]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: handle degraded->normal transitions in set_disk
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2007 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "mdadm.h"
21 #include "mdmon.h"
22 #include <values.h>
23 #include <scsi/sg.h>
24 #include <ctype.h>
25
26 /* MPB == Metadata Parameter Block */
27 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
28 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
29 #define MPB_VERSION_RAID0 "1.0.00"
30 #define MPB_VERSION_RAID1 "1.1.00"
31 #define MPB_VERSION_RAID5 "1.2.02"
32 #define MAX_SIGNATURE_LENGTH 32
33 #define MAX_RAID_SERIAL_LEN 16
34 #define MPB_SECTOR_CNT 418
35 #define IMSM_RESERVED_SECTORS 4096
36
37 /* Disk configuration info. */
38 #define IMSM_MAX_DEVICES 255
39 struct imsm_disk {
40 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
41 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
42 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
43 __u32 status; /* 0xF0 - 0xF3 */
44 #define SPARE_DISK 0x01 /* Spare */
45 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
46 #define FAILED_DISK 0x04 /* Permanent failure */
47 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
48
49 #define IMSM_DISK_FILLERS 5
50 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
51 };
52
53 /* RAID map configuration infos. */
54 struct imsm_map {
55 __u32 pba_of_lba0; /* start address of partition */
56 __u32 blocks_per_member;/* blocks per member */
57 __u32 num_data_stripes; /* number of data stripes */
58 __u16 blocks_per_strip;
59 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
60 #define IMSM_T_STATE_NORMAL 0
61 #define IMSM_T_STATE_UNINITIALIZED 1
62 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
63 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
64 __u8 raid_level;
65 #define IMSM_T_RAID0 0
66 #define IMSM_T_RAID1 1
67 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
68 __u8 num_members; /* number of member disks */
69 __u8 reserved[3];
70 __u32 filler[7]; /* expansion area */
71 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
72 top byte special */
73 } __attribute__ ((packed));
74
75 struct imsm_vol {
76 __u32 reserved[2];
77 __u8 migr_state; /* Normal or Migrating */
78 __u8 migr_type; /* Initializing, Rebuilding, ... */
79 __u8 dirty;
80 __u8 fill[1];
81 __u32 filler[5];
82 struct imsm_map map[1];
83 /* here comes another one if migr_state */
84 } __attribute__ ((packed));
85
86 struct imsm_dev {
87 __u8 volume[MAX_RAID_SERIAL_LEN];
88 __u32 size_low;
89 __u32 size_high;
90 __u32 status; /* Persistent RaidDev status */
91 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
92 #define IMSM_DEV_FILLERS 12
93 __u32 filler[IMSM_DEV_FILLERS];
94 struct imsm_vol vol;
95 } __attribute__ ((packed));
96
97 struct imsm_super {
98 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
99 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
100 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
101 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
102 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
103 __u32 reserved[2]; /* 0x30 - 0x37 */
104 __u8 num_disks; /* 0x38 Number of configured disks */
105 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
106 __u8 fill[2]; /* 0x3A - 0x3B */
107 #define IMSM_FILLERS 39
108 __u32 filler[IMSM_FILLERS]; /* 0x3C - 0xD7 RAID_MPB_FILLERS */
109 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
110 /* here comes imsm_dev[num_raid_devs] */
111 } __attribute__ ((packed));
112
113 #ifndef MDASSEMBLE
114 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
115 #endif
116
117 static unsigned int sector_count(__u32 bytes)
118 {
119 return ((bytes + (512-1)) & (~(512-1))) / 512;
120 }
121
122 static unsigned int mpb_sectors(struct imsm_super *mpb)
123 {
124 return sector_count(__le32_to_cpu(mpb->mpb_size));
125 }
126
127 /* internal representation of IMSM metadata */
128 struct intel_super {
129 union {
130 struct imsm_super *mpb;
131 void *buf;
132 };
133 int updates_pending; /* count of pending updates for mdmon */
134 int creating_imsm; /* flag to indicate container creation */
135 int current_vol; /* index of raid device undergoing creation */
136 struct dl {
137 struct dl *next;
138 int index;
139 __u8 serial[MAX_RAID_SERIAL_LEN];
140 int major, minor;
141 char *devname;
142 int fd;
143 } *disks;
144 };
145
146 struct extent {
147 unsigned long long start, size;
148 };
149
150 /* definition of messages passed to imsm_process_update */
151 enum imsm_update_type {
152 update_activate_spare,
153 update_create_array,
154 };
155
156 struct imsm_update_activate_spare {
157 enum imsm_update_type type;
158 int disk_idx;
159 int slot;
160 int array;
161 struct imsm_update_activate_spare *next;
162 };
163
164 struct imsm_update_create_array {
165 enum imsm_update_type type;
166 struct imsm_dev dev;
167 int dev_idx;
168 };
169
170 static struct supertype *match_metadata_desc_imsm(char *arg)
171 {
172 struct supertype *st;
173
174 if (strcmp(arg, "imsm") != 0 &&
175 strcmp(arg, "default") != 0
176 )
177 return NULL;
178
179 st = malloc(sizeof(*st));
180 memset(st, 0, sizeof(*st));
181 st->ss = &super_imsm;
182 st->max_devs = IMSM_MAX_DEVICES;
183 st->minor_version = 0;
184 st->sb = NULL;
185 return st;
186 }
187
188 static __u8 *get_imsm_version(struct imsm_super *mpb)
189 {
190 return &mpb->sig[MPB_SIG_LEN];
191 }
192
193 static struct imsm_disk *get_imsm_disk(struct imsm_super *mpb, __u8 index)
194 {
195 if (index > mpb->num_disks - 1)
196 return NULL;
197 return &mpb->disk[index];
198 }
199
200 static __u32 gen_imsm_checksum(struct imsm_super *mpb)
201 {
202 __u32 end = mpb->mpb_size / sizeof(end);
203 __u32 *p = (__u32 *) mpb;
204 __u32 sum = 0;
205
206 while (end--)
207 sum += __le32_to_cpu(*p++);
208
209 return sum - __le32_to_cpu(mpb->check_sum);
210 }
211
212 static size_t sizeof_imsm_dev(struct imsm_dev *dev)
213 {
214 size_t size = sizeof(*dev);
215
216 /* each map has disk_ord_tbl[num_members - 1] additional space */
217 size += sizeof(__u32) * (dev->vol.map[0].num_members - 1);
218
219 /* migrating means an additional map */
220 if (dev->vol.migr_state) {
221 size += sizeof(struct imsm_map);
222 size += sizeof(__u32) * (dev->vol.map[1].num_members - 1);
223 }
224
225 return size;
226 }
227
228 static struct imsm_dev *get_imsm_dev(struct imsm_super *mpb, __u8 index)
229 {
230 int offset;
231 int i;
232 void *_mpb = mpb;
233
234 if (index > mpb->num_raid_devs - 1)
235 return NULL;
236
237 /* devices start after all disks */
238 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
239
240 for (i = 0; i <= index; i++)
241 if (i == index)
242 return _mpb + offset;
243 else
244 offset += sizeof_imsm_dev(_mpb + offset);
245
246 return NULL;
247 }
248
249 static __u32 get_imsm_disk_idx(struct imsm_map *map, int slot)
250 {
251 __u32 *ord_tbl = &map->disk_ord_tbl[slot];
252
253 /* top byte is 'special' */
254 return __le32_to_cpu(*ord_tbl & ~(0xff << 24));
255 }
256
257 static int get_imsm_raid_level(struct imsm_map *map)
258 {
259 if (map->raid_level == 1) {
260 if (map->num_members == 2)
261 return 1;
262 else
263 return 10;
264 }
265
266 return map->raid_level;
267 }
268
269 static int cmp_extent(const void *av, const void *bv)
270 {
271 const struct extent *a = av;
272 const struct extent *b = bv;
273 if (a->start < b->start)
274 return -1;
275 if (a->start > b->start)
276 return 1;
277 return 0;
278 }
279
280 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
281 {
282 /* find a list of used extents on the given physical device */
283 struct imsm_super *mpb = super->mpb;
284 struct imsm_disk *disk;
285 struct extent *rv, *e;
286 int i, j;
287 int memberships = 0;
288
289 disk = get_imsm_disk(mpb, dl->index);
290 if (!disk)
291 return NULL;
292
293 for (i = 0; i < mpb->num_raid_devs; i++) {
294 struct imsm_dev *dev = get_imsm_dev(mpb, i);
295 struct imsm_map *map = dev->vol.map;
296
297 for (j = 0; j < map->num_members; j++) {
298 __u32 index = get_imsm_disk_idx(map, j);
299
300 if (index == dl->index)
301 memberships++;
302 }
303 }
304 rv = malloc(sizeof(struct extent) * (memberships + 1));
305 if (!rv)
306 return NULL;
307 e = rv;
308
309 for (i = 0; i < mpb->num_raid_devs; i++) {
310 struct imsm_dev *dev = get_imsm_dev(mpb, i);
311 struct imsm_map *map = dev->vol.map;
312
313 for (j = 0; j < map->num_members; j++) {
314 __u32 index = get_imsm_disk_idx(map, j);
315
316 if (index == dl->index) {
317 e->start = __le32_to_cpu(map->pba_of_lba0);
318 e->size = __le32_to_cpu(map->blocks_per_member);
319 e++;
320 }
321 }
322 }
323 qsort(rv, memberships, sizeof(*rv), cmp_extent);
324
325 e->start = __le32_to_cpu(disk->total_blocks) -
326 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
327 e->size = 0;
328 return rv;
329 }
330
331 #ifndef MDASSEMBLE
332 static void print_imsm_dev(struct imsm_dev *dev, int index)
333 {
334 __u64 sz;
335 int slot;
336 struct imsm_map *map = dev->vol.map;
337
338 printf("\n");
339 printf("[%s]:\n", dev->volume);
340 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
341 printf(" Members : %d\n", map->num_members);
342 for (slot = 0; slot < map->num_members; slot++)
343 if (index == get_imsm_disk_idx(map, slot))
344 break;
345 if (slot < map->num_members)
346 printf(" This Slot : %d\n", slot);
347 else
348 printf(" This Slot : ?\n");
349 sz = __le32_to_cpu(dev->size_high);
350 sz <<= 32;
351 sz += __le32_to_cpu(dev->size_low);
352 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
353 human_size(sz * 512));
354 sz = __le32_to_cpu(map->blocks_per_member);
355 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
356 human_size(sz * 512));
357 printf(" Sector Offset : %u\n",
358 __le32_to_cpu(map->pba_of_lba0));
359 printf(" Num Stripes : %u\n",
360 __le32_to_cpu(map->num_data_stripes));
361 printf(" Chunk Size : %u KiB\n",
362 __le16_to_cpu(map->blocks_per_strip) / 2);
363 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
364 printf(" Migrate State : %s\n", dev->vol.migr_state ? "migrating" : "idle");
365 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
366 printf(" Map State : %s\n", map_state_str[map->map_state]);
367 }
368
369 static void print_imsm_disk(struct imsm_super *mpb, int index)
370 {
371 struct imsm_disk *disk = get_imsm_disk(mpb, index);
372 char str[MAX_RAID_SERIAL_LEN];
373 __u32 s;
374 __u64 sz;
375
376 printf("\n");
377 snprintf(str, MAX_RAID_SERIAL_LEN, "%s", disk->serial);
378 printf(" Disk%02d Serial : %s\n", index, str);
379 s = __le32_to_cpu(disk->status);
380 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
381 s&CONFIGURED_DISK ? " active" : "",
382 s&FAILED_DISK ? " failed" : "",
383 s&USABLE_DISK ? " usable" : "");
384 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
385 sz = __le32_to_cpu(disk->total_blocks) -
386 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS * mpb->num_raid_devs);
387 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
388 human_size(sz * 512));
389 }
390
391 static void examine_super_imsm(struct supertype *st, char *homehost)
392 {
393 struct intel_super *super = st->sb;
394 struct imsm_super *mpb = super->mpb;
395 char str[MAX_SIGNATURE_LENGTH];
396 int i;
397 __u32 sum;
398
399 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
400 printf(" Magic : %s\n", str);
401 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
402 printf(" Version : %s\n", get_imsm_version(mpb));
403 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
404 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
405 sum = __le32_to_cpu(mpb->check_sum);
406 printf(" Checksum : %08x %s\n", sum,
407 gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
408 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
409 printf(" Disks : %d\n", mpb->num_disks);
410 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
411 print_imsm_disk(mpb, super->disks->index);
412 for (i = 0; i < mpb->num_raid_devs; i++)
413 print_imsm_dev(get_imsm_dev(mpb, i), super->disks->index);
414 for (i = 0; i < mpb->num_disks; i++) {
415 if (i == super->disks->index)
416 continue;
417 print_imsm_disk(mpb, i);
418 }
419 }
420
421 static void brief_examine_super_imsm(struct supertype *st)
422 {
423 struct intel_super *super = st->sb;
424 struct imsm_super *mpb = super->mpb;
425
426 printf("ARRAY /dev/imsm family=%08x metadata=external:imsm\n",
427 __le32_to_cpu(mpb->family_num));
428 }
429
430 static void detail_super_imsm(struct supertype *st, char *homehost)
431 {
432 printf("%s\n", __FUNCTION__);
433 }
434
435 static void brief_detail_super_imsm(struct supertype *st)
436 {
437 printf("%s\n", __FUNCTION__);
438 }
439 #endif
440
441 static int match_home_imsm(struct supertype *st, char *homehost)
442 {
443 printf("%s\n", __FUNCTION__);
444
445 return 0;
446 }
447
448 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
449 {
450 printf("%s\n", __FUNCTION__);
451 }
452
453 #if 0
454 static void
455 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
456 {
457 __u8 *v = get_imsm_version(mpb);
458 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
459 char major[] = { 0, 0, 0 };
460 char minor[] = { 0 ,0, 0 };
461 char patch[] = { 0, 0, 0 };
462 char *ver_parse[] = { major, minor, patch };
463 int i, j;
464
465 i = j = 0;
466 while (*v != '\0' && v < end) {
467 if (*v != '.' && j < 2)
468 ver_parse[i][j++] = *v;
469 else {
470 i++;
471 j = 0;
472 }
473 v++;
474 }
475
476 *m = strtol(minor, NULL, 0);
477 *p = strtol(patch, NULL, 0);
478 }
479 #endif
480
481 static int imsm_level_to_layout(int level)
482 {
483 switch (level) {
484 case 0:
485 case 1:
486 return 0;
487 case 5:
488 case 6:
489 return ALGORITHM_LEFT_SYMMETRIC;
490 case 10:
491 return 0x102; //FIXME is this correct?
492 }
493 return -1;
494 }
495
496 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
497 {
498 struct intel_super *super = st->sb;
499 struct imsm_super *mpb = super->mpb;
500 struct imsm_dev *dev = get_imsm_dev(mpb, super->current_vol);
501 struct imsm_map *map = &dev->vol.map[0];
502
503 info->container_member = super->current_vol;
504 info->array.raid_disks = map->num_members;
505 info->array.level = get_imsm_raid_level(map);
506 info->array.layout = imsm_level_to_layout(info->array.level);
507 info->array.md_minor = -1;
508 info->array.ctime = 0;
509 info->array.utime = 0;
510 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip * 512);
511
512 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
513 info->component_size = __le32_to_cpu(map->blocks_per_member);
514
515 info->disk.major = 0;
516 info->disk.minor = 0;
517
518 sprintf(info->text_version, "/%s/%d",
519 devnum2devname(st->container_dev),
520 info->container_member);
521 }
522
523
524 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
525 {
526 struct intel_super *super = st->sb;
527 struct imsm_super *mpb = super->mpb;
528 struct imsm_disk *disk;
529 __u32 s;
530
531 if (super->current_vol >= 0) {
532 getinfo_super_imsm_volume(st, info);
533 return;
534 }
535 info->array.raid_disks = mpb->num_disks;
536 info->array.level = LEVEL_CONTAINER;
537 info->array.layout = 0;
538 info->array.md_minor = -1;
539 info->array.ctime = 0; /* N/A for imsm */
540 info->array.utime = 0;
541 info->array.chunk_size = 0;
542
543 info->disk.major = 0;
544 info->disk.minor = 0;
545 info->disk.raid_disk = -1;
546 info->reshape_active = 0;
547 strcpy(info->text_version, "imsm");
548 info->disk.number = -1;
549 info->disk.state = 0;
550
551 if (super->disks) {
552 disk = get_imsm_disk(mpb, super->disks->index);
553 info->disk.number = super->disks->index;
554 info->disk.raid_disk = super->disks->index;
555 info->data_offset = __le32_to_cpu(disk->total_blocks) -
556 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
557 info->component_size = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
558 s = __le32_to_cpu(disk->status);
559 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
560 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
561 info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
562 }
563 }
564
565 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
566 char *update, char *devname, int verbose,
567 int uuid_set, char *homehost)
568 {
569 /* FIXME */
570
571 /* For 'assemble' and 'force' we need to return non-zero if any
572 * change was made. For others, the return value is ignored.
573 * Update options are:
574 * force-one : This device looks a bit old but needs to be included,
575 * update age info appropriately.
576 * assemble: clear any 'faulty' flag to allow this device to
577 * be assembled.
578 * force-array: Array is degraded but being forced, mark it clean
579 * if that will be needed to assemble it.
580 *
581 * newdev: not used ????
582 * grow: Array has gained a new device - this is currently for
583 * linear only
584 * resync: mark as dirty so a resync will happen.
585 * name: update the name - preserving the homehost
586 *
587 * Following are not relevant for this imsm:
588 * sparc2.2 : update from old dodgey metadata
589 * super-minor: change the preferred_minor number
590 * summaries: update redundant counters.
591 * uuid: Change the uuid of the array to match watch is given
592 * homehost: update the recorded homehost
593 * _reshape_progress: record new reshape_progress position.
594 */
595 int rv = 0;
596 //struct intel_super *super = st->sb;
597 //struct imsm_super *mpb = super->mpb;
598
599 if (strcmp(update, "grow") == 0) {
600 }
601 if (strcmp(update, "resync") == 0) {
602 /* dev->vol.dirty = 1; */
603 }
604
605 /* IMSM has no concept of UUID or homehost */
606
607 return rv;
608 }
609
610 static size_t disks_to_mpb_size(int disks)
611 {
612 size_t size;
613
614 size = sizeof(struct imsm_super);
615 size += (disks - 1) * sizeof(struct imsm_disk);
616 size += 2 * sizeof(struct imsm_dev);
617 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
618 size += (4 - 2) * sizeof(struct imsm_map);
619 /* 4 possible disk_ord_tbl's */
620 size += 4 * (disks - 1) * sizeof(__u32);
621
622 return size;
623 }
624
625 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
626 {
627 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
628 return 0;
629
630 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
631 }
632
633 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
634 {
635 /*
636 * return:
637 * 0 same, or first was empty, and second was copied
638 * 1 second had wrong number
639 * 2 wrong uuid
640 * 3 wrong other info
641 */
642 struct intel_super *first = st->sb;
643 struct intel_super *sec = tst->sb;
644
645 if (!first) {
646 st->sb = tst->sb;
647 tst->sb = NULL;
648 return 0;
649 }
650
651 if (memcmp(first->mpb->sig, sec->mpb->sig, MAX_SIGNATURE_LENGTH) != 0)
652 return 3;
653 if (first->mpb->family_num != sec->mpb->family_num)
654 return 3;
655 if (first->mpb->mpb_size != sec->mpb->mpb_size)
656 return 3;
657 if (first->mpb->check_sum != sec->mpb->check_sum)
658 return 3;
659
660 return 0;
661 }
662
663 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
664
665 static int imsm_read_serial(int fd, char *devname,
666 __u8 serial[MAX_RAID_SERIAL_LEN])
667 {
668 unsigned char scsi_serial[255];
669 int sg_fd;
670 int rv;
671 int rsp_len;
672 int i, cnt;
673
674 memset(scsi_serial, 0, sizeof(scsi_serial));
675
676 sg_fd = sysfs_disk_to_sg(fd);
677 if (sg_fd < 0) {
678 if (devname)
679 fprintf(stderr,
680 Name ": Failed to open sg interface for %s: %s\n",
681 devname, strerror(errno));
682 return 1;
683 }
684
685 rv = scsi_get_serial(sg_fd, scsi_serial, sizeof(scsi_serial));
686 close(sg_fd);
687
688 if (rv != 0) {
689 if (devname)
690 fprintf(stderr,
691 Name ": Failed to retrieve serial for %s\n",
692 devname);
693 return rv;
694 }
695
696 rsp_len = scsi_serial[3];
697 for (i = 0, cnt = 0; i < rsp_len; i++) {
698 if (!isspace(scsi_serial[4 + i]))
699 serial[cnt++] = scsi_serial[4 + i];
700 if (cnt == MAX_RAID_SERIAL_LEN)
701 break;
702 }
703
704 serial[MAX_RAID_SERIAL_LEN - 1] = '\0';
705
706 return 0;
707 }
708
709 static int
710 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
711 {
712 struct imsm_super *mpb = super->mpb;
713 struct dl *dl;
714 struct stat stb;
715 struct imsm_disk *disk;
716 int rv;
717 int i;
718
719 dl = malloc(sizeof(*dl));
720 if (!dl) {
721 if (devname)
722 fprintf(stderr,
723 Name ": failed to allocate disk buffer for %s\n",
724 devname);
725 return 2;
726 }
727 memset(dl, 0, sizeof(*dl));
728
729 fstat(fd, &stb);
730 dl->major = major(stb.st_rdev);
731 dl->minor = minor(stb.st_rdev);
732 dl->next = super->disks;
733 dl->fd = keep_fd ? fd : -1;
734 dl->devname = devname ? strdup(devname) : NULL;
735 dl->index = -1;
736 super->disks = dl;
737 rv = imsm_read_serial(fd, devname, dl->serial);
738
739 if (rv != 0)
740 return 2;
741
742 /* look up this disk's index */
743 for (i = 0; i < mpb->num_disks; i++) {
744 disk = get_imsm_disk(mpb, i);
745
746 if (memcmp(disk->serial, dl->serial, MAX_RAID_SERIAL_LEN) == 0)
747 break;
748 }
749
750 if (i > mpb->num_disks)
751 return 2;
752
753 dl->index = i;
754
755 return 0;
756 }
757
758 /* load_imsm_mpb - read matrix metadata
759 * allocates super->mpb to be freed by free_super
760 */
761 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
762 {
763 unsigned long long dsize;
764 size_t len, mpb_size;
765 unsigned long long sectors;
766 struct stat;
767 struct imsm_super *anchor;
768 __u32 check_sum;
769
770 get_dev_size(fd, NULL, &dsize);
771
772 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
773 if (devname)
774 fprintf(stderr,
775 Name ": Cannot seek to anchor block on %s: %s\n",
776 devname, strerror(errno));
777 return 1;
778 }
779
780 len = 512;
781 if (posix_memalign((void**)&anchor, 512, len) != 0) {
782 if (devname)
783 fprintf(stderr,
784 Name ": Failed to allocate imsm anchor buffer"
785 " on %s\n", devname);
786 return 1;
787 }
788 if (read(fd, anchor, len) != len) {
789 if (devname)
790 fprintf(stderr,
791 Name ": Cannot read anchor block on %s: %s\n",
792 devname, strerror(errno));
793 free(anchor);
794 return 1;
795 }
796
797 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
798 if (devname)
799 fprintf(stderr,
800 Name ": no IMSM anchor on %s\n", devname);
801 free(anchor);
802 return 2;
803 }
804
805 mpb_size = __le32_to_cpu(anchor->mpb_size);
806 mpb_size = ROUND_UP(mpb_size, 512);
807 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
808 if (devname)
809 fprintf(stderr,
810 Name ": unable to allocate %zu byte mpb buffer\n",
811 mpb_size);
812 free(anchor);
813 return 2;
814 }
815 memcpy(super->buf, anchor, len);
816
817 sectors = mpb_sectors(anchor) - 1;
818 free(anchor);
819 if (!sectors)
820 return load_imsm_disk(fd, super, devname, 0);
821
822 /* read the extended mpb */
823 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
824 if (devname)
825 fprintf(stderr,
826 Name ": Cannot seek to extended mpb on %s: %s\n",
827 devname, strerror(errno));
828 return 1;
829 }
830
831 len = mpb_size - 512;
832 if (read(fd, super->buf + 512, len) != len) {
833 if (devname)
834 fprintf(stderr,
835 Name ": Cannot read extended mpb on %s: %s\n",
836 devname, strerror(errno));
837 return 2;
838 }
839
840 check_sum = gen_imsm_checksum(super->mpb);
841 if (check_sum != __le32_to_cpu(super->mpb->check_sum)) {
842 if (devname)
843 fprintf(stderr,
844 Name ": IMSM checksum %x != %x on %s\n",
845 check_sum, __le32_to_cpu(super->mpb->check_sum),
846 devname);
847 return 2;
848 }
849
850 return load_imsm_disk(fd, super, devname, 0);
851 }
852
853 static void free_imsm_disks(struct intel_super *super)
854 {
855 while (super->disks) {
856 struct dl *d = super->disks;
857
858 super->disks = d->next;
859 if (d->fd >= 0)
860 close(d->fd);
861 if (d->devname)
862 free(d->devname);
863 free(d);
864 }
865 }
866
867 static void free_imsm(struct intel_super *super)
868 {
869 if (super->mpb)
870 free(super->mpb);
871 free_imsm_disks(super);
872 free(super);
873 }
874
875
876 static void free_super_imsm(struct supertype *st)
877 {
878 struct intel_super *super = st->sb;
879
880 if (!super)
881 return;
882
883 free_imsm(super);
884 st->sb = NULL;
885 }
886
887 static struct intel_super *alloc_super(int creating_imsm)
888 {
889 struct intel_super *super = malloc(sizeof(*super));
890
891 if (super) {
892 memset(super, 0, sizeof(*super));
893 super->creating_imsm = creating_imsm;
894 super->current_vol = -1;
895 }
896
897 return super;
898 }
899
900 #ifndef MDASSEMBLE
901 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
902 char *devname, int keep_fd)
903 {
904 struct mdinfo *sra;
905 struct intel_super *super;
906 struct mdinfo *sd, *best = NULL;
907 __u32 bestgen = 0;
908 __u32 gen;
909 char nm[20];
910 int dfd;
911 int rv;
912
913 /* check if this disk is a member of an active array */
914 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
915 if (!sra)
916 return 1;
917
918 if (sra->array.major_version != -1 ||
919 sra->array.minor_version != -2 ||
920 strcmp(sra->text_version, "imsm") != 0)
921 return 1;
922
923 super = alloc_super(0);
924 if (!super)
925 return 1;
926
927 /* find the most up to date disk in this array */
928 for (sd = sra->devs; sd; sd = sd->next) {
929 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
930 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
931 if (!dfd) {
932 free_imsm(super);
933 return 2;
934 }
935 rv = load_imsm_mpb(dfd, super, NULL);
936 if (!keep_fd)
937 close(dfd);
938 if (rv == 0) {
939 gen = __le32_to_cpu(super->mpb->generation_num);
940 if (!best || gen > bestgen) {
941 bestgen = gen;
942 best = sd;
943 }
944 } else {
945 free_imsm(super);
946 return 2;
947 }
948 }
949
950 if (!best) {
951 free_imsm(super);
952 return 1;
953 }
954
955 /* load the most up to date anchor */
956 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
957 dfd = dev_open(nm, O_RDONLY);
958 if (!dfd) {
959 free_imsm(super);
960 return 1;
961 }
962 rv = load_imsm_mpb(dfd, super, NULL);
963 close(dfd);
964 if (rv != 0) {
965 free_imsm(super);
966 return 2;
967 }
968
969 /* reset the disk list */
970 free_imsm_disks(super);
971
972 /* populate disk list */
973 for (sd = sra->devs ; sd ; sd = sd->next) {
974 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
975 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
976 if (!dfd) {
977 free_imsm(super);
978 return 2;
979 }
980 load_imsm_disk(dfd, super, NULL, keep_fd);
981 if (!keep_fd)
982 close(dfd);
983 }
984
985 if (st->subarray[0]) {
986 if (atoi(st->subarray) <= super->mpb->num_raid_devs)
987 super->current_vol = atoi(st->subarray);
988 else
989 return 1;
990 }
991
992 *sbp = super;
993 if (st->ss == NULL) {
994 st->ss = &super_imsm;
995 st->minor_version = 0;
996 st->max_devs = IMSM_MAX_DEVICES;
997 st->container_dev = fd2devnum(fd);
998 }
999
1000 return 0;
1001 }
1002 #endif
1003
1004 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1005 {
1006 struct intel_super *super;
1007 int rv;
1008
1009 #ifndef MDASSEMBLE
1010 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1011 return 0;
1012 #endif
1013 if (st->subarray[0])
1014 return 1; /* FIXME */
1015
1016 super = alloc_super(0);
1017 if (!super) {
1018 fprintf(stderr,
1019 Name ": malloc of %zu failed.\n",
1020 sizeof(*super));
1021 return 1;
1022 }
1023
1024 rv = load_imsm_mpb(fd, super, devname);
1025
1026 if (rv) {
1027 if (devname)
1028 fprintf(stderr,
1029 Name ": Failed to load all information "
1030 "sections on %s\n", devname);
1031 free_imsm(super);
1032 return rv;
1033 }
1034
1035 st->sb = super;
1036 if (st->ss == NULL) {
1037 st->ss = &super_imsm;
1038 st->minor_version = 0;
1039 st->max_devs = IMSM_MAX_DEVICES;
1040 }
1041
1042 return 0;
1043 }
1044
1045 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1046 {
1047 if (info->level == 1)
1048 return 128;
1049 return info->chunk_size >> 9;
1050 }
1051
1052 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1053 {
1054 __u32 num_stripes;
1055
1056 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1057 if (info->level == 1)
1058 num_stripes /= 2;
1059
1060 return num_stripes;
1061 }
1062
1063 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1064 unsigned long long size, char *name,
1065 char *homehost, int *uuid)
1066 {
1067 /* We are creating a volume inside a pre-existing container.
1068 * so st->sb is already set.
1069 */
1070 struct intel_super *super = st->sb;
1071 struct imsm_super *mpb = super->mpb;
1072 struct imsm_dev *dev;
1073 struct imsm_vol *vol;
1074 struct imsm_map *map;
1075 int idx = mpb->num_raid_devs;
1076 int i;
1077 unsigned long long array_blocks;
1078 __u32 offset = 0;
1079 size_t size_old, size_new;
1080
1081 if (mpb->num_raid_devs >= 2) {
1082 fprintf(stderr, Name": This imsm-container already has the "
1083 "maximum of 2 volumes\n");
1084 return 0;
1085 }
1086
1087 /* ensure the mpb is large enough for the new data */
1088 size_old = __le32_to_cpu(mpb->mpb_size);
1089 size_new = disks_to_mpb_size(info->nr_disks);
1090 if (size_new > size_old) {
1091 void *mpb_new;
1092 size_t size_round = ROUND_UP(size_new, 512);
1093
1094 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1095 fprintf(stderr, Name": could not allocate new mpb\n");
1096 return 0;
1097 }
1098 memcpy(mpb_new, mpb, size_old);
1099 free(mpb);
1100 mpb = mpb_new;
1101 super->mpb = mpb_new;
1102 mpb->mpb_size = __cpu_to_le32(size_new);
1103 memset(mpb_new + size_old, 0, size_round - size_old);
1104 }
1105 super->current_vol = idx;
1106 sprintf(st->subarray, "%d", idx);
1107 mpb->num_raid_devs++;
1108 dev = get_imsm_dev(mpb, idx);
1109 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1110 array_blocks = calc_array_size(info->level, info->raid_disks,
1111 info->layout, info->chunk_size,
1112 info->size*2);
1113 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1114 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1115 dev->status = __cpu_to_le32(0);
1116 dev->reserved_blocks = __cpu_to_le32(0);
1117 vol = &dev->vol;
1118 vol->migr_state = 0;
1119 vol->migr_type = 0;
1120 vol->dirty = 0;
1121 for (i = 0; i < idx; i++) {
1122 struct imsm_dev *prev = get_imsm_dev(mpb, i);
1123 struct imsm_map *pmap = &prev->vol.map[0];
1124
1125 offset += __le32_to_cpu(pmap->blocks_per_member);
1126 offset += IMSM_RESERVED_SECTORS;
1127 }
1128 map = &vol->map[0];
1129 map->pba_of_lba0 = __cpu_to_le32(offset);
1130 map->blocks_per_member = __cpu_to_le32(info->size * 2);
1131 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1132 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1133 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1134 IMSM_T_STATE_NORMAL;
1135
1136 if (info->level == 1 && info->raid_disks > 2) {
1137 fprintf(stderr, Name": imsm does not support more than 2 disks"
1138 "in a raid1 volume\n");
1139 return 0;
1140 }
1141 if (info->level == 10)
1142 map->raid_level = 1;
1143 else
1144 map->raid_level = info->level;
1145
1146 map->num_members = info->raid_disks;
1147 for (i = 0; i < map->num_members; i++) {
1148 /* initialized in add_to_super */
1149 map->disk_ord_tbl[i] = __cpu_to_le32(0);
1150 }
1151
1152 return 1;
1153 }
1154
1155 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1156 unsigned long long size, char *name,
1157 char *homehost, int *uuid)
1158 {
1159 /* This is primarily called by Create when creating a new array.
1160 * We will then get add_to_super called for each component, and then
1161 * write_init_super called to write it out to each device.
1162 * For IMSM, Create can create on fresh devices or on a pre-existing
1163 * array.
1164 * To create on a pre-existing array a different method will be called.
1165 * This one is just for fresh drives.
1166 */
1167 struct intel_super *super;
1168 struct imsm_super *mpb;
1169 size_t mpb_size;
1170
1171 if (!info) {
1172 st->sb = NULL;
1173 return 0;
1174 }
1175 if (st->sb)
1176 return init_super_imsm_volume(st, info, size, name, homehost,
1177 uuid);
1178
1179 super = alloc_super(1);
1180 if (!super)
1181 return 0;
1182 mpb_size = disks_to_mpb_size(info->nr_disks);
1183 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1184 free(super);
1185 return 0;
1186 }
1187 mpb = super->buf;
1188 memset(mpb, 0, mpb_size);
1189
1190 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1191 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1192 strlen(MPB_VERSION_RAID5));
1193 mpb->mpb_size = mpb_size;
1194
1195 st->sb = super;
1196 return 1;
1197 }
1198
1199 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1200 int fd, char *devname)
1201 {
1202 struct intel_super *super = st->sb;
1203 struct imsm_super *mpb = super->mpb;
1204 struct dl *dl;
1205 struct imsm_dev *dev;
1206 struct imsm_map *map;
1207 struct imsm_disk *disk;
1208 __u32 status;
1209
1210 dev = get_imsm_dev(mpb, super->current_vol);
1211 map = &dev->vol.map[0];
1212
1213 for (dl = super->disks; dl ; dl = dl->next)
1214 if (dl->major == dk->major &&
1215 dl->minor == dk->minor)
1216 break;
1217 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1218 return;
1219
1220 map->disk_ord_tbl[dk->number] = __cpu_to_le32(dl->index);
1221
1222 disk = get_imsm_disk(mpb, dl->index);
1223 status = CONFIGURED_DISK | USABLE_DISK;
1224 disk->status = __cpu_to_le32(status);
1225 }
1226
1227 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1228 int fd, char *devname)
1229 {
1230 struct intel_super *super = st->sb;
1231 struct imsm_super *mpb = super->mpb;
1232 struct imsm_disk *disk;
1233 struct dl *dd;
1234 unsigned long long size;
1235 __u32 status, id;
1236 int rv;
1237 struct stat stb;
1238
1239 if (super->current_vol >= 0) {
1240 add_to_super_imsm_volume(st, dk, fd, devname);
1241 return;
1242 }
1243
1244 fstat(fd, &stb);
1245 dd = malloc(sizeof(*dd));
1246 if (!dd) {
1247 fprintf(stderr,
1248 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1249 abort();
1250 }
1251 memset(dd, 0, sizeof(*dd));
1252 dd->major = major(stb.st_rdev);
1253 dd->minor = minor(stb.st_rdev);
1254 dd->index = dk->number;
1255 dd->devname = devname ? strdup(devname) : NULL;
1256 dd->next = super->disks;
1257 dd->fd = fd;
1258 rv = imsm_read_serial(fd, devname, dd->serial);
1259 if (rv) {
1260 fprintf(stderr,
1261 Name ": failed to retrieve scsi serial "
1262 "using \'%s\' instead\n", devname);
1263 strcpy((char *) dd->serial, devname);
1264 }
1265
1266 if (mpb->num_disks <= dk->number)
1267 mpb->num_disks = dk->number + 1;
1268
1269 disk = get_imsm_disk(mpb, dk->number);
1270 get_dev_size(fd, NULL, &size);
1271 size /= 512;
1272 status = USABLE_DISK | SPARE_DISK;
1273 strcpy((char *) disk->serial, (char *) dd->serial);
1274 disk->total_blocks = __cpu_to_le32(size);
1275 disk->status = __cpu_to_le32(status);
1276 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1277 disk->scsi_id = __cpu_to_le32(id);
1278 else
1279 disk->scsi_id = __cpu_to_le32(0);
1280
1281 /* update the family number if we are creating a container */
1282 if (super->creating_imsm)
1283 mpb->family_num = __cpu_to_le32(gen_imsm_checksum(mpb));
1284
1285 super->disks = dd;
1286 }
1287
1288 static int store_imsm_mpb(int fd, struct intel_super *super);
1289
1290 static int write_super_imsm(struct intel_super *super, int doclose)
1291 {
1292 struct imsm_super *mpb = super->mpb;
1293 struct dl *d;
1294 __u32 generation;
1295 __u32 sum;
1296
1297 /* 'generation' is incremented everytime the metadata is written */
1298 generation = __le32_to_cpu(mpb->generation_num);
1299 generation++;
1300 mpb->generation_num = __cpu_to_le32(generation);
1301
1302 /* recalculate checksum */
1303 sum = gen_imsm_checksum(mpb);
1304 mpb->check_sum = __cpu_to_le32(sum);
1305
1306 for (d = super->disks; d ; d = d->next) {
1307 if (store_imsm_mpb(d->fd, super)) {
1308 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1309 __func__, d->major, d->minor, strerror(errno));
1310 return 0;
1311 }
1312 if (doclose) {
1313 close(d->fd);
1314 d->fd = -1;
1315 }
1316 }
1317
1318 return 1;
1319 }
1320
1321 static int write_init_super_imsm(struct supertype *st)
1322 {
1323 if (st->update_tail) {
1324 /* queue the recently created array as a metadata update */
1325 size_t len;
1326 struct imsm_update_create_array *u;
1327 struct intel_super *super = st->sb;
1328 struct imsm_super *mpb = super->mpb;
1329 struct imsm_dev *dev;
1330 struct imsm_map *map;
1331 struct dl *d;
1332
1333 if (super->current_vol < 0 ||
1334 !(dev = get_imsm_dev(mpb, super->current_vol))) {
1335 fprintf(stderr, "%s: could not determine sub-array\n",
1336 __func__);
1337 return 1;
1338 }
1339
1340
1341 map = &dev->vol.map[0];
1342 len = sizeof(*u) + sizeof(__u32) * (map->num_members - 1);
1343 u = malloc(len);
1344 if (!u) {
1345 fprintf(stderr, "%s: failed to allocate update buffer\n",
1346 __func__);
1347 return 1;
1348 }
1349
1350 u->type = update_create_array;
1351 u->dev_idx = super->current_vol;
1352 memcpy(&u->dev, dev, sizeof(*dev));
1353 memcpy(u->dev.vol.map[0].disk_ord_tbl, map->disk_ord_tbl,
1354 sizeof(__u32) * map->num_members);
1355 append_metadata_update(st, u, len);
1356
1357 for (d = super->disks; d ; d = d->next) {
1358 close(d->fd);
1359 d->fd = -1;
1360 }
1361
1362 return 0;
1363 } else
1364 return write_super_imsm(st->sb, 1);
1365 }
1366
1367 static int store_zero_imsm(struct supertype *st, int fd)
1368 {
1369 unsigned long long dsize;
1370 void *buf;
1371
1372 get_dev_size(fd, NULL, &dsize);
1373
1374 /* first block is stored on second to last sector of the disk */
1375 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1376 return 1;
1377
1378 if (posix_memalign(&buf, 512, 512) != 0)
1379 return 1;
1380
1381 memset(buf, 0, sizeof(buf));
1382 if (write(fd, buf, sizeof(buf)) != sizeof(buf))
1383 return 1;
1384 return 0;
1385 }
1386
1387 static int validate_geometry_imsm_container(struct supertype *st, int level,
1388 int layout, int raiddisks, int chunk,
1389 unsigned long long size, char *dev,
1390 unsigned long long *freesize,
1391 int verbose)
1392 {
1393 int fd;
1394 unsigned long long ldsize;
1395
1396 if (level != LEVEL_CONTAINER)
1397 return 0;
1398 if (!dev)
1399 return 1;
1400
1401 fd = open(dev, O_RDONLY|O_EXCL, 0);
1402 if (fd < 0) {
1403 if (verbose)
1404 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
1405 dev, strerror(errno));
1406 return 0;
1407 }
1408 if (!get_dev_size(fd, dev, &ldsize)) {
1409 close(fd);
1410 return 0;
1411 }
1412 close(fd);
1413
1414 *freesize = avail_size_imsm(st, ldsize >> 9);
1415
1416 return 1;
1417 }
1418
1419 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
1420 * FIX ME add ahci details
1421 */
1422 static int validate_geometry_imsm_volume(struct supertype *st, int level,
1423 int layout, int raiddisks, int chunk,
1424 unsigned long long size, char *dev,
1425 unsigned long long *freesize,
1426 int verbose)
1427 {
1428 struct stat stb;
1429 struct intel_super *super = st->sb;
1430 struct dl *dl;
1431 unsigned long long pos = 0;
1432 unsigned long long maxsize;
1433 struct extent *e;
1434 int i;
1435
1436 if (level == LEVEL_CONTAINER)
1437 return 0;
1438
1439 if (level == 1 && raiddisks > 2) {
1440 if (verbose)
1441 fprintf(stderr, Name ": imsm does not support more "
1442 "than 2 in a raid1 configuration\n");
1443 return 0;
1444 }
1445
1446 /* We must have the container info already read in. */
1447 if (!super)
1448 return 0;
1449
1450 if (!dev) {
1451 /* General test: make sure there is space for
1452 * 'raiddisks' device extents of size 'size' at a given
1453 * offset
1454 */
1455 unsigned long long minsize = size*2 /* convert to blocks */;
1456 unsigned long long start_offset = ~0ULL;
1457 int dcnt = 0;
1458 if (minsize == 0)
1459 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1460 for (dl = super->disks; dl ; dl = dl->next) {
1461 int found = 0;
1462
1463 pos = 0;
1464 i = 0;
1465 e = get_extents(super, dl);
1466 if (!e) continue;
1467 do {
1468 unsigned long long esize;
1469 esize = e[i].start - pos;
1470 if (esize >= minsize)
1471 found = 1;
1472 if (found && start_offset == ~0ULL) {
1473 start_offset = pos;
1474 break;
1475 } else if (found && pos != start_offset) {
1476 found = 0;
1477 break;
1478 }
1479 pos = e[i].start + e[i].size;
1480 i++;
1481 } while (e[i-1].size);
1482 if (found)
1483 dcnt++;
1484 free(e);
1485 }
1486 if (dcnt < raiddisks) {
1487 if (verbose)
1488 fprintf(stderr, Name ": imsm: Not enough "
1489 "devices with space for this array "
1490 "(%d < %d)\n",
1491 dcnt, raiddisks);
1492 return 0;
1493 }
1494 return 1;
1495 }
1496 /* This device must be a member of the set */
1497 if (stat(dev, &stb) < 0)
1498 return 0;
1499 if ((S_IFMT & stb.st_mode) != S_IFBLK)
1500 return 0;
1501 for (dl = super->disks ; dl ; dl = dl->next) {
1502 if (dl->major == major(stb.st_rdev) &&
1503 dl->minor == minor(stb.st_rdev))
1504 break;
1505 }
1506 if (!dl) {
1507 if (verbose)
1508 fprintf(stderr, Name ": %s is not in the "
1509 "same imsm set\n", dev);
1510 return 0;
1511 }
1512 e = get_extents(super, dl);
1513 maxsize = 0;
1514 i = 0;
1515 if (e) do {
1516 unsigned long long esize;
1517 esize = e[i].start - pos;
1518 if (esize >= maxsize)
1519 maxsize = esize;
1520 pos = e[i].start + e[i].size;
1521 i++;
1522 } while (e[i-1].size);
1523 *freesize = maxsize;
1524
1525 return 1;
1526 }
1527
1528 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
1529 int raiddisks, int chunk, unsigned long long size,
1530 char *dev, unsigned long long *freesize,
1531 int verbose)
1532 {
1533 int fd, cfd;
1534 struct mdinfo *sra;
1535
1536 /* if given unused devices create a container
1537 * if given given devices in a container create a member volume
1538 */
1539 if (level == LEVEL_CONTAINER) {
1540 /* Must be a fresh device to add to a container */
1541 return validate_geometry_imsm_container(st, level, layout,
1542 raiddisks, chunk, size,
1543 dev, freesize,
1544 verbose);
1545 }
1546
1547 if (st->sb) {
1548 /* creating in a given container */
1549 return validate_geometry_imsm_volume(st, level, layout,
1550 raiddisks, chunk, size,
1551 dev, freesize, verbose);
1552 }
1553
1554 /* limit creation to the following levels */
1555 if (!dev)
1556 switch (level) {
1557 case 0:
1558 case 1:
1559 case 10:
1560 case 5:
1561 break;
1562 default:
1563 return 1;
1564 }
1565
1566 /* This device needs to be a device in an 'imsm' container */
1567 fd = open(dev, O_RDONLY|O_EXCL, 0);
1568 if (fd >= 0) {
1569 if (verbose)
1570 fprintf(stderr,
1571 Name ": Cannot create this array on device %s\n",
1572 dev);
1573 close(fd);
1574 return 0;
1575 }
1576 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
1577 if (verbose)
1578 fprintf(stderr, Name ": Cannot open %s: %s\n",
1579 dev, strerror(errno));
1580 return 0;
1581 }
1582 /* Well, it is in use by someone, maybe an 'imsm' container. */
1583 cfd = open_container(fd);
1584 if (cfd < 0) {
1585 close(fd);
1586 if (verbose)
1587 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
1588 dev);
1589 return 0;
1590 }
1591 sra = sysfs_read(cfd, 0, GET_VERSION);
1592 close(fd);
1593 if (sra && sra->array.major_version == -1 &&
1594 strcmp(sra->text_version, "imsm") == 0) {
1595 /* This is a member of a imsm container. Load the container
1596 * and try to create a volume
1597 */
1598 struct intel_super *super;
1599
1600 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
1601 st->sb = super;
1602 st->container_dev = fd2devnum(cfd);
1603 close(cfd);
1604 return validate_geometry_imsm_volume(st, level, layout,
1605 raiddisks, chunk,
1606 size, dev,
1607 freesize, verbose);
1608 }
1609 close(cfd);
1610 } else /* may belong to another container */
1611 return 0;
1612
1613 return 1;
1614 }
1615
1616 static struct mdinfo *container_content_imsm(struct supertype *st)
1617 {
1618 /* Given a container loaded by load_super_imsm_all,
1619 * extract information about all the arrays into
1620 * an mdinfo tree.
1621 *
1622 * For each imsm_dev create an mdinfo, fill it in,
1623 * then look for matching devices in super->disks
1624 * and create appropriate device mdinfo.
1625 */
1626 struct intel_super *super = st->sb;
1627 struct imsm_super *mpb = super->mpb;
1628 struct mdinfo *rest = NULL;
1629 int i;
1630
1631 for (i = 0; i < mpb->num_raid_devs; i++) {
1632 struct imsm_dev *dev = get_imsm_dev(mpb, i);
1633 struct imsm_vol *vol = &dev->vol;
1634 struct imsm_map *map = vol->map;
1635 struct mdinfo *this;
1636 __u64 sz;
1637 int slot;
1638
1639 this = malloc(sizeof(*this));
1640 memset(this, 0, sizeof(*this));
1641 this->next = rest;
1642 rest = this;
1643
1644 this->array.level = get_imsm_raid_level(map);
1645 this->array.raid_disks = map->num_members;
1646 this->array.layout = imsm_level_to_layout(this->array.level);
1647 this->array.md_minor = -1;
1648 this->array.ctime = 0;
1649 this->array.utime = 0;
1650 this->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1651 this->array.state = !vol->dirty;
1652 this->container_member = i;
1653 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
1654 this->resync_start = 0;
1655 else
1656 this->resync_start = ~0ULL;
1657
1658 strncpy(this->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1659 this->name[MAX_RAID_SERIAL_LEN] = 0;
1660
1661 sprintf(this->text_version, "/%s/%d",
1662 devnum2devname(st->container_dev),
1663 this->container_member);
1664
1665 memset(this->uuid, 0, sizeof(this->uuid));
1666
1667 sz = __le32_to_cpu(dev->size_high);
1668 sz <<= 32;
1669 sz += __le32_to_cpu(dev->size_low);
1670 this->component_size = sz;
1671 this->array.size = this->component_size / 2;
1672
1673 for (slot = 0 ; slot < map->num_members; slot++) {
1674 struct imsm_disk *disk;
1675 struct mdinfo *info_d;
1676 struct dl *d;
1677 int idx;
1678 __u32 s;
1679
1680 idx = __le32_to_cpu(map->disk_ord_tbl[slot] & ~(0xff << 24));
1681 for (d = super->disks; d ; d = d->next)
1682 if (d->index == idx)
1683 break;
1684
1685 if (d == NULL)
1686 break; /* shouldn't this be continue ?? */
1687
1688 info_d = malloc(sizeof(*info_d));
1689 if (!info_d)
1690 break; /* ditto ?? */
1691 memset(info_d, 0, sizeof(*info_d));
1692 info_d->next = this->devs;
1693 this->devs = info_d;
1694
1695 disk = get_imsm_disk(mpb, idx);
1696 s = __le32_to_cpu(disk->status);
1697
1698 info_d->disk.number = d->index;
1699 info_d->disk.major = d->major;
1700 info_d->disk.minor = d->minor;
1701 info_d->disk.raid_disk = slot;
1702 info_d->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
1703 info_d->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
1704 info_d->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
1705
1706 this->array.working_disks++;
1707
1708 info_d->events = __le32_to_cpu(mpb->generation_num);
1709 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
1710 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
1711 if (d->devname)
1712 strcpy(info_d->name, d->devname);
1713 }
1714 }
1715
1716 return rest;
1717 }
1718
1719
1720 static int imsm_open_new(struct supertype *c, struct active_array *a,
1721 char *inst)
1722 {
1723 struct intel_super *super = c->sb;
1724 struct imsm_super *mpb = super->mpb;
1725
1726 if (atoi(inst) + 1 > mpb->num_raid_devs) {
1727 fprintf(stderr, "%s: subarry index %d, out of range\n",
1728 __func__, atoi(inst));
1729 return -ENODEV;
1730 }
1731
1732 dprintf("imsm: open_new %s\n", inst);
1733 a->info.container_member = atoi(inst);
1734 return 0;
1735 }
1736
1737 static __u8 imsm_check_degraded(struct imsm_super *mpb, int n, int failed)
1738 {
1739 struct imsm_dev *dev = get_imsm_dev(mpb, n);
1740 struct imsm_map *map = dev->vol.map;
1741
1742 if (!failed)
1743 return map->map_state;
1744
1745 switch (get_imsm_raid_level(map)) {
1746 case 0:
1747 return IMSM_T_STATE_FAILED;
1748 break;
1749 case 1:
1750 if (failed < map->num_members)
1751 return IMSM_T_STATE_DEGRADED;
1752 else
1753 return IMSM_T_STATE_FAILED;
1754 break;
1755 case 10:
1756 {
1757 /**
1758 * check to see if any mirrors have failed,
1759 * otherwise we are degraded
1760 */
1761 int device_per_mirror = 2; /* FIXME is this always the case?
1762 * and are they always adjacent?
1763 */
1764 int failed = 0;
1765 int i;
1766
1767 for (i = 0; i < map->num_members; i++) {
1768 int idx = get_imsm_disk_idx(map, i);
1769 struct imsm_disk *disk = get_imsm_disk(mpb, idx);
1770
1771 if (__le32_to_cpu(disk->status) & FAILED_DISK)
1772 failed++;
1773
1774 if (failed >= device_per_mirror)
1775 return IMSM_T_STATE_FAILED;
1776
1777 /* reset 'failed' for next mirror set */
1778 if (!((i + 1) % device_per_mirror))
1779 failed = 0;
1780 }
1781
1782 return IMSM_T_STATE_DEGRADED;
1783 }
1784 case 5:
1785 if (failed < 2)
1786 return IMSM_T_STATE_DEGRADED;
1787 else
1788 return IMSM_T_STATE_FAILED;
1789 break;
1790 default:
1791 break;
1792 }
1793
1794 return map->map_state;
1795 }
1796
1797 static int imsm_count_failed(struct imsm_super *mpb, struct imsm_map *map)
1798 {
1799 int i;
1800 int failed = 0;
1801 struct imsm_disk *disk;
1802
1803 for (i = 0; i < map->num_members; i++) {
1804 int idx = get_imsm_disk_idx(map, i);
1805
1806 disk = get_imsm_disk(mpb, idx);
1807 if (__le32_to_cpu(disk->status) & FAILED_DISK)
1808 failed++;
1809 }
1810
1811 return failed;
1812 }
1813
1814 static void imsm_set_array_state(struct active_array *a, int consistent)
1815 {
1816 int inst = a->info.container_member;
1817 struct intel_super *super = a->container->sb;
1818 struct imsm_dev *dev = get_imsm_dev(super->mpb, inst);
1819 struct imsm_map *map = &dev->vol.map[0];
1820 int dirty = !consistent;
1821 int failed;
1822 __u8 map_state;
1823
1824 if (a->resync_start == ~0ULL) {
1825 failed = imsm_count_failed(super->mpb, map);
1826 map_state = imsm_check_degraded(super->mpb, inst, failed);
1827 if (!failed)
1828 map_state = IMSM_T_STATE_NORMAL;
1829 if (map->map_state != map_state) {
1830 dprintf("imsm: map_state %d: %d\n",
1831 inst, map_state);
1832 map->map_state = map_state;
1833 super->updates_pending++;
1834 }
1835 }
1836
1837 if (dev->vol.dirty != dirty) {
1838 dprintf("imsm: mark '%s' (%llu)\n",
1839 dirty?"dirty":"clean", a->resync_start);
1840
1841 dev->vol.dirty = dirty;
1842 super->updates_pending++;
1843 }
1844 }
1845
1846 static void imsm_set_disk(struct active_array *a, int n, int state)
1847 {
1848 int inst = a->info.container_member;
1849 struct intel_super *super = a->container->sb;
1850 struct imsm_dev *dev = get_imsm_dev(super->mpb, inst);
1851 struct imsm_map *map = dev->vol.map;
1852 struct imsm_disk *disk;
1853 __u32 status;
1854 int failed = 0;
1855 int new_failure = 0;
1856
1857 if (n > map->num_members)
1858 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
1859 n, map->num_members - 1);
1860
1861 if (n < 0)
1862 return;
1863
1864 dprintf("imsm: set_disk %d:%x\n", n, state);
1865
1866 disk = get_imsm_disk(super->mpb, get_imsm_disk_idx(map, n));
1867
1868 /* check for new failures */
1869 status = __le32_to_cpu(disk->status);
1870 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
1871 status |= FAILED_DISK;
1872 disk->status = __cpu_to_le32(status);
1873 new_failure = 1;
1874 super->updates_pending++;
1875 }
1876
1877 /* the number of failures have changed, count up 'failed' to determine
1878 * degraded / failed status
1879 */
1880 if (new_failure && map->map_state != IMSM_T_STATE_FAILED)
1881 failed = imsm_count_failed(super->mpb, map);
1882
1883 /* determine map_state based on failed or in_sync count */
1884 if (failed)
1885 map->map_state = imsm_check_degraded(super->mpb, inst, failed);
1886 else if (map->map_state == IMSM_T_STATE_DEGRADED) {
1887 struct mdinfo *d;
1888 int working = 0;
1889
1890 for (d = a->info.devs ; d ; d = d->next)
1891 if (d->curr_state & DS_INSYNC)
1892 working++;
1893
1894 if (working == a->info.array.raid_disks) {
1895 map->map_state = IMSM_T_STATE_NORMAL;
1896 super->updates_pending++;
1897 }
1898 }
1899 }
1900
1901 static int store_imsm_mpb(int fd, struct intel_super *super)
1902 {
1903 struct imsm_super *mpb = super->mpb;
1904 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
1905 unsigned long long dsize;
1906 unsigned long long sectors;
1907
1908 get_dev_size(fd, NULL, &dsize);
1909
1910 if (mpb_size > 512) {
1911 /* -1 to account for anchor */
1912 sectors = mpb_sectors(mpb) - 1;
1913
1914 /* write the extended mpb to the sectors preceeding the anchor */
1915 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
1916 return 1;
1917
1918 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
1919 return 1;
1920 }
1921
1922 /* first block is stored on second to last sector of the disk */
1923 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1924 return 1;
1925
1926 if (write(fd, super->buf, 512) != 512)
1927 return 1;
1928
1929 return 0;
1930 }
1931
1932 static void imsm_sync_metadata(struct supertype *container)
1933 {
1934 struct intel_super *super = container->sb;
1935
1936 if (!super->updates_pending)
1937 return;
1938
1939 write_super_imsm(super, 0);
1940
1941 super->updates_pending = 0;
1942 }
1943
1944 static struct mdinfo *imsm_activate_spare(struct active_array *a,
1945 struct metadata_update **updates)
1946 {
1947 /**
1948 * Take a device that is marked spare in the metadata and use it to
1949 * replace a failed/vacant slot in an array. There may be a case where
1950 * a device is failed in one array but active in a second.
1951 * imsm_process_update catches this case and does not clear the SPARE_DISK
1952 * flag, allowing the second array to start using the device on failure.
1953 * SPARE_DISK is cleared when all arrays are using a device.
1954 *
1955 * FIXME: is this a valid use of SPARE_DISK?
1956 */
1957
1958 struct intel_super *super = a->container->sb;
1959 struct imsm_super *mpb = super->mpb;
1960 int inst = a->info.container_member;
1961 struct imsm_dev *dev = get_imsm_dev(mpb, inst);
1962 struct imsm_map *map = dev->vol.map;
1963 int failed = a->info.array.raid_disks;
1964 struct mdinfo *rv = NULL;
1965 struct mdinfo *d;
1966 struct mdinfo *di;
1967 struct metadata_update *mu;
1968 struct dl *dl;
1969 struct imsm_update_activate_spare *u;
1970 int num_spares = 0;
1971 int i;
1972
1973 for (d = a->info.devs ; d ; d = d->next) {
1974 if ((d->curr_state & DS_FAULTY) &&
1975 d->state_fd >= 0)
1976 /* wait for Removal to happen */
1977 return NULL;
1978 if (d->state_fd >= 0)
1979 failed--;
1980 }
1981
1982 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
1983 inst, failed, a->info.array.raid_disks, a->info.array.level);
1984 if (imsm_check_degraded(mpb, inst, failed) != IMSM_T_STATE_DEGRADED)
1985 return NULL;
1986
1987 /* For each slot, if it is not working, find a spare */
1988 dl = super->disks;
1989 for (i = 0; i < a->info.array.raid_disks; i++) {
1990 for (d = a->info.devs ; d ; d = d->next)
1991 if (d->disk.raid_disk == i)
1992 break;
1993 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
1994 if (d && (d->state_fd >= 0))
1995 continue;
1996
1997 /* OK, this device needs recovery. Find a spare */
1998 for ( ; dl ; dl = dl->next) {
1999 unsigned long long esize;
2000 unsigned long long pos;
2001 struct mdinfo *d2;
2002 struct extent *ex;
2003 struct imsm_disk *disk;
2004 int j;
2005 int found;
2006 __u32 array_start;
2007
2008 /* If in this array, skip */
2009 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
2010 if (d2->disk.major == dl->major &&
2011 d2->disk.minor == dl->minor) {
2012 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2013 break;
2014 }
2015 if (d2)
2016 continue;
2017
2018 /* is this unused device marked as a spare? */
2019 disk = get_imsm_disk(mpb, dl->index);
2020 if (!(__le32_to_cpu(disk->status) & SPARE_DISK))
2021 continue;
2022
2023 /* We are allowed to use this device - is there space?
2024 * We need a->info.component_size sectors */
2025 ex = get_extents(super, dl);
2026 if (!ex) {
2027 dprintf("cannot get extents\n");
2028 continue;
2029 }
2030 found = 0;
2031 j = 0;
2032 pos = 0;
2033 array_start = __le32_to_cpu(map->pba_of_lba0);
2034
2035 do {
2036 /* check that we can start at pba_of_lba0 with
2037 * a->info.component_size of space
2038 */
2039 esize = ex[j].start - pos;
2040 if (array_start >= pos &&
2041 array_start + a->info.component_size < ex[j].start) {
2042 found = 1;
2043 break;
2044 }
2045 pos = ex[j].start + ex[j].size;
2046 j++;
2047
2048 } while (ex[j-1].size);
2049
2050 free(ex);
2051 if (!found) {
2052 dprintf("%x:%x does not have %llu at %d\n",
2053 dl->major, dl->minor,
2054 a->info.component_size,
2055 __le32_to_cpu(map->pba_of_lba0));
2056 /* No room */
2057 continue;
2058 }
2059
2060 /* found a usable disk with enough space */
2061 di = malloc(sizeof(*di));
2062 memset(di, 0, sizeof(*di));
2063 di->disk.number = dl->index;
2064 di->disk.raid_disk = i;
2065 di->disk.major = dl->major;
2066 di->disk.minor = dl->minor;
2067 di->disk.state = 0;
2068 di->data_offset = array_start;
2069 di->component_size = a->info.component_size;
2070 di->container_member = inst;
2071 di->next = rv;
2072 rv = di;
2073 num_spares++;
2074 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2075 i, pos);
2076
2077 break;
2078 }
2079 }
2080
2081 if (!rv)
2082 /* No spares found */
2083 return rv;
2084 /* Now 'rv' has a list of devices to return.
2085 * Create a metadata_update record to update the
2086 * disk_ord_tbl for the array
2087 */
2088 mu = malloc(sizeof(*mu));
2089 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2090 mu->space = NULL;
2091 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2092 mu->next = *updates;
2093 u = (struct imsm_update_activate_spare *) mu->buf;
2094
2095 for (di = rv ; di ; di = di->next) {
2096 u->type = update_activate_spare;
2097 u->disk_idx = di->disk.number;
2098 u->slot = di->disk.raid_disk;
2099 u->array = inst;
2100 u->next = u + 1;
2101 u++;
2102 }
2103 (u-1)->next = NULL;
2104 *updates = mu;
2105
2106 return rv;
2107 }
2108
2109 static int weight(unsigned int field)
2110 {
2111 int weight;
2112
2113 for (weight = 0; field; weight++)
2114 field &= field - 1;
2115
2116 return weight;
2117 }
2118
2119 static int disks_overlap(struct imsm_map *m1, struct imsm_map *m2)
2120 {
2121 int i;
2122 int j;
2123 int idx;
2124
2125 for (i = 0; i < m1->num_members; i++) {
2126 idx = get_imsm_disk_idx(m1, i);
2127 for (j = 0; j < m2->num_members; j++)
2128 if (idx == get_imsm_disk_idx(m2, j))
2129 return 1;
2130 }
2131
2132 return 0;
2133 }
2134
2135 static void imsm_process_update(struct supertype *st,
2136 struct metadata_update *update)
2137 {
2138 /**
2139 * crack open the metadata_update envelope to find the update record
2140 * update can be one of:
2141 * update_activate_spare - a spare device has replaced a failed
2142 * device in an array, update the disk_ord_tbl. If this disk is
2143 * present in all member arrays then also clear the SPARE_DISK
2144 * flag
2145 */
2146 struct intel_super *super = st->sb;
2147 struct imsm_super *mpb = super->mpb;
2148 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2149
2150 switch (type) {
2151 case update_activate_spare: {
2152 struct imsm_update_activate_spare *u = (void *) update->buf;
2153 struct imsm_dev *dev = get_imsm_dev(mpb, u->array);
2154 struct imsm_map *map = &dev->vol.map[0];
2155 struct active_array *a;
2156 struct imsm_disk *disk;
2157 __u32 status;
2158 struct dl *dl;
2159 struct mdinfo *d;
2160 unsigned int members;
2161 unsigned int found;
2162 int victim;
2163 int i;
2164
2165 for (dl = super->disks; dl; dl = dl->next)
2166 if (dl->index == u->disk_idx)
2167 break;
2168
2169 if (!dl) {
2170 fprintf(stderr, "error: imsm_activate_spare passed "
2171 "an unknown disk_idx: %d\n", u->disk_idx);
2172 return;
2173 }
2174
2175 super->updates_pending++;
2176
2177 victim = get_imsm_disk_idx(map, u->slot);
2178 map->disk_ord_tbl[u->slot] = __cpu_to_le32(u->disk_idx);
2179 disk = get_imsm_disk(mpb, u->disk_idx);
2180 status = __le32_to_cpu(disk->status);
2181 status |= CONFIGURED_DISK;
2182 disk->status = __cpu_to_le32(status);
2183
2184 /* map unique/live arrays using the spare */
2185 members = 0;
2186 found = 0;
2187 for (a = st->arrays; a; a = a->next) {
2188 int inst = a->info.container_member;
2189
2190 dev = get_imsm_dev(mpb, inst);
2191 map = &dev->vol.map[0];
2192 if (map->raid_level > 0)
2193 members |= 1 << inst;
2194 for (d = a->info.devs; d; d = d->next)
2195 if (d->disk.major == dl->major &&
2196 d->disk.minor == dl->minor)
2197 found |= 1 << inst;
2198 }
2199
2200 /* until all arrays that can absorb this disk have absorbed
2201 * this disk it can still be considered a spare
2202 */
2203 if (weight(found) >= weight(members)) {
2204 status = __le32_to_cpu(disk->status);
2205 status &= ~SPARE_DISK;
2206 disk->status = __cpu_to_le32(status);
2207 }
2208
2209 /* count arrays using the victim in the metadata */
2210 found = 0;
2211 for (a = st->arrays; a ; a = a->next) {
2212 dev = get_imsm_dev(mpb, a->info.container_member);
2213 map = &dev->vol.map[0];
2214 for (i = 0; i < map->num_members; i++)
2215 if (victim == get_imsm_disk_idx(map, i))
2216 found++;
2217 }
2218
2219 /* clear some flags if the victim is no longer being
2220 * utilized anywhere
2221 */
2222 disk = get_imsm_disk(mpb, victim);
2223 if (!found) {
2224 status = __le32_to_cpu(disk->status);
2225 status &= ~(CONFIGURED_DISK | USABLE_DISK);
2226 disk->status = __cpu_to_le32(status);
2227 }
2228 break;
2229 }
2230 case update_create_array: {
2231 /* someone wants to create a new array, we need to be aware of
2232 * a few races/collisions:
2233 * 1/ 'Create' called by two separate instances of mdadm
2234 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
2235 * devices that have since been assimilated via
2236 * activate_spare.
2237 * In the event this update can not be carried out mdadm will
2238 * (FIX ME) notice that its update did not take hold.
2239 */
2240 struct imsm_update_create_array *u = (void *) update->buf;
2241 struct imsm_dev *dev;
2242 struct imsm_map *map, *new_map;
2243 unsigned long long start, end;
2244 unsigned long long new_start, new_end;
2245 int i;
2246 int overlap = 0;
2247
2248 /* handle racing creates: first come first serve */
2249 if (u->dev_idx < mpb->num_raid_devs) {
2250 dprintf("%s: subarray %d already defined\n",
2251 __func__, u->dev_idx);
2252 return;
2253 }
2254
2255 /* check update is next in sequence */
2256 if (u->dev_idx != mpb->num_raid_devs) {
2257 dprintf("%s: can not create arrays out of sequence\n",
2258 __func__);
2259 return;
2260 }
2261
2262 new_map = &u->dev.vol.map[0];
2263 new_start = __le32_to_cpu(new_map->pba_of_lba0);
2264 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
2265
2266 /* handle activate_spare versus create race:
2267 * check to make sure that overlapping arrays do not include
2268 * overalpping disks
2269 */
2270 for (i = 0; i < mpb->num_raid_devs; i++) {
2271 dev = get_imsm_dev(mpb, i);
2272 map = &dev->vol.map[0];
2273 start = __le32_to_cpu(map->pba_of_lba0);
2274 end = start + __le32_to_cpu(map->blocks_per_member);
2275 if ((new_start >= start && new_start <= end) ||
2276 (start >= new_start && start <= new_end))
2277 overlap = 1;
2278 if (overlap && disks_overlap(map, new_map)) {
2279 dprintf("%s: arrays overlap\n", __func__);
2280 return;
2281 }
2282 }
2283 /* check num_members sanity */
2284 if (new_map->num_members > mpb->num_disks) {
2285 dprintf("%s: num_disks out of range\n", __func__);
2286 return;
2287 }
2288
2289 super->updates_pending++;
2290 mpb->num_raid_devs++;
2291 dev = get_imsm_dev(mpb, u->dev_idx);
2292 memcpy(dev, &u->dev, sizeof(*dev));
2293 map = &dev->vol.map[0];
2294 memcpy(map->disk_ord_tbl, new_map->disk_ord_tbl,
2295 sizeof(__u32) * new_map->num_members);
2296
2297 /* fix up flags, if arrays overlap then the drives can not be
2298 * spares
2299 */
2300 for (i = 0; i < map->num_members; i++) {
2301 struct imsm_disk *disk;
2302 __u32 status;
2303
2304 disk = get_imsm_disk(mpb, get_imsm_disk_idx(map, i));
2305 status = __le32_to_cpu(disk->status);
2306 status |= CONFIGURED_DISK;
2307 if (overlap)
2308 status &= ~SPARE_DISK;
2309 disk->status = __cpu_to_le32(status);
2310 }
2311 break;
2312 }
2313 }
2314 }
2315
2316 static void imsm_prepare_update(struct supertype *st,
2317 struct metadata_update *update)
2318 {
2319 /* Allocate space to hold a new mpb if necessary. We currently
2320 * allocate enough to hold 2 subarrays for the given number of disks.
2321 * This may not be sufficient iff reshaping.
2322 *
2323 * FIX ME handle the reshape case.
2324 *
2325 * The monitor will be able to safely change super->mpb by arranging
2326 * for it to be freed in check_update_queue(). I.e. the monitor thread
2327 * will start using the new pointer and the manager can continue to use
2328 * the old value until check_update_queue() runs.
2329 */
2330
2331 return;
2332 }
2333
2334 struct superswitch super_imsm = {
2335 #ifndef MDASSEMBLE
2336 .examine_super = examine_super_imsm,
2337 .brief_examine_super = brief_examine_super_imsm,
2338 .detail_super = detail_super_imsm,
2339 .brief_detail_super = brief_detail_super_imsm,
2340 .write_init_super = write_init_super_imsm,
2341 #endif
2342 .match_home = match_home_imsm,
2343 .uuid_from_super= uuid_from_super_imsm,
2344 .getinfo_super = getinfo_super_imsm,
2345 .update_super = update_super_imsm,
2346
2347 .avail_size = avail_size_imsm,
2348
2349 .compare_super = compare_super_imsm,
2350
2351 .load_super = load_super_imsm,
2352 .init_super = init_super_imsm,
2353 .add_to_super = add_to_super_imsm,
2354 .store_super = store_zero_imsm,
2355 .free_super = free_super_imsm,
2356 .match_metadata_desc = match_metadata_desc_imsm,
2357 .container_content = container_content_imsm,
2358
2359 .validate_geometry = validate_geometry_imsm,
2360 .external = 1,
2361
2362 /* for mdmon */
2363 .open_new = imsm_open_new,
2364 .load_super = load_super_imsm,
2365 .set_array_state= imsm_set_array_state,
2366 .set_disk = imsm_set_disk,
2367 .sync_metadata = imsm_sync_metadata,
2368 .activate_spare = imsm_activate_spare,
2369 .process_update = imsm_process_update,
2370 .prepare_update = imsm_prepare_update,
2371 };