]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
Merge branch 'master' into devel-3.0
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include <values.h>
25 #include <scsi/sg.h>
26 #include <ctype.h>
27
28 /* MPB == Metadata Parameter Block */
29 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
30 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
31 #define MPB_VERSION_RAID0 "1.0.00"
32 #define MPB_VERSION_RAID1 "1.1.00"
33 #define MPB_VERSION_RAID5 "1.2.02"
34 #define MAX_SIGNATURE_LENGTH 32
35 #define MAX_RAID_SERIAL_LEN 16
36 #define MPB_SECTOR_CNT 418
37 #define IMSM_RESERVED_SECTORS 4096
38
39 /* Disk configuration info. */
40 #define IMSM_MAX_DEVICES 255
41 struct imsm_disk {
42 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
43 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
44 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
45 __u32 status; /* 0xF0 - 0xF3 */
46 #define SPARE_DISK 0x01 /* Spare */
47 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
48 #define FAILED_DISK 0x04 /* Permanent failure */
49 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
50
51 #define IMSM_DISK_FILLERS 5
52 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
53 };
54
55 /* RAID map configuration infos. */
56 struct imsm_map {
57 __u32 pba_of_lba0; /* start address of partition */
58 __u32 blocks_per_member;/* blocks per member */
59 __u32 num_data_stripes; /* number of data stripes */
60 __u16 blocks_per_strip;
61 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
62 #define IMSM_T_STATE_NORMAL 0
63 #define IMSM_T_STATE_UNINITIALIZED 1
64 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
65 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
66 __u8 raid_level;
67 #define IMSM_T_RAID0 0
68 #define IMSM_T_RAID1 1
69 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
70 __u8 num_members; /* number of member disks */
71 __u8 reserved[3];
72 __u32 filler[7]; /* expansion area */
73 #define IMSM_ORD_REBUILD (1 << 24)
74 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
75 * top byte contains some flags
76 */
77 } __attribute__ ((packed));
78
79 struct imsm_vol {
80 __u32 curr_migr_unit;
81 __u32 reserved;
82 __u8 migr_state; /* Normal or Migrating */
83 __u8 migr_type; /* Initializing, Rebuilding, ... */
84 __u8 dirty;
85 __u8 fill[1];
86 __u32 filler[5];
87 struct imsm_map map[1];
88 /* here comes another one if migr_state */
89 } __attribute__ ((packed));
90
91 struct imsm_dev {
92 __u8 volume[MAX_RAID_SERIAL_LEN];
93 __u32 size_low;
94 __u32 size_high;
95 __u32 status; /* Persistent RaidDev status */
96 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
97 #define IMSM_DEV_FILLERS 12
98 __u32 filler[IMSM_DEV_FILLERS];
99 struct imsm_vol vol;
100 } __attribute__ ((packed));
101
102 struct imsm_super {
103 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
104 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
105 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
106 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
107 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
108 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
109 __u32 attributes; /* 0x34 - 0x37 */
110 __u8 num_disks; /* 0x38 Number of configured disks */
111 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
112 __u8 error_log_pos; /* 0x3A */
113 __u8 fill[1]; /* 0x3B */
114 __u32 cache_size; /* 0x3c - 0x40 in mb */
115 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
116 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
117 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
118 #define IMSM_FILLERS 35
119 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
120 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
121 /* here comes imsm_dev[num_raid_devs] */
122 /* here comes BBM logs */
123 } __attribute__ ((packed));
124
125 #define BBM_LOG_MAX_ENTRIES 254
126
127 struct bbm_log_entry {
128 __u64 defective_block_start;
129 #define UNREADABLE 0xFFFFFFFF
130 __u32 spare_block_offset;
131 __u16 remapped_marked_count;
132 __u16 disk_ordinal;
133 } __attribute__ ((__packed__));
134
135 struct bbm_log {
136 __u32 signature; /* 0xABADB10C */
137 __u32 entry_count;
138 __u32 reserved_spare_block_count; /* 0 */
139 __u32 reserved; /* 0xFFFF */
140 __u64 first_spare_lba;
141 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
142 } __attribute__ ((__packed__));
143
144
145 #ifndef MDASSEMBLE
146 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
147 #endif
148
149 static unsigned int sector_count(__u32 bytes)
150 {
151 return ((bytes + (512-1)) & (~(512-1))) / 512;
152 }
153
154 static unsigned int mpb_sectors(struct imsm_super *mpb)
155 {
156 return sector_count(__le32_to_cpu(mpb->mpb_size));
157 }
158
159 /* internal representation of IMSM metadata */
160 struct intel_super {
161 union {
162 void *buf; /* O_DIRECT buffer for reading/writing metadata */
163 struct imsm_super *anchor; /* immovable parameters */
164 };
165 size_t len; /* size of the 'buf' allocation */
166 void *next_buf; /* for realloc'ing buf from the manager */
167 size_t next_len;
168 int updates_pending; /* count of pending updates for mdmon */
169 int creating_imsm; /* flag to indicate container creation */
170 int current_vol; /* index of raid device undergoing creation */
171 #define IMSM_MAX_RAID_DEVS 2
172 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
173 struct dl {
174 struct dl *next;
175 int index;
176 __u8 serial[MAX_RAID_SERIAL_LEN];
177 int major, minor;
178 char *devname;
179 struct imsm_disk disk;
180 int fd;
181 } *disks;
182 struct dl *add; /* list of disks to add while mdmon active */
183 struct dl *missing; /* disks removed while we weren't looking */
184 struct bbm_log *bbm_log;
185 };
186
187 struct extent {
188 unsigned long long start, size;
189 };
190
191 /* definition of messages passed to imsm_process_update */
192 enum imsm_update_type {
193 update_activate_spare,
194 update_create_array,
195 update_add_disk,
196 };
197
198 struct imsm_update_activate_spare {
199 enum imsm_update_type type;
200 struct dl *dl;
201 int slot;
202 int array;
203 struct imsm_update_activate_spare *next;
204 };
205
206 struct imsm_update_create_array {
207 enum imsm_update_type type;
208 int dev_idx;
209 struct imsm_dev dev;
210 };
211
212 struct imsm_update_add_disk {
213 enum imsm_update_type type;
214 };
215
216 static int imsm_env_devname_as_serial(void)
217 {
218 char *val = getenv("IMSM_DEVNAME_AS_SERIAL");
219
220 if (val && atoi(val) == 1)
221 return 1;
222
223 return 0;
224 }
225
226
227 static struct supertype *match_metadata_desc_imsm(char *arg)
228 {
229 struct supertype *st;
230
231 if (strcmp(arg, "imsm") != 0 &&
232 strcmp(arg, "default") != 0
233 )
234 return NULL;
235
236 st = malloc(sizeof(*st));
237 memset(st, 0, sizeof(*st));
238 st->ss = &super_imsm;
239 st->max_devs = IMSM_MAX_DEVICES;
240 st->minor_version = 0;
241 st->sb = NULL;
242 return st;
243 }
244
245 #ifndef MDASSEMBLE
246 static __u8 *get_imsm_version(struct imsm_super *mpb)
247 {
248 return &mpb->sig[MPB_SIG_LEN];
249 }
250 #endif
251
252 /* retrieve a disk directly from the anchor when the anchor is known to be
253 * up-to-date, currently only at load time
254 */
255 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
256 {
257 if (index >= mpb->num_disks)
258 return NULL;
259 return &mpb->disk[index];
260 }
261
262 #ifndef MDASSEMBLE
263 /* retrieve a disk from the parsed metadata */
264 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
265 {
266 struct dl *d;
267
268 for (d = super->disks; d; d = d->next)
269 if (d->index == index)
270 return &d->disk;
271
272 return NULL;
273 }
274 #endif
275
276 /* generate a checksum directly from the anchor when the anchor is known to be
277 * up-to-date, currently only at load or write_super after coalescing
278 */
279 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
280 {
281 __u32 end = mpb->mpb_size / sizeof(end);
282 __u32 *p = (__u32 *) mpb;
283 __u32 sum = 0;
284
285 while (end--)
286 sum += __le32_to_cpu(*p++);
287
288 return sum - __le32_to_cpu(mpb->check_sum);
289 }
290
291 static size_t sizeof_imsm_map(struct imsm_map *map)
292 {
293 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
294 }
295
296 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
297 {
298 struct imsm_map *map = &dev->vol.map[0];
299
300 if (second_map && !dev->vol.migr_state)
301 return NULL;
302 else if (second_map) {
303 void *ptr = map;
304
305 return ptr + sizeof_imsm_map(map);
306 } else
307 return map;
308
309 }
310
311 /* return the size of the device.
312 * migr_state increases the returned size if map[0] were to be duplicated
313 */
314 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
315 {
316 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
317 sizeof_imsm_map(get_imsm_map(dev, 0));
318
319 /* migrating means an additional map */
320 if (dev->vol.migr_state)
321 size += sizeof_imsm_map(get_imsm_map(dev, 1));
322 else if (migr_state)
323 size += sizeof_imsm_map(get_imsm_map(dev, 0));
324
325 return size;
326 }
327
328 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
329 {
330 int offset;
331 int i;
332 void *_mpb = mpb;
333
334 if (index >= mpb->num_raid_devs)
335 return NULL;
336
337 /* devices start after all disks */
338 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
339
340 for (i = 0; i <= index; i++)
341 if (i == index)
342 return _mpb + offset;
343 else
344 offset += sizeof_imsm_dev(_mpb + offset, 0);
345
346 return NULL;
347 }
348
349 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
350 {
351 if (index >= super->anchor->num_raid_devs)
352 return NULL;
353 return super->dev_tbl[index];
354 }
355
356 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
357 {
358 struct imsm_map *map;
359
360 if (dev->vol.migr_state)
361 map = get_imsm_map(dev, 1);
362 else
363 map = get_imsm_map(dev, 0);
364
365 /* top byte identifies disk under rebuild */
366 return __le32_to_cpu(map->disk_ord_tbl[slot]);
367 }
368
369 #define ord_to_idx(ord) (((ord) << 8) >> 8)
370 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
371 {
372 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
373
374 return ord_to_idx(ord);
375 }
376
377 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
378 {
379 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
380 }
381
382 static int get_imsm_raid_level(struct imsm_map *map)
383 {
384 if (map->raid_level == 1) {
385 if (map->num_members == 2)
386 return 1;
387 else
388 return 10;
389 }
390
391 return map->raid_level;
392 }
393
394 static int cmp_extent(const void *av, const void *bv)
395 {
396 const struct extent *a = av;
397 const struct extent *b = bv;
398 if (a->start < b->start)
399 return -1;
400 if (a->start > b->start)
401 return 1;
402 return 0;
403 }
404
405 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
406 {
407 /* find a list of used extents on the given physical device */
408 struct extent *rv, *e;
409 int i, j;
410 int memberships = 0;
411 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
412
413 for (i = 0; i < super->anchor->num_raid_devs; i++) {
414 struct imsm_dev *dev = get_imsm_dev(super, i);
415 struct imsm_map *map = get_imsm_map(dev, 0);
416
417 for (j = 0; j < map->num_members; j++) {
418 __u32 index = get_imsm_disk_idx(dev, j);
419
420 if (index == dl->index)
421 memberships++;
422 }
423 }
424 rv = malloc(sizeof(struct extent) * (memberships + 1));
425 if (!rv)
426 return NULL;
427 e = rv;
428
429 for (i = 0; i < super->anchor->num_raid_devs; i++) {
430 struct imsm_dev *dev = get_imsm_dev(super, i);
431 struct imsm_map *map = get_imsm_map(dev, 0);
432
433 for (j = 0; j < map->num_members; j++) {
434 __u32 index = get_imsm_disk_idx(dev, j);
435
436 if (index == dl->index) {
437 e->start = __le32_to_cpu(map->pba_of_lba0);
438 e->size = __le32_to_cpu(map->blocks_per_member);
439 e++;
440 }
441 }
442 }
443 qsort(rv, memberships, sizeof(*rv), cmp_extent);
444
445 /* determine the start of the metadata
446 * when no raid devices are defined use the default
447 * ...otherwise allow the metadata to truncate the value
448 * as is the case with older versions of imsm
449 */
450 if (memberships) {
451 struct extent *last = &rv[memberships - 1];
452 __u32 remainder;
453
454 remainder = __le32_to_cpu(dl->disk.total_blocks) -
455 (last->start + last->size);
456 if (reservation > remainder)
457 reservation = remainder;
458 }
459 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
460 e->size = 0;
461 return rv;
462 }
463
464 /* try to determine how much space is reserved for metadata from
465 * the last get_extents() entry, otherwise fallback to the
466 * default
467 */
468 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
469 {
470 struct extent *e;
471 int i;
472 __u32 rv;
473
474 /* for spares just return a minimal reservation which will grow
475 * once the spare is picked up by an array
476 */
477 if (dl->index == -1)
478 return MPB_SECTOR_CNT;
479
480 e = get_extents(super, dl);
481 if (!e)
482 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
483
484 /* scroll to last entry */
485 for (i = 0; e[i].size; i++)
486 continue;
487
488 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
489
490 free(e);
491
492 return rv;
493 }
494
495 #ifndef MDASSEMBLE
496 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
497
498 static void print_imsm_dev(struct imsm_dev *dev, int index)
499 {
500 __u64 sz;
501 int slot;
502 struct imsm_map *map = get_imsm_map(dev, 0);
503 __u32 ord;
504
505 printf("\n");
506 printf("[%.16s]:\n", dev->volume);
507 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
508 printf(" Members : %d\n", map->num_members);
509 for (slot = 0; slot < map->num_members; slot++)
510 if (index == get_imsm_disk_idx(dev, slot))
511 break;
512 if (slot < map->num_members) {
513 ord = get_imsm_ord_tbl_ent(dev, slot);
514 printf(" This Slot : %d%s\n", slot,
515 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
516 } else
517 printf(" This Slot : ?\n");
518 sz = __le32_to_cpu(dev->size_high);
519 sz <<= 32;
520 sz += __le32_to_cpu(dev->size_low);
521 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
522 human_size(sz * 512));
523 sz = __le32_to_cpu(map->blocks_per_member);
524 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
525 human_size(sz * 512));
526 printf(" Sector Offset : %u\n",
527 __le32_to_cpu(map->pba_of_lba0));
528 printf(" Num Stripes : %u\n",
529 __le32_to_cpu(map->num_data_stripes));
530 printf(" Chunk Size : %u KiB\n",
531 __le16_to_cpu(map->blocks_per_strip) / 2);
532 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
533 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
534 if (dev->vol.migr_state)
535 printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
536 printf("\n");
537 printf(" Map State : %s", map_state_str[map->map_state]);
538 if (dev->vol.migr_state) {
539 struct imsm_map *map = get_imsm_map(dev, 1);
540 printf(" <-- %s", map_state_str[map->map_state]);
541 }
542 printf("\n");
543 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
544 }
545
546 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
547 {
548 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
549 char str[MAX_RAID_SERIAL_LEN + 1];
550 __u32 s;
551 __u64 sz;
552
553 if (index < 0)
554 return;
555
556 printf("\n");
557 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
558 printf(" Disk%02d Serial : %s\n", index, str);
559 s = __le32_to_cpu(disk->status);
560 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
561 s&CONFIGURED_DISK ? " active" : "",
562 s&FAILED_DISK ? " failed" : "",
563 s&USABLE_DISK ? " usable" : "");
564 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
565 sz = __le32_to_cpu(disk->total_blocks) - reserved;
566 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
567 human_size(sz * 512));
568 }
569
570 static void examine_super_imsm(struct supertype *st, char *homehost)
571 {
572 struct intel_super *super = st->sb;
573 struct imsm_super *mpb = super->anchor;
574 char str[MAX_SIGNATURE_LENGTH];
575 int i;
576 struct mdinfo info;
577 char nbuf[64];
578 __u32 sum;
579 __u32 reserved = imsm_reserved_sectors(super, super->disks);
580
581
582 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
583 printf(" Magic : %s\n", str);
584 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
585 printf(" Version : %s\n", get_imsm_version(mpb));
586 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
587 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
588 getinfo_super_imsm(st, &info);
589 fname_from_uuid(st, &info, nbuf,'-');
590 printf(" UUID : %s\n", nbuf + 5);
591 sum = __le32_to_cpu(mpb->check_sum);
592 printf(" Checksum : %08x %s\n", sum,
593 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
594 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
595 printf(" Disks : %d\n", mpb->num_disks);
596 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
597 print_imsm_disk(mpb, super->disks->index, reserved);
598 if (super->bbm_log) {
599 struct bbm_log *log = super->bbm_log;
600
601 printf("\n");
602 printf("Bad Block Management Log:\n");
603 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
604 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
605 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
606 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
607 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
608 }
609 for (i = 0; i < mpb->num_raid_devs; i++)
610 print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
611 for (i = 0; i < mpb->num_disks; i++) {
612 if (i == super->disks->index)
613 continue;
614 print_imsm_disk(mpb, i, reserved);
615 }
616 }
617
618 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
619
620 static void brief_examine_super_imsm(struct supertype *st)
621 {
622 /* We just write a generic IMSM ARRAY entry */
623 struct mdinfo info;
624 char nbuf[64];
625 struct intel_super *super = st->sb;
626 int i;
627
628 if (!super->anchor->num_raid_devs)
629 return;
630
631 getinfo_super_imsm(st, &info);
632 fname_from_uuid(st, &info, nbuf,'-');
633 printf("ARRAY /dev/imsm metadata=imsm auto=md UUID=%s\n", nbuf + 5);
634 for (i = 0; i < super->anchor->num_raid_devs; i++) {
635 struct imsm_dev *dev = get_imsm_dev(super, i);
636
637 super->current_vol = i;
638 getinfo_super_imsm(st, &info);
639 fname_from_uuid(st, &info, nbuf,'-');
640 printf("ARRAY /dev/md/%.16s container=/dev/imsm member=%d auto=mdp UUID=%s\n",
641 dev->volume, i, nbuf + 5);
642 }
643 }
644
645 static void detail_super_imsm(struct supertype *st, char *homehost)
646 {
647 printf("%s\n", __FUNCTION__);
648 }
649
650 static void brief_detail_super_imsm(struct supertype *st)
651 {
652 struct mdinfo info;
653 char nbuf[64];
654 getinfo_super_imsm(st, &info);
655 fname_from_uuid(st, &info, nbuf,'-');
656 printf(" UUID=%s", nbuf + 5);
657 }
658 #endif
659
660 static int match_home_imsm(struct supertype *st, char *homehost)
661 {
662 printf("%s\n", __FUNCTION__);
663
664 return -1;
665 }
666
667 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
668 {
669 /* The uuid returned here is used for:
670 * uuid to put into bitmap file (Create, Grow)
671 * uuid for backup header when saving critical section (Grow)
672 * comparing uuids when re-adding a device into an array
673 * In these cases the uuid required is that of the data-array,
674 * not the device-set.
675 * uuid to recognise same set when adding a missing device back
676 * to an array. This is a uuid for the device-set.
677 *
678 * For each of these we can make do with a truncated
679 * or hashed uuid rather than the original, as long as
680 * everyone agrees.
681 * In each case the uuid required is that of the data-array,
682 * not the device-set.
683 */
684 /* imsm does not track uuid's so we synthesis one using sha1 on
685 * - The signature (Which is constant for all imsm array, but no matter)
686 * - the family_num of the container
687 * - the index number of the volume
688 * - the 'serial' number of the volume.
689 * Hopefully these are all constant.
690 */
691 struct intel_super *super = st->sb;
692
693 char buf[20];
694 struct sha1_ctx ctx;
695 struct imsm_dev *dev = NULL;
696
697 sha1_init_ctx(&ctx);
698 sha1_process_bytes(super->anchor->sig, MAX_SIGNATURE_LENGTH, &ctx);
699 sha1_process_bytes(&super->anchor->family_num, sizeof(__u32), &ctx);
700 if (super->current_vol >= 0)
701 dev = get_imsm_dev(super, super->current_vol);
702 if (dev) {
703 __u32 vol = super->current_vol;
704 sha1_process_bytes(&vol, sizeof(vol), &ctx);
705 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
706 }
707 sha1_finish_ctx(&ctx, buf);
708 memcpy(uuid, buf, 4*4);
709 }
710
711 #if 0
712 static void
713 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
714 {
715 __u8 *v = get_imsm_version(mpb);
716 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
717 char major[] = { 0, 0, 0 };
718 char minor[] = { 0 ,0, 0 };
719 char patch[] = { 0, 0, 0 };
720 char *ver_parse[] = { major, minor, patch };
721 int i, j;
722
723 i = j = 0;
724 while (*v != '\0' && v < end) {
725 if (*v != '.' && j < 2)
726 ver_parse[i][j++] = *v;
727 else {
728 i++;
729 j = 0;
730 }
731 v++;
732 }
733
734 *m = strtol(minor, NULL, 0);
735 *p = strtol(patch, NULL, 0);
736 }
737 #endif
738
739 static int imsm_level_to_layout(int level)
740 {
741 switch (level) {
742 case 0:
743 case 1:
744 return 0;
745 case 5:
746 case 6:
747 return ALGORITHM_LEFT_ASYMMETRIC;
748 case 10:
749 return 0x102;
750 }
751 return -1;
752 }
753
754 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
755 {
756 struct intel_super *super = st->sb;
757 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
758 struct imsm_map *map = get_imsm_map(dev, 0);
759
760 info->container_member = super->current_vol;
761 info->array.raid_disks = map->num_members;
762 info->array.level = get_imsm_raid_level(map);
763 info->array.layout = imsm_level_to_layout(info->array.level);
764 info->array.md_minor = -1;
765 info->array.ctime = 0;
766 info->array.utime = 0;
767 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
768 info->array.state = !dev->vol.dirty;
769
770 info->disk.major = 0;
771 info->disk.minor = 0;
772
773 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
774 info->component_size = __le32_to_cpu(map->blocks_per_member);
775 memset(info->uuid, 0, sizeof(info->uuid));
776
777 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
778 info->resync_start = 0;
779 else if (dev->vol.migr_state)
780 info->resync_start = __le32_to_cpu(dev->vol.curr_migr_unit);
781 else
782 info->resync_start = ~0ULL;
783
784 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
785 info->name[MAX_RAID_SERIAL_LEN] = 0;
786
787 info->array.major_version = -1;
788 info->array.minor_version = -2;
789 sprintf(info->text_version, "/%s/%d",
790 devnum2devname(st->container_dev),
791 info->container_member);
792 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
793 uuid_from_super_imsm(st, info->uuid);
794 }
795
796
797 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
798 {
799 struct intel_super *super = st->sb;
800 struct imsm_disk *disk;
801 __u32 s;
802
803 if (super->current_vol >= 0) {
804 getinfo_super_imsm_volume(st, info);
805 return;
806 }
807
808 /* Set raid_disks to zero so that Assemble will always pull in valid
809 * spares
810 */
811 info->array.raid_disks = 0;
812 info->array.level = LEVEL_CONTAINER;
813 info->array.layout = 0;
814 info->array.md_minor = -1;
815 info->array.ctime = 0; /* N/A for imsm */
816 info->array.utime = 0;
817 info->array.chunk_size = 0;
818
819 info->disk.major = 0;
820 info->disk.minor = 0;
821 info->disk.raid_disk = -1;
822 info->reshape_active = 0;
823 info->array.major_version = -1;
824 info->array.minor_version = -2;
825 strcpy(info->text_version, "imsm");
826 info->safe_mode_delay = 0;
827 info->disk.number = -1;
828 info->disk.state = 0;
829 info->name[0] = 0;
830
831 if (super->disks) {
832 __u32 reserved = imsm_reserved_sectors(super, super->disks);
833
834 disk = &super->disks->disk;
835 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
836 info->component_size = reserved;
837 s = __le32_to_cpu(disk->status);
838 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
839 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
840 info->disk.state |= s & SPARE_DISK ? 0 : (1 << MD_DISK_SYNC);
841 }
842
843 /* only call uuid_from_super_imsm when this disk is part of a populated container,
844 * ->compare_super may have updated the 'num_raid_devs' field for spares
845 */
846 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
847 uuid_from_super_imsm(st, info->uuid);
848 else
849 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
850 }
851
852 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
853 char *update, char *devname, int verbose,
854 int uuid_set, char *homehost)
855 {
856 /* FIXME */
857
858 /* For 'assemble' and 'force' we need to return non-zero if any
859 * change was made. For others, the return value is ignored.
860 * Update options are:
861 * force-one : This device looks a bit old but needs to be included,
862 * update age info appropriately.
863 * assemble: clear any 'faulty' flag to allow this device to
864 * be assembled.
865 * force-array: Array is degraded but being forced, mark it clean
866 * if that will be needed to assemble it.
867 *
868 * newdev: not used ????
869 * grow: Array has gained a new device - this is currently for
870 * linear only
871 * resync: mark as dirty so a resync will happen.
872 * name: update the name - preserving the homehost
873 *
874 * Following are not relevant for this imsm:
875 * sparc2.2 : update from old dodgey metadata
876 * super-minor: change the preferred_minor number
877 * summaries: update redundant counters.
878 * uuid: Change the uuid of the array to match watch is given
879 * homehost: update the recorded homehost
880 * _reshape_progress: record new reshape_progress position.
881 */
882 int rv = 0;
883 //struct intel_super *super = st->sb;
884 //struct imsm_super *mpb = super->mpb;
885
886 if (strcmp(update, "grow") == 0) {
887 }
888 if (strcmp(update, "resync") == 0) {
889 /* dev->vol.dirty = 1; */
890 }
891
892 /* IMSM has no concept of UUID or homehost */
893
894 return rv;
895 }
896
897 static size_t disks_to_mpb_size(int disks)
898 {
899 size_t size;
900
901 size = sizeof(struct imsm_super);
902 size += (disks - 1) * sizeof(struct imsm_disk);
903 size += 2 * sizeof(struct imsm_dev);
904 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
905 size += (4 - 2) * sizeof(struct imsm_map);
906 /* 4 possible disk_ord_tbl's */
907 size += 4 * (disks - 1) * sizeof(__u32);
908
909 return size;
910 }
911
912 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
913 {
914 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
915 return 0;
916
917 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
918 }
919
920 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
921 {
922 /*
923 * return:
924 * 0 same, or first was empty, and second was copied
925 * 1 second had wrong number
926 * 2 wrong uuid
927 * 3 wrong other info
928 */
929 struct intel_super *first = st->sb;
930 struct intel_super *sec = tst->sb;
931
932 if (!first) {
933 st->sb = tst->sb;
934 tst->sb = NULL;
935 return 0;
936 }
937
938 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
939 return 3;
940
941 /* if an anchor does not have num_raid_devs set then it is a free
942 * floating spare
943 */
944 if (first->anchor->num_raid_devs > 0 &&
945 sec->anchor->num_raid_devs > 0) {
946 if (first->anchor->family_num != sec->anchor->family_num)
947 return 3;
948 }
949
950 /* if 'first' is a spare promote it to a populated mpb with sec's
951 * family number
952 */
953 if (first->anchor->num_raid_devs == 0 &&
954 sec->anchor->num_raid_devs > 0) {
955 int i;
956
957 /* we need to copy raid device info from sec if an allocation
958 * fails here we don't associate the spare
959 */
960 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
961 first->dev_tbl[i] = malloc(sizeof(struct imsm_dev));
962 if (!first->dev_tbl) {
963 while (--i >= 0) {
964 free(first->dev_tbl[i]);
965 first->dev_tbl[i] = NULL;
966 }
967 fprintf(stderr, "imsm: failed to associate spare\n");
968 return 3;
969 }
970 *first->dev_tbl[i] = *sec->dev_tbl[i];
971 }
972
973 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
974 first->anchor->family_num = sec->anchor->family_num;
975 }
976
977 return 0;
978 }
979
980 static void fd2devname(int fd, char *name)
981 {
982 struct stat st;
983 char path[256];
984 char dname[100];
985 char *nm;
986 int rv;
987
988 name[0] = '\0';
989 if (fstat(fd, &st) != 0)
990 return;
991 sprintf(path, "/sys/dev/block/%d:%d",
992 major(st.st_rdev), minor(st.st_rdev));
993
994 rv = readlink(path, dname, sizeof(dname));
995 if (rv <= 0)
996 return;
997
998 dname[rv] = '\0';
999 nm = strrchr(dname, '/');
1000 nm++;
1001 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1002 }
1003
1004
1005 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1006
1007 static int imsm_read_serial(int fd, char *devname,
1008 __u8 serial[MAX_RAID_SERIAL_LEN])
1009 {
1010 unsigned char scsi_serial[255];
1011 int rv;
1012 int rsp_len;
1013 int len;
1014 char *c, *rsp_buf;
1015
1016 memset(scsi_serial, 0, sizeof(scsi_serial));
1017
1018 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1019
1020 if (rv && imsm_env_devname_as_serial()) {
1021 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1022 fd2devname(fd, (char *) serial);
1023 return 0;
1024 }
1025
1026 if (rv != 0) {
1027 if (devname)
1028 fprintf(stderr,
1029 Name ": Failed to retrieve serial for %s\n",
1030 devname);
1031 return rv;
1032 }
1033
1034 /* trim leading whitespace */
1035 rsp_len = scsi_serial[3];
1036 rsp_buf = (char *) &scsi_serial[4];
1037 c = rsp_buf;
1038 while (isspace(*c))
1039 c++;
1040
1041 /* truncate len to the end of rsp_buf if necessary */
1042 if (c + MAX_RAID_SERIAL_LEN > rsp_buf + rsp_len)
1043 len = rsp_len - (c - rsp_buf);
1044 else
1045 len = MAX_RAID_SERIAL_LEN;
1046
1047 /* initialize the buffer and copy rsp_buf characters */
1048 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1049 memcpy(serial, c, len);
1050
1051 /* trim trailing whitespace starting with the last character copied */
1052 c = (char *) &serial[len - 1];
1053 while (isspace(*c) || *c == '\0')
1054 *c-- = '\0';
1055
1056 return 0;
1057 }
1058
1059 static int serialcmp(__u8 *s1, __u8 *s2)
1060 {
1061 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1062 }
1063
1064 static void serialcpy(__u8 *dest, __u8 *src)
1065 {
1066 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1067 }
1068
1069 static int
1070 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1071 {
1072 struct dl *dl;
1073 struct stat stb;
1074 int rv;
1075 int i;
1076 int alloc = 1;
1077 __u8 serial[MAX_RAID_SERIAL_LEN];
1078
1079 rv = imsm_read_serial(fd, devname, serial);
1080
1081 if (rv != 0)
1082 return 2;
1083
1084 /* check if this is a disk we have seen before. it may be a spare in
1085 * super->disks while the current anchor believes it is a raid member,
1086 * check if we need to update dl->index
1087 */
1088 for (dl = super->disks; dl; dl = dl->next)
1089 if (serialcmp(dl->serial, serial) == 0)
1090 break;
1091
1092 if (!dl)
1093 dl = malloc(sizeof(*dl));
1094 else
1095 alloc = 0;
1096
1097 if (!dl) {
1098 if (devname)
1099 fprintf(stderr,
1100 Name ": failed to allocate disk buffer for %s\n",
1101 devname);
1102 return 2;
1103 }
1104
1105 if (alloc) {
1106 fstat(fd, &stb);
1107 dl->major = major(stb.st_rdev);
1108 dl->minor = minor(stb.st_rdev);
1109 dl->next = super->disks;
1110 dl->fd = keep_fd ? fd : -1;
1111 dl->devname = devname ? strdup(devname) : NULL;
1112 serialcpy(dl->serial, serial);
1113 dl->index = -2;
1114 } else if (keep_fd) {
1115 close(dl->fd);
1116 dl->fd = fd;
1117 }
1118
1119 /* look up this disk's index in the current anchor */
1120 for (i = 0; i < super->anchor->num_disks; i++) {
1121 struct imsm_disk *disk_iter;
1122
1123 disk_iter = __get_imsm_disk(super->anchor, i);
1124
1125 if (serialcmp(disk_iter->serial, dl->serial) == 0) {
1126 __u32 status;
1127
1128 dl->disk = *disk_iter;
1129 status = __le32_to_cpu(dl->disk.status);
1130 /* only set index on disks that are a member of a
1131 * populated contianer, i.e. one with raid_devs
1132 */
1133 if (status & FAILED_DISK)
1134 dl->index = -2;
1135 else if (status & SPARE_DISK)
1136 dl->index = -1;
1137 else
1138 dl->index = i;
1139
1140 break;
1141 }
1142 }
1143
1144 /* no match, maybe a stale failed drive */
1145 if (i == super->anchor->num_disks && dl->index >= 0) {
1146 dl->disk = *__get_imsm_disk(super->anchor, dl->index);
1147 if (__le32_to_cpu(dl->disk.status) & FAILED_DISK)
1148 dl->index = -2;
1149 }
1150
1151 if (alloc)
1152 super->disks = dl;
1153
1154 return 0;
1155 }
1156
1157 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1158 {
1159 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1160 }
1161
1162 #ifndef MDASSEMBLE
1163 /* When migrating map0 contains the 'destination' state while map1
1164 * contains the current state. When not migrating map0 contains the
1165 * current state. This routine assumes that map[0].map_state is set to
1166 * the current array state before being called.
1167 *
1168 * Migration is indicated by one of the following states
1169 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1170 * 2/ Initialize (migr_state=1 migr_type=0 map0state=normal
1171 * map1state=unitialized)
1172 * 3/ Verify (Resync) (migr_state=1 migr_type=1 map0state=normal
1173 * map1state=normal)
1174 * 4/ Rebuild (migr_state=1 migr_type=1 map0state=normal
1175 * map1state=degraded)
1176 */
1177 static void migrate(struct imsm_dev *dev, __u8 to_state, int rebuild_resync)
1178 {
1179 struct imsm_map *dest;
1180 struct imsm_map *src = get_imsm_map(dev, 0);
1181
1182 dev->vol.migr_state = 1;
1183 dev->vol.migr_type = rebuild_resync;
1184 dev->vol.curr_migr_unit = 0;
1185 dest = get_imsm_map(dev, 1);
1186
1187 memcpy(dest, src, sizeof_imsm_map(src));
1188 src->map_state = to_state;
1189 }
1190
1191 static void end_migration(struct imsm_dev *dev, __u8 map_state)
1192 {
1193 struct imsm_map *map = get_imsm_map(dev, 0);
1194
1195 dev->vol.migr_state = 0;
1196 dev->vol.curr_migr_unit = 0;
1197 map->map_state = map_state;
1198 }
1199 #endif
1200
1201 static int parse_raid_devices(struct intel_super *super)
1202 {
1203 int i;
1204 struct imsm_dev *dev_new;
1205 size_t len, len_migr;
1206 size_t space_needed = 0;
1207 struct imsm_super *mpb = super->anchor;
1208
1209 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1210 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
1211
1212 len = sizeof_imsm_dev(dev_iter, 0);
1213 len_migr = sizeof_imsm_dev(dev_iter, 1);
1214 if (len_migr > len)
1215 space_needed += len_migr - len;
1216
1217 dev_new = malloc(len_migr);
1218 if (!dev_new)
1219 return 1;
1220 imsm_copy_dev(dev_new, dev_iter);
1221 super->dev_tbl[i] = dev_new;
1222 }
1223
1224 /* ensure that super->buf is large enough when all raid devices
1225 * are migrating
1226 */
1227 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1228 void *buf;
1229
1230 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1231 if (posix_memalign(&buf, 512, len) != 0)
1232 return 1;
1233
1234 memcpy(buf, super->buf, len);
1235 free(super->buf);
1236 super->buf = buf;
1237 super->len = len;
1238 }
1239
1240 return 0;
1241 }
1242
1243 /* retrieve a pointer to the bbm log which starts after all raid devices */
1244 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1245 {
1246 void *ptr = NULL;
1247
1248 if (__le32_to_cpu(mpb->bbm_log_size)) {
1249 ptr = mpb;
1250 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1251 }
1252
1253 return ptr;
1254 }
1255
1256 static void __free_imsm(struct intel_super *super, int free_disks);
1257
1258 /* load_imsm_mpb - read matrix metadata
1259 * allocates super->mpb to be freed by free_super
1260 */
1261 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1262 {
1263 unsigned long long dsize;
1264 unsigned long long sectors;
1265 struct stat;
1266 struct imsm_super *anchor;
1267 __u32 check_sum;
1268 int rc;
1269
1270 get_dev_size(fd, NULL, &dsize);
1271
1272 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1273 if (devname)
1274 fprintf(stderr,
1275 Name ": Cannot seek to anchor block on %s: %s\n",
1276 devname, strerror(errno));
1277 return 1;
1278 }
1279
1280 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1281 if (devname)
1282 fprintf(stderr,
1283 Name ": Failed to allocate imsm anchor buffer"
1284 " on %s\n", devname);
1285 return 1;
1286 }
1287 if (read(fd, anchor, 512) != 512) {
1288 if (devname)
1289 fprintf(stderr,
1290 Name ": Cannot read anchor block on %s: %s\n",
1291 devname, strerror(errno));
1292 free(anchor);
1293 return 1;
1294 }
1295
1296 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1297 if (devname)
1298 fprintf(stderr,
1299 Name ": no IMSM anchor on %s\n", devname);
1300 free(anchor);
1301 return 2;
1302 }
1303
1304 __free_imsm(super, 0);
1305 super->len = ROUND_UP(anchor->mpb_size, 512);
1306 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1307 if (devname)
1308 fprintf(stderr,
1309 Name ": unable to allocate %zu byte mpb buffer\n",
1310 super->len);
1311 free(anchor);
1312 return 2;
1313 }
1314 memcpy(super->buf, anchor, 512);
1315
1316 sectors = mpb_sectors(anchor) - 1;
1317 free(anchor);
1318 if (!sectors) {
1319 rc = load_imsm_disk(fd, super, devname, 0);
1320 if (rc == 0)
1321 rc = parse_raid_devices(super);
1322 return rc;
1323 }
1324
1325 /* read the extended mpb */
1326 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1327 if (devname)
1328 fprintf(stderr,
1329 Name ": Cannot seek to extended mpb on %s: %s\n",
1330 devname, strerror(errno));
1331 return 1;
1332 }
1333
1334 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1335 if (devname)
1336 fprintf(stderr,
1337 Name ": Cannot read extended mpb on %s: %s\n",
1338 devname, strerror(errno));
1339 return 2;
1340 }
1341
1342 check_sum = __gen_imsm_checksum(super->anchor);
1343 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1344 if (devname)
1345 fprintf(stderr,
1346 Name ": IMSM checksum %x != %x on %s\n",
1347 check_sum, __le32_to_cpu(super->anchor->check_sum),
1348 devname);
1349 return 2;
1350 }
1351
1352 /* FIXME the BBM log is disk specific so we cannot use this global
1353 * buffer for all disks. Ok for now since we only look at the global
1354 * bbm_log_size parameter to gate assembly
1355 */
1356 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1357
1358 rc = load_imsm_disk(fd, super, devname, 0);
1359 if (rc == 0)
1360 rc = parse_raid_devices(super);
1361
1362 return rc;
1363 }
1364
1365 static void __free_imsm_disk(struct dl *d)
1366 {
1367 if (d->fd >= 0)
1368 close(d->fd);
1369 if (d->devname)
1370 free(d->devname);
1371 free(d);
1372
1373 }
1374 static void free_imsm_disks(struct intel_super *super)
1375 {
1376 struct dl *d;
1377
1378 while (super->disks) {
1379 d = super->disks;
1380 super->disks = d->next;
1381 __free_imsm_disk(d);
1382 }
1383 while (super->missing) {
1384 d = super->missing;
1385 super->missing = d->next;
1386 __free_imsm_disk(d);
1387 }
1388
1389 }
1390
1391 /* free all the pieces hanging off of a super pointer */
1392 static void __free_imsm(struct intel_super *super, int free_disks)
1393 {
1394 int i;
1395
1396 if (super->buf) {
1397 free(super->buf);
1398 super->buf = NULL;
1399 }
1400 if (free_disks)
1401 free_imsm_disks(super);
1402 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1403 if (super->dev_tbl[i]) {
1404 free(super->dev_tbl[i]);
1405 super->dev_tbl[i] = NULL;
1406 }
1407 }
1408
1409 static void free_imsm(struct intel_super *super)
1410 {
1411 __free_imsm(super, 1);
1412 free(super);
1413 }
1414
1415 static void free_super_imsm(struct supertype *st)
1416 {
1417 struct intel_super *super = st->sb;
1418
1419 if (!super)
1420 return;
1421
1422 free_imsm(super);
1423 st->sb = NULL;
1424 }
1425
1426 static struct intel_super *alloc_super(int creating_imsm)
1427 {
1428 struct intel_super *super = malloc(sizeof(*super));
1429
1430 if (super) {
1431 memset(super, 0, sizeof(*super));
1432 super->creating_imsm = creating_imsm;
1433 super->current_vol = -1;
1434 }
1435
1436 return super;
1437 }
1438
1439 #ifndef MDASSEMBLE
1440 /* find_missing - helper routine for load_super_imsm_all that identifies
1441 * disks that have disappeared from the system. This routine relies on
1442 * the mpb being uptodate, which it is at load time.
1443 */
1444 static int find_missing(struct intel_super *super)
1445 {
1446 int i;
1447 struct imsm_super *mpb = super->anchor;
1448 struct dl *dl;
1449 struct imsm_disk *disk;
1450 __u32 status;
1451
1452 for (i = 0; i < mpb->num_disks; i++) {
1453 disk = __get_imsm_disk(mpb, i);
1454 for (dl = super->disks; dl; dl = dl->next)
1455 if (serialcmp(dl->disk.serial, disk->serial) == 0)
1456 break;
1457 if (dl)
1458 continue;
1459 /* ok we have a 'disk' without a live entry in
1460 * super->disks
1461 */
1462 status = __le32_to_cpu(disk->status);
1463 if (status & FAILED_DISK || !(status & USABLE_DISK))
1464 continue; /* never mind, already marked */
1465
1466 dl = malloc(sizeof(*dl));
1467 if (!dl)
1468 return 1;
1469 dl->major = 0;
1470 dl->minor = 0;
1471 dl->fd = -1;
1472 dl->devname = strdup("missing");
1473 dl->index = i;
1474 serialcpy(dl->serial, disk->serial);
1475 dl->disk = *disk;
1476 dl->next = super->missing;
1477 super->missing = dl;
1478 }
1479
1480 return 0;
1481 }
1482
1483 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1484 char *devname, int keep_fd)
1485 {
1486 struct mdinfo *sra;
1487 struct intel_super *super;
1488 struct mdinfo *sd, *best = NULL;
1489 __u32 bestgen = 0;
1490 __u32 gen;
1491 char nm[20];
1492 int dfd;
1493 int rv;
1494
1495 /* check if this disk is a member of an active array */
1496 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1497 if (!sra)
1498 return 1;
1499
1500 if (sra->array.major_version != -1 ||
1501 sra->array.minor_version != -2 ||
1502 strcmp(sra->text_version, "imsm") != 0)
1503 return 1;
1504
1505 super = alloc_super(0);
1506 if (!super)
1507 return 1;
1508
1509 /* find the most up to date disk in this array, skipping spares */
1510 for (sd = sra->devs; sd; sd = sd->next) {
1511 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1512 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1513 if (!dfd) {
1514 free_imsm(super);
1515 return 2;
1516 }
1517 rv = load_imsm_mpb(dfd, super, NULL);
1518 if (!keep_fd)
1519 close(dfd);
1520 if (rv == 0) {
1521 if (super->anchor->num_raid_devs == 0)
1522 gen = 0;
1523 else
1524 gen = __le32_to_cpu(super->anchor->generation_num);
1525 if (!best || gen > bestgen) {
1526 bestgen = gen;
1527 best = sd;
1528 }
1529 } else {
1530 free_imsm(super);
1531 return 2;
1532 }
1533 }
1534
1535 if (!best) {
1536 free_imsm(super);
1537 return 1;
1538 }
1539
1540 /* load the most up to date anchor */
1541 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1542 dfd = dev_open(nm, O_RDONLY);
1543 if (!dfd) {
1544 free_imsm(super);
1545 return 1;
1546 }
1547 rv = load_imsm_mpb(dfd, super, NULL);
1548 close(dfd);
1549 if (rv != 0) {
1550 free_imsm(super);
1551 return 2;
1552 }
1553
1554 /* re-parse the disk list with the current anchor */
1555 for (sd = sra->devs ; sd ; sd = sd->next) {
1556 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1557 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1558 if (!dfd) {
1559 free_imsm(super);
1560 return 2;
1561 }
1562 load_imsm_disk(dfd, super, NULL, keep_fd);
1563 if (!keep_fd)
1564 close(dfd);
1565 }
1566
1567
1568 if (find_missing(super) != 0) {
1569 free_imsm(super);
1570 return 2;
1571 }
1572
1573 if (st->subarray[0]) {
1574 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1575 super->current_vol = atoi(st->subarray);
1576 else
1577 return 1;
1578 }
1579
1580 *sbp = super;
1581 st->container_dev = fd2devnum(fd);
1582 if (st->ss == NULL) {
1583 st->ss = &super_imsm;
1584 st->minor_version = 0;
1585 st->max_devs = IMSM_MAX_DEVICES;
1586 }
1587 st->loaded_container = 1;
1588
1589 return 0;
1590 }
1591 #endif
1592
1593 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1594 {
1595 struct intel_super *super;
1596 int rv;
1597
1598 #ifndef MDASSEMBLE
1599 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1600 return 0;
1601 #endif
1602 if (st->subarray[0])
1603 return 1; /* FIXME */
1604
1605 super = alloc_super(0);
1606 if (!super) {
1607 fprintf(stderr,
1608 Name ": malloc of %zu failed.\n",
1609 sizeof(*super));
1610 return 1;
1611 }
1612
1613 rv = load_imsm_mpb(fd, super, devname);
1614
1615 if (rv) {
1616 if (devname)
1617 fprintf(stderr,
1618 Name ": Failed to load all information "
1619 "sections on %s\n", devname);
1620 free_imsm(super);
1621 return rv;
1622 }
1623
1624 st->sb = super;
1625 if (st->ss == NULL) {
1626 st->ss = &super_imsm;
1627 st->minor_version = 0;
1628 st->max_devs = IMSM_MAX_DEVICES;
1629 }
1630 st->loaded_container = 0;
1631
1632 return 0;
1633 }
1634
1635 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1636 {
1637 if (info->level == 1)
1638 return 128;
1639 return info->chunk_size >> 9;
1640 }
1641
1642 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1643 {
1644 __u32 num_stripes;
1645
1646 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1647 if (info->level == 1)
1648 num_stripes /= 2;
1649
1650 return num_stripes;
1651 }
1652
1653 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1654 {
1655 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1656 }
1657
1658 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1659 unsigned long long size, char *name,
1660 char *homehost, int *uuid)
1661 {
1662 /* We are creating a volume inside a pre-existing container.
1663 * so st->sb is already set.
1664 */
1665 struct intel_super *super = st->sb;
1666 struct imsm_super *mpb = super->anchor;
1667 struct imsm_dev *dev;
1668 struct imsm_vol *vol;
1669 struct imsm_map *map;
1670 int idx = mpb->num_raid_devs;
1671 int i;
1672 unsigned long long array_blocks;
1673 __u32 offset = 0;
1674 size_t size_old, size_new;
1675
1676 if (mpb->num_raid_devs >= 2) {
1677 fprintf(stderr, Name": This imsm-container already has the "
1678 "maximum of 2 volumes\n");
1679 return 0;
1680 }
1681
1682 /* ensure the mpb is large enough for the new data */
1683 size_old = __le32_to_cpu(mpb->mpb_size);
1684 size_new = disks_to_mpb_size(info->nr_disks);
1685 if (size_new > size_old) {
1686 void *mpb_new;
1687 size_t size_round = ROUND_UP(size_new, 512);
1688
1689 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1690 fprintf(stderr, Name": could not allocate new mpb\n");
1691 return 0;
1692 }
1693 memcpy(mpb_new, mpb, size_old);
1694 free(mpb);
1695 mpb = mpb_new;
1696 super->anchor = mpb_new;
1697 mpb->mpb_size = __cpu_to_le32(size_new);
1698 memset(mpb_new + size_old, 0, size_round - size_old);
1699 }
1700 super->current_vol = idx;
1701 /* when creating the first raid device in this container set num_disks
1702 * to zero, i.e. delete this spare and add raid member devices in
1703 * add_to_super_imsm_volume()
1704 */
1705 if (super->current_vol == 0)
1706 mpb->num_disks = 0;
1707 sprintf(st->subarray, "%d", idx);
1708 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1709 if (!dev) {
1710 fprintf(stderr, Name": could not allocate raid device\n");
1711 return 0;
1712 }
1713 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1714 array_blocks = calc_array_size(info->level, info->raid_disks,
1715 info->layout, info->chunk_size,
1716 info->size*2);
1717 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1718 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1719 dev->status = __cpu_to_le32(0);
1720 dev->reserved_blocks = __cpu_to_le32(0);
1721 vol = &dev->vol;
1722 vol->migr_state = 0;
1723 vol->migr_type = 0;
1724 vol->dirty = 0;
1725 vol->curr_migr_unit = 0;
1726 for (i = 0; i < idx; i++) {
1727 struct imsm_dev *prev = get_imsm_dev(super, i);
1728 struct imsm_map *pmap = get_imsm_map(prev, 0);
1729
1730 offset += __le32_to_cpu(pmap->blocks_per_member);
1731 offset += IMSM_RESERVED_SECTORS;
1732 }
1733 map = get_imsm_map(dev, 0);
1734 map->pba_of_lba0 = __cpu_to_le32(offset);
1735 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1736 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1737 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1738 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1739 IMSM_T_STATE_NORMAL;
1740
1741 if (info->level == 1 && info->raid_disks > 2) {
1742 fprintf(stderr, Name": imsm does not support more than 2 disks"
1743 "in a raid1 volume\n");
1744 return 0;
1745 }
1746 if (info->level == 10)
1747 map->raid_level = 1;
1748 else
1749 map->raid_level = info->level;
1750
1751 map->num_members = info->raid_disks;
1752 for (i = 0; i < map->num_members; i++) {
1753 /* initialized in add_to_super */
1754 set_imsm_ord_tbl_ent(map, i, 0);
1755 }
1756 mpb->num_raid_devs++;
1757 super->dev_tbl[super->current_vol] = dev;
1758
1759 return 1;
1760 }
1761
1762 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1763 unsigned long long size, char *name,
1764 char *homehost, int *uuid)
1765 {
1766 /* This is primarily called by Create when creating a new array.
1767 * We will then get add_to_super called for each component, and then
1768 * write_init_super called to write it out to each device.
1769 * For IMSM, Create can create on fresh devices or on a pre-existing
1770 * array.
1771 * To create on a pre-existing array a different method will be called.
1772 * This one is just for fresh drives.
1773 */
1774 struct intel_super *super;
1775 struct imsm_super *mpb;
1776 size_t mpb_size;
1777
1778 if (!info) {
1779 st->sb = NULL;
1780 return 0;
1781 }
1782 if (st->sb)
1783 return init_super_imsm_volume(st, info, size, name, homehost,
1784 uuid);
1785
1786 super = alloc_super(1);
1787 if (!super)
1788 return 0;
1789 mpb_size = disks_to_mpb_size(info->nr_disks);
1790 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1791 free(super);
1792 return 0;
1793 }
1794 mpb = super->buf;
1795 memset(mpb, 0, mpb_size);
1796
1797 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1798 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1799 strlen(MPB_VERSION_RAID5));
1800 mpb->mpb_size = mpb_size;
1801
1802 st->sb = super;
1803 return 1;
1804 }
1805
1806 #ifndef MDASSEMBLE
1807 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1808 int fd, char *devname)
1809 {
1810 struct intel_super *super = st->sb;
1811 struct imsm_super *mpb = super->anchor;
1812 struct dl *dl;
1813 struct imsm_dev *dev;
1814 struct imsm_map *map;
1815 __u32 status;
1816
1817 dev = get_imsm_dev(super, super->current_vol);
1818 map = get_imsm_map(dev, 0);
1819
1820 for (dl = super->disks; dl ; dl = dl->next)
1821 if (dl->major == dk->major &&
1822 dl->minor == dk->minor)
1823 break;
1824
1825 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1826 return;
1827
1828 /* add a pristine spare to the metadata */
1829 if (dl->index < 0) {
1830 dl->index = super->anchor->num_disks;
1831 super->anchor->num_disks++;
1832 }
1833 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
1834 status = CONFIGURED_DISK | USABLE_DISK;
1835 dl->disk.status = __cpu_to_le32(status);
1836
1837 /* if we are creating the first raid device update the family number */
1838 if (super->current_vol == 0) {
1839 __u32 sum;
1840 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1841 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1842
1843 *_dev = *dev;
1844 *_disk = dl->disk;
1845 sum = __gen_imsm_checksum(mpb);
1846 mpb->family_num = __cpu_to_le32(sum);
1847 }
1848 }
1849
1850 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1851 int fd, char *devname)
1852 {
1853 struct intel_super *super = st->sb;
1854 struct dl *dd;
1855 unsigned long long size;
1856 __u32 status, id;
1857 int rv;
1858 struct stat stb;
1859
1860 if (super->current_vol >= 0) {
1861 add_to_super_imsm_volume(st, dk, fd, devname);
1862 return;
1863 }
1864
1865 fstat(fd, &stb);
1866 dd = malloc(sizeof(*dd));
1867 if (!dd) {
1868 fprintf(stderr,
1869 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1870 abort();
1871 }
1872 memset(dd, 0, sizeof(*dd));
1873 dd->major = major(stb.st_rdev);
1874 dd->minor = minor(stb.st_rdev);
1875 dd->index = -1;
1876 dd->devname = devname ? strdup(devname) : NULL;
1877 dd->fd = fd;
1878 rv = imsm_read_serial(fd, devname, dd->serial);
1879 if (rv) {
1880 fprintf(stderr,
1881 Name ": failed to retrieve scsi serial, aborting\n");
1882 free(dd);
1883 abort();
1884 }
1885
1886 get_dev_size(fd, NULL, &size);
1887 size /= 512;
1888 status = USABLE_DISK | SPARE_DISK;
1889 serialcpy(dd->disk.serial, dd->serial);
1890 dd->disk.total_blocks = __cpu_to_le32(size);
1891 dd->disk.status = __cpu_to_le32(status);
1892 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1893 dd->disk.scsi_id = __cpu_to_le32(id);
1894 else
1895 dd->disk.scsi_id = __cpu_to_le32(0);
1896
1897 if (st->update_tail) {
1898 dd->next = super->add;
1899 super->add = dd;
1900 } else {
1901 dd->next = super->disks;
1902 super->disks = dd;
1903 }
1904 }
1905
1906 static int store_imsm_mpb(int fd, struct intel_super *super);
1907
1908 /* spare records have their own family number and do not have any defined raid
1909 * devices
1910 */
1911 static int write_super_imsm_spares(struct intel_super *super, int doclose)
1912 {
1913 struct imsm_super mpb_save;
1914 struct imsm_super *mpb = super->anchor;
1915 __u32 sum;
1916 struct dl *d;
1917
1918 mpb_save = *mpb;
1919 mpb->num_raid_devs = 0;
1920 mpb->num_disks = 1;
1921 mpb->mpb_size = sizeof(struct imsm_super);
1922 mpb->generation_num = __cpu_to_le32(1UL);
1923
1924 for (d = super->disks; d; d = d->next) {
1925 if (d->index != -1)
1926 continue;
1927
1928 mpb->disk[0] = d->disk;
1929 sum = __gen_imsm_checksum(mpb);
1930 mpb->family_num = __cpu_to_le32(sum);
1931 sum = __gen_imsm_checksum(mpb);
1932 mpb->check_sum = __cpu_to_le32(sum);
1933
1934 if (store_imsm_mpb(d->fd, super)) {
1935 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1936 __func__, d->major, d->minor, strerror(errno));
1937 *mpb = mpb_save;
1938 return 1;
1939 }
1940 if (doclose) {
1941 close(d->fd);
1942 d->fd = -1;
1943 }
1944 }
1945
1946 *mpb = mpb_save;
1947 return 0;
1948 }
1949
1950 static int write_super_imsm(struct intel_super *super, int doclose)
1951 {
1952 struct imsm_super *mpb = super->anchor;
1953 struct dl *d;
1954 __u32 generation;
1955 __u32 sum;
1956 int spares = 0;
1957 int i;
1958 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
1959
1960 /* 'generation' is incremented everytime the metadata is written */
1961 generation = __le32_to_cpu(mpb->generation_num);
1962 generation++;
1963 mpb->generation_num = __cpu_to_le32(generation);
1964
1965 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
1966 for (d = super->disks; d; d = d->next) {
1967 if (d->index == -1)
1968 spares++;
1969 else
1970 mpb->disk[d->index] = d->disk;
1971 }
1972 for (d = super->missing; d; d = d->next)
1973 mpb->disk[d->index] = d->disk;
1974
1975 for (i = 0; i < mpb->num_raid_devs; i++) {
1976 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1977
1978 imsm_copy_dev(dev, super->dev_tbl[i]);
1979 mpb_size += sizeof_imsm_dev(dev, 0);
1980 }
1981 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
1982 mpb->mpb_size = __cpu_to_le32(mpb_size);
1983
1984 /* recalculate checksum */
1985 sum = __gen_imsm_checksum(mpb);
1986 mpb->check_sum = __cpu_to_le32(sum);
1987
1988 /* write the mpb for disks that compose raid devices */
1989 for (d = super->disks; d ; d = d->next) {
1990 if (d->index < 0)
1991 continue;
1992 if (store_imsm_mpb(d->fd, super))
1993 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1994 __func__, d->major, d->minor, strerror(errno));
1995 if (doclose) {
1996 close(d->fd);
1997 d->fd = -1;
1998 }
1999 }
2000
2001 if (spares)
2002 return write_super_imsm_spares(super, doclose);
2003
2004 return 0;
2005 }
2006
2007
2008 static int create_array(struct supertype *st)
2009 {
2010 size_t len;
2011 struct imsm_update_create_array *u;
2012 struct intel_super *super = st->sb;
2013 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2014
2015 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0);
2016 u = malloc(len);
2017 if (!u) {
2018 fprintf(stderr, "%s: failed to allocate update buffer\n",
2019 __func__);
2020 return 1;
2021 }
2022
2023 u->type = update_create_array;
2024 u->dev_idx = super->current_vol;
2025 imsm_copy_dev(&u->dev, dev);
2026 append_metadata_update(st, u, len);
2027
2028 return 0;
2029 }
2030
2031 static int _add_disk(struct supertype *st)
2032 {
2033 struct intel_super *super = st->sb;
2034 size_t len;
2035 struct imsm_update_add_disk *u;
2036
2037 if (!super->add)
2038 return 0;
2039
2040 len = sizeof(*u);
2041 u = malloc(len);
2042 if (!u) {
2043 fprintf(stderr, "%s: failed to allocate update buffer\n",
2044 __func__);
2045 return 1;
2046 }
2047
2048 u->type = update_add_disk;
2049 append_metadata_update(st, u, len);
2050
2051 return 0;
2052 }
2053
2054 static int write_init_super_imsm(struct supertype *st)
2055 {
2056 if (st->update_tail) {
2057 /* queue the recently created array / added disk
2058 * as a metadata update */
2059 struct intel_super *super = st->sb;
2060 struct dl *d;
2061 int rv;
2062
2063 /* determine if we are creating a volume or adding a disk */
2064 if (super->current_vol < 0) {
2065 /* in the add disk case we are running in mdmon
2066 * context, so don't close fd's
2067 */
2068 return _add_disk(st);
2069 } else
2070 rv = create_array(st);
2071
2072 for (d = super->disks; d ; d = d->next) {
2073 close(d->fd);
2074 d->fd = -1;
2075 }
2076
2077 return rv;
2078 } else
2079 return write_super_imsm(st->sb, 1);
2080 }
2081 #endif
2082
2083 static int store_zero_imsm(struct supertype *st, int fd)
2084 {
2085 unsigned long long dsize;
2086 void *buf;
2087
2088 get_dev_size(fd, NULL, &dsize);
2089
2090 /* first block is stored on second to last sector of the disk */
2091 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2092 return 1;
2093
2094 if (posix_memalign(&buf, 512, 512) != 0)
2095 return 1;
2096
2097 memset(buf, 0, 512);
2098 if (write(fd, buf, 512) != 512)
2099 return 1;
2100 return 0;
2101 }
2102
2103 static int imsm_bbm_log_size(struct imsm_super *mpb)
2104 {
2105 return __le32_to_cpu(mpb->bbm_log_size);
2106 }
2107
2108 #ifndef MDASSEMBLE
2109 static int validate_geometry_imsm_container(struct supertype *st, int level,
2110 int layout, int raiddisks, int chunk,
2111 unsigned long long size, char *dev,
2112 unsigned long long *freesize,
2113 int verbose)
2114 {
2115 int fd;
2116 unsigned long long ldsize;
2117
2118 if (level != LEVEL_CONTAINER)
2119 return 0;
2120 if (!dev)
2121 return 1;
2122
2123 fd = open(dev, O_RDONLY|O_EXCL, 0);
2124 if (fd < 0) {
2125 if (verbose)
2126 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
2127 dev, strerror(errno));
2128 return 0;
2129 }
2130 if (!get_dev_size(fd, dev, &ldsize)) {
2131 close(fd);
2132 return 0;
2133 }
2134 close(fd);
2135
2136 *freesize = avail_size_imsm(st, ldsize >> 9);
2137
2138 return 1;
2139 }
2140
2141 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
2142 * FIX ME add ahci details
2143 */
2144 static int validate_geometry_imsm_volume(struct supertype *st, int level,
2145 int layout, int raiddisks, int chunk,
2146 unsigned long long size, char *dev,
2147 unsigned long long *freesize,
2148 int verbose)
2149 {
2150 struct stat stb;
2151 struct intel_super *super = st->sb;
2152 struct dl *dl;
2153 unsigned long long pos = 0;
2154 unsigned long long maxsize;
2155 struct extent *e;
2156 int i;
2157
2158 if (level == LEVEL_CONTAINER)
2159 return 0;
2160
2161 if (level == 1 && raiddisks > 2) {
2162 if (verbose)
2163 fprintf(stderr, Name ": imsm does not support more "
2164 "than 2 in a raid1 configuration\n");
2165 return 0;
2166 }
2167
2168 /* We must have the container info already read in. */
2169 if (!super)
2170 return 0;
2171
2172 if (!dev) {
2173 /* General test: make sure there is space for
2174 * 'raiddisks' device extents of size 'size' at a given
2175 * offset
2176 */
2177 unsigned long long minsize = size*2 /* convert to blocks */;
2178 unsigned long long start_offset = ~0ULL;
2179 int dcnt = 0;
2180 if (minsize == 0)
2181 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
2182 for (dl = super->disks; dl ; dl = dl->next) {
2183 int found = 0;
2184
2185 pos = 0;
2186 i = 0;
2187 e = get_extents(super, dl);
2188 if (!e) continue;
2189 do {
2190 unsigned long long esize;
2191 esize = e[i].start - pos;
2192 if (esize >= minsize)
2193 found = 1;
2194 if (found && start_offset == ~0ULL) {
2195 start_offset = pos;
2196 break;
2197 } else if (found && pos != start_offset) {
2198 found = 0;
2199 break;
2200 }
2201 pos = e[i].start + e[i].size;
2202 i++;
2203 } while (e[i-1].size);
2204 if (found)
2205 dcnt++;
2206 free(e);
2207 }
2208 if (dcnt < raiddisks) {
2209 if (verbose)
2210 fprintf(stderr, Name ": imsm: Not enough "
2211 "devices with space for this array "
2212 "(%d < %d)\n",
2213 dcnt, raiddisks);
2214 return 0;
2215 }
2216 return 1;
2217 }
2218 /* This device must be a member of the set */
2219 if (stat(dev, &stb) < 0)
2220 return 0;
2221 if ((S_IFMT & stb.st_mode) != S_IFBLK)
2222 return 0;
2223 for (dl = super->disks ; dl ; dl = dl->next) {
2224 if (dl->major == major(stb.st_rdev) &&
2225 dl->minor == minor(stb.st_rdev))
2226 break;
2227 }
2228 if (!dl) {
2229 if (verbose)
2230 fprintf(stderr, Name ": %s is not in the "
2231 "same imsm set\n", dev);
2232 return 0;
2233 }
2234 e = get_extents(super, dl);
2235 maxsize = 0;
2236 i = 0;
2237 if (e) do {
2238 unsigned long long esize;
2239 esize = e[i].start - pos;
2240 if (esize >= maxsize)
2241 maxsize = esize;
2242 pos = e[i].start + e[i].size;
2243 i++;
2244 } while (e[i-1].size);
2245 *freesize = maxsize;
2246
2247 return 1;
2248 }
2249
2250 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
2251 int raiddisks, int chunk, unsigned long long size,
2252 char *dev, unsigned long long *freesize,
2253 int verbose)
2254 {
2255 int fd, cfd;
2256 struct mdinfo *sra;
2257
2258 /* if given unused devices create a container
2259 * if given given devices in a container create a member volume
2260 */
2261 if (level == LEVEL_CONTAINER) {
2262 /* Must be a fresh device to add to a container */
2263 return validate_geometry_imsm_container(st, level, layout,
2264 raiddisks, chunk, size,
2265 dev, freesize,
2266 verbose);
2267 }
2268
2269 if (st->sb) {
2270 /* creating in a given container */
2271 return validate_geometry_imsm_volume(st, level, layout,
2272 raiddisks, chunk, size,
2273 dev, freesize, verbose);
2274 }
2275
2276 /* limit creation to the following levels */
2277 if (!dev)
2278 switch (level) {
2279 case 0:
2280 case 1:
2281 case 10:
2282 case 5:
2283 break;
2284 default:
2285 return 1;
2286 }
2287
2288 /* This device needs to be a device in an 'imsm' container */
2289 fd = open(dev, O_RDONLY|O_EXCL, 0);
2290 if (fd >= 0) {
2291 if (verbose)
2292 fprintf(stderr,
2293 Name ": Cannot create this array on device %s\n",
2294 dev);
2295 close(fd);
2296 return 0;
2297 }
2298 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2299 if (verbose)
2300 fprintf(stderr, Name ": Cannot open %s: %s\n",
2301 dev, strerror(errno));
2302 return 0;
2303 }
2304 /* Well, it is in use by someone, maybe an 'imsm' container. */
2305 cfd = open_container(fd);
2306 if (cfd < 0) {
2307 close(fd);
2308 if (verbose)
2309 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
2310 dev);
2311 return 0;
2312 }
2313 sra = sysfs_read(cfd, 0, GET_VERSION);
2314 close(fd);
2315 if (sra && sra->array.major_version == -1 &&
2316 strcmp(sra->text_version, "imsm") == 0) {
2317 /* This is a member of a imsm container. Load the container
2318 * and try to create a volume
2319 */
2320 struct intel_super *super;
2321
2322 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
2323 st->sb = super;
2324 st->container_dev = fd2devnum(cfd);
2325 close(cfd);
2326 return validate_geometry_imsm_volume(st, level, layout,
2327 raiddisks, chunk,
2328 size, dev,
2329 freesize, verbose);
2330 }
2331 close(cfd);
2332 } else /* may belong to another container */
2333 return 0;
2334
2335 return 1;
2336 }
2337 #endif /* MDASSEMBLE */
2338
2339 static struct mdinfo *container_content_imsm(struct supertype *st)
2340 {
2341 /* Given a container loaded by load_super_imsm_all,
2342 * extract information about all the arrays into
2343 * an mdinfo tree.
2344 *
2345 * For each imsm_dev create an mdinfo, fill it in,
2346 * then look for matching devices in super->disks
2347 * and create appropriate device mdinfo.
2348 */
2349 struct intel_super *super = st->sb;
2350 struct imsm_super *mpb = super->anchor;
2351 struct mdinfo *rest = NULL;
2352 int i;
2353
2354 /* do not assemble arrays that might have bad blocks */
2355 if (imsm_bbm_log_size(super->anchor)) {
2356 fprintf(stderr, Name ": BBM log found in metadata. "
2357 "Cannot activate array(s).\n");
2358 return NULL;
2359 }
2360
2361 for (i = 0; i < mpb->num_raid_devs; i++) {
2362 struct imsm_dev *dev = get_imsm_dev(super, i);
2363 struct imsm_map *map = get_imsm_map(dev, 0);
2364 struct mdinfo *this;
2365 int slot;
2366
2367 this = malloc(sizeof(*this));
2368 memset(this, 0, sizeof(*this));
2369 this->next = rest;
2370
2371 super->current_vol = i;
2372 getinfo_super_imsm_volume(st, this);
2373 for (slot = 0 ; slot < map->num_members; slot++) {
2374 struct mdinfo *info_d;
2375 struct dl *d;
2376 int idx;
2377 int skip;
2378 __u32 s;
2379 __u32 ord;
2380
2381 skip = 0;
2382 idx = get_imsm_disk_idx(dev, slot);
2383 ord = get_imsm_ord_tbl_ent(dev, slot);
2384 for (d = super->disks; d ; d = d->next)
2385 if (d->index == idx)
2386 break;
2387
2388 if (d == NULL)
2389 skip = 1;
2390
2391 s = d ? __le32_to_cpu(d->disk.status) : 0;
2392 if (s & FAILED_DISK)
2393 skip = 1;
2394 if (!(s & USABLE_DISK))
2395 skip = 1;
2396 if (ord & IMSM_ORD_REBUILD)
2397 skip = 1;
2398
2399 /*
2400 * if we skip some disks the array will be assmebled degraded;
2401 * reset resync start to avoid a dirty-degraded situation
2402 *
2403 * FIXME handle dirty degraded
2404 */
2405 if (skip && !dev->vol.dirty)
2406 this->resync_start = ~0ULL;
2407 if (skip)
2408 continue;
2409
2410 info_d = malloc(sizeof(*info_d));
2411 if (!info_d) {
2412 fprintf(stderr, Name ": failed to allocate disk"
2413 " for volume %s\n", (char *) dev->volume);
2414 free(this);
2415 this = rest;
2416 break;
2417 }
2418 memset(info_d, 0, sizeof(*info_d));
2419 info_d->next = this->devs;
2420 this->devs = info_d;
2421
2422 info_d->disk.number = d->index;
2423 info_d->disk.major = d->major;
2424 info_d->disk.minor = d->minor;
2425 info_d->disk.raid_disk = slot;
2426
2427 this->array.working_disks++;
2428
2429 info_d->events = __le32_to_cpu(mpb->generation_num);
2430 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2431 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2432 if (d->devname)
2433 strcpy(info_d->name, d->devname);
2434 }
2435 rest = this;
2436 }
2437
2438 return rest;
2439 }
2440
2441
2442 #ifndef MDASSEMBLE
2443 static int imsm_open_new(struct supertype *c, struct active_array *a,
2444 char *inst)
2445 {
2446 struct intel_super *super = c->sb;
2447 struct imsm_super *mpb = super->anchor;
2448
2449 if (atoi(inst) >= mpb->num_raid_devs) {
2450 fprintf(stderr, "%s: subarry index %d, out of range\n",
2451 __func__, atoi(inst));
2452 return -ENODEV;
2453 }
2454
2455 dprintf("imsm: open_new %s\n", inst);
2456 a->info.container_member = atoi(inst);
2457 return 0;
2458 }
2459
2460 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
2461 {
2462 struct imsm_map *map = get_imsm_map(dev, 0);
2463
2464 if (!failed)
2465 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
2466 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
2467
2468 switch (get_imsm_raid_level(map)) {
2469 case 0:
2470 return IMSM_T_STATE_FAILED;
2471 break;
2472 case 1:
2473 if (failed < map->num_members)
2474 return IMSM_T_STATE_DEGRADED;
2475 else
2476 return IMSM_T_STATE_FAILED;
2477 break;
2478 case 10:
2479 {
2480 /**
2481 * check to see if any mirrors have failed, otherwise we
2482 * are degraded. Even numbered slots are mirrored on
2483 * slot+1
2484 */
2485 int i;
2486 int insync;
2487
2488 for (i = 0; i < map->num_members; i++) {
2489 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2490 int idx = ord_to_idx(ord);
2491 struct imsm_disk *disk;
2492
2493 /* reset the potential in-sync count on even-numbered
2494 * slots. num_copies is always 2 for imsm raid10
2495 */
2496 if ((i & 1) == 0)
2497 insync = 2;
2498
2499 disk = get_imsm_disk(super, idx);
2500 if (!disk ||
2501 __le32_to_cpu(disk->status) & FAILED_DISK ||
2502 ord & IMSM_ORD_REBUILD)
2503 insync--;
2504
2505 /* no in-sync disks left in this mirror the
2506 * array has failed
2507 */
2508 if (insync == 0)
2509 return IMSM_T_STATE_FAILED;
2510 }
2511
2512 return IMSM_T_STATE_DEGRADED;
2513 }
2514 case 5:
2515 if (failed < 2)
2516 return IMSM_T_STATE_DEGRADED;
2517 else
2518 return IMSM_T_STATE_FAILED;
2519 break;
2520 default:
2521 break;
2522 }
2523
2524 return map->map_state;
2525 }
2526
2527 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
2528 {
2529 int i;
2530 int failed = 0;
2531 struct imsm_disk *disk;
2532 struct imsm_map *map = get_imsm_map(dev, 0);
2533
2534 for (i = 0; i < map->num_members; i++) {
2535 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2536 int idx = ord_to_idx(ord);
2537
2538 disk = get_imsm_disk(super, idx);
2539 if (!disk ||
2540 __le32_to_cpu(disk->status) & FAILED_DISK ||
2541 ord & IMSM_ORD_REBUILD)
2542 failed++;
2543 }
2544
2545 return failed;
2546 }
2547
2548 static int is_resyncing(struct imsm_dev *dev)
2549 {
2550 struct imsm_map *migr_map;
2551
2552 if (!dev->vol.migr_state)
2553 return 0;
2554
2555 if (dev->vol.migr_type == 0)
2556 return 1;
2557
2558 migr_map = get_imsm_map(dev, 1);
2559
2560 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
2561 return 1;
2562 else
2563 return 0;
2564 }
2565
2566 static int is_rebuilding(struct imsm_dev *dev)
2567 {
2568 struct imsm_map *migr_map;
2569
2570 if (!dev->vol.migr_state)
2571 return 0;
2572
2573 if (dev->vol.migr_type == 0)
2574 return 0;
2575
2576 migr_map = get_imsm_map(dev, 1);
2577
2578 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
2579 return 1;
2580 else
2581 return 0;
2582 }
2583
2584 static void mark_failure(struct imsm_disk *disk)
2585 {
2586 __u32 status = __le32_to_cpu(disk->status);
2587
2588 if (status & FAILED_DISK)
2589 return;
2590 status |= FAILED_DISK;
2591 disk->status = __cpu_to_le32(status);
2592 disk->scsi_id = __cpu_to_le32(~(__u32)0);
2593 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
2594 }
2595
2596 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
2597 * states are handled in imsm_set_disk() with one exception, when a
2598 * resync is stopped due to a new failure this routine will set the
2599 * 'degraded' state for the array.
2600 */
2601 static int imsm_set_array_state(struct active_array *a, int consistent)
2602 {
2603 int inst = a->info.container_member;
2604 struct intel_super *super = a->container->sb;
2605 struct imsm_dev *dev = get_imsm_dev(super, inst);
2606 struct imsm_map *map = get_imsm_map(dev, 0);
2607 int failed = imsm_count_failed(super, dev);
2608 __u8 map_state = imsm_check_degraded(super, dev, failed);
2609
2610 /* before we activate this array handle any missing disks */
2611 if (consistent == 2 && super->missing) {
2612 struct dl *dl;
2613
2614 dprintf("imsm: mark missing\n");
2615 end_migration(dev, map_state);
2616 for (dl = super->missing; dl; dl = dl->next)
2617 mark_failure(&dl->disk);
2618 super->updates_pending++;
2619 }
2620
2621 if (consistent == 2 &&
2622 (!is_resync_complete(a) ||
2623 map_state != IMSM_T_STATE_NORMAL ||
2624 dev->vol.migr_state))
2625 consistent = 0;
2626
2627 if (is_resync_complete(a)) {
2628 /* complete intialization / resync,
2629 * recovery is completed in ->set_disk
2630 */
2631 if (is_resyncing(dev)) {
2632 dprintf("imsm: mark resync done\n");
2633 end_migration(dev, map_state);
2634 super->updates_pending++;
2635 }
2636 } else if (!is_resyncing(dev) && !failed) {
2637 /* mark the start of the init process if nothing is failed */
2638 dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
2639 map->map_state = map_state;
2640 migrate(dev, IMSM_T_STATE_NORMAL,
2641 map->map_state == IMSM_T_STATE_NORMAL);
2642 super->updates_pending++;
2643 }
2644
2645 /* check if we can update the migration checkpoint */
2646 if (dev->vol.migr_state &&
2647 __le32_to_cpu(dev->vol.curr_migr_unit) != a->resync_start) {
2648 dprintf("imsm: checkpoint migration (%llu)\n", a->resync_start);
2649 dev->vol.curr_migr_unit = __cpu_to_le32(a->resync_start);
2650 super->updates_pending++;
2651 }
2652
2653 /* mark dirty / clean */
2654 if (dev->vol.dirty != !consistent) {
2655 dprintf("imsm: mark '%s' (%llu)\n",
2656 consistent ? "clean" : "dirty", a->resync_start);
2657 if (consistent)
2658 dev->vol.dirty = 0;
2659 else
2660 dev->vol.dirty = 1;
2661 super->updates_pending++;
2662 }
2663 return consistent;
2664 }
2665
2666 static void imsm_set_disk(struct active_array *a, int n, int state)
2667 {
2668 int inst = a->info.container_member;
2669 struct intel_super *super = a->container->sb;
2670 struct imsm_dev *dev = get_imsm_dev(super, inst);
2671 struct imsm_map *map = get_imsm_map(dev, 0);
2672 struct imsm_disk *disk;
2673 int failed;
2674 __u32 status;
2675 __u32 ord;
2676 __u8 map_state;
2677
2678 if (n > map->num_members)
2679 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2680 n, map->num_members - 1);
2681
2682 if (n < 0)
2683 return;
2684
2685 dprintf("imsm: set_disk %d:%x\n", n, state);
2686
2687 ord = get_imsm_ord_tbl_ent(dev, n);
2688 disk = get_imsm_disk(super, ord_to_idx(ord));
2689
2690 /* check for new failures */
2691 status = __le32_to_cpu(disk->status);
2692 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2693 mark_failure(disk);
2694 super->updates_pending++;
2695 }
2696
2697 /* check if in_sync */
2698 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD) {
2699 struct imsm_map *migr_map = get_imsm_map(dev, 1);
2700
2701 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
2702 super->updates_pending++;
2703 }
2704
2705 failed = imsm_count_failed(super, dev);
2706 map_state = imsm_check_degraded(super, dev, failed);
2707
2708 /* check if recovery complete, newly degraded, or failed */
2709 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
2710 end_migration(dev, map_state);
2711 super->updates_pending++;
2712 } else if (map_state == IMSM_T_STATE_DEGRADED &&
2713 map->map_state != map_state &&
2714 !dev->vol.migr_state) {
2715 dprintf("imsm: mark degraded\n");
2716 map->map_state = map_state;
2717 super->updates_pending++;
2718 } else if (map_state == IMSM_T_STATE_FAILED &&
2719 map->map_state != map_state) {
2720 dprintf("imsm: mark failed\n");
2721 end_migration(dev, map_state);
2722 super->updates_pending++;
2723 }
2724 }
2725
2726 static int store_imsm_mpb(int fd, struct intel_super *super)
2727 {
2728 struct imsm_super *mpb = super->anchor;
2729 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2730 unsigned long long dsize;
2731 unsigned long long sectors;
2732
2733 get_dev_size(fd, NULL, &dsize);
2734
2735 if (mpb_size > 512) {
2736 /* -1 to account for anchor */
2737 sectors = mpb_sectors(mpb) - 1;
2738
2739 /* write the extended mpb to the sectors preceeding the anchor */
2740 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2741 return 1;
2742
2743 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2744 return 1;
2745 }
2746
2747 /* first block is stored on second to last sector of the disk */
2748 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2749 return 1;
2750
2751 if (write(fd, super->buf, 512) != 512)
2752 return 1;
2753
2754 return 0;
2755 }
2756
2757 static void imsm_sync_metadata(struct supertype *container)
2758 {
2759 struct intel_super *super = container->sb;
2760
2761 if (!super->updates_pending)
2762 return;
2763
2764 write_super_imsm(super, 0);
2765
2766 super->updates_pending = 0;
2767 }
2768
2769 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
2770 {
2771 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2772 int i = get_imsm_disk_idx(dev, idx);
2773 struct dl *dl;
2774
2775 for (dl = super->disks; dl; dl = dl->next)
2776 if (dl->index == i)
2777 break;
2778
2779 if (dl && __le32_to_cpu(dl->disk.status) & FAILED_DISK)
2780 dl = NULL;
2781
2782 if (dl)
2783 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
2784
2785 return dl;
2786 }
2787
2788 static struct dl *imsm_add_spare(struct intel_super *super, int slot, struct active_array *a)
2789 {
2790 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2791 int idx = get_imsm_disk_idx(dev, slot);
2792 struct imsm_map *map = get_imsm_map(dev, 0);
2793 unsigned long long esize;
2794 unsigned long long pos;
2795 struct mdinfo *d;
2796 struct extent *ex;
2797 int j;
2798 int found;
2799 __u32 array_start;
2800 __u32 status;
2801 struct dl *dl;
2802
2803 for (dl = super->disks; dl; dl = dl->next) {
2804 /* If in this array, skip */
2805 for (d = a->info.devs ; d ; d = d->next)
2806 if (d->state_fd >= 0 &&
2807 d->disk.major == dl->major &&
2808 d->disk.minor == dl->minor) {
2809 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2810 break;
2811 }
2812 if (d)
2813 continue;
2814
2815 /* skip in use or failed drives */
2816 status = __le32_to_cpu(dl->disk.status);
2817 if (status & FAILED_DISK || idx == dl->index) {
2818 dprintf("%x:%x status ( %s%s)\n",
2819 dl->major, dl->minor,
2820 status & FAILED_DISK ? "failed " : "",
2821 idx == dl->index ? "in use " : "");
2822 continue;
2823 }
2824
2825 /* Does this unused device have the requisite free space?
2826 * We need a->info.component_size sectors
2827 */
2828 ex = get_extents(super, dl);
2829 if (!ex) {
2830 dprintf("cannot get extents\n");
2831 continue;
2832 }
2833 found = 0;
2834 j = 0;
2835 pos = 0;
2836 array_start = __le32_to_cpu(map->pba_of_lba0);
2837
2838 do {
2839 /* check that we can start at pba_of_lba0 with
2840 * a->info.component_size of space
2841 */
2842 esize = ex[j].start - pos;
2843 if (array_start >= pos &&
2844 array_start + a->info.component_size < ex[j].start) {
2845 found = 1;
2846 break;
2847 }
2848 pos = ex[j].start + ex[j].size;
2849 j++;
2850
2851 } while (ex[j-1].size);
2852
2853 free(ex);
2854 if (!found) {
2855 dprintf("%x:%x does not have %llu at %d\n",
2856 dl->major, dl->minor,
2857 a->info.component_size,
2858 __le32_to_cpu(map->pba_of_lba0));
2859 /* No room */
2860 continue;
2861 } else
2862 break;
2863 }
2864
2865 return dl;
2866 }
2867
2868 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2869 struct metadata_update **updates)
2870 {
2871 /**
2872 * Find a device with unused free space and use it to replace a
2873 * failed/vacant region in an array. We replace failed regions one a
2874 * array at a time. The result is that a new spare disk will be added
2875 * to the first failed array and after the monitor has finished
2876 * propagating failures the remainder will be consumed.
2877 *
2878 * FIXME add a capability for mdmon to request spares from another
2879 * container.
2880 */
2881
2882 struct intel_super *super = a->container->sb;
2883 int inst = a->info.container_member;
2884 struct imsm_dev *dev = get_imsm_dev(super, inst);
2885 struct imsm_map *map = get_imsm_map(dev, 0);
2886 int failed = a->info.array.raid_disks;
2887 struct mdinfo *rv = NULL;
2888 struct mdinfo *d;
2889 struct mdinfo *di;
2890 struct metadata_update *mu;
2891 struct dl *dl;
2892 struct imsm_update_activate_spare *u;
2893 int num_spares = 0;
2894 int i;
2895
2896 for (d = a->info.devs ; d ; d = d->next) {
2897 if ((d->curr_state & DS_FAULTY) &&
2898 d->state_fd >= 0)
2899 /* wait for Removal to happen */
2900 return NULL;
2901 if (d->state_fd >= 0)
2902 failed--;
2903 }
2904
2905 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2906 inst, failed, a->info.array.raid_disks, a->info.array.level);
2907 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
2908 return NULL;
2909
2910 /* For each slot, if it is not working, find a spare */
2911 for (i = 0; i < a->info.array.raid_disks; i++) {
2912 for (d = a->info.devs ; d ; d = d->next)
2913 if (d->disk.raid_disk == i)
2914 break;
2915 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2916 if (d && (d->state_fd >= 0))
2917 continue;
2918
2919 /*
2920 * OK, this device needs recovery. Try to re-add the previous
2921 * occupant of this slot, if this fails add a new spare
2922 */
2923 dl = imsm_readd(super, i, a);
2924 if (!dl)
2925 dl = imsm_add_spare(super, i, a);
2926 if (!dl)
2927 continue;
2928
2929 /* found a usable disk with enough space */
2930 di = malloc(sizeof(*di));
2931 if (!di)
2932 continue;
2933 memset(di, 0, sizeof(*di));
2934
2935 /* dl->index will be -1 in the case we are activating a
2936 * pristine spare. imsm_process_update() will create a
2937 * new index in this case. Once a disk is found to be
2938 * failed in all member arrays it is kicked from the
2939 * metadata
2940 */
2941 di->disk.number = dl->index;
2942
2943 /* (ab)use di->devs to store a pointer to the device
2944 * we chose
2945 */
2946 di->devs = (struct mdinfo *) dl;
2947
2948 di->disk.raid_disk = i;
2949 di->disk.major = dl->major;
2950 di->disk.minor = dl->minor;
2951 di->disk.state = 0;
2952 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
2953 di->component_size = a->info.component_size;
2954 di->container_member = inst;
2955 di->next = rv;
2956 rv = di;
2957 num_spares++;
2958 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2959 i, di->data_offset);
2960
2961 break;
2962 }
2963
2964 if (!rv)
2965 /* No spares found */
2966 return rv;
2967 /* Now 'rv' has a list of devices to return.
2968 * Create a metadata_update record to update the
2969 * disk_ord_tbl for the array
2970 */
2971 mu = malloc(sizeof(*mu));
2972 if (mu) {
2973 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2974 if (mu->buf == NULL) {
2975 free(mu);
2976 mu = NULL;
2977 }
2978 }
2979 if (!mu) {
2980 while (rv) {
2981 struct mdinfo *n = rv->next;
2982
2983 free(rv);
2984 rv = n;
2985 }
2986 return NULL;
2987 }
2988
2989 mu->space = NULL;
2990 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2991 mu->next = *updates;
2992 u = (struct imsm_update_activate_spare *) mu->buf;
2993
2994 for (di = rv ; di ; di = di->next) {
2995 u->type = update_activate_spare;
2996 u->dl = (struct dl *) di->devs;
2997 di->devs = NULL;
2998 u->slot = di->disk.raid_disk;
2999 u->array = inst;
3000 u->next = u + 1;
3001 u++;
3002 }
3003 (u-1)->next = NULL;
3004 *updates = mu;
3005
3006 return rv;
3007 }
3008
3009 static int disks_overlap(struct imsm_dev *d1, struct imsm_dev *d2)
3010 {
3011 struct imsm_map *m1 = get_imsm_map(d1, 0);
3012 struct imsm_map *m2 = get_imsm_map(d2, 0);
3013 int i;
3014 int j;
3015 int idx;
3016
3017 for (i = 0; i < m1->num_members; i++) {
3018 idx = get_imsm_disk_idx(d1, i);
3019 for (j = 0; j < m2->num_members; j++)
3020 if (idx == get_imsm_disk_idx(d2, j))
3021 return 1;
3022 }
3023
3024 return 0;
3025 }
3026
3027 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
3028
3029 static void imsm_process_update(struct supertype *st,
3030 struct metadata_update *update)
3031 {
3032 /**
3033 * crack open the metadata_update envelope to find the update record
3034 * update can be one of:
3035 * update_activate_spare - a spare device has replaced a failed
3036 * device in an array, update the disk_ord_tbl. If this disk is
3037 * present in all member arrays then also clear the SPARE_DISK
3038 * flag
3039 */
3040 struct intel_super *super = st->sb;
3041 struct imsm_super *mpb;
3042 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
3043
3044 /* update requires a larger buf but the allocation failed */
3045 if (super->next_len && !super->next_buf) {
3046 super->next_len = 0;
3047 return;
3048 }
3049
3050 if (super->next_buf) {
3051 memcpy(super->next_buf, super->buf, super->len);
3052 free(super->buf);
3053 super->len = super->next_len;
3054 super->buf = super->next_buf;
3055
3056 super->next_len = 0;
3057 super->next_buf = NULL;
3058 }
3059
3060 mpb = super->anchor;
3061
3062 switch (type) {
3063 case update_activate_spare: {
3064 struct imsm_update_activate_spare *u = (void *) update->buf;
3065 struct imsm_dev *dev = get_imsm_dev(super, u->array);
3066 struct imsm_map *map = get_imsm_map(dev, 0);
3067 struct imsm_map *migr_map;
3068 struct active_array *a;
3069 struct imsm_disk *disk;
3070 __u32 status;
3071 __u8 to_state;
3072 struct dl *dl;
3073 unsigned int found;
3074 int failed;
3075 int victim = get_imsm_disk_idx(dev, u->slot);
3076 int i;
3077
3078 for (dl = super->disks; dl; dl = dl->next)
3079 if (dl == u->dl)
3080 break;
3081
3082 if (!dl) {
3083 fprintf(stderr, "error: imsm_activate_spare passed "
3084 "an unknown disk (index: %d)\n",
3085 u->dl->index);
3086 return;
3087 }
3088
3089 super->updates_pending++;
3090
3091 /* count failures (excluding rebuilds and the victim)
3092 * to determine map[0] state
3093 */
3094 failed = 0;
3095 for (i = 0; i < map->num_members; i++) {
3096 if (i == u->slot)
3097 continue;
3098 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
3099 if (!disk ||
3100 __le32_to_cpu(disk->status) & FAILED_DISK)
3101 failed++;
3102 }
3103
3104 /* adding a pristine spare, assign a new index */
3105 if (dl->index < 0) {
3106 dl->index = super->anchor->num_disks;
3107 super->anchor->num_disks++;
3108 }
3109 disk = &dl->disk;
3110 status = __le32_to_cpu(disk->status);
3111 status |= CONFIGURED_DISK;
3112 status &= ~SPARE_DISK;
3113 disk->status = __cpu_to_le32(status);
3114
3115 /* mark rebuild */
3116 to_state = imsm_check_degraded(super, dev, failed);
3117 map->map_state = IMSM_T_STATE_DEGRADED;
3118 migrate(dev, to_state, 1);
3119 migr_map = get_imsm_map(dev, 1);
3120 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
3121 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
3122
3123 /* count arrays using the victim in the metadata */
3124 found = 0;
3125 for (a = st->arrays; a ; a = a->next) {
3126 dev = get_imsm_dev(super, a->info.container_member);
3127 for (i = 0; i < map->num_members; i++)
3128 if (victim == get_imsm_disk_idx(dev, i))
3129 found++;
3130 }
3131
3132 /* delete the victim if it is no longer being
3133 * utilized anywhere
3134 */
3135 if (!found) {
3136 struct dl **dlp;
3137
3138 /* We know that 'manager' isn't touching anything,
3139 * so it is safe to delete
3140 */
3141 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
3142 if ((*dlp)->index == victim)
3143 break;
3144
3145 /* victim may be on the missing list */
3146 if (!*dlp)
3147 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
3148 if ((*dlp)->index == victim)
3149 break;
3150 imsm_delete(super, dlp, victim);
3151 }
3152 break;
3153 }
3154 case update_create_array: {
3155 /* someone wants to create a new array, we need to be aware of
3156 * a few races/collisions:
3157 * 1/ 'Create' called by two separate instances of mdadm
3158 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
3159 * devices that have since been assimilated via
3160 * activate_spare.
3161 * In the event this update can not be carried out mdadm will
3162 * (FIX ME) notice that its update did not take hold.
3163 */
3164 struct imsm_update_create_array *u = (void *) update->buf;
3165 struct imsm_dev *dev;
3166 struct imsm_map *map, *new_map;
3167 unsigned long long start, end;
3168 unsigned long long new_start, new_end;
3169 int i;
3170 int overlap = 0;
3171
3172 /* handle racing creates: first come first serve */
3173 if (u->dev_idx < mpb->num_raid_devs) {
3174 dprintf("%s: subarray %d already defined\n",
3175 __func__, u->dev_idx);
3176 return;
3177 }
3178
3179 /* check update is next in sequence */
3180 if (u->dev_idx != mpb->num_raid_devs) {
3181 dprintf("%s: can not create array %d expected index %d\n",
3182 __func__, u->dev_idx, mpb->num_raid_devs);
3183 return;
3184 }
3185
3186 new_map = get_imsm_map(&u->dev, 0);
3187 new_start = __le32_to_cpu(new_map->pba_of_lba0);
3188 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
3189
3190 /* handle activate_spare versus create race:
3191 * check to make sure that overlapping arrays do not include
3192 * overalpping disks
3193 */
3194 for (i = 0; i < mpb->num_raid_devs; i++) {
3195 dev = get_imsm_dev(super, i);
3196 map = get_imsm_map(dev, 0);
3197 start = __le32_to_cpu(map->pba_of_lba0);
3198 end = start + __le32_to_cpu(map->blocks_per_member);
3199 if ((new_start >= start && new_start <= end) ||
3200 (start >= new_start && start <= new_end))
3201 overlap = 1;
3202 if (overlap && disks_overlap(dev, &u->dev)) {
3203 dprintf("%s: arrays overlap\n", __func__);
3204 return;
3205 }
3206 }
3207 /* check num_members sanity */
3208 if (new_map->num_members > mpb->num_disks) {
3209 dprintf("%s: num_disks out of range\n", __func__);
3210 return;
3211 }
3212
3213 /* check that prepare update was successful */
3214 if (!update->space) {
3215 dprintf("%s: prepare update failed\n", __func__);
3216 return;
3217 }
3218
3219 super->updates_pending++;
3220 dev = update->space;
3221 map = get_imsm_map(dev, 0);
3222 update->space = NULL;
3223 imsm_copy_dev(dev, &u->dev);
3224 map = get_imsm_map(dev, 0);
3225 super->dev_tbl[u->dev_idx] = dev;
3226 mpb->num_raid_devs++;
3227
3228 /* fix up flags */
3229 for (i = 0; i < map->num_members; i++) {
3230 struct imsm_disk *disk;
3231 __u32 status;
3232
3233 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
3234 status = __le32_to_cpu(disk->status);
3235 status |= CONFIGURED_DISK;
3236 status &= ~SPARE_DISK;
3237 disk->status = __cpu_to_le32(status);
3238 }
3239 break;
3240 }
3241 case update_add_disk:
3242
3243 /* we may be able to repair some arrays if disks are
3244 * being added */
3245 if (super->add) {
3246 struct active_array *a;
3247
3248 super->updates_pending++;
3249 for (a = st->arrays; a; a = a->next)
3250 a->check_degraded = 1;
3251 }
3252 /* add some spares to the metadata */
3253 while (super->add) {
3254 struct dl *al;
3255
3256 al = super->add;
3257 super->add = al->next;
3258 al->next = super->disks;
3259 super->disks = al;
3260 dprintf("%s: added %x:%x\n",
3261 __func__, al->major, al->minor);
3262 }
3263
3264 break;
3265 }
3266 }
3267
3268 static void imsm_prepare_update(struct supertype *st,
3269 struct metadata_update *update)
3270 {
3271 /**
3272 * Allocate space to hold new disk entries, raid-device entries or a new
3273 * mpb if necessary. The manager synchronously waits for updates to
3274 * complete in the monitor, so new mpb buffers allocated here can be
3275 * integrated by the monitor thread without worrying about live pointers
3276 * in the manager thread.
3277 */
3278 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
3279 struct intel_super *super = st->sb;
3280 struct imsm_super *mpb = super->anchor;
3281 size_t buf_len;
3282 size_t len = 0;
3283
3284 switch (type) {
3285 case update_create_array: {
3286 struct imsm_update_create_array *u = (void *) update->buf;
3287
3288 len = sizeof_imsm_dev(&u->dev, 1);
3289 update->space = malloc(len);
3290 break;
3291 default:
3292 break;
3293 }
3294 }
3295
3296 /* check if we need a larger metadata buffer */
3297 if (super->next_buf)
3298 buf_len = super->next_len;
3299 else
3300 buf_len = super->len;
3301
3302 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
3303 /* ok we need a larger buf than what is currently allocated
3304 * if this allocation fails process_update will notice that
3305 * ->next_len is set and ->next_buf is NULL
3306 */
3307 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
3308 if (super->next_buf)
3309 free(super->next_buf);
3310
3311 super->next_len = buf_len;
3312 if (posix_memalign(&super->next_buf, buf_len, 512) != 0)
3313 super->next_buf = NULL;
3314 }
3315 }
3316
3317 /* must be called while manager is quiesced */
3318 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
3319 {
3320 struct imsm_super *mpb = super->anchor;
3321 struct dl *iter;
3322 struct imsm_dev *dev;
3323 struct imsm_map *map;
3324 int i, j, num_members;
3325 __u32 ord;
3326
3327 dprintf("%s: deleting device[%d] from imsm_super\n",
3328 __func__, index);
3329
3330 /* shift all indexes down one */
3331 for (iter = super->disks; iter; iter = iter->next)
3332 if (iter->index > index)
3333 iter->index--;
3334 for (iter = super->missing; iter; iter = iter->next)
3335 if (iter->index > index)
3336 iter->index--;
3337
3338 for (i = 0; i < mpb->num_raid_devs; i++) {
3339 dev = get_imsm_dev(super, i);
3340 map = get_imsm_map(dev, 0);
3341 num_members = map->num_members;
3342 for (j = 0; j < num_members; j++) {
3343 /* update ord entries being careful not to propagate
3344 * ord-flags to the first map
3345 */
3346 ord = get_imsm_ord_tbl_ent(dev, j);
3347
3348 if (ord_to_idx(ord) <= index)
3349 continue;
3350
3351 map = get_imsm_map(dev, 0);
3352 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
3353 map = get_imsm_map(dev, 1);
3354 if (map)
3355 set_imsm_ord_tbl_ent(map, j, ord - 1);
3356 }
3357 }
3358
3359 mpb->num_disks--;
3360 super->updates_pending++;
3361 if (*dlp) {
3362 struct dl *dl = *dlp;
3363
3364 *dlp = (*dlp)->next;
3365 __free_imsm_disk(dl);
3366 }
3367 }
3368 #endif /* MDASSEMBLE */
3369
3370 struct superswitch super_imsm = {
3371 #ifndef MDASSEMBLE
3372 .examine_super = examine_super_imsm,
3373 .brief_examine_super = brief_examine_super_imsm,
3374 .detail_super = detail_super_imsm,
3375 .brief_detail_super = brief_detail_super_imsm,
3376 .write_init_super = write_init_super_imsm,
3377 .validate_geometry = validate_geometry_imsm,
3378 .add_to_super = add_to_super_imsm,
3379 #endif
3380 .match_home = match_home_imsm,
3381 .uuid_from_super= uuid_from_super_imsm,
3382 .getinfo_super = getinfo_super_imsm,
3383 .update_super = update_super_imsm,
3384
3385 .avail_size = avail_size_imsm,
3386
3387 .compare_super = compare_super_imsm,
3388
3389 .load_super = load_super_imsm,
3390 .init_super = init_super_imsm,
3391 .store_super = store_zero_imsm,
3392 .free_super = free_super_imsm,
3393 .match_metadata_desc = match_metadata_desc_imsm,
3394 .container_content = container_content_imsm,
3395
3396 .external = 1,
3397
3398 #ifndef MDASSEMBLE
3399 /* for mdmon */
3400 .open_new = imsm_open_new,
3401 .load_super = load_super_imsm,
3402 .set_array_state= imsm_set_array_state,
3403 .set_disk = imsm_set_disk,
3404 .sync_metadata = imsm_sync_metadata,
3405 .activate_spare = imsm_activate_spare,
3406 .process_update = imsm_process_update,
3407 .prepare_update = imsm_prepare_update,
3408 #endif /* MDASSEMBLE */
3409 };