/%d",
2096 devnum2devname(st->container_dev),
2097 this->container_member);
2098
2099 memset(this->uuid, 0, sizeof(this->uuid));
2100
2101 this->component_size = __le32_to_cpu(map->blocks_per_member);
2102
2103 for (slot = 0 ; slot < map->num_members; slot++) {
2104 struct mdinfo *info_d;
2105 struct dl *d;
2106 int idx;
2107 int skip;
2108 __u32 s;
2109 __u32 ord;
2110
2111 skip = 0;
2112 idx = get_imsm_disk_idx(map, slot);
2113 ord = get_imsm_ord_tbl_ent(dev, slot);
2114 for (d = super->disks; d ; d = d->next)
2115 if (d->index == idx)
2116 break;
2117
2118 if (d == NULL)
2119 skip = 1;
2120
2121 s = d ? __le32_to_cpu(d->disk.status) : 0;
2122 if (s & FAILED_DISK)
2123 skip = 1;
2124 if (!(s & USABLE_DISK))
2125 skip = 1;
2126 if (ord & IMSM_ORD_REBUILD)
2127 skip = 1;
2128
2129 /*
2130 * if we skip some disks the array will be assmebled degraded;
2131 * reset resync start to avoid a dirty-degraded situation
2132 *
2133 * FIXME handle dirty degraded
2134 */
2135 if (skip && !dev->vol.dirty)
2136 this->resync_start = ~0ULL;
2137 if (skip)
2138 continue;
2139
2140 info_d = malloc(sizeof(*info_d));
2141 if (!info_d) {
2142 fprintf(stderr, Name ": failed to allocate disk"
2143 " for volume %s\n", (char *) dev->volume);
2144 free(this);
2145 this = rest;
2146 break;
2147 }
2148 memset(info_d, 0, sizeof(*info_d));
2149 info_d->next = this->devs;
2150 this->devs = info_d;
2151
2152 info_d->disk.number = d->index;
2153 info_d->disk.major = d->major;
2154 info_d->disk.minor = d->minor;
2155 info_d->disk.raid_disk = slot;
2156
2157 this->array.working_disks++;
2158
2159 info_d->events = __le32_to_cpu(mpb->generation_num);
2160 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2161 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2162 if (d->devname)
2163 strcpy(info_d->name, d->devname);
2164 }
2165 rest = this;
2166 }
2167
2168 return rest;
2169 }
2170
2171
2172 static int imsm_open_new(struct supertype *c, struct active_array *a,
2173 char *inst)
2174 {
2175 struct intel_super *super = c->sb;
2176 struct imsm_super *mpb = super->anchor;
2177
2178 if (atoi(inst) >= mpb->num_raid_devs) {
2179 fprintf(stderr, "%s: subarry index %d, out of range\n",
2180 __func__, atoi(inst));
2181 return -ENODEV;
2182 }
2183
2184 dprintf("imsm: open_new %s\n", inst);
2185 a->info.container_member = atoi(inst);
2186 return 0;
2187 }
2188
2189 static __u8 imsm_check_degraded(struct intel_super *super, int n, int failed)
2190 {
2191 struct imsm_dev *dev = get_imsm_dev(super, n);
2192 struct imsm_map *map = get_imsm_map(dev, 0);
2193
2194 if (!failed)
2195 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
2196 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
2197
2198 switch (get_imsm_raid_level(map)) {
2199 case 0:
2200 return IMSM_T_STATE_FAILED;
2201 break;
2202 case 1:
2203 if (failed < map->num_members)
2204 return IMSM_T_STATE_DEGRADED;
2205 else
2206 return IMSM_T_STATE_FAILED;
2207 break;
2208 case 10:
2209 {
2210 /**
2211 * check to see if any mirrors have failed,
2212 * otherwise we are degraded
2213 */
2214 int device_per_mirror = 2; /* FIXME is this always the case?
2215 * and are they always adjacent?
2216 */
2217 int r10fail = 0;
2218 int i;
2219
2220 for (i = 0; i < map->num_members; i++) {
2221 int idx = get_imsm_disk_idx(map, i);
2222 struct imsm_disk *disk = get_imsm_disk(super, idx);
2223
2224 if (!disk)
2225 r10fail++;
2226 else if (__le32_to_cpu(disk->status) & FAILED_DISK)
2227 r10fail++;
2228
2229 if (r10fail >= device_per_mirror)
2230 return IMSM_T_STATE_FAILED;
2231
2232 /* reset 'r10fail' for next mirror set */
2233 if (!((i + 1) % device_per_mirror))
2234 r10fail = 0;
2235 }
2236
2237 return IMSM_T_STATE_DEGRADED;
2238 }
2239 case 5:
2240 if (failed < 2)
2241 return IMSM_T_STATE_DEGRADED;
2242 else
2243 return IMSM_T_STATE_FAILED;
2244 break;
2245 default:
2246 break;
2247 }
2248
2249 return map->map_state;
2250 }
2251
2252 static int imsm_count_failed(struct intel_super *super, struct imsm_map *map)
2253 {
2254 int i;
2255 int failed = 0;
2256 struct imsm_disk *disk;
2257
2258 for (i = 0; i < map->num_members; i++) {
2259 int idx = get_imsm_disk_idx(map, i);
2260
2261 disk = get_imsm_disk(super, idx);
2262 if (!disk)
2263 failed++;
2264 else if (__le32_to_cpu(disk->status) & FAILED_DISK)
2265 failed++;
2266 else if (!(__le32_to_cpu(disk->status) & USABLE_DISK))
2267 failed++;
2268 }
2269
2270 return failed;
2271 }
2272
2273 static int imsm_set_array_state(struct active_array *a, int consistent)
2274 {
2275 int inst = a->info.container_member;
2276 struct intel_super *super = a->container->sb;
2277 struct imsm_dev *dev = get_imsm_dev(super, inst);
2278 struct imsm_map *map = get_imsm_map(dev, 0);
2279 int dirty = !consistent;
2280 int failed;
2281 __u8 map_state;
2282
2283 failed = imsm_count_failed(super, map);
2284 map_state = imsm_check_degraded(super, inst, failed);
2285
2286 if (consistent && !dev->vol.dirty &&
2287 (dev->vol.migr_state || map_state != IMSM_T_STATE_NORMAL))
2288 a->resync_start = 0ULL;
2289 if (consistent == 2 && a->resync_start != ~0ULL)
2290 consistent = 0;
2291
2292 if (a->resync_start == ~0ULL) {
2293 /* complete recovery or initial resync */
2294 if (map->map_state != map_state) {
2295 dprintf("imsm: map_state %d: %d\n",
2296 inst, map_state);
2297 map->map_state = map_state;
2298 super->updates_pending++;
2299 }
2300 if (dev->vol.migr_state) {
2301 dprintf("imsm: mark resync complete\n");
2302 dev->vol.migr_state = 0;
2303 dev->vol.migr_type = 0;
2304 super->updates_pending++;
2305 }
2306 } else if (!dev->vol.migr_state) {
2307 dprintf("imsm: mark '%s' (%llu)\n",
2308 failed ? "rebuild" : "initializing", a->resync_start);
2309 /* mark that we are rebuilding */
2310 map->map_state = failed ? map_state : IMSM_T_STATE_NORMAL;
2311 dev->vol.migr_state = 1;
2312 dev->vol.migr_type = failed ? 1 : 0;
2313 dup_map(dev);
2314 a->check_degraded = 1;
2315 super->updates_pending++;
2316 }
2317
2318 /* mark dirty / clean */
2319 if (dirty != dev->vol.dirty) {
2320 dprintf("imsm: mark '%s' (%llu)\n",
2321 dirty ? "dirty" : "clean", a->resync_start);
2322 dev->vol.dirty = dirty;
2323 super->updates_pending++;
2324 }
2325 return consistent;
2326 }
2327
2328 static void imsm_set_disk(struct active_array *a, int n, int state)
2329 {
2330 int inst = a->info.container_member;
2331 struct intel_super *super = a->container->sb;
2332 struct imsm_dev *dev = get_imsm_dev(super, inst);
2333 struct imsm_map *map = get_imsm_map(dev, 0);
2334 struct imsm_disk *disk;
2335 __u32 status;
2336 int failed = 0;
2337 int new_failure = 0;
2338
2339 if (n > map->num_members)
2340 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2341 n, map->num_members - 1);
2342
2343 if (n < 0)
2344 return;
2345
2346 dprintf("imsm: set_disk %d:%x\n", n, state);
2347
2348 disk = get_imsm_disk(super, get_imsm_disk_idx(map, n));
2349
2350 /* check for new failures */
2351 status = __le32_to_cpu(disk->status);
2352 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2353 status |= FAILED_DISK;
2354 disk->status = __cpu_to_le32(status);
2355 disk->scsi_id = __cpu_to_le32(~0UL);
2356 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
2357 new_failure = 1;
2358 super->updates_pending++;
2359 }
2360 /* check if in_sync */
2361 if ((state & DS_INSYNC) && !(status & USABLE_DISK)) {
2362 status |= USABLE_DISK;
2363 disk->status = __cpu_to_le32(status);
2364 super->updates_pending++;
2365 }
2366
2367 /* the number of failures have changed, count up 'failed' to determine
2368 * degraded / failed status
2369 */
2370 if (new_failure && map->map_state != IMSM_T_STATE_FAILED)
2371 failed = imsm_count_failed(super, map);
2372
2373 /* determine map_state based on failed or in_sync count */
2374 if (failed)
2375 map->map_state = imsm_check_degraded(super, inst, failed);
2376 else if (map->map_state == IMSM_T_STATE_DEGRADED) {
2377 struct mdinfo *d;
2378 int working = 0;
2379
2380 for (d = a->info.devs ; d ; d = d->next)
2381 if (d->curr_state & DS_INSYNC)
2382 working++;
2383
2384 if (working == a->info.array.raid_disks) {
2385 map->map_state = IMSM_T_STATE_NORMAL;
2386 dev->vol.migr_state = 0;
2387 dev->vol.migr_type = 0;
2388 super->updates_pending++;
2389 }
2390 }
2391 }
2392
2393 static int store_imsm_mpb(int fd, struct intel_super *super)
2394 {
2395 struct imsm_super *mpb = super->anchor;
2396 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2397 unsigned long long dsize;
2398 unsigned long long sectors;
2399
2400 get_dev_size(fd, NULL, &dsize);
2401
2402 if (mpb_size > 512) {
2403 /* -1 to account for anchor */
2404 sectors = mpb_sectors(mpb) - 1;
2405
2406 /* write the extended mpb to the sectors preceeding the anchor */
2407 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2408 return 1;
2409
2410 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2411 return 1;
2412 }
2413
2414 /* first block is stored on second to last sector of the disk */
2415 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2416 return 1;
2417
2418 if (write(fd, super->buf, 512) != 512)
2419 return 1;
2420
2421 return 0;
2422 }
2423
2424 static void imsm_sync_metadata(struct supertype *container)
2425 {
2426 struct intel_super *super = container->sb;
2427
2428 if (!super->updates_pending)
2429 return;
2430
2431 write_super_imsm(super, 0);
2432
2433 super->updates_pending = 0;
2434 }
2435
2436 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
2437 {
2438 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2439 struct imsm_map *map = get_imsm_map(dev, 0);
2440 int i = get_imsm_disk_idx(map, idx);
2441 struct dl *dl;
2442
2443 for (dl = super->disks; dl; dl = dl->next)
2444 if (dl->index == i)
2445 break;
2446
2447 if (dl && __le32_to_cpu(dl->disk.status) & FAILED_DISK)
2448 dl = NULL;
2449
2450 if (dl)
2451 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
2452
2453 return dl;
2454 }
2455
2456 static struct dl *imsm_add_spare(struct intel_super *super, int idx, struct active_array *a)
2457 {
2458 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2459 struct imsm_map *map = get_imsm_map(dev, 0);
2460 unsigned long long esize;
2461 unsigned long long pos;
2462 struct mdinfo *d;
2463 struct extent *ex;
2464 int j;
2465 int found;
2466 __u32 array_start;
2467 __u32 status;
2468 struct dl *dl;
2469
2470 for (dl = super->disks; dl; dl = dl->next) {
2471 /* If in this array, skip */
2472 for (d = a->info.devs ; d ; d = d->next)
2473 if (d->disk.major == dl->major &&
2474 d->disk.minor == dl->minor) {
2475 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2476 break;
2477 }
2478 if (d)
2479 continue;
2480
2481 /* skip marked in use or failed drives */
2482 status = __le32_to_cpu(dl->disk.status);
2483 if (status & FAILED_DISK || status & CONFIGURED_DISK) {
2484 dprintf("%x:%x status ( %s%s)\n",
2485 dl->major, dl->minor,
2486 status & FAILED_DISK ? "failed " : "",
2487 status & CONFIGURED_DISK ? "configured " : "");
2488 continue;
2489 }
2490
2491 /* Does this unused device have the requisite free space?
2492 * We need a->info.component_size sectors
2493 */
2494 ex = get_extents(super, dl);
2495 if (!ex) {
2496 dprintf("cannot get extents\n");
2497 continue;
2498 }
2499 found = 0;
2500 j = 0;
2501 pos = 0;
2502 array_start = __le32_to_cpu(map->pba_of_lba0);
2503
2504 do {
2505 /* check that we can start at pba_of_lba0 with
2506 * a->info.component_size of space
2507 */
2508 esize = ex[j].start - pos;
2509 if (array_start >= pos &&
2510 array_start + a->info.component_size < ex[j].start) {
2511 found = 1;
2512 break;
2513 }
2514 pos = ex[j].start + ex[j].size;
2515 j++;
2516
2517 } while (ex[j-1].size);
2518
2519 free(ex);
2520 if (!found) {
2521 dprintf("%x:%x does not have %llu at %d\n",
2522 dl->major, dl->minor,
2523 a->info.component_size,
2524 __le32_to_cpu(map->pba_of_lba0));
2525 /* No room */
2526 continue;
2527 } else
2528 break;
2529 }
2530
2531 return dl;
2532 }
2533
2534 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2535 struct metadata_update **updates)
2536 {
2537 /**
2538 * Find a device with unused free space and use it to replace a
2539 * failed/vacant region in an array. We replace failed regions one a
2540 * array at a time. The result is that a new spare disk will be added
2541 * to the first failed array and after the monitor has finished
2542 * propagating failures the remainder will be consumed.
2543 *
2544 * FIXME add a capability for mdmon to request spares from another
2545 * container.
2546 */
2547
2548 struct intel_super *super = a->container->sb;
2549 int inst = a->info.container_member;
2550 struct imsm_dev *dev = get_imsm_dev(super, inst);
2551 struct imsm_map *map = get_imsm_map(dev, 0);
2552 int failed = a->info.array.raid_disks;
2553 struct mdinfo *rv = NULL;
2554 struct mdinfo *d;
2555 struct mdinfo *di;
2556 struct metadata_update *mu;
2557 struct dl *dl;
2558 struct imsm_update_activate_spare *u;
2559 int num_spares = 0;
2560 int i;
2561
2562 for (d = a->info.devs ; d ; d = d->next) {
2563 if ((d->curr_state & DS_FAULTY) &&
2564 d->state_fd >= 0)
2565 /* wait for Removal to happen */
2566 return NULL;
2567 if (d->state_fd >= 0)
2568 failed--;
2569 }
2570
2571 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2572 inst, failed, a->info.array.raid_disks, a->info.array.level);
2573 if (imsm_check_degraded(super, inst, failed) != IMSM_T_STATE_DEGRADED)
2574 return NULL;
2575
2576 /* For each slot, if it is not working, find a spare */
2577 for (i = 0; i < a->info.array.raid_disks; i++) {
2578 for (d = a->info.devs ; d ; d = d->next)
2579 if (d->disk.raid_disk == i)
2580 break;
2581 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2582 if (d && (d->state_fd >= 0))
2583 continue;
2584
2585 /*
2586 * OK, this device needs recovery. Try to re-add the previous
2587 * occupant of this slot, if this fails add a new spare
2588 */
2589 dl = imsm_readd(super, i, a);
2590 if (!dl)
2591 dl = imsm_add_spare(super, i, a);
2592 if (!dl)
2593 continue;
2594
2595 /* found a usable disk with enough space */
2596 di = malloc(sizeof(*di));
2597 memset(di, 0, sizeof(*di));
2598
2599 /* dl->index will be -1 in the case we are activating a
2600 * pristine spare. imsm_process_update() will create a
2601 * new index in this case. Once a disk is found to be
2602 * failed in all member arrays it is kicked from the
2603 * metadata
2604 */
2605 di->disk.number = dl->index;
2606
2607 /* (ab)use di->devs to store a pointer to the device
2608 * we chose
2609 */
2610 di->devs = (struct mdinfo *) dl;
2611
2612 di->disk.raid_disk = i;
2613 di->disk.major = dl->major;
2614 di->disk.minor = dl->minor;
2615 di->disk.state = 0;
2616 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
2617 di->component_size = a->info.component_size;
2618 di->container_member = inst;
2619 di->next = rv;
2620 rv = di;
2621 num_spares++;
2622 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2623 i, di->data_offset);
2624
2625 break;
2626 }
2627
2628 if (!rv)
2629 /* No spares found */
2630 return rv;
2631 /* Now 'rv' has a list of devices to return.
2632 * Create a metadata_update record to update the
2633 * disk_ord_tbl for the array
2634 */
2635 mu = malloc(sizeof(*mu));
2636 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2637 mu->space = NULL;
2638 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2639 mu->next = *updates;
2640 u = (struct imsm_update_activate_spare *) mu->buf;
2641
2642 for (di = rv ; di ; di = di->next) {
2643 u->type = update_activate_spare;
2644 u->dl = (struct dl *) di->devs;
2645 di->devs = NULL;
2646 u->slot = di->disk.raid_disk;
2647 u->array = inst;
2648 u->next = u + 1;
2649 u++;
2650 }
2651 (u-1)->next = NULL;
2652 *updates = mu;
2653
2654 return rv;
2655 }
2656
2657 static int disks_overlap(struct imsm_map *m1, struct imsm_map *m2)
2658 {
2659 int i;
2660 int j;
2661 int idx;
2662
2663 for (i = 0; i < m1->num_members; i++) {
2664 idx = get_imsm_disk_idx(m1, i);
2665 for (j = 0; j < m2->num_members; j++)
2666 if (idx == get_imsm_disk_idx(m2, j))
2667 return 1;
2668 }
2669
2670 return 0;
2671 }
2672
2673 static void imsm_delete(struct intel_super *super, struct dl **dlp);
2674
2675 static void imsm_process_update(struct supertype *st,
2676 struct metadata_update *update)
2677 {
2678 /**
2679 * crack open the metadata_update envelope to find the update record
2680 * update can be one of:
2681 * update_activate_spare - a spare device has replaced a failed
2682 * device in an array, update the disk_ord_tbl. If this disk is
2683 * present in all member arrays then also clear the SPARE_DISK
2684 * flag
2685 */
2686 struct intel_super *super = st->sb;
2687 struct imsm_super *mpb;
2688 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2689
2690 /* update requires a larger buf but the allocation failed */
2691 if (super->next_len && !super->next_buf) {
2692 super->next_len = 0;
2693 return;
2694 }
2695
2696 if (super->next_buf) {
2697 memcpy(super->next_buf, super->buf, super->len);
2698 free(super->buf);
2699 super->len = super->next_len;
2700 super->buf = super->next_buf;
2701
2702 super->next_len = 0;
2703 super->next_buf = NULL;
2704 }
2705
2706 mpb = super->anchor;
2707
2708 switch (type) {
2709 case update_activate_spare: {
2710 struct imsm_update_activate_spare *u = (void *) update->buf;
2711 struct imsm_dev *dev = get_imsm_dev(super, u->array);
2712 struct imsm_map *map = get_imsm_map(dev, 0);
2713 struct active_array *a;
2714 struct imsm_disk *disk;
2715 __u32 status;
2716 struct dl *dl;
2717 unsigned int found;
2718 int victim;
2719 int i;
2720
2721 for (dl = super->disks; dl; dl = dl->next)
2722 if (dl == u->dl)
2723 break;
2724
2725 if (!dl) {
2726 fprintf(stderr, "error: imsm_activate_spare passed "
2727 "an unknown disk (index: %d serial: %s)\n",
2728 u->dl->index, u->dl->serial);
2729 return;
2730 }
2731
2732 super->updates_pending++;
2733
2734 /* adding a pristine spare, assign a new index */
2735 if (dl->index < 0) {
2736 dl->index = super->anchor->num_disks;
2737 super->anchor->num_disks++;
2738 }
2739 victim = get_imsm_disk_idx(map, u->slot);
2740 map->disk_ord_tbl[u->slot] = __cpu_to_le32(dl->index);
2741 disk = &dl->disk;
2742 status = __le32_to_cpu(disk->status);
2743 status |= CONFIGURED_DISK;
2744 status &= ~(SPARE_DISK | USABLE_DISK);
2745 disk->status = __cpu_to_le32(status);
2746
2747 /* count arrays using the victim in the metadata */
2748 found = 0;
2749 for (a = st->arrays; a ; a = a->next) {
2750 dev = get_imsm_dev(super, a->info.container_member);
2751 map = get_imsm_map(dev, 0);
2752 for (i = 0; i < map->num_members; i++)
2753 if (victim == get_imsm_disk_idx(map, i))
2754 found++;
2755 }
2756
2757 /* clear some flags if the victim is no longer being
2758 * utilized anywhere
2759 */
2760 if (!found) {
2761 struct dl **dlp;
2762 for (dlp = &super->disks; *dlp; )
2763 if ((*dlp)->index == victim)
2764 break;
2765 disk = &(*dlp)->disk;
2766 status = __le32_to_cpu(disk->status);
2767 status &= ~(CONFIGURED_DISK | USABLE_DISK);
2768 disk->status = __cpu_to_le32(status);
2769 /* We know that 'manager' isn't touching anything,
2770 * so it is safe to:
2771 */
2772 imsm_delete(super, dlp);
2773 }
2774 break;
2775 }
2776 case update_create_array: {
2777 /* someone wants to create a new array, we need to be aware of
2778 * a few races/collisions:
2779 * 1/ 'Create' called by two separate instances of mdadm
2780 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
2781 * devices that have since been assimilated via
2782 * activate_spare.
2783 * In the event this update can not be carried out mdadm will
2784 * (FIX ME) notice that its update did not take hold.
2785 */
2786 struct imsm_update_create_array *u = (void *) update->buf;
2787 struct imsm_dev *dev;
2788 struct imsm_map *map, *new_map;
2789 unsigned long long start, end;
2790 unsigned long long new_start, new_end;
2791 int i;
2792 int overlap = 0;
2793
2794 /* handle racing creates: first come first serve */
2795 if (u->dev_idx < mpb->num_raid_devs) {
2796 dprintf("%s: subarray %d already defined\n",
2797 __func__, u->dev_idx);
2798 return;
2799 }
2800
2801 /* check update is next in sequence */
2802 if (u->dev_idx != mpb->num_raid_devs) {
2803 dprintf("%s: can not create array %d expected index %d\n",
2804 __func__, u->dev_idx, mpb->num_raid_devs);
2805 return;
2806 }
2807
2808 new_map = get_imsm_map(&u->dev, 0);
2809 new_start = __le32_to_cpu(new_map->pba_of_lba0);
2810 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
2811
2812 /* handle activate_spare versus create race:
2813 * check to make sure that overlapping arrays do not include
2814 * overalpping disks
2815 */
2816 for (i = 0; i < mpb->num_raid_devs; i++) {
2817 dev = get_imsm_dev(super, i);
2818 map = get_imsm_map(dev, 0);
2819 start = __le32_to_cpu(map->pba_of_lba0);
2820 end = start + __le32_to_cpu(map->blocks_per_member);
2821 if ((new_start >= start && new_start <= end) ||
2822 (start >= new_start && start <= new_end))
2823 overlap = 1;
2824 if (overlap && disks_overlap(map, new_map)) {
2825 dprintf("%s: arrays overlap\n", __func__);
2826 return;
2827 }
2828 }
2829 /* check num_members sanity */
2830 if (new_map->num_members > mpb->num_disks) {
2831 dprintf("%s: num_disks out of range\n", __func__);
2832 return;
2833 }
2834
2835 /* check that prepare update was successful */
2836 if (!update->space) {
2837 dprintf("%s: prepare update failed\n", __func__);
2838 return;
2839 }
2840
2841 super->updates_pending++;
2842 dev = update->space;
2843 update->space = NULL;
2844 imsm_copy_dev(dev, &u->dev);
2845 map = get_imsm_map(dev, 0);
2846 super->dev_tbl[u->dev_idx] = dev;
2847 mpb->num_raid_devs++;
2848
2849 /* fix up flags */
2850 for (i = 0; i < map->num_members; i++) {
2851 struct imsm_disk *disk;
2852 __u32 status;
2853
2854 disk = get_imsm_disk(super, get_imsm_disk_idx(map, i));
2855 status = __le32_to_cpu(disk->status);
2856 status |= CONFIGURED_DISK;
2857 status &= ~SPARE_DISK;
2858 disk->status = __cpu_to_le32(status);
2859 }
2860 break;
2861 }
2862 case update_add_disk:
2863
2864 /* we may be able to repair some arrays if disks are
2865 * being added */
2866 if (super->add) {
2867 struct active_array *a;
2868 for (a = st->arrays; a; a = a->next)
2869 a->check_degraded = 1;
2870 }
2871 /* check if we can add / replace some disks in the
2872 * metadata */
2873 while (super->add) {
2874 struct dl **dlp, *dl, *al;
2875 al = super->add;
2876 super->add = al->next;
2877 for (dlp = &super->disks; *dlp ; ) {
2878 if (memcmp(al->serial, (*dlp)->serial,
2879 MAX_RAID_SERIAL_LEN) == 0) {
2880 dl = *dlp;
2881 *dlp = (*dlp)->next;
2882 __free_imsm_disk(dl);
2883 break;
2884 } else
2885 dlp = &(*dlp)->next;
2886 }
2887 al->next = super->disks;
2888 super->disks = al;
2889 }
2890
2891 break;
2892 }
2893 }
2894
2895 static void imsm_prepare_update(struct supertype *st,
2896 struct metadata_update *update)
2897 {
2898 /**
2899 * Allocate space to hold new disk entries, raid-device entries or a new
2900 * mpb if necessary. The manager synchronously waits for updates to
2901 * complete in the monitor, so new mpb buffers allocated here can be
2902 * integrated by the monitor thread without worrying about live pointers
2903 * in the manager thread.
2904 */
2905 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2906 struct intel_super *super = st->sb;
2907 struct imsm_super *mpb = super->anchor;
2908 size_t buf_len;
2909 size_t len = 0;
2910
2911 switch (type) {
2912 case update_create_array: {
2913 struct imsm_update_create_array *u = (void *) update->buf;
2914
2915 len = sizeof_imsm_dev(&u->dev, 1);
2916 update->space = malloc(len);
2917 break;
2918 default:
2919 break;
2920 }
2921 }
2922
2923 /* check if we need a larger metadata buffer */
2924 if (super->next_buf)
2925 buf_len = super->next_len;
2926 else
2927 buf_len = super->len;
2928
2929 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
2930 /* ok we need a larger buf than what is currently allocated
2931 * if this allocation fails process_update will notice that
2932 * ->next_len is set and ->next_buf is NULL
2933 */
2934 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
2935 if (super->next_buf)
2936 free(super->next_buf);
2937
2938 super->next_len = buf_len;
2939 if (posix_memalign(&super->next_buf, buf_len, 512) != 0)
2940 super->next_buf = NULL;
2941 }
2942 }
2943
2944 /* must be called while manager is quiesced */
2945 static void imsm_delete(struct intel_super *super, struct dl **dlp)
2946 {
2947 struct imsm_super *mpb = super->anchor;
2948 struct dl *dl = *dlp;
2949 struct dl *iter;
2950 struct imsm_dev *dev;
2951 struct imsm_map *map;
2952 int i, j;
2953
2954 dprintf("%s: deleting device %x:%x from imsm_super\n",
2955 __func__, dl->major, dl->minor);
2956
2957 /* shift all indexes down one */
2958 for (iter = super->disks; iter; iter = iter->next)
2959 if (iter->index > dl->index)
2960 iter->index--;
2961
2962 for (i = 0; i < mpb->num_raid_devs; i++) {
2963 dev = get_imsm_dev(super, i);
2964 map = get_imsm_map(dev, 0);
2965
2966 for (j = 0; j < map->num_members; j++) {
2967 int idx = get_imsm_disk_idx(map, j);
2968
2969 if (idx > dl->index)
2970 map->disk_ord_tbl[j] = __cpu_to_le32(idx - 1);
2971 }
2972 }
2973
2974 mpb->num_disks--;
2975 super->updates_pending++;
2976 *dlp = (*dlp)->next;
2977 __free_imsm_disk(dl);
2978 }
2979
2980 struct superswitch super_imsm = {
2981 #ifndef MDASSEMBLE
2982 .examine_super = examine_super_imsm,
2983 .brief_examine_super = brief_examine_super_imsm,
2984 .detail_super = detail_super_imsm,
2985 .brief_detail_super = brief_detail_super_imsm,
2986 .write_init_super = write_init_super_imsm,
2987 #endif
2988 .match_home = match_home_imsm,
2989 .uuid_from_super= uuid_from_super_imsm,
2990 .getinfo_super = getinfo_super_imsm,
2991 .update_super = update_super_imsm,
2992
2993 .avail_size = avail_size_imsm,
2994
2995 .compare_super = compare_super_imsm,
2996
2997 .load_super = load_super_imsm,
2998 .init_super = init_super_imsm,
2999 .add_to_super = add_to_super_imsm,
3000 .store_super = store_zero_imsm,
3001 .free_super = free_super_imsm,
3002 .match_metadata_desc = match_metadata_desc_imsm,
3003 .container_content = container_content_imsm,
3004
3005 .validate_geometry = validate_geometry_imsm,
3006 .external = 1,
3007
3008 /* for mdmon */
3009 .open_new = imsm_open_new,
3010 .load_super = load_super_imsm,
3011 .set_array_state= imsm_set_array_state,
3012 .set_disk = imsm_set_disk,
3013 .sync_metadata = imsm_sync_metadata,
3014 .activate_spare = imsm_activate_spare,
3015 .process_update = imsm_process_update,
3016 .prepare_update = imsm_prepare_update,
3017 };