]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: determine failed indexes from the most up-to-date disk
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2007 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include <values.h>
25 #include <scsi/sg.h>
26 #include <ctype.h>
27
28 /* MPB == Metadata Parameter Block */
29 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
30 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
31 #define MPB_VERSION_RAID0 "1.0.00"
32 #define MPB_VERSION_RAID1 "1.1.00"
33 #define MPB_VERSION_RAID5 "1.2.02"
34 #define MAX_SIGNATURE_LENGTH 32
35 #define MAX_RAID_SERIAL_LEN 16
36 #define MPB_SECTOR_CNT 418
37 #define IMSM_RESERVED_SECTORS 4096
38
39 /* Disk configuration info. */
40 #define IMSM_MAX_DEVICES 255
41 struct imsm_disk {
42 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
43 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
44 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
45 __u32 status; /* 0xF0 - 0xF3 */
46 #define SPARE_DISK 0x01 /* Spare */
47 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
48 #define FAILED_DISK 0x04 /* Permanent failure */
49 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
50
51 #define IMSM_DISK_FILLERS 5
52 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
53 };
54
55 /* RAID map configuration infos. */
56 struct imsm_map {
57 __u32 pba_of_lba0; /* start address of partition */
58 __u32 blocks_per_member;/* blocks per member */
59 __u32 num_data_stripes; /* number of data stripes */
60 __u16 blocks_per_strip;
61 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
62 #define IMSM_T_STATE_NORMAL 0
63 #define IMSM_T_STATE_UNINITIALIZED 1
64 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
65 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
66 __u8 raid_level;
67 #define IMSM_T_RAID0 0
68 #define IMSM_T_RAID1 1
69 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
70 __u8 num_members; /* number of member disks */
71 __u8 reserved[3];
72 __u32 filler[7]; /* expansion area */
73 #define IMSM_ORD_REBUILD (1 << 24)
74 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
75 * top byte contains some flags
76 */
77 } __attribute__ ((packed));
78
79 struct imsm_vol {
80 __u32 curr_migr_unit;
81 __u32 reserved;
82 __u8 migr_state; /* Normal or Migrating */
83 __u8 migr_type; /* Initializing, Rebuilding, ... */
84 __u8 dirty;
85 __u8 fill[1];
86 __u32 filler[5];
87 struct imsm_map map[1];
88 /* here comes another one if migr_state */
89 } __attribute__ ((packed));
90
91 struct imsm_dev {
92 __u8 volume[MAX_RAID_SERIAL_LEN];
93 __u32 size_low;
94 __u32 size_high;
95 __u32 status; /* Persistent RaidDev status */
96 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
97 #define IMSM_DEV_FILLERS 12
98 __u32 filler[IMSM_DEV_FILLERS];
99 struct imsm_vol vol;
100 } __attribute__ ((packed));
101
102 struct imsm_super {
103 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
104 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
105 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
106 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
107 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
108 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
109 __u32 attributes; /* 0x34 - 0x37 */
110 __u8 num_disks; /* 0x38 Number of configured disks */
111 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
112 __u8 error_log_pos; /* 0x3A */
113 __u8 fill[1]; /* 0x3B */
114 __u32 cache_size; /* 0x3c - 0x40 in mb */
115 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
116 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
117 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
118 #define IMSM_FILLERS 35
119 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
120 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
121 /* here comes imsm_dev[num_raid_devs] */
122 /* here comes BBM logs */
123 } __attribute__ ((packed));
124
125 #define BBM_LOG_MAX_ENTRIES 254
126
127 struct bbm_log_entry {
128 __u64 defective_block_start;
129 #define UNREADABLE 0xFFFFFFFF
130 __u32 spare_block_offset;
131 __u16 remapped_marked_count;
132 __u16 disk_ordinal;
133 } __attribute__ ((__packed__));
134
135 struct bbm_log {
136 __u32 signature; /* 0xABADB10C */
137 __u32 entry_count;
138 __u32 reserved_spare_block_count; /* 0 */
139 __u32 reserved; /* 0xFFFF */
140 __u64 first_spare_lba;
141 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
142 } __attribute__ ((__packed__));
143
144
145 #ifndef MDASSEMBLE
146 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
147 #endif
148
149 static unsigned int sector_count(__u32 bytes)
150 {
151 return ((bytes + (512-1)) & (~(512-1))) / 512;
152 }
153
154 static unsigned int mpb_sectors(struct imsm_super *mpb)
155 {
156 return sector_count(__le32_to_cpu(mpb->mpb_size));
157 }
158
159 /* internal representation of IMSM metadata */
160 struct intel_super {
161 union {
162 void *buf; /* O_DIRECT buffer for reading/writing metadata */
163 struct imsm_super *anchor; /* immovable parameters */
164 };
165 size_t len; /* size of the 'buf' allocation */
166 void *next_buf; /* for realloc'ing buf from the manager */
167 size_t next_len;
168 int updates_pending; /* count of pending updates for mdmon */
169 int creating_imsm; /* flag to indicate container creation */
170 int current_vol; /* index of raid device undergoing creation */
171 #define IMSM_MAX_RAID_DEVS 2
172 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
173 struct dl {
174 struct dl *next;
175 int index;
176 __u8 serial[MAX_RAID_SERIAL_LEN];
177 int major, minor;
178 char *devname;
179 struct imsm_disk disk;
180 int fd;
181 } *disks;
182 struct dl *add; /* list of disks to add while mdmon active */
183 struct dl *missing; /* disks removed while we weren't looking */
184 struct bbm_log *bbm_log;
185 };
186
187 struct extent {
188 unsigned long long start, size;
189 };
190
191 /* definition of messages passed to imsm_process_update */
192 enum imsm_update_type {
193 update_activate_spare,
194 update_create_array,
195 update_add_disk,
196 };
197
198 struct imsm_update_activate_spare {
199 enum imsm_update_type type;
200 struct dl *dl;
201 int slot;
202 int array;
203 struct imsm_update_activate_spare *next;
204 };
205
206 struct imsm_update_create_array {
207 enum imsm_update_type type;
208 int dev_idx;
209 struct imsm_dev dev;
210 };
211
212 struct imsm_update_add_disk {
213 enum imsm_update_type type;
214 };
215
216 static int imsm_env_devname_as_serial(void)
217 {
218 char *val = getenv("IMSM_DEVNAME_AS_SERIAL");
219
220 if (val && atoi(val) == 1)
221 return 1;
222
223 return 0;
224 }
225
226
227 static struct supertype *match_metadata_desc_imsm(char *arg)
228 {
229 struct supertype *st;
230
231 if (strcmp(arg, "imsm") != 0 &&
232 strcmp(arg, "default") != 0
233 )
234 return NULL;
235
236 st = malloc(sizeof(*st));
237 memset(st, 0, sizeof(*st));
238 st->ss = &super_imsm;
239 st->max_devs = IMSM_MAX_DEVICES;
240 st->minor_version = 0;
241 st->sb = NULL;
242 return st;
243 }
244
245 #ifndef MDASSEMBLE
246 static __u8 *get_imsm_version(struct imsm_super *mpb)
247 {
248 return &mpb->sig[MPB_SIG_LEN];
249 }
250 #endif
251
252 /* retrieve a disk directly from the anchor when the anchor is known to be
253 * up-to-date, currently only at load time
254 */
255 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
256 {
257 if (index >= mpb->num_disks)
258 return NULL;
259 return &mpb->disk[index];
260 }
261
262 #ifndef MDASSEMBLE
263 /* retrieve a disk from the parsed metadata */
264 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
265 {
266 struct dl *d;
267
268 for (d = super->disks; d; d = d->next)
269 if (d->index == index)
270 return &d->disk;
271
272 return NULL;
273 }
274 #endif
275
276 /* generate a checksum directly from the anchor when the anchor is known to be
277 * up-to-date, currently only at load or write_super after coalescing
278 */
279 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
280 {
281 __u32 end = mpb->mpb_size / sizeof(end);
282 __u32 *p = (__u32 *) mpb;
283 __u32 sum = 0;
284
285 while (end--)
286 sum += __le32_to_cpu(*p++);
287
288 return sum - __le32_to_cpu(mpb->check_sum);
289 }
290
291 static size_t sizeof_imsm_map(struct imsm_map *map)
292 {
293 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
294 }
295
296 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
297 {
298 struct imsm_map *map = &dev->vol.map[0];
299
300 if (second_map && !dev->vol.migr_state)
301 return NULL;
302 else if (second_map) {
303 void *ptr = map;
304
305 return ptr + sizeof_imsm_map(map);
306 } else
307 return map;
308
309 }
310
311 /* return the size of the device.
312 * migr_state increases the returned size if map[0] were to be duplicated
313 */
314 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
315 {
316 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
317 sizeof_imsm_map(get_imsm_map(dev, 0));
318
319 /* migrating means an additional map */
320 if (dev->vol.migr_state)
321 size += sizeof_imsm_map(get_imsm_map(dev, 1));
322 else if (migr_state)
323 size += sizeof_imsm_map(get_imsm_map(dev, 0));
324
325 return size;
326 }
327
328 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
329 {
330 int offset;
331 int i;
332 void *_mpb = mpb;
333
334 if (index >= mpb->num_raid_devs)
335 return NULL;
336
337 /* devices start after all disks */
338 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
339
340 for (i = 0; i <= index; i++)
341 if (i == index)
342 return _mpb + offset;
343 else
344 offset += sizeof_imsm_dev(_mpb + offset, 0);
345
346 return NULL;
347 }
348
349 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
350 {
351 if (index >= super->anchor->num_raid_devs)
352 return NULL;
353 return super->dev_tbl[index];
354 }
355
356 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
357 {
358 struct imsm_map *map;
359
360 if (dev->vol.migr_state)
361 map = get_imsm_map(dev, 1);
362 else
363 map = get_imsm_map(dev, 0);
364
365 /* top byte identifies disk under rebuild */
366 return __le32_to_cpu(map->disk_ord_tbl[slot]);
367 }
368
369 #define ord_to_idx(ord) (((ord) << 8) >> 8)
370 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
371 {
372 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
373
374 return ord_to_idx(ord);
375 }
376
377 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
378 {
379 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
380 }
381
382 static int get_imsm_raid_level(struct imsm_map *map)
383 {
384 if (map->raid_level == 1) {
385 if (map->num_members == 2)
386 return 1;
387 else
388 return 10;
389 }
390
391 return map->raid_level;
392 }
393
394 static int cmp_extent(const void *av, const void *bv)
395 {
396 const struct extent *a = av;
397 const struct extent *b = bv;
398 if (a->start < b->start)
399 return -1;
400 if (a->start > b->start)
401 return 1;
402 return 0;
403 }
404
405 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
406 {
407 /* find a list of used extents on the given physical device */
408 struct extent *rv, *e;
409 int i, j;
410 int memberships = 0;
411 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
412
413 for (i = 0; i < super->anchor->num_raid_devs; i++) {
414 struct imsm_dev *dev = get_imsm_dev(super, i);
415 struct imsm_map *map = get_imsm_map(dev, 0);
416
417 for (j = 0; j < map->num_members; j++) {
418 __u32 index = get_imsm_disk_idx(dev, j);
419
420 if (index == dl->index)
421 memberships++;
422 }
423 }
424 rv = malloc(sizeof(struct extent) * (memberships + 1));
425 if (!rv)
426 return NULL;
427 e = rv;
428
429 for (i = 0; i < super->anchor->num_raid_devs; i++) {
430 struct imsm_dev *dev = get_imsm_dev(super, i);
431 struct imsm_map *map = get_imsm_map(dev, 0);
432
433 for (j = 0; j < map->num_members; j++) {
434 __u32 index = get_imsm_disk_idx(dev, j);
435
436 if (index == dl->index) {
437 e->start = __le32_to_cpu(map->pba_of_lba0);
438 e->size = __le32_to_cpu(map->blocks_per_member);
439 e++;
440 }
441 }
442 }
443 qsort(rv, memberships, sizeof(*rv), cmp_extent);
444
445 /* determine the start of the metadata
446 * when no raid devices are defined use the default
447 * ...otherwise allow the metadata to truncate the value
448 * as is the case with older versions of imsm
449 */
450 if (memberships) {
451 struct extent *last = &rv[memberships - 1];
452 __u32 remainder;
453
454 remainder = __le32_to_cpu(dl->disk.total_blocks) -
455 (last->start + last->size);
456 if (reservation > remainder)
457 reservation = remainder;
458 }
459 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
460 e->size = 0;
461 return rv;
462 }
463
464 /* try to determine how much space is reserved for metadata from
465 * the last get_extents() entry, otherwise fallback to the
466 * default
467 */
468 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
469 {
470 struct extent *e;
471 int i;
472 __u32 rv;
473
474 /* for spares just return a minimal reservation which will grow
475 * once the spare is picked up by an array
476 */
477 if (dl->index == -1)
478 return MPB_SECTOR_CNT;
479
480 e = get_extents(super, dl);
481 if (!e)
482 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
483
484 /* scroll to last entry */
485 for (i = 0; e[i].size; i++)
486 continue;
487
488 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
489
490 free(e);
491
492 return rv;
493 }
494
495 #ifndef MDASSEMBLE
496 static void print_imsm_dev(struct imsm_dev *dev, int index)
497 {
498 __u64 sz;
499 int slot;
500 struct imsm_map *map = get_imsm_map(dev, 0);
501 __u32 ord;
502
503 printf("\n");
504 printf("[%s]:\n", dev->volume);
505 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
506 printf(" Members : %d\n", map->num_members);
507 for (slot = 0; slot < map->num_members; slot++)
508 if (index == get_imsm_disk_idx(dev, slot))
509 break;
510 if (slot < map->num_members) {
511 ord = get_imsm_ord_tbl_ent(dev, slot);
512 printf(" This Slot : %d%s\n", slot,
513 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
514 } else
515 printf(" This Slot : ?\n");
516 sz = __le32_to_cpu(dev->size_high);
517 sz <<= 32;
518 sz += __le32_to_cpu(dev->size_low);
519 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
520 human_size(sz * 512));
521 sz = __le32_to_cpu(map->blocks_per_member);
522 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
523 human_size(sz * 512));
524 printf(" Sector Offset : %u\n",
525 __le32_to_cpu(map->pba_of_lba0));
526 printf(" Num Stripes : %u\n",
527 __le32_to_cpu(map->num_data_stripes));
528 printf(" Chunk Size : %u KiB\n",
529 __le16_to_cpu(map->blocks_per_strip) / 2);
530 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
531 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
532 if (dev->vol.migr_state)
533 printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
534 printf("\n");
535 printf(" Map State : %s", map_state_str[map->map_state]);
536 if (dev->vol.migr_state) {
537 struct imsm_map *map = get_imsm_map(dev, 1);
538 printf(" <-- %s", map_state_str[map->map_state]);
539 }
540 printf("\n");
541 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
542 }
543
544 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
545 {
546 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
547 char str[MAX_RAID_SERIAL_LEN + 1];
548 __u32 s;
549 __u64 sz;
550
551 if (index < 0)
552 return;
553
554 printf("\n");
555 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
556 printf(" Disk%02d Serial : %s\n", index, str);
557 s = __le32_to_cpu(disk->status);
558 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
559 s&CONFIGURED_DISK ? " active" : "",
560 s&FAILED_DISK ? " failed" : "",
561 s&USABLE_DISK ? " usable" : "");
562 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
563 sz = __le32_to_cpu(disk->total_blocks) - reserved;
564 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
565 human_size(sz * 512));
566 }
567
568 static void examine_super_imsm(struct supertype *st, char *homehost)
569 {
570 struct intel_super *super = st->sb;
571 struct imsm_super *mpb = super->anchor;
572 char str[MAX_SIGNATURE_LENGTH];
573 int i;
574 __u32 sum;
575 __u32 reserved = imsm_reserved_sectors(super, super->disks);
576
577 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
578 printf(" Magic : %s\n", str);
579 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
580 printf(" Version : %s\n", get_imsm_version(mpb));
581 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
582 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
583 sum = __le32_to_cpu(mpb->check_sum);
584 printf(" Checksum : %08x %s\n", sum,
585 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
586 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
587 printf(" Disks : %d\n", mpb->num_disks);
588 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
589 print_imsm_disk(mpb, super->disks->index, reserved);
590 if (super->bbm_log) {
591 struct bbm_log *log = super->bbm_log;
592
593 printf("\n");
594 printf("Bad Block Management Log:\n");
595 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
596 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
597 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
598 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
599 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
600 }
601 for (i = 0; i < mpb->num_raid_devs; i++)
602 print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
603 for (i = 0; i < mpb->num_disks; i++) {
604 if (i == super->disks->index)
605 continue;
606 print_imsm_disk(mpb, i, reserved);
607 }
608 }
609
610 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
611
612 static void brief_examine_super_imsm(struct supertype *st)
613 {
614 /* We just write a generic DDF ARRAY entry
615 */
616 struct mdinfo info;
617 char nbuf[64];
618
619 getinfo_super_imsm(st, &info);
620 fname_from_uuid(st, &info, nbuf,'-');
621 printf("ARRAY /dev/imsm metadata=imsm UUID=%s\n", nbuf + 5);
622 }
623
624 static void detail_super_imsm(struct supertype *st, char *homehost)
625 {
626 printf("%s\n", __FUNCTION__);
627 }
628
629 static void brief_detail_super_imsm(struct supertype *st)
630 {
631 struct mdinfo info;
632 char nbuf[64];
633 getinfo_super_imsm(st, &info);
634 fname_from_uuid(st, &info, nbuf,'-');
635 printf(" UUID=%s", nbuf + 5);
636 }
637 #endif
638
639 static int match_home_imsm(struct supertype *st, char *homehost)
640 {
641 printf("%s\n", __FUNCTION__);
642
643 return -1;
644 }
645
646 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
647 {
648 /* The uuid returned here is used for:
649 * uuid to put into bitmap file (Create, Grow)
650 * uuid for backup header when saving critical section (Grow)
651 * comparing uuids when re-adding a device into an array
652 * In these cases the uuid required is that of the data-array,
653 * not the device-set.
654 * uuid to recognise same set when adding a missing device back
655 * to an array. This is a uuid for the device-set.
656 *
657 * For each of these we can make do with a truncated
658 * or hashed uuid rather than the original, as long as
659 * everyone agrees.
660 * In each case the uuid required is that of the data-array,
661 * not the device-set.
662 */
663 /* imsm does not track uuid's so we synthesis one using sha1 on
664 * - The signature (Which is constant for all imsm array, but no matter)
665 * - the family_num of the container
666 * - the index number of the volume
667 * - the 'serial' number of the volume.
668 * Hopefully these are all constant.
669 */
670 struct intel_super *super = st->sb;
671
672 char buf[20];
673 struct sha1_ctx ctx;
674 struct imsm_dev *dev = NULL;
675
676 sha1_init_ctx(&ctx);
677 sha1_process_bytes(super->anchor->sig, MAX_SIGNATURE_LENGTH, &ctx);
678 sha1_process_bytes(&super->anchor->family_num, sizeof(__u32), &ctx);
679 if (super->current_vol >= 0)
680 dev = get_imsm_dev(super, super->current_vol);
681 if (dev) {
682 __u32 vol = super->current_vol;
683 sha1_process_bytes(&vol, sizeof(vol), &ctx);
684 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
685 }
686 sha1_finish_ctx(&ctx, buf);
687 memcpy(uuid, buf, 4*4);
688 }
689
690 #if 0
691 static void
692 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
693 {
694 __u8 *v = get_imsm_version(mpb);
695 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
696 char major[] = { 0, 0, 0 };
697 char minor[] = { 0 ,0, 0 };
698 char patch[] = { 0, 0, 0 };
699 char *ver_parse[] = { major, minor, patch };
700 int i, j;
701
702 i = j = 0;
703 while (*v != '\0' && v < end) {
704 if (*v != '.' && j < 2)
705 ver_parse[i][j++] = *v;
706 else {
707 i++;
708 j = 0;
709 }
710 v++;
711 }
712
713 *m = strtol(minor, NULL, 0);
714 *p = strtol(patch, NULL, 0);
715 }
716 #endif
717
718 static int imsm_level_to_layout(int level)
719 {
720 switch (level) {
721 case 0:
722 case 1:
723 return 0;
724 case 5:
725 case 6:
726 return ALGORITHM_LEFT_ASYMMETRIC;
727 case 10:
728 return 0x102;
729 }
730 return -1;
731 }
732
733 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
734 {
735 struct intel_super *super = st->sb;
736 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
737 struct imsm_map *map = get_imsm_map(dev, 0);
738
739 info->container_member = super->current_vol;
740 info->array.raid_disks = map->num_members;
741 info->array.level = get_imsm_raid_level(map);
742 info->array.layout = imsm_level_to_layout(info->array.level);
743 info->array.md_minor = -1;
744 info->array.ctime = 0;
745 info->array.utime = 0;
746 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
747 info->array.state = !dev->vol.dirty;
748
749 info->disk.major = 0;
750 info->disk.minor = 0;
751
752 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
753 info->component_size = __le32_to_cpu(map->blocks_per_member);
754 memset(info->uuid, 0, sizeof(info->uuid));
755
756 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
757 info->resync_start = 0;
758 else if (dev->vol.migr_state)
759 info->resync_start = __le32_to_cpu(dev->vol.curr_migr_unit);
760 else
761 info->resync_start = ~0ULL;
762
763 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
764 info->name[MAX_RAID_SERIAL_LEN] = 0;
765
766 info->array.major_version = -1;
767 info->array.minor_version = -2;
768 sprintf(info->text_version, "/%s/%d",
769 devnum2devname(st->container_dev),
770 info->container_member);
771 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
772 uuid_from_super_imsm(st, info->uuid);
773 }
774
775
776 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
777 {
778 struct intel_super *super = st->sb;
779 struct imsm_disk *disk;
780 __u32 s;
781
782 if (super->current_vol >= 0) {
783 getinfo_super_imsm_volume(st, info);
784 return;
785 }
786
787 /* Set raid_disks to zero so that Assemble will always pull in valid
788 * spares
789 */
790 info->array.raid_disks = 0;
791 info->array.level = LEVEL_CONTAINER;
792 info->array.layout = 0;
793 info->array.md_minor = -1;
794 info->array.ctime = 0; /* N/A for imsm */
795 info->array.utime = 0;
796 info->array.chunk_size = 0;
797
798 info->disk.major = 0;
799 info->disk.minor = 0;
800 info->disk.raid_disk = -1;
801 info->reshape_active = 0;
802 info->array.major_version = -1;
803 info->array.minor_version = -2;
804 strcpy(info->text_version, "imsm");
805 info->safe_mode_delay = 0;
806 info->disk.number = -1;
807 info->disk.state = 0;
808 info->name[0] = 0;
809
810 if (super->disks) {
811 __u32 reserved = imsm_reserved_sectors(super, super->disks);
812
813 disk = &super->disks->disk;
814 info->disk.number = super->disks->index;
815 info->disk.raid_disk = super->disks->index;
816 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
817 info->component_size = reserved;
818 s = __le32_to_cpu(disk->status);
819 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
820 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
821 info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
822 }
823 uuid_from_super_imsm(st, info->uuid);
824 }
825
826 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
827 char *update, char *devname, int verbose,
828 int uuid_set, char *homehost)
829 {
830 /* FIXME */
831
832 /* For 'assemble' and 'force' we need to return non-zero if any
833 * change was made. For others, the return value is ignored.
834 * Update options are:
835 * force-one : This device looks a bit old but needs to be included,
836 * update age info appropriately.
837 * assemble: clear any 'faulty' flag to allow this device to
838 * be assembled.
839 * force-array: Array is degraded but being forced, mark it clean
840 * if that will be needed to assemble it.
841 *
842 * newdev: not used ????
843 * grow: Array has gained a new device - this is currently for
844 * linear only
845 * resync: mark as dirty so a resync will happen.
846 * name: update the name - preserving the homehost
847 *
848 * Following are not relevant for this imsm:
849 * sparc2.2 : update from old dodgey metadata
850 * super-minor: change the preferred_minor number
851 * summaries: update redundant counters.
852 * uuid: Change the uuid of the array to match watch is given
853 * homehost: update the recorded homehost
854 * _reshape_progress: record new reshape_progress position.
855 */
856 int rv = 0;
857 //struct intel_super *super = st->sb;
858 //struct imsm_super *mpb = super->mpb;
859
860 if (strcmp(update, "grow") == 0) {
861 }
862 if (strcmp(update, "resync") == 0) {
863 /* dev->vol.dirty = 1; */
864 }
865
866 /* IMSM has no concept of UUID or homehost */
867
868 return rv;
869 }
870
871 static size_t disks_to_mpb_size(int disks)
872 {
873 size_t size;
874
875 size = sizeof(struct imsm_super);
876 size += (disks - 1) * sizeof(struct imsm_disk);
877 size += 2 * sizeof(struct imsm_dev);
878 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
879 size += (4 - 2) * sizeof(struct imsm_map);
880 /* 4 possible disk_ord_tbl's */
881 size += 4 * (disks - 1) * sizeof(__u32);
882
883 return size;
884 }
885
886 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
887 {
888 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
889 return 0;
890
891 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
892 }
893
894 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
895 {
896 /*
897 * return:
898 * 0 same, or first was empty, and second was copied
899 * 1 second had wrong number
900 * 2 wrong uuid
901 * 3 wrong other info
902 */
903 struct intel_super *first = st->sb;
904 struct intel_super *sec = tst->sb;
905
906 if (!first) {
907 st->sb = tst->sb;
908 tst->sb = NULL;
909 return 0;
910 }
911
912 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
913 return 3;
914
915 /* if an anchor does not have num_raid_devs set then it is a free
916 * floating spare
917 */
918 if (first->anchor->num_raid_devs > 0 &&
919 sec->anchor->num_raid_devs > 0) {
920 if (first->anchor->family_num != sec->anchor->family_num)
921 return 3;
922 }
923
924 /* if 'first' is a spare promote it to a populated mpb with sec's
925 * family number
926 */
927 if (first->anchor->num_raid_devs == 0 &&
928 sec->anchor->num_raid_devs > 0) {
929 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
930 first->anchor->family_num = sec->anchor->family_num;
931 }
932
933 return 0;
934 }
935
936 static void fd2devname(int fd, char *name)
937 {
938 struct stat st;
939 char path[256];
940 char dname[100];
941 char *nm;
942 int rv;
943
944 name[0] = '\0';
945 if (fstat(fd, &st) != 0)
946 return;
947 sprintf(path, "/sys/dev/block/%d:%d",
948 major(st.st_rdev), minor(st.st_rdev));
949
950 rv = readlink(path, dname, sizeof(dname));
951 if (rv <= 0)
952 return;
953
954 dname[rv] = '\0';
955 nm = strrchr(dname, '/');
956 nm++;
957 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
958 }
959
960
961 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
962
963 static int imsm_read_serial(int fd, char *devname,
964 __u8 serial[MAX_RAID_SERIAL_LEN])
965 {
966 unsigned char scsi_serial[255];
967 int rv;
968 int rsp_len;
969 int len;
970 char *c, *rsp_buf;
971
972 memset(scsi_serial, 0, sizeof(scsi_serial));
973
974 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
975
976 if (rv && imsm_env_devname_as_serial()) {
977 memset(serial, 0, MAX_RAID_SERIAL_LEN);
978 fd2devname(fd, (char *) serial);
979 return 0;
980 }
981
982 if (rv != 0) {
983 if (devname)
984 fprintf(stderr,
985 Name ": Failed to retrieve serial for %s\n",
986 devname);
987 return rv;
988 }
989
990 /* trim leading whitespace */
991 rsp_len = scsi_serial[3];
992 rsp_buf = (char *) &scsi_serial[4];
993 c = rsp_buf;
994 while (isspace(*c))
995 c++;
996
997 /* truncate len to the end of rsp_buf if necessary */
998 if (c + MAX_RAID_SERIAL_LEN > rsp_buf + rsp_len)
999 len = rsp_len - (c - rsp_buf);
1000 else
1001 len = MAX_RAID_SERIAL_LEN;
1002
1003 /* initialize the buffer and copy rsp_buf characters */
1004 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1005 memcpy(serial, c, len);
1006
1007 /* trim trailing whitespace starting with the last character copied */
1008 c = (char *) &serial[len - 1];
1009 while (isspace(*c) || *c == '\0')
1010 *c-- = '\0';
1011
1012 return 0;
1013 }
1014
1015 static int serialcmp(__u8 *s1, __u8 *s2)
1016 {
1017 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1018 }
1019
1020 static void serialcpy(__u8 *dest, __u8 *src)
1021 {
1022 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1023 }
1024
1025 static int
1026 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1027 {
1028 struct dl *dl;
1029 struct stat stb;
1030 int rv;
1031 int i;
1032 int alloc = 1;
1033 __u8 serial[MAX_RAID_SERIAL_LEN];
1034
1035 rv = imsm_read_serial(fd, devname, serial);
1036
1037 if (rv != 0)
1038 return 2;
1039
1040 /* check if this is a disk we have seen before. it may be a spare in
1041 * super->disks while the current anchor believes it is a raid member,
1042 * check if we need to update dl->index
1043 */
1044 for (dl = super->disks; dl; dl = dl->next)
1045 if (serialcmp(dl->serial, serial) == 0)
1046 break;
1047
1048 if (!dl)
1049 dl = malloc(sizeof(*dl));
1050 else
1051 alloc = 0;
1052
1053 if (!dl) {
1054 if (devname)
1055 fprintf(stderr,
1056 Name ": failed to allocate disk buffer for %s\n",
1057 devname);
1058 return 2;
1059 }
1060
1061 if (alloc) {
1062 fstat(fd, &stb);
1063 dl->major = major(stb.st_rdev);
1064 dl->minor = minor(stb.st_rdev);
1065 dl->next = super->disks;
1066 dl->fd = keep_fd ? fd : -1;
1067 dl->devname = devname ? strdup(devname) : NULL;
1068 serialcpy(dl->serial, serial);
1069 dl->index = -2;
1070 } else if (keep_fd) {
1071 close(dl->fd);
1072 dl->fd = fd;
1073 }
1074
1075 /* look up this disk's index in the current anchor */
1076 for (i = 0; i < super->anchor->num_disks; i++) {
1077 struct imsm_disk *disk_iter;
1078
1079 disk_iter = __get_imsm_disk(super->anchor, i);
1080
1081 if (serialcmp(disk_iter->serial, dl->serial) == 0) {
1082 __u32 status;
1083
1084 dl->disk = *disk_iter;
1085 status = __le32_to_cpu(dl->disk.status);
1086 /* only set index on disks that are a member of a
1087 * populated contianer, i.e. one with raid_devs
1088 */
1089 if (status & FAILED_DISK)
1090 dl->index = -2;
1091 else if (status & SPARE_DISK)
1092 dl->index = -1;
1093 else
1094 dl->index = i;
1095
1096 break;
1097 }
1098 }
1099
1100 /* no match, maybe a stale failed drive */
1101 if (i == super->anchor->num_disks && dl->index >= 0) {
1102 dl->disk = *__get_imsm_disk(super->anchor, dl->index);
1103 if (__le32_to_cpu(dl->disk.status) & FAILED_DISK)
1104 dl->index = -2;
1105 }
1106
1107 if (alloc)
1108 super->disks = dl;
1109
1110 return 0;
1111 }
1112
1113 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1114 {
1115 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1116 }
1117
1118 #ifndef MDASSEMBLE
1119 /* When migrating map0 contains the 'destination' state while map1
1120 * contains the current state. When not migrating map0 contains the
1121 * current state. This routine assumes that map[0].map_state is set to
1122 * the current array state before being called.
1123 *
1124 * Migration is indicated by one of the following states
1125 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1126 * 2/ Initialize (migr_state=1 migr_type=0 map0state=normal
1127 * map1state=unitialized)
1128 * 3/ Verify (Resync) (migr_state=1 migr_type=1 map0state=normal
1129 * map1state=normal)
1130 * 4/ Rebuild (migr_state=1 migr_type=1 map0state=normal
1131 * map1state=degraded)
1132 */
1133 static void migrate(struct imsm_dev *dev, __u8 to_state, int rebuild_resync)
1134 {
1135 struct imsm_map *dest;
1136 struct imsm_map *src = get_imsm_map(dev, 0);
1137
1138 dev->vol.migr_state = 1;
1139 dev->vol.migr_type = rebuild_resync;
1140 dev->vol.curr_migr_unit = 0;
1141 dest = get_imsm_map(dev, 1);
1142
1143 memcpy(dest, src, sizeof_imsm_map(src));
1144 src->map_state = to_state;
1145 }
1146
1147 static void end_migration(struct imsm_dev *dev, __u8 map_state)
1148 {
1149 struct imsm_map *map = get_imsm_map(dev, 0);
1150
1151 dev->vol.migr_state = 0;
1152 dev->vol.curr_migr_unit = 0;
1153 map->map_state = map_state;
1154 }
1155 #endif
1156
1157 static int parse_raid_devices(struct intel_super *super)
1158 {
1159 int i;
1160 struct imsm_dev *dev_new;
1161 size_t len, len_migr;
1162 size_t space_needed = 0;
1163 struct imsm_super *mpb = super->anchor;
1164
1165 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1166 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
1167
1168 len = sizeof_imsm_dev(dev_iter, 0);
1169 len_migr = sizeof_imsm_dev(dev_iter, 1);
1170 if (len_migr > len)
1171 space_needed += len_migr - len;
1172
1173 dev_new = malloc(len_migr);
1174 if (!dev_new)
1175 return 1;
1176 imsm_copy_dev(dev_new, dev_iter);
1177 super->dev_tbl[i] = dev_new;
1178 }
1179
1180 /* ensure that super->buf is large enough when all raid devices
1181 * are migrating
1182 */
1183 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1184 void *buf;
1185
1186 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1187 if (posix_memalign(&buf, 512, len) != 0)
1188 return 1;
1189
1190 memcpy(buf, super->buf, len);
1191 free(super->buf);
1192 super->buf = buf;
1193 super->len = len;
1194 }
1195
1196 return 0;
1197 }
1198
1199 /* retrieve a pointer to the bbm log which starts after all raid devices */
1200 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1201 {
1202 void *ptr = NULL;
1203
1204 if (__le32_to_cpu(mpb->bbm_log_size)) {
1205 ptr = mpb;
1206 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1207 }
1208
1209 return ptr;
1210 }
1211
1212 static void __free_imsm(struct intel_super *super, int free_disks);
1213
1214 /* load_imsm_mpb - read matrix metadata
1215 * allocates super->mpb to be freed by free_super
1216 */
1217 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1218 {
1219 unsigned long long dsize;
1220 unsigned long long sectors;
1221 struct stat;
1222 struct imsm_super *anchor;
1223 __u32 check_sum;
1224 int rc;
1225
1226 get_dev_size(fd, NULL, &dsize);
1227
1228 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1229 if (devname)
1230 fprintf(stderr,
1231 Name ": Cannot seek to anchor block on %s: %s\n",
1232 devname, strerror(errno));
1233 return 1;
1234 }
1235
1236 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1237 if (devname)
1238 fprintf(stderr,
1239 Name ": Failed to allocate imsm anchor buffer"
1240 " on %s\n", devname);
1241 return 1;
1242 }
1243 if (read(fd, anchor, 512) != 512) {
1244 if (devname)
1245 fprintf(stderr,
1246 Name ": Cannot read anchor block on %s: %s\n",
1247 devname, strerror(errno));
1248 free(anchor);
1249 return 1;
1250 }
1251
1252 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1253 if (devname)
1254 fprintf(stderr,
1255 Name ": no IMSM anchor on %s\n", devname);
1256 free(anchor);
1257 return 2;
1258 }
1259
1260 __free_imsm(super, 0);
1261 super->len = ROUND_UP(anchor->mpb_size, 512);
1262 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1263 if (devname)
1264 fprintf(stderr,
1265 Name ": unable to allocate %zu byte mpb buffer\n",
1266 super->len);
1267 free(anchor);
1268 return 2;
1269 }
1270 memcpy(super->buf, anchor, 512);
1271
1272 sectors = mpb_sectors(anchor) - 1;
1273 free(anchor);
1274 if (!sectors) {
1275 rc = load_imsm_disk(fd, super, devname, 0);
1276 if (rc == 0)
1277 rc = parse_raid_devices(super);
1278 return rc;
1279 }
1280
1281 /* read the extended mpb */
1282 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1283 if (devname)
1284 fprintf(stderr,
1285 Name ": Cannot seek to extended mpb on %s: %s\n",
1286 devname, strerror(errno));
1287 return 1;
1288 }
1289
1290 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1291 if (devname)
1292 fprintf(stderr,
1293 Name ": Cannot read extended mpb on %s: %s\n",
1294 devname, strerror(errno));
1295 return 2;
1296 }
1297
1298 check_sum = __gen_imsm_checksum(super->anchor);
1299 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1300 if (devname)
1301 fprintf(stderr,
1302 Name ": IMSM checksum %x != %x on %s\n",
1303 check_sum, __le32_to_cpu(super->anchor->check_sum),
1304 devname);
1305 return 2;
1306 }
1307
1308 /* FIXME the BBM log is disk specific so we cannot use this global
1309 * buffer for all disks. Ok for now since we only look at the global
1310 * bbm_log_size parameter to gate assembly
1311 */
1312 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1313
1314 rc = load_imsm_disk(fd, super, devname, 0);
1315 if (rc == 0)
1316 rc = parse_raid_devices(super);
1317
1318 return rc;
1319 }
1320
1321 static void __free_imsm_disk(struct dl *d)
1322 {
1323 if (d->fd >= 0)
1324 close(d->fd);
1325 if (d->devname)
1326 free(d->devname);
1327 free(d);
1328
1329 }
1330 static void free_imsm_disks(struct intel_super *super)
1331 {
1332 struct dl *d;
1333
1334 while (super->disks) {
1335 d = super->disks;
1336 super->disks = d->next;
1337 __free_imsm_disk(d);
1338 }
1339 while (super->missing) {
1340 d = super->missing;
1341 super->missing = d->next;
1342 __free_imsm_disk(d);
1343 }
1344
1345 }
1346
1347 /* free all the pieces hanging off of a super pointer */
1348 static void __free_imsm(struct intel_super *super, int free_disks)
1349 {
1350 int i;
1351
1352 if (super->buf) {
1353 free(super->buf);
1354 super->buf = NULL;
1355 }
1356 if (free_disks)
1357 free_imsm_disks(super);
1358 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1359 if (super->dev_tbl[i]) {
1360 free(super->dev_tbl[i]);
1361 super->dev_tbl[i] = NULL;
1362 }
1363 }
1364
1365 static void free_imsm(struct intel_super *super)
1366 {
1367 __free_imsm(super, 1);
1368 free(super);
1369 }
1370
1371 static void free_super_imsm(struct supertype *st)
1372 {
1373 struct intel_super *super = st->sb;
1374
1375 if (!super)
1376 return;
1377
1378 free_imsm(super);
1379 st->sb = NULL;
1380 }
1381
1382 static struct intel_super *alloc_super(int creating_imsm)
1383 {
1384 struct intel_super *super = malloc(sizeof(*super));
1385
1386 if (super) {
1387 memset(super, 0, sizeof(*super));
1388 super->creating_imsm = creating_imsm;
1389 super->current_vol = -1;
1390 }
1391
1392 return super;
1393 }
1394
1395 #ifndef MDASSEMBLE
1396 /* find_missing - helper routine for load_super_imsm_all that identifies
1397 * disks that have disappeared from the system. This routine relies on
1398 * the mpb being uptodate, which it is at load time.
1399 */
1400 static int find_missing(struct intel_super *super)
1401 {
1402 int i;
1403 struct imsm_super *mpb = super->anchor;
1404 struct dl *dl;
1405 struct imsm_disk *disk;
1406 __u32 status;
1407
1408 for (i = 0; i < mpb->num_disks; i++) {
1409 disk = __get_imsm_disk(mpb, i);
1410 for (dl = super->disks; dl; dl = dl->next)
1411 if (serialcmp(dl->disk.serial, disk->serial) == 0)
1412 break;
1413 if (dl)
1414 continue;
1415 /* ok we have a 'disk' without a live entry in
1416 * super->disks
1417 */
1418 status = __le32_to_cpu(disk->status);
1419 if (status & FAILED_DISK || !(status & USABLE_DISK))
1420 continue; /* never mind, already marked */
1421
1422 dl = malloc(sizeof(*dl));
1423 if (!dl)
1424 return 1;
1425 dl->major = 0;
1426 dl->minor = 0;
1427 dl->fd = -1;
1428 dl->devname = strdup("missing");
1429 dl->index = i;
1430 serialcpy(dl->serial, disk->serial);
1431 dl->disk = *disk;
1432 dl->next = super->missing;
1433 super->missing = dl;
1434 }
1435
1436 return 0;
1437 }
1438
1439 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1440 char *devname, int keep_fd)
1441 {
1442 struct mdinfo *sra;
1443 struct intel_super *super;
1444 struct mdinfo *sd, *best = NULL;
1445 __u32 bestgen = 0;
1446 __u32 gen;
1447 char nm[20];
1448 int dfd;
1449 int rv;
1450
1451 /* check if this disk is a member of an active array */
1452 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1453 if (!sra)
1454 return 1;
1455
1456 if (sra->array.major_version != -1 ||
1457 sra->array.minor_version != -2 ||
1458 strcmp(sra->text_version, "imsm") != 0)
1459 return 1;
1460
1461 super = alloc_super(0);
1462 if (!super)
1463 return 1;
1464
1465 /* find the most up to date disk in this array, skipping spares */
1466 for (sd = sra->devs; sd; sd = sd->next) {
1467 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1468 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1469 if (!dfd) {
1470 free_imsm(super);
1471 return 2;
1472 }
1473 rv = load_imsm_mpb(dfd, super, NULL);
1474 if (!keep_fd)
1475 close(dfd);
1476 if (rv == 0) {
1477 if (super->anchor->num_raid_devs == 0)
1478 gen = 0;
1479 else
1480 gen = __le32_to_cpu(super->anchor->generation_num);
1481 if (!best || gen > bestgen) {
1482 bestgen = gen;
1483 best = sd;
1484 }
1485 } else {
1486 free_imsm(super);
1487 return 2;
1488 }
1489 }
1490
1491 if (!best) {
1492 free_imsm(super);
1493 return 1;
1494 }
1495
1496 /* load the most up to date anchor */
1497 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1498 dfd = dev_open(nm, O_RDONLY);
1499 if (!dfd) {
1500 free_imsm(super);
1501 return 1;
1502 }
1503 rv = load_imsm_mpb(dfd, super, NULL);
1504 close(dfd);
1505 if (rv != 0) {
1506 free_imsm(super);
1507 return 2;
1508 }
1509
1510 /* re-parse the disk list with the current anchor */
1511 for (sd = sra->devs ; sd ; sd = sd->next) {
1512 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1513 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1514 if (!dfd) {
1515 free_imsm(super);
1516 return 2;
1517 }
1518 load_imsm_disk(dfd, super, NULL, keep_fd);
1519 if (!keep_fd)
1520 close(dfd);
1521 }
1522
1523
1524 if (find_missing(super) != 0) {
1525 free_imsm(super);
1526 return 2;
1527 }
1528
1529 if (st->subarray[0]) {
1530 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1531 super->current_vol = atoi(st->subarray);
1532 else
1533 return 1;
1534 }
1535
1536 *sbp = super;
1537 st->container_dev = fd2devnum(fd);
1538 if (st->ss == NULL) {
1539 st->ss = &super_imsm;
1540 st->minor_version = 0;
1541 st->max_devs = IMSM_MAX_DEVICES;
1542 }
1543 st->loaded_container = 1;
1544
1545 return 0;
1546 }
1547 #endif
1548
1549 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1550 {
1551 struct intel_super *super;
1552 int rv;
1553
1554 #ifndef MDASSEMBLE
1555 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1556 return 0;
1557 #endif
1558 if (st->subarray[0])
1559 return 1; /* FIXME */
1560
1561 super = alloc_super(0);
1562 if (!super) {
1563 fprintf(stderr,
1564 Name ": malloc of %zu failed.\n",
1565 sizeof(*super));
1566 return 1;
1567 }
1568
1569 rv = load_imsm_mpb(fd, super, devname);
1570
1571 if (rv) {
1572 if (devname)
1573 fprintf(stderr,
1574 Name ": Failed to load all information "
1575 "sections on %s\n", devname);
1576 free_imsm(super);
1577 return rv;
1578 }
1579
1580 st->sb = super;
1581 if (st->ss == NULL) {
1582 st->ss = &super_imsm;
1583 st->minor_version = 0;
1584 st->max_devs = IMSM_MAX_DEVICES;
1585 }
1586 st->loaded_container = 0;
1587
1588 return 0;
1589 }
1590
1591 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1592 {
1593 if (info->level == 1)
1594 return 128;
1595 return info->chunk_size >> 9;
1596 }
1597
1598 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1599 {
1600 __u32 num_stripes;
1601
1602 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1603 if (info->level == 1)
1604 num_stripes /= 2;
1605
1606 return num_stripes;
1607 }
1608
1609 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1610 {
1611 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1612 }
1613
1614 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1615 unsigned long long size, char *name,
1616 char *homehost, int *uuid)
1617 {
1618 /* We are creating a volume inside a pre-existing container.
1619 * so st->sb is already set.
1620 */
1621 struct intel_super *super = st->sb;
1622 struct imsm_super *mpb = super->anchor;
1623 struct imsm_dev *dev;
1624 struct imsm_vol *vol;
1625 struct imsm_map *map;
1626 int idx = mpb->num_raid_devs;
1627 int i;
1628 unsigned long long array_blocks;
1629 __u32 offset = 0;
1630 size_t size_old, size_new;
1631
1632 if (mpb->num_raid_devs >= 2) {
1633 fprintf(stderr, Name": This imsm-container already has the "
1634 "maximum of 2 volumes\n");
1635 return 0;
1636 }
1637
1638 /* ensure the mpb is large enough for the new data */
1639 size_old = __le32_to_cpu(mpb->mpb_size);
1640 size_new = disks_to_mpb_size(info->nr_disks);
1641 if (size_new > size_old) {
1642 void *mpb_new;
1643 size_t size_round = ROUND_UP(size_new, 512);
1644
1645 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1646 fprintf(stderr, Name": could not allocate new mpb\n");
1647 return 0;
1648 }
1649 memcpy(mpb_new, mpb, size_old);
1650 free(mpb);
1651 mpb = mpb_new;
1652 super->anchor = mpb_new;
1653 mpb->mpb_size = __cpu_to_le32(size_new);
1654 memset(mpb_new + size_old, 0, size_round - size_old);
1655 }
1656 super->current_vol = idx;
1657 /* when creating the first raid device in this container set num_disks
1658 * to zero, i.e. delete this spare and add raid member devices in
1659 * add_to_super_imsm_volume()
1660 */
1661 if (super->current_vol == 0)
1662 mpb->num_disks = 0;
1663 sprintf(st->subarray, "%d", idx);
1664 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1665 if (!dev) {
1666 fprintf(stderr, Name": could not allocate raid device\n");
1667 return 0;
1668 }
1669 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1670 array_blocks = calc_array_size(info->level, info->raid_disks,
1671 info->layout, info->chunk_size,
1672 info->size*2);
1673 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1674 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1675 dev->status = __cpu_to_le32(0);
1676 dev->reserved_blocks = __cpu_to_le32(0);
1677 vol = &dev->vol;
1678 vol->migr_state = 0;
1679 vol->migr_type = 0;
1680 vol->dirty = 0;
1681 vol->curr_migr_unit = 0;
1682 for (i = 0; i < idx; i++) {
1683 struct imsm_dev *prev = get_imsm_dev(super, i);
1684 struct imsm_map *pmap = get_imsm_map(prev, 0);
1685
1686 offset += __le32_to_cpu(pmap->blocks_per_member);
1687 offset += IMSM_RESERVED_SECTORS;
1688 }
1689 map = get_imsm_map(dev, 0);
1690 map->pba_of_lba0 = __cpu_to_le32(offset);
1691 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1692 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1693 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1694 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1695 IMSM_T_STATE_NORMAL;
1696
1697 if (info->level == 1 && info->raid_disks > 2) {
1698 fprintf(stderr, Name": imsm does not support more than 2 disks"
1699 "in a raid1 volume\n");
1700 return 0;
1701 }
1702 if (info->level == 10)
1703 map->raid_level = 1;
1704 else
1705 map->raid_level = info->level;
1706
1707 map->num_members = info->raid_disks;
1708 for (i = 0; i < map->num_members; i++) {
1709 /* initialized in add_to_super */
1710 set_imsm_ord_tbl_ent(map, i, 0);
1711 }
1712 mpb->num_raid_devs++;
1713 super->dev_tbl[super->current_vol] = dev;
1714
1715 return 1;
1716 }
1717
1718 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1719 unsigned long long size, char *name,
1720 char *homehost, int *uuid)
1721 {
1722 /* This is primarily called by Create when creating a new array.
1723 * We will then get add_to_super called for each component, and then
1724 * write_init_super called to write it out to each device.
1725 * For IMSM, Create can create on fresh devices or on a pre-existing
1726 * array.
1727 * To create on a pre-existing array a different method will be called.
1728 * This one is just for fresh drives.
1729 */
1730 struct intel_super *super;
1731 struct imsm_super *mpb;
1732 size_t mpb_size;
1733
1734 if (!info) {
1735 st->sb = NULL;
1736 return 0;
1737 }
1738 if (st->sb)
1739 return init_super_imsm_volume(st, info, size, name, homehost,
1740 uuid);
1741
1742 super = alloc_super(1);
1743 if (!super)
1744 return 0;
1745 mpb_size = disks_to_mpb_size(info->nr_disks);
1746 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1747 free(super);
1748 return 0;
1749 }
1750 mpb = super->buf;
1751 memset(mpb, 0, mpb_size);
1752
1753 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1754 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1755 strlen(MPB_VERSION_RAID5));
1756 mpb->mpb_size = mpb_size;
1757
1758 st->sb = super;
1759 return 1;
1760 }
1761
1762 #ifndef MDASSEMBLE
1763 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1764 int fd, char *devname)
1765 {
1766 struct intel_super *super = st->sb;
1767 struct imsm_super *mpb = super->anchor;
1768 struct dl *dl;
1769 struct imsm_dev *dev;
1770 struct imsm_map *map;
1771 __u32 status;
1772
1773 dev = get_imsm_dev(super, super->current_vol);
1774 map = get_imsm_map(dev, 0);
1775
1776 for (dl = super->disks; dl ; dl = dl->next)
1777 if (dl->major == dk->major &&
1778 dl->minor == dk->minor)
1779 break;
1780
1781 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1782 return;
1783
1784 /* add a pristine spare to the metadata */
1785 if (dl->index < 0) {
1786 dl->index = super->anchor->num_disks;
1787 super->anchor->num_disks++;
1788 }
1789 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
1790 status = CONFIGURED_DISK | USABLE_DISK;
1791 dl->disk.status = __cpu_to_le32(status);
1792
1793 /* if we are creating the first raid device update the family number */
1794 if (super->current_vol == 0) {
1795 __u32 sum;
1796 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1797 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1798
1799 *_dev = *dev;
1800 *_disk = dl->disk;
1801 sum = __gen_imsm_checksum(mpb);
1802 mpb->family_num = __cpu_to_le32(sum);
1803 }
1804 }
1805
1806 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1807 int fd, char *devname)
1808 {
1809 struct intel_super *super = st->sb;
1810 struct dl *dd;
1811 unsigned long long size;
1812 __u32 status, id;
1813 int rv;
1814 struct stat stb;
1815
1816 if (super->current_vol >= 0) {
1817 add_to_super_imsm_volume(st, dk, fd, devname);
1818 return;
1819 }
1820
1821 fstat(fd, &stb);
1822 dd = malloc(sizeof(*dd));
1823 if (!dd) {
1824 fprintf(stderr,
1825 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1826 abort();
1827 }
1828 memset(dd, 0, sizeof(*dd));
1829 dd->major = major(stb.st_rdev);
1830 dd->minor = minor(stb.st_rdev);
1831 dd->index = -1;
1832 dd->devname = devname ? strdup(devname) : NULL;
1833 dd->fd = fd;
1834 rv = imsm_read_serial(fd, devname, dd->serial);
1835 if (rv) {
1836 fprintf(stderr,
1837 Name ": failed to retrieve scsi serial, aborting\n");
1838 free(dd);
1839 abort();
1840 }
1841
1842 get_dev_size(fd, NULL, &size);
1843 size /= 512;
1844 status = USABLE_DISK | SPARE_DISK;
1845 serialcpy(dd->disk.serial, dd->serial);
1846 dd->disk.total_blocks = __cpu_to_le32(size);
1847 dd->disk.status = __cpu_to_le32(status);
1848 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1849 dd->disk.scsi_id = __cpu_to_le32(id);
1850 else
1851 dd->disk.scsi_id = __cpu_to_le32(0);
1852
1853 if (st->update_tail) {
1854 dd->next = super->add;
1855 super->add = dd;
1856 } else {
1857 dd->next = super->disks;
1858 super->disks = dd;
1859 }
1860 }
1861
1862 static int store_imsm_mpb(int fd, struct intel_super *super);
1863
1864 /* spare records have their own family number and do not have any defined raid
1865 * devices
1866 */
1867 static int write_super_imsm_spares(struct intel_super *super, int doclose)
1868 {
1869 struct imsm_super mpb_save;
1870 struct imsm_super *mpb = super->anchor;
1871 __u32 sum;
1872 struct dl *d;
1873
1874 mpb_save = *mpb;
1875 mpb->num_raid_devs = 0;
1876 mpb->num_disks = 1;
1877 mpb->mpb_size = sizeof(struct imsm_super);
1878 mpb->generation_num = __cpu_to_le32(1UL);
1879
1880 for (d = super->disks; d; d = d->next) {
1881 if (d->index != -1)
1882 continue;
1883
1884 mpb->disk[0] = d->disk;
1885 sum = __gen_imsm_checksum(mpb);
1886 mpb->family_num = __cpu_to_le32(sum);
1887 sum = __gen_imsm_checksum(mpb);
1888 mpb->check_sum = __cpu_to_le32(sum);
1889
1890 if (store_imsm_mpb(d->fd, super)) {
1891 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1892 __func__, d->major, d->minor, strerror(errno));
1893 *mpb = mpb_save;
1894 return 1;
1895 }
1896 if (doclose) {
1897 close(d->fd);
1898 d->fd = -1;
1899 }
1900 }
1901
1902 *mpb = mpb_save;
1903 return 0;
1904 }
1905
1906 static int write_super_imsm(struct intel_super *super, int doclose)
1907 {
1908 struct imsm_super *mpb = super->anchor;
1909 struct dl *d;
1910 __u32 generation;
1911 __u32 sum;
1912 int spares = 0;
1913 int i;
1914 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
1915
1916 /* 'generation' is incremented everytime the metadata is written */
1917 generation = __le32_to_cpu(mpb->generation_num);
1918 generation++;
1919 mpb->generation_num = __cpu_to_le32(generation);
1920
1921 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
1922 for (d = super->disks; d; d = d->next) {
1923 if (d->index == -1)
1924 spares++;
1925 else
1926 mpb->disk[d->index] = d->disk;
1927 }
1928 for (d = super->missing; d; d = d->next)
1929 mpb->disk[d->index] = d->disk;
1930
1931 for (i = 0; i < mpb->num_raid_devs; i++) {
1932 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1933
1934 imsm_copy_dev(dev, super->dev_tbl[i]);
1935 mpb_size += sizeof_imsm_dev(dev, 0);
1936 }
1937 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
1938 mpb->mpb_size = __cpu_to_le32(mpb_size);
1939
1940 /* recalculate checksum */
1941 sum = __gen_imsm_checksum(mpb);
1942 mpb->check_sum = __cpu_to_le32(sum);
1943
1944 /* write the mpb for disks that compose raid devices */
1945 for (d = super->disks; d ; d = d->next) {
1946 if (d->index < 0)
1947 continue;
1948 if (store_imsm_mpb(d->fd, super))
1949 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1950 __func__, d->major, d->minor, strerror(errno));
1951 if (doclose) {
1952 close(d->fd);
1953 d->fd = -1;
1954 }
1955 }
1956
1957 if (spares)
1958 return write_super_imsm_spares(super, doclose);
1959
1960 return 0;
1961 }
1962
1963
1964 static int create_array(struct supertype *st)
1965 {
1966 size_t len;
1967 struct imsm_update_create_array *u;
1968 struct intel_super *super = st->sb;
1969 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1970
1971 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0);
1972 u = malloc(len);
1973 if (!u) {
1974 fprintf(stderr, "%s: failed to allocate update buffer\n",
1975 __func__);
1976 return 1;
1977 }
1978
1979 u->type = update_create_array;
1980 u->dev_idx = super->current_vol;
1981 imsm_copy_dev(&u->dev, dev);
1982 append_metadata_update(st, u, len);
1983
1984 return 0;
1985 }
1986
1987 static int _add_disk(struct supertype *st)
1988 {
1989 struct intel_super *super = st->sb;
1990 size_t len;
1991 struct imsm_update_add_disk *u;
1992
1993 if (!super->add)
1994 return 0;
1995
1996 len = sizeof(*u);
1997 u = malloc(len);
1998 if (!u) {
1999 fprintf(stderr, "%s: failed to allocate update buffer\n",
2000 __func__);
2001 return 1;
2002 }
2003
2004 u->type = update_add_disk;
2005 append_metadata_update(st, u, len);
2006
2007 return 0;
2008 }
2009
2010 static int write_init_super_imsm(struct supertype *st)
2011 {
2012 if (st->update_tail) {
2013 /* queue the recently created array / added disk
2014 * as a metadata update */
2015 struct intel_super *super = st->sb;
2016 struct dl *d;
2017 int rv;
2018
2019 /* determine if we are creating a volume or adding a disk */
2020 if (super->current_vol < 0) {
2021 /* in the add disk case we are running in mdmon
2022 * context, so don't close fd's
2023 */
2024 return _add_disk(st);
2025 } else
2026 rv = create_array(st);
2027
2028 for (d = super->disks; d ; d = d->next) {
2029 close(d->fd);
2030 d->fd = -1;
2031 }
2032
2033 return rv;
2034 } else
2035 return write_super_imsm(st->sb, 1);
2036 }
2037 #endif
2038
2039 static int store_zero_imsm(struct supertype *st, int fd)
2040 {
2041 unsigned long long dsize;
2042 void *buf;
2043
2044 get_dev_size(fd, NULL, &dsize);
2045
2046 /* first block is stored on second to last sector of the disk */
2047 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2048 return 1;
2049
2050 if (posix_memalign(&buf, 512, 512) != 0)
2051 return 1;
2052
2053 memset(buf, 0, 512);
2054 if (write(fd, buf, 512) != 512)
2055 return 1;
2056 return 0;
2057 }
2058
2059 static int imsm_bbm_log_size(struct imsm_super *mpb)
2060 {
2061 return __le32_to_cpu(mpb->bbm_log_size);
2062 }
2063
2064 #ifndef MDASSEMBLE
2065 static int validate_geometry_imsm_container(struct supertype *st, int level,
2066 int layout, int raiddisks, int chunk,
2067 unsigned long long size, char *dev,
2068 unsigned long long *freesize,
2069 int verbose)
2070 {
2071 int fd;
2072 unsigned long long ldsize;
2073
2074 if (level != LEVEL_CONTAINER)
2075 return 0;
2076 if (!dev)
2077 return 1;
2078
2079 fd = open(dev, O_RDONLY|O_EXCL, 0);
2080 if (fd < 0) {
2081 if (verbose)
2082 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
2083 dev, strerror(errno));
2084 return 0;
2085 }
2086 if (!get_dev_size(fd, dev, &ldsize)) {
2087 close(fd);
2088 return 0;
2089 }
2090 close(fd);
2091
2092 *freesize = avail_size_imsm(st, ldsize >> 9);
2093
2094 return 1;
2095 }
2096
2097 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
2098 * FIX ME add ahci details
2099 */
2100 static int validate_geometry_imsm_volume(struct supertype *st, int level,
2101 int layout, int raiddisks, int chunk,
2102 unsigned long long size, char *dev,
2103 unsigned long long *freesize,
2104 int verbose)
2105 {
2106 struct stat stb;
2107 struct intel_super *super = st->sb;
2108 struct dl *dl;
2109 unsigned long long pos = 0;
2110 unsigned long long maxsize;
2111 struct extent *e;
2112 int i;
2113
2114 if (level == LEVEL_CONTAINER)
2115 return 0;
2116
2117 if (level == 1 && raiddisks > 2) {
2118 if (verbose)
2119 fprintf(stderr, Name ": imsm does not support more "
2120 "than 2 in a raid1 configuration\n");
2121 return 0;
2122 }
2123
2124 /* We must have the container info already read in. */
2125 if (!super)
2126 return 0;
2127
2128 if (!dev) {
2129 /* General test: make sure there is space for
2130 * 'raiddisks' device extents of size 'size' at a given
2131 * offset
2132 */
2133 unsigned long long minsize = size*2 /* convert to blocks */;
2134 unsigned long long start_offset = ~0ULL;
2135 int dcnt = 0;
2136 if (minsize == 0)
2137 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
2138 for (dl = super->disks; dl ; dl = dl->next) {
2139 int found = 0;
2140
2141 pos = 0;
2142 i = 0;
2143 e = get_extents(super, dl);
2144 if (!e) continue;
2145 do {
2146 unsigned long long esize;
2147 esize = e[i].start - pos;
2148 if (esize >= minsize)
2149 found = 1;
2150 if (found && start_offset == ~0ULL) {
2151 start_offset = pos;
2152 break;
2153 } else if (found && pos != start_offset) {
2154 found = 0;
2155 break;
2156 }
2157 pos = e[i].start + e[i].size;
2158 i++;
2159 } while (e[i-1].size);
2160 if (found)
2161 dcnt++;
2162 free(e);
2163 }
2164 if (dcnt < raiddisks) {
2165 if (verbose)
2166 fprintf(stderr, Name ": imsm: Not enough "
2167 "devices with space for this array "
2168 "(%d < %d)\n",
2169 dcnt, raiddisks);
2170 return 0;
2171 }
2172 return 1;
2173 }
2174 /* This device must be a member of the set */
2175 if (stat(dev, &stb) < 0)
2176 return 0;
2177 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2178 return 0;
2179 for (dl = super->disks ; dl ; dl = dl->next) {
2180 if (dl->major == major(stb.st_rdev) &&
2181 dl->minor == minor(stb.st_rdev))
2182 break;
2183 }
2184 if (!dl) {
2185 if (verbose)
2186 fprintf(stderr, Name ": %s is not in the "
2187 "same imsm set\n", dev);
2188 return 0;
2189 }
2190 e = get_extents(super, dl);
2191 maxsize = 0;
2192 i = 0;
2193 if (e) do {
2194 unsigned long long esize;
2195 esize = e[i].start - pos;
2196 if (esize >= maxsize)
2197 maxsize = esize;
2198 pos = e[i].start + e[i].size;
2199 i++;
2200 } while (e[i-1].size);
2201 *freesize = maxsize;
2202
2203 return 1;
2204 }
2205
2206 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
2207 int raiddisks, int chunk, unsigned long long size,
2208 char *dev, unsigned long long *freesize,
2209 int verbose)
2210 {
2211 int fd, cfd;
2212 struct mdinfo *sra;
2213
2214 /* if given unused devices create a container
2215 * if given given devices in a container create a member volume
2216 */
2217 if (level == LEVEL_CONTAINER) {
2218 /* Must be a fresh device to add to a container */
2219 return validate_geometry_imsm_container(st, level, layout,
2220 raiddisks, chunk, size,
2221 dev, freesize,
2222 verbose);
2223 }
2224
2225 if (st->sb) {
2226 /* creating in a given container */
2227 return validate_geometry_imsm_volume(st, level, layout,
2228 raiddisks, chunk, size,
2229 dev, freesize, verbose);
2230 }
2231
2232 /* limit creation to the following levels */
2233 if (!dev)
2234 switch (level) {
2235 case 0:
2236 case 1:
2237 case 10:
2238 case 5:
2239 break;
2240 default:
2241 return 1;
2242 }
2243
2244 /* This device needs to be a device in an 'imsm' container */
2245 fd = open(dev, O_RDONLY|O_EXCL, 0);
2246 if (fd >= 0) {
2247 if (verbose)
2248 fprintf(stderr,
2249 Name ": Cannot create this array on device %s\n",
2250 dev);
2251 close(fd);
2252 return 0;
2253 }
2254 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2255 if (verbose)
2256 fprintf(stderr, Name ": Cannot open %s: %s\n",
2257 dev, strerror(errno));
2258 return 0;
2259 }
2260 /* Well, it is in use by someone, maybe an 'imsm' container. */
2261 cfd = open_container(fd);
2262 if (cfd < 0) {
2263 close(fd);
2264 if (verbose)
2265 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
2266 dev);
2267 return 0;
2268 }
2269 sra = sysfs_read(cfd, 0, GET_VERSION);
2270 close(fd);
2271 if (sra && sra->array.major_version == -1 &&
2272 strcmp(sra->text_version, "imsm") == 0) {
2273 /* This is a member of a imsm container. Load the container
2274 * and try to create a volume
2275 */
2276 struct intel_super *super;
2277
2278 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
2279 st->sb = super;
2280 st->container_dev = fd2devnum(cfd);
2281 close(cfd);
2282 return validate_geometry_imsm_volume(st, level, layout,
2283 raiddisks, chunk,
2284 size, dev,
2285 freesize, verbose);
2286 }
2287 close(cfd);
2288 } else /* may belong to another container */
2289 return 0;
2290
2291 return 1;
2292 }
2293 #endif /* MDASSEMBLE */
2294
2295 static struct mdinfo *container_content_imsm(struct supertype *st)
2296 {
2297 /* Given a container loaded by load_super_imsm_all,
2298 * extract information about all the arrays into
2299 * an mdinfo tree.
2300 *
2301 * For each imsm_dev create an mdinfo, fill it in,
2302 * then look for matching devices in super->disks
2303 * and create appropriate device mdinfo.
2304 */
2305 struct intel_super *super = st->sb;
2306 struct imsm_super *mpb = super->anchor;
2307 struct mdinfo *rest = NULL;
2308 int i;
2309
2310 /* do not assemble arrays that might have bad blocks */
2311 if (imsm_bbm_log_size(super->anchor)) {
2312 fprintf(stderr, Name ": BBM log found in metadata. "
2313 "Cannot activate array(s).\n");
2314 return NULL;
2315 }
2316
2317 for (i = 0; i < mpb->num_raid_devs; i++) {
2318 struct imsm_dev *dev = get_imsm_dev(super, i);
2319 struct imsm_map *map = get_imsm_map(dev, 0);
2320 struct mdinfo *this;
2321 int slot;
2322
2323 this = malloc(sizeof(*this));
2324 memset(this, 0, sizeof(*this));
2325 this->next = rest;
2326
2327 super->current_vol = i;
2328 getinfo_super_imsm_volume(st, this);
2329 for (slot = 0 ; slot < map->num_members; slot++) {
2330 struct mdinfo *info_d;
2331 struct dl *d;
2332 int idx;
2333 int skip;
2334 __u32 s;
2335 __u32 ord;
2336
2337 skip = 0;
2338 idx = get_imsm_disk_idx(dev, slot);
2339 ord = get_imsm_ord_tbl_ent(dev, slot);
2340 for (d = super->disks; d ; d = d->next)
2341 if (d->index == idx)
2342 break;
2343
2344 if (d == NULL)
2345 skip = 1;
2346
2347 s = d ? __le32_to_cpu(d->disk.status) : 0;
2348 if (s & FAILED_DISK)
2349 skip = 1;
2350 if (!(s & USABLE_DISK))
2351 skip = 1;
2352 if (ord & IMSM_ORD_REBUILD)
2353 skip = 1;
2354
2355 /*
2356 * if we skip some disks the array will be assmebled degraded;
2357 * reset resync start to avoid a dirty-degraded situation
2358 *
2359 * FIXME handle dirty degraded
2360 */
2361 if (skip && !dev->vol.dirty)
2362 this->resync_start = ~0ULL;
2363 if (skip)
2364 continue;
2365
2366 info_d = malloc(sizeof(*info_d));
2367 if (!info_d) {
2368 fprintf(stderr, Name ": failed to allocate disk"
2369 " for volume %s\n", (char *) dev->volume);
2370 free(this);
2371 this = rest;
2372 break;
2373 }
2374 memset(info_d, 0, sizeof(*info_d));
2375 info_d->next = this->devs;
2376 this->devs = info_d;
2377
2378 info_d->disk.number = d->index;
2379 info_d->disk.major = d->major;
2380 info_d->disk.minor = d->minor;
2381 info_d->disk.raid_disk = slot;
2382
2383 this->array.working_disks++;
2384
2385 info_d->events = __le32_to_cpu(mpb->generation_num);
2386 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2387 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2388 if (d->devname)
2389 strcpy(info_d->name, d->devname);
2390 }
2391 rest = this;
2392 }
2393
2394 return rest;
2395 }
2396
2397
2398 #ifndef MDASSEMBLE
2399 static int imsm_open_new(struct supertype *c, struct active_array *a,
2400 char *inst)
2401 {
2402 struct intel_super *super = c->sb;
2403 struct imsm_super *mpb = super->anchor;
2404
2405 if (atoi(inst) >= mpb->num_raid_devs) {
2406 fprintf(stderr, "%s: subarry index %d, out of range\n",
2407 __func__, atoi(inst));
2408 return -ENODEV;
2409 }
2410
2411 dprintf("imsm: open_new %s\n", inst);
2412 a->info.container_member = atoi(inst);
2413 return 0;
2414 }
2415
2416 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
2417 {
2418 struct imsm_map *map = get_imsm_map(dev, 0);
2419
2420 if (!failed)
2421 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
2422 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
2423
2424 switch (get_imsm_raid_level(map)) {
2425 case 0:
2426 return IMSM_T_STATE_FAILED;
2427 break;
2428 case 1:
2429 if (failed < map->num_members)
2430 return IMSM_T_STATE_DEGRADED;
2431 else
2432 return IMSM_T_STATE_FAILED;
2433 break;
2434 case 10:
2435 {
2436 /**
2437 * check to see if any mirrors have failed, otherwise we
2438 * are degraded. Even numbered slots are mirrored on
2439 * slot+1
2440 */
2441 int i;
2442 int insync;
2443
2444 for (i = 0; i < map->num_members; i++) {
2445 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2446 int idx = ord_to_idx(ord);
2447 struct imsm_disk *disk;
2448
2449 /* reset the potential in-sync count on even-numbered
2450 * slots. num_copies is always 2 for imsm raid10
2451 */
2452 if ((i & 1) == 0)
2453 insync = 2;
2454
2455 disk = get_imsm_disk(super, idx);
2456 if (!disk ||
2457 __le32_to_cpu(disk->status) & FAILED_DISK ||
2458 ord & IMSM_ORD_REBUILD)
2459 insync--;
2460
2461 /* no in-sync disks left in this mirror the
2462 * array has failed
2463 */
2464 if (insync == 0)
2465 return IMSM_T_STATE_FAILED;
2466 }
2467
2468 return IMSM_T_STATE_DEGRADED;
2469 }
2470 case 5:
2471 if (failed < 2)
2472 return IMSM_T_STATE_DEGRADED;
2473 else
2474 return IMSM_T_STATE_FAILED;
2475 break;
2476 default:
2477 break;
2478 }
2479
2480 return map->map_state;
2481 }
2482
2483 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
2484 {
2485 int i;
2486 int failed = 0;
2487 struct imsm_disk *disk;
2488 struct imsm_map *map = get_imsm_map(dev, 0);
2489
2490 for (i = 0; i < map->num_members; i++) {
2491 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2492 int idx = ord_to_idx(ord);
2493
2494 disk = get_imsm_disk(super, idx);
2495 if (!disk ||
2496 __le32_to_cpu(disk->status) & FAILED_DISK ||
2497 ord & IMSM_ORD_REBUILD)
2498 failed++;
2499 }
2500
2501 return failed;
2502 }
2503
2504 static int is_resyncing(struct imsm_dev *dev)
2505 {
2506 struct imsm_map *migr_map;
2507
2508 if (!dev->vol.migr_state)
2509 return 0;
2510
2511 if (dev->vol.migr_type == 0)
2512 return 1;
2513
2514 migr_map = get_imsm_map(dev, 1);
2515
2516 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
2517 return 1;
2518 else
2519 return 0;
2520 }
2521
2522 static int is_rebuilding(struct imsm_dev *dev)
2523 {
2524 struct imsm_map *migr_map;
2525
2526 if (!dev->vol.migr_state)
2527 return 0;
2528
2529 if (dev->vol.migr_type == 0)
2530 return 0;
2531
2532 migr_map = get_imsm_map(dev, 1);
2533
2534 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
2535 return 1;
2536 else
2537 return 0;
2538 }
2539
2540 static void mark_failure(struct imsm_disk *disk)
2541 {
2542 __u32 status = __le32_to_cpu(disk->status);
2543
2544 if (status & FAILED_DISK)
2545 return;
2546 status |= FAILED_DISK;
2547 disk->status = __cpu_to_le32(status);
2548 disk->scsi_id = __cpu_to_le32(~(__u32)0);
2549 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
2550 }
2551
2552 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
2553 * states are handled in imsm_set_disk() with one exception, when a
2554 * resync is stopped due to a new failure this routine will set the
2555 * 'degraded' state for the array.
2556 */
2557 static int imsm_set_array_state(struct active_array *a, int consistent)
2558 {
2559 int inst = a->info.container_member;
2560 struct intel_super *super = a->container->sb;
2561 struct imsm_dev *dev = get_imsm_dev(super, inst);
2562 struct imsm_map *map = get_imsm_map(dev, 0);
2563 int failed = imsm_count_failed(super, dev);
2564 __u8 map_state = imsm_check_degraded(super, dev, failed);
2565
2566 /* before we activate this array handle any missing disks */
2567 if (consistent == 2 && super->missing) {
2568 struct dl *dl;
2569
2570 dprintf("imsm: mark missing\n");
2571 end_migration(dev, map_state);
2572 for (dl = super->missing; dl; dl = dl->next)
2573 mark_failure(&dl->disk);
2574 super->updates_pending++;
2575 }
2576
2577 if (consistent == 2 &&
2578 (!is_resync_complete(a) ||
2579 map_state != IMSM_T_STATE_NORMAL ||
2580 dev->vol.migr_state))
2581 consistent = 0;
2582
2583 if (is_resync_complete(a)) {
2584 /* complete intialization / resync,
2585 * recovery is completed in ->set_disk
2586 */
2587 if (is_resyncing(dev)) {
2588 dprintf("imsm: mark resync done\n");
2589 end_migration(dev, map_state);
2590 super->updates_pending++;
2591 }
2592 } else if (!is_resyncing(dev) && !failed) {
2593 /* mark the start of the init process if nothing is failed */
2594 dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
2595 map->map_state = map_state;
2596 migrate(dev, IMSM_T_STATE_NORMAL,
2597 map->map_state == IMSM_T_STATE_NORMAL);
2598 super->updates_pending++;
2599 }
2600
2601 /* check if we can update the migration checkpoint */
2602 if (dev->vol.migr_state &&
2603 __le32_to_cpu(dev->vol.curr_migr_unit) != a->resync_start) {
2604 dprintf("imsm: checkpoint migration (%llu)\n", a->resync_start);
2605 dev->vol.curr_migr_unit = __cpu_to_le32(a->resync_start);
2606 super->updates_pending++;
2607 }
2608
2609 /* mark dirty / clean */
2610 if (dev->vol.dirty != !consistent) {
2611 dprintf("imsm: mark '%s' (%llu)\n",
2612 consistent ? "clean" : "dirty", a->resync_start);
2613 if (consistent)
2614 dev->vol.dirty = 0;
2615 else
2616 dev->vol.dirty = 1;
2617 super->updates_pending++;
2618 }
2619 return consistent;
2620 }
2621
2622 static void imsm_set_disk(struct active_array *a, int n, int state)
2623 {
2624 int inst = a->info.container_member;
2625 struct intel_super *super = a->container->sb;
2626 struct imsm_dev *dev = get_imsm_dev(super, inst);
2627 struct imsm_map *map = get_imsm_map(dev, 0);
2628 struct imsm_disk *disk;
2629 int failed;
2630 __u32 status;
2631 __u32 ord;
2632 __u8 map_state;
2633
2634 if (n > map->num_members)
2635 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2636 n, map->num_members - 1);
2637
2638 if (n < 0)
2639 return;
2640
2641 dprintf("imsm: set_disk %d:%x\n", n, state);
2642
2643 ord = get_imsm_ord_tbl_ent(dev, n);
2644 disk = get_imsm_disk(super, ord_to_idx(ord));
2645
2646 /* check for new failures */
2647 status = __le32_to_cpu(disk->status);
2648 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2649 mark_failure(disk);
2650 super->updates_pending++;
2651 }
2652
2653 /* check if in_sync */
2654 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD) {
2655 struct imsm_map *migr_map = get_imsm_map(dev, 1);
2656
2657 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
2658 super->updates_pending++;
2659 }
2660
2661 failed = imsm_count_failed(super, dev);
2662 map_state = imsm_check_degraded(super, dev, failed);
2663
2664 /* check if recovery complete, newly degraded, or failed */
2665 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
2666 end_migration(dev, map_state);
2667 super->updates_pending++;
2668 } else if (map_state == IMSM_T_STATE_DEGRADED &&
2669 map->map_state != map_state &&
2670 !dev->vol.migr_state) {
2671 dprintf("imsm: mark degraded\n");
2672 map->map_state = map_state;
2673 super->updates_pending++;
2674 } else if (map_state == IMSM_T_STATE_FAILED &&
2675 map->map_state != map_state) {
2676 dprintf("imsm: mark failed\n");
2677 end_migration(dev, map_state);
2678 super->updates_pending++;
2679 }
2680 }
2681
2682 static int store_imsm_mpb(int fd, struct intel_super *super)
2683 {
2684 struct imsm_super *mpb = super->anchor;
2685 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2686 unsigned long long dsize;
2687 unsigned long long sectors;
2688
2689 get_dev_size(fd, NULL, &dsize);
2690
2691 if (mpb_size > 512) {
2692 /* -1 to account for anchor */
2693 sectors = mpb_sectors(mpb) - 1;
2694
2695 /* write the extended mpb to the sectors preceeding the anchor */
2696 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2697 return 1;
2698
2699 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2700 return 1;
2701 }
2702
2703 /* first block is stored on second to last sector of the disk */
2704 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2705 return 1;
2706
2707 if (write(fd, super->buf, 512) != 512)
2708 return 1;
2709
2710 return 0;
2711 }
2712
2713 static void imsm_sync_metadata(struct supertype *container)
2714 {
2715 struct intel_super *super = container->sb;
2716
2717 if (!super->updates_pending)
2718 return;
2719
2720 write_super_imsm(super, 0);
2721
2722 super->updates_pending = 0;
2723 }
2724
2725 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
2726 {
2727 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2728 int i = get_imsm_disk_idx(dev, idx);
2729 struct dl *dl;
2730
2731 for (dl = super->disks; dl; dl = dl->next)
2732 if (dl->index == i)
2733 break;
2734
2735 if (dl && __le32_to_cpu(dl->disk.status) & FAILED_DISK)
2736 dl = NULL;
2737
2738 if (dl)
2739 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
2740
2741 return dl;
2742 }
2743
2744 static struct dl *imsm_add_spare(struct intel_super *super, int slot, struct active_array *a)
2745 {
2746 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2747 int idx = get_imsm_disk_idx(dev, slot);
2748 struct imsm_map *map = get_imsm_map(dev, 0);
2749 unsigned long long esize;
2750 unsigned long long pos;
2751 struct mdinfo *d;
2752 struct extent *ex;
2753 int j;
2754 int found;
2755 __u32 array_start;
2756 __u32 status;
2757 struct dl *dl;
2758
2759 for (dl = super->disks; dl; dl = dl->next) {
2760 /* If in this array, skip */
2761 for (d = a->info.devs ; d ; d = d->next)
2762 if (d->state_fd >= 0 &&
2763 d->disk.major == dl->major &&
2764 d->disk.minor == dl->minor) {
2765 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2766 break;
2767 }
2768 if (d)
2769 continue;
2770
2771 /* skip in use or failed drives */
2772 status = __le32_to_cpu(dl->disk.status);
2773 if (status & FAILED_DISK || idx == dl->index) {
2774 dprintf("%x:%x status ( %s%s)\n",
2775 dl->major, dl->minor,
2776 status & FAILED_DISK ? "failed " : "",
2777 idx == dl->index ? "in use " : "");
2778 continue;
2779 }
2780
2781 /* Does this unused device have the requisite free space?
2782 * We need a->info.component_size sectors
2783 */
2784 ex = get_extents(super, dl);
2785 if (!ex) {
2786 dprintf("cannot get extents\n");
2787 continue;
2788 }
2789 found = 0;
2790 j = 0;
2791 pos = 0;
2792 array_start = __le32_to_cpu(map->pba_of_lba0);
2793
2794 do {
2795 /* check that we can start at pba_of_lba0 with
2796 * a->info.component_size of space
2797 */
2798 esize = ex[j].start - pos;
2799 if (array_start >= pos &&
2800 array_start + a->info.component_size < ex[j].start) {
2801 found = 1;
2802 break;
2803 }
2804 pos = ex[j].start + ex[j].size;
2805 j++;
2806
2807 } while (ex[j-1].size);
2808
2809 free(ex);
2810 if (!found) {
2811 dprintf("%x:%x does not have %llu at %d\n",
2812 dl->major, dl->minor,
2813 a->info.component_size,
2814 __le32_to_cpu(map->pba_of_lba0));
2815 /* No room */
2816 continue;
2817 } else
2818 break;
2819 }
2820
2821 return dl;
2822 }
2823
2824 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2825 struct metadata_update **updates)
2826 {
2827 /**
2828 * Find a device with unused free space and use it to replace a
2829 * failed/vacant region in an array. We replace failed regions one a
2830 * array at a time. The result is that a new spare disk will be added
2831 * to the first failed array and after the monitor has finished
2832 * propagating failures the remainder will be consumed.
2833 *
2834 * FIXME add a capability for mdmon to request spares from another
2835 * container.
2836 */
2837
2838 struct intel_super *super = a->container->sb;
2839 int inst = a->info.container_member;
2840 struct imsm_dev *dev = get_imsm_dev(super, inst);
2841 struct imsm_map *map = get_imsm_map(dev, 0);
2842 int failed = a->info.array.raid_disks;
2843 struct mdinfo *rv = NULL;
2844 struct mdinfo *d;
2845 struct mdinfo *di;
2846 struct metadata_update *mu;
2847 struct dl *dl;
2848 struct imsm_update_activate_spare *u;
2849 int num_spares = 0;
2850 int i;
2851
2852 for (d = a->info.devs ; d ; d = d->next) {
2853 if ((d->curr_state & DS_FAULTY) &&
2854 d->state_fd >= 0)
2855 /* wait for Removal to happen */
2856 return NULL;
2857 if (d->state_fd >= 0)
2858 failed--;
2859 }
2860
2861 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2862 inst, failed, a->info.array.raid_disks, a->info.array.level);
2863 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
2864 return NULL;
2865
2866 /* For each slot, if it is not working, find a spare */
2867 for (i = 0; i < a->info.array.raid_disks; i++) {
2868 for (d = a->info.devs ; d ; d = d->next)
2869 if (d->disk.raid_disk == i)
2870 break;
2871 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2872 if (d && (d->state_fd >= 0))
2873 continue;
2874
2875 /*
2876 * OK, this device needs recovery. Try to re-add the previous
2877 * occupant of this slot, if this fails add a new spare
2878 */
2879 dl = imsm_readd(super, i, a);
2880 if (!dl)
2881 dl = imsm_add_spare(super, i, a);
2882 if (!dl)
2883 continue;
2884
2885 /* found a usable disk with enough space */
2886 di = malloc(sizeof(*di));
2887 memset(di, 0, sizeof(*di));
2888
2889 /* dl->index will be -1 in the case we are activating a
2890 * pristine spare. imsm_process_update() will create a
2891 * new index in this case. Once a disk is found to be
2892 * failed in all member arrays it is kicked from the
2893 * metadata
2894 */
2895 di->disk.number = dl->index;
2896
2897 /* (ab)use di->devs to store a pointer to the device
2898 * we chose
2899 */
2900 di->devs = (struct mdinfo *) dl;
2901
2902 di->disk.raid_disk = i;
2903 di->disk.major = dl->major;
2904 di->disk.minor = dl->minor;
2905 di->disk.state = 0;
2906 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
2907 di->component_size = a->info.component_size;
2908 di->container_member = inst;
2909 di->next = rv;
2910 rv = di;
2911 num_spares++;
2912 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2913 i, di->data_offset);
2914
2915 break;
2916 }
2917
2918 if (!rv)
2919 /* No spares found */
2920 return rv;
2921 /* Now 'rv' has a list of devices to return.
2922 * Create a metadata_update record to update the
2923 * disk_ord_tbl for the array
2924 */
2925 mu = malloc(sizeof(*mu));
2926 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2927 mu->space = NULL;
2928 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2929 mu->next = *updates;
2930 u = (struct imsm_update_activate_spare *) mu->buf;
2931
2932 for (di = rv ; di ; di = di->next) {
2933 u->type = update_activate_spare;
2934 u->dl = (struct dl *) di->devs;
2935 di->devs = NULL;
2936 u->slot = di->disk.raid_disk;
2937 u->array = inst;
2938 u->next = u + 1;
2939 u++;
2940 }
2941 (u-1)->next = NULL;
2942 *updates = mu;
2943
2944 return rv;
2945 }
2946
2947 static int disks_overlap(struct imsm_dev *d1, struct imsm_dev *d2)
2948 {
2949 struct imsm_map *m1 = get_imsm_map(d1, 0);
2950 struct imsm_map *m2 = get_imsm_map(d2, 0);
2951 int i;
2952 int j;
2953 int idx;
2954
2955 for (i = 0; i < m1->num_members; i++) {
2956 idx = get_imsm_disk_idx(d1, i);
2957 for (j = 0; j < m2->num_members; j++)
2958 if (idx == get_imsm_disk_idx(d2, j))
2959 return 1;
2960 }
2961
2962 return 0;
2963 }
2964
2965 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
2966
2967 static void imsm_process_update(struct supertype *st,
2968 struct metadata_update *update)
2969 {
2970 /**
2971 * crack open the metadata_update envelope to find the update record
2972 * update can be one of:
2973 * update_activate_spare - a spare device has replaced a failed
2974 * device in an array, update the disk_ord_tbl. If this disk is
2975 * present in all member arrays then also clear the SPARE_DISK
2976 * flag
2977 */
2978 struct intel_super *super = st->sb;
2979 struct imsm_super *mpb;
2980 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2981
2982 /* update requires a larger buf but the allocation failed */
2983 if (super->next_len && !super->next_buf) {
2984 super->next_len = 0;
2985 return;
2986 }
2987
2988 if (super->next_buf) {
2989 memcpy(super->next_buf, super->buf, super->len);
2990 free(super->buf);
2991 super->len = super->next_len;
2992 super->buf = super->next_buf;
2993
2994 super->next_len = 0;
2995 super->next_buf = NULL;
2996 }
2997
2998 mpb = super->anchor;
2999
3000 switch (type) {
3001 case update_activate_spare: {
3002 struct imsm_update_activate_spare *u = (void *) update->buf;
3003 struct imsm_dev *dev = get_imsm_dev(super, u->array);
3004 struct imsm_map *map = get_imsm_map(dev, 0);
3005 struct imsm_map *migr_map;
3006 struct active_array *a;
3007 struct imsm_disk *disk;
3008 __u32 status;
3009 __u8 to_state;
3010 struct dl *dl;
3011 unsigned int found;
3012 int failed;
3013 int victim = get_imsm_disk_idx(dev, u->slot);
3014 int i;
3015
3016 for (dl = super->disks; dl; dl = dl->next)
3017 if (dl == u->dl)
3018 break;
3019
3020 if (!dl) {
3021 fprintf(stderr, "error: imsm_activate_spare passed "
3022 "an unknown disk (index: %d)\n",
3023 u->dl->index);
3024 return;
3025 }
3026
3027 super->updates_pending++;
3028
3029 /* count failures (excluding rebuilds and the victim)
3030 * to determine map[0] state
3031 */
3032 failed = 0;
3033 for (i = 0; i < map->num_members; i++) {
3034 if (i == u->slot)
3035 continue;
3036 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
3037 if (!disk ||
3038 __le32_to_cpu(disk->status) & FAILED_DISK)
3039 failed++;
3040 }
3041
3042 /* adding a pristine spare, assign a new index */
3043 if (dl->index < 0) {
3044 dl->index = super->anchor->num_disks;
3045 super->anchor->num_disks++;
3046 }
3047 disk = &dl->disk;
3048 status = __le32_to_cpu(disk->status);
3049 status |= CONFIGURED_DISK;
3050 status &= ~SPARE_DISK;
3051 disk->status = __cpu_to_le32(status);
3052
3053 /* mark rebuild */
3054 to_state = imsm_check_degraded(super, dev, failed);
3055 map->map_state = IMSM_T_STATE_DEGRADED;
3056 migrate(dev, to_state, 1);
3057 migr_map = get_imsm_map(dev, 1);
3058 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
3059 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
3060
3061 /* count arrays using the victim in the metadata */
3062 found = 0;
3063 for (a = st->arrays; a ; a = a->next) {
3064 dev = get_imsm_dev(super, a->info.container_member);
3065 for (i = 0; i < map->num_members; i++)
3066 if (victim == get_imsm_disk_idx(dev, i))
3067 found++;
3068 }
3069
3070 /* delete the victim if it is no longer being
3071 * utilized anywhere
3072 */
3073 if (!found) {
3074 struct dl **dlp;
3075
3076 /* We know that 'manager' isn't touching anything,
3077 * so it is safe to delete
3078 */
3079 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
3080 if ((*dlp)->index == victim)
3081 break;
3082
3083 /* victim may be on the missing list */
3084 if (!*dlp)
3085 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
3086 if ((*dlp)->index == victim)
3087 break;
3088 imsm_delete(super, dlp, victim);
3089 }
3090 break;
3091 }
3092 case update_create_array: {
3093 /* someone wants to create a new array, we need to be aware of
3094 * a few races/collisions:
3095 * 1/ 'Create' called by two separate instances of mdadm
3096 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
3097 * devices that have since been assimilated via
3098 * activate_spare.
3099 * In the event this update can not be carried out mdadm will
3100 * (FIX ME) notice that its update did not take hold.
3101 */
3102 struct imsm_update_create_array *u = (void *) update->buf;
3103 struct imsm_dev *dev;
3104 struct imsm_map *map, *new_map;
3105 unsigned long long start, end;
3106 unsigned long long new_start, new_end;
3107 int i;
3108 int overlap = 0;
3109
3110 /* handle racing creates: first come first serve */
3111 if (u->dev_idx < mpb->num_raid_devs) {
3112 dprintf("%s: subarray %d already defined\n",
3113 __func__, u->dev_idx);
3114 return;
3115 }
3116
3117 /* check update is next in sequence */
3118 if (u->dev_idx != mpb->num_raid_devs) {
3119 dprintf("%s: can not create array %d expected index %d\n",
3120 __func__, u->dev_idx, mpb->num_raid_devs);
3121 return;
3122 }
3123
3124 new_map = get_imsm_map(&u->dev, 0);
3125 new_start = __le32_to_cpu(new_map->pba_of_lba0);
3126 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
3127
3128 /* handle activate_spare versus create race:
3129 * check to make sure that overlapping arrays do not include
3130 * overalpping disks
3131 */
3132 for (i = 0; i < mpb->num_raid_devs; i++) {
3133 dev = get_imsm_dev(super, i);
3134 map = get_imsm_map(dev, 0);
3135 start = __le32_to_cpu(map->pba_of_lba0);
3136 end = start + __le32_to_cpu(map->blocks_per_member);
3137 if ((new_start >= start && new_start <= end) ||
3138 (start >= new_start && start <= new_end))
3139 overlap = 1;
3140 if (overlap && disks_overlap(dev, &u->dev)) {
3141 dprintf("%s: arrays overlap\n", __func__);
3142 return;
3143 }
3144 }
3145 /* check num_members sanity */
3146 if (new_map->num_members > mpb->num_disks) {
3147 dprintf("%s: num_disks out of range\n", __func__);
3148 return;
3149 }
3150
3151 /* check that prepare update was successful */
3152 if (!update->space) {
3153 dprintf("%s: prepare update failed\n", __func__);
3154 return;
3155 }
3156
3157 super->updates_pending++;
3158 dev = update->space;
3159 map = get_imsm_map(dev, 0);
3160 update->space = NULL;
3161 imsm_copy_dev(dev, &u->dev);
3162 map = get_imsm_map(dev, 0);
3163 super->dev_tbl[u->dev_idx] = dev;
3164 mpb->num_raid_devs++;
3165
3166 /* fix up flags */
3167 for (i = 0; i < map->num_members; i++) {
3168 struct imsm_disk *disk;
3169 __u32 status;
3170
3171 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
3172 status = __le32_to_cpu(disk->status);
3173 status |= CONFIGURED_DISK;
3174 status &= ~SPARE_DISK;
3175 disk->status = __cpu_to_le32(status);
3176 }
3177 break;
3178 }
3179 case update_add_disk:
3180
3181 /* we may be able to repair some arrays if disks are
3182 * being added */
3183 if (super->add) {
3184 struct active_array *a;
3185 for (a = st->arrays; a; a = a->next)
3186 a->check_degraded = 1;
3187 }
3188 /* add some spares to the metadata */
3189 while (super->add) {
3190 struct dl *al;
3191
3192 al = super->add;
3193 super->add = al->next;
3194 al->next = super->disks;
3195 super->disks = al;
3196 dprintf("%s: added %x:%x\n",
3197 __func__, al->major, al->minor);
3198 }
3199
3200 break;
3201 }
3202 }
3203
3204 static void imsm_prepare_update(struct supertype *st,
3205 struct metadata_update *update)
3206 {
3207 /**
3208 * Allocate space to hold new disk entries, raid-device entries or a new
3209 * mpb if necessary. The manager synchronously waits for updates to
3210 * complete in the monitor, so new mpb buffers allocated here can be
3211 * integrated by the monitor thread without worrying about live pointers
3212 * in the manager thread.
3213 */
3214 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
3215 struct intel_super *super = st->sb;
3216 struct imsm_super *mpb = super->anchor;
3217 size_t buf_len;
3218 size_t len = 0;
3219
3220 switch (type) {
3221 case update_create_array: {
3222 struct imsm_update_create_array *u = (void *) update->buf;
3223
3224 len = sizeof_imsm_dev(&u->dev, 1);
3225 update->space = malloc(len);
3226 break;
3227 default:
3228 break;
3229 }
3230 }
3231
3232 /* check if we need a larger metadata buffer */
3233 if (super->next_buf)
3234 buf_len = super->next_len;
3235 else
3236 buf_len = super->len;
3237
3238 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
3239 /* ok we need a larger buf than what is currently allocated
3240 * if this allocation fails process_update will notice that
3241 * ->next_len is set and ->next_buf is NULL
3242 */
3243 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
3244 if (super->next_buf)
3245 free(super->next_buf);
3246
3247 super->next_len = buf_len;
3248 if (posix_memalign(&super->next_buf, buf_len, 512) != 0)
3249 super->next_buf = NULL;
3250 }
3251 }
3252
3253 /* must be called while manager is quiesced */
3254 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
3255 {
3256 struct imsm_super *mpb = super->anchor;
3257 struct dl *iter;
3258 struct imsm_dev *dev;
3259 struct imsm_map *map;
3260 int i, j, num_members;
3261 __u32 ord;
3262
3263 dprintf("%s: deleting device[%d] from imsm_super\n",
3264 __func__, index);
3265
3266 /* shift all indexes down one */
3267 for (iter = super->disks; iter; iter = iter->next)
3268 if (iter->index > index)
3269 iter->index--;
3270 for (iter = super->missing; iter; iter = iter->next)
3271 if (iter->index > index)
3272 iter->index--;
3273
3274 for (i = 0; i < mpb->num_raid_devs; i++) {
3275 dev = get_imsm_dev(super, i);
3276 map = get_imsm_map(dev, 0);
3277 num_members = map->num_members;
3278 for (j = 0; j < num_members; j++) {
3279 /* update ord entries being careful not to propagate
3280 * ord-flags to the first map
3281 */
3282 ord = get_imsm_ord_tbl_ent(dev, j);
3283
3284 if (ord_to_idx(ord) <= index)
3285 continue;
3286
3287 map = get_imsm_map(dev, 0);
3288 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
3289 map = get_imsm_map(dev, 1);
3290 if (map)
3291 set_imsm_ord_tbl_ent(map, j, ord - 1);
3292 }
3293 }
3294
3295 mpb->num_disks--;
3296 super->updates_pending++;
3297 if (*dlp) {
3298 struct dl *dl = *dlp;
3299
3300 *dlp = (*dlp)->next;
3301 __free_imsm_disk(dl);
3302 }
3303 }
3304 #endif /* MDASSEMBLE */
3305
3306 struct superswitch super_imsm = {
3307 #ifndef MDASSEMBLE
3308 .examine_super = examine_super_imsm,
3309 .brief_examine_super = brief_examine_super_imsm,
3310 .detail_super = detail_super_imsm,
3311 .brief_detail_super = brief_detail_super_imsm,
3312 .write_init_super = write_init_super_imsm,
3313 .validate_geometry = validate_geometry_imsm,
3314 .add_to_super = add_to_super_imsm,
3315 #endif
3316 .match_home = match_home_imsm,
3317 .uuid_from_super= uuid_from_super_imsm,
3318 .getinfo_super = getinfo_super_imsm,
3319 .update_super = update_super_imsm,
3320
3321 .avail_size = avail_size_imsm,
3322
3323 .compare_super = compare_super_imsm,
3324
3325 .load_super = load_super_imsm,
3326 .init_super = init_super_imsm,
3327 .store_super = store_zero_imsm,
3328 .free_super = free_super_imsm,
3329 .match_metadata_desc = match_metadata_desc_imsm,
3330 .container_content = container_content_imsm,
3331
3332 .external = 1,
3333
3334 #ifndef MDASSEMBLE
3335 /* for mdmon */
3336 .open_new = imsm_open_new,
3337 .load_super = load_super_imsm,
3338 .set_array_state= imsm_set_array_state,
3339 .set_disk = imsm_set_disk,
3340 .sync_metadata = imsm_sync_metadata,
3341 .activate_spare = imsm_activate_spare,
3342 .process_update = imsm_process_update,
3343 .prepare_update = imsm_prepare_update,
3344 #endif /* MDASSEMBLE */
3345 };