]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: FIX: return correct status from load_imsm_migr_rec()
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 #define IMSM_DISK_FILLERS 4
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107 };
108
109 /* map selector for map managment
110 */
111 #define MAP_0 0
112 #define MAP_1 1
113 #define MAP_X -1
114
115 /* RAID map configuration infos. */
116 struct imsm_map {
117 __u32 pba_of_lba0; /* start address of partition */
118 __u32 blocks_per_member;/* blocks per member */
119 __u32 num_data_stripes; /* number of data stripes */
120 __u16 blocks_per_strip;
121 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
122 #define IMSM_T_STATE_NORMAL 0
123 #define IMSM_T_STATE_UNINITIALIZED 1
124 #define IMSM_T_STATE_DEGRADED 2
125 #define IMSM_T_STATE_FAILED 3
126 __u8 raid_level;
127 #define IMSM_T_RAID0 0
128 #define IMSM_T_RAID1 1
129 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
130 __u8 num_members; /* number of member disks */
131 __u8 num_domains; /* number of parity domains */
132 __u8 failed_disk_num; /* valid only when state is degraded */
133 __u8 ddf;
134 __u32 filler[7]; /* expansion area */
135 #define IMSM_ORD_REBUILD (1 << 24)
136 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
137 * top byte contains some flags
138 */
139 } __attribute__ ((packed));
140
141 struct imsm_vol {
142 __u32 curr_migr_unit;
143 __u32 checkpoint_id; /* id to access curr_migr_unit */
144 __u8 migr_state; /* Normal or Migrating */
145 #define MIGR_INIT 0
146 #define MIGR_REBUILD 1
147 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
148 #define MIGR_GEN_MIGR 3
149 #define MIGR_STATE_CHANGE 4
150 #define MIGR_REPAIR 5
151 __u8 migr_type; /* Initializing, Rebuilding, ... */
152 __u8 dirty;
153 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
154 __u16 verify_errors; /* number of mismatches */
155 __u16 bad_blocks; /* number of bad blocks during verify */
156 __u32 filler[4];
157 struct imsm_map map[1];
158 /* here comes another one if migr_state */
159 } __attribute__ ((packed));
160
161 struct imsm_dev {
162 __u8 volume[MAX_RAID_SERIAL_LEN];
163 __u32 size_low;
164 __u32 size_high;
165 #define DEV_BOOTABLE __cpu_to_le32(0x01)
166 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
167 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
168 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
169 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
170 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
171 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
172 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
173 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
174 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
175 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
176 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
177 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
178 __u32 status; /* Persistent RaidDev status */
179 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
180 __u8 migr_priority;
181 __u8 num_sub_vols;
182 __u8 tid;
183 __u8 cng_master_disk;
184 __u16 cache_policy;
185 __u8 cng_state;
186 __u8 cng_sub_state;
187 #define IMSM_DEV_FILLERS 10
188 __u32 filler[IMSM_DEV_FILLERS];
189 struct imsm_vol vol;
190 } __attribute__ ((packed));
191
192 struct imsm_super {
193 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
194 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
195 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
196 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
197 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
198 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
199 __u32 attributes; /* 0x34 - 0x37 */
200 __u8 num_disks; /* 0x38 Number of configured disks */
201 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
202 __u8 error_log_pos; /* 0x3A */
203 __u8 fill[1]; /* 0x3B */
204 __u32 cache_size; /* 0x3c - 0x40 in mb */
205 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
206 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
207 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
208 #define IMSM_FILLERS 35
209 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
210 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
211 /* here comes imsm_dev[num_raid_devs] */
212 /* here comes BBM logs */
213 } __attribute__ ((packed));
214
215 #define BBM_LOG_MAX_ENTRIES 254
216
217 struct bbm_log_entry {
218 __u64 defective_block_start;
219 #define UNREADABLE 0xFFFFFFFF
220 __u32 spare_block_offset;
221 __u16 remapped_marked_count;
222 __u16 disk_ordinal;
223 } __attribute__ ((__packed__));
224
225 struct bbm_log {
226 __u32 signature; /* 0xABADB10C */
227 __u32 entry_count;
228 __u32 reserved_spare_block_count; /* 0 */
229 __u32 reserved; /* 0xFFFF */
230 __u64 first_spare_lba;
231 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
232 } __attribute__ ((__packed__));
233
234
235 #ifndef MDASSEMBLE
236 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
237 #endif
238
239 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
240
241 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
242
243 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
244 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
245 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
246 */
247
248
249 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
250 * be recovered using srcMap */
251 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
252 * already been migrated and must
253 * be recovered from checkpoint area */
254 struct migr_record {
255 __u32 rec_status; /* Status used to determine how to restart
256 * migration in case it aborts
257 * in some fashion */
258 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
259 __u32 family_num; /* Family number of MPB
260 * containing the RaidDev
261 * that is migrating */
262 __u32 ascending_migr; /* True if migrating in increasing
263 * order of lbas */
264 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
265 __u32 dest_depth_per_unit; /* Num member blocks each destMap
266 * member disk
267 * advances per unit-of-operation */
268 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
269 __u32 dest_1st_member_lba; /* First member lba on first
270 * stripe of destination */
271 __u32 num_migr_units; /* Total num migration units-of-op */
272 __u32 post_migr_vol_cap; /* Size of volume after
273 * migration completes */
274 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
275 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
276 * migration ckpt record was read from
277 * (for recovered migrations) */
278 } __attribute__ ((__packed__));
279
280 static __u8 migr_type(struct imsm_dev *dev)
281 {
282 if (dev->vol.migr_type == MIGR_VERIFY &&
283 dev->status & DEV_VERIFY_AND_FIX)
284 return MIGR_REPAIR;
285 else
286 return dev->vol.migr_type;
287 }
288
289 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
290 {
291 /* for compatibility with older oroms convert MIGR_REPAIR, into
292 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
293 */
294 if (migr_type == MIGR_REPAIR) {
295 dev->vol.migr_type = MIGR_VERIFY;
296 dev->status |= DEV_VERIFY_AND_FIX;
297 } else {
298 dev->vol.migr_type = migr_type;
299 dev->status &= ~DEV_VERIFY_AND_FIX;
300 }
301 }
302
303 static unsigned int sector_count(__u32 bytes)
304 {
305 return ((bytes + (512-1)) & (~(512-1))) / 512;
306 }
307
308 static unsigned int mpb_sectors(struct imsm_super *mpb)
309 {
310 return sector_count(__le32_to_cpu(mpb->mpb_size));
311 }
312
313 struct intel_dev {
314 struct imsm_dev *dev;
315 struct intel_dev *next;
316 unsigned index;
317 };
318
319 struct intel_hba {
320 enum sys_dev_type type;
321 char *path;
322 char *pci_id;
323 struct intel_hba *next;
324 };
325
326 enum action {
327 DISK_REMOVE = 1,
328 DISK_ADD
329 };
330 /* internal representation of IMSM metadata */
331 struct intel_super {
332 union {
333 void *buf; /* O_DIRECT buffer for reading/writing metadata */
334 struct imsm_super *anchor; /* immovable parameters */
335 };
336 union {
337 void *migr_rec_buf; /* buffer for I/O operations */
338 struct migr_record *migr_rec; /* migration record */
339 };
340 size_t len; /* size of the 'buf' allocation */
341 void *next_buf; /* for realloc'ing buf from the manager */
342 size_t next_len;
343 int updates_pending; /* count of pending updates for mdmon */
344 int current_vol; /* index of raid device undergoing creation */
345 __u32 create_offset; /* common start for 'current_vol' */
346 __u32 random; /* random data for seeding new family numbers */
347 struct intel_dev *devlist;
348 struct dl {
349 struct dl *next;
350 int index;
351 __u8 serial[MAX_RAID_SERIAL_LEN];
352 int major, minor;
353 char *devname;
354 struct imsm_disk disk;
355 int fd;
356 int extent_cnt;
357 struct extent *e; /* for determining freespace @ create */
358 int raiddisk; /* slot to fill in autolayout */
359 enum action action;
360 } *disks, *current_disk;
361 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
362 active */
363 struct dl *missing; /* disks removed while we weren't looking */
364 struct bbm_log *bbm_log;
365 struct intel_hba *hba; /* device path of the raid controller for this metadata */
366 const struct imsm_orom *orom; /* platform firmware support */
367 struct intel_super *next; /* (temp) list for disambiguating family_num */
368 };
369
370 struct intel_disk {
371 struct imsm_disk disk;
372 #define IMSM_UNKNOWN_OWNER (-1)
373 int owner;
374 struct intel_disk *next;
375 };
376
377 struct extent {
378 unsigned long long start, size;
379 };
380
381 /* definitions of reshape process types */
382 enum imsm_reshape_type {
383 CH_TAKEOVER,
384 CH_MIGRATION,
385 };
386
387 /* definition of messages passed to imsm_process_update */
388 enum imsm_update_type {
389 update_activate_spare,
390 update_create_array,
391 update_kill_array,
392 update_rename_array,
393 update_add_remove_disk,
394 update_reshape_container_disks,
395 update_reshape_migration,
396 update_takeover,
397 update_general_migration_checkpoint,
398 };
399
400 struct imsm_update_activate_spare {
401 enum imsm_update_type type;
402 struct dl *dl;
403 int slot;
404 int array;
405 struct imsm_update_activate_spare *next;
406 };
407
408 struct geo_params {
409 int dev_id;
410 char *dev_name;
411 long long size;
412 int level;
413 int layout;
414 int chunksize;
415 int raid_disks;
416 };
417
418 enum takeover_direction {
419 R10_TO_R0,
420 R0_TO_R10
421 };
422 struct imsm_update_takeover {
423 enum imsm_update_type type;
424 int subarray;
425 enum takeover_direction direction;
426 };
427
428 struct imsm_update_reshape {
429 enum imsm_update_type type;
430 int old_raid_disks;
431 int new_raid_disks;
432
433 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
434 };
435
436 struct imsm_update_reshape_migration {
437 enum imsm_update_type type;
438 int old_raid_disks;
439 int new_raid_disks;
440 /* fields for array migration changes
441 */
442 int subdev;
443 int new_level;
444 int new_layout;
445 int new_chunksize;
446
447 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
448 };
449
450 struct imsm_update_general_migration_checkpoint {
451 enum imsm_update_type type;
452 __u32 curr_migr_unit;
453 };
454
455 struct disk_info {
456 __u8 serial[MAX_RAID_SERIAL_LEN];
457 };
458
459 struct imsm_update_create_array {
460 enum imsm_update_type type;
461 int dev_idx;
462 struct imsm_dev dev;
463 };
464
465 struct imsm_update_kill_array {
466 enum imsm_update_type type;
467 int dev_idx;
468 };
469
470 struct imsm_update_rename_array {
471 enum imsm_update_type type;
472 __u8 name[MAX_RAID_SERIAL_LEN];
473 int dev_idx;
474 };
475
476 struct imsm_update_add_remove_disk {
477 enum imsm_update_type type;
478 };
479
480
481 static const char *_sys_dev_type[] = {
482 [SYS_DEV_UNKNOWN] = "Unknown",
483 [SYS_DEV_SAS] = "SAS",
484 [SYS_DEV_SATA] = "SATA"
485 };
486
487 const char *get_sys_dev_type(enum sys_dev_type type)
488 {
489 if (type >= SYS_DEV_MAX)
490 type = SYS_DEV_UNKNOWN;
491
492 return _sys_dev_type[type];
493 }
494
495 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
496 {
497 struct intel_hba *result = malloc(sizeof(*result));
498 if (result) {
499 result->type = device->type;
500 result->path = strdup(device->path);
501 result->next = NULL;
502 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
503 result->pci_id++;
504 }
505 return result;
506 }
507
508 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
509 {
510 struct intel_hba *result=NULL;
511 for (result = hba; result; result = result->next) {
512 if (result->type == device->type && strcmp(result->path, device->path) == 0)
513 break;
514 }
515 return result;
516 }
517
518 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
519 {
520 struct intel_hba *hba;
521
522 /* check if disk attached to Intel HBA */
523 hba = find_intel_hba(super->hba, device);
524 if (hba != NULL)
525 return 1;
526 /* Check if HBA is already attached to super */
527 if (super->hba == NULL) {
528 super->hba = alloc_intel_hba(device);
529 return 1;
530 }
531
532 hba = super->hba;
533 /* Intel metadata allows for all disks attached to the same type HBA.
534 * Do not sypport odf HBA types mixing
535 */
536 if (device->type != hba->type)
537 return 2;
538
539 while (hba->next)
540 hba = hba->next;
541
542 hba->next = alloc_intel_hba(device);
543 return 1;
544 }
545
546 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
547 {
548 struct sys_dev *list, *elem, *prev;
549 char *disk_path;
550
551 if ((list = find_intel_devices()) == NULL)
552 return 0;
553
554 if (fd < 0)
555 disk_path = (char *) devname;
556 else
557 disk_path = diskfd_to_devpath(fd);
558
559 if (!disk_path) {
560 free_sys_dev(&list);
561 return 0;
562 }
563
564 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
565 if (path_attached_to_hba(disk_path, elem->path)) {
566 if (prev == NULL)
567 list = list->next;
568 else
569 prev->next = elem->next;
570 elem->next = NULL;
571 if (disk_path != devname)
572 free(disk_path);
573 free_sys_dev(&list);
574 return elem;
575 }
576 }
577 if (disk_path != devname)
578 free(disk_path);
579 free_sys_dev(&list);
580
581 return NULL;
582 }
583
584
585 static int find_intel_hba_capability(int fd, struct intel_super *super,
586 char *devname);
587
588 static struct supertype *match_metadata_desc_imsm(char *arg)
589 {
590 struct supertype *st;
591
592 if (strcmp(arg, "imsm") != 0 &&
593 strcmp(arg, "default") != 0
594 )
595 return NULL;
596
597 st = malloc(sizeof(*st));
598 if (!st)
599 return NULL;
600 memset(st, 0, sizeof(*st));
601 st->container_dev = NoMdDev;
602 st->ss = &super_imsm;
603 st->max_devs = IMSM_MAX_DEVICES;
604 st->minor_version = 0;
605 st->sb = NULL;
606 return st;
607 }
608
609 #ifndef MDASSEMBLE
610 static __u8 *get_imsm_version(struct imsm_super *mpb)
611 {
612 return &mpb->sig[MPB_SIG_LEN];
613 }
614 #endif
615
616 /* retrieve a disk directly from the anchor when the anchor is known to be
617 * up-to-date, currently only at load time
618 */
619 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
620 {
621 if (index >= mpb->num_disks)
622 return NULL;
623 return &mpb->disk[index];
624 }
625
626 /* retrieve the disk description based on a index of the disk
627 * in the sub-array
628 */
629 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
630 {
631 struct dl *d;
632
633 for (d = super->disks; d; d = d->next)
634 if (d->index == index)
635 return d;
636
637 return NULL;
638 }
639 /* retrieve a disk from the parsed metadata */
640 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
641 {
642 struct dl *dl;
643
644 dl = get_imsm_dl_disk(super, index);
645 if (dl)
646 return &dl->disk;
647
648 return NULL;
649 }
650
651 /* generate a checksum directly from the anchor when the anchor is known to be
652 * up-to-date, currently only at load or write_super after coalescing
653 */
654 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
655 {
656 __u32 end = mpb->mpb_size / sizeof(end);
657 __u32 *p = (__u32 *) mpb;
658 __u32 sum = 0;
659
660 while (end--) {
661 sum += __le32_to_cpu(*p);
662 p++;
663 }
664
665 return sum - __le32_to_cpu(mpb->check_sum);
666 }
667
668 static size_t sizeof_imsm_map(struct imsm_map *map)
669 {
670 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
671 }
672
673 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
674 {
675 /* A device can have 2 maps if it is in the middle of a migration.
676 * If second_map is:
677 * MAP_0 - we return the first map
678 * MAP_1 - we return the second map if it exists, else NULL
679 * MAP_X - we return the second map if it exists, else the first
680 */
681 struct imsm_map *map = &dev->vol.map[0];
682 struct imsm_map *map2 = NULL;
683
684 if (dev->vol.migr_state)
685 map2 = (void *)map + sizeof_imsm_map(map);
686
687 switch (second_map) {
688 case MAP_0:
689 break;
690 case MAP_1:
691 map = map2;
692 break;
693 case MAP_X:
694 if (map2)
695 map = map2;
696 break;
697 default:
698 map = NULL;
699 }
700 return map;
701
702 }
703
704 /* return the size of the device.
705 * migr_state increases the returned size if map[0] were to be duplicated
706 */
707 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
708 {
709 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
710 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
711
712 /* migrating means an additional map */
713 if (dev->vol.migr_state)
714 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
715 else if (migr_state)
716 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
717
718 return size;
719 }
720
721 #ifndef MDASSEMBLE
722 /* retrieve disk serial number list from a metadata update */
723 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
724 {
725 void *u = update;
726 struct disk_info *inf;
727
728 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
729 sizeof_imsm_dev(&update->dev, 0);
730
731 return inf;
732 }
733 #endif
734
735 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
736 {
737 int offset;
738 int i;
739 void *_mpb = mpb;
740
741 if (index >= mpb->num_raid_devs)
742 return NULL;
743
744 /* devices start after all disks */
745 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
746
747 for (i = 0; i <= index; i++)
748 if (i == index)
749 return _mpb + offset;
750 else
751 offset += sizeof_imsm_dev(_mpb + offset, 0);
752
753 return NULL;
754 }
755
756 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
757 {
758 struct intel_dev *dv;
759
760 if (index >= super->anchor->num_raid_devs)
761 return NULL;
762 for (dv = super->devlist; dv; dv = dv->next)
763 if (dv->index == index)
764 return dv->dev;
765 return NULL;
766 }
767
768 /*
769 * for second_map:
770 * == MAP_0 get first map
771 * == MAP_1 get second map
772 * == MAP_X than get map according to the current migr_state
773 */
774 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
775 int slot,
776 int second_map)
777 {
778 struct imsm_map *map;
779
780 map = get_imsm_map(dev, second_map);
781
782 /* top byte identifies disk under rebuild */
783 return __le32_to_cpu(map->disk_ord_tbl[slot]);
784 }
785
786 #define ord_to_idx(ord) (((ord) << 8) >> 8)
787 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
788 {
789 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
790
791 return ord_to_idx(ord);
792 }
793
794 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
795 {
796 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
797 }
798
799 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
800 {
801 int slot;
802 __u32 ord;
803
804 for (slot = 0; slot < map->num_members; slot++) {
805 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
806 if (ord_to_idx(ord) == idx)
807 return slot;
808 }
809
810 return -1;
811 }
812
813 static int get_imsm_raid_level(struct imsm_map *map)
814 {
815 if (map->raid_level == 1) {
816 if (map->num_members == 2)
817 return 1;
818 else
819 return 10;
820 }
821
822 return map->raid_level;
823 }
824
825 static int cmp_extent(const void *av, const void *bv)
826 {
827 const struct extent *a = av;
828 const struct extent *b = bv;
829 if (a->start < b->start)
830 return -1;
831 if (a->start > b->start)
832 return 1;
833 return 0;
834 }
835
836 static int count_memberships(struct dl *dl, struct intel_super *super)
837 {
838 int memberships = 0;
839 int i;
840
841 for (i = 0; i < super->anchor->num_raid_devs; i++) {
842 struct imsm_dev *dev = get_imsm_dev(super, i);
843 struct imsm_map *map = get_imsm_map(dev, MAP_0);
844
845 if (get_imsm_disk_slot(map, dl->index) >= 0)
846 memberships++;
847 }
848
849 return memberships;
850 }
851
852 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
853
854 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
855 {
856 /* find a list of used extents on the given physical device */
857 struct extent *rv, *e;
858 int i;
859 int memberships = count_memberships(dl, super);
860 __u32 reservation;
861
862 /* trim the reserved area for spares, so they can join any array
863 * regardless of whether the OROM has assigned sectors from the
864 * IMSM_RESERVED_SECTORS region
865 */
866 if (dl->index == -1)
867 reservation = imsm_min_reserved_sectors(super);
868 else
869 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
870
871 rv = malloc(sizeof(struct extent) * (memberships + 1));
872 if (!rv)
873 return NULL;
874 e = rv;
875
876 for (i = 0; i < super->anchor->num_raid_devs; i++) {
877 struct imsm_dev *dev = get_imsm_dev(super, i);
878 struct imsm_map *map = get_imsm_map(dev, MAP_0);
879
880 if (get_imsm_disk_slot(map, dl->index) >= 0) {
881 e->start = __le32_to_cpu(map->pba_of_lba0);
882 e->size = __le32_to_cpu(map->blocks_per_member);
883 e++;
884 }
885 }
886 qsort(rv, memberships, sizeof(*rv), cmp_extent);
887
888 /* determine the start of the metadata
889 * when no raid devices are defined use the default
890 * ...otherwise allow the metadata to truncate the value
891 * as is the case with older versions of imsm
892 */
893 if (memberships) {
894 struct extent *last = &rv[memberships - 1];
895 __u32 remainder;
896
897 remainder = __le32_to_cpu(dl->disk.total_blocks) -
898 (last->start + last->size);
899 /* round down to 1k block to satisfy precision of the kernel
900 * 'size' interface
901 */
902 remainder &= ~1UL;
903 /* make sure remainder is still sane */
904 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
905 remainder = ROUND_UP(super->len, 512) >> 9;
906 if (reservation > remainder)
907 reservation = remainder;
908 }
909 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
910 e->size = 0;
911 return rv;
912 }
913
914 /* try to determine how much space is reserved for metadata from
915 * the last get_extents() entry, otherwise fallback to the
916 * default
917 */
918 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
919 {
920 struct extent *e;
921 int i;
922 __u32 rv;
923
924 /* for spares just return a minimal reservation which will grow
925 * once the spare is picked up by an array
926 */
927 if (dl->index == -1)
928 return MPB_SECTOR_CNT;
929
930 e = get_extents(super, dl);
931 if (!e)
932 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
933
934 /* scroll to last entry */
935 for (i = 0; e[i].size; i++)
936 continue;
937
938 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
939
940 free(e);
941
942 return rv;
943 }
944
945 static int is_spare(struct imsm_disk *disk)
946 {
947 return (disk->status & SPARE_DISK) == SPARE_DISK;
948 }
949
950 static int is_configured(struct imsm_disk *disk)
951 {
952 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
953 }
954
955 static int is_failed(struct imsm_disk *disk)
956 {
957 return (disk->status & FAILED_DISK) == FAILED_DISK;
958 }
959
960 /* try to determine how much space is reserved for metadata from
961 * the last get_extents() entry on the smallest active disk,
962 * otherwise fallback to the default
963 */
964 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
965 {
966 struct extent *e;
967 int i;
968 __u32 min_active, remainder;
969 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
970 struct dl *dl, *dl_min = NULL;
971
972 if (!super)
973 return rv;
974
975 min_active = 0;
976 for (dl = super->disks; dl; dl = dl->next) {
977 if (dl->index < 0)
978 continue;
979 if (dl->disk.total_blocks < min_active || min_active == 0) {
980 dl_min = dl;
981 min_active = dl->disk.total_blocks;
982 }
983 }
984 if (!dl_min)
985 return rv;
986
987 /* find last lba used by subarrays on the smallest active disk */
988 e = get_extents(super, dl_min);
989 if (!e)
990 return rv;
991 for (i = 0; e[i].size; i++)
992 continue;
993
994 remainder = min_active - e[i].start;
995 free(e);
996
997 /* to give priority to recovery we should not require full
998 IMSM_RESERVED_SECTORS from the spare */
999 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1000
1001 /* if real reservation is smaller use that value */
1002 return (remainder < rv) ? remainder : rv;
1003 }
1004
1005 /* Return minimum size of a spare that can be used in this array*/
1006 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1007 {
1008 struct intel_super *super = st->sb;
1009 struct dl *dl;
1010 struct extent *e;
1011 int i;
1012 unsigned long long rv = 0;
1013
1014 if (!super)
1015 return rv;
1016 /* find first active disk in array */
1017 dl = super->disks;
1018 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1019 dl = dl->next;
1020 if (!dl)
1021 return rv;
1022 /* find last lba used by subarrays */
1023 e = get_extents(super, dl);
1024 if (!e)
1025 return rv;
1026 for (i = 0; e[i].size; i++)
1027 continue;
1028 if (i > 0)
1029 rv = e[i-1].start + e[i-1].size;
1030 free(e);
1031
1032 /* add the amount of space needed for metadata */
1033 rv = rv + imsm_min_reserved_sectors(super);
1034
1035 return rv * 512;
1036 }
1037
1038 static int is_gen_migration(struct imsm_dev *dev);
1039
1040 #ifndef MDASSEMBLE
1041 static __u64 blocks_per_migr_unit(struct intel_super *super,
1042 struct imsm_dev *dev);
1043
1044 static void print_imsm_dev(struct intel_super *super,
1045 struct imsm_dev *dev,
1046 char *uuid,
1047 int disk_idx)
1048 {
1049 __u64 sz;
1050 int slot, i;
1051 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1052 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1053 __u32 ord;
1054
1055 printf("\n");
1056 printf("[%.16s]:\n", dev->volume);
1057 printf(" UUID : %s\n", uuid);
1058 printf(" RAID Level : %d", get_imsm_raid_level(map));
1059 if (map2)
1060 printf(" <-- %d", get_imsm_raid_level(map2));
1061 printf("\n");
1062 printf(" Members : %d", map->num_members);
1063 if (map2)
1064 printf(" <-- %d", map2->num_members);
1065 printf("\n");
1066 printf(" Slots : [");
1067 for (i = 0; i < map->num_members; i++) {
1068 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1069 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1070 }
1071 printf("]");
1072 if (map2) {
1073 printf(" <-- [");
1074 for (i = 0; i < map2->num_members; i++) {
1075 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1076 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1077 }
1078 printf("]");
1079 }
1080 printf("\n");
1081 printf(" Failed disk : ");
1082 if (map->failed_disk_num == 0xff)
1083 printf("none");
1084 else
1085 printf("%i", map->failed_disk_num);
1086 printf("\n");
1087 slot = get_imsm_disk_slot(map, disk_idx);
1088 if (slot >= 0) {
1089 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1090 printf(" This Slot : %d%s\n", slot,
1091 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1092 } else
1093 printf(" This Slot : ?\n");
1094 sz = __le32_to_cpu(dev->size_high);
1095 sz <<= 32;
1096 sz += __le32_to_cpu(dev->size_low);
1097 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1098 human_size(sz * 512));
1099 sz = __le32_to_cpu(map->blocks_per_member);
1100 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1101 human_size(sz * 512));
1102 printf(" Sector Offset : %u\n",
1103 __le32_to_cpu(map->pba_of_lba0));
1104 printf(" Num Stripes : %u\n",
1105 __le32_to_cpu(map->num_data_stripes));
1106 printf(" Chunk Size : %u KiB",
1107 __le16_to_cpu(map->blocks_per_strip) / 2);
1108 if (map2)
1109 printf(" <-- %u KiB",
1110 __le16_to_cpu(map2->blocks_per_strip) / 2);
1111 printf("\n");
1112 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1113 printf(" Migrate State : ");
1114 if (dev->vol.migr_state) {
1115 if (migr_type(dev) == MIGR_INIT)
1116 printf("initialize\n");
1117 else if (migr_type(dev) == MIGR_REBUILD)
1118 printf("rebuild\n");
1119 else if (migr_type(dev) == MIGR_VERIFY)
1120 printf("check\n");
1121 else if (migr_type(dev) == MIGR_GEN_MIGR)
1122 printf("general migration\n");
1123 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1124 printf("state change\n");
1125 else if (migr_type(dev) == MIGR_REPAIR)
1126 printf("repair\n");
1127 else
1128 printf("<unknown:%d>\n", migr_type(dev));
1129 } else
1130 printf("idle\n");
1131 printf(" Map State : %s", map_state_str[map->map_state]);
1132 if (dev->vol.migr_state) {
1133 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1134
1135 printf(" <-- %s", map_state_str[map->map_state]);
1136 printf("\n Checkpoint : %u ",
1137 __le32_to_cpu(dev->vol.curr_migr_unit));
1138 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
1139 printf("(N/A)");
1140 else
1141 printf("(%llu)", (unsigned long long)
1142 blocks_per_migr_unit(super, dev));
1143 }
1144 printf("\n");
1145 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1146 }
1147
1148 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1149 {
1150 char str[MAX_RAID_SERIAL_LEN + 1];
1151 __u64 sz;
1152
1153 if (index < -1 || !disk)
1154 return;
1155
1156 printf("\n");
1157 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1158 if (index >= 0)
1159 printf(" Disk%02d Serial : %s\n", index, str);
1160 else
1161 printf(" Disk Serial : %s\n", str);
1162 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1163 is_configured(disk) ? " active" : "",
1164 is_failed(disk) ? " failed" : "");
1165 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1166 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1167 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1168 human_size(sz * 512));
1169 }
1170
1171 void examine_migr_rec_imsm(struct intel_super *super)
1172 {
1173 struct migr_record *migr_rec = super->migr_rec;
1174 struct imsm_super *mpb = super->anchor;
1175 int i;
1176
1177 for (i = 0; i < mpb->num_raid_devs; i++) {
1178 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1179 struct imsm_map *map;
1180 int slot = -1;
1181
1182 if (is_gen_migration(dev) == 0)
1183 continue;
1184
1185 printf("\nMigration Record Information:");
1186
1187 /* first map under migration */
1188 map = get_imsm_map(dev, MAP_0);
1189 if (map)
1190 slot = get_imsm_disk_slot(map, super->disks->index);
1191 if ((map == NULL) || (slot > 1) || (slot < 0)) {
1192 printf(" Empty\n ");
1193 printf("Examine one of first two disks in array\n");
1194 break;
1195 }
1196 printf("\n Status : ");
1197 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1198 printf("Normal\n");
1199 else
1200 printf("Contains Data\n");
1201 printf(" Current Unit : %u\n",
1202 __le32_to_cpu(migr_rec->curr_migr_unit));
1203 printf(" Family : %u\n",
1204 __le32_to_cpu(migr_rec->family_num));
1205 printf(" Ascending : %u\n",
1206 __le32_to_cpu(migr_rec->ascending_migr));
1207 printf(" Blocks Per Unit : %u\n",
1208 __le32_to_cpu(migr_rec->blocks_per_unit));
1209 printf(" Dest. Depth Per Unit : %u\n",
1210 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1211 printf(" Checkpoint Area pba : %u\n",
1212 __le32_to_cpu(migr_rec->ckpt_area_pba));
1213 printf(" First member lba : %u\n",
1214 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1215 printf(" Total Number of Units : %u\n",
1216 __le32_to_cpu(migr_rec->num_migr_units));
1217 printf(" Size of volume : %u\n",
1218 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1219 printf(" Expansion space for LBA64 : %u\n",
1220 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1221 printf(" Record was read from : %u\n",
1222 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1223
1224 break;
1225 }
1226 }
1227 #endif /* MDASSEMBLE */
1228 /*******************************************************************************
1229 * function: imsm_check_attributes
1230 * Description: Function checks if features represented by attributes flags
1231 * are supported by mdadm.
1232 * Parameters:
1233 * attributes - Attributes read from metadata
1234 * Returns:
1235 * 0 - passed attributes contains unsupported features flags
1236 * 1 - all features are supported
1237 ******************************************************************************/
1238 static int imsm_check_attributes(__u32 attributes)
1239 {
1240 int ret_val = 1;
1241 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1242
1243 not_supported &= ~MPB_ATTRIB_IGNORED;
1244
1245 not_supported &= attributes;
1246 if (not_supported) {
1247 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1248 (unsigned)__le32_to_cpu(not_supported));
1249 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1250 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1251 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1252 }
1253 if (not_supported & MPB_ATTRIB_2TB) {
1254 dprintf("\t\tMPB_ATTRIB_2TB\n");
1255 not_supported ^= MPB_ATTRIB_2TB;
1256 }
1257 if (not_supported & MPB_ATTRIB_RAID0) {
1258 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1259 not_supported ^= MPB_ATTRIB_RAID0;
1260 }
1261 if (not_supported & MPB_ATTRIB_RAID1) {
1262 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1263 not_supported ^= MPB_ATTRIB_RAID1;
1264 }
1265 if (not_supported & MPB_ATTRIB_RAID10) {
1266 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1267 not_supported ^= MPB_ATTRIB_RAID10;
1268 }
1269 if (not_supported & MPB_ATTRIB_RAID1E) {
1270 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1271 not_supported ^= MPB_ATTRIB_RAID1E;
1272 }
1273 if (not_supported & MPB_ATTRIB_RAID5) {
1274 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1275 not_supported ^= MPB_ATTRIB_RAID5;
1276 }
1277 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1278 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1279 not_supported ^= MPB_ATTRIB_RAIDCNG;
1280 }
1281 if (not_supported & MPB_ATTRIB_BBM) {
1282 dprintf("\t\tMPB_ATTRIB_BBM\n");
1283 not_supported ^= MPB_ATTRIB_BBM;
1284 }
1285 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1286 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1287 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1288 }
1289 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1290 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1291 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1292 }
1293 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1294 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1295 not_supported ^= MPB_ATTRIB_2TB_DISK;
1296 }
1297 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1298 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1299 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1300 }
1301 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1302 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1303 not_supported ^= MPB_ATTRIB_NEVER_USE;
1304 }
1305
1306 if (not_supported)
1307 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1308
1309 ret_val = 0;
1310 }
1311
1312 return ret_val;
1313 }
1314
1315 #ifndef MDASSEMBLE
1316 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1317
1318 static void examine_super_imsm(struct supertype *st, char *homehost)
1319 {
1320 struct intel_super *super = st->sb;
1321 struct imsm_super *mpb = super->anchor;
1322 char str[MAX_SIGNATURE_LENGTH];
1323 int i;
1324 struct mdinfo info;
1325 char nbuf[64];
1326 __u32 sum;
1327 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1328 struct dl *dl;
1329
1330 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1331 printf(" Magic : %s\n", str);
1332 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1333 printf(" Version : %s\n", get_imsm_version(mpb));
1334 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1335 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1336 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1337 printf(" Attributes : ");
1338 if (imsm_check_attributes(mpb->attributes))
1339 printf("All supported\n");
1340 else
1341 printf("not supported\n");
1342 getinfo_super_imsm(st, &info, NULL);
1343 fname_from_uuid(st, &info, nbuf, ':');
1344 printf(" UUID : %s\n", nbuf + 5);
1345 sum = __le32_to_cpu(mpb->check_sum);
1346 printf(" Checksum : %08x %s\n", sum,
1347 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1348 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1349 printf(" Disks : %d\n", mpb->num_disks);
1350 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1351 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1352 if (super->bbm_log) {
1353 struct bbm_log *log = super->bbm_log;
1354
1355 printf("\n");
1356 printf("Bad Block Management Log:\n");
1357 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1358 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1359 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1360 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1361 printf(" First Spare : %llx\n",
1362 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1363 }
1364 for (i = 0; i < mpb->num_raid_devs; i++) {
1365 struct mdinfo info;
1366 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1367
1368 super->current_vol = i;
1369 getinfo_super_imsm(st, &info, NULL);
1370 fname_from_uuid(st, &info, nbuf, ':');
1371 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1372 }
1373 for (i = 0; i < mpb->num_disks; i++) {
1374 if (i == super->disks->index)
1375 continue;
1376 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1377 }
1378
1379 for (dl = super->disks; dl; dl = dl->next)
1380 if (dl->index == -1)
1381 print_imsm_disk(&dl->disk, -1, reserved);
1382
1383 examine_migr_rec_imsm(super);
1384 }
1385
1386 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1387 {
1388 /* We just write a generic IMSM ARRAY entry */
1389 struct mdinfo info;
1390 char nbuf[64];
1391 struct intel_super *super = st->sb;
1392
1393 if (!super->anchor->num_raid_devs) {
1394 printf("ARRAY metadata=imsm\n");
1395 return;
1396 }
1397
1398 getinfo_super_imsm(st, &info, NULL);
1399 fname_from_uuid(st, &info, nbuf, ':');
1400 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1401 }
1402
1403 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1404 {
1405 /* We just write a generic IMSM ARRAY entry */
1406 struct mdinfo info;
1407 char nbuf[64];
1408 char nbuf1[64];
1409 struct intel_super *super = st->sb;
1410 int i;
1411
1412 if (!super->anchor->num_raid_devs)
1413 return;
1414
1415 getinfo_super_imsm(st, &info, NULL);
1416 fname_from_uuid(st, &info, nbuf, ':');
1417 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1418 struct imsm_dev *dev = get_imsm_dev(super, i);
1419
1420 super->current_vol = i;
1421 getinfo_super_imsm(st, &info, NULL);
1422 fname_from_uuid(st, &info, nbuf1, ':');
1423 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1424 dev->volume, nbuf + 5, i, nbuf1 + 5);
1425 }
1426 }
1427
1428 static void export_examine_super_imsm(struct supertype *st)
1429 {
1430 struct intel_super *super = st->sb;
1431 struct imsm_super *mpb = super->anchor;
1432 struct mdinfo info;
1433 char nbuf[64];
1434
1435 getinfo_super_imsm(st, &info, NULL);
1436 fname_from_uuid(st, &info, nbuf, ':');
1437 printf("MD_METADATA=imsm\n");
1438 printf("MD_LEVEL=container\n");
1439 printf("MD_UUID=%s\n", nbuf+5);
1440 printf("MD_DEVICES=%u\n", mpb->num_disks);
1441 }
1442
1443 static void detail_super_imsm(struct supertype *st, char *homehost)
1444 {
1445 struct mdinfo info;
1446 char nbuf[64];
1447
1448 getinfo_super_imsm(st, &info, NULL);
1449 fname_from_uuid(st, &info, nbuf, ':');
1450 printf("\n UUID : %s\n", nbuf + 5);
1451 }
1452
1453 static void brief_detail_super_imsm(struct supertype *st)
1454 {
1455 struct mdinfo info;
1456 char nbuf[64];
1457 getinfo_super_imsm(st, &info, NULL);
1458 fname_from_uuid(st, &info, nbuf, ':');
1459 printf(" UUID=%s", nbuf + 5);
1460 }
1461
1462 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1463 static void fd2devname(int fd, char *name);
1464
1465 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1466 {
1467 /* dump an unsorted list of devices attached to AHCI Intel storage
1468 * controller, as well as non-connected ports
1469 */
1470 int hba_len = strlen(hba_path) + 1;
1471 struct dirent *ent;
1472 DIR *dir;
1473 char *path = NULL;
1474 int err = 0;
1475 unsigned long port_mask = (1 << port_count) - 1;
1476
1477 if (port_count > (int)sizeof(port_mask) * 8) {
1478 if (verbose)
1479 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1480 return 2;
1481 }
1482
1483 /* scroll through /sys/dev/block looking for devices attached to
1484 * this hba
1485 */
1486 dir = opendir("/sys/dev/block");
1487 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1488 int fd;
1489 char model[64];
1490 char vendor[64];
1491 char buf[1024];
1492 int major, minor;
1493 char *device;
1494 char *c;
1495 int port;
1496 int type;
1497
1498 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1499 continue;
1500 path = devt_to_devpath(makedev(major, minor));
1501 if (!path)
1502 continue;
1503 if (!path_attached_to_hba(path, hba_path)) {
1504 free(path);
1505 path = NULL;
1506 continue;
1507 }
1508
1509 /* retrieve the scsi device type */
1510 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1511 if (verbose)
1512 fprintf(stderr, Name ": failed to allocate 'device'\n");
1513 err = 2;
1514 break;
1515 }
1516 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1517 if (load_sys(device, buf) != 0) {
1518 if (verbose)
1519 fprintf(stderr, Name ": failed to read device type for %s\n",
1520 path);
1521 err = 2;
1522 free(device);
1523 break;
1524 }
1525 type = strtoul(buf, NULL, 10);
1526
1527 /* if it's not a disk print the vendor and model */
1528 if (!(type == 0 || type == 7 || type == 14)) {
1529 vendor[0] = '\0';
1530 model[0] = '\0';
1531 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1532 if (load_sys(device, buf) == 0) {
1533 strncpy(vendor, buf, sizeof(vendor));
1534 vendor[sizeof(vendor) - 1] = '\0';
1535 c = (char *) &vendor[sizeof(vendor) - 1];
1536 while (isspace(*c) || *c == '\0')
1537 *c-- = '\0';
1538
1539 }
1540 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1541 if (load_sys(device, buf) == 0) {
1542 strncpy(model, buf, sizeof(model));
1543 model[sizeof(model) - 1] = '\0';
1544 c = (char *) &model[sizeof(model) - 1];
1545 while (isspace(*c) || *c == '\0')
1546 *c-- = '\0';
1547 }
1548
1549 if (vendor[0] && model[0])
1550 sprintf(buf, "%.64s %.64s", vendor, model);
1551 else
1552 switch (type) { /* numbers from hald/linux/device.c */
1553 case 1: sprintf(buf, "tape"); break;
1554 case 2: sprintf(buf, "printer"); break;
1555 case 3: sprintf(buf, "processor"); break;
1556 case 4:
1557 case 5: sprintf(buf, "cdrom"); break;
1558 case 6: sprintf(buf, "scanner"); break;
1559 case 8: sprintf(buf, "media_changer"); break;
1560 case 9: sprintf(buf, "comm"); break;
1561 case 12: sprintf(buf, "raid"); break;
1562 default: sprintf(buf, "unknown");
1563 }
1564 } else
1565 buf[0] = '\0';
1566 free(device);
1567
1568 /* chop device path to 'host%d' and calculate the port number */
1569 c = strchr(&path[hba_len], '/');
1570 if (!c) {
1571 if (verbose)
1572 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1573 err = 2;
1574 break;
1575 }
1576 *c = '\0';
1577 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1578 port -= host_base;
1579 else {
1580 if (verbose) {
1581 *c = '/'; /* repair the full string */
1582 fprintf(stderr, Name ": failed to determine port number for %s\n",
1583 path);
1584 }
1585 err = 2;
1586 break;
1587 }
1588
1589 /* mark this port as used */
1590 port_mask &= ~(1 << port);
1591
1592 /* print out the device information */
1593 if (buf[0]) {
1594 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1595 continue;
1596 }
1597
1598 fd = dev_open(ent->d_name, O_RDONLY);
1599 if (fd < 0)
1600 printf(" Port%d : - disk info unavailable -\n", port);
1601 else {
1602 fd2devname(fd, buf);
1603 printf(" Port%d : %s", port, buf);
1604 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1605 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1606 else
1607 printf(" ()\n");
1608 close(fd);
1609 }
1610 free(path);
1611 path = NULL;
1612 }
1613 if (path)
1614 free(path);
1615 if (dir)
1616 closedir(dir);
1617 if (err == 0) {
1618 int i;
1619
1620 for (i = 0; i < port_count; i++)
1621 if (port_mask & (1 << i))
1622 printf(" Port%d : - no device attached -\n", i);
1623 }
1624
1625 return err;
1626 }
1627
1628 static void print_found_intel_controllers(struct sys_dev *elem)
1629 {
1630 for (; elem; elem = elem->next) {
1631 fprintf(stderr, Name ": found Intel(R) ");
1632 if (elem->type == SYS_DEV_SATA)
1633 fprintf(stderr, "SATA ");
1634 else if (elem->type == SYS_DEV_SAS)
1635 fprintf(stderr, "SAS ");
1636 fprintf(stderr, "RAID controller");
1637 if (elem->pci_id)
1638 fprintf(stderr, " at %s", elem->pci_id);
1639 fprintf(stderr, ".\n");
1640 }
1641 fflush(stderr);
1642 }
1643
1644 static int ahci_get_port_count(const char *hba_path, int *port_count)
1645 {
1646 struct dirent *ent;
1647 DIR *dir;
1648 int host_base = -1;
1649
1650 *port_count = 0;
1651 if ((dir = opendir(hba_path)) == NULL)
1652 return -1;
1653
1654 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1655 int host;
1656
1657 if (sscanf(ent->d_name, "host%d", &host) != 1)
1658 continue;
1659 if (*port_count == 0)
1660 host_base = host;
1661 else if (host < host_base)
1662 host_base = host;
1663
1664 if (host + 1 > *port_count + host_base)
1665 *port_count = host + 1 - host_base;
1666 }
1667 closedir(dir);
1668 return host_base;
1669 }
1670
1671 static void print_imsm_capability(const struct imsm_orom *orom)
1672 {
1673 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1674 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1675 orom->hotfix_ver, orom->build);
1676 printf(" RAID Levels :%s%s%s%s%s\n",
1677 imsm_orom_has_raid0(orom) ? " raid0" : "",
1678 imsm_orom_has_raid1(orom) ? " raid1" : "",
1679 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1680 imsm_orom_has_raid10(orom) ? " raid10" : "",
1681 imsm_orom_has_raid5(orom) ? " raid5" : "");
1682 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1683 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1684 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1685 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1686 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1687 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1688 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1689 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1690 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1691 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1692 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1693 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1694 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1695 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1696 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1697 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1698 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1699 printf(" Max Disks : %d\n", orom->tds);
1700 printf(" Max Volumes : %d\n", orom->vpa);
1701 return;
1702 }
1703
1704 static int detail_platform_imsm(int verbose, int enumerate_only)
1705 {
1706 /* There are two components to imsm platform support, the ahci SATA
1707 * controller and the option-rom. To find the SATA controller we
1708 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1709 * controller with the Intel vendor id is present. This approach
1710 * allows mdadm to leverage the kernel's ahci detection logic, with the
1711 * caveat that if ahci.ko is not loaded mdadm will not be able to
1712 * detect platform raid capabilities. The option-rom resides in a
1713 * platform "Adapter ROM". We scan for its signature to retrieve the
1714 * platform capabilities. If raid support is disabled in the BIOS the
1715 * option-rom capability structure will not be available.
1716 */
1717 const struct imsm_orom *orom;
1718 struct sys_dev *list, *hba;
1719 int host_base = 0;
1720 int port_count = 0;
1721 int result=0;
1722
1723 if (enumerate_only) {
1724 if (check_env("IMSM_NO_PLATFORM"))
1725 return 0;
1726 list = find_intel_devices();
1727 if (!list)
1728 return 2;
1729 for (hba = list; hba; hba = hba->next) {
1730 orom = find_imsm_capability(hba->type);
1731 if (!orom) {
1732 result = 2;
1733 break;
1734 }
1735 }
1736 free_sys_dev(&list);
1737 return result;
1738 }
1739
1740 list = find_intel_devices();
1741 if (!list) {
1742 if (verbose)
1743 fprintf(stderr, Name ": no active Intel(R) RAID "
1744 "controller found.\n");
1745 free_sys_dev(&list);
1746 return 2;
1747 } else if (verbose)
1748 print_found_intel_controllers(list);
1749
1750 for (hba = list; hba; hba = hba->next) {
1751 orom = find_imsm_capability(hba->type);
1752 if (!orom)
1753 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1754 hba->path, get_sys_dev_type(hba->type));
1755 else
1756 print_imsm_capability(orom);
1757 }
1758
1759 for (hba = list; hba; hba = hba->next) {
1760 printf(" I/O Controller : %s (%s)\n",
1761 hba->path, get_sys_dev_type(hba->type));
1762
1763 if (hba->type == SYS_DEV_SATA) {
1764 host_base = ahci_get_port_count(hba->path, &port_count);
1765 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1766 if (verbose)
1767 fprintf(stderr, Name ": failed to enumerate "
1768 "ports on SATA controller at %s.", hba->pci_id);
1769 result |= 2;
1770 }
1771 }
1772 }
1773
1774 free_sys_dev(&list);
1775 return result;
1776 }
1777 #endif
1778
1779 static int match_home_imsm(struct supertype *st, char *homehost)
1780 {
1781 /* the imsm metadata format does not specify any host
1782 * identification information. We return -1 since we can never
1783 * confirm nor deny whether a given array is "meant" for this
1784 * host. We rely on compare_super and the 'family_num' fields to
1785 * exclude member disks that do not belong, and we rely on
1786 * mdadm.conf to specify the arrays that should be assembled.
1787 * Auto-assembly may still pick up "foreign" arrays.
1788 */
1789
1790 return -1;
1791 }
1792
1793 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1794 {
1795 /* The uuid returned here is used for:
1796 * uuid to put into bitmap file (Create, Grow)
1797 * uuid for backup header when saving critical section (Grow)
1798 * comparing uuids when re-adding a device into an array
1799 * In these cases the uuid required is that of the data-array,
1800 * not the device-set.
1801 * uuid to recognise same set when adding a missing device back
1802 * to an array. This is a uuid for the device-set.
1803 *
1804 * For each of these we can make do with a truncated
1805 * or hashed uuid rather than the original, as long as
1806 * everyone agrees.
1807 * In each case the uuid required is that of the data-array,
1808 * not the device-set.
1809 */
1810 /* imsm does not track uuid's so we synthesis one using sha1 on
1811 * - The signature (Which is constant for all imsm array, but no matter)
1812 * - the orig_family_num of the container
1813 * - the index number of the volume
1814 * - the 'serial' number of the volume.
1815 * Hopefully these are all constant.
1816 */
1817 struct intel_super *super = st->sb;
1818
1819 char buf[20];
1820 struct sha1_ctx ctx;
1821 struct imsm_dev *dev = NULL;
1822 __u32 family_num;
1823
1824 /* some mdadm versions failed to set ->orig_family_num, in which
1825 * case fall back to ->family_num. orig_family_num will be
1826 * fixed up with the first metadata update.
1827 */
1828 family_num = super->anchor->orig_family_num;
1829 if (family_num == 0)
1830 family_num = super->anchor->family_num;
1831 sha1_init_ctx(&ctx);
1832 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1833 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1834 if (super->current_vol >= 0)
1835 dev = get_imsm_dev(super, super->current_vol);
1836 if (dev) {
1837 __u32 vol = super->current_vol;
1838 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1839 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1840 }
1841 sha1_finish_ctx(&ctx, buf);
1842 memcpy(uuid, buf, 4*4);
1843 }
1844
1845 #if 0
1846 static void
1847 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1848 {
1849 __u8 *v = get_imsm_version(mpb);
1850 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1851 char major[] = { 0, 0, 0 };
1852 char minor[] = { 0 ,0, 0 };
1853 char patch[] = { 0, 0, 0 };
1854 char *ver_parse[] = { major, minor, patch };
1855 int i, j;
1856
1857 i = j = 0;
1858 while (*v != '\0' && v < end) {
1859 if (*v != '.' && j < 2)
1860 ver_parse[i][j++] = *v;
1861 else {
1862 i++;
1863 j = 0;
1864 }
1865 v++;
1866 }
1867
1868 *m = strtol(minor, NULL, 0);
1869 *p = strtol(patch, NULL, 0);
1870 }
1871 #endif
1872
1873 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1874 {
1875 /* migr_strip_size when repairing or initializing parity */
1876 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1877 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1878
1879 switch (get_imsm_raid_level(map)) {
1880 case 5:
1881 case 10:
1882 return chunk;
1883 default:
1884 return 128*1024 >> 9;
1885 }
1886 }
1887
1888 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1889 {
1890 /* migr_strip_size when rebuilding a degraded disk, no idea why
1891 * this is different than migr_strip_size_resync(), but it's good
1892 * to be compatible
1893 */
1894 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1895 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1896
1897 switch (get_imsm_raid_level(map)) {
1898 case 1:
1899 case 10:
1900 if (map->num_members % map->num_domains == 0)
1901 return 128*1024 >> 9;
1902 else
1903 return chunk;
1904 case 5:
1905 return max((__u32) 64*1024 >> 9, chunk);
1906 default:
1907 return 128*1024 >> 9;
1908 }
1909 }
1910
1911 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1912 {
1913 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1914 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1915 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1916 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1917
1918 return max((__u32) 1, hi_chunk / lo_chunk);
1919 }
1920
1921 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1922 {
1923 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
1924 int level = get_imsm_raid_level(lo);
1925
1926 if (level == 1 || level == 10) {
1927 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
1928
1929 return hi->num_domains;
1930 } else
1931 return num_stripes_per_unit_resync(dev);
1932 }
1933
1934 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1935 {
1936 /* named 'imsm_' because raid0, raid1 and raid10
1937 * counter-intuitively have the same number of data disks
1938 */
1939 struct imsm_map *map = get_imsm_map(dev, second_map);
1940
1941 switch (get_imsm_raid_level(map)) {
1942 case 0:
1943 case 1:
1944 case 10:
1945 return map->num_members;
1946 case 5:
1947 return map->num_members - 1;
1948 default:
1949 dprintf("%s: unsupported raid level\n", __func__);
1950 return 0;
1951 }
1952 }
1953
1954 static __u32 parity_segment_depth(struct imsm_dev *dev)
1955 {
1956 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1957 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1958
1959 switch(get_imsm_raid_level(map)) {
1960 case 1:
1961 case 10:
1962 return chunk * map->num_domains;
1963 case 5:
1964 return chunk * map->num_members;
1965 default:
1966 return chunk;
1967 }
1968 }
1969
1970 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1971 {
1972 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1973 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1974 __u32 strip = block / chunk;
1975
1976 switch (get_imsm_raid_level(map)) {
1977 case 1:
1978 case 10: {
1979 __u32 vol_strip = (strip * map->num_domains) + 1;
1980 __u32 vol_stripe = vol_strip / map->num_members;
1981
1982 return vol_stripe * chunk + block % chunk;
1983 } case 5: {
1984 __u32 stripe = strip / (map->num_members - 1);
1985
1986 return stripe * chunk + block % chunk;
1987 }
1988 default:
1989 return 0;
1990 }
1991 }
1992
1993 static __u64 blocks_per_migr_unit(struct intel_super *super,
1994 struct imsm_dev *dev)
1995 {
1996 /* calculate the conversion factor between per member 'blocks'
1997 * (md/{resync,rebuild}_start) and imsm migration units, return
1998 * 0 for the 'not migrating' and 'unsupported migration' cases
1999 */
2000 if (!dev->vol.migr_state)
2001 return 0;
2002
2003 switch (migr_type(dev)) {
2004 case MIGR_GEN_MIGR: {
2005 struct migr_record *migr_rec = super->migr_rec;
2006 return __le32_to_cpu(migr_rec->blocks_per_unit);
2007 }
2008 case MIGR_VERIFY:
2009 case MIGR_REPAIR:
2010 case MIGR_INIT: {
2011 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2012 __u32 stripes_per_unit;
2013 __u32 blocks_per_unit;
2014 __u32 parity_depth;
2015 __u32 migr_chunk;
2016 __u32 block_map;
2017 __u32 block_rel;
2018 __u32 segment;
2019 __u32 stripe;
2020 __u8 disks;
2021
2022 /* yes, this is really the translation of migr_units to
2023 * per-member blocks in the 'resync' case
2024 */
2025 stripes_per_unit = num_stripes_per_unit_resync(dev);
2026 migr_chunk = migr_strip_blocks_resync(dev);
2027 disks = imsm_num_data_members(dev, MAP_0);
2028 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2029 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2030 segment = blocks_per_unit / stripe;
2031 block_rel = blocks_per_unit - segment * stripe;
2032 parity_depth = parity_segment_depth(dev);
2033 block_map = map_migr_block(dev, block_rel);
2034 return block_map + parity_depth * segment;
2035 }
2036 case MIGR_REBUILD: {
2037 __u32 stripes_per_unit;
2038 __u32 migr_chunk;
2039
2040 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2041 migr_chunk = migr_strip_blocks_rebuild(dev);
2042 return migr_chunk * stripes_per_unit;
2043 }
2044 case MIGR_STATE_CHANGE:
2045 default:
2046 return 0;
2047 }
2048 }
2049
2050 static int imsm_level_to_layout(int level)
2051 {
2052 switch (level) {
2053 case 0:
2054 case 1:
2055 return 0;
2056 case 5:
2057 case 6:
2058 return ALGORITHM_LEFT_ASYMMETRIC;
2059 case 10:
2060 return 0x102;
2061 }
2062 return UnSet;
2063 }
2064
2065 /*******************************************************************************
2066 * Function: read_imsm_migr_rec
2067 * Description: Function reads imsm migration record from last sector of disk
2068 * Parameters:
2069 * fd : disk descriptor
2070 * super : metadata info
2071 * Returns:
2072 * 0 : success,
2073 * -1 : fail
2074 ******************************************************************************/
2075 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2076 {
2077 int ret_val = -1;
2078 unsigned long long dsize;
2079
2080 get_dev_size(fd, NULL, &dsize);
2081 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2082 fprintf(stderr,
2083 Name ": Cannot seek to anchor block: %s\n",
2084 strerror(errno));
2085 goto out;
2086 }
2087 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2088 MIGR_REC_BUF_SIZE) {
2089 fprintf(stderr,
2090 Name ": Cannot read migr record block: %s\n",
2091 strerror(errno));
2092 goto out;
2093 }
2094 ret_val = 0;
2095
2096 out:
2097 return ret_val;
2098 }
2099
2100 static struct imsm_dev *imsm_get_device_during_migration(
2101 struct intel_super *super)
2102 {
2103
2104 struct intel_dev *dv;
2105
2106 for (dv = super->devlist; dv; dv = dv->next) {
2107 if (is_gen_migration(dv->dev))
2108 return dv->dev;
2109 }
2110 return NULL;
2111 }
2112
2113 /*******************************************************************************
2114 * Function: load_imsm_migr_rec
2115 * Description: Function reads imsm migration record (it is stored at the last
2116 * sector of disk)
2117 * Parameters:
2118 * super : imsm internal array info
2119 * info : general array info
2120 * Returns:
2121 * 0 : success
2122 * -1 : fail
2123 * -2 : no migration in progress
2124 ******************************************************************************/
2125 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2126 {
2127 struct mdinfo *sd;
2128 struct dl *dl = NULL;
2129 char nm[30];
2130 int retval = -1;
2131 int fd = -1;
2132 struct imsm_dev *dev;
2133 struct imsm_map *map = NULL;
2134 int slot = -1;
2135
2136 /* find map under migration */
2137 dev = imsm_get_device_during_migration(super);
2138 /* nothing to load,no migration in progress?
2139 */
2140 if (dev == NULL)
2141 return -2;
2142 map = get_imsm_map(dev, MAP_0);
2143
2144 if (info) {
2145 for (sd = info->devs ; sd ; sd = sd->next) {
2146 /* skip spare and failed disks
2147 */
2148 if (sd->disk.raid_disk < 0)
2149 continue;
2150 /* read only from one of the first two slots */
2151 if (map)
2152 slot = get_imsm_disk_slot(map,
2153 sd->disk.raid_disk);
2154 if ((map == NULL) || (slot > 1) || (slot < 0))
2155 continue;
2156
2157 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2158 fd = dev_open(nm, O_RDONLY);
2159 if (fd >= 0)
2160 break;
2161 }
2162 }
2163 if (fd < 0) {
2164 for (dl = super->disks; dl; dl = dl->next) {
2165 /* skip spare and failed disks
2166 */
2167 if (dl->index < 0)
2168 continue;
2169 /* read only from one of the first two slots */
2170 if (map)
2171 slot = get_imsm_disk_slot(map, dl->index);
2172 if ((map == NULL) || (slot > 1) || (slot < 0))
2173 continue;
2174 sprintf(nm, "%d:%d", dl->major, dl->minor);
2175 fd = dev_open(nm, O_RDONLY);
2176 if (fd >= 0)
2177 break;
2178 }
2179 }
2180 if (fd < 0)
2181 goto out;
2182 retval = read_imsm_migr_rec(fd, super);
2183
2184 out:
2185 if (fd >= 0)
2186 close(fd);
2187 return retval;
2188 }
2189
2190 #ifndef MDASSEMBLE
2191 /*******************************************************************************
2192 * function: imsm_create_metadata_checkpoint_update
2193 * Description: It creates update for checkpoint change.
2194 * Parameters:
2195 * super : imsm internal array info
2196 * u : pointer to prepared update
2197 * Returns:
2198 * Uptate length.
2199 * If length is equal to 0, input pointer u contains no update
2200 ******************************************************************************/
2201 static int imsm_create_metadata_checkpoint_update(
2202 struct intel_super *super,
2203 struct imsm_update_general_migration_checkpoint **u)
2204 {
2205
2206 int update_memory_size = 0;
2207
2208 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2209
2210 if (u == NULL)
2211 return 0;
2212 *u = NULL;
2213
2214 /* size of all update data without anchor */
2215 update_memory_size =
2216 sizeof(struct imsm_update_general_migration_checkpoint);
2217
2218 *u = calloc(1, update_memory_size);
2219 if (*u == NULL) {
2220 dprintf("error: cannot get memory for "
2221 "imsm_create_metadata_checkpoint_update update\n");
2222 return 0;
2223 }
2224 (*u)->type = update_general_migration_checkpoint;
2225 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2226 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2227 (*u)->curr_migr_unit);
2228
2229 return update_memory_size;
2230 }
2231
2232
2233 static void imsm_update_metadata_locally(struct supertype *st,
2234 void *buf, int len);
2235
2236 /*******************************************************************************
2237 * Function: write_imsm_migr_rec
2238 * Description: Function writes imsm migration record
2239 * (at the last sector of disk)
2240 * Parameters:
2241 * super : imsm internal array info
2242 * Returns:
2243 * 0 : success
2244 * -1 : if fail
2245 ******************************************************************************/
2246 static int write_imsm_migr_rec(struct supertype *st)
2247 {
2248 struct intel_super *super = st->sb;
2249 unsigned long long dsize;
2250 char nm[30];
2251 int fd = -1;
2252 int retval = -1;
2253 struct dl *sd;
2254 int len;
2255 struct imsm_update_general_migration_checkpoint *u;
2256 struct imsm_dev *dev;
2257 struct imsm_map *map = NULL;
2258
2259 /* find map under migration */
2260 dev = imsm_get_device_during_migration(super);
2261 /* if no migration, write buffer anyway to clear migr_record
2262 * on disk based on first available device
2263 */
2264 if (dev == NULL)
2265 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2266 super->current_vol);
2267
2268 map = get_imsm_map(dev, MAP_0);
2269
2270 for (sd = super->disks ; sd ; sd = sd->next) {
2271 int slot = -1;
2272
2273 /* skip failed and spare devices */
2274 if (sd->index < 0)
2275 continue;
2276 /* write to 2 first slots only */
2277 if (map)
2278 slot = get_imsm_disk_slot(map, sd->index);
2279 if ((map == NULL) || (slot > 1) || (slot < 0))
2280 continue;
2281
2282 sprintf(nm, "%d:%d", sd->major, sd->minor);
2283 fd = dev_open(nm, O_RDWR);
2284 if (fd < 0)
2285 continue;
2286 get_dev_size(fd, NULL, &dsize);
2287 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2288 fprintf(stderr,
2289 Name ": Cannot seek to anchor block: %s\n",
2290 strerror(errno));
2291 goto out;
2292 }
2293 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2294 MIGR_REC_BUF_SIZE) {
2295 fprintf(stderr,
2296 Name ": Cannot write migr record block: %s\n",
2297 strerror(errno));
2298 goto out;
2299 }
2300 close(fd);
2301 fd = -1;
2302 }
2303 /* update checkpoint information in metadata */
2304 len = imsm_create_metadata_checkpoint_update(super, &u);
2305
2306 if (len <= 0) {
2307 dprintf("imsm: Cannot prepare update\n");
2308 goto out;
2309 }
2310 /* update metadata locally */
2311 imsm_update_metadata_locally(st, u, len);
2312 /* and possibly remotely */
2313 if (st->update_tail) {
2314 append_metadata_update(st, u, len);
2315 /* during reshape we do all work inside metadata handler
2316 * manage_reshape(), so metadata update has to be triggered
2317 * insida it
2318 */
2319 flush_metadata_updates(st);
2320 st->update_tail = &st->updates;
2321 } else
2322 free(u);
2323
2324 retval = 0;
2325 out:
2326 if (fd >= 0)
2327 close(fd);
2328 return retval;
2329 }
2330 #endif /* MDASSEMBLE */
2331
2332 /* spare/missing disks activations are not allowe when
2333 * array/container performs reshape operation, because
2334 * all arrays in container works on the same disks set
2335 */
2336 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2337 {
2338 int rv = 0;
2339 struct intel_dev *i_dev;
2340 struct imsm_dev *dev;
2341
2342 /* check whole container
2343 */
2344 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2345 dev = i_dev->dev;
2346 if (is_gen_migration(dev)) {
2347 /* No repair during any migration in container
2348 */
2349 rv = 1;
2350 break;
2351 }
2352 }
2353 return rv;
2354 }
2355
2356 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2357 {
2358 struct intel_super *super = st->sb;
2359 struct migr_record *migr_rec = super->migr_rec;
2360 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2361 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2362 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2363 struct imsm_map *map_to_analyse = map;
2364 struct dl *dl;
2365 char *devname;
2366 unsigned int component_size_alligment;
2367 int map_disks = info->array.raid_disks;
2368
2369 memset(info, 0, sizeof(*info));
2370 if (prev_map)
2371 map_to_analyse = prev_map;
2372
2373 dl = super->current_disk;
2374
2375 info->container_member = super->current_vol;
2376 info->array.raid_disks = map->num_members;
2377 info->array.level = get_imsm_raid_level(map_to_analyse);
2378 info->array.layout = imsm_level_to_layout(info->array.level);
2379 info->array.md_minor = -1;
2380 info->array.ctime = 0;
2381 info->array.utime = 0;
2382 info->array.chunk_size =
2383 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2384 info->array.state = !dev->vol.dirty;
2385 info->custom_array_size = __le32_to_cpu(dev->size_high);
2386 info->custom_array_size <<= 32;
2387 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2388 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2389
2390 if (is_gen_migration(dev)) {
2391 info->reshape_active = 1;
2392 info->new_level = get_imsm_raid_level(map);
2393 info->new_layout = imsm_level_to_layout(info->new_level);
2394 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2395 info->delta_disks = map->num_members - prev_map->num_members;
2396 if (info->delta_disks) {
2397 /* this needs to be applied to every array
2398 * in the container.
2399 */
2400 info->reshape_active = CONTAINER_RESHAPE;
2401 }
2402 /* We shape information that we give to md might have to be
2403 * modify to cope with md's requirement for reshaping arrays.
2404 * For example, when reshaping a RAID0, md requires it to be
2405 * presented as a degraded RAID4.
2406 * Also if a RAID0 is migrating to a RAID5 we need to specify
2407 * the array as already being RAID5, but the 'before' layout
2408 * is a RAID4-like layout.
2409 */
2410 switch (info->array.level) {
2411 case 0:
2412 switch(info->new_level) {
2413 case 0:
2414 /* conversion is happening as RAID4 */
2415 info->array.level = 4;
2416 info->array.raid_disks += 1;
2417 break;
2418 case 5:
2419 /* conversion is happening as RAID5 */
2420 info->array.level = 5;
2421 info->array.layout = ALGORITHM_PARITY_N;
2422 info->delta_disks -= 1;
2423 break;
2424 default:
2425 /* FIXME error message */
2426 info->array.level = UnSet;
2427 break;
2428 }
2429 break;
2430 }
2431 } else {
2432 info->new_level = UnSet;
2433 info->new_layout = UnSet;
2434 info->new_chunk = info->array.chunk_size;
2435 info->delta_disks = 0;
2436 }
2437
2438 if (dl) {
2439 info->disk.major = dl->major;
2440 info->disk.minor = dl->minor;
2441 info->disk.number = dl->index;
2442 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2443 dl->index);
2444 }
2445
2446 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2447 info->component_size =
2448 __le32_to_cpu(map_to_analyse->blocks_per_member);
2449
2450 /* check component size aligment
2451 */
2452 component_size_alligment =
2453 info->component_size % (info->array.chunk_size/512);
2454
2455 if (component_size_alligment &&
2456 (info->array.level != 1) && (info->array.level != UnSet)) {
2457 dprintf("imsm: reported component size alligned from %llu ",
2458 info->component_size);
2459 info->component_size -= component_size_alligment;
2460 dprintf("to %llu (%i).\n",
2461 info->component_size, component_size_alligment);
2462 }
2463
2464 memset(info->uuid, 0, sizeof(info->uuid));
2465 info->recovery_start = MaxSector;
2466
2467 info->reshape_progress = 0;
2468 info->resync_start = MaxSector;
2469 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2470 dev->vol.dirty) &&
2471 imsm_reshape_blocks_arrays_changes(super) == 0) {
2472 info->resync_start = 0;
2473 }
2474 if (dev->vol.migr_state) {
2475 switch (migr_type(dev)) {
2476 case MIGR_REPAIR:
2477 case MIGR_INIT: {
2478 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2479 dev);
2480 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2481
2482 info->resync_start = blocks_per_unit * units;
2483 break;
2484 }
2485 case MIGR_GEN_MIGR: {
2486 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2487 dev);
2488 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2489 unsigned long long array_blocks;
2490 int used_disks;
2491
2492 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2493 (units <
2494 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2495 (super->migr_rec->rec_status ==
2496 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2497 units++;
2498
2499 info->reshape_progress = blocks_per_unit * units;
2500
2501 dprintf("IMSM: General Migration checkpoint : %llu "
2502 "(%llu) -> read reshape progress : %llu\n",
2503 (unsigned long long)units,
2504 (unsigned long long)blocks_per_unit,
2505 info->reshape_progress);
2506
2507 used_disks = imsm_num_data_members(dev, MAP_1);
2508 if (used_disks > 0) {
2509 array_blocks = map->blocks_per_member *
2510 used_disks;
2511 /* round array size down to closest MB
2512 */
2513 info->custom_array_size = (array_blocks
2514 >> SECT_PER_MB_SHIFT)
2515 << SECT_PER_MB_SHIFT;
2516 }
2517 }
2518 case MIGR_VERIFY:
2519 /* we could emulate the checkpointing of
2520 * 'sync_action=check' migrations, but for now
2521 * we just immediately complete them
2522 */
2523 case MIGR_REBUILD:
2524 /* this is handled by container_content_imsm() */
2525 case MIGR_STATE_CHANGE:
2526 /* FIXME handle other migrations */
2527 default:
2528 /* we are not dirty, so... */
2529 info->resync_start = MaxSector;
2530 }
2531 }
2532
2533 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2534 info->name[MAX_RAID_SERIAL_LEN] = 0;
2535
2536 info->array.major_version = -1;
2537 info->array.minor_version = -2;
2538 devname = devnum2devname(st->container_dev);
2539 *info->text_version = '\0';
2540 if (devname)
2541 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2542 free(devname);
2543 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2544 uuid_from_super_imsm(st, info->uuid);
2545
2546 if (dmap) {
2547 int i, j;
2548 for (i=0; i<map_disks; i++) {
2549 dmap[i] = 0;
2550 if (i < info->array.raid_disks) {
2551 struct imsm_disk *dsk;
2552 j = get_imsm_disk_idx(dev, i, MAP_X);
2553 dsk = get_imsm_disk(super, j);
2554 if (dsk && (dsk->status & CONFIGURED_DISK))
2555 dmap[i] = 1;
2556 }
2557 }
2558 }
2559 }
2560
2561 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2562 int failed, int look_in_map);
2563
2564 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2565 int look_in_map);
2566
2567
2568 #ifndef MDASSEMBLE
2569 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2570 {
2571 if (is_gen_migration(dev)) {
2572 int failed;
2573 __u8 map_state;
2574 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2575
2576 failed = imsm_count_failed(super, dev, MAP_1);
2577 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2578 if (map2->map_state != map_state) {
2579 map2->map_state = map_state;
2580 super->updates_pending++;
2581 }
2582 }
2583 }
2584 #endif
2585
2586 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2587 {
2588 struct dl *d;
2589
2590 for (d = super->missing; d; d = d->next)
2591 if (d->index == index)
2592 return &d->disk;
2593 return NULL;
2594 }
2595
2596 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2597 {
2598 struct intel_super *super = st->sb;
2599 struct imsm_disk *disk;
2600 int map_disks = info->array.raid_disks;
2601 int max_enough = -1;
2602 int i;
2603 struct imsm_super *mpb;
2604
2605 if (super->current_vol >= 0) {
2606 getinfo_super_imsm_volume(st, info, map);
2607 return;
2608 }
2609 memset(info, 0, sizeof(*info));
2610
2611 /* Set raid_disks to zero so that Assemble will always pull in valid
2612 * spares
2613 */
2614 info->array.raid_disks = 0;
2615 info->array.level = LEVEL_CONTAINER;
2616 info->array.layout = 0;
2617 info->array.md_minor = -1;
2618 info->array.ctime = 0; /* N/A for imsm */
2619 info->array.utime = 0;
2620 info->array.chunk_size = 0;
2621
2622 info->disk.major = 0;
2623 info->disk.minor = 0;
2624 info->disk.raid_disk = -1;
2625 info->reshape_active = 0;
2626 info->array.major_version = -1;
2627 info->array.minor_version = -2;
2628 strcpy(info->text_version, "imsm");
2629 info->safe_mode_delay = 0;
2630 info->disk.number = -1;
2631 info->disk.state = 0;
2632 info->name[0] = 0;
2633 info->recovery_start = MaxSector;
2634 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2635
2636 /* do we have the all the insync disks that we expect? */
2637 mpb = super->anchor;
2638
2639 for (i = 0; i < mpb->num_raid_devs; i++) {
2640 struct imsm_dev *dev = get_imsm_dev(super, i);
2641 int failed, enough, j, missing = 0;
2642 struct imsm_map *map;
2643 __u8 state;
2644
2645 failed = imsm_count_failed(super, dev, MAP_0);
2646 state = imsm_check_degraded(super, dev, failed, MAP_0);
2647 map = get_imsm_map(dev, MAP_0);
2648
2649 /* any newly missing disks?
2650 * (catches single-degraded vs double-degraded)
2651 */
2652 for (j = 0; j < map->num_members; j++) {
2653 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2654 __u32 idx = ord_to_idx(ord);
2655
2656 if (!(ord & IMSM_ORD_REBUILD) &&
2657 get_imsm_missing(super, idx)) {
2658 missing = 1;
2659 break;
2660 }
2661 }
2662
2663 if (state == IMSM_T_STATE_FAILED)
2664 enough = -1;
2665 else if (state == IMSM_T_STATE_DEGRADED &&
2666 (state != map->map_state || missing))
2667 enough = 0;
2668 else /* we're normal, or already degraded */
2669 enough = 1;
2670
2671 /* in the missing/failed disk case check to see
2672 * if at least one array is runnable
2673 */
2674 max_enough = max(max_enough, enough);
2675 }
2676 dprintf("%s: enough: %d\n", __func__, max_enough);
2677 info->container_enough = max_enough;
2678
2679 if (super->disks) {
2680 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2681
2682 disk = &super->disks->disk;
2683 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2684 info->component_size = reserved;
2685 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2686 /* we don't change info->disk.raid_disk here because
2687 * this state will be finalized in mdmon after we have
2688 * found the 'most fresh' version of the metadata
2689 */
2690 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2691 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2692 }
2693
2694 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2695 * ->compare_super may have updated the 'num_raid_devs' field for spares
2696 */
2697 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2698 uuid_from_super_imsm(st, info->uuid);
2699 else
2700 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2701
2702 /* I don't know how to compute 'map' on imsm, so use safe default */
2703 if (map) {
2704 int i;
2705 for (i = 0; i < map_disks; i++)
2706 map[i] = 1;
2707 }
2708
2709 }
2710
2711 /* allocates memory and fills disk in mdinfo structure
2712 * for each disk in array */
2713 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2714 {
2715 struct mdinfo *mddev = NULL;
2716 struct intel_super *super = st->sb;
2717 struct imsm_disk *disk;
2718 int count = 0;
2719 struct dl *dl;
2720 if (!super || !super->disks)
2721 return NULL;
2722 dl = super->disks;
2723 mddev = malloc(sizeof(*mddev));
2724 if (!mddev) {
2725 fprintf(stderr, Name ": Failed to allocate memory.\n");
2726 return NULL;
2727 }
2728 memset(mddev, 0, sizeof(*mddev));
2729 while (dl) {
2730 struct mdinfo *tmp;
2731 disk = &dl->disk;
2732 tmp = malloc(sizeof(*tmp));
2733 if (!tmp) {
2734 fprintf(stderr, Name ": Failed to allocate memory.\n");
2735 if (mddev)
2736 sysfs_free(mddev);
2737 return NULL;
2738 }
2739 memset(tmp, 0, sizeof(*tmp));
2740 if (mddev->devs)
2741 tmp->next = mddev->devs;
2742 mddev->devs = tmp;
2743 tmp->disk.number = count++;
2744 tmp->disk.major = dl->major;
2745 tmp->disk.minor = dl->minor;
2746 tmp->disk.state = is_configured(disk) ?
2747 (1 << MD_DISK_ACTIVE) : 0;
2748 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2749 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2750 tmp->disk.raid_disk = -1;
2751 dl = dl->next;
2752 }
2753 return mddev;
2754 }
2755
2756 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2757 char *update, char *devname, int verbose,
2758 int uuid_set, char *homehost)
2759 {
2760 /* For 'assemble' and 'force' we need to return non-zero if any
2761 * change was made. For others, the return value is ignored.
2762 * Update options are:
2763 * force-one : This device looks a bit old but needs to be included,
2764 * update age info appropriately.
2765 * assemble: clear any 'faulty' flag to allow this device to
2766 * be assembled.
2767 * force-array: Array is degraded but being forced, mark it clean
2768 * if that will be needed to assemble it.
2769 *
2770 * newdev: not used ????
2771 * grow: Array has gained a new device - this is currently for
2772 * linear only
2773 * resync: mark as dirty so a resync will happen.
2774 * name: update the name - preserving the homehost
2775 * uuid: Change the uuid of the array to match watch is given
2776 *
2777 * Following are not relevant for this imsm:
2778 * sparc2.2 : update from old dodgey metadata
2779 * super-minor: change the preferred_minor number
2780 * summaries: update redundant counters.
2781 * homehost: update the recorded homehost
2782 * _reshape_progress: record new reshape_progress position.
2783 */
2784 int rv = 1;
2785 struct intel_super *super = st->sb;
2786 struct imsm_super *mpb;
2787
2788 /* we can only update container info */
2789 if (!super || super->current_vol >= 0 || !super->anchor)
2790 return 1;
2791
2792 mpb = super->anchor;
2793
2794 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2795 rv = -1;
2796 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2797 mpb->orig_family_num = *((__u32 *) info->update_private);
2798 rv = 0;
2799 } else if (strcmp(update, "uuid") == 0) {
2800 __u32 *new_family = malloc(sizeof(*new_family));
2801
2802 /* update orig_family_number with the incoming random
2803 * data, report the new effective uuid, and store the
2804 * new orig_family_num for future updates.
2805 */
2806 if (new_family) {
2807 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2808 uuid_from_super_imsm(st, info->uuid);
2809 *new_family = mpb->orig_family_num;
2810 info->update_private = new_family;
2811 rv = 0;
2812 }
2813 } else if (strcmp(update, "assemble") == 0)
2814 rv = 0;
2815 else
2816 rv = -1;
2817
2818 /* successful update? recompute checksum */
2819 if (rv == 0)
2820 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2821
2822 return rv;
2823 }
2824
2825 static size_t disks_to_mpb_size(int disks)
2826 {
2827 size_t size;
2828
2829 size = sizeof(struct imsm_super);
2830 size += (disks - 1) * sizeof(struct imsm_disk);
2831 size += 2 * sizeof(struct imsm_dev);
2832 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2833 size += (4 - 2) * sizeof(struct imsm_map);
2834 /* 4 possible disk_ord_tbl's */
2835 size += 4 * (disks - 1) * sizeof(__u32);
2836
2837 return size;
2838 }
2839
2840 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2841 {
2842 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2843 return 0;
2844
2845 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2846 }
2847
2848 static void free_devlist(struct intel_super *super)
2849 {
2850 struct intel_dev *dv;
2851
2852 while (super->devlist) {
2853 dv = super->devlist->next;
2854 free(super->devlist->dev);
2855 free(super->devlist);
2856 super->devlist = dv;
2857 }
2858 }
2859
2860 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2861 {
2862 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2863 }
2864
2865 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2866 {
2867 /*
2868 * return:
2869 * 0 same, or first was empty, and second was copied
2870 * 1 second had wrong number
2871 * 2 wrong uuid
2872 * 3 wrong other info
2873 */
2874 struct intel_super *first = st->sb;
2875 struct intel_super *sec = tst->sb;
2876
2877 if (!first) {
2878 st->sb = tst->sb;
2879 tst->sb = NULL;
2880 return 0;
2881 }
2882 /* in platform dependent environment test if the disks
2883 * use the same Intel hba
2884 */
2885 if (!check_env("IMSM_NO_PLATFORM")) {
2886 if (!first->hba || !sec->hba ||
2887 (first->hba->type != sec->hba->type)) {
2888 fprintf(stderr,
2889 "HBAs of devices does not match %s != %s\n",
2890 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2891 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2892 return 3;
2893 }
2894 }
2895
2896 /* if an anchor does not have num_raid_devs set then it is a free
2897 * floating spare
2898 */
2899 if (first->anchor->num_raid_devs > 0 &&
2900 sec->anchor->num_raid_devs > 0) {
2901 /* Determine if these disks might ever have been
2902 * related. Further disambiguation can only take place
2903 * in load_super_imsm_all
2904 */
2905 __u32 first_family = first->anchor->orig_family_num;
2906 __u32 sec_family = sec->anchor->orig_family_num;
2907
2908 if (memcmp(first->anchor->sig, sec->anchor->sig,
2909 MAX_SIGNATURE_LENGTH) != 0)
2910 return 3;
2911
2912 if (first_family == 0)
2913 first_family = first->anchor->family_num;
2914 if (sec_family == 0)
2915 sec_family = sec->anchor->family_num;
2916
2917 if (first_family != sec_family)
2918 return 3;
2919
2920 }
2921
2922
2923 /* if 'first' is a spare promote it to a populated mpb with sec's
2924 * family number
2925 */
2926 if (first->anchor->num_raid_devs == 0 &&
2927 sec->anchor->num_raid_devs > 0) {
2928 int i;
2929 struct intel_dev *dv;
2930 struct imsm_dev *dev;
2931
2932 /* we need to copy raid device info from sec if an allocation
2933 * fails here we don't associate the spare
2934 */
2935 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2936 dv = malloc(sizeof(*dv));
2937 if (!dv)
2938 break;
2939 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2940 if (!dev) {
2941 free(dv);
2942 break;
2943 }
2944 dv->dev = dev;
2945 dv->index = i;
2946 dv->next = first->devlist;
2947 first->devlist = dv;
2948 }
2949 if (i < sec->anchor->num_raid_devs) {
2950 /* allocation failure */
2951 free_devlist(first);
2952 fprintf(stderr, "imsm: failed to associate spare\n");
2953 return 3;
2954 }
2955 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2956 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2957 first->anchor->family_num = sec->anchor->family_num;
2958 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2959 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2960 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2961 }
2962
2963 return 0;
2964 }
2965
2966 static void fd2devname(int fd, char *name)
2967 {
2968 struct stat st;
2969 char path[256];
2970 char dname[PATH_MAX];
2971 char *nm;
2972 int rv;
2973
2974 name[0] = '\0';
2975 if (fstat(fd, &st) != 0)
2976 return;
2977 sprintf(path, "/sys/dev/block/%d:%d",
2978 major(st.st_rdev), minor(st.st_rdev));
2979
2980 rv = readlink(path, dname, sizeof(dname)-1);
2981 if (rv <= 0)
2982 return;
2983
2984 dname[rv] = '\0';
2985 nm = strrchr(dname, '/');
2986 if (nm) {
2987 nm++;
2988 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2989 }
2990 }
2991
2992 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2993
2994 static int imsm_read_serial(int fd, char *devname,
2995 __u8 serial[MAX_RAID_SERIAL_LEN])
2996 {
2997 unsigned char scsi_serial[255];
2998 int rv;
2999 int rsp_len;
3000 int len;
3001 char *dest;
3002 char *src;
3003 char *rsp_buf;
3004 int i;
3005
3006 memset(scsi_serial, 0, sizeof(scsi_serial));
3007
3008 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3009
3010 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3011 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3012 fd2devname(fd, (char *) serial);
3013 return 0;
3014 }
3015
3016 if (rv != 0) {
3017 if (devname)
3018 fprintf(stderr,
3019 Name ": Failed to retrieve serial for %s\n",
3020 devname);
3021 return rv;
3022 }
3023
3024 rsp_len = scsi_serial[3];
3025 if (!rsp_len) {
3026 if (devname)
3027 fprintf(stderr,
3028 Name ": Failed to retrieve serial for %s\n",
3029 devname);
3030 return 2;
3031 }
3032 rsp_buf = (char *) &scsi_serial[4];
3033
3034 /* trim all whitespace and non-printable characters and convert
3035 * ':' to ';'
3036 */
3037 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3038 src = &rsp_buf[i];
3039 if (*src > 0x20) {
3040 /* ':' is reserved for use in placeholder serial
3041 * numbers for missing disks
3042 */
3043 if (*src == ':')
3044 *dest++ = ';';
3045 else
3046 *dest++ = *src;
3047 }
3048 }
3049 len = dest - rsp_buf;
3050 dest = rsp_buf;
3051
3052 /* truncate leading characters */
3053 if (len > MAX_RAID_SERIAL_LEN) {
3054 dest += len - MAX_RAID_SERIAL_LEN;
3055 len = MAX_RAID_SERIAL_LEN;
3056 }
3057
3058 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3059 memcpy(serial, dest, len);
3060
3061 return 0;
3062 }
3063
3064 static int serialcmp(__u8 *s1, __u8 *s2)
3065 {
3066 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3067 }
3068
3069 static void serialcpy(__u8 *dest, __u8 *src)
3070 {
3071 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3072 }
3073
3074 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3075 {
3076 struct dl *dl;
3077
3078 for (dl = super->disks; dl; dl = dl->next)
3079 if (serialcmp(dl->serial, serial) == 0)
3080 break;
3081
3082 return dl;
3083 }
3084
3085 static struct imsm_disk *
3086 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3087 {
3088 int i;
3089
3090 for (i = 0; i < mpb->num_disks; i++) {
3091 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3092
3093 if (serialcmp(disk->serial, serial) == 0) {
3094 if (idx)
3095 *idx = i;
3096 return disk;
3097 }
3098 }
3099
3100 return NULL;
3101 }
3102
3103 static int
3104 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3105 {
3106 struct imsm_disk *disk;
3107 struct dl *dl;
3108 struct stat stb;
3109 int rv;
3110 char name[40];
3111 __u8 serial[MAX_RAID_SERIAL_LEN];
3112
3113 rv = imsm_read_serial(fd, devname, serial);
3114
3115 if (rv != 0)
3116 return 2;
3117
3118 dl = calloc(1, sizeof(*dl));
3119 if (!dl) {
3120 if (devname)
3121 fprintf(stderr,
3122 Name ": failed to allocate disk buffer for %s\n",
3123 devname);
3124 return 2;
3125 }
3126
3127 fstat(fd, &stb);
3128 dl->major = major(stb.st_rdev);
3129 dl->minor = minor(stb.st_rdev);
3130 dl->next = super->disks;
3131 dl->fd = keep_fd ? fd : -1;
3132 assert(super->disks == NULL);
3133 super->disks = dl;
3134 serialcpy(dl->serial, serial);
3135 dl->index = -2;
3136 dl->e = NULL;
3137 fd2devname(fd, name);
3138 if (devname)
3139 dl->devname = strdup(devname);
3140 else
3141 dl->devname = strdup(name);
3142
3143 /* look up this disk's index in the current anchor */
3144 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3145 if (disk) {
3146 dl->disk = *disk;
3147 /* only set index on disks that are a member of a
3148 * populated contianer, i.e. one with raid_devs
3149 */
3150 if (is_failed(&dl->disk))
3151 dl->index = -2;
3152 else if (is_spare(&dl->disk))
3153 dl->index = -1;
3154 }
3155
3156 return 0;
3157 }
3158
3159 #ifndef MDASSEMBLE
3160 /* When migrating map0 contains the 'destination' state while map1
3161 * contains the current state. When not migrating map0 contains the
3162 * current state. This routine assumes that map[0].map_state is set to
3163 * the current array state before being called.
3164 *
3165 * Migration is indicated by one of the following states
3166 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3167 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3168 * map1state=unitialized)
3169 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3170 * map1state=normal)
3171 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3172 * map1state=degraded)
3173 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3174 * map1state=normal)
3175 */
3176 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3177 __u8 to_state, int migr_type)
3178 {
3179 struct imsm_map *dest;
3180 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3181
3182 dev->vol.migr_state = 1;
3183 set_migr_type(dev, migr_type);
3184 dev->vol.curr_migr_unit = 0;
3185 dest = get_imsm_map(dev, MAP_1);
3186
3187 /* duplicate and then set the target end state in map[0] */
3188 memcpy(dest, src, sizeof_imsm_map(src));
3189 if ((migr_type == MIGR_REBUILD) ||
3190 (migr_type == MIGR_GEN_MIGR)) {
3191 __u32 ord;
3192 int i;
3193
3194 for (i = 0; i < src->num_members; i++) {
3195 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3196 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3197 }
3198 }
3199
3200 if (migr_type == MIGR_GEN_MIGR)
3201 /* Clear migration record */
3202 memset(super->migr_rec, 0, sizeof(struct migr_record));
3203
3204 src->map_state = to_state;
3205 }
3206
3207 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3208 __u8 map_state)
3209 {
3210 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3211 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3212 MAP_0 : MAP_1);
3213 int i, j;
3214
3215 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3216 * completed in the last migration.
3217 *
3218 * FIXME add support for raid-level-migration
3219 */
3220 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3221 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3222 /* when final map state is other than expected
3223 * merge maps (not for migration)
3224 */
3225 int failed;
3226
3227 for (i = 0; i < prev->num_members; i++)
3228 for (j = 0; j < map->num_members; j++)
3229 /* during online capacity expansion
3230 * disks position can be changed
3231 * if takeover is used
3232 */
3233 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3234 ord_to_idx(prev->disk_ord_tbl[i])) {
3235 map->disk_ord_tbl[j] |=
3236 prev->disk_ord_tbl[i];
3237 break;
3238 }
3239 failed = imsm_count_failed(super, dev, MAP_0);
3240 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3241 }
3242
3243 dev->vol.migr_state = 0;
3244 set_migr_type(dev, 0);
3245 dev->vol.curr_migr_unit = 0;
3246 map->map_state = map_state;
3247 }
3248 #endif
3249
3250 static int parse_raid_devices(struct intel_super *super)
3251 {
3252 int i;
3253 struct imsm_dev *dev_new;
3254 size_t len, len_migr;
3255 size_t max_len = 0;
3256 size_t space_needed = 0;
3257 struct imsm_super *mpb = super->anchor;
3258
3259 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3260 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3261 struct intel_dev *dv;
3262
3263 len = sizeof_imsm_dev(dev_iter, 0);
3264 len_migr = sizeof_imsm_dev(dev_iter, 1);
3265 if (len_migr > len)
3266 space_needed += len_migr - len;
3267
3268 dv = malloc(sizeof(*dv));
3269 if (!dv)
3270 return 1;
3271 if (max_len < len_migr)
3272 max_len = len_migr;
3273 if (max_len > len_migr)
3274 space_needed += max_len - len_migr;
3275 dev_new = malloc(max_len);
3276 if (!dev_new) {
3277 free(dv);
3278 return 1;
3279 }
3280 imsm_copy_dev(dev_new, dev_iter);
3281 dv->dev = dev_new;
3282 dv->index = i;
3283 dv->next = super->devlist;
3284 super->devlist = dv;
3285 }
3286
3287 /* ensure that super->buf is large enough when all raid devices
3288 * are migrating
3289 */
3290 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3291 void *buf;
3292
3293 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3294 if (posix_memalign(&buf, 512, len) != 0)
3295 return 1;
3296
3297 memcpy(buf, super->buf, super->len);
3298 memset(buf + super->len, 0, len - super->len);
3299 free(super->buf);
3300 super->buf = buf;
3301 super->len = len;
3302 }
3303
3304 return 0;
3305 }
3306
3307 /* retrieve a pointer to the bbm log which starts after all raid devices */
3308 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3309 {
3310 void *ptr = NULL;
3311
3312 if (__le32_to_cpu(mpb->bbm_log_size)) {
3313 ptr = mpb;
3314 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3315 }
3316
3317 return ptr;
3318 }
3319
3320 /*******************************************************************************
3321 * Function: check_mpb_migr_compatibility
3322 * Description: Function checks for unsupported migration features:
3323 * - migration optimization area (pba_of_lba0)
3324 * - descending reshape (ascending_migr)
3325 * Parameters:
3326 * super : imsm metadata information
3327 * Returns:
3328 * 0 : migration is compatible
3329 * -1 : migration is not compatible
3330 ******************************************************************************/
3331 int check_mpb_migr_compatibility(struct intel_super *super)
3332 {
3333 struct imsm_map *map0, *map1;
3334 struct migr_record *migr_rec = super->migr_rec;
3335 int i;
3336
3337 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3338 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3339
3340 if (dev_iter &&
3341 dev_iter->vol.migr_state == 1 &&
3342 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3343 /* This device is migrating */
3344 map0 = get_imsm_map(dev_iter, MAP_0);
3345 map1 = get_imsm_map(dev_iter, MAP_1);
3346 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3347 /* migration optimization area was used */
3348 return -1;
3349 if (migr_rec->ascending_migr == 0
3350 && migr_rec->dest_depth_per_unit > 0)
3351 /* descending reshape not supported yet */
3352 return -1;
3353 }
3354 }
3355 return 0;
3356 }
3357
3358 static void __free_imsm(struct intel_super *super, int free_disks);
3359
3360 /* load_imsm_mpb - read matrix metadata
3361 * allocates super->mpb to be freed by free_imsm
3362 */
3363 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3364 {
3365 unsigned long long dsize;
3366 unsigned long long sectors;
3367 struct stat;
3368 struct imsm_super *anchor;
3369 __u32 check_sum;
3370
3371 get_dev_size(fd, NULL, &dsize);
3372 if (dsize < 1024) {
3373 if (devname)
3374 fprintf(stderr,
3375 Name ": %s: device to small for imsm\n",
3376 devname);
3377 return 1;
3378 }
3379
3380 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3381 if (devname)
3382 fprintf(stderr, Name
3383 ": Cannot seek to anchor block on %s: %s\n",
3384 devname, strerror(errno));
3385 return 1;
3386 }
3387
3388 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3389 if (devname)
3390 fprintf(stderr,
3391 Name ": Failed to allocate imsm anchor buffer"
3392 " on %s\n", devname);
3393 return 1;
3394 }
3395 if (read(fd, anchor, 512) != 512) {
3396 if (devname)
3397 fprintf(stderr,
3398 Name ": Cannot read anchor block on %s: %s\n",
3399 devname, strerror(errno));
3400 free(anchor);
3401 return 1;
3402 }
3403
3404 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3405 if (devname)
3406 fprintf(stderr,
3407 Name ": no IMSM anchor on %s\n", devname);
3408 free(anchor);
3409 return 2;
3410 }
3411
3412 __free_imsm(super, 0);
3413 /* reload capability and hba */
3414
3415 /* capability and hba must be updated with new super allocation */
3416 find_intel_hba_capability(fd, super, devname);
3417 super->len = ROUND_UP(anchor->mpb_size, 512);
3418 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3419 if (devname)
3420 fprintf(stderr,
3421 Name ": unable to allocate %zu byte mpb buffer\n",
3422 super->len);
3423 free(anchor);
3424 return 2;
3425 }
3426 memcpy(super->buf, anchor, 512);
3427
3428 sectors = mpb_sectors(anchor) - 1;
3429 free(anchor);
3430
3431 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3432 fprintf(stderr, Name
3433 ": %s could not allocate migr_rec buffer\n", __func__);
3434 free(super->buf);
3435 return 2;
3436 }
3437
3438 if (!sectors) {
3439 check_sum = __gen_imsm_checksum(super->anchor);
3440 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3441 if (devname)
3442 fprintf(stderr,
3443 Name ": IMSM checksum %x != %x on %s\n",
3444 check_sum,
3445 __le32_to_cpu(super->anchor->check_sum),
3446 devname);
3447 return 2;
3448 }
3449
3450 return 0;
3451 }
3452
3453 /* read the extended mpb */
3454 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3455 if (devname)
3456 fprintf(stderr,
3457 Name ": Cannot seek to extended mpb on %s: %s\n",
3458 devname, strerror(errno));
3459 return 1;
3460 }
3461
3462 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3463 if (devname)
3464 fprintf(stderr,
3465 Name ": Cannot read extended mpb on %s: %s\n",
3466 devname, strerror(errno));
3467 return 2;
3468 }
3469
3470 check_sum = __gen_imsm_checksum(super->anchor);
3471 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3472 if (devname)
3473 fprintf(stderr,
3474 Name ": IMSM checksum %x != %x on %s\n",
3475 check_sum, __le32_to_cpu(super->anchor->check_sum),
3476 devname);
3477 return 3;
3478 }
3479
3480 /* FIXME the BBM log is disk specific so we cannot use this global
3481 * buffer for all disks. Ok for now since we only look at the global
3482 * bbm_log_size parameter to gate assembly
3483 */
3484 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3485
3486 return 0;
3487 }
3488
3489 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3490
3491 static int
3492 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3493 {
3494 int err;
3495
3496 err = load_imsm_mpb(fd, super, devname);
3497 if (err)
3498 return err;
3499 err = load_imsm_disk(fd, super, devname, keep_fd);
3500 if (err)
3501 return err;
3502 err = parse_raid_devices(super);
3503
3504 return err;
3505 }
3506
3507 static void __free_imsm_disk(struct dl *d)
3508 {
3509 if (d->fd >= 0)
3510 close(d->fd);
3511 if (d->devname)
3512 free(d->devname);
3513 if (d->e)
3514 free(d->e);
3515 free(d);
3516
3517 }
3518
3519 static void free_imsm_disks(struct intel_super *super)
3520 {
3521 struct dl *d;
3522
3523 while (super->disks) {
3524 d = super->disks;
3525 super->disks = d->next;
3526 __free_imsm_disk(d);
3527 }
3528 while (super->disk_mgmt_list) {
3529 d = super->disk_mgmt_list;
3530 super->disk_mgmt_list = d->next;
3531 __free_imsm_disk(d);
3532 }
3533 while (super->missing) {
3534 d = super->missing;
3535 super->missing = d->next;
3536 __free_imsm_disk(d);
3537 }
3538
3539 }
3540
3541 /* free all the pieces hanging off of a super pointer */
3542 static void __free_imsm(struct intel_super *super, int free_disks)
3543 {
3544 struct intel_hba *elem, *next;
3545
3546 if (super->buf) {
3547 free(super->buf);
3548 super->buf = NULL;
3549 }
3550 /* unlink capability description */
3551 super->orom = NULL;
3552 if (super->migr_rec_buf) {
3553 free(super->migr_rec_buf);
3554 super->migr_rec_buf = NULL;
3555 }
3556 if (free_disks)
3557 free_imsm_disks(super);
3558 free_devlist(super);
3559 elem = super->hba;
3560 while (elem) {
3561 if (elem->path)
3562 free((void *)elem->path);
3563 next = elem->next;
3564 free(elem);
3565 elem = next;
3566 }
3567 super->hba = NULL;
3568 }
3569
3570 static void free_imsm(struct intel_super *super)
3571 {
3572 __free_imsm(super, 1);
3573 free(super);
3574 }
3575
3576 static void free_super_imsm(struct supertype *st)
3577 {
3578 struct intel_super *super = st->sb;
3579
3580 if (!super)
3581 return;
3582
3583 free_imsm(super);
3584 st->sb = NULL;
3585 }
3586
3587 static struct intel_super *alloc_super(void)
3588 {
3589 struct intel_super *super = malloc(sizeof(*super));
3590
3591 if (super) {
3592 memset(super, 0, sizeof(*super));
3593 super->current_vol = -1;
3594 super->create_offset = ~((__u32 ) 0);
3595 }
3596 return super;
3597 }
3598
3599 /*
3600 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3601 */
3602 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3603 {
3604 struct sys_dev *hba_name;
3605 int rv = 0;
3606
3607 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3608 super->orom = NULL;
3609 super->hba = NULL;
3610 return 0;
3611 }
3612 hba_name = find_disk_attached_hba(fd, NULL);
3613 if (!hba_name) {
3614 if (devname)
3615 fprintf(stderr,
3616 Name ": %s is not attached to Intel(R) RAID controller.\n",
3617 devname);
3618 return 1;
3619 }
3620 rv = attach_hba_to_super(super, hba_name);
3621 if (rv == 2) {
3622 if (devname) {
3623 struct intel_hba *hba = super->hba;
3624
3625 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3626 "controller (%s),\n"
3627 " but the container is assigned to Intel(R) "
3628 "%s RAID controller (",
3629 devname,
3630 hba_name->path,
3631 hba_name->pci_id ? : "Err!",
3632 get_sys_dev_type(hba_name->type));
3633
3634 while (hba) {
3635 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3636 if (hba->next)
3637 fprintf(stderr, ", ");
3638 hba = hba->next;
3639 }
3640
3641 fprintf(stderr, ").\n"
3642 " Mixing devices attached to different controllers "
3643 "is not allowed.\n");
3644 }
3645 free_sys_dev(&hba_name);
3646 return 2;
3647 }
3648 super->orom = find_imsm_capability(hba_name->type);
3649 free_sys_dev(&hba_name);
3650 if (!super->orom)
3651 return 3;
3652 return 0;
3653 }
3654
3655 /* find_missing - helper routine for load_super_imsm_all that identifies
3656 * disks that have disappeared from the system. This routine relies on
3657 * the mpb being uptodate, which it is at load time.
3658 */
3659 static int find_missing(struct intel_super *super)
3660 {
3661 int i;
3662 struct imsm_super *mpb = super->anchor;
3663 struct dl *dl;
3664 struct imsm_disk *disk;
3665
3666 for (i = 0; i < mpb->num_disks; i++) {
3667 disk = __get_imsm_disk(mpb, i);
3668 dl = serial_to_dl(disk->serial, super);
3669 if (dl)
3670 continue;
3671
3672 dl = malloc(sizeof(*dl));
3673 if (!dl)
3674 return 1;
3675 dl->major = 0;
3676 dl->minor = 0;
3677 dl->fd = -1;
3678 dl->devname = strdup("missing");
3679 dl->index = i;
3680 serialcpy(dl->serial, disk->serial);
3681 dl->disk = *disk;
3682 dl->e = NULL;
3683 dl->next = super->missing;
3684 super->missing = dl;
3685 }
3686
3687 return 0;
3688 }
3689
3690 #ifndef MDASSEMBLE
3691 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3692 {
3693 struct intel_disk *idisk = disk_list;
3694
3695 while (idisk) {
3696 if (serialcmp(idisk->disk.serial, serial) == 0)
3697 break;
3698 idisk = idisk->next;
3699 }
3700
3701 return idisk;
3702 }
3703
3704 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3705 struct intel_super *super,
3706 struct intel_disk **disk_list)
3707 {
3708 struct imsm_disk *d = &super->disks->disk;
3709 struct imsm_super *mpb = super->anchor;
3710 int i, j;
3711
3712 for (i = 0; i < tbl_size; i++) {
3713 struct imsm_super *tbl_mpb = table[i]->anchor;
3714 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3715
3716 if (tbl_mpb->family_num == mpb->family_num) {
3717 if (tbl_mpb->check_sum == mpb->check_sum) {
3718 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3719 __func__, super->disks->major,
3720 super->disks->minor,
3721 table[i]->disks->major,
3722 table[i]->disks->minor);
3723 break;
3724 }
3725
3726 if (((is_configured(d) && !is_configured(tbl_d)) ||
3727 is_configured(d) == is_configured(tbl_d)) &&
3728 tbl_mpb->generation_num < mpb->generation_num) {
3729 /* current version of the mpb is a
3730 * better candidate than the one in
3731 * super_table, but copy over "cross
3732 * generational" status
3733 */
3734 struct intel_disk *idisk;
3735
3736 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3737 __func__, super->disks->major,
3738 super->disks->minor,
3739 table[i]->disks->major,
3740 table[i]->disks->minor);
3741
3742 idisk = disk_list_get(tbl_d->serial, *disk_list);
3743 if (idisk && is_failed(&idisk->disk))
3744 tbl_d->status |= FAILED_DISK;
3745 break;
3746 } else {
3747 struct intel_disk *idisk;
3748 struct imsm_disk *disk;
3749
3750 /* tbl_mpb is more up to date, but copy
3751 * over cross generational status before
3752 * returning
3753 */
3754 disk = __serial_to_disk(d->serial, mpb, NULL);
3755 if (disk && is_failed(disk))
3756 d->status |= FAILED_DISK;
3757
3758 idisk = disk_list_get(d->serial, *disk_list);
3759 if (idisk) {
3760 idisk->owner = i;
3761 if (disk && is_configured(disk))
3762 idisk->disk.status |= CONFIGURED_DISK;
3763 }
3764
3765 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3766 __func__, super->disks->major,
3767 super->disks->minor,
3768 table[i]->disks->major,
3769 table[i]->disks->minor);
3770
3771 return tbl_size;
3772 }
3773 }
3774 }
3775
3776 if (i >= tbl_size)
3777 table[tbl_size++] = super;
3778 else
3779 table[i] = super;
3780
3781 /* update/extend the merged list of imsm_disk records */
3782 for (j = 0; j < mpb->num_disks; j++) {
3783 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3784 struct intel_disk *idisk;
3785
3786 idisk = disk_list_get(disk->serial, *disk_list);
3787 if (idisk) {
3788 idisk->disk.status |= disk->status;
3789 if (is_configured(&idisk->disk) ||
3790 is_failed(&idisk->disk))
3791 idisk->disk.status &= ~(SPARE_DISK);
3792 } else {
3793 idisk = calloc(1, sizeof(*idisk));
3794 if (!idisk)
3795 return -1;
3796 idisk->owner = IMSM_UNKNOWN_OWNER;
3797 idisk->disk = *disk;
3798 idisk->next = *disk_list;
3799 *disk_list = idisk;
3800 }
3801
3802 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3803 idisk->owner = i;
3804 }
3805
3806 return tbl_size;
3807 }
3808
3809 static struct intel_super *
3810 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3811 const int owner)
3812 {
3813 struct imsm_super *mpb = super->anchor;
3814 int ok_count = 0;
3815 int i;
3816
3817 for (i = 0; i < mpb->num_disks; i++) {
3818 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3819 struct intel_disk *idisk;
3820
3821 idisk = disk_list_get(disk->serial, disk_list);
3822 if (idisk) {
3823 if (idisk->owner == owner ||
3824 idisk->owner == IMSM_UNKNOWN_OWNER)
3825 ok_count++;
3826 else
3827 dprintf("%s: '%.16s' owner %d != %d\n",
3828 __func__, disk->serial, idisk->owner,
3829 owner);
3830 } else {
3831 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3832 __func__, __le32_to_cpu(mpb->family_num), i,
3833 disk->serial);
3834 break;
3835 }
3836 }
3837
3838 if (ok_count == mpb->num_disks)
3839 return super;
3840 return NULL;
3841 }
3842
3843 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3844 {
3845 struct intel_super *s;
3846
3847 for (s = super_list; s; s = s->next) {
3848 if (family_num != s->anchor->family_num)
3849 continue;
3850 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3851 __le32_to_cpu(family_num), s->disks->devname);
3852 }
3853 }
3854
3855 static struct intel_super *
3856 imsm_thunderdome(struct intel_super **super_list, int len)
3857 {
3858 struct intel_super *super_table[len];
3859 struct intel_disk *disk_list = NULL;
3860 struct intel_super *champion, *spare;
3861 struct intel_super *s, **del;
3862 int tbl_size = 0;
3863 int conflict;
3864 int i;
3865
3866 memset(super_table, 0, sizeof(super_table));
3867 for (s = *super_list; s; s = s->next)
3868 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3869
3870 for (i = 0; i < tbl_size; i++) {
3871 struct imsm_disk *d;
3872 struct intel_disk *idisk;
3873 struct imsm_super *mpb = super_table[i]->anchor;
3874
3875 s = super_table[i];
3876 d = &s->disks->disk;
3877
3878 /* 'd' must appear in merged disk list for its
3879 * configuration to be valid
3880 */
3881 idisk = disk_list_get(d->serial, disk_list);
3882 if (idisk && idisk->owner == i)
3883 s = validate_members(s, disk_list, i);
3884 else
3885 s = NULL;
3886
3887 if (!s)
3888 dprintf("%s: marking family: %#x from %d:%d offline\n",
3889 __func__, mpb->family_num,
3890 super_table[i]->disks->major,
3891 super_table[i]->disks->minor);
3892 super_table[i] = s;
3893 }
3894
3895 /* This is where the mdadm implementation differs from the Windows
3896 * driver which has no strict concept of a container. We can only
3897 * assemble one family from a container, so when returning a prodigal
3898 * array member to this system the code will not be able to disambiguate
3899 * the container contents that should be assembled ("foreign" versus
3900 * "local"). It requires user intervention to set the orig_family_num
3901 * to a new value to establish a new container. The Windows driver in
3902 * this situation fixes up the volume name in place and manages the
3903 * foreign array as an independent entity.
3904 */
3905 s = NULL;
3906 spare = NULL;
3907 conflict = 0;
3908 for (i = 0; i < tbl_size; i++) {
3909 struct intel_super *tbl_ent = super_table[i];
3910 int is_spare = 0;
3911
3912 if (!tbl_ent)
3913 continue;
3914
3915 if (tbl_ent->anchor->num_raid_devs == 0) {
3916 spare = tbl_ent;
3917 is_spare = 1;
3918 }
3919
3920 if (s && !is_spare) {
3921 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3922 conflict++;
3923 } else if (!s && !is_spare)
3924 s = tbl_ent;
3925 }
3926
3927 if (!s)
3928 s = spare;
3929 if (!s) {
3930 champion = NULL;
3931 goto out;
3932 }
3933 champion = s;
3934
3935 if (conflict)
3936 fprintf(stderr, "Chose family %#x on '%s', "
3937 "assemble conflicts to new container with '--update=uuid'\n",
3938 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3939
3940 /* collect all dl's onto 'champion', and update them to
3941 * champion's version of the status
3942 */
3943 for (s = *super_list; s; s = s->next) {
3944 struct imsm_super *mpb = champion->anchor;
3945 struct dl *dl = s->disks;
3946
3947 if (s == champion)
3948 continue;
3949
3950 for (i = 0; i < mpb->num_disks; i++) {
3951 struct imsm_disk *disk;
3952
3953 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3954 if (disk) {
3955 dl->disk = *disk;
3956 /* only set index on disks that are a member of
3957 * a populated contianer, i.e. one with
3958 * raid_devs
3959 */
3960 if (is_failed(&dl->disk))
3961 dl->index = -2;
3962 else if (is_spare(&dl->disk))
3963 dl->index = -1;
3964 break;
3965 }
3966 }
3967
3968 if (i >= mpb->num_disks) {
3969 struct intel_disk *idisk;
3970
3971 idisk = disk_list_get(dl->serial, disk_list);
3972 if (idisk && is_spare(&idisk->disk) &&
3973 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3974 dl->index = -1;
3975 else {
3976 dl->index = -2;
3977 continue;
3978 }
3979 }
3980
3981 dl->next = champion->disks;
3982 champion->disks = dl;
3983 s->disks = NULL;
3984 }
3985
3986 /* delete 'champion' from super_list */
3987 for (del = super_list; *del; ) {
3988 if (*del == champion) {
3989 *del = (*del)->next;
3990 break;
3991 } else
3992 del = &(*del)->next;
3993 }
3994 champion->next = NULL;
3995
3996 out:
3997 while (disk_list) {
3998 struct intel_disk *idisk = disk_list;
3999
4000 disk_list = disk_list->next;
4001 free(idisk);
4002 }
4003
4004 return champion;
4005 }
4006
4007 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4008 char *devname)
4009 {
4010 struct mdinfo *sra;
4011 struct intel_super *super_list = NULL;
4012 struct intel_super *super = NULL;
4013 int devnum = fd2devnum(fd);
4014 struct mdinfo *sd;
4015 int retry;
4016 int err = 0;
4017 int i;
4018
4019 /* check if 'fd' an opened container */
4020 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4021 if (!sra)
4022 return 1;
4023
4024 if (sra->array.major_version != -1 ||
4025 sra->array.minor_version != -2 ||
4026 strcmp(sra->text_version, "imsm") != 0) {
4027 err = 1;
4028 goto error;
4029 }
4030 /* load all mpbs */
4031 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4032 struct intel_super *s = alloc_super();
4033 char nm[32];
4034 int dfd;
4035 int rv;
4036
4037 err = 1;
4038 if (!s)
4039 goto error;
4040 s->next = super_list;
4041 super_list = s;
4042
4043 err = 2;
4044 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
4045 dfd = dev_open(nm, O_RDWR);
4046 if (dfd < 0)
4047 goto error;
4048
4049 rv = find_intel_hba_capability(dfd, s, devname);
4050 /* no orom/efi or non-intel hba of the disk */
4051 if (rv != 0)
4052 goto error;
4053
4054 err = load_and_parse_mpb(dfd, s, NULL, 1);
4055
4056 /* retry the load if we might have raced against mdmon */
4057 if (err == 3 && mdmon_running(devnum))
4058 for (retry = 0; retry < 3; retry++) {
4059 usleep(3000);
4060 err = load_and_parse_mpb(dfd, s, NULL, 1);
4061 if (err != 3)
4062 break;
4063 }
4064 if (err)
4065 goto error;
4066 }
4067
4068 /* all mpbs enter, maybe one leaves */
4069 super = imsm_thunderdome(&super_list, i);
4070 if (!super) {
4071 err = 1;
4072 goto error;
4073 }
4074
4075 if (find_missing(super) != 0) {
4076 free_imsm(super);
4077 err = 2;
4078 goto error;
4079 }
4080
4081 /* load migration record */
4082 err = load_imsm_migr_rec(super, NULL);
4083 if (err == -1) {
4084 /* migration is in progress,
4085 * but migr_rec cannot be loaded,
4086 */
4087 err = 4;
4088 goto error;
4089 }
4090
4091 /* Check migration compatibility */
4092 if ((err == 0) && (check_mpb_migr_compatibility(super) != 0)) {
4093 fprintf(stderr, Name ": Unsupported migration detected");
4094 if (devname)
4095 fprintf(stderr, " on %s\n", devname);
4096 else
4097 fprintf(stderr, " (IMSM).\n");
4098
4099 err = 5;
4100 goto error;
4101 }
4102
4103 err = 0;
4104
4105 error:
4106 while (super_list) {
4107 struct intel_super *s = super_list;
4108
4109 super_list = super_list->next;
4110 free_imsm(s);
4111 }
4112 sysfs_free(sra);
4113
4114 if (err)
4115 return err;
4116
4117 *sbp = super;
4118 st->container_dev = devnum;
4119 if (err == 0 && st->ss == NULL) {
4120 st->ss = &super_imsm;
4121 st->minor_version = 0;
4122 st->max_devs = IMSM_MAX_DEVICES;
4123 }
4124 return 0;
4125 }
4126
4127 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4128 {
4129 return load_super_imsm_all(st, fd, &st->sb, devname);
4130 }
4131 #endif
4132
4133 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4134 {
4135 struct intel_super *super;
4136 int rv;
4137
4138 if (test_partition(fd))
4139 /* IMSM not allowed on partitions */
4140 return 1;
4141
4142 free_super_imsm(st);
4143
4144 super = alloc_super();
4145 if (!super) {
4146 fprintf(stderr,
4147 Name ": malloc of %zu failed.\n",
4148 sizeof(*super));
4149 return 1;
4150 }
4151 /* Load hba and capabilities if they exist.
4152 * But do not preclude loading metadata in case capabilities or hba are
4153 * non-compliant and ignore_hw_compat is set.
4154 */
4155 rv = find_intel_hba_capability(fd, super, devname);
4156 /* no orom/efi or non-intel hba of the disk */
4157 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4158 if (devname)
4159 fprintf(stderr,
4160 Name ": No OROM/EFI properties for %s\n", devname);
4161 free_imsm(super);
4162 return 2;
4163 }
4164 rv = load_and_parse_mpb(fd, super, devname, 0);
4165
4166 if (rv) {
4167 if (devname)
4168 fprintf(stderr,
4169 Name ": Failed to load all information "
4170 "sections on %s\n", devname);
4171 free_imsm(super);
4172 return rv;
4173 }
4174
4175 st->sb = super;
4176 if (st->ss == NULL) {
4177 st->ss = &super_imsm;
4178 st->minor_version = 0;
4179 st->max_devs = IMSM_MAX_DEVICES;
4180 }
4181
4182 /* load migration record */
4183 if (load_imsm_migr_rec(super, NULL) == 0) {
4184 /* Check for unsupported migration features */
4185 if (check_mpb_migr_compatibility(super) != 0) {
4186 fprintf(stderr,
4187 Name ": Unsupported migration detected");
4188 if (devname)
4189 fprintf(stderr, " on %s\n", devname);
4190 else
4191 fprintf(stderr, " (IMSM).\n");
4192 return 3;
4193 }
4194 }
4195
4196 return 0;
4197 }
4198
4199 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4200 {
4201 if (info->level == 1)
4202 return 128;
4203 return info->chunk_size >> 9;
4204 }
4205
4206 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
4207 {
4208 __u32 num_stripes;
4209
4210 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
4211 num_stripes /= num_domains;
4212
4213 return num_stripes;
4214 }
4215
4216 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4217 {
4218 if (info->level == 1)
4219 return info->size * 2;
4220 else
4221 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4222 }
4223
4224 static void imsm_update_version_info(struct intel_super *super)
4225 {
4226 /* update the version and attributes */
4227 struct imsm_super *mpb = super->anchor;
4228 char *version;
4229 struct imsm_dev *dev;
4230 struct imsm_map *map;
4231 int i;
4232
4233 for (i = 0; i < mpb->num_raid_devs; i++) {
4234 dev = get_imsm_dev(super, i);
4235 map = get_imsm_map(dev, MAP_0);
4236 if (__le32_to_cpu(dev->size_high) > 0)
4237 mpb->attributes |= MPB_ATTRIB_2TB;
4238
4239 /* FIXME detect when an array spans a port multiplier */
4240 #if 0
4241 mpb->attributes |= MPB_ATTRIB_PM;
4242 #endif
4243
4244 if (mpb->num_raid_devs > 1 ||
4245 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4246 version = MPB_VERSION_ATTRIBS;
4247 switch (get_imsm_raid_level(map)) {
4248 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4249 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4250 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4251 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4252 }
4253 } else {
4254 if (map->num_members >= 5)
4255 version = MPB_VERSION_5OR6_DISK_ARRAY;
4256 else if (dev->status == DEV_CLONE_N_GO)
4257 version = MPB_VERSION_CNG;
4258 else if (get_imsm_raid_level(map) == 5)
4259 version = MPB_VERSION_RAID5;
4260 else if (map->num_members >= 3)
4261 version = MPB_VERSION_3OR4_DISK_ARRAY;
4262 else if (get_imsm_raid_level(map) == 1)
4263 version = MPB_VERSION_RAID1;
4264 else
4265 version = MPB_VERSION_RAID0;
4266 }
4267 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4268 }
4269 }
4270
4271 static int check_name(struct intel_super *super, char *name, int quiet)
4272 {
4273 struct imsm_super *mpb = super->anchor;
4274 char *reason = NULL;
4275 int i;
4276
4277 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4278 reason = "must be 16 characters or less";
4279
4280 for (i = 0; i < mpb->num_raid_devs; i++) {
4281 struct imsm_dev *dev = get_imsm_dev(super, i);
4282
4283 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4284 reason = "already exists";
4285 break;
4286 }
4287 }
4288
4289 if (reason && !quiet)
4290 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4291
4292 return !reason;
4293 }
4294
4295 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4296 unsigned long long size, char *name,
4297 char *homehost, int *uuid)
4298 {
4299 /* We are creating a volume inside a pre-existing container.
4300 * so st->sb is already set.
4301 */
4302 struct intel_super *super = st->sb;
4303 struct imsm_super *mpb = super->anchor;
4304 struct intel_dev *dv;
4305 struct imsm_dev *dev;
4306 struct imsm_vol *vol;
4307 struct imsm_map *map;
4308 int idx = mpb->num_raid_devs;
4309 int i;
4310 unsigned long long array_blocks;
4311 size_t size_old, size_new;
4312 __u32 num_data_stripes;
4313
4314 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4315 fprintf(stderr, Name": This imsm-container already has the "
4316 "maximum of %d volumes\n", super->orom->vpa);
4317 return 0;
4318 }
4319
4320 /* ensure the mpb is large enough for the new data */
4321 size_old = __le32_to_cpu(mpb->mpb_size);
4322 size_new = disks_to_mpb_size(info->nr_disks);
4323 if (size_new > size_old) {
4324 void *mpb_new;
4325 size_t size_round = ROUND_UP(size_new, 512);
4326
4327 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4328 fprintf(stderr, Name": could not allocate new mpb\n");
4329 return 0;
4330 }
4331 if (posix_memalign(&super->migr_rec_buf, 512,
4332 MIGR_REC_BUF_SIZE) != 0) {
4333 fprintf(stderr, Name
4334 ": %s could not allocate migr_rec buffer\n",
4335 __func__);
4336 free(super->buf);
4337 free(super);
4338 free(mpb_new);
4339 return 0;
4340 }
4341 memcpy(mpb_new, mpb, size_old);
4342 free(mpb);
4343 mpb = mpb_new;
4344 super->anchor = mpb_new;
4345 mpb->mpb_size = __cpu_to_le32(size_new);
4346 memset(mpb_new + size_old, 0, size_round - size_old);
4347 }
4348 super->current_vol = idx;
4349
4350 /* handle 'failed_disks' by either:
4351 * a) create dummy disk entries in the table if this the first
4352 * volume in the array. We add them here as this is the only
4353 * opportunity to add them. add_to_super_imsm_volume()
4354 * handles the non-failed disks and continues incrementing
4355 * mpb->num_disks.
4356 * b) validate that 'failed_disks' matches the current number
4357 * of missing disks if the container is populated
4358 */
4359 if (super->current_vol == 0) {
4360 mpb->num_disks = 0;
4361 for (i = 0; i < info->failed_disks; i++) {
4362 struct imsm_disk *disk;
4363
4364 mpb->num_disks++;
4365 disk = __get_imsm_disk(mpb, i);
4366 disk->status = CONFIGURED_DISK | FAILED_DISK;
4367 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4368 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4369 "missing:%d", i);
4370 }
4371 find_missing(super);
4372 } else {
4373 int missing = 0;
4374 struct dl *d;
4375
4376 for (d = super->missing; d; d = d->next)
4377 missing++;
4378 if (info->failed_disks > missing) {
4379 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4380 return 0;
4381 }
4382 }
4383
4384 if (!check_name(super, name, 0))
4385 return 0;
4386 dv = malloc(sizeof(*dv));
4387 if (!dv) {
4388 fprintf(stderr, Name ": failed to allocate device list entry\n");
4389 return 0;
4390 }
4391 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4392 if (!dev) {
4393 free(dv);
4394 fprintf(stderr, Name": could not allocate raid device\n");
4395 return 0;
4396 }
4397
4398 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4399 if (info->level == 1)
4400 array_blocks = info_to_blocks_per_member(info);
4401 else
4402 array_blocks = calc_array_size(info->level, info->raid_disks,
4403 info->layout, info->chunk_size,
4404 info->size*2);
4405 /* round array size down to closest MB */
4406 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4407
4408 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4409 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4410 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4411 vol = &dev->vol;
4412 vol->migr_state = 0;
4413 set_migr_type(dev, MIGR_INIT);
4414 vol->dirty = !info->state;
4415 vol->curr_migr_unit = 0;
4416 map = get_imsm_map(dev, MAP_0);
4417 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
4418 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
4419 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4420 map->failed_disk_num = ~0;
4421 if (info->level > 0)
4422 map->map_state = IMSM_T_STATE_UNINITIALIZED;
4423 else
4424 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4425 IMSM_T_STATE_NORMAL;
4426 map->ddf = 1;
4427
4428 if (info->level == 1 && info->raid_disks > 2) {
4429 free(dev);
4430 free(dv);
4431 fprintf(stderr, Name": imsm does not support more than 2 disks"
4432 "in a raid1 volume\n");
4433 return 0;
4434 }
4435
4436 map->raid_level = info->level;
4437 if (info->level == 10) {
4438 map->raid_level = 1;
4439 map->num_domains = info->raid_disks / 2;
4440 } else if (info->level == 1)
4441 map->num_domains = info->raid_disks;
4442 else
4443 map->num_domains = 1;
4444
4445 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4446 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
4447
4448 map->num_members = info->raid_disks;
4449 for (i = 0; i < map->num_members; i++) {
4450 /* initialized in add_to_super */
4451 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4452 }
4453 mpb->num_raid_devs++;
4454
4455 dv->dev = dev;
4456 dv->index = super->current_vol;
4457 dv->next = super->devlist;
4458 super->devlist = dv;
4459
4460 imsm_update_version_info(super);
4461
4462 return 1;
4463 }
4464
4465 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4466 unsigned long long size, char *name,
4467 char *homehost, int *uuid)
4468 {
4469 /* This is primarily called by Create when creating a new array.
4470 * We will then get add_to_super called for each component, and then
4471 * write_init_super called to write it out to each device.
4472 * For IMSM, Create can create on fresh devices or on a pre-existing
4473 * array.
4474 * To create on a pre-existing array a different method will be called.
4475 * This one is just for fresh drives.
4476 */
4477 struct intel_super *super;
4478 struct imsm_super *mpb;
4479 size_t mpb_size;
4480 char *version;
4481
4482 if (st->sb)
4483 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4484
4485 if (info)
4486 mpb_size = disks_to_mpb_size(info->nr_disks);
4487 else
4488 mpb_size = 512;
4489
4490 super = alloc_super();
4491 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4492 free(super);
4493 super = NULL;
4494 }
4495 if (!super) {
4496 fprintf(stderr, Name
4497 ": %s could not allocate superblock\n", __func__);
4498 return 0;
4499 }
4500 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
4501 fprintf(stderr, Name
4502 ": %s could not allocate migr_rec buffer\n", __func__);
4503 free(super->buf);
4504 free(super);
4505 return 0;
4506 }
4507 memset(super->buf, 0, mpb_size);
4508 mpb = super->buf;
4509 mpb->mpb_size = __cpu_to_le32(mpb_size);
4510 st->sb = super;
4511
4512 if (info == NULL) {
4513 /* zeroing superblock */
4514 return 0;
4515 }
4516
4517 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4518
4519 version = (char *) mpb->sig;
4520 strcpy(version, MPB_SIGNATURE);
4521 version += strlen(MPB_SIGNATURE);
4522 strcpy(version, MPB_VERSION_RAID0);
4523
4524 return 1;
4525 }
4526
4527 #ifndef MDASSEMBLE
4528 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4529 int fd, char *devname)
4530 {
4531 struct intel_super *super = st->sb;
4532 struct imsm_super *mpb = super->anchor;
4533 struct imsm_disk *_disk;
4534 struct imsm_dev *dev;
4535 struct imsm_map *map;
4536 struct dl *dl, *df;
4537 int slot;
4538
4539 dev = get_imsm_dev(super, super->current_vol);
4540 map = get_imsm_map(dev, MAP_0);
4541
4542 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4543 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4544 devname);
4545 return 1;
4546 }
4547
4548 if (fd == -1) {
4549 /* we're doing autolayout so grab the pre-marked (in
4550 * validate_geometry) raid_disk
4551 */
4552 for (dl = super->disks; dl; dl = dl->next)
4553 if (dl->raiddisk == dk->raid_disk)
4554 break;
4555 } else {
4556 for (dl = super->disks; dl ; dl = dl->next)
4557 if (dl->major == dk->major &&
4558 dl->minor == dk->minor)
4559 break;
4560 }
4561
4562 if (!dl) {
4563 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4564 return 1;
4565 }
4566
4567 /* add a pristine spare to the metadata */
4568 if (dl->index < 0) {
4569 dl->index = super->anchor->num_disks;
4570 super->anchor->num_disks++;
4571 }
4572 /* Check the device has not already been added */
4573 slot = get_imsm_disk_slot(map, dl->index);
4574 if (slot >= 0 &&
4575 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
4576 fprintf(stderr, Name ": %s has been included in this array twice\n",
4577 devname);
4578 return 1;
4579 }
4580 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4581 dl->disk.status = CONFIGURED_DISK;
4582
4583 /* update size of 'missing' disks to be at least as large as the
4584 * largest acitve member (we only have dummy missing disks when
4585 * creating the first volume)
4586 */
4587 if (super->current_vol == 0) {
4588 for (df = super->missing; df; df = df->next) {
4589 if (dl->disk.total_blocks > df->disk.total_blocks)
4590 df->disk.total_blocks = dl->disk.total_blocks;
4591 _disk = __get_imsm_disk(mpb, df->index);
4592 *_disk = df->disk;
4593 }
4594 }
4595
4596 /* refresh unset/failed slots to point to valid 'missing' entries */
4597 for (df = super->missing; df; df = df->next)
4598 for (slot = 0; slot < mpb->num_disks; slot++) {
4599 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4600
4601 if ((ord & IMSM_ORD_REBUILD) == 0)
4602 continue;
4603 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4604 if (is_gen_migration(dev)) {
4605 struct imsm_map *map2 = get_imsm_map(dev,
4606 MAP_1);
4607 int slot2 = get_imsm_disk_slot(map2, df->index);
4608 if ((slot2 < map2->num_members) &&
4609 (slot2 >= 0)) {
4610 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4611 slot2,
4612 MAP_1);
4613 if ((unsigned)df->index ==
4614 ord_to_idx(ord2))
4615 set_imsm_ord_tbl_ent(map2,
4616 slot2,
4617 df->index |
4618 IMSM_ORD_REBUILD);
4619 }
4620 }
4621 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4622 break;
4623 }
4624
4625 /* if we are creating the first raid device update the family number */
4626 if (super->current_vol == 0) {
4627 __u32 sum;
4628 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4629
4630 _disk = __get_imsm_disk(mpb, dl->index);
4631 if (!_dev || !_disk) {
4632 fprintf(stderr, Name ": BUG mpb setup error\n");
4633 return 1;
4634 }
4635 *_dev = *dev;
4636 *_disk = dl->disk;
4637 sum = random32();
4638 sum += __gen_imsm_checksum(mpb);
4639 mpb->family_num = __cpu_to_le32(sum);
4640 mpb->orig_family_num = mpb->family_num;
4641 }
4642 super->current_disk = dl;
4643 return 0;
4644 }
4645
4646 /* mark_spare()
4647 * Function marks disk as spare and restores disk serial
4648 * in case it was previously marked as failed by takeover operation
4649 * reruns:
4650 * -1 : critical error
4651 * 0 : disk is marked as spare but serial is not set
4652 * 1 : success
4653 */
4654 int mark_spare(struct dl *disk)
4655 {
4656 __u8 serial[MAX_RAID_SERIAL_LEN];
4657 int ret_val = -1;
4658
4659 if (!disk)
4660 return ret_val;
4661
4662 ret_val = 0;
4663 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4664 /* Restore disk serial number, because takeover marks disk
4665 * as failed and adds to serial ':0' before it becomes
4666 * a spare disk.
4667 */
4668 serialcpy(disk->serial, serial);
4669 serialcpy(disk->disk.serial, serial);
4670 ret_val = 1;
4671 }
4672 disk->disk.status = SPARE_DISK;
4673 disk->index = -1;
4674
4675 return ret_val;
4676 }
4677
4678 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4679 int fd, char *devname)
4680 {
4681 struct intel_super *super = st->sb;
4682 struct dl *dd;
4683 unsigned long long size;
4684 __u32 id;
4685 int rv;
4686 struct stat stb;
4687
4688 /* If we are on an RAID enabled platform check that the disk is
4689 * attached to the raid controller.
4690 * We do not need to test disks attachment for container based additions,
4691 * they shall be already tested when container was created/assembled.
4692 */
4693 rv = find_intel_hba_capability(fd, super, devname);
4694 /* no orom/efi or non-intel hba of the disk */
4695 if (rv != 0) {
4696 dprintf("capability: %p fd: %d ret: %d\n",
4697 super->orom, fd, rv);
4698 return 1;
4699 }
4700
4701 if (super->current_vol >= 0)
4702 return add_to_super_imsm_volume(st, dk, fd, devname);
4703
4704 fstat(fd, &stb);
4705 dd = malloc(sizeof(*dd));
4706 if (!dd) {
4707 fprintf(stderr,
4708 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4709 return 1;
4710 }
4711 memset(dd, 0, sizeof(*dd));
4712 dd->major = major(stb.st_rdev);
4713 dd->minor = minor(stb.st_rdev);
4714 dd->devname = devname ? strdup(devname) : NULL;
4715 dd->fd = fd;
4716 dd->e = NULL;
4717 dd->action = DISK_ADD;
4718 rv = imsm_read_serial(fd, devname, dd->serial);
4719 if (rv) {
4720 fprintf(stderr,
4721 Name ": failed to retrieve scsi serial, aborting\n");
4722 free(dd);
4723 abort();
4724 }
4725
4726 get_dev_size(fd, NULL, &size);
4727 size /= 512;
4728 serialcpy(dd->disk.serial, dd->serial);
4729 dd->disk.total_blocks = __cpu_to_le32(size);
4730 mark_spare(dd);
4731 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4732 dd->disk.scsi_id = __cpu_to_le32(id);
4733 else
4734 dd->disk.scsi_id = __cpu_to_le32(0);
4735
4736 if (st->update_tail) {
4737 dd->next = super->disk_mgmt_list;
4738 super->disk_mgmt_list = dd;
4739 } else {
4740 dd->next = super->disks;
4741 super->disks = dd;
4742 super->updates_pending++;
4743 }
4744
4745 return 0;
4746 }
4747
4748
4749 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4750 {
4751 struct intel_super *super = st->sb;
4752 struct dl *dd;
4753
4754 /* remove from super works only in mdmon - for communication
4755 * manager - monitor. Check if communication memory buffer
4756 * is prepared.
4757 */
4758 if (!st->update_tail) {
4759 fprintf(stderr,
4760 Name ": %s shall be used in mdmon context only"
4761 "(line %d).\n", __func__, __LINE__);
4762 return 1;
4763 }
4764 dd = malloc(sizeof(*dd));
4765 if (!dd) {
4766 fprintf(stderr,
4767 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4768 return 1;
4769 }
4770 memset(dd, 0, sizeof(*dd));
4771 dd->major = dk->major;
4772 dd->minor = dk->minor;
4773 dd->fd = -1;
4774 mark_spare(dd);
4775 dd->action = DISK_REMOVE;
4776
4777 dd->next = super->disk_mgmt_list;
4778 super->disk_mgmt_list = dd;
4779
4780
4781 return 0;
4782 }
4783
4784 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4785
4786 static union {
4787 char buf[512];
4788 struct imsm_super anchor;
4789 } spare_record __attribute__ ((aligned(512)));
4790
4791 /* spare records have their own family number and do not have any defined raid
4792 * devices
4793 */
4794 static int write_super_imsm_spares(struct intel_super *super, int doclose)
4795 {
4796 struct imsm_super *mpb = super->anchor;
4797 struct imsm_super *spare = &spare_record.anchor;
4798 __u32 sum;
4799 struct dl *d;
4800
4801 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4802 spare->generation_num = __cpu_to_le32(1UL),
4803 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4804 spare->num_disks = 1,
4805 spare->num_raid_devs = 0,
4806 spare->cache_size = mpb->cache_size,
4807 spare->pwr_cycle_count = __cpu_to_le32(1),
4808
4809 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4810 MPB_SIGNATURE MPB_VERSION_RAID0);
4811
4812 for (d = super->disks; d; d = d->next) {
4813 if (d->index != -1)
4814 continue;
4815
4816 spare->disk[0] = d->disk;
4817 sum = __gen_imsm_checksum(spare);
4818 spare->family_num = __cpu_to_le32(sum);
4819 spare->orig_family_num = 0;
4820 sum = __gen_imsm_checksum(spare);
4821 spare->check_sum = __cpu_to_le32(sum);
4822
4823 if (store_imsm_mpb(d->fd, spare)) {
4824 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4825 __func__, d->major, d->minor, strerror(errno));
4826 return 1;
4827 }
4828 if (doclose) {
4829 close(d->fd);
4830 d->fd = -1;
4831 }
4832 }
4833
4834 return 0;
4835 }
4836
4837 static int write_super_imsm(struct supertype *st, int doclose)
4838 {
4839 struct intel_super *super = st->sb;
4840 struct imsm_super *mpb = super->anchor;
4841 struct dl *d;
4842 __u32 generation;
4843 __u32 sum;
4844 int spares = 0;
4845 int i;
4846 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
4847 int num_disks = 0;
4848 int clear_migration_record = 1;
4849
4850 /* 'generation' is incremented everytime the metadata is written */
4851 generation = __le32_to_cpu(mpb->generation_num);
4852 generation++;
4853 mpb->generation_num = __cpu_to_le32(generation);
4854
4855 /* fix up cases where previous mdadm releases failed to set
4856 * orig_family_num
4857 */
4858 if (mpb->orig_family_num == 0)
4859 mpb->orig_family_num = mpb->family_num;
4860
4861 for (d = super->disks; d; d = d->next) {
4862 if (d->index == -1)
4863 spares++;
4864 else {
4865 mpb->disk[d->index] = d->disk;
4866 num_disks++;
4867 }
4868 }
4869 for (d = super->missing; d; d = d->next) {
4870 mpb->disk[d->index] = d->disk;
4871 num_disks++;
4872 }
4873 mpb->num_disks = num_disks;
4874 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
4875
4876 for (i = 0; i < mpb->num_raid_devs; i++) {
4877 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
4878 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4879 if (dev && dev2) {
4880 imsm_copy_dev(dev, dev2);
4881 mpb_size += sizeof_imsm_dev(dev, 0);
4882 }
4883 if (is_gen_migration(dev2))
4884 clear_migration_record = 0;
4885 }
4886 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4887 mpb->mpb_size = __cpu_to_le32(mpb_size);
4888
4889 /* recalculate checksum */
4890 sum = __gen_imsm_checksum(mpb);
4891 mpb->check_sum = __cpu_to_le32(sum);
4892
4893 if (clear_migration_record)
4894 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
4895
4896 /* write the mpb for disks that compose raid devices */
4897 for (d = super->disks; d ; d = d->next) {
4898 if (d->index < 0 || is_failed(&d->disk))
4899 continue;
4900 if (store_imsm_mpb(d->fd, mpb))
4901 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4902 __func__, d->major, d->minor, strerror(errno));
4903 if (clear_migration_record) {
4904 unsigned long long dsize;
4905
4906 get_dev_size(d->fd, NULL, &dsize);
4907 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4908 if (write(d->fd, super->migr_rec_buf,
4909 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
4910 perror("Write migr_rec failed");
4911 }
4912 }
4913 if (doclose) {
4914 close(d->fd);
4915 d->fd = -1;
4916 }
4917 }
4918
4919 if (spares)
4920 return write_super_imsm_spares(super, doclose);
4921
4922 return 0;
4923 }
4924
4925
4926 static int create_array(struct supertype *st, int dev_idx)
4927 {
4928 size_t len;
4929 struct imsm_update_create_array *u;
4930 struct intel_super *super = st->sb;
4931 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4932 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4933 struct disk_info *inf;
4934 struct imsm_disk *disk;
4935 int i;
4936
4937 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4938 sizeof(*inf) * map->num_members;
4939 u = malloc(len);
4940 if (!u) {
4941 fprintf(stderr, "%s: failed to allocate update buffer\n",
4942 __func__);
4943 return 1;
4944 }
4945
4946 u->type = update_create_array;
4947 u->dev_idx = dev_idx;
4948 imsm_copy_dev(&u->dev, dev);
4949 inf = get_disk_info(u);
4950 for (i = 0; i < map->num_members; i++) {
4951 int idx = get_imsm_disk_idx(dev, i, MAP_X);
4952
4953 disk = get_imsm_disk(super, idx);
4954 serialcpy(inf[i].serial, disk->serial);
4955 }
4956 append_metadata_update(st, u, len);
4957
4958 return 0;
4959 }
4960
4961 static int mgmt_disk(struct supertype *st)
4962 {
4963 struct intel_super *super = st->sb;
4964 size_t len;
4965 struct imsm_update_add_remove_disk *u;
4966
4967 if (!super->disk_mgmt_list)
4968 return 0;
4969
4970 len = sizeof(*u);
4971 u = malloc(len);
4972 if (!u) {
4973 fprintf(stderr, "%s: failed to allocate update buffer\n",
4974 __func__);
4975 return 1;
4976 }
4977
4978 u->type = update_add_remove_disk;
4979 append_metadata_update(st, u, len);
4980
4981 return 0;
4982 }
4983
4984 static int write_init_super_imsm(struct supertype *st)
4985 {
4986 struct intel_super *super = st->sb;
4987 int current_vol = super->current_vol;
4988
4989 /* we are done with current_vol reset it to point st at the container */
4990 super->current_vol = -1;
4991
4992 if (st->update_tail) {
4993 /* queue the recently created array / added disk
4994 * as a metadata update */
4995 int rv;
4996
4997 /* determine if we are creating a volume or adding a disk */
4998 if (current_vol < 0) {
4999 /* in the mgmt (add/remove) disk case we are running
5000 * in mdmon context, so don't close fd's
5001 */
5002 return mgmt_disk(st);
5003 } else
5004 rv = create_array(st, current_vol);
5005
5006 return rv;
5007 } else {
5008 struct dl *d;
5009 for (d = super->disks; d; d = d->next)
5010 Kill(d->devname, NULL, 0, 1, 1);
5011 return write_super_imsm(st, 1);
5012 }
5013 }
5014 #endif
5015
5016 static int store_super_imsm(struct supertype *st, int fd)
5017 {
5018 struct intel_super *super = st->sb;
5019 struct imsm_super *mpb = super ? super->anchor : NULL;
5020
5021 if (!mpb)
5022 return 1;
5023
5024 #ifndef MDASSEMBLE
5025 return store_imsm_mpb(fd, mpb);
5026 #else
5027 return 1;
5028 #endif
5029 }
5030
5031 static int imsm_bbm_log_size(struct imsm_super *mpb)
5032 {
5033 return __le32_to_cpu(mpb->bbm_log_size);
5034 }
5035
5036 #ifndef MDASSEMBLE
5037 static int validate_geometry_imsm_container(struct supertype *st, int level,
5038 int layout, int raiddisks, int chunk,
5039 unsigned long long size, char *dev,
5040 unsigned long long *freesize,
5041 int verbose)
5042 {
5043 int fd;
5044 unsigned long long ldsize;
5045 struct intel_super *super=NULL;
5046 int rv = 0;
5047
5048 if (level != LEVEL_CONTAINER)
5049 return 0;
5050 if (!dev)
5051 return 1;
5052
5053 fd = open(dev, O_RDONLY|O_EXCL, 0);
5054 if (fd < 0) {
5055 if (verbose)
5056 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
5057 dev, strerror(errno));
5058 return 0;
5059 }
5060 if (!get_dev_size(fd, dev, &ldsize)) {
5061 close(fd);
5062 return 0;
5063 }
5064
5065 /* capabilities retrieve could be possible
5066 * note that there is no fd for the disks in array.
5067 */
5068 super = alloc_super();
5069 if (!super) {
5070 fprintf(stderr,
5071 Name ": malloc of %zu failed.\n",
5072 sizeof(*super));
5073 close(fd);
5074 return 0;
5075 }
5076
5077 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
5078 if (rv != 0) {
5079 #if DEBUG
5080 char str[256];
5081 fd2devname(fd, str);
5082 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5083 fd, str, super->orom, rv, raiddisks);
5084 #endif
5085 /* no orom/efi or non-intel hba of the disk */
5086 close(fd);
5087 free_imsm(super);
5088 return 0;
5089 }
5090 close(fd);
5091 if (super->orom && raiddisks > super->orom->tds) {
5092 if (verbose)
5093 fprintf(stderr, Name ": %d exceeds maximum number of"
5094 " platform supported disks: %d\n",
5095 raiddisks, super->orom->tds);
5096
5097 free_imsm(super);
5098 return 0;
5099 }
5100
5101 *freesize = avail_size_imsm(st, ldsize >> 9);
5102 free_imsm(super);
5103
5104 return 1;
5105 }
5106
5107 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5108 {
5109 const unsigned long long base_start = e[*idx].start;
5110 unsigned long long end = base_start + e[*idx].size;
5111 int i;
5112
5113 if (base_start == end)
5114 return 0;
5115
5116 *idx = *idx + 1;
5117 for (i = *idx; i < num_extents; i++) {
5118 /* extend overlapping extents */
5119 if (e[i].start >= base_start &&
5120 e[i].start <= end) {
5121 if (e[i].size == 0)
5122 return 0;
5123 if (e[i].start + e[i].size > end)
5124 end = e[i].start + e[i].size;
5125 } else if (e[i].start > end) {
5126 *idx = i;
5127 break;
5128 }
5129 }
5130
5131 return end - base_start;
5132 }
5133
5134 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5135 {
5136 /* build a composite disk with all known extents and generate a new
5137 * 'maxsize' given the "all disks in an array must share a common start
5138 * offset" constraint
5139 */
5140 struct extent *e = calloc(sum_extents, sizeof(*e));
5141 struct dl *dl;
5142 int i, j;
5143 int start_extent;
5144 unsigned long long pos;
5145 unsigned long long start = 0;
5146 unsigned long long maxsize;
5147 unsigned long reserve;
5148
5149 if (!e)
5150 return 0;
5151
5152 /* coalesce and sort all extents. also, check to see if we need to
5153 * reserve space between member arrays
5154 */
5155 j = 0;
5156 for (dl = super->disks; dl; dl = dl->next) {
5157 if (!dl->e)
5158 continue;
5159 for (i = 0; i < dl->extent_cnt; i++)
5160 e[j++] = dl->e[i];
5161 }
5162 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5163
5164 /* merge extents */
5165 i = 0;
5166 j = 0;
5167 while (i < sum_extents) {
5168 e[j].start = e[i].start;
5169 e[j].size = find_size(e, &i, sum_extents);
5170 j++;
5171 if (e[j-1].size == 0)
5172 break;
5173 }
5174
5175 pos = 0;
5176 maxsize = 0;
5177 start_extent = 0;
5178 i = 0;
5179 do {
5180 unsigned long long esize;
5181
5182 esize = e[i].start - pos;
5183 if (esize >= maxsize) {
5184 maxsize = esize;
5185 start = pos;
5186 start_extent = i;
5187 }
5188 pos = e[i].start + e[i].size;
5189 i++;
5190 } while (e[i-1].size);
5191 free(e);
5192
5193 if (maxsize == 0)
5194 return 0;
5195
5196 /* FIXME assumes volume at offset 0 is the first volume in a
5197 * container
5198 */
5199 if (start_extent > 0)
5200 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5201 else
5202 reserve = 0;
5203
5204 if (maxsize < reserve)
5205 return 0;
5206
5207 super->create_offset = ~((__u32) 0);
5208 if (start + reserve > super->create_offset)
5209 return 0; /* start overflows create_offset */
5210 super->create_offset = start + reserve;
5211
5212 return maxsize - reserve;
5213 }
5214
5215 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5216 {
5217 if (level < 0 || level == 6 || level == 4)
5218 return 0;
5219
5220 /* if we have an orom prevent invalid raid levels */
5221 if (orom)
5222 switch (level) {
5223 case 0: return imsm_orom_has_raid0(orom);
5224 case 1:
5225 if (raiddisks > 2)
5226 return imsm_orom_has_raid1e(orom);
5227 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5228 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5229 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5230 }
5231 else
5232 return 1; /* not on an Intel RAID platform so anything goes */
5233
5234 return 0;
5235 }
5236
5237 static int imsm_default_chunk(const struct imsm_orom *orom)
5238 {
5239 /* up to 512 if the plaform supports it, otherwise the platform max.
5240 * 128 if no platform detected
5241 */
5242 int fs = max(7, orom ? fls(orom->sss) : 0);
5243
5244 return min(512, (1 << fs));
5245 }
5246
5247 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
5248 static int
5249 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5250 int raiddisks, int *chunk, int verbose)
5251 {
5252 /* check/set platform and metadata limits/defaults */
5253 if (super->orom && raiddisks > super->orom->dpa) {
5254 pr_vrb(": platform supports a maximum of %d disks per array\n",
5255 super->orom->dpa);
5256 return 0;
5257 }
5258
5259 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5260 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5261 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5262 level, raiddisks, raiddisks > 1 ? "s" : "");
5263 return 0;
5264 }
5265
5266 if (chunk && (*chunk == 0 || *chunk == UnSet))
5267 *chunk = imsm_default_chunk(super->orom);
5268
5269 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5270 pr_vrb(": platform does not support a chunk size of: "
5271 "%d\n", *chunk);
5272 return 0;
5273 }
5274
5275 if (layout != imsm_level_to_layout(level)) {
5276 if (level == 5)
5277 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5278 else if (level == 10)
5279 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5280 else
5281 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5282 layout, level);
5283 return 0;
5284 }
5285 return 1;
5286 }
5287
5288 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5289 * FIX ME add ahci details
5290 */
5291 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5292 int layout, int raiddisks, int *chunk,
5293 unsigned long long size, char *dev,
5294 unsigned long long *freesize,
5295 int verbose)
5296 {
5297 struct stat stb;
5298 struct intel_super *super = st->sb;
5299 struct imsm_super *mpb;
5300 struct dl *dl;
5301 unsigned long long pos = 0;
5302 unsigned long long maxsize;
5303 struct extent *e;
5304 int i;
5305
5306 /* We must have the container info already read in. */
5307 if (!super)
5308 return 0;
5309
5310 mpb = super->anchor;
5311
5312 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5313 fprintf(stderr, Name ": the option-rom requires all "
5314 "member disks to be a member of all volumes.\n");
5315 return 0;
5316 }
5317
5318 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5319 fprintf(stderr, Name ": RAID gemetry validation failed. "
5320 "Cannot proceed with the action(s).\n");
5321 return 0;
5322 }
5323 if (!dev) {
5324 /* General test: make sure there is space for
5325 * 'raiddisks' device extents of size 'size' at a given
5326 * offset
5327 */
5328 unsigned long long minsize = size;
5329 unsigned long long start_offset = MaxSector;
5330 int dcnt = 0;
5331 if (minsize == 0)
5332 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5333 for (dl = super->disks; dl ; dl = dl->next) {
5334 int found = 0;
5335
5336 pos = 0;
5337 i = 0;
5338 e = get_extents(super, dl);
5339 if (!e) continue;
5340 do {
5341 unsigned long long esize;
5342 esize = e[i].start - pos;
5343 if (esize >= minsize)
5344 found = 1;
5345 if (found && start_offset == MaxSector) {
5346 start_offset = pos;
5347 break;
5348 } else if (found && pos != start_offset) {
5349 found = 0;
5350 break;
5351 }
5352 pos = e[i].start + e[i].size;
5353 i++;
5354 } while (e[i-1].size);
5355 if (found)
5356 dcnt++;
5357 free(e);
5358 }
5359 if (dcnt < raiddisks) {
5360 if (verbose)
5361 fprintf(stderr, Name ": imsm: Not enough "
5362 "devices with space for this array "
5363 "(%d < %d)\n",
5364 dcnt, raiddisks);
5365 return 0;
5366 }
5367 return 1;
5368 }
5369
5370 /* This device must be a member of the set */
5371 if (stat(dev, &stb) < 0)
5372 return 0;
5373 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5374 return 0;
5375 for (dl = super->disks ; dl ; dl = dl->next) {
5376 if (dl->major == (int)major(stb.st_rdev) &&
5377 dl->minor == (int)minor(stb.st_rdev))
5378 break;
5379 }
5380 if (!dl) {
5381 if (verbose)
5382 fprintf(stderr, Name ": %s is not in the "
5383 "same imsm set\n", dev);
5384 return 0;
5385 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5386 /* If a volume is present then the current creation attempt
5387 * cannot incorporate new spares because the orom may not
5388 * understand this configuration (all member disks must be
5389 * members of each array in the container).
5390 */
5391 fprintf(stderr, Name ": %s is a spare and a volume"
5392 " is already defined for this container\n", dev);
5393 fprintf(stderr, Name ": The option-rom requires all member"
5394 " disks to be a member of all volumes\n");
5395 return 0;
5396 }
5397
5398 /* retrieve the largest free space block */
5399 e = get_extents(super, dl);
5400 maxsize = 0;
5401 i = 0;
5402 if (e) {
5403 do {
5404 unsigned long long esize;
5405
5406 esize = e[i].start - pos;
5407 if (esize >= maxsize)
5408 maxsize = esize;
5409 pos = e[i].start + e[i].size;
5410 i++;
5411 } while (e[i-1].size);
5412 dl->e = e;
5413 dl->extent_cnt = i;
5414 } else {
5415 if (verbose)
5416 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5417 dev);
5418 return 0;
5419 }
5420 if (maxsize < size) {
5421 if (verbose)
5422 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5423 dev, maxsize, size);
5424 return 0;
5425 }
5426
5427 /* count total number of extents for merge */
5428 i = 0;
5429 for (dl = super->disks; dl; dl = dl->next)
5430 if (dl->e)
5431 i += dl->extent_cnt;
5432
5433 maxsize = merge_extents(super, i);
5434
5435 if (!check_env("IMSM_NO_PLATFORM") &&
5436 mpb->num_raid_devs > 0 && size && size != maxsize) {
5437 fprintf(stderr, Name ": attempting to create a second "
5438 "volume with size less then remaining space. "
5439 "Aborting...\n");
5440 return 0;
5441 }
5442
5443 if (maxsize < size || maxsize == 0) {
5444 if (verbose)
5445 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5446 maxsize, size);
5447 return 0;
5448 }
5449
5450 *freesize = maxsize;
5451
5452 return 1;
5453 }
5454
5455 static int reserve_space(struct supertype *st, int raiddisks,
5456 unsigned long long size, int chunk,
5457 unsigned long long *freesize)
5458 {
5459 struct intel_super *super = st->sb;
5460 struct imsm_super *mpb = super->anchor;
5461 struct dl *dl;
5462 int i;
5463 int extent_cnt;
5464 struct extent *e;
5465 unsigned long long maxsize;
5466 unsigned long long minsize;
5467 int cnt;
5468 int used;
5469
5470 /* find the largest common start free region of the possible disks */
5471 used = 0;
5472 extent_cnt = 0;
5473 cnt = 0;
5474 for (dl = super->disks; dl; dl = dl->next) {
5475 dl->raiddisk = -1;
5476
5477 if (dl->index >= 0)
5478 used++;
5479
5480 /* don't activate new spares if we are orom constrained
5481 * and there is already a volume active in the container
5482 */
5483 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5484 continue;
5485
5486 e = get_extents(super, dl);
5487 if (!e)
5488 continue;
5489 for (i = 1; e[i-1].size; i++)
5490 ;
5491 dl->e = e;
5492 dl->extent_cnt = i;
5493 extent_cnt += i;
5494 cnt++;
5495 }
5496
5497 maxsize = merge_extents(super, extent_cnt);
5498 minsize = size;
5499 if (size == 0)
5500 /* chunk is in K */
5501 minsize = chunk * 2;
5502
5503 if (cnt < raiddisks ||
5504 (super->orom && used && used != raiddisks) ||
5505 maxsize < minsize ||
5506 maxsize == 0) {
5507 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5508 return 0; /* No enough free spaces large enough */
5509 }
5510
5511 if (size == 0) {
5512 size = maxsize;
5513 if (chunk) {
5514 size /= 2 * chunk;
5515 size *= 2 * chunk;
5516 }
5517 }
5518
5519 cnt = 0;
5520 for (dl = super->disks; dl; dl = dl->next)
5521 if (dl->e)
5522 dl->raiddisk = cnt++;
5523
5524 *freesize = size;
5525
5526 return 1;
5527 }
5528
5529 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
5530 int raiddisks, int *chunk, unsigned long long size,
5531 char *dev, unsigned long long *freesize,
5532 int verbose)
5533 {
5534 int fd, cfd;
5535 struct mdinfo *sra;
5536 int is_member = 0;
5537
5538 /* load capability
5539 * if given unused devices create a container
5540 * if given given devices in a container create a member volume
5541 */
5542 if (level == LEVEL_CONTAINER) {
5543 /* Must be a fresh device to add to a container */
5544 return validate_geometry_imsm_container(st, level, layout,
5545 raiddisks,
5546 chunk?*chunk:0, size,
5547 dev, freesize,
5548 verbose);
5549 }
5550
5551 if (!dev) {
5552 if (st->sb) {
5553 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5554 raiddisks, chunk,
5555 verbose))
5556 return 0;
5557 /* we are being asked to automatically layout a
5558 * new volume based on the current contents of
5559 * the container. If the the parameters can be
5560 * satisfied reserve_space will record the disks,
5561 * start offset, and size of the volume to be
5562 * created. add_to_super and getinfo_super
5563 * detect when autolayout is in progress.
5564 */
5565 if (freesize)
5566 return reserve_space(st, raiddisks, size,
5567 chunk?*chunk:0, freesize);
5568 }
5569 return 1;
5570 }
5571 if (st->sb) {
5572 /* creating in a given container */
5573 return validate_geometry_imsm_volume(st, level, layout,
5574 raiddisks, chunk, size,
5575 dev, freesize, verbose);
5576 }
5577
5578 /* This device needs to be a device in an 'imsm' container */
5579 fd = open(dev, O_RDONLY|O_EXCL, 0);
5580 if (fd >= 0) {
5581 if (verbose)
5582 fprintf(stderr,
5583 Name ": Cannot create this array on device %s\n",
5584 dev);
5585 close(fd);
5586 return 0;
5587 }
5588 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5589 if (verbose)
5590 fprintf(stderr, Name ": Cannot open %s: %s\n",
5591 dev, strerror(errno));
5592 return 0;
5593 }
5594 /* Well, it is in use by someone, maybe an 'imsm' container. */
5595 cfd = open_container(fd);
5596 close(fd);
5597 if (cfd < 0) {
5598 if (verbose)
5599 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5600 dev);
5601 return 0;
5602 }
5603 sra = sysfs_read(cfd, 0, GET_VERSION);
5604 if (sra && sra->array.major_version == -1 &&
5605 strcmp(sra->text_version, "imsm") == 0)
5606 is_member = 1;
5607 sysfs_free(sra);
5608 if (is_member) {
5609 /* This is a member of a imsm container. Load the container
5610 * and try to create a volume
5611 */
5612 struct intel_super *super;
5613
5614 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
5615 st->sb = super;
5616 st->container_dev = fd2devnum(cfd);
5617 close(cfd);
5618 return validate_geometry_imsm_volume(st, level, layout,
5619 raiddisks, chunk,
5620 size, dev,
5621 freesize, 1)
5622 ? 1 : -1;
5623 }
5624 }
5625
5626 if (verbose)
5627 fprintf(stderr, Name ": failed container membership check\n");
5628
5629 close(cfd);
5630 return 0;
5631 }
5632
5633 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
5634 {
5635 struct intel_super *super = st->sb;
5636
5637 if (level && *level == UnSet)
5638 *level = LEVEL_CONTAINER;
5639
5640 if (level && layout && *layout == UnSet)
5641 *layout = imsm_level_to_layout(*level);
5642
5643 if (chunk && (*chunk == UnSet || *chunk == 0))
5644 *chunk = imsm_default_chunk(super->orom);
5645 }
5646
5647 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5648
5649 static int kill_subarray_imsm(struct supertype *st)
5650 {
5651 /* remove the subarray currently referenced by ->current_vol */
5652 __u8 i;
5653 struct intel_dev **dp;
5654 struct intel_super *super = st->sb;
5655 __u8 current_vol = super->current_vol;
5656 struct imsm_super *mpb = super->anchor;
5657
5658 if (super->current_vol < 0)
5659 return 2;
5660 super->current_vol = -1; /* invalidate subarray cursor */
5661
5662 /* block deletions that would change the uuid of active subarrays
5663 *
5664 * FIXME when immutable ids are available, but note that we'll
5665 * also need to fixup the invalidated/active subarray indexes in
5666 * mdstat
5667 */
5668 for (i = 0; i < mpb->num_raid_devs; i++) {
5669 char subarray[4];
5670
5671 if (i < current_vol)
5672 continue;
5673 sprintf(subarray, "%u", i);
5674 if (is_subarray_active(subarray, st->devname)) {
5675 fprintf(stderr,
5676 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5677 current_vol, i);
5678
5679 return 2;
5680 }
5681 }
5682
5683 if (st->update_tail) {
5684 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5685
5686 if (!u)
5687 return 2;
5688 u->type = update_kill_array;
5689 u->dev_idx = current_vol;
5690 append_metadata_update(st, u, sizeof(*u));
5691
5692 return 0;
5693 }
5694
5695 for (dp = &super->devlist; *dp;)
5696 if ((*dp)->index == current_vol) {
5697 *dp = (*dp)->next;
5698 } else {
5699 handle_missing(super, (*dp)->dev);
5700 if ((*dp)->index > current_vol)
5701 (*dp)->index--;
5702 dp = &(*dp)->next;
5703 }
5704
5705 /* no more raid devices, all active components are now spares,
5706 * but of course failed are still failed
5707 */
5708 if (--mpb->num_raid_devs == 0) {
5709 struct dl *d;
5710
5711 for (d = super->disks; d; d = d->next)
5712 if (d->index > -2)
5713 mark_spare(d);
5714 }
5715
5716 super->updates_pending++;
5717
5718 return 0;
5719 }
5720
5721 static int update_subarray_imsm(struct supertype *st, char *subarray,
5722 char *update, struct mddev_ident *ident)
5723 {
5724 /* update the subarray currently referenced by ->current_vol */
5725 struct intel_super *super = st->sb;
5726 struct imsm_super *mpb = super->anchor;
5727
5728 if (strcmp(update, "name") == 0) {
5729 char *name = ident->name;
5730 char *ep;
5731 int vol;
5732
5733 if (is_subarray_active(subarray, st->devname)) {
5734 fprintf(stderr,
5735 Name ": Unable to update name of active subarray\n");
5736 return 2;
5737 }
5738
5739 if (!check_name(super, name, 0))
5740 return 2;
5741
5742 vol = strtoul(subarray, &ep, 10);
5743 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5744 return 2;
5745
5746 if (st->update_tail) {
5747 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5748
5749 if (!u)
5750 return 2;
5751 u->type = update_rename_array;
5752 u->dev_idx = vol;
5753 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5754 append_metadata_update(st, u, sizeof(*u));
5755 } else {
5756 struct imsm_dev *dev;
5757 int i;
5758
5759 dev = get_imsm_dev(super, vol);
5760 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5761 for (i = 0; i < mpb->num_raid_devs; i++) {
5762 dev = get_imsm_dev(super, i);
5763 handle_missing(super, dev);
5764 }
5765 super->updates_pending++;
5766 }
5767 } else
5768 return 2;
5769
5770 return 0;
5771 }
5772 #endif /* MDASSEMBLE */
5773
5774 static int is_gen_migration(struct imsm_dev *dev)
5775 {
5776 if (dev == NULL)
5777 return 0;
5778
5779 if (!dev->vol.migr_state)
5780 return 0;
5781
5782 if (migr_type(dev) == MIGR_GEN_MIGR)
5783 return 1;
5784
5785 return 0;
5786 }
5787
5788 static int is_rebuilding(struct imsm_dev *dev)
5789 {
5790 struct imsm_map *migr_map;
5791
5792 if (!dev->vol.migr_state)
5793 return 0;
5794
5795 if (migr_type(dev) != MIGR_REBUILD)
5796 return 0;
5797
5798 migr_map = get_imsm_map(dev, MAP_1);
5799
5800 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5801 return 1;
5802 else
5803 return 0;
5804 }
5805
5806 #ifndef MDASSEMBLE
5807 static int is_initializing(struct imsm_dev *dev)
5808 {
5809 struct imsm_map *migr_map;
5810
5811 if (!dev->vol.migr_state)
5812 return 0;
5813
5814 if (migr_type(dev) != MIGR_INIT)
5815 return 0;
5816
5817 migr_map = get_imsm_map(dev, MAP_1);
5818
5819 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
5820 return 1;
5821
5822 return 0;
5823 }
5824 #endif
5825
5826 static void update_recovery_start(struct intel_super *super,
5827 struct imsm_dev *dev,
5828 struct mdinfo *array)
5829 {
5830 struct mdinfo *rebuild = NULL;
5831 struct mdinfo *d;
5832 __u32 units;
5833
5834 if (!is_rebuilding(dev))
5835 return;
5836
5837 /* Find the rebuild target, but punt on the dual rebuild case */
5838 for (d = array->devs; d; d = d->next)
5839 if (d->recovery_start == 0) {
5840 if (rebuild)
5841 return;
5842 rebuild = d;
5843 }
5844
5845 if (!rebuild) {
5846 /* (?) none of the disks are marked with
5847 * IMSM_ORD_REBUILD, so assume they are missing and the
5848 * disk_ord_tbl was not correctly updated
5849 */
5850 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5851 return;
5852 }
5853
5854 units = __le32_to_cpu(dev->vol.curr_migr_unit);
5855 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
5856 }
5857
5858 #ifndef MDASSEMBLE
5859 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
5860 #endif
5861
5862 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
5863 {
5864 /* Given a container loaded by load_super_imsm_all,
5865 * extract information about all the arrays into
5866 * an mdinfo tree.
5867 * If 'subarray' is given, just extract info about that array.
5868 *
5869 * For each imsm_dev create an mdinfo, fill it in,
5870 * then look for matching devices in super->disks
5871 * and create appropriate device mdinfo.
5872 */
5873 struct intel_super *super = st->sb;
5874 struct imsm_super *mpb = super->anchor;
5875 struct mdinfo *rest = NULL;
5876 unsigned int i;
5877 int sb_errors = 0;
5878 struct dl *d;
5879 int spare_disks = 0;
5880
5881 /* do not assemble arrays when not all attributes are supported */
5882 if (imsm_check_attributes(mpb->attributes) == 0) {
5883 sb_errors = 1;
5884 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
5885 "Arrays activation is blocked.\n");
5886 }
5887
5888 /* check for bad blocks */
5889 if (imsm_bbm_log_size(super->anchor)) {
5890 fprintf(stderr, Name ": BBM log found in IMSM metadata."
5891 "Arrays activation is blocked.\n");
5892 sb_errors = 1;
5893 }
5894
5895
5896 /* count spare devices, not used in maps
5897 */
5898 for (d = super->disks; d; d = d->next)
5899 if (d->index == -1)
5900 spare_disks++;
5901
5902 for (i = 0; i < mpb->num_raid_devs; i++) {
5903 struct imsm_dev *dev;
5904 struct imsm_map *map;
5905 struct imsm_map *map2;
5906 struct mdinfo *this;
5907 int slot;
5908 #ifndef MDASSEMBLE
5909 int chunk;
5910 #endif
5911 char *ep;
5912
5913 if (subarray &&
5914 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5915 continue;
5916
5917 dev = get_imsm_dev(super, i);
5918 map = get_imsm_map(dev, MAP_0);
5919 map2 = get_imsm_map(dev, MAP_1);
5920
5921 /* do not publish arrays that are in the middle of an
5922 * unsupported migration
5923 */
5924 if (dev->vol.migr_state &&
5925 (migr_type(dev) == MIGR_STATE_CHANGE)) {
5926 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5927 " unsupported migration in progress\n",
5928 dev->volume);
5929 continue;
5930 }
5931 /* do not publish arrays that are not support by controller's
5932 * OROM/EFI
5933 */
5934
5935 this = malloc(sizeof(*this));
5936 if (!this) {
5937 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
5938 sizeof(*this));
5939 break;
5940 }
5941
5942 super->current_vol = i;
5943 getinfo_super_imsm_volume(st, this, NULL);
5944 this->next = rest;
5945 #ifndef MDASSEMBLE
5946 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
5947 /* mdadm does not support all metadata features- set the bit in all arrays state */
5948 if (!validate_geometry_imsm_orom(super,
5949 get_imsm_raid_level(map), /* RAID level */
5950 imsm_level_to_layout(get_imsm_raid_level(map)),
5951 map->num_members, /* raid disks */
5952 &chunk,
5953 1 /* verbose */)) {
5954 fprintf(stderr, Name ": IMSM RAID geometry validation"
5955 " failed. Array %s activation is blocked.\n",
5956 dev->volume);
5957 this->array.state |=
5958 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5959 (1<<MD_SB_BLOCK_VOLUME);
5960 }
5961 #endif
5962
5963 /* if array has bad blocks, set suitable bit in all arrays state */
5964 if (sb_errors)
5965 this->array.state |=
5966 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5967 (1<<MD_SB_BLOCK_VOLUME);
5968
5969 for (slot = 0 ; slot < map->num_members; slot++) {
5970 unsigned long long recovery_start;
5971 struct mdinfo *info_d;
5972 struct dl *d;
5973 int idx;
5974 int skip;
5975 __u32 ord;
5976
5977 skip = 0;
5978 idx = get_imsm_disk_idx(dev, slot, MAP_0);
5979 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5980 for (d = super->disks; d ; d = d->next)
5981 if (d->index == idx)
5982 break;
5983
5984 recovery_start = MaxSector;
5985 if (d == NULL)
5986 skip = 1;
5987 if (d && is_failed(&d->disk))
5988 skip = 1;
5989 if (ord & IMSM_ORD_REBUILD)
5990 recovery_start = 0;
5991
5992 /*
5993 * if we skip some disks the array will be assmebled degraded;
5994 * reset resync start to avoid a dirty-degraded
5995 * situation when performing the intial sync
5996 *
5997 * FIXME handle dirty degraded
5998 */
5999 if ((skip || recovery_start == 0) && !dev->vol.dirty)
6000 this->resync_start = MaxSector;
6001 if (skip)
6002 continue;
6003
6004 info_d = calloc(1, sizeof(*info_d));
6005 if (!info_d) {
6006 fprintf(stderr, Name ": failed to allocate disk"
6007 " for volume %.16s\n", dev->volume);
6008 info_d = this->devs;
6009 while (info_d) {
6010 struct mdinfo *d = info_d->next;
6011
6012 free(info_d);
6013 info_d = d;
6014 }
6015 free(this);
6016 this = rest;
6017 break;
6018 }
6019 info_d->next = this->devs;
6020 this->devs = info_d;
6021
6022 info_d->disk.number = d->index;
6023 info_d->disk.major = d->major;
6024 info_d->disk.minor = d->minor;
6025 info_d->disk.raid_disk = slot;
6026 info_d->recovery_start = recovery_start;
6027 if (map2) {
6028 if (slot < map2->num_members)
6029 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6030 else
6031 this->array.spare_disks++;
6032 } else {
6033 if (slot < map->num_members)
6034 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6035 else
6036 this->array.spare_disks++;
6037 }
6038 if (info_d->recovery_start == MaxSector)
6039 this->array.working_disks++;
6040
6041 info_d->events = __le32_to_cpu(mpb->generation_num);
6042 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
6043 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
6044 }
6045 /* now that the disk list is up-to-date fixup recovery_start */
6046 update_recovery_start(super, dev, this);
6047 this->array.spare_disks += spare_disks;
6048
6049 #ifndef MDASSEMBLE
6050 /* check for reshape */
6051 if (this->reshape_active == 1)
6052 recover_backup_imsm(st, this);
6053 #endif
6054 rest = this;
6055 }
6056
6057 return rest;
6058 }
6059
6060
6061 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6062 int failed, int look_in_map)
6063 {
6064 struct imsm_map *map;
6065
6066 map = get_imsm_map(dev, look_in_map);
6067
6068 if (!failed)
6069 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6070 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6071
6072 switch (get_imsm_raid_level(map)) {
6073 case 0:
6074 return IMSM_T_STATE_FAILED;
6075 break;
6076 case 1:
6077 if (failed < map->num_members)
6078 return IMSM_T_STATE_DEGRADED;
6079 else
6080 return IMSM_T_STATE_FAILED;
6081 break;
6082 case 10:
6083 {
6084 /**
6085 * check to see if any mirrors have failed, otherwise we
6086 * are degraded. Even numbered slots are mirrored on
6087 * slot+1
6088 */
6089 int i;
6090 /* gcc -Os complains that this is unused */
6091 int insync = insync;
6092
6093 for (i = 0; i < map->num_members; i++) {
6094 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6095 int idx = ord_to_idx(ord);
6096 struct imsm_disk *disk;
6097
6098 /* reset the potential in-sync count on even-numbered
6099 * slots. num_copies is always 2 for imsm raid10
6100 */
6101 if ((i & 1) == 0)
6102 insync = 2;
6103
6104 disk = get_imsm_disk(super, idx);
6105 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6106 insync--;
6107
6108 /* no in-sync disks left in this mirror the
6109 * array has failed
6110 */
6111 if (insync == 0)
6112 return IMSM_T_STATE_FAILED;
6113 }
6114
6115 return IMSM_T_STATE_DEGRADED;
6116 }
6117 case 5:
6118 if (failed < 2)
6119 return IMSM_T_STATE_DEGRADED;
6120 else
6121 return IMSM_T_STATE_FAILED;
6122 break;
6123 default:
6124 break;
6125 }
6126
6127 return map->map_state;
6128 }
6129
6130 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6131 int look_in_map)
6132 {
6133 int i;
6134 int failed = 0;
6135 struct imsm_disk *disk;
6136 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6137 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6138 struct imsm_map *map_for_loop;
6139 __u32 ord;
6140 int idx;
6141 int idx_1;
6142
6143 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6144 * disks that are being rebuilt. New failures are recorded to
6145 * map[0]. So we look through all the disks we started with and
6146 * see if any failures are still present, or if any new ones
6147 * have arrived
6148 */
6149 map_for_loop = map;
6150 if (prev && (map->num_members < prev->num_members))
6151 map_for_loop = prev;
6152
6153 for (i = 0; i < map_for_loop->num_members; i++) {
6154 idx_1 = -255;
6155 /* when MAP_X is passed both maps failures are counted
6156 */
6157 if (prev &&
6158 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6159 (i < prev->num_members)) {
6160 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6161 idx_1 = ord_to_idx(ord);
6162
6163 disk = get_imsm_disk(super, idx_1);
6164 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6165 failed++;
6166 }
6167 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6168 (i < map->num_members)) {
6169 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6170 idx = ord_to_idx(ord);
6171
6172 if (idx != idx_1) {
6173 disk = get_imsm_disk(super, idx);
6174 if (!disk || is_failed(disk) ||
6175 ord & IMSM_ORD_REBUILD)
6176 failed++;
6177 }
6178 }
6179 }
6180
6181 return failed;
6182 }
6183
6184 #ifndef MDASSEMBLE
6185 static int imsm_open_new(struct supertype *c, struct active_array *a,
6186 char *inst)
6187 {
6188 struct intel_super *super = c->sb;
6189 struct imsm_super *mpb = super->anchor;
6190
6191 if (atoi(inst) >= mpb->num_raid_devs) {
6192 fprintf(stderr, "%s: subarry index %d, out of range\n",
6193 __func__, atoi(inst));
6194 return -ENODEV;
6195 }
6196
6197 dprintf("imsm: open_new %s\n", inst);
6198 a->info.container_member = atoi(inst);
6199 return 0;
6200 }
6201
6202 static int is_resyncing(struct imsm_dev *dev)
6203 {
6204 struct imsm_map *migr_map;
6205
6206 if (!dev->vol.migr_state)
6207 return 0;
6208
6209 if (migr_type(dev) == MIGR_INIT ||
6210 migr_type(dev) == MIGR_REPAIR)
6211 return 1;
6212
6213 if (migr_type(dev) == MIGR_GEN_MIGR)
6214 return 0;
6215
6216 migr_map = get_imsm_map(dev, MAP_1);
6217
6218 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6219 (dev->vol.migr_type != MIGR_GEN_MIGR))
6220 return 1;
6221 else
6222 return 0;
6223 }
6224
6225 /* return true if we recorded new information */
6226 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6227 {
6228 __u32 ord;
6229 int slot;
6230 struct imsm_map *map;
6231 char buf[MAX_RAID_SERIAL_LEN+3];
6232 unsigned int len, shift = 0;
6233
6234 /* new failures are always set in map[0] */
6235 map = get_imsm_map(dev, MAP_0);
6236
6237 slot = get_imsm_disk_slot(map, idx);
6238 if (slot < 0)
6239 return 0;
6240
6241 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6242 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6243 return 0;
6244
6245 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6246 buf[MAX_RAID_SERIAL_LEN] = '\000';
6247 strcat(buf, ":0");
6248 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6249 shift = len - MAX_RAID_SERIAL_LEN + 1;
6250 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6251
6252 disk->status |= FAILED_DISK;
6253 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6254 /* mark failures in second map if second map exists and this disk
6255 * in this slot.
6256 * This is valid for migration, initialization and rebuild
6257 */
6258 if (dev->vol.migr_state) {
6259 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
6260 int slot2 = get_imsm_disk_slot(map2, idx);
6261
6262 if ((slot2 < map2->num_members) &&
6263 (slot2 >= 0))
6264 set_imsm_ord_tbl_ent(map2, slot2,
6265 idx | IMSM_ORD_REBUILD);
6266 }
6267 if (map->failed_disk_num == 0xff)
6268 map->failed_disk_num = slot;
6269 return 1;
6270 }
6271
6272 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6273 {
6274 mark_failure(dev, disk, idx);
6275
6276 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6277 return;
6278
6279 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6280 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6281 }
6282
6283 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6284 {
6285 struct dl *dl;
6286
6287 if (!super->missing)
6288 return;
6289
6290 dprintf("imsm: mark missing\n");
6291 /* end process for initialization and rebuild only
6292 */
6293 if (is_gen_migration(dev) == 0) {
6294 __u8 map_state;
6295 int failed;
6296
6297 failed = imsm_count_failed(super, dev, MAP_0);
6298 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6299
6300 end_migration(dev, super, map_state);
6301 }
6302 for (dl = super->missing; dl; dl = dl->next)
6303 mark_missing(dev, &dl->disk, dl->index);
6304 super->updates_pending++;
6305 }
6306
6307 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6308 {
6309 int used_disks = imsm_num_data_members(dev, MAP_0);
6310 unsigned long long array_blocks;
6311 struct imsm_map *map;
6312
6313 if (used_disks == 0) {
6314 /* when problems occures
6315 * return current array_blocks value
6316 */
6317 array_blocks = __le32_to_cpu(dev->size_high);
6318 array_blocks = array_blocks << 32;
6319 array_blocks += __le32_to_cpu(dev->size_low);
6320
6321 return array_blocks;
6322 }
6323
6324 /* set array size in metadata
6325 */
6326 map = get_imsm_map(dev, MAP_0);
6327 array_blocks = map->blocks_per_member * used_disks;
6328
6329 /* round array size down to closest MB
6330 */
6331 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6332 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6333 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6334
6335 return array_blocks;
6336 }
6337
6338 static void imsm_set_disk(struct active_array *a, int n, int state);
6339
6340 static void imsm_progress_container_reshape(struct intel_super *super)
6341 {
6342 /* if no device has a migr_state, but some device has a
6343 * different number of members than the previous device, start
6344 * changing the number of devices in this device to match
6345 * previous.
6346 */
6347 struct imsm_super *mpb = super->anchor;
6348 int prev_disks = -1;
6349 int i;
6350 int copy_map_size;
6351
6352 for (i = 0; i < mpb->num_raid_devs; i++) {
6353 struct imsm_dev *dev = get_imsm_dev(super, i);
6354 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6355 struct imsm_map *map2;
6356 int prev_num_members;
6357
6358 if (dev->vol.migr_state)
6359 return;
6360
6361 if (prev_disks == -1)
6362 prev_disks = map->num_members;
6363 if (prev_disks == map->num_members)
6364 continue;
6365
6366 /* OK, this array needs to enter reshape mode.
6367 * i.e it needs a migr_state
6368 */
6369
6370 copy_map_size = sizeof_imsm_map(map);
6371 prev_num_members = map->num_members;
6372 map->num_members = prev_disks;
6373 dev->vol.migr_state = 1;
6374 dev->vol.curr_migr_unit = 0;
6375 set_migr_type(dev, MIGR_GEN_MIGR);
6376 for (i = prev_num_members;
6377 i < map->num_members; i++)
6378 set_imsm_ord_tbl_ent(map, i, i);
6379 map2 = get_imsm_map(dev, MAP_1);
6380 /* Copy the current map */
6381 memcpy(map2, map, copy_map_size);
6382 map2->num_members = prev_num_members;
6383
6384 imsm_set_array_size(dev);
6385 super->updates_pending++;
6386 }
6387 }
6388
6389 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
6390 * states are handled in imsm_set_disk() with one exception, when a
6391 * resync is stopped due to a new failure this routine will set the
6392 * 'degraded' state for the array.
6393 */
6394 static int imsm_set_array_state(struct active_array *a, int consistent)
6395 {
6396 int inst = a->info.container_member;
6397 struct intel_super *super = a->container->sb;
6398 struct imsm_dev *dev = get_imsm_dev(super, inst);
6399 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6400 int failed = imsm_count_failed(super, dev, MAP_0);
6401 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6402 __u32 blocks_per_unit;
6403
6404 if (dev->vol.migr_state &&
6405 dev->vol.migr_type == MIGR_GEN_MIGR) {
6406 /* array state change is blocked due to reshape action
6407 * We might need to
6408 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6409 * - finish the reshape (if last_checkpoint is big and action != reshape)
6410 * - update curr_migr_unit
6411 */
6412 if (a->curr_action == reshape) {
6413 /* still reshaping, maybe update curr_migr_unit */
6414 goto mark_checkpoint;
6415 } else {
6416 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6417 /* for some reason we aborted the reshape.
6418 *
6419 * disable automatic metadata rollback
6420 * user action is required to recover process
6421 */
6422 if (0) {
6423 struct imsm_map *map2 =
6424 get_imsm_map(dev, MAP_1);
6425 dev->vol.migr_state = 0;
6426 set_migr_type(dev, 0);
6427 dev->vol.curr_migr_unit = 0;
6428 memcpy(map, map2,
6429 sizeof_imsm_map(map2));
6430 super->updates_pending++;
6431 }
6432 }
6433 if (a->last_checkpoint >= a->info.component_size) {
6434 unsigned long long array_blocks;
6435 int used_disks;
6436 struct mdinfo *mdi;
6437
6438 used_disks = imsm_num_data_members(dev, MAP_0);
6439 if (used_disks > 0) {
6440 array_blocks =
6441 map->blocks_per_member *
6442 used_disks;
6443 /* round array size down to closest MB
6444 */
6445 array_blocks = (array_blocks
6446 >> SECT_PER_MB_SHIFT)
6447 << SECT_PER_MB_SHIFT;
6448 a->info.custom_array_size = array_blocks;
6449 /* encourage manager to update array
6450 * size
6451 */
6452
6453 a->check_reshape = 1;
6454 }
6455 /* finalize online capacity expansion/reshape */
6456 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6457 imsm_set_disk(a,
6458 mdi->disk.raid_disk,
6459 mdi->curr_state);
6460
6461 imsm_progress_container_reshape(super);
6462 }
6463 }
6464 }
6465
6466 /* before we activate this array handle any missing disks */
6467 if (consistent == 2)
6468 handle_missing(super, dev);
6469
6470 if (consistent == 2 &&
6471 (!is_resync_complete(&a->info) ||
6472 map_state != IMSM_T_STATE_NORMAL ||
6473 dev->vol.migr_state))
6474 consistent = 0;
6475
6476 if (is_resync_complete(&a->info)) {
6477 /* complete intialization / resync,
6478 * recovery and interrupted recovery is completed in
6479 * ->set_disk
6480 */
6481 if (is_resyncing(dev)) {
6482 dprintf("imsm: mark resync done\n");
6483 end_migration(dev, super, map_state);
6484 super->updates_pending++;
6485 a->last_checkpoint = 0;
6486 }
6487 } else if ((!is_resyncing(dev) && !failed) &&
6488 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
6489 /* mark the start of the init process if nothing is failed */
6490 dprintf("imsm: mark resync start\n");
6491 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
6492 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
6493 else
6494 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
6495 super->updates_pending++;
6496 }
6497
6498 mark_checkpoint:
6499 /* skip checkpointing for general migration,
6500 * it is controlled in mdadm
6501 */
6502 if (is_gen_migration(dev))
6503 goto skip_mark_checkpoint;
6504
6505 /* check if we can update curr_migr_unit from resync_start, recovery_start */
6506 blocks_per_unit = blocks_per_migr_unit(super, dev);
6507 if (blocks_per_unit) {
6508 __u32 units32;
6509 __u64 units;
6510
6511 units = a->last_checkpoint / blocks_per_unit;
6512 units32 = units;
6513
6514 /* check that we did not overflow 32-bits, and that
6515 * curr_migr_unit needs updating
6516 */
6517 if (units32 == units &&
6518 units32 != 0 &&
6519 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6520 dprintf("imsm: mark checkpoint (%u)\n", units32);
6521 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6522 super->updates_pending++;
6523 }
6524 }
6525
6526 skip_mark_checkpoint:
6527 /* mark dirty / clean */
6528 if (dev->vol.dirty != !consistent) {
6529 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
6530 if (consistent)
6531 dev->vol.dirty = 0;
6532 else
6533 dev->vol.dirty = 1;
6534 super->updates_pending++;
6535 }
6536
6537 return consistent;
6538 }
6539
6540 static void imsm_set_disk(struct active_array *a, int n, int state)
6541 {
6542 int inst = a->info.container_member;
6543 struct intel_super *super = a->container->sb;
6544 struct imsm_dev *dev = get_imsm_dev(super, inst);
6545 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6546 struct imsm_disk *disk;
6547 int failed;
6548 __u32 ord;
6549 __u8 map_state;
6550
6551 if (n > map->num_members)
6552 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6553 n, map->num_members - 1);
6554
6555 if (n < 0)
6556 return;
6557
6558 dprintf("imsm: set_disk %d:%x\n", n, state);
6559
6560 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
6561 disk = get_imsm_disk(super, ord_to_idx(ord));
6562
6563 /* check for new failures */
6564 if (state & DS_FAULTY) {
6565 if (mark_failure(dev, disk, ord_to_idx(ord)))
6566 super->updates_pending++;
6567 }
6568
6569 /* check if in_sync */
6570 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
6571 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
6572
6573 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
6574 super->updates_pending++;
6575 }
6576
6577 failed = imsm_count_failed(super, dev, MAP_0);
6578 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6579
6580 /* check if recovery complete, newly degraded, or failed */
6581 dprintf("imsm: Detected transition to state ");
6582 switch (map_state) {
6583 case IMSM_T_STATE_NORMAL: /* transition to normal state */
6584 dprintf("normal: ");
6585 if (is_rebuilding(dev)) {
6586 dprintf("while rebuilding");
6587 end_migration(dev, super, map_state);
6588 map = get_imsm_map(dev, MAP_0);
6589 map->failed_disk_num = ~0;
6590 super->updates_pending++;
6591 a->last_checkpoint = 0;
6592 break;
6593 }
6594 if (is_gen_migration(dev)) {
6595 dprintf("while general migration");
6596 if (a->last_checkpoint >= a->info.component_size)
6597 end_migration(dev, super, map_state);
6598 else
6599 map->map_state = map_state;
6600 map = get_imsm_map(dev, MAP_0);
6601 map->failed_disk_num = ~0;
6602 super->updates_pending++;
6603 break;
6604 }
6605 break;
6606 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
6607 dprintf("degraded: ");
6608 if ((map->map_state != map_state) &&
6609 !dev->vol.migr_state) {
6610 dprintf("mark degraded");
6611 map->map_state = map_state;
6612 super->updates_pending++;
6613 a->last_checkpoint = 0;
6614 break;
6615 }
6616 if (is_rebuilding(dev)) {
6617 dprintf("while rebuilding.");
6618 if (map->map_state != map_state) {
6619 dprintf(" Map state change");
6620 end_migration(dev, super, map_state);
6621 super->updates_pending++;
6622 }
6623 break;
6624 }
6625 if (is_gen_migration(dev)) {
6626 dprintf("while general migration");
6627 if (a->last_checkpoint >= a->info.component_size)
6628 end_migration(dev, super, map_state);
6629 else {
6630 map->map_state = map_state;
6631 manage_second_map(super, dev);
6632 }
6633 super->updates_pending++;
6634 break;
6635 }
6636 if (is_initializing(dev)) {
6637 dprintf("while initialization.");
6638 map->map_state = map_state;
6639 super->updates_pending++;
6640 break;
6641 }
6642 break;
6643 case IMSM_T_STATE_FAILED: /* transition to failed state */
6644 dprintf("failed: ");
6645 if (is_gen_migration(dev)) {
6646 dprintf("while general migration");
6647 map->map_state = map_state;
6648 super->updates_pending++;
6649 break;
6650 }
6651 if (map->map_state != map_state) {
6652 dprintf("mark failed");
6653 end_migration(dev, super, map_state);
6654 super->updates_pending++;
6655 a->last_checkpoint = 0;
6656 break;
6657 }
6658 break;
6659 default:
6660 dprintf("state %i\n", map_state);
6661 }
6662 dprintf("\n");
6663
6664 }
6665
6666 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
6667 {
6668 void *buf = mpb;
6669 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6670 unsigned long long dsize;
6671 unsigned long long sectors;
6672
6673 get_dev_size(fd, NULL, &dsize);
6674
6675 if (mpb_size > 512) {
6676 /* -1 to account for anchor */
6677 sectors = mpb_sectors(mpb) - 1;
6678
6679 /* write the extended mpb to the sectors preceeding the anchor */
6680 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6681 return 1;
6682
6683 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6684 != 512 * sectors)
6685 return 1;
6686 }
6687
6688 /* first block is stored on second to last sector of the disk */
6689 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
6690 return 1;
6691
6692 if (write(fd, buf, 512) != 512)
6693 return 1;
6694
6695 return 0;
6696 }
6697
6698 static void imsm_sync_metadata(struct supertype *container)
6699 {
6700 struct intel_super *super = container->sb;
6701
6702 dprintf("sync metadata: %d\n", super->updates_pending);
6703 if (!super->updates_pending)
6704 return;
6705
6706 write_super_imsm(container, 0);
6707
6708 super->updates_pending = 0;
6709 }
6710
6711 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6712 {
6713 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6714 int i = get_imsm_disk_idx(dev, idx, MAP_X);
6715 struct dl *dl;
6716
6717 for (dl = super->disks; dl; dl = dl->next)
6718 if (dl->index == i)
6719 break;
6720
6721 if (dl && is_failed(&dl->disk))
6722 dl = NULL;
6723
6724 if (dl)
6725 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6726
6727 return dl;
6728 }
6729
6730 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
6731 struct active_array *a, int activate_new,
6732 struct mdinfo *additional_test_list)
6733 {
6734 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6735 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
6736 struct imsm_super *mpb = super->anchor;
6737 struct imsm_map *map;
6738 unsigned long long pos;
6739 struct mdinfo *d;
6740 struct extent *ex;
6741 int i, j;
6742 int found;
6743 __u32 array_start = 0;
6744 __u32 array_end = 0;
6745 struct dl *dl;
6746 struct mdinfo *test_list;
6747
6748 for (dl = super->disks; dl; dl = dl->next) {
6749 /* If in this array, skip */
6750 for (d = a->info.devs ; d ; d = d->next)
6751 if (d->state_fd >= 0 &&
6752 d->disk.major == dl->major &&
6753 d->disk.minor == dl->minor) {
6754 dprintf("%x:%x already in array\n",
6755 dl->major, dl->minor);
6756 break;
6757 }
6758 if (d)
6759 continue;
6760 test_list = additional_test_list;
6761 while (test_list) {
6762 if (test_list->disk.major == dl->major &&
6763 test_list->disk.minor == dl->minor) {
6764 dprintf("%x:%x already in additional test list\n",
6765 dl->major, dl->minor);
6766 break;
6767 }
6768 test_list = test_list->next;
6769 }
6770 if (test_list)
6771 continue;
6772
6773 /* skip in use or failed drives */
6774 if (is_failed(&dl->disk) || idx == dl->index ||
6775 dl->index == -2) {
6776 dprintf("%x:%x status (failed: %d index: %d)\n",
6777 dl->major, dl->minor, is_failed(&dl->disk), idx);
6778 continue;
6779 }
6780
6781 /* skip pure spares when we are looking for partially
6782 * assimilated drives
6783 */
6784 if (dl->index == -1 && !activate_new)
6785 continue;
6786
6787 /* Does this unused device have the requisite free space?
6788 * It needs to be able to cover all member volumes
6789 */
6790 ex = get_extents(super, dl);
6791 if (!ex) {
6792 dprintf("cannot get extents\n");
6793 continue;
6794 }
6795 for (i = 0; i < mpb->num_raid_devs; i++) {
6796 dev = get_imsm_dev(super, i);
6797 map = get_imsm_map(dev, MAP_0);
6798
6799 /* check if this disk is already a member of
6800 * this array
6801 */
6802 if (get_imsm_disk_slot(map, dl->index) >= 0)
6803 continue;
6804
6805 found = 0;
6806 j = 0;
6807 pos = 0;
6808 array_start = __le32_to_cpu(map->pba_of_lba0);
6809 array_end = array_start +
6810 __le32_to_cpu(map->blocks_per_member) - 1;
6811
6812 do {
6813 /* check that we can start at pba_of_lba0 with
6814 * blocks_per_member of space
6815 */
6816 if (array_start >= pos && array_end < ex[j].start) {
6817 found = 1;
6818 break;
6819 }
6820 pos = ex[j].start + ex[j].size;
6821 j++;
6822 } while (ex[j-1].size);
6823
6824 if (!found)
6825 break;
6826 }
6827
6828 free(ex);
6829 if (i < mpb->num_raid_devs) {
6830 dprintf("%x:%x does not have %u to %u available\n",
6831 dl->major, dl->minor, array_start, array_end);
6832 /* No room */
6833 continue;
6834 }
6835 return dl;
6836 }
6837
6838 return dl;
6839 }
6840
6841
6842 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6843 {
6844 struct imsm_dev *dev2;
6845 struct imsm_map *map;
6846 struct dl *idisk;
6847 int slot;
6848 int idx;
6849 __u8 state;
6850
6851 dev2 = get_imsm_dev(cont->sb, dev_idx);
6852 if (dev2) {
6853 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
6854 if (state == IMSM_T_STATE_FAILED) {
6855 map = get_imsm_map(dev2, MAP_0);
6856 if (!map)
6857 return 1;
6858 for (slot = 0; slot < map->num_members; slot++) {
6859 /*
6860 * Check if failed disks are deleted from intel
6861 * disk list or are marked to be deleted
6862 */
6863 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
6864 idisk = get_imsm_dl_disk(cont->sb, idx);
6865 /*
6866 * Do not rebuild the array if failed disks
6867 * from failed sub-array are not removed from
6868 * container.
6869 */
6870 if (idisk &&
6871 is_failed(&idisk->disk) &&
6872 (idisk->action != DISK_REMOVE))
6873 return 0;
6874 }
6875 }
6876 }
6877 return 1;
6878 }
6879
6880 static struct mdinfo *imsm_activate_spare(struct active_array *a,
6881 struct metadata_update **updates)
6882 {
6883 /**
6884 * Find a device with unused free space and use it to replace a
6885 * failed/vacant region in an array. We replace failed regions one a
6886 * array at a time. The result is that a new spare disk will be added
6887 * to the first failed array and after the monitor has finished
6888 * propagating failures the remainder will be consumed.
6889 *
6890 * FIXME add a capability for mdmon to request spares from another
6891 * container.
6892 */
6893
6894 struct intel_super *super = a->container->sb;
6895 int inst = a->info.container_member;
6896 struct imsm_dev *dev = get_imsm_dev(super, inst);
6897 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6898 int failed = a->info.array.raid_disks;
6899 struct mdinfo *rv = NULL;
6900 struct mdinfo *d;
6901 struct mdinfo *di;
6902 struct metadata_update *mu;
6903 struct dl *dl;
6904 struct imsm_update_activate_spare *u;
6905 int num_spares = 0;
6906 int i;
6907 int allowed;
6908
6909 for (d = a->info.devs ; d ; d = d->next) {
6910 if ((d->curr_state & DS_FAULTY) &&
6911 d->state_fd >= 0)
6912 /* wait for Removal to happen */
6913 return NULL;
6914 if (d->state_fd >= 0)
6915 failed--;
6916 }
6917
6918 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6919 inst, failed, a->info.array.raid_disks, a->info.array.level);
6920
6921 if (imsm_reshape_blocks_arrays_changes(super))
6922 return NULL;
6923
6924 /* Cannot activate another spare if rebuild is in progress already
6925 */
6926 if (is_rebuilding(dev)) {
6927 dprintf("imsm: No spare activation allowed. "
6928 "Rebuild in progress already.\n");
6929 return NULL;
6930 }
6931
6932 if (a->info.array.level == 4)
6933 /* No repair for takeovered array
6934 * imsm doesn't support raid4
6935 */
6936 return NULL;
6937
6938 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
6939 IMSM_T_STATE_DEGRADED)
6940 return NULL;
6941
6942 /*
6943 * If there are any failed disks check state of the other volume.
6944 * Block rebuild if the another one is failed until failed disks
6945 * are removed from container.
6946 */
6947 if (failed) {
6948 dprintf("found failed disks in %.*s, check if there another"
6949 "failed sub-array.\n",
6950 MAX_RAID_SERIAL_LEN, dev->volume);
6951 /* check if states of the other volumes allow for rebuild */
6952 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6953 if (i != inst) {
6954 allowed = imsm_rebuild_allowed(a->container,
6955 i, failed);
6956 if (!allowed)
6957 return NULL;
6958 }
6959 }
6960 }
6961
6962 /* For each slot, if it is not working, find a spare */
6963 for (i = 0; i < a->info.array.raid_disks; i++) {
6964 for (d = a->info.devs ; d ; d = d->next)
6965 if (d->disk.raid_disk == i)
6966 break;
6967 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6968 if (d && (d->state_fd >= 0))
6969 continue;
6970
6971 /*
6972 * OK, this device needs recovery. Try to re-add the
6973 * previous occupant of this slot, if this fails see if
6974 * we can continue the assimilation of a spare that was
6975 * partially assimilated, finally try to activate a new
6976 * spare.
6977 */
6978 dl = imsm_readd(super, i, a);
6979 if (!dl)
6980 dl = imsm_add_spare(super, i, a, 0, rv);
6981 if (!dl)
6982 dl = imsm_add_spare(super, i, a, 1, rv);
6983 if (!dl)
6984 continue;
6985
6986 /* found a usable disk with enough space */
6987 di = malloc(sizeof(*di));
6988 if (!di)
6989 continue;
6990 memset(di, 0, sizeof(*di));
6991
6992 /* dl->index will be -1 in the case we are activating a
6993 * pristine spare. imsm_process_update() will create a
6994 * new index in this case. Once a disk is found to be
6995 * failed in all member arrays it is kicked from the
6996 * metadata
6997 */
6998 di->disk.number = dl->index;
6999
7000 /* (ab)use di->devs to store a pointer to the device
7001 * we chose
7002 */
7003 di->devs = (struct mdinfo *) dl;
7004
7005 di->disk.raid_disk = i;
7006 di->disk.major = dl->major;
7007 di->disk.minor = dl->minor;
7008 di->disk.state = 0;
7009 di->recovery_start = 0;
7010 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
7011 di->component_size = a->info.component_size;
7012 di->container_member = inst;
7013 super->random = random32();
7014 di->next = rv;
7015 rv = di;
7016 num_spares++;
7017 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7018 i, di->data_offset);
7019 }
7020
7021 if (!rv)
7022 /* No spares found */
7023 return rv;
7024 /* Now 'rv' has a list of devices to return.
7025 * Create a metadata_update record to update the
7026 * disk_ord_tbl for the array
7027 */
7028 mu = malloc(sizeof(*mu));
7029 if (mu) {
7030 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
7031 if (mu->buf == NULL) {
7032 free(mu);
7033 mu = NULL;
7034 }
7035 }
7036 if (!mu) {
7037 while (rv) {
7038 struct mdinfo *n = rv->next;
7039
7040 free(rv);
7041 rv = n;
7042 }
7043 return NULL;
7044 }
7045
7046 mu->space = NULL;
7047 mu->space_list = NULL;
7048 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7049 mu->next = *updates;
7050 u = (struct imsm_update_activate_spare *) mu->buf;
7051
7052 for (di = rv ; di ; di = di->next) {
7053 u->type = update_activate_spare;
7054 u->dl = (struct dl *) di->devs;
7055 di->devs = NULL;
7056 u->slot = di->disk.raid_disk;
7057 u->array = inst;
7058 u->next = u + 1;
7059 u++;
7060 }
7061 (u-1)->next = NULL;
7062 *updates = mu;
7063
7064 return rv;
7065 }
7066
7067 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7068 {
7069 struct imsm_dev *dev = get_imsm_dev(super, idx);
7070 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7071 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7072 struct disk_info *inf = get_disk_info(u);
7073 struct imsm_disk *disk;
7074 int i;
7075 int j;
7076
7077 for (i = 0; i < map->num_members; i++) {
7078 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7079 for (j = 0; j < new_map->num_members; j++)
7080 if (serialcmp(disk->serial, inf[j].serial) == 0)
7081 return 1;
7082 }
7083
7084 return 0;
7085 }
7086
7087
7088 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7089 {
7090 struct dl *dl = NULL;
7091 for (dl = super->disks; dl; dl = dl->next)
7092 if ((dl->major == major) && (dl->minor == minor))
7093 return dl;
7094 return NULL;
7095 }
7096
7097 static int remove_disk_super(struct intel_super *super, int major, int minor)
7098 {
7099 struct dl *prev = NULL;
7100 struct dl *dl;
7101
7102 prev = NULL;
7103 for (dl = super->disks; dl; dl = dl->next) {
7104 if ((dl->major == major) && (dl->minor == minor)) {
7105 /* remove */
7106 if (prev)
7107 prev->next = dl->next;
7108 else
7109 super->disks = dl->next;
7110 dl->next = NULL;
7111 __free_imsm_disk(dl);
7112 dprintf("%s: removed %x:%x\n",
7113 __func__, major, minor);
7114 break;
7115 }
7116 prev = dl;
7117 }
7118 return 0;
7119 }
7120
7121 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7122
7123 static int add_remove_disk_update(struct intel_super *super)
7124 {
7125 int check_degraded = 0;
7126 struct dl *disk = NULL;
7127 /* add/remove some spares to/from the metadata/contrainer */
7128 while (super->disk_mgmt_list) {
7129 struct dl *disk_cfg;
7130
7131 disk_cfg = super->disk_mgmt_list;
7132 super->disk_mgmt_list = disk_cfg->next;
7133 disk_cfg->next = NULL;
7134
7135 if (disk_cfg->action == DISK_ADD) {
7136 disk_cfg->next = super->disks;
7137 super->disks = disk_cfg;
7138 check_degraded = 1;
7139 dprintf("%s: added %x:%x\n",
7140 __func__, disk_cfg->major,
7141 disk_cfg->minor);
7142 } else if (disk_cfg->action == DISK_REMOVE) {
7143 dprintf("Disk remove action processed: %x.%x\n",
7144 disk_cfg->major, disk_cfg->minor);
7145 disk = get_disk_super(super,
7146 disk_cfg->major,
7147 disk_cfg->minor);
7148 if (disk) {
7149 /* store action status */
7150 disk->action = DISK_REMOVE;
7151 /* remove spare disks only */
7152 if (disk->index == -1) {
7153 remove_disk_super(super,
7154 disk_cfg->major,
7155 disk_cfg->minor);
7156 }
7157 }
7158 /* release allocate disk structure */
7159 __free_imsm_disk(disk_cfg);
7160 }
7161 }
7162 return check_degraded;
7163 }
7164
7165
7166 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7167 struct intel_super *super,
7168 void ***space_list)
7169 {
7170 struct intel_dev *id;
7171 void **tofree = NULL;
7172 int ret_val = 0;
7173
7174 dprintf("apply_reshape_migration_update()\n");
7175 if ((u->subdev < 0) ||
7176 (u->subdev > 1)) {
7177 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7178 return ret_val;
7179 }
7180 if ((space_list == NULL) || (*space_list == NULL)) {
7181 dprintf("imsm: Error: Memory is not allocated\n");
7182 return ret_val;
7183 }
7184
7185 for (id = super->devlist ; id; id = id->next) {
7186 if (id->index == (unsigned)u->subdev) {
7187 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7188 struct imsm_map *map;
7189 struct imsm_dev *new_dev =
7190 (struct imsm_dev *)*space_list;
7191 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7192 int to_state;
7193 struct dl *new_disk;
7194
7195 if (new_dev == NULL)
7196 return ret_val;
7197 *space_list = **space_list;
7198 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
7199 map = get_imsm_map(new_dev, MAP_0);
7200 if (migr_map) {
7201 dprintf("imsm: Error: migration in progress");
7202 return ret_val;
7203 }
7204
7205 to_state = map->map_state;
7206 if ((u->new_level == 5) && (map->raid_level == 0)) {
7207 map->num_members++;
7208 /* this should not happen */
7209 if (u->new_disks[0] < 0) {
7210 map->failed_disk_num =
7211 map->num_members - 1;
7212 to_state = IMSM_T_STATE_DEGRADED;
7213 } else
7214 to_state = IMSM_T_STATE_NORMAL;
7215 }
7216 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
7217 if (u->new_level > -1)
7218 map->raid_level = u->new_level;
7219 migr_map = get_imsm_map(new_dev, MAP_1);
7220 if ((u->new_level == 5) &&
7221 (migr_map->raid_level == 0)) {
7222 int ord = map->num_members - 1;
7223 migr_map->num_members--;
7224 if (u->new_disks[0] < 0)
7225 ord |= IMSM_ORD_REBUILD;
7226 set_imsm_ord_tbl_ent(map,
7227 map->num_members - 1,
7228 ord);
7229 }
7230 id->dev = new_dev;
7231 tofree = (void **)dev;
7232
7233 /* update chunk size
7234 */
7235 if (u->new_chunksize > 0)
7236 map->blocks_per_strip =
7237 __cpu_to_le16(u->new_chunksize * 2);
7238
7239 /* add disk
7240 */
7241 if ((u->new_level != 5) ||
7242 (migr_map->raid_level != 0) ||
7243 (migr_map->raid_level == map->raid_level))
7244 goto skip_disk_add;
7245
7246 if (u->new_disks[0] >= 0) {
7247 /* use passes spare
7248 */
7249 new_disk = get_disk_super(super,
7250 major(u->new_disks[0]),
7251 minor(u->new_disks[0]));
7252 dprintf("imsm: new disk for reshape is: %i:%i "
7253 "(%p, index = %i)\n",
7254 major(u->new_disks[0]),
7255 minor(u->new_disks[0]),
7256 new_disk, new_disk->index);
7257 if (new_disk == NULL)
7258 goto error_disk_add;
7259
7260 new_disk->index = map->num_members - 1;
7261 /* slot to fill in autolayout
7262 */
7263 new_disk->raiddisk = new_disk->index;
7264 new_disk->disk.status |= CONFIGURED_DISK;
7265 new_disk->disk.status &= ~SPARE_DISK;
7266 } else
7267 goto error_disk_add;
7268
7269 skip_disk_add:
7270 *tofree = *space_list;
7271 /* calculate new size
7272 */
7273 imsm_set_array_size(new_dev);
7274
7275 ret_val = 1;
7276 }
7277 }
7278
7279 if (tofree)
7280 *space_list = tofree;
7281 return ret_val;
7282
7283 error_disk_add:
7284 dprintf("Error: imsm: Cannot find disk.\n");
7285 return ret_val;
7286 }
7287
7288 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7289 struct intel_super *super,
7290 struct active_array *active_array)
7291 {
7292 struct imsm_super *mpb = super->anchor;
7293 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7294 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7295 struct imsm_map *migr_map;
7296 struct active_array *a;
7297 struct imsm_disk *disk;
7298 __u8 to_state;
7299 struct dl *dl;
7300 unsigned int found;
7301 int failed;
7302 int victim;
7303 int i;
7304 int second_map_created = 0;
7305
7306 for (; u; u = u->next) {
7307 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
7308
7309 if (victim < 0)
7310 return 0;
7311
7312 for (dl = super->disks; dl; dl = dl->next)
7313 if (dl == u->dl)
7314 break;
7315
7316 if (!dl) {
7317 fprintf(stderr, "error: imsm_activate_spare passed "
7318 "an unknown disk (index: %d)\n",
7319 u->dl->index);
7320 return 0;
7321 }
7322
7323 /* count failures (excluding rebuilds and the victim)
7324 * to determine map[0] state
7325 */
7326 failed = 0;
7327 for (i = 0; i < map->num_members; i++) {
7328 if (i == u->slot)
7329 continue;
7330 disk = get_imsm_disk(super,
7331 get_imsm_disk_idx(dev, i, MAP_X));
7332 if (!disk || is_failed(disk))
7333 failed++;
7334 }
7335
7336 /* adding a pristine spare, assign a new index */
7337 if (dl->index < 0) {
7338 dl->index = super->anchor->num_disks;
7339 super->anchor->num_disks++;
7340 }
7341 disk = &dl->disk;
7342 disk->status |= CONFIGURED_DISK;
7343 disk->status &= ~SPARE_DISK;
7344
7345 /* mark rebuild */
7346 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
7347 if (!second_map_created) {
7348 second_map_created = 1;
7349 map->map_state = IMSM_T_STATE_DEGRADED;
7350 migrate(dev, super, to_state, MIGR_REBUILD);
7351 } else
7352 map->map_state = to_state;
7353 migr_map = get_imsm_map(dev, MAP_1);
7354 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7355 set_imsm_ord_tbl_ent(migr_map, u->slot,
7356 dl->index | IMSM_ORD_REBUILD);
7357
7358 /* update the family_num to mark a new container
7359 * generation, being careful to record the existing
7360 * family_num in orig_family_num to clean up after
7361 * earlier mdadm versions that neglected to set it.
7362 */
7363 if (mpb->orig_family_num == 0)
7364 mpb->orig_family_num = mpb->family_num;
7365 mpb->family_num += super->random;
7366
7367 /* count arrays using the victim in the metadata */
7368 found = 0;
7369 for (a = active_array; a ; a = a->next) {
7370 dev = get_imsm_dev(super, a->info.container_member);
7371 map = get_imsm_map(dev, MAP_0);
7372
7373 if (get_imsm_disk_slot(map, victim) >= 0)
7374 found++;
7375 }
7376
7377 /* delete the victim if it is no longer being
7378 * utilized anywhere
7379 */
7380 if (!found) {
7381 struct dl **dlp;
7382
7383 /* We know that 'manager' isn't touching anything,
7384 * so it is safe to delete
7385 */
7386 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
7387 if ((*dlp)->index == victim)
7388 break;
7389
7390 /* victim may be on the missing list */
7391 if (!*dlp)
7392 for (dlp = &super->missing; *dlp;
7393 dlp = &(*dlp)->next)
7394 if ((*dlp)->index == victim)
7395 break;
7396 imsm_delete(super, dlp, victim);
7397 }
7398 }
7399
7400 return 1;
7401 }
7402
7403 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7404 struct intel_super *super,
7405 void ***space_list)
7406 {
7407 struct dl *new_disk;
7408 struct intel_dev *id;
7409 int i;
7410 int delta_disks = u->new_raid_disks - u->old_raid_disks;
7411 int disk_count = u->old_raid_disks;
7412 void **tofree = NULL;
7413 int devices_to_reshape = 1;
7414 struct imsm_super *mpb = super->anchor;
7415 int ret_val = 0;
7416 unsigned int dev_id;
7417
7418 dprintf("imsm: apply_reshape_container_disks_update()\n");
7419
7420 /* enable spares to use in array */
7421 for (i = 0; i < delta_disks; i++) {
7422 new_disk = get_disk_super(super,
7423 major(u->new_disks[i]),
7424 minor(u->new_disks[i]));
7425 dprintf("imsm: new disk for reshape is: %i:%i "
7426 "(%p, index = %i)\n",
7427 major(u->new_disks[i]), minor(u->new_disks[i]),
7428 new_disk, new_disk->index);
7429 if ((new_disk == NULL) ||
7430 ((new_disk->index >= 0) &&
7431 (new_disk->index < u->old_raid_disks)))
7432 goto update_reshape_exit;
7433 new_disk->index = disk_count++;
7434 /* slot to fill in autolayout
7435 */
7436 new_disk->raiddisk = new_disk->index;
7437 new_disk->disk.status |=
7438 CONFIGURED_DISK;
7439 new_disk->disk.status &= ~SPARE_DISK;
7440 }
7441
7442 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7443 mpb->num_raid_devs);
7444 /* manage changes in volume
7445 */
7446 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
7447 void **sp = *space_list;
7448 struct imsm_dev *newdev;
7449 struct imsm_map *newmap, *oldmap;
7450
7451 for (id = super->devlist ; id; id = id->next) {
7452 if (id->index == dev_id)
7453 break;
7454 }
7455 if (id == NULL)
7456 break;
7457 if (!sp)
7458 continue;
7459 *space_list = *sp;
7460 newdev = (void*)sp;
7461 /* Copy the dev, but not (all of) the map */
7462 memcpy(newdev, id->dev, sizeof(*newdev));
7463 oldmap = get_imsm_map(id->dev, MAP_0);
7464 newmap = get_imsm_map(newdev, MAP_0);
7465 /* Copy the current map */
7466 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7467 /* update one device only
7468 */
7469 if (devices_to_reshape) {
7470 dprintf("imsm: modifying subdev: %i\n",
7471 id->index);
7472 devices_to_reshape--;
7473 newdev->vol.migr_state = 1;
7474 newdev->vol.curr_migr_unit = 0;
7475 set_migr_type(newdev, MIGR_GEN_MIGR);
7476 newmap->num_members = u->new_raid_disks;
7477 for (i = 0; i < delta_disks; i++) {
7478 set_imsm_ord_tbl_ent(newmap,
7479 u->old_raid_disks + i,
7480 u->old_raid_disks + i);
7481 }
7482 /* New map is correct, now need to save old map
7483 */
7484 newmap = get_imsm_map(newdev, MAP_1);
7485 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7486
7487 imsm_set_array_size(newdev);
7488 }
7489
7490 sp = (void **)id->dev;
7491 id->dev = newdev;
7492 *sp = tofree;
7493 tofree = sp;
7494
7495 /* Clear migration record */
7496 memset(super->migr_rec, 0, sizeof(struct migr_record));
7497 }
7498 if (tofree)
7499 *space_list = tofree;
7500 ret_val = 1;
7501
7502 update_reshape_exit:
7503
7504 return ret_val;
7505 }
7506
7507 static int apply_takeover_update(struct imsm_update_takeover *u,
7508 struct intel_super *super,
7509 void ***space_list)
7510 {
7511 struct imsm_dev *dev = NULL;
7512 struct intel_dev *dv;
7513 struct imsm_dev *dev_new;
7514 struct imsm_map *map;
7515 struct dl *dm, *du;
7516 int i;
7517
7518 for (dv = super->devlist; dv; dv = dv->next)
7519 if (dv->index == (unsigned int)u->subarray) {
7520 dev = dv->dev;
7521 break;
7522 }
7523
7524 if (dev == NULL)
7525 return 0;
7526
7527 map = get_imsm_map(dev, MAP_0);
7528
7529 if (u->direction == R10_TO_R0) {
7530 /* Number of failed disks must be half of initial disk number */
7531 if (imsm_count_failed(super, dev, MAP_0) !=
7532 (map->num_members / 2))
7533 return 0;
7534
7535 /* iterate through devices to mark removed disks as spare */
7536 for (dm = super->disks; dm; dm = dm->next) {
7537 if (dm->disk.status & FAILED_DISK) {
7538 int idx = dm->index;
7539 /* update indexes on the disk list */
7540 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7541 the index values will end up being correct.... NB */
7542 for (du = super->disks; du; du = du->next)
7543 if (du->index > idx)
7544 du->index--;
7545 /* mark as spare disk */
7546 mark_spare(dm);
7547 }
7548 }
7549 /* update map */
7550 map->num_members = map->num_members / 2;
7551 map->map_state = IMSM_T_STATE_NORMAL;
7552 map->num_domains = 1;
7553 map->raid_level = 0;
7554 map->failed_disk_num = -1;
7555 }
7556
7557 if (u->direction == R0_TO_R10) {
7558 void **space;
7559 /* update slots in current disk list */
7560 for (dm = super->disks; dm; dm = dm->next) {
7561 if (dm->index >= 0)
7562 dm->index *= 2;
7563 }
7564 /* create new *missing* disks */
7565 for (i = 0; i < map->num_members; i++) {
7566 space = *space_list;
7567 if (!space)
7568 continue;
7569 *space_list = *space;
7570 du = (void *)space;
7571 memcpy(du, super->disks, sizeof(*du));
7572 du->fd = -1;
7573 du->minor = 0;
7574 du->major = 0;
7575 du->index = (i * 2) + 1;
7576 sprintf((char *)du->disk.serial,
7577 " MISSING_%d", du->index);
7578 sprintf((char *)du->serial,
7579 "MISSING_%d", du->index);
7580 du->next = super->missing;
7581 super->missing = du;
7582 }
7583 /* create new dev and map */
7584 space = *space_list;
7585 if (!space)
7586 return 0;
7587 *space_list = *space;
7588 dev_new = (void *)space;
7589 memcpy(dev_new, dev, sizeof(*dev));
7590 /* update new map */
7591 map = get_imsm_map(dev_new, MAP_0);
7592 map->num_members = map->num_members * 2;
7593 map->map_state = IMSM_T_STATE_DEGRADED;
7594 map->num_domains = 2;
7595 map->raid_level = 1;
7596 /* replace dev<->dev_new */
7597 dv->dev = dev_new;
7598 }
7599 /* update disk order table */
7600 for (du = super->disks; du; du = du->next)
7601 if (du->index >= 0)
7602 set_imsm_ord_tbl_ent(map, du->index, du->index);
7603 for (du = super->missing; du; du = du->next)
7604 if (du->index >= 0) {
7605 set_imsm_ord_tbl_ent(map, du->index, du->index);
7606 mark_missing(dv->dev, &du->disk, du->index);
7607 }
7608
7609 return 1;
7610 }
7611
7612 static void imsm_process_update(struct supertype *st,
7613 struct metadata_update *update)
7614 {
7615 /**
7616 * crack open the metadata_update envelope to find the update record
7617 * update can be one of:
7618 * update_reshape_container_disks - all the arrays in the container
7619 * are being reshaped to have more devices. We need to mark
7620 * the arrays for general migration and convert selected spares
7621 * into active devices.
7622 * update_activate_spare - a spare device has replaced a failed
7623 * device in an array, update the disk_ord_tbl. If this disk is
7624 * present in all member arrays then also clear the SPARE_DISK
7625 * flag
7626 * update_create_array
7627 * update_kill_array
7628 * update_rename_array
7629 * update_add_remove_disk
7630 */
7631 struct intel_super *super = st->sb;
7632 struct imsm_super *mpb;
7633 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7634
7635 /* update requires a larger buf but the allocation failed */
7636 if (super->next_len && !super->next_buf) {
7637 super->next_len = 0;
7638 return;
7639 }
7640
7641 if (super->next_buf) {
7642 memcpy(super->next_buf, super->buf, super->len);
7643 free(super->buf);
7644 super->len = super->next_len;
7645 super->buf = super->next_buf;
7646
7647 super->next_len = 0;
7648 super->next_buf = NULL;
7649 }
7650
7651 mpb = super->anchor;
7652
7653 switch (type) {
7654 case update_general_migration_checkpoint: {
7655 struct intel_dev *id;
7656 struct imsm_update_general_migration_checkpoint *u =
7657 (void *)update->buf;
7658
7659 dprintf("imsm: process_update() "
7660 "for update_general_migration_checkpoint called\n");
7661
7662 /* find device under general migration */
7663 for (id = super->devlist ; id; id = id->next) {
7664 if (is_gen_migration(id->dev)) {
7665 id->dev->vol.curr_migr_unit =
7666 __cpu_to_le32(u->curr_migr_unit);
7667 super->updates_pending++;
7668 }
7669 }
7670 break;
7671 }
7672 case update_takeover: {
7673 struct imsm_update_takeover *u = (void *)update->buf;
7674 if (apply_takeover_update(u, super, &update->space_list)) {
7675 imsm_update_version_info(super);
7676 super->updates_pending++;
7677 }
7678 break;
7679 }
7680
7681 case update_reshape_container_disks: {
7682 struct imsm_update_reshape *u = (void *)update->buf;
7683 if (apply_reshape_container_disks_update(
7684 u, super, &update->space_list))
7685 super->updates_pending++;
7686 break;
7687 }
7688 case update_reshape_migration: {
7689 struct imsm_update_reshape_migration *u = (void *)update->buf;
7690 if (apply_reshape_migration_update(
7691 u, super, &update->space_list))
7692 super->updates_pending++;
7693 break;
7694 }
7695 case update_activate_spare: {
7696 struct imsm_update_activate_spare *u = (void *) update->buf;
7697 if (apply_update_activate_spare(u, super, st->arrays))
7698 super->updates_pending++;
7699 break;
7700 }
7701 case update_create_array: {
7702 /* someone wants to create a new array, we need to be aware of
7703 * a few races/collisions:
7704 * 1/ 'Create' called by two separate instances of mdadm
7705 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7706 * devices that have since been assimilated via
7707 * activate_spare.
7708 * In the event this update can not be carried out mdadm will
7709 * (FIX ME) notice that its update did not take hold.
7710 */
7711 struct imsm_update_create_array *u = (void *) update->buf;
7712 struct intel_dev *dv;
7713 struct imsm_dev *dev;
7714 struct imsm_map *map, *new_map;
7715 unsigned long long start, end;
7716 unsigned long long new_start, new_end;
7717 int i;
7718 struct disk_info *inf;
7719 struct dl *dl;
7720
7721 /* handle racing creates: first come first serve */
7722 if (u->dev_idx < mpb->num_raid_devs) {
7723 dprintf("%s: subarray %d already defined\n",
7724 __func__, u->dev_idx);
7725 goto create_error;
7726 }
7727
7728 /* check update is next in sequence */
7729 if (u->dev_idx != mpb->num_raid_devs) {
7730 dprintf("%s: can not create array %d expected index %d\n",
7731 __func__, u->dev_idx, mpb->num_raid_devs);
7732 goto create_error;
7733 }
7734
7735 new_map = get_imsm_map(&u->dev, MAP_0);
7736 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7737 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
7738 inf = get_disk_info(u);
7739
7740 /* handle activate_spare versus create race:
7741 * check to make sure that overlapping arrays do not include
7742 * overalpping disks
7743 */
7744 for (i = 0; i < mpb->num_raid_devs; i++) {
7745 dev = get_imsm_dev(super, i);
7746 map = get_imsm_map(dev, MAP_0);
7747 start = __le32_to_cpu(map->pba_of_lba0);
7748 end = start + __le32_to_cpu(map->blocks_per_member);
7749 if ((new_start >= start && new_start <= end) ||
7750 (start >= new_start && start <= new_end))
7751 /* overlap */;
7752 else
7753 continue;
7754
7755 if (disks_overlap(super, i, u)) {
7756 dprintf("%s: arrays overlap\n", __func__);
7757 goto create_error;
7758 }
7759 }
7760
7761 /* check that prepare update was successful */
7762 if (!update->space) {
7763 dprintf("%s: prepare update failed\n", __func__);
7764 goto create_error;
7765 }
7766
7767 /* check that all disks are still active before committing
7768 * changes. FIXME: could we instead handle this by creating a
7769 * degraded array? That's probably not what the user expects,
7770 * so better to drop this update on the floor.
7771 */
7772 for (i = 0; i < new_map->num_members; i++) {
7773 dl = serial_to_dl(inf[i].serial, super);
7774 if (!dl) {
7775 dprintf("%s: disk disappeared\n", __func__);
7776 goto create_error;
7777 }
7778 }
7779
7780 super->updates_pending++;
7781
7782 /* convert spares to members and fixup ord_tbl */
7783 for (i = 0; i < new_map->num_members; i++) {
7784 dl = serial_to_dl(inf[i].serial, super);
7785 if (dl->index == -1) {
7786 dl->index = mpb->num_disks;
7787 mpb->num_disks++;
7788 dl->disk.status |= CONFIGURED_DISK;
7789 dl->disk.status &= ~SPARE_DISK;
7790 }
7791 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7792 }
7793
7794 dv = update->space;
7795 dev = dv->dev;
7796 update->space = NULL;
7797 imsm_copy_dev(dev, &u->dev);
7798 dv->index = u->dev_idx;
7799 dv->next = super->devlist;
7800 super->devlist = dv;
7801 mpb->num_raid_devs++;
7802
7803 imsm_update_version_info(super);
7804 break;
7805 create_error:
7806 /* mdmon knows how to release update->space, but not
7807 * ((struct intel_dev *) update->space)->dev
7808 */
7809 if (update->space) {
7810 dv = update->space;
7811 free(dv->dev);
7812 }
7813 break;
7814 }
7815 case update_kill_array: {
7816 struct imsm_update_kill_array *u = (void *) update->buf;
7817 int victim = u->dev_idx;
7818 struct active_array *a;
7819 struct intel_dev **dp;
7820 struct imsm_dev *dev;
7821
7822 /* sanity check that we are not affecting the uuid of
7823 * active arrays, or deleting an active array
7824 *
7825 * FIXME when immutable ids are available, but note that
7826 * we'll also need to fixup the invalidated/active
7827 * subarray indexes in mdstat
7828 */
7829 for (a = st->arrays; a; a = a->next)
7830 if (a->info.container_member >= victim)
7831 break;
7832 /* by definition if mdmon is running at least one array
7833 * is active in the container, so checking
7834 * mpb->num_raid_devs is just extra paranoia
7835 */
7836 dev = get_imsm_dev(super, victim);
7837 if (a || !dev || mpb->num_raid_devs == 1) {
7838 dprintf("failed to delete subarray-%d\n", victim);
7839 break;
7840 }
7841
7842 for (dp = &super->devlist; *dp;)
7843 if ((*dp)->index == (unsigned)super->current_vol) {
7844 *dp = (*dp)->next;
7845 } else {
7846 if ((*dp)->index > (unsigned)victim)
7847 (*dp)->index--;
7848 dp = &(*dp)->next;
7849 }
7850 mpb->num_raid_devs--;
7851 super->updates_pending++;
7852 break;
7853 }
7854 case update_rename_array: {
7855 struct imsm_update_rename_array *u = (void *) update->buf;
7856 char name[MAX_RAID_SERIAL_LEN+1];
7857 int target = u->dev_idx;
7858 struct active_array *a;
7859 struct imsm_dev *dev;
7860
7861 /* sanity check that we are not affecting the uuid of
7862 * an active array
7863 */
7864 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7865 name[MAX_RAID_SERIAL_LEN] = '\0';
7866 for (a = st->arrays; a; a = a->next)
7867 if (a->info.container_member == target)
7868 break;
7869 dev = get_imsm_dev(super, u->dev_idx);
7870 if (a || !dev || !check_name(super, name, 1)) {
7871 dprintf("failed to rename subarray-%d\n", target);
7872 break;
7873 }
7874
7875 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7876 super->updates_pending++;
7877 break;
7878 }
7879 case update_add_remove_disk: {
7880 /* we may be able to repair some arrays if disks are
7881 * being added, check teh status of add_remove_disk
7882 * if discs has been added.
7883 */
7884 if (add_remove_disk_update(super)) {
7885 struct active_array *a;
7886
7887 super->updates_pending++;
7888 for (a = st->arrays; a; a = a->next)
7889 a->check_degraded = 1;
7890 }
7891 break;
7892 }
7893 default:
7894 fprintf(stderr, "error: unsuported process update type:"
7895 "(type: %d)\n", type);
7896 }
7897 }
7898
7899 static struct mdinfo *get_spares_for_grow(struct supertype *st);
7900
7901 static void imsm_prepare_update(struct supertype *st,
7902 struct metadata_update *update)
7903 {
7904 /**
7905 * Allocate space to hold new disk entries, raid-device entries or a new
7906 * mpb if necessary. The manager synchronously waits for updates to
7907 * complete in the monitor, so new mpb buffers allocated here can be
7908 * integrated by the monitor thread without worrying about live pointers
7909 * in the manager thread.
7910 */
7911 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7912 struct intel_super *super = st->sb;
7913 struct imsm_super *mpb = super->anchor;
7914 size_t buf_len;
7915 size_t len = 0;
7916
7917 switch (type) {
7918 case update_general_migration_checkpoint:
7919 dprintf("imsm: prepare_update() "
7920 "for update_general_migration_checkpoint called\n");
7921 break;
7922 case update_takeover: {
7923 struct imsm_update_takeover *u = (void *)update->buf;
7924 if (u->direction == R0_TO_R10) {
7925 void **tail = (void **)&update->space_list;
7926 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7927 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7928 int num_members = map->num_members;
7929 void *space;
7930 int size, i;
7931 int err = 0;
7932 /* allocate memory for added disks */
7933 for (i = 0; i < num_members; i++) {
7934 size = sizeof(struct dl);
7935 space = malloc(size);
7936 if (!space) {
7937 err++;
7938 break;
7939 }
7940 *tail = space;
7941 tail = space;
7942 *tail = NULL;
7943 }
7944 /* allocate memory for new device */
7945 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7946 (num_members * sizeof(__u32));
7947 space = malloc(size);
7948 if (!space)
7949 err++;
7950 else {
7951 *tail = space;
7952 tail = space;
7953 *tail = NULL;
7954 }
7955 if (!err) {
7956 len = disks_to_mpb_size(num_members * 2);
7957 } else {
7958 /* if allocation didn't success, free buffer */
7959 while (update->space_list) {
7960 void **sp = update->space_list;
7961 update->space_list = *sp;
7962 free(sp);
7963 }
7964 }
7965 }
7966
7967 break;
7968 }
7969 case update_reshape_container_disks: {
7970 /* Every raid device in the container is about to
7971 * gain some more devices, and we will enter a
7972 * reconfiguration.
7973 * So each 'imsm_map' will be bigger, and the imsm_vol
7974 * will now hold 2 of them.
7975 * Thus we need new 'struct imsm_dev' allocations sized
7976 * as sizeof_imsm_dev but with more devices in both maps.
7977 */
7978 struct imsm_update_reshape *u = (void *)update->buf;
7979 struct intel_dev *dl;
7980 void **space_tail = (void**)&update->space_list;
7981
7982 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7983
7984 for (dl = super->devlist; dl; dl = dl->next) {
7985 int size = sizeof_imsm_dev(dl->dev, 1);
7986 void *s;
7987 if (u->new_raid_disks > u->old_raid_disks)
7988 size += sizeof(__u32)*2*
7989 (u->new_raid_disks - u->old_raid_disks);
7990 s = malloc(size);
7991 if (!s)
7992 break;
7993 *space_tail = s;
7994 space_tail = s;
7995 *space_tail = NULL;
7996 }
7997
7998 len = disks_to_mpb_size(u->new_raid_disks);
7999 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8000 break;
8001 }
8002 case update_reshape_migration: {
8003 /* for migration level 0->5 we need to add disks
8004 * so the same as for container operation we will copy
8005 * device to the bigger location.
8006 * in memory prepared device and new disk area are prepared
8007 * for usage in process update
8008 */
8009 struct imsm_update_reshape_migration *u = (void *)update->buf;
8010 struct intel_dev *id;
8011 void **space_tail = (void **)&update->space_list;
8012 int size;
8013 void *s;
8014 int current_level = -1;
8015
8016 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8017
8018 /* add space for bigger array in update
8019 */
8020 for (id = super->devlist; id; id = id->next) {
8021 if (id->index == (unsigned)u->subdev) {
8022 size = sizeof_imsm_dev(id->dev, 1);
8023 if (u->new_raid_disks > u->old_raid_disks)
8024 size += sizeof(__u32)*2*
8025 (u->new_raid_disks - u->old_raid_disks);
8026 s = malloc(size);
8027 if (!s)
8028 break;
8029 *space_tail = s;
8030 space_tail = s;
8031 *space_tail = NULL;
8032 break;
8033 }
8034 }
8035 if (update->space_list == NULL)
8036 break;
8037
8038 /* add space for disk in update
8039 */
8040 size = sizeof(struct dl);
8041 s = malloc(size);
8042 if (!s) {
8043 free(update->space_list);
8044 update->space_list = NULL;
8045 break;
8046 }
8047 *space_tail = s;
8048 space_tail = s;
8049 *space_tail = NULL;
8050
8051 /* add spare device to update
8052 */
8053 for (id = super->devlist ; id; id = id->next)
8054 if (id->index == (unsigned)u->subdev) {
8055 struct imsm_dev *dev;
8056 struct imsm_map *map;
8057
8058 dev = get_imsm_dev(super, u->subdev);
8059 map = get_imsm_map(dev, MAP_0);
8060 current_level = map->raid_level;
8061 break;
8062 }
8063 if ((u->new_level == 5) && (u->new_level != current_level)) {
8064 struct mdinfo *spares;
8065
8066 spares = get_spares_for_grow(st);
8067 if (spares) {
8068 struct dl *dl;
8069 struct mdinfo *dev;
8070
8071 dev = spares->devs;
8072 if (dev) {
8073 u->new_disks[0] =
8074 makedev(dev->disk.major,
8075 dev->disk.minor);
8076 dl = get_disk_super(super,
8077 dev->disk.major,
8078 dev->disk.minor);
8079 dl->index = u->old_raid_disks;
8080 dev = dev->next;
8081 }
8082 sysfs_free(spares);
8083 }
8084 }
8085 len = disks_to_mpb_size(u->new_raid_disks);
8086 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8087 break;
8088 }
8089 case update_create_array: {
8090 struct imsm_update_create_array *u = (void *) update->buf;
8091 struct intel_dev *dv;
8092 struct imsm_dev *dev = &u->dev;
8093 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8094 struct dl *dl;
8095 struct disk_info *inf;
8096 int i;
8097 int activate = 0;
8098
8099 inf = get_disk_info(u);
8100 len = sizeof_imsm_dev(dev, 1);
8101 /* allocate a new super->devlist entry */
8102 dv = malloc(sizeof(*dv));
8103 if (dv) {
8104 dv->dev = malloc(len);
8105 if (dv->dev)
8106 update->space = dv;
8107 else {
8108 free(dv);
8109 update->space = NULL;
8110 }
8111 }
8112
8113 /* count how many spares will be converted to members */
8114 for (i = 0; i < map->num_members; i++) {
8115 dl = serial_to_dl(inf[i].serial, super);
8116 if (!dl) {
8117 /* hmm maybe it failed?, nothing we can do about
8118 * it here
8119 */
8120 continue;
8121 }
8122 if (count_memberships(dl, super) == 0)
8123 activate++;
8124 }
8125 len += activate * sizeof(struct imsm_disk);
8126 break;
8127 default:
8128 break;
8129 }
8130 }
8131
8132 /* check if we need a larger metadata buffer */
8133 if (super->next_buf)
8134 buf_len = super->next_len;
8135 else
8136 buf_len = super->len;
8137
8138 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8139 /* ok we need a larger buf than what is currently allocated
8140 * if this allocation fails process_update will notice that
8141 * ->next_len is set and ->next_buf is NULL
8142 */
8143 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8144 if (super->next_buf)
8145 free(super->next_buf);
8146
8147 super->next_len = buf_len;
8148 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
8149 memset(super->next_buf, 0, buf_len);
8150 else
8151 super->next_buf = NULL;
8152 }
8153 }
8154
8155 /* must be called while manager is quiesced */
8156 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
8157 {
8158 struct imsm_super *mpb = super->anchor;
8159 struct dl *iter;
8160 struct imsm_dev *dev;
8161 struct imsm_map *map;
8162 int i, j, num_members;
8163 __u32 ord;
8164
8165 dprintf("%s: deleting device[%d] from imsm_super\n",
8166 __func__, index);
8167
8168 /* shift all indexes down one */
8169 for (iter = super->disks; iter; iter = iter->next)
8170 if (iter->index > (int)index)
8171 iter->index--;
8172 for (iter = super->missing; iter; iter = iter->next)
8173 if (iter->index > (int)index)
8174 iter->index--;
8175
8176 for (i = 0; i < mpb->num_raid_devs; i++) {
8177 dev = get_imsm_dev(super, i);
8178 map = get_imsm_map(dev, MAP_0);
8179 num_members = map->num_members;
8180 for (j = 0; j < num_members; j++) {
8181 /* update ord entries being careful not to propagate
8182 * ord-flags to the first map
8183 */
8184 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
8185
8186 if (ord_to_idx(ord) <= index)
8187 continue;
8188
8189 map = get_imsm_map(dev, MAP_0);
8190 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
8191 map = get_imsm_map(dev, MAP_1);
8192 if (map)
8193 set_imsm_ord_tbl_ent(map, j, ord - 1);
8194 }
8195 }
8196
8197 mpb->num_disks--;
8198 super->updates_pending++;
8199 if (*dlp) {
8200 struct dl *dl = *dlp;
8201
8202 *dlp = (*dlp)->next;
8203 __free_imsm_disk(dl);
8204 }
8205 }
8206 #endif /* MDASSEMBLE */
8207
8208 static void close_targets(int *targets, int new_disks)
8209 {
8210 int i;
8211
8212 if (!targets)
8213 return;
8214
8215 for (i = 0; i < new_disks; i++) {
8216 if (targets[i] >= 0) {
8217 close(targets[i]);
8218 targets[i] = -1;
8219 }
8220 }
8221 }
8222
8223 static int imsm_get_allowed_degradation(int level, int raid_disks,
8224 struct intel_super *super,
8225 struct imsm_dev *dev)
8226 {
8227 switch (level) {
8228 case 10:{
8229 int ret_val = 0;
8230 struct imsm_map *map;
8231 int i;
8232
8233 ret_val = raid_disks/2;
8234 /* check map if all disks pairs not failed
8235 * in both maps
8236 */
8237 map = get_imsm_map(dev, MAP_0);
8238 for (i = 0; i < ret_val; i++) {
8239 int degradation = 0;
8240 if (get_imsm_disk(super, i) == NULL)
8241 degradation++;
8242 if (get_imsm_disk(super, i + 1) == NULL)
8243 degradation++;
8244 if (degradation == 2)
8245 return 0;
8246 }
8247 map = get_imsm_map(dev, MAP_1);
8248 /* if there is no second map
8249 * result can be returned
8250 */
8251 if (map == NULL)
8252 return ret_val;
8253 /* check degradation in second map
8254 */
8255 for (i = 0; i < ret_val; i++) {
8256 int degradation = 0;
8257 if (get_imsm_disk(super, i) == NULL)
8258 degradation++;
8259 if (get_imsm_disk(super, i + 1) == NULL)
8260 degradation++;
8261 if (degradation == 2)
8262 return 0;
8263 }
8264 return ret_val;
8265 }
8266 case 5:
8267 return 1;
8268 case 6:
8269 return 2;
8270 default:
8271 return 0;
8272 }
8273 }
8274
8275
8276 /*******************************************************************************
8277 * Function: open_backup_targets
8278 * Description: Function opens file descriptors for all devices given in
8279 * info->devs
8280 * Parameters:
8281 * info : general array info
8282 * raid_disks : number of disks
8283 * raid_fds : table of device's file descriptors
8284 * super : intel super for raid10 degradation check
8285 * dev : intel device for raid10 degradation check
8286 * Returns:
8287 * 0 : success
8288 * -1 : fail
8289 ******************************************************************************/
8290 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
8291 struct intel_super *super, struct imsm_dev *dev)
8292 {
8293 struct mdinfo *sd;
8294 int i;
8295 int opened = 0;
8296
8297 for (i = 0; i < raid_disks; i++)
8298 raid_fds[i] = -1;
8299
8300 for (sd = info->devs ; sd ; sd = sd->next) {
8301 char *dn;
8302
8303 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
8304 dprintf("disk is faulty!!\n");
8305 continue;
8306 }
8307
8308 if ((sd->disk.raid_disk >= raid_disks) ||
8309 (sd->disk.raid_disk < 0))
8310 continue;
8311
8312 dn = map_dev(sd->disk.major,
8313 sd->disk.minor, 1);
8314 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8315 if (raid_fds[sd->disk.raid_disk] < 0) {
8316 fprintf(stderr, "cannot open component\n");
8317 continue;
8318 }
8319 opened++;
8320 }
8321 /* check if maximum array degradation level is not exceeded
8322 */
8323 if ((raid_disks - opened) >
8324 imsm_get_allowed_degradation(info->new_level,
8325 raid_disks,
8326 super, dev)) {
8327 fprintf(stderr, "Not enough disks can be opened.\n");
8328 close_targets(raid_fds, raid_disks);
8329 return -2;
8330 }
8331 return 0;
8332 }
8333
8334 #ifndef MDASSEMBLE
8335 /*******************************************************************************
8336 * Function: init_migr_record_imsm
8337 * Description: Function inits imsm migration record
8338 * Parameters:
8339 * super : imsm internal array info
8340 * dev : device under migration
8341 * info : general array info to find the smallest device
8342 * Returns:
8343 * none
8344 ******************************************************************************/
8345 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
8346 struct mdinfo *info)
8347 {
8348 struct intel_super *super = st->sb;
8349 struct migr_record *migr_rec = super->migr_rec;
8350 int new_data_disks;
8351 unsigned long long dsize, dev_sectors;
8352 long long unsigned min_dev_sectors = -1LLU;
8353 struct mdinfo *sd;
8354 char nm[30];
8355 int fd;
8356 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
8357 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
8358 unsigned long long num_migr_units;
8359 unsigned long long array_blocks;
8360
8361 memset(migr_rec, 0, sizeof(struct migr_record));
8362 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
8363
8364 /* only ascending reshape supported now */
8365 migr_rec->ascending_migr = __cpu_to_le32(1);
8366
8367 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
8368 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8369 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
8370 new_data_disks = imsm_num_data_members(dev, MAP_0);
8371 migr_rec->blocks_per_unit =
8372 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8373 migr_rec->dest_depth_per_unit =
8374 __cpu_to_le32(migr_rec->dest_depth_per_unit);
8375 array_blocks = info->component_size * new_data_disks;
8376 num_migr_units =
8377 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
8378
8379 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
8380 num_migr_units++;
8381 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
8382
8383 migr_rec->post_migr_vol_cap = dev->size_low;
8384 migr_rec->post_migr_vol_cap_hi = dev->size_high;
8385
8386
8387 /* Find the smallest dev */
8388 for (sd = info->devs ; sd ; sd = sd->next) {
8389 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
8390 fd = dev_open(nm, O_RDONLY);
8391 if (fd < 0)
8392 continue;
8393 get_dev_size(fd, NULL, &dsize);
8394 dev_sectors = dsize / 512;
8395 if (dev_sectors < min_dev_sectors)
8396 min_dev_sectors = dev_sectors;
8397 close(fd);
8398 }
8399 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8400 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8401
8402 write_imsm_migr_rec(st);
8403
8404 return;
8405 }
8406
8407 /*******************************************************************************
8408 * Function: save_backup_imsm
8409 * Description: Function saves critical data stripes to Migration Copy Area
8410 * and updates the current migration unit status.
8411 * Use restore_stripes() to form a destination stripe,
8412 * and to write it to the Copy Area.
8413 * Parameters:
8414 * st : supertype information
8415 * dev : imsm device that backup is saved for
8416 * info : general array info
8417 * buf : input buffer
8418 * length : length of data to backup (blocks_per_unit)
8419 * Returns:
8420 * 0 : success
8421 *, -1 : fail
8422 ******************************************************************************/
8423 int save_backup_imsm(struct supertype *st,
8424 struct imsm_dev *dev,
8425 struct mdinfo *info,
8426 void *buf,
8427 int length)
8428 {
8429 int rv = -1;
8430 struct intel_super *super = st->sb;
8431 unsigned long long *target_offsets = NULL;
8432 int *targets = NULL;
8433 int i;
8434 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
8435 int new_disks = map_dest->num_members;
8436 int dest_layout = 0;
8437 int dest_chunk;
8438 unsigned long long start;
8439 int data_disks = imsm_num_data_members(dev, MAP_0);
8440
8441 targets = malloc(new_disks * sizeof(int));
8442 if (!targets)
8443 goto abort;
8444
8445 for (i = 0; i < new_disks; i++)
8446 targets[i] = -1;
8447
8448 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8449 if (!target_offsets)
8450 goto abort;
8451
8452 start = info->reshape_progress * 512;
8453 for (i = 0; i < new_disks; i++) {
8454 target_offsets[i] = (unsigned long long)
8455 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
8456 /* move back copy area adderss, it will be moved forward
8457 * in restore_stripes() using start input variable
8458 */
8459 target_offsets[i] -= start/data_disks;
8460 }
8461
8462 if (open_backup_targets(info, new_disks, targets,
8463 super, dev))
8464 goto abort;
8465
8466 dest_layout = imsm_level_to_layout(map_dest->raid_level);
8467 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8468
8469 if (restore_stripes(targets, /* list of dest devices */
8470 target_offsets, /* migration record offsets */
8471 new_disks,
8472 dest_chunk,
8473 map_dest->raid_level,
8474 dest_layout,
8475 -1, /* source backup file descriptor */
8476 0, /* input buf offset
8477 * always 0 buf is already offseted */
8478 start,
8479 length,
8480 buf) != 0) {
8481 fprintf(stderr, Name ": Error restoring stripes\n");
8482 goto abort;
8483 }
8484
8485 rv = 0;
8486
8487 abort:
8488 if (targets) {
8489 close_targets(targets, new_disks);
8490 free(targets);
8491 }
8492 free(target_offsets);
8493
8494 return rv;
8495 }
8496
8497 /*******************************************************************************
8498 * Function: save_checkpoint_imsm
8499 * Description: Function called for current unit status update
8500 * in the migration record. It writes it to disk.
8501 * Parameters:
8502 * super : imsm internal array info
8503 * info : general array info
8504 * Returns:
8505 * 0: success
8506 * 1: failure
8507 * 2: failure, means no valid migration record
8508 * / no general migration in progress /
8509 ******************************************************************************/
8510 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8511 {
8512 struct intel_super *super = st->sb;
8513 unsigned long long blocks_per_unit;
8514 unsigned long long curr_migr_unit;
8515
8516 if (load_imsm_migr_rec(super, info) != 0) {
8517 dprintf("imsm: ERROR: Cannot read migration record "
8518 "for checkpoint save.\n");
8519 return 1;
8520 }
8521
8522 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8523 if (blocks_per_unit == 0) {
8524 dprintf("imsm: no migration in progress.\n");
8525 return 2;
8526 }
8527 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8528 /* check if array is alligned to copy area
8529 * if it is not alligned, add one to current migration unit value
8530 * this can happend on array reshape finish only
8531 */
8532 if (info->reshape_progress % blocks_per_unit)
8533 curr_migr_unit++;
8534
8535 super->migr_rec->curr_migr_unit =
8536 __cpu_to_le32(curr_migr_unit);
8537 super->migr_rec->rec_status = __cpu_to_le32(state);
8538 super->migr_rec->dest_1st_member_lba =
8539 __cpu_to_le32(curr_migr_unit *
8540 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
8541 if (write_imsm_migr_rec(st) < 0) {
8542 dprintf("imsm: Cannot write migration record "
8543 "outside backup area\n");
8544 return 1;
8545 }
8546
8547 return 0;
8548 }
8549
8550 /*******************************************************************************
8551 * Function: recover_backup_imsm
8552 * Description: Function recovers critical data from the Migration Copy Area
8553 * while assembling an array.
8554 * Parameters:
8555 * super : imsm internal array info
8556 * info : general array info
8557 * Returns:
8558 * 0 : success (or there is no data to recover)
8559 * 1 : fail
8560 ******************************************************************************/
8561 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8562 {
8563 struct intel_super *super = st->sb;
8564 struct migr_record *migr_rec = super->migr_rec;
8565 struct imsm_map *map_dest = NULL;
8566 struct intel_dev *id = NULL;
8567 unsigned long long read_offset;
8568 unsigned long long write_offset;
8569 unsigned unit_len;
8570 int *targets = NULL;
8571 int new_disks, i, err;
8572 char *buf = NULL;
8573 int retval = 1;
8574 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8575 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
8576 char buffer[20];
8577 int skipped_disks = 0;
8578
8579 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8580 if (err < 1)
8581 return 1;
8582
8583 /* recover data only during assemblation */
8584 if (strncmp(buffer, "inactive", 8) != 0)
8585 return 0;
8586 /* no data to recover */
8587 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8588 return 0;
8589 if (curr_migr_unit >= num_migr_units)
8590 return 1;
8591
8592 /* find device during reshape */
8593 for (id = super->devlist; id; id = id->next)
8594 if (is_gen_migration(id->dev))
8595 break;
8596 if (id == NULL)
8597 return 1;
8598
8599 map_dest = get_imsm_map(id->dev, MAP_0);
8600 new_disks = map_dest->num_members;
8601
8602 read_offset = (unsigned long long)
8603 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8604
8605 write_offset = ((unsigned long long)
8606 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
8607 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
8608
8609 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8610 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8611 goto abort;
8612 targets = malloc(new_disks * sizeof(int));
8613 if (!targets)
8614 goto abort;
8615
8616 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
8617 fprintf(stderr,
8618 Name ": Cannot open some devices belonging to array.\n");
8619 goto abort;
8620 }
8621
8622 for (i = 0; i < new_disks; i++) {
8623 if (targets[i] < 0) {
8624 skipped_disks++;
8625 continue;
8626 }
8627 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8628 fprintf(stderr,
8629 Name ": Cannot seek to block: %s\n",
8630 strerror(errno));
8631 skipped_disks++;
8632 continue;
8633 }
8634 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
8635 fprintf(stderr,
8636 Name ": Cannot read copy area block: %s\n",
8637 strerror(errno));
8638 skipped_disks++;
8639 continue;
8640 }
8641 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8642 fprintf(stderr,
8643 Name ": Cannot seek to block: %s\n",
8644 strerror(errno));
8645 skipped_disks++;
8646 continue;
8647 }
8648 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
8649 fprintf(stderr,
8650 Name ": Cannot restore block: %s\n",
8651 strerror(errno));
8652 skipped_disks++;
8653 continue;
8654 }
8655 }
8656
8657 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
8658 new_disks,
8659 super,
8660 id->dev)) {
8661 fprintf(stderr,
8662 Name ": Cannot restore data from backup."
8663 " Too many failed disks\n");
8664 goto abort;
8665 }
8666
8667 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8668 /* ignore error == 2, this can mean end of reshape here
8669 */
8670 dprintf("imsm: Cannot write checkpoint to "
8671 "migration record (UNIT_SRC_NORMAL) during restart\n");
8672 } else
8673 retval = 0;
8674
8675 abort:
8676 if (targets) {
8677 for (i = 0; i < new_disks; i++)
8678 if (targets[i])
8679 close(targets[i]);
8680 free(targets);
8681 }
8682 free(buf);
8683 return retval;
8684 }
8685
8686 static char disk_by_path[] = "/dev/disk/by-path/";
8687
8688 static const char *imsm_get_disk_controller_domain(const char *path)
8689 {
8690 char disk_path[PATH_MAX];
8691 char *drv=NULL;
8692 struct stat st;
8693
8694 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8695 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8696 if (stat(disk_path, &st) == 0) {
8697 struct sys_dev* hba;
8698 char *path=NULL;
8699
8700 path = devt_to_devpath(st.st_rdev);
8701 if (path == NULL)
8702 return "unknown";
8703 hba = find_disk_attached_hba(-1, path);
8704 if (hba && hba->type == SYS_DEV_SAS)
8705 drv = "isci";
8706 else if (hba && hba->type == SYS_DEV_SATA)
8707 drv = "ahci";
8708 else
8709 drv = "unknown";
8710 dprintf("path: %s hba: %s attached: %s\n",
8711 path, (hba) ? hba->path : "NULL", drv);
8712 free(path);
8713 if (hba)
8714 free_sys_dev(&hba);
8715 }
8716 return drv;
8717 }
8718
8719 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8720 {
8721 char subdev_name[20];
8722 struct mdstat_ent *mdstat;
8723
8724 sprintf(subdev_name, "%d", subdev);
8725 mdstat = mdstat_by_subdev(subdev_name, container);
8726 if (!mdstat)
8727 return -1;
8728
8729 *minor = mdstat->devnum;
8730 free_mdstat(mdstat);
8731 return 0;
8732 }
8733
8734 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8735 struct geo_params *geo,
8736 int *old_raid_disks)
8737 {
8738 /* currently we only support increasing the number of devices
8739 * for a container. This increases the number of device for each
8740 * member array. They must all be RAID0 or RAID5.
8741 */
8742 int ret_val = 0;
8743 struct mdinfo *info, *member;
8744 int devices_that_can_grow = 0;
8745
8746 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8747 "st->devnum = (%i)\n",
8748 st->devnum);
8749
8750 if (geo->size != -1 ||
8751 geo->level != UnSet ||
8752 geo->layout != UnSet ||
8753 geo->chunksize != 0 ||
8754 geo->raid_disks == UnSet) {
8755 dprintf("imsm: Container operation is allowed for "
8756 "raid disks number change only.\n");
8757 return ret_val;
8758 }
8759
8760 info = container_content_imsm(st, NULL);
8761 for (member = info; member; member = member->next) {
8762 int result;
8763 int minor;
8764
8765 dprintf("imsm: checking device_num: %i\n",
8766 member->container_member);
8767
8768 if (geo->raid_disks <= member->array.raid_disks) {
8769 /* we work on container for Online Capacity Expansion
8770 * only so raid_disks has to grow
8771 */
8772 dprintf("imsm: for container operation raid disks "
8773 "increase is required\n");
8774 break;
8775 }
8776
8777 if ((info->array.level != 0) &&
8778 (info->array.level != 5)) {
8779 /* we cannot use this container with other raid level
8780 */
8781 dprintf("imsm: for container operation wrong"
8782 " raid level (%i) detected\n",
8783 info->array.level);
8784 break;
8785 } else {
8786 /* check for platform support
8787 * for this raid level configuration
8788 */
8789 struct intel_super *super = st->sb;
8790 if (!is_raid_level_supported(super->orom,
8791 member->array.level,
8792 geo->raid_disks)) {
8793 dprintf("platform does not support raid%d with"
8794 " %d disk%s\n",
8795 info->array.level,
8796 geo->raid_disks,
8797 geo->raid_disks > 1 ? "s" : "");
8798 break;
8799 }
8800 /* check if component size is aligned to chunk size
8801 */
8802 if (info->component_size %
8803 (info->array.chunk_size/512)) {
8804 dprintf("Component size is not aligned to "
8805 "chunk size\n");
8806 break;
8807 }
8808 }
8809
8810 if (*old_raid_disks &&
8811 info->array.raid_disks != *old_raid_disks)
8812 break;
8813 *old_raid_disks = info->array.raid_disks;
8814
8815 /* All raid5 and raid0 volumes in container
8816 * have to be ready for Online Capacity Expansion
8817 * so they need to be assembled. We have already
8818 * checked that no recovery etc is happening.
8819 */
8820 result = imsm_find_array_minor_by_subdev(member->container_member,
8821 st->container_dev,
8822 &minor);
8823 if (result < 0) {
8824 dprintf("imsm: cannot find array\n");
8825 break;
8826 }
8827 devices_that_can_grow++;
8828 }
8829 sysfs_free(info);
8830 if (!member && devices_that_can_grow)
8831 ret_val = 1;
8832
8833 if (ret_val)
8834 dprintf("\tContainer operation allowed\n");
8835 else
8836 dprintf("\tError: %i\n", ret_val);
8837
8838 return ret_val;
8839 }
8840
8841 /* Function: get_spares_for_grow
8842 * Description: Allocates memory and creates list of spare devices
8843 * avaliable in container. Checks if spare drive size is acceptable.
8844 * Parameters: Pointer to the supertype structure
8845 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8846 * NULL if fail
8847 */
8848 static struct mdinfo *get_spares_for_grow(struct supertype *st)
8849 {
8850 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
8851 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
8852 }
8853
8854 /******************************************************************************
8855 * function: imsm_create_metadata_update_for_reshape
8856 * Function creates update for whole IMSM container.
8857 *
8858 ******************************************************************************/
8859 static int imsm_create_metadata_update_for_reshape(
8860 struct supertype *st,
8861 struct geo_params *geo,
8862 int old_raid_disks,
8863 struct imsm_update_reshape **updatep)
8864 {
8865 struct intel_super *super = st->sb;
8866 struct imsm_super *mpb = super->anchor;
8867 int update_memory_size = 0;
8868 struct imsm_update_reshape *u = NULL;
8869 struct mdinfo *spares = NULL;
8870 int i;
8871 int delta_disks = 0;
8872 struct mdinfo *dev;
8873
8874 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8875 geo->raid_disks);
8876
8877 delta_disks = geo->raid_disks - old_raid_disks;
8878
8879 /* size of all update data without anchor */
8880 update_memory_size = sizeof(struct imsm_update_reshape);
8881
8882 /* now add space for spare disks that we need to add. */
8883 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8884
8885 u = calloc(1, update_memory_size);
8886 if (u == NULL) {
8887 dprintf("error: "
8888 "cannot get memory for imsm_update_reshape update\n");
8889 return 0;
8890 }
8891 u->type = update_reshape_container_disks;
8892 u->old_raid_disks = old_raid_disks;
8893 u->new_raid_disks = geo->raid_disks;
8894
8895 /* now get spare disks list
8896 */
8897 spares = get_spares_for_grow(st);
8898
8899 if (spares == NULL
8900 || delta_disks > spares->array.spare_disks) {
8901 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8902 "for %s.\n", geo->dev_name);
8903 i = -1;
8904 goto abort;
8905 }
8906
8907 /* we have got spares
8908 * update disk list in imsm_disk list table in anchor
8909 */
8910 dprintf("imsm: %i spares are available.\n\n",
8911 spares->array.spare_disks);
8912
8913 dev = spares->devs;
8914 for (i = 0; i < delta_disks; i++) {
8915 struct dl *dl;
8916
8917 if (dev == NULL)
8918 break;
8919 u->new_disks[i] = makedev(dev->disk.major,
8920 dev->disk.minor);
8921 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
8922 dl->index = mpb->num_disks;
8923 mpb->num_disks++;
8924 dev = dev->next;
8925 }
8926
8927 abort:
8928 /* free spares
8929 */
8930 sysfs_free(spares);
8931
8932 dprintf("imsm: reshape update preparation :");
8933 if (i == delta_disks) {
8934 dprintf(" OK\n");
8935 *updatep = u;
8936 return update_memory_size;
8937 }
8938 free(u);
8939 dprintf(" Error\n");
8940
8941 return 0;
8942 }
8943
8944 /******************************************************************************
8945 * function: imsm_create_metadata_update_for_migration()
8946 * Creates update for IMSM array.
8947 *
8948 ******************************************************************************/
8949 static int imsm_create_metadata_update_for_migration(
8950 struct supertype *st,
8951 struct geo_params *geo,
8952 struct imsm_update_reshape_migration **updatep)
8953 {
8954 struct intel_super *super = st->sb;
8955 int update_memory_size = 0;
8956 struct imsm_update_reshape_migration *u = NULL;
8957 struct imsm_dev *dev;
8958 int previous_level = -1;
8959
8960 dprintf("imsm_create_metadata_update_for_migration(enter)"
8961 " New Level = %i\n", geo->level);
8962
8963 /* size of all update data without anchor */
8964 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8965
8966 u = calloc(1, update_memory_size);
8967 if (u == NULL) {
8968 dprintf("error: cannot get memory for "
8969 "imsm_create_metadata_update_for_migration\n");
8970 return 0;
8971 }
8972 u->type = update_reshape_migration;
8973 u->subdev = super->current_vol;
8974 u->new_level = geo->level;
8975 u->new_layout = geo->layout;
8976 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8977 u->new_disks[0] = -1;
8978 u->new_chunksize = -1;
8979
8980 dev = get_imsm_dev(super, u->subdev);
8981 if (dev) {
8982 struct imsm_map *map;
8983
8984 map = get_imsm_map(dev, MAP_0);
8985 if (map) {
8986 int current_chunk_size =
8987 __le16_to_cpu(map->blocks_per_strip) / 2;
8988
8989 if (geo->chunksize != current_chunk_size) {
8990 u->new_chunksize = geo->chunksize / 1024;
8991 dprintf("imsm: "
8992 "chunk size change from %i to %i\n",
8993 current_chunk_size, u->new_chunksize);
8994 }
8995 previous_level = map->raid_level;
8996 }
8997 }
8998 if ((geo->level == 5) && (previous_level == 0)) {
8999 struct mdinfo *spares = NULL;
9000
9001 u->new_raid_disks++;
9002 spares = get_spares_for_grow(st);
9003 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9004 free(u);
9005 sysfs_free(spares);
9006 update_memory_size = 0;
9007 dprintf("error: cannot get spare device "
9008 "for requested migration");
9009 return 0;
9010 }
9011 sysfs_free(spares);
9012 }
9013 dprintf("imsm: reshape update preparation : OK\n");
9014 *updatep = u;
9015
9016 return update_memory_size;
9017 }
9018
9019 static void imsm_update_metadata_locally(struct supertype *st,
9020 void *buf, int len)
9021 {
9022 struct metadata_update mu;
9023
9024 mu.buf = buf;
9025 mu.len = len;
9026 mu.space = NULL;
9027 mu.space_list = NULL;
9028 mu.next = NULL;
9029 imsm_prepare_update(st, &mu);
9030 imsm_process_update(st, &mu);
9031
9032 while (mu.space_list) {
9033 void **space = mu.space_list;
9034 mu.space_list = *space;
9035 free(space);
9036 }
9037 }
9038
9039 /***************************************************************************
9040 * Function: imsm_analyze_change
9041 * Description: Function analyze change for single volume
9042 * and validate if transition is supported
9043 * Parameters: Geometry parameters, supertype structure
9044 * Returns: Operation type code on success, -1 if fail
9045 ****************************************************************************/
9046 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9047 struct geo_params *geo)
9048 {
9049 struct mdinfo info;
9050 int change = -1;
9051 int check_devs = 0;
9052 int chunk;
9053 int devNumChange=0;
9054 int layout = -1;
9055
9056 getinfo_super_imsm_volume(st, &info, NULL);
9057 if ((geo->level != info.array.level) &&
9058 (geo->level >= 0) &&
9059 (geo->level != UnSet)) {
9060 switch (info.array.level) {
9061 case 0:
9062 if (geo->level == 5) {
9063 change = CH_MIGRATION;
9064 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
9065 fprintf(stderr,
9066 Name " Error. Requested Layout "
9067 "not supported (left-asymmetric layout "
9068 "is supported only)!\n");
9069 change = -1;
9070 goto analyse_change_exit;
9071 }
9072 layout = geo->layout;
9073 check_devs = 1;
9074 devNumChange = 1; /* parity disk added */
9075 } else if (geo->level == 10) {
9076 change = CH_TAKEOVER;
9077 check_devs = 1;
9078 devNumChange = 2; /* two mirrors added */
9079 layout = 0x102; /* imsm supported layout */
9080 }
9081 break;
9082 case 1:
9083 case 10:
9084 if (geo->level == 0) {
9085 change = CH_TAKEOVER;
9086 check_devs = 1;
9087 devNumChange = -(geo->raid_disks/2);
9088 layout = 0; /* imsm raid0 layout */
9089 }
9090 break;
9091 }
9092 if (change == -1) {
9093 fprintf(stderr,
9094 Name " Error. Level Migration from %d to %d "
9095 "not supported!\n",
9096 info.array.level, geo->level);
9097 goto analyse_change_exit;
9098 }
9099 } else
9100 geo->level = info.array.level;
9101
9102 if ((geo->layout != info.array.layout)
9103 && ((geo->layout != UnSet) && (geo->layout != -1))) {
9104 change = CH_MIGRATION;
9105 if ((info.array.layout == 0)
9106 && (info.array.level == 5)
9107 && (geo->layout == 5)) {
9108 /* reshape 5 -> 4 */
9109 } else if ((info.array.layout == 5)
9110 && (info.array.level == 5)
9111 && (geo->layout == 0)) {
9112 /* reshape 4 -> 5 */
9113 geo->layout = 0;
9114 geo->level = 5;
9115 } else {
9116 fprintf(stderr,
9117 Name " Error. Layout Migration from %d to %d "
9118 "not supported!\n",
9119 info.array.layout, geo->layout);
9120 change = -1;
9121 goto analyse_change_exit;
9122 }
9123 } else
9124 geo->layout = info.array.layout;
9125
9126 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
9127 && (geo->chunksize != info.array.chunk_size))
9128 change = CH_MIGRATION;
9129 else
9130 geo->chunksize = info.array.chunk_size;
9131
9132 chunk = geo->chunksize / 1024;
9133 if (!validate_geometry_imsm(st,
9134 geo->level,
9135 layout,
9136 geo->raid_disks + devNumChange,
9137 &chunk,
9138 geo->size,
9139 0, 0, 1))
9140 change = -1;
9141
9142 if (check_devs) {
9143 struct intel_super *super = st->sb;
9144 struct imsm_super *mpb = super->anchor;
9145
9146 if (mpb->num_raid_devs > 1) {
9147 fprintf(stderr,
9148 Name " Error. Cannot perform operation on %s"
9149 "- for this operation it MUST be single "
9150 "array in container\n",
9151 geo->dev_name);
9152 change = -1;
9153 }
9154 }
9155
9156 analyse_change_exit:
9157
9158 return change;
9159 }
9160
9161 int imsm_takeover(struct supertype *st, struct geo_params *geo)
9162 {
9163 struct intel_super *super = st->sb;
9164 struct imsm_update_takeover *u;
9165
9166 u = malloc(sizeof(struct imsm_update_takeover));
9167 if (u == NULL)
9168 return 1;
9169
9170 u->type = update_takeover;
9171 u->subarray = super->current_vol;
9172
9173 /* 10->0 transition */
9174 if (geo->level == 0)
9175 u->direction = R10_TO_R0;
9176
9177 /* 0->10 transition */
9178 if (geo->level == 10)
9179 u->direction = R0_TO_R10;
9180
9181 /* update metadata locally */
9182 imsm_update_metadata_locally(st, u,
9183 sizeof(struct imsm_update_takeover));
9184 /* and possibly remotely */
9185 if (st->update_tail)
9186 append_metadata_update(st, u,
9187 sizeof(struct imsm_update_takeover));
9188 else
9189 free(u);
9190
9191 return 0;
9192 }
9193
9194 static int imsm_reshape_super(struct supertype *st, long long size, int level,
9195 int layout, int chunksize, int raid_disks,
9196 int delta_disks, char *backup, char *dev,
9197 int verbose)
9198 {
9199 int ret_val = 1;
9200 struct geo_params geo;
9201
9202 dprintf("imsm: reshape_super called.\n");
9203
9204 memset(&geo, 0, sizeof(struct geo_params));
9205
9206 geo.dev_name = dev;
9207 geo.dev_id = st->devnum;
9208 geo.size = size;
9209 geo.level = level;
9210 geo.layout = layout;
9211 geo.chunksize = chunksize;
9212 geo.raid_disks = raid_disks;
9213 if (delta_disks != UnSet)
9214 geo.raid_disks += delta_disks;
9215
9216 dprintf("\tfor level : %i\n", geo.level);
9217 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
9218
9219 if (experimental() == 0)
9220 return ret_val;
9221
9222 if (st->container_dev == st->devnum) {
9223 /* On container level we can only increase number of devices. */
9224 dprintf("imsm: info: Container operation\n");
9225 int old_raid_disks = 0;
9226
9227 if (imsm_reshape_is_allowed_on_container(
9228 st, &geo, &old_raid_disks)) {
9229 struct imsm_update_reshape *u = NULL;
9230 int len;
9231
9232 len = imsm_create_metadata_update_for_reshape(
9233 st, &geo, old_raid_disks, &u);
9234
9235 if (len <= 0) {
9236 dprintf("imsm: Cannot prepare update\n");
9237 goto exit_imsm_reshape_super;
9238 }
9239
9240 ret_val = 0;
9241 /* update metadata locally */
9242 imsm_update_metadata_locally(st, u, len);
9243 /* and possibly remotely */
9244 if (st->update_tail)
9245 append_metadata_update(st, u, len);
9246 else
9247 free(u);
9248
9249 } else {
9250 fprintf(stderr, Name ": (imsm) Operation "
9251 "is not allowed on this container\n");
9252 }
9253 } else {
9254 /* On volume level we support following operations
9255 * - takeover: raid10 -> raid0; raid0 -> raid10
9256 * - chunk size migration
9257 * - migration: raid5 -> raid0; raid0 -> raid5
9258 */
9259 struct intel_super *super = st->sb;
9260 struct intel_dev *dev = super->devlist;
9261 int change, devnum;
9262 dprintf("imsm: info: Volume operation\n");
9263 /* find requested device */
9264 while (dev) {
9265 if (imsm_find_array_minor_by_subdev(
9266 dev->index, st->container_dev, &devnum) == 0
9267 && devnum == geo.dev_id)
9268 break;
9269 dev = dev->next;
9270 }
9271 if (dev == NULL) {
9272 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
9273 geo.dev_name, geo.dev_id);
9274 goto exit_imsm_reshape_super;
9275 }
9276 super->current_vol = dev->index;
9277 change = imsm_analyze_change(st, &geo);
9278 switch (change) {
9279 case CH_TAKEOVER:
9280 ret_val = imsm_takeover(st, &geo);
9281 break;
9282 case CH_MIGRATION: {
9283 struct imsm_update_reshape_migration *u = NULL;
9284 int len =
9285 imsm_create_metadata_update_for_migration(
9286 st, &geo, &u);
9287 if (len < 1) {
9288 dprintf("imsm: "
9289 "Cannot prepare update\n");
9290 break;
9291 }
9292 ret_val = 0;
9293 /* update metadata locally */
9294 imsm_update_metadata_locally(st, u, len);
9295 /* and possibly remotely */
9296 if (st->update_tail)
9297 append_metadata_update(st, u, len);
9298 else
9299 free(u);
9300 }
9301 break;
9302 default:
9303 ret_val = 1;
9304 }
9305 }
9306
9307 exit_imsm_reshape_super:
9308 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
9309 return ret_val;
9310 }
9311
9312 /*******************************************************************************
9313 * Function: wait_for_reshape_imsm
9314 * Description: Function writes new sync_max value and waits until
9315 * reshape process reach new position
9316 * Parameters:
9317 * sra : general array info
9318 * ndata : number of disks in new array's layout
9319 * Returns:
9320 * 0 : success,
9321 * 1 : there is no reshape in progress,
9322 * -1 : fail
9323 ******************************************************************************/
9324 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
9325 {
9326 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
9327 unsigned long long completed;
9328 /* to_complete : new sync_max position */
9329 unsigned long long to_complete = sra->reshape_progress;
9330 unsigned long long position_to_set = to_complete / ndata;
9331
9332 if (fd < 0) {
9333 dprintf("imsm: wait_for_reshape_imsm() "
9334 "cannot open reshape_position\n");
9335 return 1;
9336 }
9337
9338 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9339 dprintf("imsm: wait_for_reshape_imsm() "
9340 "cannot read reshape_position (no reshape in progres)\n");
9341 close(fd);
9342 return 0;
9343 }
9344
9345 if (completed > to_complete) {
9346 dprintf("imsm: wait_for_reshape_imsm() "
9347 "wrong next position to set %llu (%llu)\n",
9348 to_complete, completed);
9349 close(fd);
9350 return -1;
9351 }
9352 dprintf("Position set: %llu\n", position_to_set);
9353 if (sysfs_set_num(sra, NULL, "sync_max",
9354 position_to_set) != 0) {
9355 dprintf("imsm: wait_for_reshape_imsm() "
9356 "cannot set reshape position to %llu\n",
9357 position_to_set);
9358 close(fd);
9359 return -1;
9360 }
9361
9362 do {
9363 char action[20];
9364 fd_set rfds;
9365 FD_ZERO(&rfds);
9366 FD_SET(fd, &rfds);
9367 select(fd+1, &rfds, NULL, NULL, NULL);
9368 if (sysfs_get_str(sra, NULL, "sync_action",
9369 action, 20) > 0 &&
9370 strncmp(action, "reshape", 7) != 0)
9371 break;
9372 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9373 dprintf("imsm: wait_for_reshape_imsm() "
9374 "cannot read reshape_position (in loop)\n");
9375 close(fd);
9376 return 1;
9377 }
9378 } while (completed < to_complete);
9379 close(fd);
9380 return 0;
9381
9382 }
9383
9384 /*******************************************************************************
9385 * Function: check_degradation_change
9386 * Description: Check that array hasn't become failed.
9387 * Parameters:
9388 * info : for sysfs access
9389 * sources : source disks descriptors
9390 * degraded: previous degradation level
9391 * Returns:
9392 * degradation level
9393 ******************************************************************************/
9394 int check_degradation_change(struct mdinfo *info,
9395 int *sources,
9396 int degraded)
9397 {
9398 unsigned long long new_degraded;
9399 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
9400 if (new_degraded != (unsigned long long)degraded) {
9401 /* check each device to ensure it is still working */
9402 struct mdinfo *sd;
9403 new_degraded = 0;
9404 for (sd = info->devs ; sd ; sd = sd->next) {
9405 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9406 continue;
9407 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9408 char sbuf[20];
9409 if (sysfs_get_str(info,
9410 sd, "state", sbuf, 20) < 0 ||
9411 strstr(sbuf, "faulty") ||
9412 strstr(sbuf, "in_sync") == NULL) {
9413 /* this device is dead */
9414 sd->disk.state = (1<<MD_DISK_FAULTY);
9415 if (sd->disk.raid_disk >= 0 &&
9416 sources[sd->disk.raid_disk] >= 0) {
9417 close(sources[
9418 sd->disk.raid_disk]);
9419 sources[sd->disk.raid_disk] =
9420 -1;
9421 }
9422 new_degraded++;
9423 }
9424 }
9425 }
9426 }
9427
9428 return new_degraded;
9429 }
9430
9431 /*******************************************************************************
9432 * Function: imsm_manage_reshape
9433 * Description: Function finds array under reshape and it manages reshape
9434 * process. It creates stripes backups (if required) and sets
9435 * checheckpoits.
9436 * Parameters:
9437 * afd : Backup handle (nattive) - not used
9438 * sra : general array info
9439 * reshape : reshape parameters - not used
9440 * st : supertype structure
9441 * blocks : size of critical section [blocks]
9442 * fds : table of source device descriptor
9443 * offsets : start of array (offest per devices)
9444 * dests : not used
9445 * destfd : table of destination device descriptor
9446 * destoffsets : table of destination offsets (per device)
9447 * Returns:
9448 * 1 : success, reshape is done
9449 * 0 : fail
9450 ******************************************************************************/
9451 static int imsm_manage_reshape(
9452 int afd, struct mdinfo *sra, struct reshape *reshape,
9453 struct supertype *st, unsigned long backup_blocks,
9454 int *fds, unsigned long long *offsets,
9455 int dests, int *destfd, unsigned long long *destoffsets)
9456 {
9457 int ret_val = 0;
9458 struct intel_super *super = st->sb;
9459 struct intel_dev *dv = NULL;
9460 struct imsm_dev *dev = NULL;
9461 struct imsm_map *map_src;
9462 int migr_vol_qan = 0;
9463 int ndata, odata; /* [bytes] */
9464 int chunk; /* [bytes] */
9465 struct migr_record *migr_rec;
9466 char *buf = NULL;
9467 unsigned int buf_size; /* [bytes] */
9468 unsigned long long max_position; /* array size [bytes] */
9469 unsigned long long next_step; /* [blocks]/[bytes] */
9470 unsigned long long old_data_stripe_length;
9471 unsigned long long start_src; /* [bytes] */
9472 unsigned long long start; /* [bytes] */
9473 unsigned long long start_buf_shift; /* [bytes] */
9474 int degraded = 0;
9475 int source_layout = 0;
9476
9477 if (!fds || !offsets || !sra)
9478 goto abort;
9479
9480 /* Find volume during the reshape */
9481 for (dv = super->devlist; dv; dv = dv->next) {
9482 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9483 && dv->dev->vol.migr_state == 1) {
9484 dev = dv->dev;
9485 migr_vol_qan++;
9486 }
9487 }
9488 /* Only one volume can migrate at the same time */
9489 if (migr_vol_qan != 1) {
9490 fprintf(stderr, Name " : %s", migr_vol_qan ?
9491 "Number of migrating volumes greater than 1\n" :
9492 "There is no volume during migrationg\n");
9493 goto abort;
9494 }
9495
9496 map_src = get_imsm_map(dev, MAP_1);
9497 if (map_src == NULL)
9498 goto abort;
9499
9500 ndata = imsm_num_data_members(dev, MAP_0);
9501 odata = imsm_num_data_members(dev, MAP_1);
9502
9503 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
9504 old_data_stripe_length = odata * chunk;
9505
9506 migr_rec = super->migr_rec;
9507
9508 /* initialize migration record for start condition */
9509 if (sra->reshape_progress == 0)
9510 init_migr_record_imsm(st, dev, sra);
9511 else {
9512 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9513 dprintf("imsm: cannot restart migration when data "
9514 "are present in copy area.\n");
9515 goto abort;
9516 }
9517 }
9518
9519 /* size for data */
9520 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9521 /* extend buffer size for parity disk */
9522 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9523 /* add space for stripe aligment */
9524 buf_size += old_data_stripe_length;
9525 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9526 dprintf("imsm: Cannot allocate checpoint buffer\n");
9527 goto abort;
9528 }
9529
9530 max_position = sra->component_size * ndata;
9531 source_layout = imsm_level_to_layout(map_src->raid_level);
9532
9533 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9534 __le32_to_cpu(migr_rec->num_migr_units)) {
9535 /* current reshape position [blocks] */
9536 unsigned long long current_position =
9537 __le32_to_cpu(migr_rec->blocks_per_unit)
9538 * __le32_to_cpu(migr_rec->curr_migr_unit);
9539 unsigned long long border;
9540
9541 /* Check that array hasn't become failed.
9542 */
9543 degraded = check_degradation_change(sra, fds, degraded);
9544 if (degraded > 1) {
9545 dprintf("imsm: Abort reshape due to degradation"
9546 " level (%i)\n", degraded);
9547 goto abort;
9548 }
9549
9550 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9551
9552 if ((current_position + next_step) > max_position)
9553 next_step = max_position - current_position;
9554
9555 start = current_position * 512;
9556
9557 /* allign reading start to old geometry */
9558 start_buf_shift = start % old_data_stripe_length;
9559 start_src = start - start_buf_shift;
9560
9561 border = (start_src / odata) - (start / ndata);
9562 border /= 512;
9563 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9564 /* save critical stripes to buf
9565 * start - start address of current unit
9566 * to backup [bytes]
9567 * start_src - start address of current unit
9568 * to backup alligned to source array
9569 * [bytes]
9570 */
9571 unsigned long long next_step_filler = 0;
9572 unsigned long long copy_length = next_step * 512;
9573
9574 /* allign copy area length to stripe in old geometry */
9575 next_step_filler = ((copy_length + start_buf_shift)
9576 % old_data_stripe_length);
9577 if (next_step_filler)
9578 next_step_filler = (old_data_stripe_length
9579 - next_step_filler);
9580 dprintf("save_stripes() parameters: start = %llu,"
9581 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9582 "\tstart_in_buf_shift = %llu,"
9583 "\tnext_step_filler = %llu\n",
9584 start, start_src, copy_length,
9585 start_buf_shift, next_step_filler);
9586
9587 if (save_stripes(fds, offsets, map_src->num_members,
9588 chunk, map_src->raid_level,
9589 source_layout, 0, NULL, start_src,
9590 copy_length +
9591 next_step_filler + start_buf_shift,
9592 buf)) {
9593 dprintf("imsm: Cannot save stripes"
9594 " to buffer\n");
9595 goto abort;
9596 }
9597 /* Convert data to destination format and store it
9598 * in backup general migration area
9599 */
9600 if (save_backup_imsm(st, dev, sra,
9601 buf + start_buf_shift, copy_length)) {
9602 dprintf("imsm: Cannot save stripes to "
9603 "target devices\n");
9604 goto abort;
9605 }
9606 if (save_checkpoint_imsm(st, sra,
9607 UNIT_SRC_IN_CP_AREA)) {
9608 dprintf("imsm: Cannot write checkpoint to "
9609 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9610 goto abort;
9611 }
9612 } else {
9613 /* set next step to use whole border area */
9614 border /= next_step;
9615 if (border > 1)
9616 next_step *= border;
9617 }
9618 /* When data backed up, checkpoint stored,
9619 * kick the kernel to reshape unit of data
9620 */
9621 next_step = next_step + sra->reshape_progress;
9622 /* limit next step to array max position */
9623 if (next_step > max_position)
9624 next_step = max_position;
9625 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9626 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
9627 sra->reshape_progress = next_step;
9628
9629 /* wait until reshape finish */
9630 if (wait_for_reshape_imsm(sra, ndata) < 0) {
9631 dprintf("wait_for_reshape_imsm returned error!\n");
9632 goto abort;
9633 }
9634
9635 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9636 /* ignore error == 2, this can mean end of reshape here
9637 */
9638 dprintf("imsm: Cannot write checkpoint to "
9639 "migration record (UNIT_SRC_NORMAL)\n");
9640 goto abort;
9641 }
9642
9643 }
9644
9645 /* return '1' if done */
9646 ret_val = 1;
9647 abort:
9648 free(buf);
9649 abort_reshape(sra);
9650
9651 return ret_val;
9652 }
9653 #endif /* MDASSEMBLE */
9654
9655 struct superswitch super_imsm = {
9656 #ifndef MDASSEMBLE
9657 .examine_super = examine_super_imsm,
9658 .brief_examine_super = brief_examine_super_imsm,
9659 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9660 .export_examine_super = export_examine_super_imsm,
9661 .detail_super = detail_super_imsm,
9662 .brief_detail_super = brief_detail_super_imsm,
9663 .write_init_super = write_init_super_imsm,
9664 .validate_geometry = validate_geometry_imsm,
9665 .add_to_super = add_to_super_imsm,
9666 .remove_from_super = remove_from_super_imsm,
9667 .detail_platform = detail_platform_imsm,
9668 .kill_subarray = kill_subarray_imsm,
9669 .update_subarray = update_subarray_imsm,
9670 .load_container = load_container_imsm,
9671 .default_geometry = default_geometry_imsm,
9672 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9673 .reshape_super = imsm_reshape_super,
9674 .manage_reshape = imsm_manage_reshape,
9675 .recover_backup = recover_backup_imsm,
9676 #endif
9677 .match_home = match_home_imsm,
9678 .uuid_from_super= uuid_from_super_imsm,
9679 .getinfo_super = getinfo_super_imsm,
9680 .getinfo_super_disks = getinfo_super_disks_imsm,
9681 .update_super = update_super_imsm,
9682
9683 .avail_size = avail_size_imsm,
9684 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
9685
9686 .compare_super = compare_super_imsm,
9687
9688 .load_super = load_super_imsm,
9689 .init_super = init_super_imsm,
9690 .store_super = store_super_imsm,
9691 .free_super = free_super_imsm,
9692 .match_metadata_desc = match_metadata_desc_imsm,
9693 .container_content = container_content_imsm,
9694
9695
9696 .external = 1,
9697 .name = "imsm",
9698
9699 #ifndef MDASSEMBLE
9700 /* for mdmon */
9701 .open_new = imsm_open_new,
9702 .set_array_state= imsm_set_array_state,
9703 .set_disk = imsm_set_disk,
9704 .sync_metadata = imsm_sync_metadata,
9705 .activate_spare = imsm_activate_spare,
9706 .process_update = imsm_process_update,
9707 .prepare_update = imsm_prepare_update,
9708 #endif /* MDASSEMBLE */
9709 };