]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
Allow data-offset to be specified per-device for create
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
106 #define IMSM_DISK_FILLERS 3
107 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
108 };
109
110 /* map selector for map managment
111 */
112 #define MAP_0 0
113 #define MAP_1 1
114 #define MAP_X -1
115
116 /* RAID map configuration infos. */
117 struct imsm_map {
118 __u32 pba_of_lba0_lo; /* start address of partition */
119 __u32 blocks_per_member_lo;/* blocks per member */
120 __u32 num_data_stripes_lo; /* number of data stripes */
121 __u16 blocks_per_strip;
122 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
123 #define IMSM_T_STATE_NORMAL 0
124 #define IMSM_T_STATE_UNINITIALIZED 1
125 #define IMSM_T_STATE_DEGRADED 2
126 #define IMSM_T_STATE_FAILED 3
127 __u8 raid_level;
128 #define IMSM_T_RAID0 0
129 #define IMSM_T_RAID1 1
130 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
131 __u8 num_members; /* number of member disks */
132 __u8 num_domains; /* number of parity domains */
133 __u8 failed_disk_num; /* valid only when state is degraded */
134 __u8 ddf;
135 __u32 pba_of_lba0_hi;
136 __u32 blocks_per_member_hi;
137 __u32 num_data_stripes_hi;
138 __u32 filler[4]; /* expansion area */
139 #define IMSM_ORD_REBUILD (1 << 24)
140 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
141 * top byte contains some flags
142 */
143 } __attribute__ ((packed));
144
145 struct imsm_vol {
146 __u32 curr_migr_unit;
147 __u32 checkpoint_id; /* id to access curr_migr_unit */
148 __u8 migr_state; /* Normal or Migrating */
149 #define MIGR_INIT 0
150 #define MIGR_REBUILD 1
151 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
152 #define MIGR_GEN_MIGR 3
153 #define MIGR_STATE_CHANGE 4
154 #define MIGR_REPAIR 5
155 __u8 migr_type; /* Initializing, Rebuilding, ... */
156 __u8 dirty;
157 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
158 __u16 verify_errors; /* number of mismatches */
159 __u16 bad_blocks; /* number of bad blocks during verify */
160 __u32 filler[4];
161 struct imsm_map map[1];
162 /* here comes another one if migr_state */
163 } __attribute__ ((packed));
164
165 struct imsm_dev {
166 __u8 volume[MAX_RAID_SERIAL_LEN];
167 __u32 size_low;
168 __u32 size_high;
169 #define DEV_BOOTABLE __cpu_to_le32(0x01)
170 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
171 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
172 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
173 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
174 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
175 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
176 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
177 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
178 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
179 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
180 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
181 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
182 __u32 status; /* Persistent RaidDev status */
183 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
184 __u8 migr_priority;
185 __u8 num_sub_vols;
186 __u8 tid;
187 __u8 cng_master_disk;
188 __u16 cache_policy;
189 __u8 cng_state;
190 __u8 cng_sub_state;
191 #define IMSM_DEV_FILLERS 10
192 __u32 filler[IMSM_DEV_FILLERS];
193 struct imsm_vol vol;
194 } __attribute__ ((packed));
195
196 struct imsm_super {
197 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
198 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
199 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
200 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
201 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
202 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
203 __u32 attributes; /* 0x34 - 0x37 */
204 __u8 num_disks; /* 0x38 Number of configured disks */
205 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
206 __u8 error_log_pos; /* 0x3A */
207 __u8 fill[1]; /* 0x3B */
208 __u32 cache_size; /* 0x3c - 0x40 in mb */
209 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
210 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
211 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
212 #define IMSM_FILLERS 35
213 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
214 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
215 /* here comes imsm_dev[num_raid_devs] */
216 /* here comes BBM logs */
217 } __attribute__ ((packed));
218
219 #define BBM_LOG_MAX_ENTRIES 254
220
221 struct bbm_log_entry {
222 __u64 defective_block_start;
223 #define UNREADABLE 0xFFFFFFFF
224 __u32 spare_block_offset;
225 __u16 remapped_marked_count;
226 __u16 disk_ordinal;
227 } __attribute__ ((__packed__));
228
229 struct bbm_log {
230 __u32 signature; /* 0xABADB10C */
231 __u32 entry_count;
232 __u32 reserved_spare_block_count; /* 0 */
233 __u32 reserved; /* 0xFFFF */
234 __u64 first_spare_lba;
235 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
236 } __attribute__ ((__packed__));
237
238
239 #ifndef MDASSEMBLE
240 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
241 #endif
242
243 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
244
245 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
246
247 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
248 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
249 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
250 */
251
252
253 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
254 * be recovered using srcMap */
255 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
256 * already been migrated and must
257 * be recovered from checkpoint area */
258 struct migr_record {
259 __u32 rec_status; /* Status used to determine how to restart
260 * migration in case it aborts
261 * in some fashion */
262 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
263 __u32 family_num; /* Family number of MPB
264 * containing the RaidDev
265 * that is migrating */
266 __u32 ascending_migr; /* True if migrating in increasing
267 * order of lbas */
268 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
269 __u32 dest_depth_per_unit; /* Num member blocks each destMap
270 * member disk
271 * advances per unit-of-operation */
272 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
273 __u32 dest_1st_member_lba; /* First member lba on first
274 * stripe of destination */
275 __u32 num_migr_units; /* Total num migration units-of-op */
276 __u32 post_migr_vol_cap; /* Size of volume after
277 * migration completes */
278 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
279 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
280 * migration ckpt record was read from
281 * (for recovered migrations) */
282 } __attribute__ ((__packed__));
283
284 struct md_list {
285 /* usage marker:
286 * 1: load metadata
287 * 2: metadata does not match
288 * 4: already checked
289 */
290 int used;
291 char *devname;
292 int found;
293 int container;
294 dev_t st_rdev;
295 struct md_list *next;
296 };
297
298 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
299
300 static __u8 migr_type(struct imsm_dev *dev)
301 {
302 if (dev->vol.migr_type == MIGR_VERIFY &&
303 dev->status & DEV_VERIFY_AND_FIX)
304 return MIGR_REPAIR;
305 else
306 return dev->vol.migr_type;
307 }
308
309 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
310 {
311 /* for compatibility with older oroms convert MIGR_REPAIR, into
312 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
313 */
314 if (migr_type == MIGR_REPAIR) {
315 dev->vol.migr_type = MIGR_VERIFY;
316 dev->status |= DEV_VERIFY_AND_FIX;
317 } else {
318 dev->vol.migr_type = migr_type;
319 dev->status &= ~DEV_VERIFY_AND_FIX;
320 }
321 }
322
323 static unsigned int sector_count(__u32 bytes)
324 {
325 return ROUND_UP(bytes, 512) / 512;
326 }
327
328 static unsigned int mpb_sectors(struct imsm_super *mpb)
329 {
330 return sector_count(__le32_to_cpu(mpb->mpb_size));
331 }
332
333 struct intel_dev {
334 struct imsm_dev *dev;
335 struct intel_dev *next;
336 unsigned index;
337 };
338
339 struct intel_hba {
340 enum sys_dev_type type;
341 char *path;
342 char *pci_id;
343 struct intel_hba *next;
344 };
345
346 enum action {
347 DISK_REMOVE = 1,
348 DISK_ADD
349 };
350 /* internal representation of IMSM metadata */
351 struct intel_super {
352 union {
353 void *buf; /* O_DIRECT buffer for reading/writing metadata */
354 struct imsm_super *anchor; /* immovable parameters */
355 };
356 union {
357 void *migr_rec_buf; /* buffer for I/O operations */
358 struct migr_record *migr_rec; /* migration record */
359 };
360 int clean_migration_record_by_mdmon; /* when reshape is switched to next
361 array, it indicates that mdmon is allowed to clean migration
362 record */
363 size_t len; /* size of the 'buf' allocation */
364 void *next_buf; /* for realloc'ing buf from the manager */
365 size_t next_len;
366 int updates_pending; /* count of pending updates for mdmon */
367 int current_vol; /* index of raid device undergoing creation */
368 unsigned long long create_offset; /* common start for 'current_vol' */
369 __u32 random; /* random data for seeding new family numbers */
370 struct intel_dev *devlist;
371 struct dl {
372 struct dl *next;
373 int index;
374 __u8 serial[MAX_RAID_SERIAL_LEN];
375 int major, minor;
376 char *devname;
377 struct imsm_disk disk;
378 int fd;
379 int extent_cnt;
380 struct extent *e; /* for determining freespace @ create */
381 int raiddisk; /* slot to fill in autolayout */
382 enum action action;
383 } *disks, *current_disk;
384 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
385 active */
386 struct dl *missing; /* disks removed while we weren't looking */
387 struct bbm_log *bbm_log;
388 struct intel_hba *hba; /* device path of the raid controller for this metadata */
389 const struct imsm_orom *orom; /* platform firmware support */
390 struct intel_super *next; /* (temp) list for disambiguating family_num */
391 };
392
393 struct intel_disk {
394 struct imsm_disk disk;
395 #define IMSM_UNKNOWN_OWNER (-1)
396 int owner;
397 struct intel_disk *next;
398 };
399
400 struct extent {
401 unsigned long long start, size;
402 };
403
404 /* definitions of reshape process types */
405 enum imsm_reshape_type {
406 CH_TAKEOVER,
407 CH_MIGRATION,
408 CH_ARRAY_SIZE,
409 };
410
411 /* definition of messages passed to imsm_process_update */
412 enum imsm_update_type {
413 update_activate_spare,
414 update_create_array,
415 update_kill_array,
416 update_rename_array,
417 update_add_remove_disk,
418 update_reshape_container_disks,
419 update_reshape_migration,
420 update_takeover,
421 update_general_migration_checkpoint,
422 update_size_change,
423 };
424
425 struct imsm_update_activate_spare {
426 enum imsm_update_type type;
427 struct dl *dl;
428 int slot;
429 int array;
430 struct imsm_update_activate_spare *next;
431 };
432
433 struct geo_params {
434 int dev_id;
435 char *dev_name;
436 unsigned long long size;
437 int level;
438 int layout;
439 int chunksize;
440 int raid_disks;
441 };
442
443 enum takeover_direction {
444 R10_TO_R0,
445 R0_TO_R10
446 };
447 struct imsm_update_takeover {
448 enum imsm_update_type type;
449 int subarray;
450 enum takeover_direction direction;
451 };
452
453 struct imsm_update_reshape {
454 enum imsm_update_type type;
455 int old_raid_disks;
456 int new_raid_disks;
457
458 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
459 };
460
461 struct imsm_update_reshape_migration {
462 enum imsm_update_type type;
463 int old_raid_disks;
464 int new_raid_disks;
465 /* fields for array migration changes
466 */
467 int subdev;
468 int new_level;
469 int new_layout;
470 int new_chunksize;
471
472 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
473 };
474
475 struct imsm_update_size_change {
476 enum imsm_update_type type;
477 int subdev;
478 long long new_size;
479 };
480
481 struct imsm_update_general_migration_checkpoint {
482 enum imsm_update_type type;
483 __u32 curr_migr_unit;
484 };
485
486 struct disk_info {
487 __u8 serial[MAX_RAID_SERIAL_LEN];
488 };
489
490 struct imsm_update_create_array {
491 enum imsm_update_type type;
492 int dev_idx;
493 struct imsm_dev dev;
494 };
495
496 struct imsm_update_kill_array {
497 enum imsm_update_type type;
498 int dev_idx;
499 };
500
501 struct imsm_update_rename_array {
502 enum imsm_update_type type;
503 __u8 name[MAX_RAID_SERIAL_LEN];
504 int dev_idx;
505 };
506
507 struct imsm_update_add_remove_disk {
508 enum imsm_update_type type;
509 };
510
511
512 static const char *_sys_dev_type[] = {
513 [SYS_DEV_UNKNOWN] = "Unknown",
514 [SYS_DEV_SAS] = "SAS",
515 [SYS_DEV_SATA] = "SATA"
516 };
517
518 const char *get_sys_dev_type(enum sys_dev_type type)
519 {
520 if (type >= SYS_DEV_MAX)
521 type = SYS_DEV_UNKNOWN;
522
523 return _sys_dev_type[type];
524 }
525
526 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
527 {
528 struct intel_hba *result = xmalloc(sizeof(*result));
529
530 result->type = device->type;
531 result->path = xstrdup(device->path);
532 result->next = NULL;
533 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
534 result->pci_id++;
535
536 return result;
537 }
538
539 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
540 {
541 struct intel_hba *result=NULL;
542 for (result = hba; result; result = result->next) {
543 if (result->type == device->type && strcmp(result->path, device->path) == 0)
544 break;
545 }
546 return result;
547 }
548
549 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
550 {
551 struct intel_hba *hba;
552
553 /* check if disk attached to Intel HBA */
554 hba = find_intel_hba(super->hba, device);
555 if (hba != NULL)
556 return 1;
557 /* Check if HBA is already attached to super */
558 if (super->hba == NULL) {
559 super->hba = alloc_intel_hba(device);
560 return 1;
561 }
562
563 hba = super->hba;
564 /* Intel metadata allows for all disks attached to the same type HBA.
565 * Do not sypport odf HBA types mixing
566 */
567 if (device->type != hba->type)
568 return 2;
569
570 while (hba->next)
571 hba = hba->next;
572
573 hba->next = alloc_intel_hba(device);
574 return 1;
575 }
576
577 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
578 {
579 struct sys_dev *list, *elem, *prev;
580 char *disk_path;
581
582 if ((list = find_intel_devices()) == NULL)
583 return 0;
584
585 if (fd < 0)
586 disk_path = (char *) devname;
587 else
588 disk_path = diskfd_to_devpath(fd);
589
590 if (!disk_path) {
591 free_sys_dev(&list);
592 return 0;
593 }
594
595 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
596 if (path_attached_to_hba(disk_path, elem->path)) {
597 if (prev == NULL)
598 list = list->next;
599 else
600 prev->next = elem->next;
601 elem->next = NULL;
602 if (disk_path != devname)
603 free(disk_path);
604 free_sys_dev(&list);
605 return elem;
606 }
607 }
608 if (disk_path != devname)
609 free(disk_path);
610 free_sys_dev(&list);
611
612 return NULL;
613 }
614
615
616 static int find_intel_hba_capability(int fd, struct intel_super *super,
617 char *devname);
618
619 static struct supertype *match_metadata_desc_imsm(char *arg)
620 {
621 struct supertype *st;
622
623 if (strcmp(arg, "imsm") != 0 &&
624 strcmp(arg, "default") != 0
625 )
626 return NULL;
627
628 st = xcalloc(1, sizeof(*st));
629 st->container_dev = NoMdDev;
630 st->ss = &super_imsm;
631 st->max_devs = IMSM_MAX_DEVICES;
632 st->minor_version = 0;
633 st->sb = NULL;
634 return st;
635 }
636
637 #ifndef MDASSEMBLE
638 static __u8 *get_imsm_version(struct imsm_super *mpb)
639 {
640 return &mpb->sig[MPB_SIG_LEN];
641 }
642 #endif
643
644 /* retrieve a disk directly from the anchor when the anchor is known to be
645 * up-to-date, currently only at load time
646 */
647 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
648 {
649 if (index >= mpb->num_disks)
650 return NULL;
651 return &mpb->disk[index];
652 }
653
654 /* retrieve the disk description based on a index of the disk
655 * in the sub-array
656 */
657 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
658 {
659 struct dl *d;
660
661 for (d = super->disks; d; d = d->next)
662 if (d->index == index)
663 return d;
664
665 return NULL;
666 }
667 /* retrieve a disk from the parsed metadata */
668 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
669 {
670 struct dl *dl;
671
672 dl = get_imsm_dl_disk(super, index);
673 if (dl)
674 return &dl->disk;
675
676 return NULL;
677 }
678
679 /* generate a checksum directly from the anchor when the anchor is known to be
680 * up-to-date, currently only at load or write_super after coalescing
681 */
682 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
683 {
684 __u32 end = mpb->mpb_size / sizeof(end);
685 __u32 *p = (__u32 *) mpb;
686 __u32 sum = 0;
687
688 while (end--) {
689 sum += __le32_to_cpu(*p);
690 p++;
691 }
692
693 return sum - __le32_to_cpu(mpb->check_sum);
694 }
695
696 static size_t sizeof_imsm_map(struct imsm_map *map)
697 {
698 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
699 }
700
701 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
702 {
703 /* A device can have 2 maps if it is in the middle of a migration.
704 * If second_map is:
705 * MAP_0 - we return the first map
706 * MAP_1 - we return the second map if it exists, else NULL
707 * MAP_X - we return the second map if it exists, else the first
708 */
709 struct imsm_map *map = &dev->vol.map[0];
710 struct imsm_map *map2 = NULL;
711
712 if (dev->vol.migr_state)
713 map2 = (void *)map + sizeof_imsm_map(map);
714
715 switch (second_map) {
716 case MAP_0:
717 break;
718 case MAP_1:
719 map = map2;
720 break;
721 case MAP_X:
722 if (map2)
723 map = map2;
724 break;
725 default:
726 map = NULL;
727 }
728 return map;
729
730 }
731
732 /* return the size of the device.
733 * migr_state increases the returned size if map[0] were to be duplicated
734 */
735 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
736 {
737 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
738 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
739
740 /* migrating means an additional map */
741 if (dev->vol.migr_state)
742 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
743 else if (migr_state)
744 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
745
746 return size;
747 }
748
749 #ifndef MDASSEMBLE
750 /* retrieve disk serial number list from a metadata update */
751 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
752 {
753 void *u = update;
754 struct disk_info *inf;
755
756 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
757 sizeof_imsm_dev(&update->dev, 0);
758
759 return inf;
760 }
761 #endif
762
763 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
764 {
765 int offset;
766 int i;
767 void *_mpb = mpb;
768
769 if (index >= mpb->num_raid_devs)
770 return NULL;
771
772 /* devices start after all disks */
773 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
774
775 for (i = 0; i <= index; i++)
776 if (i == index)
777 return _mpb + offset;
778 else
779 offset += sizeof_imsm_dev(_mpb + offset, 0);
780
781 return NULL;
782 }
783
784 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
785 {
786 struct intel_dev *dv;
787
788 if (index >= super->anchor->num_raid_devs)
789 return NULL;
790 for (dv = super->devlist; dv; dv = dv->next)
791 if (dv->index == index)
792 return dv->dev;
793 return NULL;
794 }
795
796 /*
797 * for second_map:
798 * == MAP_0 get first map
799 * == MAP_1 get second map
800 * == MAP_X than get map according to the current migr_state
801 */
802 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
803 int slot,
804 int second_map)
805 {
806 struct imsm_map *map;
807
808 map = get_imsm_map(dev, second_map);
809
810 /* top byte identifies disk under rebuild */
811 return __le32_to_cpu(map->disk_ord_tbl[slot]);
812 }
813
814 #define ord_to_idx(ord) (((ord) << 8) >> 8)
815 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
816 {
817 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
818
819 return ord_to_idx(ord);
820 }
821
822 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
823 {
824 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
825 }
826
827 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
828 {
829 int slot;
830 __u32 ord;
831
832 for (slot = 0; slot < map->num_members; slot++) {
833 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
834 if (ord_to_idx(ord) == idx)
835 return slot;
836 }
837
838 return -1;
839 }
840
841 static int get_imsm_raid_level(struct imsm_map *map)
842 {
843 if (map->raid_level == 1) {
844 if (map->num_members == 2)
845 return 1;
846 else
847 return 10;
848 }
849
850 return map->raid_level;
851 }
852
853 static int cmp_extent(const void *av, const void *bv)
854 {
855 const struct extent *a = av;
856 const struct extent *b = bv;
857 if (a->start < b->start)
858 return -1;
859 if (a->start > b->start)
860 return 1;
861 return 0;
862 }
863
864 static int count_memberships(struct dl *dl, struct intel_super *super)
865 {
866 int memberships = 0;
867 int i;
868
869 for (i = 0; i < super->anchor->num_raid_devs; i++) {
870 struct imsm_dev *dev = get_imsm_dev(super, i);
871 struct imsm_map *map = get_imsm_map(dev, MAP_0);
872
873 if (get_imsm_disk_slot(map, dl->index) >= 0)
874 memberships++;
875 }
876
877 return memberships;
878 }
879
880 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
881
882 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
883 {
884 if (lo == 0 || hi == 0)
885 return 1;
886 *lo = __le32_to_cpu((unsigned)n);
887 *hi = __le32_to_cpu((unsigned)(n >> 32));
888 return 0;
889 }
890
891 static unsigned long long join_u32(__u32 lo, __u32 hi)
892 {
893 return (unsigned long long)__le32_to_cpu(lo) |
894 (((unsigned long long)__le32_to_cpu(hi)) << 32);
895 }
896
897 static unsigned long long total_blocks(struct imsm_disk *disk)
898 {
899 if (disk == NULL)
900 return 0;
901 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
902 }
903
904 static unsigned long long pba_of_lba0(struct imsm_map *map)
905 {
906 if (map == NULL)
907 return 0;
908 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
909 }
910
911 static unsigned long long blocks_per_member(struct imsm_map *map)
912 {
913 if (map == NULL)
914 return 0;
915 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
916 }
917
918 #ifndef MDASSEMBLE
919 static unsigned long long num_data_stripes(struct imsm_map *map)
920 {
921 if (map == NULL)
922 return 0;
923 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
924 }
925
926 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
927 {
928 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
929 }
930 #endif
931
932 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
933 {
934 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
935 }
936
937 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
938 {
939 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
940 }
941
942 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
943 {
944 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
945 }
946
947 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
948 {
949 /* find a list of used extents on the given physical device */
950 struct extent *rv, *e;
951 int i;
952 int memberships = count_memberships(dl, super);
953 __u32 reservation;
954
955 /* trim the reserved area for spares, so they can join any array
956 * regardless of whether the OROM has assigned sectors from the
957 * IMSM_RESERVED_SECTORS region
958 */
959 if (dl->index == -1)
960 reservation = imsm_min_reserved_sectors(super);
961 else
962 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
963
964 rv = xcalloc(sizeof(struct extent), (memberships + 1));
965 e = rv;
966
967 for (i = 0; i < super->anchor->num_raid_devs; i++) {
968 struct imsm_dev *dev = get_imsm_dev(super, i);
969 struct imsm_map *map = get_imsm_map(dev, MAP_0);
970
971 if (get_imsm_disk_slot(map, dl->index) >= 0) {
972 e->start = pba_of_lba0(map);
973 e->size = blocks_per_member(map);
974 e++;
975 }
976 }
977 qsort(rv, memberships, sizeof(*rv), cmp_extent);
978
979 /* determine the start of the metadata
980 * when no raid devices are defined use the default
981 * ...otherwise allow the metadata to truncate the value
982 * as is the case with older versions of imsm
983 */
984 if (memberships) {
985 struct extent *last = &rv[memberships - 1];
986 unsigned long long remainder;
987
988 remainder = total_blocks(&dl->disk) - (last->start + last->size);
989 /* round down to 1k block to satisfy precision of the kernel
990 * 'size' interface
991 */
992 remainder &= ~1UL;
993 /* make sure remainder is still sane */
994 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
995 remainder = ROUND_UP(super->len, 512) >> 9;
996 if (reservation > remainder)
997 reservation = remainder;
998 }
999 e->start = total_blocks(&dl->disk) - reservation;
1000 e->size = 0;
1001 return rv;
1002 }
1003
1004 /* try to determine how much space is reserved for metadata from
1005 * the last get_extents() entry, otherwise fallback to the
1006 * default
1007 */
1008 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1009 {
1010 struct extent *e;
1011 int i;
1012 __u32 rv;
1013
1014 /* for spares just return a minimal reservation which will grow
1015 * once the spare is picked up by an array
1016 */
1017 if (dl->index == -1)
1018 return MPB_SECTOR_CNT;
1019
1020 e = get_extents(super, dl);
1021 if (!e)
1022 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1023
1024 /* scroll to last entry */
1025 for (i = 0; e[i].size; i++)
1026 continue;
1027
1028 rv = total_blocks(&dl->disk) - e[i].start;
1029
1030 free(e);
1031
1032 return rv;
1033 }
1034
1035 static int is_spare(struct imsm_disk *disk)
1036 {
1037 return (disk->status & SPARE_DISK) == SPARE_DISK;
1038 }
1039
1040 static int is_configured(struct imsm_disk *disk)
1041 {
1042 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1043 }
1044
1045 static int is_failed(struct imsm_disk *disk)
1046 {
1047 return (disk->status & FAILED_DISK) == FAILED_DISK;
1048 }
1049
1050 /* try to determine how much space is reserved for metadata from
1051 * the last get_extents() entry on the smallest active disk,
1052 * otherwise fallback to the default
1053 */
1054 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1055 {
1056 struct extent *e;
1057 int i;
1058 unsigned long long min_active;
1059 __u32 remainder;
1060 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1061 struct dl *dl, *dl_min = NULL;
1062
1063 if (!super)
1064 return rv;
1065
1066 min_active = 0;
1067 for (dl = super->disks; dl; dl = dl->next) {
1068 if (dl->index < 0)
1069 continue;
1070 unsigned long long blocks = total_blocks(&dl->disk);
1071 if (blocks < min_active || min_active == 0) {
1072 dl_min = dl;
1073 min_active = blocks;
1074 }
1075 }
1076 if (!dl_min)
1077 return rv;
1078
1079 /* find last lba used by subarrays on the smallest active disk */
1080 e = get_extents(super, dl_min);
1081 if (!e)
1082 return rv;
1083 for (i = 0; e[i].size; i++)
1084 continue;
1085
1086 remainder = min_active - e[i].start;
1087 free(e);
1088
1089 /* to give priority to recovery we should not require full
1090 IMSM_RESERVED_SECTORS from the spare */
1091 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1092
1093 /* if real reservation is smaller use that value */
1094 return (remainder < rv) ? remainder : rv;
1095 }
1096
1097 /* Return minimum size of a spare that can be used in this array*/
1098 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1099 {
1100 struct intel_super *super = st->sb;
1101 struct dl *dl;
1102 struct extent *e;
1103 int i;
1104 unsigned long long rv = 0;
1105
1106 if (!super)
1107 return rv;
1108 /* find first active disk in array */
1109 dl = super->disks;
1110 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1111 dl = dl->next;
1112 if (!dl)
1113 return rv;
1114 /* find last lba used by subarrays */
1115 e = get_extents(super, dl);
1116 if (!e)
1117 return rv;
1118 for (i = 0; e[i].size; i++)
1119 continue;
1120 if (i > 0)
1121 rv = e[i-1].start + e[i-1].size;
1122 free(e);
1123
1124 /* add the amount of space needed for metadata */
1125 rv = rv + imsm_min_reserved_sectors(super);
1126
1127 return rv * 512;
1128 }
1129
1130 static int is_gen_migration(struct imsm_dev *dev);
1131
1132 #ifndef MDASSEMBLE
1133 static __u64 blocks_per_migr_unit(struct intel_super *super,
1134 struct imsm_dev *dev);
1135
1136 static void print_imsm_dev(struct intel_super *super,
1137 struct imsm_dev *dev,
1138 char *uuid,
1139 int disk_idx)
1140 {
1141 __u64 sz;
1142 int slot, i;
1143 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1144 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1145 __u32 ord;
1146
1147 printf("\n");
1148 printf("[%.16s]:\n", dev->volume);
1149 printf(" UUID : %s\n", uuid);
1150 printf(" RAID Level : %d", get_imsm_raid_level(map));
1151 if (map2)
1152 printf(" <-- %d", get_imsm_raid_level(map2));
1153 printf("\n");
1154 printf(" Members : %d", map->num_members);
1155 if (map2)
1156 printf(" <-- %d", map2->num_members);
1157 printf("\n");
1158 printf(" Slots : [");
1159 for (i = 0; i < map->num_members; i++) {
1160 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1161 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1162 }
1163 printf("]");
1164 if (map2) {
1165 printf(" <-- [");
1166 for (i = 0; i < map2->num_members; i++) {
1167 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1168 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1169 }
1170 printf("]");
1171 }
1172 printf("\n");
1173 printf(" Failed disk : ");
1174 if (map->failed_disk_num == 0xff)
1175 printf("none");
1176 else
1177 printf("%i", map->failed_disk_num);
1178 printf("\n");
1179 slot = get_imsm_disk_slot(map, disk_idx);
1180 if (slot >= 0) {
1181 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1182 printf(" This Slot : %d%s\n", slot,
1183 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1184 } else
1185 printf(" This Slot : ?\n");
1186 sz = __le32_to_cpu(dev->size_high);
1187 sz <<= 32;
1188 sz += __le32_to_cpu(dev->size_low);
1189 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1190 human_size(sz * 512));
1191 sz = blocks_per_member(map);
1192 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1193 human_size(sz * 512));
1194 printf(" Sector Offset : %llu\n",
1195 pba_of_lba0(map));
1196 printf(" Num Stripes : %llu\n",
1197 num_data_stripes(map));
1198 printf(" Chunk Size : %u KiB",
1199 __le16_to_cpu(map->blocks_per_strip) / 2);
1200 if (map2)
1201 printf(" <-- %u KiB",
1202 __le16_to_cpu(map2->blocks_per_strip) / 2);
1203 printf("\n");
1204 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1205 printf(" Migrate State : ");
1206 if (dev->vol.migr_state) {
1207 if (migr_type(dev) == MIGR_INIT)
1208 printf("initialize\n");
1209 else if (migr_type(dev) == MIGR_REBUILD)
1210 printf("rebuild\n");
1211 else if (migr_type(dev) == MIGR_VERIFY)
1212 printf("check\n");
1213 else if (migr_type(dev) == MIGR_GEN_MIGR)
1214 printf("general migration\n");
1215 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1216 printf("state change\n");
1217 else if (migr_type(dev) == MIGR_REPAIR)
1218 printf("repair\n");
1219 else
1220 printf("<unknown:%d>\n", migr_type(dev));
1221 } else
1222 printf("idle\n");
1223 printf(" Map State : %s", map_state_str[map->map_state]);
1224 if (dev->vol.migr_state) {
1225 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1226
1227 printf(" <-- %s", map_state_str[map->map_state]);
1228 printf("\n Checkpoint : %u ",
1229 __le32_to_cpu(dev->vol.curr_migr_unit));
1230 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
1231 printf("(N/A)");
1232 else
1233 printf("(%llu)", (unsigned long long)
1234 blocks_per_migr_unit(super, dev));
1235 }
1236 printf("\n");
1237 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1238 }
1239
1240 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1241 {
1242 char str[MAX_RAID_SERIAL_LEN + 1];
1243 __u64 sz;
1244
1245 if (index < -1 || !disk)
1246 return;
1247
1248 printf("\n");
1249 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1250 if (index >= 0)
1251 printf(" Disk%02d Serial : %s\n", index, str);
1252 else
1253 printf(" Disk Serial : %s\n", str);
1254 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1255 is_configured(disk) ? " active" : "",
1256 is_failed(disk) ? " failed" : "");
1257 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1258 sz = total_blocks(disk) - reserved;
1259 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1260 human_size(sz * 512));
1261 }
1262
1263 void examine_migr_rec_imsm(struct intel_super *super)
1264 {
1265 struct migr_record *migr_rec = super->migr_rec;
1266 struct imsm_super *mpb = super->anchor;
1267 int i;
1268
1269 for (i = 0; i < mpb->num_raid_devs; i++) {
1270 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1271 struct imsm_map *map;
1272 int slot = -1;
1273
1274 if (is_gen_migration(dev) == 0)
1275 continue;
1276
1277 printf("\nMigration Record Information:");
1278
1279 /* first map under migration */
1280 map = get_imsm_map(dev, MAP_0);
1281 if (map)
1282 slot = get_imsm_disk_slot(map, super->disks->index);
1283 if ((map == NULL) || (slot > 1) || (slot < 0)) {
1284 printf(" Empty\n ");
1285 printf("Examine one of first two disks in array\n");
1286 break;
1287 }
1288 printf("\n Status : ");
1289 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1290 printf("Normal\n");
1291 else
1292 printf("Contains Data\n");
1293 printf(" Current Unit : %u\n",
1294 __le32_to_cpu(migr_rec->curr_migr_unit));
1295 printf(" Family : %u\n",
1296 __le32_to_cpu(migr_rec->family_num));
1297 printf(" Ascending : %u\n",
1298 __le32_to_cpu(migr_rec->ascending_migr));
1299 printf(" Blocks Per Unit : %u\n",
1300 __le32_to_cpu(migr_rec->blocks_per_unit));
1301 printf(" Dest. Depth Per Unit : %u\n",
1302 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1303 printf(" Checkpoint Area pba : %u\n",
1304 __le32_to_cpu(migr_rec->ckpt_area_pba));
1305 printf(" First member lba : %u\n",
1306 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1307 printf(" Total Number of Units : %u\n",
1308 __le32_to_cpu(migr_rec->num_migr_units));
1309 printf(" Size of volume : %u\n",
1310 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1311 printf(" Expansion space for LBA64 : %u\n",
1312 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1313 printf(" Record was read from : %u\n",
1314 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1315
1316 break;
1317 }
1318 }
1319 #endif /* MDASSEMBLE */
1320 /*******************************************************************************
1321 * function: imsm_check_attributes
1322 * Description: Function checks if features represented by attributes flags
1323 * are supported by mdadm.
1324 * Parameters:
1325 * attributes - Attributes read from metadata
1326 * Returns:
1327 * 0 - passed attributes contains unsupported features flags
1328 * 1 - all features are supported
1329 ******************************************************************************/
1330 static int imsm_check_attributes(__u32 attributes)
1331 {
1332 int ret_val = 1;
1333 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1334
1335 not_supported &= ~MPB_ATTRIB_IGNORED;
1336
1337 not_supported &= attributes;
1338 if (not_supported) {
1339 pr_err("(IMSM): Unsupported attributes : %x\n",
1340 (unsigned)__le32_to_cpu(not_supported));
1341 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1342 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1343 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1344 }
1345 if (not_supported & MPB_ATTRIB_2TB) {
1346 dprintf("\t\tMPB_ATTRIB_2TB\n");
1347 not_supported ^= MPB_ATTRIB_2TB;
1348 }
1349 if (not_supported & MPB_ATTRIB_RAID0) {
1350 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1351 not_supported ^= MPB_ATTRIB_RAID0;
1352 }
1353 if (not_supported & MPB_ATTRIB_RAID1) {
1354 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1355 not_supported ^= MPB_ATTRIB_RAID1;
1356 }
1357 if (not_supported & MPB_ATTRIB_RAID10) {
1358 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1359 not_supported ^= MPB_ATTRIB_RAID10;
1360 }
1361 if (not_supported & MPB_ATTRIB_RAID1E) {
1362 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1363 not_supported ^= MPB_ATTRIB_RAID1E;
1364 }
1365 if (not_supported & MPB_ATTRIB_RAID5) {
1366 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1367 not_supported ^= MPB_ATTRIB_RAID5;
1368 }
1369 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1370 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1371 not_supported ^= MPB_ATTRIB_RAIDCNG;
1372 }
1373 if (not_supported & MPB_ATTRIB_BBM) {
1374 dprintf("\t\tMPB_ATTRIB_BBM\n");
1375 not_supported ^= MPB_ATTRIB_BBM;
1376 }
1377 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1378 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1379 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1380 }
1381 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1382 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1383 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1384 }
1385 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1386 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1387 not_supported ^= MPB_ATTRIB_2TB_DISK;
1388 }
1389 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1390 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1391 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1392 }
1393 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1394 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1395 not_supported ^= MPB_ATTRIB_NEVER_USE;
1396 }
1397
1398 if (not_supported)
1399 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1400
1401 ret_val = 0;
1402 }
1403
1404 return ret_val;
1405 }
1406
1407 #ifndef MDASSEMBLE
1408 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1409
1410 static void examine_super_imsm(struct supertype *st, char *homehost)
1411 {
1412 struct intel_super *super = st->sb;
1413 struct imsm_super *mpb = super->anchor;
1414 char str[MAX_SIGNATURE_LENGTH];
1415 int i;
1416 struct mdinfo info;
1417 char nbuf[64];
1418 __u32 sum;
1419 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1420 struct dl *dl;
1421
1422 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1423 printf(" Magic : %s\n", str);
1424 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1425 printf(" Version : %s\n", get_imsm_version(mpb));
1426 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1427 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1428 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1429 printf(" Attributes : ");
1430 if (imsm_check_attributes(mpb->attributes))
1431 printf("All supported\n");
1432 else
1433 printf("not supported\n");
1434 getinfo_super_imsm(st, &info, NULL);
1435 fname_from_uuid(st, &info, nbuf, ':');
1436 printf(" UUID : %s\n", nbuf + 5);
1437 sum = __le32_to_cpu(mpb->check_sum);
1438 printf(" Checksum : %08x %s\n", sum,
1439 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1440 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1441 printf(" Disks : %d\n", mpb->num_disks);
1442 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1443 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1444 if (super->bbm_log) {
1445 struct bbm_log *log = super->bbm_log;
1446
1447 printf("\n");
1448 printf("Bad Block Management Log:\n");
1449 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1450 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1451 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1452 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1453 printf(" First Spare : %llx\n",
1454 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1455 }
1456 for (i = 0; i < mpb->num_raid_devs; i++) {
1457 struct mdinfo info;
1458 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1459
1460 super->current_vol = i;
1461 getinfo_super_imsm(st, &info, NULL);
1462 fname_from_uuid(st, &info, nbuf, ':');
1463 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1464 }
1465 for (i = 0; i < mpb->num_disks; i++) {
1466 if (i == super->disks->index)
1467 continue;
1468 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1469 }
1470
1471 for (dl = super->disks; dl; dl = dl->next)
1472 if (dl->index == -1)
1473 print_imsm_disk(&dl->disk, -1, reserved);
1474
1475 examine_migr_rec_imsm(super);
1476 }
1477
1478 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1479 {
1480 /* We just write a generic IMSM ARRAY entry */
1481 struct mdinfo info;
1482 char nbuf[64];
1483 struct intel_super *super = st->sb;
1484
1485 if (!super->anchor->num_raid_devs) {
1486 printf("ARRAY metadata=imsm\n");
1487 return;
1488 }
1489
1490 getinfo_super_imsm(st, &info, NULL);
1491 fname_from_uuid(st, &info, nbuf, ':');
1492 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1493 }
1494
1495 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1496 {
1497 /* We just write a generic IMSM ARRAY entry */
1498 struct mdinfo info;
1499 char nbuf[64];
1500 char nbuf1[64];
1501 struct intel_super *super = st->sb;
1502 int i;
1503
1504 if (!super->anchor->num_raid_devs)
1505 return;
1506
1507 getinfo_super_imsm(st, &info, NULL);
1508 fname_from_uuid(st, &info, nbuf, ':');
1509 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1510 struct imsm_dev *dev = get_imsm_dev(super, i);
1511
1512 super->current_vol = i;
1513 getinfo_super_imsm(st, &info, NULL);
1514 fname_from_uuid(st, &info, nbuf1, ':');
1515 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1516 dev->volume, nbuf + 5, i, nbuf1 + 5);
1517 }
1518 }
1519
1520 static void export_examine_super_imsm(struct supertype *st)
1521 {
1522 struct intel_super *super = st->sb;
1523 struct imsm_super *mpb = super->anchor;
1524 struct mdinfo info;
1525 char nbuf[64];
1526
1527 getinfo_super_imsm(st, &info, NULL);
1528 fname_from_uuid(st, &info, nbuf, ':');
1529 printf("MD_METADATA=imsm\n");
1530 printf("MD_LEVEL=container\n");
1531 printf("MD_UUID=%s\n", nbuf+5);
1532 printf("MD_DEVICES=%u\n", mpb->num_disks);
1533 }
1534
1535 static void detail_super_imsm(struct supertype *st, char *homehost)
1536 {
1537 struct mdinfo info;
1538 char nbuf[64];
1539
1540 getinfo_super_imsm(st, &info, NULL);
1541 fname_from_uuid(st, &info, nbuf, ':');
1542 printf("\n UUID : %s\n", nbuf + 5);
1543 }
1544
1545 static void brief_detail_super_imsm(struct supertype *st)
1546 {
1547 struct mdinfo info;
1548 char nbuf[64];
1549 getinfo_super_imsm(st, &info, NULL);
1550 fname_from_uuid(st, &info, nbuf, ':');
1551 printf(" UUID=%s", nbuf + 5);
1552 }
1553
1554 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1555 static void fd2devname(int fd, char *name);
1556
1557 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1558 {
1559 /* dump an unsorted list of devices attached to AHCI Intel storage
1560 * controller, as well as non-connected ports
1561 */
1562 int hba_len = strlen(hba_path) + 1;
1563 struct dirent *ent;
1564 DIR *dir;
1565 char *path = NULL;
1566 int err = 0;
1567 unsigned long port_mask = (1 << port_count) - 1;
1568
1569 if (port_count > (int)sizeof(port_mask) * 8) {
1570 if (verbose > 0)
1571 pr_err("port_count %d out of range\n", port_count);
1572 return 2;
1573 }
1574
1575 /* scroll through /sys/dev/block looking for devices attached to
1576 * this hba
1577 */
1578 dir = opendir("/sys/dev/block");
1579 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1580 int fd;
1581 char model[64];
1582 char vendor[64];
1583 char buf[1024];
1584 int major, minor;
1585 char *device;
1586 char *c;
1587 int port;
1588 int type;
1589
1590 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1591 continue;
1592 path = devt_to_devpath(makedev(major, minor));
1593 if (!path)
1594 continue;
1595 if (!path_attached_to_hba(path, hba_path)) {
1596 free(path);
1597 path = NULL;
1598 continue;
1599 }
1600
1601 /* retrieve the scsi device type */
1602 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1603 if (verbose > 0)
1604 pr_err("failed to allocate 'device'\n");
1605 err = 2;
1606 break;
1607 }
1608 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1609 if (load_sys(device, buf) != 0) {
1610 if (verbose > 0)
1611 pr_err("failed to read device type for %s\n",
1612 path);
1613 err = 2;
1614 free(device);
1615 break;
1616 }
1617 type = strtoul(buf, NULL, 10);
1618
1619 /* if it's not a disk print the vendor and model */
1620 if (!(type == 0 || type == 7 || type == 14)) {
1621 vendor[0] = '\0';
1622 model[0] = '\0';
1623 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1624 if (load_sys(device, buf) == 0) {
1625 strncpy(vendor, buf, sizeof(vendor));
1626 vendor[sizeof(vendor) - 1] = '\0';
1627 c = (char *) &vendor[sizeof(vendor) - 1];
1628 while (isspace(*c) || *c == '\0')
1629 *c-- = '\0';
1630
1631 }
1632 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1633 if (load_sys(device, buf) == 0) {
1634 strncpy(model, buf, sizeof(model));
1635 model[sizeof(model) - 1] = '\0';
1636 c = (char *) &model[sizeof(model) - 1];
1637 while (isspace(*c) || *c == '\0')
1638 *c-- = '\0';
1639 }
1640
1641 if (vendor[0] && model[0])
1642 sprintf(buf, "%.64s %.64s", vendor, model);
1643 else
1644 switch (type) { /* numbers from hald/linux/device.c */
1645 case 1: sprintf(buf, "tape"); break;
1646 case 2: sprintf(buf, "printer"); break;
1647 case 3: sprintf(buf, "processor"); break;
1648 case 4:
1649 case 5: sprintf(buf, "cdrom"); break;
1650 case 6: sprintf(buf, "scanner"); break;
1651 case 8: sprintf(buf, "media_changer"); break;
1652 case 9: sprintf(buf, "comm"); break;
1653 case 12: sprintf(buf, "raid"); break;
1654 default: sprintf(buf, "unknown");
1655 }
1656 } else
1657 buf[0] = '\0';
1658 free(device);
1659
1660 /* chop device path to 'host%d' and calculate the port number */
1661 c = strchr(&path[hba_len], '/');
1662 if (!c) {
1663 if (verbose > 0)
1664 pr_err("%s - invalid path name\n", path + hba_len);
1665 err = 2;
1666 break;
1667 }
1668 *c = '\0';
1669 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1670 port -= host_base;
1671 else {
1672 if (verbose > 0) {
1673 *c = '/'; /* repair the full string */
1674 pr_err("failed to determine port number for %s\n",
1675 path);
1676 }
1677 err = 2;
1678 break;
1679 }
1680
1681 /* mark this port as used */
1682 port_mask &= ~(1 << port);
1683
1684 /* print out the device information */
1685 if (buf[0]) {
1686 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1687 continue;
1688 }
1689
1690 fd = dev_open(ent->d_name, O_RDONLY);
1691 if (fd < 0)
1692 printf(" Port%d : - disk info unavailable -\n", port);
1693 else {
1694 fd2devname(fd, buf);
1695 printf(" Port%d : %s", port, buf);
1696 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1697 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1698 else
1699 printf(" ()\n");
1700 close(fd);
1701 }
1702 free(path);
1703 path = NULL;
1704 }
1705 if (path)
1706 free(path);
1707 if (dir)
1708 closedir(dir);
1709 if (err == 0) {
1710 int i;
1711
1712 for (i = 0; i < port_count; i++)
1713 if (port_mask & (1 << i))
1714 printf(" Port%d : - no device attached -\n", i);
1715 }
1716
1717 return err;
1718 }
1719
1720 static void print_found_intel_controllers(struct sys_dev *elem)
1721 {
1722 for (; elem; elem = elem->next) {
1723 pr_err("found Intel(R) ");
1724 if (elem->type == SYS_DEV_SATA)
1725 fprintf(stderr, "SATA ");
1726 else if (elem->type == SYS_DEV_SAS)
1727 fprintf(stderr, "SAS ");
1728 fprintf(stderr, "RAID controller");
1729 if (elem->pci_id)
1730 fprintf(stderr, " at %s", elem->pci_id);
1731 fprintf(stderr, ".\n");
1732 }
1733 fflush(stderr);
1734 }
1735
1736 static int ahci_get_port_count(const char *hba_path, int *port_count)
1737 {
1738 struct dirent *ent;
1739 DIR *dir;
1740 int host_base = -1;
1741
1742 *port_count = 0;
1743 if ((dir = opendir(hba_path)) == NULL)
1744 return -1;
1745
1746 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1747 int host;
1748
1749 if (sscanf(ent->d_name, "host%d", &host) != 1)
1750 continue;
1751 if (*port_count == 0)
1752 host_base = host;
1753 else if (host < host_base)
1754 host_base = host;
1755
1756 if (host + 1 > *port_count + host_base)
1757 *port_count = host + 1 - host_base;
1758 }
1759 closedir(dir);
1760 return host_base;
1761 }
1762
1763 static void print_imsm_capability(const struct imsm_orom *orom)
1764 {
1765 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1766 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1767 orom->hotfix_ver, orom->build);
1768 printf(" RAID Levels :%s%s%s%s%s\n",
1769 imsm_orom_has_raid0(orom) ? " raid0" : "",
1770 imsm_orom_has_raid1(orom) ? " raid1" : "",
1771 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1772 imsm_orom_has_raid10(orom) ? " raid10" : "",
1773 imsm_orom_has_raid5(orom) ? " raid5" : "");
1774 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1775 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1776 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1777 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1778 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1779 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1780 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1781 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1782 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1783 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1784 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1785 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1786 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1787 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1788 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1789 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1790 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1791 printf(" 2TB volumes :%s supported\n",
1792 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
1793 printf(" 2TB disks :%s supported\n",
1794 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
1795 printf(" Max Disks : %d\n", orom->tds);
1796 printf(" Max Volumes : %d per array, %d per controller\n",
1797 orom->vpa, orom->vphba);
1798 return;
1799 }
1800
1801 static void print_imsm_capability_export(const struct imsm_orom *orom)
1802 {
1803 printf("MD_FIRMWARE_TYPE=imsm\n");
1804 printf("IMSM_VERSION=%d.%d.%d.%d\n",orom->major_ver, orom->minor_ver,
1805 orom->hotfix_ver, orom->build);
1806 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
1807 imsm_orom_has_raid0(orom) ? "raid0 " : "",
1808 imsm_orom_has_raid1(orom) ? "raid1 " : "",
1809 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
1810 imsm_orom_has_raid5(orom) ? "raid10 " : "",
1811 imsm_orom_has_raid10(orom) ? "raid5 " : "");
1812 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1813 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
1814 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
1815 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
1816 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
1817 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
1818 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
1819 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
1820 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
1821 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
1822 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
1823 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
1824 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
1825 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
1826 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
1827 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
1828 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
1829 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
1830 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
1831 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
1832 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
1833 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
1834 }
1835
1836 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
1837 {
1838 /* There are two components to imsm platform support, the ahci SATA
1839 * controller and the option-rom. To find the SATA controller we
1840 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1841 * controller with the Intel vendor id is present. This approach
1842 * allows mdadm to leverage the kernel's ahci detection logic, with the
1843 * caveat that if ahci.ko is not loaded mdadm will not be able to
1844 * detect platform raid capabilities. The option-rom resides in a
1845 * platform "Adapter ROM". We scan for its signature to retrieve the
1846 * platform capabilities. If raid support is disabled in the BIOS the
1847 * option-rom capability structure will not be available.
1848 */
1849 const struct imsm_orom *orom;
1850 struct sys_dev *list, *hba;
1851 int host_base = 0;
1852 int port_count = 0;
1853 int result=1;
1854
1855 if (enumerate_only) {
1856 if (check_env("IMSM_NO_PLATFORM"))
1857 return 0;
1858 list = find_intel_devices();
1859 if (!list)
1860 return 2;
1861 for (hba = list; hba; hba = hba->next) {
1862 orom = find_imsm_capability(hba->type);
1863 if (!orom) {
1864 result = 2;
1865 break;
1866 }
1867 else
1868 result = 0;
1869 }
1870 free_sys_dev(&list);
1871 return result;
1872 }
1873
1874 list = find_intel_devices();
1875 if (!list) {
1876 if (verbose > 0)
1877 pr_err("no active Intel(R) RAID "
1878 "controller found.\n");
1879 free_sys_dev(&list);
1880 return 2;
1881 } else if (verbose > 0)
1882 print_found_intel_controllers(list);
1883
1884 for (hba = list; hba; hba = hba->next) {
1885 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
1886 continue;
1887 orom = find_imsm_capability(hba->type);
1888 if (!orom)
1889 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
1890 hba->path, get_sys_dev_type(hba->type));
1891 else {
1892 result = 0;
1893 print_imsm_capability(orom);
1894 printf(" I/O Controller : %s (%s)\n",
1895 hba->path, get_sys_dev_type(hba->type));
1896 if (hba->type == SYS_DEV_SATA) {
1897 host_base = ahci_get_port_count(hba->path, &port_count);
1898 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1899 if (verbose > 0)
1900 pr_err("failed to enumerate "
1901 "ports on SATA controller at %s.\n", hba->pci_id);
1902 result |= 2;
1903 }
1904 }
1905 }
1906 }
1907
1908 if (controller_path && result == 1)
1909 pr_err("no active Intel(R) RAID "
1910 "controller found under %s\n",controller_path);
1911
1912 free_sys_dev(&list);
1913 return result;
1914 }
1915
1916 static int export_detail_platform_imsm(int verbose, char *controller_path)
1917 {
1918 const struct imsm_orom *orom;
1919 struct sys_dev *list, *hba;
1920 int result=1;
1921
1922 list = find_intel_devices();
1923 if (!list) {
1924 if (verbose > 0)
1925 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
1926 result = 2;
1927 free_sys_dev(&list);
1928 return result;
1929 }
1930
1931 for (hba = list; hba; hba = hba->next) {
1932 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
1933 continue;
1934 orom = find_imsm_capability(hba->type);
1935 if (!orom) {
1936 if (verbose > 0)
1937 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",hba->path);
1938 }
1939 else {
1940 print_imsm_capability_export(orom);
1941 result = 0;
1942 }
1943 }
1944
1945 return result;
1946 }
1947
1948 #endif
1949
1950 static int match_home_imsm(struct supertype *st, char *homehost)
1951 {
1952 /* the imsm metadata format does not specify any host
1953 * identification information. We return -1 since we can never
1954 * confirm nor deny whether a given array is "meant" for this
1955 * host. We rely on compare_super and the 'family_num' fields to
1956 * exclude member disks that do not belong, and we rely on
1957 * mdadm.conf to specify the arrays that should be assembled.
1958 * Auto-assembly may still pick up "foreign" arrays.
1959 */
1960
1961 return -1;
1962 }
1963
1964 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1965 {
1966 /* The uuid returned here is used for:
1967 * uuid to put into bitmap file (Create, Grow)
1968 * uuid for backup header when saving critical section (Grow)
1969 * comparing uuids when re-adding a device into an array
1970 * In these cases the uuid required is that of the data-array,
1971 * not the device-set.
1972 * uuid to recognise same set when adding a missing device back
1973 * to an array. This is a uuid for the device-set.
1974 *
1975 * For each of these we can make do with a truncated
1976 * or hashed uuid rather than the original, as long as
1977 * everyone agrees.
1978 * In each case the uuid required is that of the data-array,
1979 * not the device-set.
1980 */
1981 /* imsm does not track uuid's so we synthesis one using sha1 on
1982 * - The signature (Which is constant for all imsm array, but no matter)
1983 * - the orig_family_num of the container
1984 * - the index number of the volume
1985 * - the 'serial' number of the volume.
1986 * Hopefully these are all constant.
1987 */
1988 struct intel_super *super = st->sb;
1989
1990 char buf[20];
1991 struct sha1_ctx ctx;
1992 struct imsm_dev *dev = NULL;
1993 __u32 family_num;
1994
1995 /* some mdadm versions failed to set ->orig_family_num, in which
1996 * case fall back to ->family_num. orig_family_num will be
1997 * fixed up with the first metadata update.
1998 */
1999 family_num = super->anchor->orig_family_num;
2000 if (family_num == 0)
2001 family_num = super->anchor->family_num;
2002 sha1_init_ctx(&ctx);
2003 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2004 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2005 if (super->current_vol >= 0)
2006 dev = get_imsm_dev(super, super->current_vol);
2007 if (dev) {
2008 __u32 vol = super->current_vol;
2009 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2010 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2011 }
2012 sha1_finish_ctx(&ctx, buf);
2013 memcpy(uuid, buf, 4*4);
2014 }
2015
2016 #if 0
2017 static void
2018 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
2019 {
2020 __u8 *v = get_imsm_version(mpb);
2021 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
2022 char major[] = { 0, 0, 0 };
2023 char minor[] = { 0 ,0, 0 };
2024 char patch[] = { 0, 0, 0 };
2025 char *ver_parse[] = { major, minor, patch };
2026 int i, j;
2027
2028 i = j = 0;
2029 while (*v != '\0' && v < end) {
2030 if (*v != '.' && j < 2)
2031 ver_parse[i][j++] = *v;
2032 else {
2033 i++;
2034 j = 0;
2035 }
2036 v++;
2037 }
2038
2039 *m = strtol(minor, NULL, 0);
2040 *p = strtol(patch, NULL, 0);
2041 }
2042 #endif
2043
2044 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2045 {
2046 /* migr_strip_size when repairing or initializing parity */
2047 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2048 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2049
2050 switch (get_imsm_raid_level(map)) {
2051 case 5:
2052 case 10:
2053 return chunk;
2054 default:
2055 return 128*1024 >> 9;
2056 }
2057 }
2058
2059 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2060 {
2061 /* migr_strip_size when rebuilding a degraded disk, no idea why
2062 * this is different than migr_strip_size_resync(), but it's good
2063 * to be compatible
2064 */
2065 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2066 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2067
2068 switch (get_imsm_raid_level(map)) {
2069 case 1:
2070 case 10:
2071 if (map->num_members % map->num_domains == 0)
2072 return 128*1024 >> 9;
2073 else
2074 return chunk;
2075 case 5:
2076 return max((__u32) 64*1024 >> 9, chunk);
2077 default:
2078 return 128*1024 >> 9;
2079 }
2080 }
2081
2082 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2083 {
2084 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2085 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2086 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2087 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2088
2089 return max((__u32) 1, hi_chunk / lo_chunk);
2090 }
2091
2092 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2093 {
2094 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2095 int level = get_imsm_raid_level(lo);
2096
2097 if (level == 1 || level == 10) {
2098 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2099
2100 return hi->num_domains;
2101 } else
2102 return num_stripes_per_unit_resync(dev);
2103 }
2104
2105 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2106 {
2107 /* named 'imsm_' because raid0, raid1 and raid10
2108 * counter-intuitively have the same number of data disks
2109 */
2110 struct imsm_map *map = get_imsm_map(dev, second_map);
2111
2112 switch (get_imsm_raid_level(map)) {
2113 case 0:
2114 return map->num_members;
2115 break;
2116 case 1:
2117 case 10:
2118 return map->num_members/2;
2119 case 5:
2120 return map->num_members - 1;
2121 default:
2122 dprintf("%s: unsupported raid level\n", __func__);
2123 return 0;
2124 }
2125 }
2126
2127 static __u32 parity_segment_depth(struct imsm_dev *dev)
2128 {
2129 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2130 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2131
2132 switch(get_imsm_raid_level(map)) {
2133 case 1:
2134 case 10:
2135 return chunk * map->num_domains;
2136 case 5:
2137 return chunk * map->num_members;
2138 default:
2139 return chunk;
2140 }
2141 }
2142
2143 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2144 {
2145 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2146 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2147 __u32 strip = block / chunk;
2148
2149 switch (get_imsm_raid_level(map)) {
2150 case 1:
2151 case 10: {
2152 __u32 vol_strip = (strip * map->num_domains) + 1;
2153 __u32 vol_stripe = vol_strip / map->num_members;
2154
2155 return vol_stripe * chunk + block % chunk;
2156 } case 5: {
2157 __u32 stripe = strip / (map->num_members - 1);
2158
2159 return stripe * chunk + block % chunk;
2160 }
2161 default:
2162 return 0;
2163 }
2164 }
2165
2166 static __u64 blocks_per_migr_unit(struct intel_super *super,
2167 struct imsm_dev *dev)
2168 {
2169 /* calculate the conversion factor between per member 'blocks'
2170 * (md/{resync,rebuild}_start) and imsm migration units, return
2171 * 0 for the 'not migrating' and 'unsupported migration' cases
2172 */
2173 if (!dev->vol.migr_state)
2174 return 0;
2175
2176 switch (migr_type(dev)) {
2177 case MIGR_GEN_MIGR: {
2178 struct migr_record *migr_rec = super->migr_rec;
2179 return __le32_to_cpu(migr_rec->blocks_per_unit);
2180 }
2181 case MIGR_VERIFY:
2182 case MIGR_REPAIR:
2183 case MIGR_INIT: {
2184 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2185 __u32 stripes_per_unit;
2186 __u32 blocks_per_unit;
2187 __u32 parity_depth;
2188 __u32 migr_chunk;
2189 __u32 block_map;
2190 __u32 block_rel;
2191 __u32 segment;
2192 __u32 stripe;
2193 __u8 disks;
2194
2195 /* yes, this is really the translation of migr_units to
2196 * per-member blocks in the 'resync' case
2197 */
2198 stripes_per_unit = num_stripes_per_unit_resync(dev);
2199 migr_chunk = migr_strip_blocks_resync(dev);
2200 disks = imsm_num_data_members(dev, MAP_0);
2201 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2202 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2203 segment = blocks_per_unit / stripe;
2204 block_rel = blocks_per_unit - segment * stripe;
2205 parity_depth = parity_segment_depth(dev);
2206 block_map = map_migr_block(dev, block_rel);
2207 return block_map + parity_depth * segment;
2208 }
2209 case MIGR_REBUILD: {
2210 __u32 stripes_per_unit;
2211 __u32 migr_chunk;
2212
2213 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2214 migr_chunk = migr_strip_blocks_rebuild(dev);
2215 return migr_chunk * stripes_per_unit;
2216 }
2217 case MIGR_STATE_CHANGE:
2218 default:
2219 return 0;
2220 }
2221 }
2222
2223 static int imsm_level_to_layout(int level)
2224 {
2225 switch (level) {
2226 case 0:
2227 case 1:
2228 return 0;
2229 case 5:
2230 case 6:
2231 return ALGORITHM_LEFT_ASYMMETRIC;
2232 case 10:
2233 return 0x102;
2234 }
2235 return UnSet;
2236 }
2237
2238 /*******************************************************************************
2239 * Function: read_imsm_migr_rec
2240 * Description: Function reads imsm migration record from last sector of disk
2241 * Parameters:
2242 * fd : disk descriptor
2243 * super : metadata info
2244 * Returns:
2245 * 0 : success,
2246 * -1 : fail
2247 ******************************************************************************/
2248 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2249 {
2250 int ret_val = -1;
2251 unsigned long long dsize;
2252
2253 get_dev_size(fd, NULL, &dsize);
2254 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2255 pr_err("Cannot seek to anchor block: %s\n",
2256 strerror(errno));
2257 goto out;
2258 }
2259 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2260 MIGR_REC_BUF_SIZE) {
2261 pr_err("Cannot read migr record block: %s\n",
2262 strerror(errno));
2263 goto out;
2264 }
2265 ret_val = 0;
2266
2267 out:
2268 return ret_val;
2269 }
2270
2271 static struct imsm_dev *imsm_get_device_during_migration(
2272 struct intel_super *super)
2273 {
2274
2275 struct intel_dev *dv;
2276
2277 for (dv = super->devlist; dv; dv = dv->next) {
2278 if (is_gen_migration(dv->dev))
2279 return dv->dev;
2280 }
2281 return NULL;
2282 }
2283
2284 /*******************************************************************************
2285 * Function: load_imsm_migr_rec
2286 * Description: Function reads imsm migration record (it is stored at the last
2287 * sector of disk)
2288 * Parameters:
2289 * super : imsm internal array info
2290 * info : general array info
2291 * Returns:
2292 * 0 : success
2293 * -1 : fail
2294 * -2 : no migration in progress
2295 ******************************************************************************/
2296 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2297 {
2298 struct mdinfo *sd;
2299 struct dl *dl = NULL;
2300 char nm[30];
2301 int retval = -1;
2302 int fd = -1;
2303 struct imsm_dev *dev;
2304 struct imsm_map *map = NULL;
2305 int slot = -1;
2306
2307 /* find map under migration */
2308 dev = imsm_get_device_during_migration(super);
2309 /* nothing to load,no migration in progress?
2310 */
2311 if (dev == NULL)
2312 return -2;
2313 map = get_imsm_map(dev, MAP_0);
2314
2315 if (info) {
2316 for (sd = info->devs ; sd ; sd = sd->next) {
2317 /* skip spare and failed disks
2318 */
2319 if (sd->disk.raid_disk < 0)
2320 continue;
2321 /* read only from one of the first two slots */
2322 if (map)
2323 slot = get_imsm_disk_slot(map,
2324 sd->disk.raid_disk);
2325 if ((map == NULL) || (slot > 1) || (slot < 0))
2326 continue;
2327
2328 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2329 fd = dev_open(nm, O_RDONLY);
2330 if (fd >= 0)
2331 break;
2332 }
2333 }
2334 if (fd < 0) {
2335 for (dl = super->disks; dl; dl = dl->next) {
2336 /* skip spare and failed disks
2337 */
2338 if (dl->index < 0)
2339 continue;
2340 /* read only from one of the first two slots */
2341 if (map)
2342 slot = get_imsm_disk_slot(map, dl->index);
2343 if ((map == NULL) || (slot > 1) || (slot < 0))
2344 continue;
2345 sprintf(nm, "%d:%d", dl->major, dl->minor);
2346 fd = dev_open(nm, O_RDONLY);
2347 if (fd >= 0)
2348 break;
2349 }
2350 }
2351 if (fd < 0)
2352 goto out;
2353 retval = read_imsm_migr_rec(fd, super);
2354
2355 out:
2356 if (fd >= 0)
2357 close(fd);
2358 return retval;
2359 }
2360
2361 #ifndef MDASSEMBLE
2362 /*******************************************************************************
2363 * function: imsm_create_metadata_checkpoint_update
2364 * Description: It creates update for checkpoint change.
2365 * Parameters:
2366 * super : imsm internal array info
2367 * u : pointer to prepared update
2368 * Returns:
2369 * Uptate length.
2370 * If length is equal to 0, input pointer u contains no update
2371 ******************************************************************************/
2372 static int imsm_create_metadata_checkpoint_update(
2373 struct intel_super *super,
2374 struct imsm_update_general_migration_checkpoint **u)
2375 {
2376
2377 int update_memory_size = 0;
2378
2379 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2380
2381 if (u == NULL)
2382 return 0;
2383 *u = NULL;
2384
2385 /* size of all update data without anchor */
2386 update_memory_size =
2387 sizeof(struct imsm_update_general_migration_checkpoint);
2388
2389 *u = xcalloc(1, update_memory_size);
2390 if (*u == NULL) {
2391 dprintf("error: cannot get memory for "
2392 "imsm_create_metadata_checkpoint_update update\n");
2393 return 0;
2394 }
2395 (*u)->type = update_general_migration_checkpoint;
2396 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2397 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2398 (*u)->curr_migr_unit);
2399
2400 return update_memory_size;
2401 }
2402
2403
2404 static void imsm_update_metadata_locally(struct supertype *st,
2405 void *buf, int len);
2406
2407 /*******************************************************************************
2408 * Function: write_imsm_migr_rec
2409 * Description: Function writes imsm migration record
2410 * (at the last sector of disk)
2411 * Parameters:
2412 * super : imsm internal array info
2413 * Returns:
2414 * 0 : success
2415 * -1 : if fail
2416 ******************************************************************************/
2417 static int write_imsm_migr_rec(struct supertype *st)
2418 {
2419 struct intel_super *super = st->sb;
2420 unsigned long long dsize;
2421 char nm[30];
2422 int fd = -1;
2423 int retval = -1;
2424 struct dl *sd;
2425 int len;
2426 struct imsm_update_general_migration_checkpoint *u;
2427 struct imsm_dev *dev;
2428 struct imsm_map *map = NULL;
2429
2430 /* find map under migration */
2431 dev = imsm_get_device_during_migration(super);
2432 /* if no migration, write buffer anyway to clear migr_record
2433 * on disk based on first available device
2434 */
2435 if (dev == NULL)
2436 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2437 super->current_vol);
2438
2439 map = get_imsm_map(dev, MAP_0);
2440
2441 for (sd = super->disks ; sd ; sd = sd->next) {
2442 int slot = -1;
2443
2444 /* skip failed and spare devices */
2445 if (sd->index < 0)
2446 continue;
2447 /* write to 2 first slots only */
2448 if (map)
2449 slot = get_imsm_disk_slot(map, sd->index);
2450 if ((map == NULL) || (slot > 1) || (slot < 0))
2451 continue;
2452
2453 sprintf(nm, "%d:%d", sd->major, sd->minor);
2454 fd = dev_open(nm, O_RDWR);
2455 if (fd < 0)
2456 continue;
2457 get_dev_size(fd, NULL, &dsize);
2458 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2459 pr_err("Cannot seek to anchor block: %s\n",
2460 strerror(errno));
2461 goto out;
2462 }
2463 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2464 MIGR_REC_BUF_SIZE) {
2465 pr_err("Cannot write migr record block: %s\n",
2466 strerror(errno));
2467 goto out;
2468 }
2469 close(fd);
2470 fd = -1;
2471 }
2472 /* update checkpoint information in metadata */
2473 len = imsm_create_metadata_checkpoint_update(super, &u);
2474
2475 if (len <= 0) {
2476 dprintf("imsm: Cannot prepare update\n");
2477 goto out;
2478 }
2479 /* update metadata locally */
2480 imsm_update_metadata_locally(st, u, len);
2481 /* and possibly remotely */
2482 if (st->update_tail) {
2483 append_metadata_update(st, u, len);
2484 /* during reshape we do all work inside metadata handler
2485 * manage_reshape(), so metadata update has to be triggered
2486 * insida it
2487 */
2488 flush_metadata_updates(st);
2489 st->update_tail = &st->updates;
2490 } else
2491 free(u);
2492
2493 retval = 0;
2494 out:
2495 if (fd >= 0)
2496 close(fd);
2497 return retval;
2498 }
2499 #endif /* MDASSEMBLE */
2500
2501 /* spare/missing disks activations are not allowe when
2502 * array/container performs reshape operation, because
2503 * all arrays in container works on the same disks set
2504 */
2505 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2506 {
2507 int rv = 0;
2508 struct intel_dev *i_dev;
2509 struct imsm_dev *dev;
2510
2511 /* check whole container
2512 */
2513 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2514 dev = i_dev->dev;
2515 if (is_gen_migration(dev)) {
2516 /* No repair during any migration in container
2517 */
2518 rv = 1;
2519 break;
2520 }
2521 }
2522 return rv;
2523 }
2524 static unsigned long long imsm_component_size_aligment_check(int level,
2525 int chunk_size,
2526 unsigned long long component_size)
2527 {
2528 unsigned int component_size_alligment;
2529
2530 /* check component size aligment
2531 */
2532 component_size_alligment = component_size % (chunk_size/512);
2533
2534 dprintf("imsm_component_size_aligment_check(Level: %i, "
2535 "chunk_size = %i, component_size = %llu), "
2536 "component_size_alligment = %u\n",
2537 level, chunk_size, component_size,
2538 component_size_alligment);
2539
2540 if (component_size_alligment && (level != 1) && (level != UnSet)) {
2541 dprintf("imsm: reported component size alligned from %llu ",
2542 component_size);
2543 component_size -= component_size_alligment;
2544 dprintf("to %llu (%i).\n",
2545 component_size, component_size_alligment);
2546 }
2547
2548 return component_size;
2549 }
2550
2551 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2552 {
2553 struct intel_super *super = st->sb;
2554 struct migr_record *migr_rec = super->migr_rec;
2555 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2556 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2557 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2558 struct imsm_map *map_to_analyse = map;
2559 struct dl *dl;
2560 char *devname;
2561 int map_disks = info->array.raid_disks;
2562
2563 memset(info, 0, sizeof(*info));
2564 if (prev_map)
2565 map_to_analyse = prev_map;
2566
2567 dl = super->current_disk;
2568
2569 info->container_member = super->current_vol;
2570 info->array.raid_disks = map->num_members;
2571 info->array.level = get_imsm_raid_level(map_to_analyse);
2572 info->array.layout = imsm_level_to_layout(info->array.level);
2573 info->array.md_minor = -1;
2574 info->array.ctime = 0;
2575 info->array.utime = 0;
2576 info->array.chunk_size =
2577 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2578 info->array.state = !dev->vol.dirty;
2579 info->custom_array_size = __le32_to_cpu(dev->size_high);
2580 info->custom_array_size <<= 32;
2581 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2582 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2583
2584 if (is_gen_migration(dev)) {
2585 info->reshape_active = 1;
2586 info->new_level = get_imsm_raid_level(map);
2587 info->new_layout = imsm_level_to_layout(info->new_level);
2588 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2589 info->delta_disks = map->num_members - prev_map->num_members;
2590 if (info->delta_disks) {
2591 /* this needs to be applied to every array
2592 * in the container.
2593 */
2594 info->reshape_active = CONTAINER_RESHAPE;
2595 }
2596 /* We shape information that we give to md might have to be
2597 * modify to cope with md's requirement for reshaping arrays.
2598 * For example, when reshaping a RAID0, md requires it to be
2599 * presented as a degraded RAID4.
2600 * Also if a RAID0 is migrating to a RAID5 we need to specify
2601 * the array as already being RAID5, but the 'before' layout
2602 * is a RAID4-like layout.
2603 */
2604 switch (info->array.level) {
2605 case 0:
2606 switch(info->new_level) {
2607 case 0:
2608 /* conversion is happening as RAID4 */
2609 info->array.level = 4;
2610 info->array.raid_disks += 1;
2611 break;
2612 case 5:
2613 /* conversion is happening as RAID5 */
2614 info->array.level = 5;
2615 info->array.layout = ALGORITHM_PARITY_N;
2616 info->delta_disks -= 1;
2617 break;
2618 default:
2619 /* FIXME error message */
2620 info->array.level = UnSet;
2621 break;
2622 }
2623 break;
2624 }
2625 } else {
2626 info->new_level = UnSet;
2627 info->new_layout = UnSet;
2628 info->new_chunk = info->array.chunk_size;
2629 info->delta_disks = 0;
2630 }
2631
2632 if (dl) {
2633 info->disk.major = dl->major;
2634 info->disk.minor = dl->minor;
2635 info->disk.number = dl->index;
2636 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2637 dl->index);
2638 }
2639
2640 info->data_offset = pba_of_lba0(map_to_analyse);
2641 info->component_size = blocks_per_member(map_to_analyse);
2642
2643 info->component_size = imsm_component_size_aligment_check(
2644 info->array.level,
2645 info->array.chunk_size,
2646 info->component_size);
2647
2648 memset(info->uuid, 0, sizeof(info->uuid));
2649 info->recovery_start = MaxSector;
2650
2651 info->reshape_progress = 0;
2652 info->resync_start = MaxSector;
2653 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2654 dev->vol.dirty) &&
2655 imsm_reshape_blocks_arrays_changes(super) == 0) {
2656 info->resync_start = 0;
2657 }
2658 if (dev->vol.migr_state) {
2659 switch (migr_type(dev)) {
2660 case MIGR_REPAIR:
2661 case MIGR_INIT: {
2662 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2663 dev);
2664 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2665
2666 info->resync_start = blocks_per_unit * units;
2667 break;
2668 }
2669 case MIGR_GEN_MIGR: {
2670 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2671 dev);
2672 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2673 unsigned long long array_blocks;
2674 int used_disks;
2675
2676 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2677 (units <
2678 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2679 (super->migr_rec->rec_status ==
2680 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2681 units++;
2682
2683 info->reshape_progress = blocks_per_unit * units;
2684
2685 dprintf("IMSM: General Migration checkpoint : %llu "
2686 "(%llu) -> read reshape progress : %llu\n",
2687 (unsigned long long)units,
2688 (unsigned long long)blocks_per_unit,
2689 info->reshape_progress);
2690
2691 used_disks = imsm_num_data_members(dev, MAP_1);
2692 if (used_disks > 0) {
2693 array_blocks = blocks_per_member(map) *
2694 used_disks;
2695 /* round array size down to closest MB
2696 */
2697 info->custom_array_size = (array_blocks
2698 >> SECT_PER_MB_SHIFT)
2699 << SECT_PER_MB_SHIFT;
2700 }
2701 }
2702 case MIGR_VERIFY:
2703 /* we could emulate the checkpointing of
2704 * 'sync_action=check' migrations, but for now
2705 * we just immediately complete them
2706 */
2707 case MIGR_REBUILD:
2708 /* this is handled by container_content_imsm() */
2709 case MIGR_STATE_CHANGE:
2710 /* FIXME handle other migrations */
2711 default:
2712 /* we are not dirty, so... */
2713 info->resync_start = MaxSector;
2714 }
2715 }
2716
2717 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2718 info->name[MAX_RAID_SERIAL_LEN] = 0;
2719
2720 info->array.major_version = -1;
2721 info->array.minor_version = -2;
2722 devname = devnum2devname(st->container_dev);
2723 *info->text_version = '\0';
2724 if (devname)
2725 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2726 free(devname);
2727 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2728 uuid_from_super_imsm(st, info->uuid);
2729
2730 if (dmap) {
2731 int i, j;
2732 for (i=0; i<map_disks; i++) {
2733 dmap[i] = 0;
2734 if (i < info->array.raid_disks) {
2735 struct imsm_disk *dsk;
2736 j = get_imsm_disk_idx(dev, i, MAP_X);
2737 dsk = get_imsm_disk(super, j);
2738 if (dsk && (dsk->status & CONFIGURED_DISK))
2739 dmap[i] = 1;
2740 }
2741 }
2742 }
2743 }
2744
2745 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2746 int failed, int look_in_map);
2747
2748 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2749 int look_in_map);
2750
2751
2752 #ifndef MDASSEMBLE
2753 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2754 {
2755 if (is_gen_migration(dev)) {
2756 int failed;
2757 __u8 map_state;
2758 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2759
2760 failed = imsm_count_failed(super, dev, MAP_1);
2761 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2762 if (map2->map_state != map_state) {
2763 map2->map_state = map_state;
2764 super->updates_pending++;
2765 }
2766 }
2767 }
2768 #endif
2769
2770 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2771 {
2772 struct dl *d;
2773
2774 for (d = super->missing; d; d = d->next)
2775 if (d->index == index)
2776 return &d->disk;
2777 return NULL;
2778 }
2779
2780 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2781 {
2782 struct intel_super *super = st->sb;
2783 struct imsm_disk *disk;
2784 int map_disks = info->array.raid_disks;
2785 int max_enough = -1;
2786 int i;
2787 struct imsm_super *mpb;
2788
2789 if (super->current_vol >= 0) {
2790 getinfo_super_imsm_volume(st, info, map);
2791 return;
2792 }
2793 memset(info, 0, sizeof(*info));
2794
2795 /* Set raid_disks to zero so that Assemble will always pull in valid
2796 * spares
2797 */
2798 info->array.raid_disks = 0;
2799 info->array.level = LEVEL_CONTAINER;
2800 info->array.layout = 0;
2801 info->array.md_minor = -1;
2802 info->array.ctime = 0; /* N/A for imsm */
2803 info->array.utime = 0;
2804 info->array.chunk_size = 0;
2805
2806 info->disk.major = 0;
2807 info->disk.minor = 0;
2808 info->disk.raid_disk = -1;
2809 info->reshape_active = 0;
2810 info->array.major_version = -1;
2811 info->array.minor_version = -2;
2812 strcpy(info->text_version, "imsm");
2813 info->safe_mode_delay = 0;
2814 info->disk.number = -1;
2815 info->disk.state = 0;
2816 info->name[0] = 0;
2817 info->recovery_start = MaxSector;
2818 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2819
2820 /* do we have the all the insync disks that we expect? */
2821 mpb = super->anchor;
2822
2823 for (i = 0; i < mpb->num_raid_devs; i++) {
2824 struct imsm_dev *dev = get_imsm_dev(super, i);
2825 int failed, enough, j, missing = 0;
2826 struct imsm_map *map;
2827 __u8 state;
2828
2829 failed = imsm_count_failed(super, dev, MAP_0);
2830 state = imsm_check_degraded(super, dev, failed, MAP_0);
2831 map = get_imsm_map(dev, MAP_0);
2832
2833 /* any newly missing disks?
2834 * (catches single-degraded vs double-degraded)
2835 */
2836 for (j = 0; j < map->num_members; j++) {
2837 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2838 __u32 idx = ord_to_idx(ord);
2839
2840 if (!(ord & IMSM_ORD_REBUILD) &&
2841 get_imsm_missing(super, idx)) {
2842 missing = 1;
2843 break;
2844 }
2845 }
2846
2847 if (state == IMSM_T_STATE_FAILED)
2848 enough = -1;
2849 else if (state == IMSM_T_STATE_DEGRADED &&
2850 (state != map->map_state || missing))
2851 enough = 0;
2852 else /* we're normal, or already degraded */
2853 enough = 1;
2854 if (is_gen_migration(dev) && missing) {
2855 /* during general migration we need all disks
2856 * that process is running on.
2857 * No new missing disk is allowed.
2858 */
2859 max_enough = -1;
2860 enough = -1;
2861 /* no more checks necessary
2862 */
2863 break;
2864 }
2865 /* in the missing/failed disk case check to see
2866 * if at least one array is runnable
2867 */
2868 max_enough = max(max_enough, enough);
2869 }
2870 dprintf("%s: enough: %d\n", __func__, max_enough);
2871 info->container_enough = max_enough;
2872
2873 if (super->disks) {
2874 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2875
2876 disk = &super->disks->disk;
2877 info->data_offset = total_blocks(&super->disks->disk) - reserved;
2878 info->component_size = reserved;
2879 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2880 /* we don't change info->disk.raid_disk here because
2881 * this state will be finalized in mdmon after we have
2882 * found the 'most fresh' version of the metadata
2883 */
2884 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2885 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2886 }
2887
2888 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2889 * ->compare_super may have updated the 'num_raid_devs' field for spares
2890 */
2891 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2892 uuid_from_super_imsm(st, info->uuid);
2893 else
2894 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2895
2896 /* I don't know how to compute 'map' on imsm, so use safe default */
2897 if (map) {
2898 int i;
2899 for (i = 0; i < map_disks; i++)
2900 map[i] = 1;
2901 }
2902
2903 }
2904
2905 /* allocates memory and fills disk in mdinfo structure
2906 * for each disk in array */
2907 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2908 {
2909 struct mdinfo *mddev = NULL;
2910 struct intel_super *super = st->sb;
2911 struct imsm_disk *disk;
2912 int count = 0;
2913 struct dl *dl;
2914 if (!super || !super->disks)
2915 return NULL;
2916 dl = super->disks;
2917 mddev = xcalloc(1, sizeof(*mddev));
2918 while (dl) {
2919 struct mdinfo *tmp;
2920 disk = &dl->disk;
2921 tmp = xcalloc(1, sizeof(*tmp));
2922 if (mddev->devs)
2923 tmp->next = mddev->devs;
2924 mddev->devs = tmp;
2925 tmp->disk.number = count++;
2926 tmp->disk.major = dl->major;
2927 tmp->disk.minor = dl->minor;
2928 tmp->disk.state = is_configured(disk) ?
2929 (1 << MD_DISK_ACTIVE) : 0;
2930 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2931 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2932 tmp->disk.raid_disk = -1;
2933 dl = dl->next;
2934 }
2935 return mddev;
2936 }
2937
2938 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2939 char *update, char *devname, int verbose,
2940 int uuid_set, char *homehost)
2941 {
2942 /* For 'assemble' and 'force' we need to return non-zero if any
2943 * change was made. For others, the return value is ignored.
2944 * Update options are:
2945 * force-one : This device looks a bit old but needs to be included,
2946 * update age info appropriately.
2947 * assemble: clear any 'faulty' flag to allow this device to
2948 * be assembled.
2949 * force-array: Array is degraded but being forced, mark it clean
2950 * if that will be needed to assemble it.
2951 *
2952 * newdev: not used ????
2953 * grow: Array has gained a new device - this is currently for
2954 * linear only
2955 * resync: mark as dirty so a resync will happen.
2956 * name: update the name - preserving the homehost
2957 * uuid: Change the uuid of the array to match watch is given
2958 *
2959 * Following are not relevant for this imsm:
2960 * sparc2.2 : update from old dodgey metadata
2961 * super-minor: change the preferred_minor number
2962 * summaries: update redundant counters.
2963 * homehost: update the recorded homehost
2964 * _reshape_progress: record new reshape_progress position.
2965 */
2966 int rv = 1;
2967 struct intel_super *super = st->sb;
2968 struct imsm_super *mpb;
2969
2970 /* we can only update container info */
2971 if (!super || super->current_vol >= 0 || !super->anchor)
2972 return 1;
2973
2974 mpb = super->anchor;
2975
2976 if (strcmp(update, "uuid") == 0) {
2977 /* We take this to mean that the family_num should be updated.
2978 * However that is much smaller than the uuid so we cannot really
2979 * allow an explicit uuid to be given. And it is hard to reliably
2980 * know if one was.
2981 * So if !uuid_set we know the current uuid is random and just used
2982 * the first 'int' and copy it to the other 3 positions.
2983 * Otherwise we require the 4 'int's to be the same as would be the
2984 * case if we are using a random uuid. So an explicit uuid will be
2985 * accepted as long as all for ints are the same... which shouldn't hurt
2986 */
2987 if (!uuid_set) {
2988 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
2989 rv = 0;
2990 } else {
2991 if (info->uuid[0] != info->uuid[1] ||
2992 info->uuid[1] != info->uuid[2] ||
2993 info->uuid[2] != info->uuid[3])
2994 rv = -1;
2995 else
2996 rv = 0;
2997 }
2998 if (rv == 0)
2999 mpb->orig_family_num = info->uuid[0];
3000 } else if (strcmp(update, "assemble") == 0)
3001 rv = 0;
3002 else
3003 rv = -1;
3004
3005 /* successful update? recompute checksum */
3006 if (rv == 0)
3007 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
3008
3009 return rv;
3010 }
3011
3012 static size_t disks_to_mpb_size(int disks)
3013 {
3014 size_t size;
3015
3016 size = sizeof(struct imsm_super);
3017 size += (disks - 1) * sizeof(struct imsm_disk);
3018 size += 2 * sizeof(struct imsm_dev);
3019 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3020 size += (4 - 2) * sizeof(struct imsm_map);
3021 /* 4 possible disk_ord_tbl's */
3022 size += 4 * (disks - 1) * sizeof(__u32);
3023
3024 return size;
3025 }
3026
3027 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
3028 unsigned long long data_offset)
3029 {
3030 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
3031 return 0;
3032
3033 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
3034 }
3035
3036 static void free_devlist(struct intel_super *super)
3037 {
3038 struct intel_dev *dv;
3039
3040 while (super->devlist) {
3041 dv = super->devlist->next;
3042 free(super->devlist->dev);
3043 free(super->devlist);
3044 super->devlist = dv;
3045 }
3046 }
3047
3048 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
3049 {
3050 memcpy(dest, src, sizeof_imsm_dev(src, 0));
3051 }
3052
3053 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3054 {
3055 /*
3056 * return:
3057 * 0 same, or first was empty, and second was copied
3058 * 1 second had wrong number
3059 * 2 wrong uuid
3060 * 3 wrong other info
3061 */
3062 struct intel_super *first = st->sb;
3063 struct intel_super *sec = tst->sb;
3064
3065 if (!first) {
3066 st->sb = tst->sb;
3067 tst->sb = NULL;
3068 return 0;
3069 }
3070 /* in platform dependent environment test if the disks
3071 * use the same Intel hba
3072 */
3073 if (!check_env("IMSM_NO_PLATFORM")) {
3074 if (!first->hba || !sec->hba ||
3075 (first->hba->type != sec->hba->type)) {
3076 fprintf(stderr,
3077 "HBAs of devices does not match %s != %s\n",
3078 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
3079 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
3080 return 3;
3081 }
3082 }
3083
3084 /* if an anchor does not have num_raid_devs set then it is a free
3085 * floating spare
3086 */
3087 if (first->anchor->num_raid_devs > 0 &&
3088 sec->anchor->num_raid_devs > 0) {
3089 /* Determine if these disks might ever have been
3090 * related. Further disambiguation can only take place
3091 * in load_super_imsm_all
3092 */
3093 __u32 first_family = first->anchor->orig_family_num;
3094 __u32 sec_family = sec->anchor->orig_family_num;
3095
3096 if (memcmp(first->anchor->sig, sec->anchor->sig,
3097 MAX_SIGNATURE_LENGTH) != 0)
3098 return 3;
3099
3100 if (first_family == 0)
3101 first_family = first->anchor->family_num;
3102 if (sec_family == 0)
3103 sec_family = sec->anchor->family_num;
3104
3105 if (first_family != sec_family)
3106 return 3;
3107
3108 }
3109
3110
3111 /* if 'first' is a spare promote it to a populated mpb with sec's
3112 * family number
3113 */
3114 if (first->anchor->num_raid_devs == 0 &&
3115 sec->anchor->num_raid_devs > 0) {
3116 int i;
3117 struct intel_dev *dv;
3118 struct imsm_dev *dev;
3119
3120 /* we need to copy raid device info from sec if an allocation
3121 * fails here we don't associate the spare
3122 */
3123 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3124 dv = xmalloc(sizeof(*dv));
3125 dev = xmalloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3126 dv->dev = dev;
3127 dv->index = i;
3128 dv->next = first->devlist;
3129 first->devlist = dv;
3130 }
3131 if (i < sec->anchor->num_raid_devs) {
3132 /* allocation failure */
3133 free_devlist(first);
3134 fprintf(stderr, "imsm: failed to associate spare\n");
3135 return 3;
3136 }
3137 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3138 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3139 first->anchor->family_num = sec->anchor->family_num;
3140 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3141 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3142 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3143 }
3144
3145 return 0;
3146 }
3147
3148 static void fd2devname(int fd, char *name)
3149 {
3150 struct stat st;
3151 char path[256];
3152 char dname[PATH_MAX];
3153 char *nm;
3154 int rv;
3155
3156 name[0] = '\0';
3157 if (fstat(fd, &st) != 0)
3158 return;
3159 sprintf(path, "/sys/dev/block/%d:%d",
3160 major(st.st_rdev), minor(st.st_rdev));
3161
3162 rv = readlink(path, dname, sizeof(dname)-1);
3163 if (rv <= 0)
3164 return;
3165
3166 dname[rv] = '\0';
3167 nm = strrchr(dname, '/');
3168 if (nm) {
3169 nm++;
3170 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3171 }
3172 }
3173
3174 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3175
3176 static int imsm_read_serial(int fd, char *devname,
3177 __u8 serial[MAX_RAID_SERIAL_LEN])
3178 {
3179 unsigned char scsi_serial[255];
3180 int rv;
3181 int rsp_len;
3182 int len;
3183 char *dest;
3184 char *src;
3185 char *rsp_buf;
3186 int i;
3187
3188 memset(scsi_serial, 0, sizeof(scsi_serial));
3189
3190 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3191
3192 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3193 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3194 fd2devname(fd, (char *) serial);
3195 return 0;
3196 }
3197
3198 if (rv != 0) {
3199 if (devname)
3200 pr_err("Failed to retrieve serial for %s\n",
3201 devname);
3202 return rv;
3203 }
3204
3205 rsp_len = scsi_serial[3];
3206 if (!rsp_len) {
3207 if (devname)
3208 pr_err("Failed to retrieve serial for %s\n",
3209 devname);
3210 return 2;
3211 }
3212 rsp_buf = (char *) &scsi_serial[4];
3213
3214 /* trim all whitespace and non-printable characters and convert
3215 * ':' to ';'
3216 */
3217 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3218 src = &rsp_buf[i];
3219 if (*src > 0x20) {
3220 /* ':' is reserved for use in placeholder serial
3221 * numbers for missing disks
3222 */
3223 if (*src == ':')
3224 *dest++ = ';';
3225 else
3226 *dest++ = *src;
3227 }
3228 }
3229 len = dest - rsp_buf;
3230 dest = rsp_buf;
3231
3232 /* truncate leading characters */
3233 if (len > MAX_RAID_SERIAL_LEN) {
3234 dest += len - MAX_RAID_SERIAL_LEN;
3235 len = MAX_RAID_SERIAL_LEN;
3236 }
3237
3238 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3239 memcpy(serial, dest, len);
3240
3241 return 0;
3242 }
3243
3244 static int serialcmp(__u8 *s1, __u8 *s2)
3245 {
3246 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3247 }
3248
3249 static void serialcpy(__u8 *dest, __u8 *src)
3250 {
3251 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3252 }
3253
3254 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3255 {
3256 struct dl *dl;
3257
3258 for (dl = super->disks; dl; dl = dl->next)
3259 if (serialcmp(dl->serial, serial) == 0)
3260 break;
3261
3262 return dl;
3263 }
3264
3265 static struct imsm_disk *
3266 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3267 {
3268 int i;
3269
3270 for (i = 0; i < mpb->num_disks; i++) {
3271 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3272
3273 if (serialcmp(disk->serial, serial) == 0) {
3274 if (idx)
3275 *idx = i;
3276 return disk;
3277 }
3278 }
3279
3280 return NULL;
3281 }
3282
3283 static int
3284 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3285 {
3286 struct imsm_disk *disk;
3287 struct dl *dl;
3288 struct stat stb;
3289 int rv;
3290 char name[40];
3291 __u8 serial[MAX_RAID_SERIAL_LEN];
3292
3293 rv = imsm_read_serial(fd, devname, serial);
3294
3295 if (rv != 0)
3296 return 2;
3297
3298 dl = xcalloc(1, sizeof(*dl));
3299
3300 fstat(fd, &stb);
3301 dl->major = major(stb.st_rdev);
3302 dl->minor = minor(stb.st_rdev);
3303 dl->next = super->disks;
3304 dl->fd = keep_fd ? fd : -1;
3305 assert(super->disks == NULL);
3306 super->disks = dl;
3307 serialcpy(dl->serial, serial);
3308 dl->index = -2;
3309 dl->e = NULL;
3310 fd2devname(fd, name);
3311 if (devname)
3312 dl->devname = xstrdup(devname);
3313 else
3314 dl->devname = xstrdup(name);
3315
3316 /* look up this disk's index in the current anchor */
3317 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3318 if (disk) {
3319 dl->disk = *disk;
3320 /* only set index on disks that are a member of a
3321 * populated contianer, i.e. one with raid_devs
3322 */
3323 if (is_failed(&dl->disk))
3324 dl->index = -2;
3325 else if (is_spare(&dl->disk))
3326 dl->index = -1;
3327 }
3328
3329 return 0;
3330 }
3331
3332 #ifndef MDASSEMBLE
3333 /* When migrating map0 contains the 'destination' state while map1
3334 * contains the current state. When not migrating map0 contains the
3335 * current state. This routine assumes that map[0].map_state is set to
3336 * the current array state before being called.
3337 *
3338 * Migration is indicated by one of the following states
3339 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3340 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3341 * map1state=unitialized)
3342 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3343 * map1state=normal)
3344 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3345 * map1state=degraded)
3346 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3347 * map1state=normal)
3348 */
3349 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3350 __u8 to_state, int migr_type)
3351 {
3352 struct imsm_map *dest;
3353 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3354
3355 dev->vol.migr_state = 1;
3356 set_migr_type(dev, migr_type);
3357 dev->vol.curr_migr_unit = 0;
3358 dest = get_imsm_map(dev, MAP_1);
3359
3360 /* duplicate and then set the target end state in map[0] */
3361 memcpy(dest, src, sizeof_imsm_map(src));
3362 if ((migr_type == MIGR_REBUILD) ||
3363 (migr_type == MIGR_GEN_MIGR)) {
3364 __u32 ord;
3365 int i;
3366
3367 for (i = 0; i < src->num_members; i++) {
3368 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3369 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3370 }
3371 }
3372
3373 if (migr_type == MIGR_GEN_MIGR)
3374 /* Clear migration record */
3375 memset(super->migr_rec, 0, sizeof(struct migr_record));
3376
3377 src->map_state = to_state;
3378 }
3379
3380 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3381 __u8 map_state)
3382 {
3383 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3384 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3385 MAP_0 : MAP_1);
3386 int i, j;
3387
3388 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3389 * completed in the last migration.
3390 *
3391 * FIXME add support for raid-level-migration
3392 */
3393 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3394 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3395 /* when final map state is other than expected
3396 * merge maps (not for migration)
3397 */
3398 int failed;
3399
3400 for (i = 0; i < prev->num_members; i++)
3401 for (j = 0; j < map->num_members; j++)
3402 /* during online capacity expansion
3403 * disks position can be changed
3404 * if takeover is used
3405 */
3406 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3407 ord_to_idx(prev->disk_ord_tbl[i])) {
3408 map->disk_ord_tbl[j] |=
3409 prev->disk_ord_tbl[i];
3410 break;
3411 }
3412 failed = imsm_count_failed(super, dev, MAP_0);
3413 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3414 }
3415
3416 dev->vol.migr_state = 0;
3417 set_migr_type(dev, 0);
3418 dev->vol.curr_migr_unit = 0;
3419 map->map_state = map_state;
3420 }
3421 #endif
3422
3423 static int parse_raid_devices(struct intel_super *super)
3424 {
3425 int i;
3426 struct imsm_dev *dev_new;
3427 size_t len, len_migr;
3428 size_t max_len = 0;
3429 size_t space_needed = 0;
3430 struct imsm_super *mpb = super->anchor;
3431
3432 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3433 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3434 struct intel_dev *dv;
3435
3436 len = sizeof_imsm_dev(dev_iter, 0);
3437 len_migr = sizeof_imsm_dev(dev_iter, 1);
3438 if (len_migr > len)
3439 space_needed += len_migr - len;
3440
3441 dv = xmalloc(sizeof(*dv));
3442 if (max_len < len_migr)
3443 max_len = len_migr;
3444 if (max_len > len_migr)
3445 space_needed += max_len - len_migr;
3446 dev_new = xmalloc(max_len);
3447 imsm_copy_dev(dev_new, dev_iter);
3448 dv->dev = dev_new;
3449 dv->index = i;
3450 dv->next = super->devlist;
3451 super->devlist = dv;
3452 }
3453
3454 /* ensure that super->buf is large enough when all raid devices
3455 * are migrating
3456 */
3457 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3458 void *buf;
3459
3460 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3461 if (posix_memalign(&buf, 512, len) != 0)
3462 return 1;
3463
3464 memcpy(buf, super->buf, super->len);
3465 memset(buf + super->len, 0, len - super->len);
3466 free(super->buf);
3467 super->buf = buf;
3468 super->len = len;
3469 }
3470
3471 return 0;
3472 }
3473
3474 /* retrieve a pointer to the bbm log which starts after all raid devices */
3475 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3476 {
3477 void *ptr = NULL;
3478
3479 if (__le32_to_cpu(mpb->bbm_log_size)) {
3480 ptr = mpb;
3481 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3482 }
3483
3484 return ptr;
3485 }
3486
3487 /*******************************************************************************
3488 * Function: check_mpb_migr_compatibility
3489 * Description: Function checks for unsupported migration features:
3490 * - migration optimization area (pba_of_lba0)
3491 * - descending reshape (ascending_migr)
3492 * Parameters:
3493 * super : imsm metadata information
3494 * Returns:
3495 * 0 : migration is compatible
3496 * -1 : migration is not compatible
3497 ******************************************************************************/
3498 int check_mpb_migr_compatibility(struct intel_super *super)
3499 {
3500 struct imsm_map *map0, *map1;
3501 struct migr_record *migr_rec = super->migr_rec;
3502 int i;
3503
3504 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3505 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3506
3507 if (dev_iter &&
3508 dev_iter->vol.migr_state == 1 &&
3509 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3510 /* This device is migrating */
3511 map0 = get_imsm_map(dev_iter, MAP_0);
3512 map1 = get_imsm_map(dev_iter, MAP_1);
3513 if (pba_of_lba0(map0) != pba_of_lba0(map1))
3514 /* migration optimization area was used */
3515 return -1;
3516 if (migr_rec->ascending_migr == 0
3517 && migr_rec->dest_depth_per_unit > 0)
3518 /* descending reshape not supported yet */
3519 return -1;
3520 }
3521 }
3522 return 0;
3523 }
3524
3525 static void __free_imsm(struct intel_super *super, int free_disks);
3526
3527 /* load_imsm_mpb - read matrix metadata
3528 * allocates super->mpb to be freed by free_imsm
3529 */
3530 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3531 {
3532 unsigned long long dsize;
3533 unsigned long long sectors;
3534 struct stat;
3535 struct imsm_super *anchor;
3536 __u32 check_sum;
3537
3538 get_dev_size(fd, NULL, &dsize);
3539 if (dsize < 1024) {
3540 if (devname)
3541 pr_err("%s: device to small for imsm\n",
3542 devname);
3543 return 1;
3544 }
3545
3546 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3547 if (devname)
3548 pr_err("Cannot seek to anchor block on %s: %s\n",
3549 devname, strerror(errno));
3550 return 1;
3551 }
3552
3553 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3554 if (devname)
3555 pr_err("Failed to allocate imsm anchor buffer"
3556 " on %s\n", devname);
3557 return 1;
3558 }
3559 if (read(fd, anchor, 512) != 512) {
3560 if (devname)
3561 pr_err("Cannot read anchor block on %s: %s\n",
3562 devname, strerror(errno));
3563 free(anchor);
3564 return 1;
3565 }
3566
3567 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3568 if (devname)
3569 pr_err("no IMSM anchor on %s\n", devname);
3570 free(anchor);
3571 return 2;
3572 }
3573
3574 __free_imsm(super, 0);
3575 /* reload capability and hba */
3576
3577 /* capability and hba must be updated with new super allocation */
3578 find_intel_hba_capability(fd, super, devname);
3579 super->len = ROUND_UP(anchor->mpb_size, 512);
3580 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3581 if (devname)
3582 pr_err("unable to allocate %zu byte mpb buffer\n",
3583 super->len);
3584 free(anchor);
3585 return 2;
3586 }
3587 memcpy(super->buf, anchor, 512);
3588
3589 sectors = mpb_sectors(anchor) - 1;
3590 free(anchor);
3591
3592 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3593 pr_err("%s could not allocate migr_rec buffer\n", __func__);
3594 free(super->buf);
3595 return 2;
3596 }
3597 super->clean_migration_record_by_mdmon = 0;
3598
3599 if (!sectors) {
3600 check_sum = __gen_imsm_checksum(super->anchor);
3601 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3602 if (devname)
3603 pr_err("IMSM checksum %x != %x on %s\n",
3604 check_sum,
3605 __le32_to_cpu(super->anchor->check_sum),
3606 devname);
3607 return 2;
3608 }
3609
3610 return 0;
3611 }
3612
3613 /* read the extended mpb */
3614 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3615 if (devname)
3616 pr_err("Cannot seek to extended mpb on %s: %s\n",
3617 devname, strerror(errno));
3618 return 1;
3619 }
3620
3621 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3622 if (devname)
3623 pr_err("Cannot read extended mpb on %s: %s\n",
3624 devname, strerror(errno));
3625 return 2;
3626 }
3627
3628 check_sum = __gen_imsm_checksum(super->anchor);
3629 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3630 if (devname)
3631 pr_err("IMSM checksum %x != %x on %s\n",
3632 check_sum, __le32_to_cpu(super->anchor->check_sum),
3633 devname);
3634 return 3;
3635 }
3636
3637 /* FIXME the BBM log is disk specific so we cannot use this global
3638 * buffer for all disks. Ok for now since we only look at the global
3639 * bbm_log_size parameter to gate assembly
3640 */
3641 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3642
3643 return 0;
3644 }
3645
3646 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3647
3648 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
3649 static void clear_hi(struct intel_super *super)
3650 {
3651 struct imsm_super *mpb = super->anchor;
3652 int i, n;
3653 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
3654 return;
3655 for (i = 0; i < mpb->num_disks; ++i) {
3656 struct imsm_disk *disk = &mpb->disk[i];
3657 disk->total_blocks_hi = 0;
3658 }
3659 for (i = 0; i < mpb->num_raid_devs; ++i) {
3660 struct imsm_dev *dev = get_imsm_dev(super, i);
3661 if (!dev)
3662 return;
3663 for (n = 0; n < 2; ++n) {
3664 struct imsm_map *map = get_imsm_map(dev, n);
3665 if (!map)
3666 continue;
3667 map->pba_of_lba0_hi = 0;
3668 map->blocks_per_member_hi = 0;
3669 map->num_data_stripes_hi = 0;
3670 }
3671 }
3672 }
3673
3674 static int
3675 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3676 {
3677 int err;
3678
3679 err = load_imsm_mpb(fd, super, devname);
3680 if (err)
3681 return err;
3682 err = load_imsm_disk(fd, super, devname, keep_fd);
3683 if (err)
3684 return err;
3685 err = parse_raid_devices(super);
3686 clear_hi(super);
3687 return err;
3688 }
3689
3690 static void __free_imsm_disk(struct dl *d)
3691 {
3692 if (d->fd >= 0)
3693 close(d->fd);
3694 if (d->devname)
3695 free(d->devname);
3696 if (d->e)
3697 free(d->e);
3698 free(d);
3699
3700 }
3701
3702 static void free_imsm_disks(struct intel_super *super)
3703 {
3704 struct dl *d;
3705
3706 while (super->disks) {
3707 d = super->disks;
3708 super->disks = d->next;
3709 __free_imsm_disk(d);
3710 }
3711 while (super->disk_mgmt_list) {
3712 d = super->disk_mgmt_list;
3713 super->disk_mgmt_list = d->next;
3714 __free_imsm_disk(d);
3715 }
3716 while (super->missing) {
3717 d = super->missing;
3718 super->missing = d->next;
3719 __free_imsm_disk(d);
3720 }
3721
3722 }
3723
3724 /* free all the pieces hanging off of a super pointer */
3725 static void __free_imsm(struct intel_super *super, int free_disks)
3726 {
3727 struct intel_hba *elem, *next;
3728
3729 if (super->buf) {
3730 free(super->buf);
3731 super->buf = NULL;
3732 }
3733 /* unlink capability description */
3734 super->orom = NULL;
3735 if (super->migr_rec_buf) {
3736 free(super->migr_rec_buf);
3737 super->migr_rec_buf = NULL;
3738 }
3739 if (free_disks)
3740 free_imsm_disks(super);
3741 free_devlist(super);
3742 elem = super->hba;
3743 while (elem) {
3744 if (elem->path)
3745 free((void *)elem->path);
3746 next = elem->next;
3747 free(elem);
3748 elem = next;
3749 }
3750 super->hba = NULL;
3751 }
3752
3753 static void free_imsm(struct intel_super *super)
3754 {
3755 __free_imsm(super, 1);
3756 free(super);
3757 }
3758
3759 static void free_super_imsm(struct supertype *st)
3760 {
3761 struct intel_super *super = st->sb;
3762
3763 if (!super)
3764 return;
3765
3766 free_imsm(super);
3767 st->sb = NULL;
3768 }
3769
3770 static struct intel_super *alloc_super(void)
3771 {
3772 struct intel_super *super = xcalloc(1, sizeof(*super));
3773
3774 super->current_vol = -1;
3775 super->create_offset = ~((unsigned long long) 0);
3776 return super;
3777 }
3778
3779 /*
3780 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3781 */
3782 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3783 {
3784 struct sys_dev *hba_name;
3785 int rv = 0;
3786
3787 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3788 super->orom = NULL;
3789 super->hba = NULL;
3790 return 0;
3791 }
3792 hba_name = find_disk_attached_hba(fd, NULL);
3793 if (!hba_name) {
3794 if (devname)
3795 pr_err("%s is not attached to Intel(R) RAID controller.\n",
3796 devname);
3797 return 1;
3798 }
3799 rv = attach_hba_to_super(super, hba_name);
3800 if (rv == 2) {
3801 if (devname) {
3802 struct intel_hba *hba = super->hba;
3803
3804 pr_err("%s is attached to Intel(R) %s RAID "
3805 "controller (%s),\n"
3806 " but the container is assigned to Intel(R) "
3807 "%s RAID controller (",
3808 devname,
3809 hba_name->path,
3810 hba_name->pci_id ? : "Err!",
3811 get_sys_dev_type(hba_name->type));
3812
3813 while (hba) {
3814 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3815 if (hba->next)
3816 fprintf(stderr, ", ");
3817 hba = hba->next;
3818 }
3819
3820 fprintf(stderr, ").\n"
3821 " Mixing devices attached to different controllers "
3822 "is not allowed.\n");
3823 }
3824 free_sys_dev(&hba_name);
3825 return 2;
3826 }
3827 super->orom = find_imsm_capability(hba_name->type);
3828 free_sys_dev(&hba_name);
3829 if (!super->orom)
3830 return 3;
3831 return 0;
3832 }
3833
3834 /* find_missing - helper routine for load_super_imsm_all that identifies
3835 * disks that have disappeared from the system. This routine relies on
3836 * the mpb being uptodate, which it is at load time.
3837 */
3838 static int find_missing(struct intel_super *super)
3839 {
3840 int i;
3841 struct imsm_super *mpb = super->anchor;
3842 struct dl *dl;
3843 struct imsm_disk *disk;
3844
3845 for (i = 0; i < mpb->num_disks; i++) {
3846 disk = __get_imsm_disk(mpb, i);
3847 dl = serial_to_dl(disk->serial, super);
3848 if (dl)
3849 continue;
3850
3851 dl = xmalloc(sizeof(*dl));
3852 dl->major = 0;
3853 dl->minor = 0;
3854 dl->fd = -1;
3855 dl->devname = xstrdup("missing");
3856 dl->index = i;
3857 serialcpy(dl->serial, disk->serial);
3858 dl->disk = *disk;
3859 dl->e = NULL;
3860 dl->next = super->missing;
3861 super->missing = dl;
3862 }
3863
3864 return 0;
3865 }
3866
3867 #ifndef MDASSEMBLE
3868 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3869 {
3870 struct intel_disk *idisk = disk_list;
3871
3872 while (idisk) {
3873 if (serialcmp(idisk->disk.serial, serial) == 0)
3874 break;
3875 idisk = idisk->next;
3876 }
3877
3878 return idisk;
3879 }
3880
3881 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3882 struct intel_super *super,
3883 struct intel_disk **disk_list)
3884 {
3885 struct imsm_disk *d = &super->disks->disk;
3886 struct imsm_super *mpb = super->anchor;
3887 int i, j;
3888
3889 for (i = 0; i < tbl_size; i++) {
3890 struct imsm_super *tbl_mpb = table[i]->anchor;
3891 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3892
3893 if (tbl_mpb->family_num == mpb->family_num) {
3894 if (tbl_mpb->check_sum == mpb->check_sum) {
3895 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3896 __func__, super->disks->major,
3897 super->disks->minor,
3898 table[i]->disks->major,
3899 table[i]->disks->minor);
3900 break;
3901 }
3902
3903 if (((is_configured(d) && !is_configured(tbl_d)) ||
3904 is_configured(d) == is_configured(tbl_d)) &&
3905 tbl_mpb->generation_num < mpb->generation_num) {
3906 /* current version of the mpb is a
3907 * better candidate than the one in
3908 * super_table, but copy over "cross
3909 * generational" status
3910 */
3911 struct intel_disk *idisk;
3912
3913 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3914 __func__, super->disks->major,
3915 super->disks->minor,
3916 table[i]->disks->major,
3917 table[i]->disks->minor);
3918
3919 idisk = disk_list_get(tbl_d->serial, *disk_list);
3920 if (idisk && is_failed(&idisk->disk))
3921 tbl_d->status |= FAILED_DISK;
3922 break;
3923 } else {
3924 struct intel_disk *idisk;
3925 struct imsm_disk *disk;
3926
3927 /* tbl_mpb is more up to date, but copy
3928 * over cross generational status before
3929 * returning
3930 */
3931 disk = __serial_to_disk(d->serial, mpb, NULL);
3932 if (disk && is_failed(disk))
3933 d->status |= FAILED_DISK;
3934
3935 idisk = disk_list_get(d->serial, *disk_list);
3936 if (idisk) {
3937 idisk->owner = i;
3938 if (disk && is_configured(disk))
3939 idisk->disk.status |= CONFIGURED_DISK;
3940 }
3941
3942 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3943 __func__, super->disks->major,
3944 super->disks->minor,
3945 table[i]->disks->major,
3946 table[i]->disks->minor);
3947
3948 return tbl_size;
3949 }
3950 }
3951 }
3952
3953 if (i >= tbl_size)
3954 table[tbl_size++] = super;
3955 else
3956 table[i] = super;
3957
3958 /* update/extend the merged list of imsm_disk records */
3959 for (j = 0; j < mpb->num_disks; j++) {
3960 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3961 struct intel_disk *idisk;
3962
3963 idisk = disk_list_get(disk->serial, *disk_list);
3964 if (idisk) {
3965 idisk->disk.status |= disk->status;
3966 if (is_configured(&idisk->disk) ||
3967 is_failed(&idisk->disk))
3968 idisk->disk.status &= ~(SPARE_DISK);
3969 } else {
3970 idisk = xcalloc(1, sizeof(*idisk));
3971 idisk->owner = IMSM_UNKNOWN_OWNER;
3972 idisk->disk = *disk;
3973 idisk->next = *disk_list;
3974 *disk_list = idisk;
3975 }
3976
3977 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3978 idisk->owner = i;
3979 }
3980
3981 return tbl_size;
3982 }
3983
3984 static struct intel_super *
3985 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3986 const int owner)
3987 {
3988 struct imsm_super *mpb = super->anchor;
3989 int ok_count = 0;
3990 int i;
3991
3992 for (i = 0; i < mpb->num_disks; i++) {
3993 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3994 struct intel_disk *idisk;
3995
3996 idisk = disk_list_get(disk->serial, disk_list);
3997 if (idisk) {
3998 if (idisk->owner == owner ||
3999 idisk->owner == IMSM_UNKNOWN_OWNER)
4000 ok_count++;
4001 else
4002 dprintf("%s: '%.16s' owner %d != %d\n",
4003 __func__, disk->serial, idisk->owner,
4004 owner);
4005 } else {
4006 dprintf("%s: unknown disk %x [%d]: %.16s\n",
4007 __func__, __le32_to_cpu(mpb->family_num), i,
4008 disk->serial);
4009 break;
4010 }
4011 }
4012
4013 if (ok_count == mpb->num_disks)
4014 return super;
4015 return NULL;
4016 }
4017
4018 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4019 {
4020 struct intel_super *s;
4021
4022 for (s = super_list; s; s = s->next) {
4023 if (family_num != s->anchor->family_num)
4024 continue;
4025 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
4026 __le32_to_cpu(family_num), s->disks->devname);
4027 }
4028 }
4029
4030 static struct intel_super *
4031 imsm_thunderdome(struct intel_super **super_list, int len)
4032 {
4033 struct intel_super *super_table[len];
4034 struct intel_disk *disk_list = NULL;
4035 struct intel_super *champion, *spare;
4036 struct intel_super *s, **del;
4037 int tbl_size = 0;
4038 int conflict;
4039 int i;
4040
4041 memset(super_table, 0, sizeof(super_table));
4042 for (s = *super_list; s; s = s->next)
4043 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4044
4045 for (i = 0; i < tbl_size; i++) {
4046 struct imsm_disk *d;
4047 struct intel_disk *idisk;
4048 struct imsm_super *mpb = super_table[i]->anchor;
4049
4050 s = super_table[i];
4051 d = &s->disks->disk;
4052
4053 /* 'd' must appear in merged disk list for its
4054 * configuration to be valid
4055 */
4056 idisk = disk_list_get(d->serial, disk_list);
4057 if (idisk && idisk->owner == i)
4058 s = validate_members(s, disk_list, i);
4059 else
4060 s = NULL;
4061
4062 if (!s)
4063 dprintf("%s: marking family: %#x from %d:%d offline\n",
4064 __func__, mpb->family_num,
4065 super_table[i]->disks->major,
4066 super_table[i]->disks->minor);
4067 super_table[i] = s;
4068 }
4069
4070 /* This is where the mdadm implementation differs from the Windows
4071 * driver which has no strict concept of a container. We can only
4072 * assemble one family from a container, so when returning a prodigal
4073 * array member to this system the code will not be able to disambiguate
4074 * the container contents that should be assembled ("foreign" versus
4075 * "local"). It requires user intervention to set the orig_family_num
4076 * to a new value to establish a new container. The Windows driver in
4077 * this situation fixes up the volume name in place and manages the
4078 * foreign array as an independent entity.
4079 */
4080 s = NULL;
4081 spare = NULL;
4082 conflict = 0;
4083 for (i = 0; i < tbl_size; i++) {
4084 struct intel_super *tbl_ent = super_table[i];
4085 int is_spare = 0;
4086
4087 if (!tbl_ent)
4088 continue;
4089
4090 if (tbl_ent->anchor->num_raid_devs == 0) {
4091 spare = tbl_ent;
4092 is_spare = 1;
4093 }
4094
4095 if (s && !is_spare) {
4096 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4097 conflict++;
4098 } else if (!s && !is_spare)
4099 s = tbl_ent;
4100 }
4101
4102 if (!s)
4103 s = spare;
4104 if (!s) {
4105 champion = NULL;
4106 goto out;
4107 }
4108 champion = s;
4109
4110 if (conflict)
4111 fprintf(stderr, "Chose family %#x on '%s', "
4112 "assemble conflicts to new container with '--update=uuid'\n",
4113 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4114
4115 /* collect all dl's onto 'champion', and update them to
4116 * champion's version of the status
4117 */
4118 for (s = *super_list; s; s = s->next) {
4119 struct imsm_super *mpb = champion->anchor;
4120 struct dl *dl = s->disks;
4121
4122 if (s == champion)
4123 continue;
4124
4125 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
4126
4127 for (i = 0; i < mpb->num_disks; i++) {
4128 struct imsm_disk *disk;
4129
4130 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4131 if (disk) {
4132 dl->disk = *disk;
4133 /* only set index on disks that are a member of
4134 * a populated contianer, i.e. one with
4135 * raid_devs
4136 */
4137 if (is_failed(&dl->disk))
4138 dl->index = -2;
4139 else if (is_spare(&dl->disk))
4140 dl->index = -1;
4141 break;
4142 }
4143 }
4144
4145 if (i >= mpb->num_disks) {
4146 struct intel_disk *idisk;
4147
4148 idisk = disk_list_get(dl->serial, disk_list);
4149 if (idisk && is_spare(&idisk->disk) &&
4150 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4151 dl->index = -1;
4152 else {
4153 dl->index = -2;
4154 continue;
4155 }
4156 }
4157
4158 dl->next = champion->disks;
4159 champion->disks = dl;
4160 s->disks = NULL;
4161 }
4162
4163 /* delete 'champion' from super_list */
4164 for (del = super_list; *del; ) {
4165 if (*del == champion) {
4166 *del = (*del)->next;
4167 break;
4168 } else
4169 del = &(*del)->next;
4170 }
4171 champion->next = NULL;
4172
4173 out:
4174 while (disk_list) {
4175 struct intel_disk *idisk = disk_list;
4176
4177 disk_list = disk_list->next;
4178 free(idisk);
4179 }
4180
4181 return champion;
4182 }
4183
4184
4185 static int
4186 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4187 static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4188 int major, int minor, int keep_fd);
4189 static int
4190 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4191 int *max, int keep_fd);
4192
4193
4194 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4195 char *devname, struct md_list *devlist,
4196 int keep_fd)
4197 {
4198 struct intel_super *super_list = NULL;
4199 struct intel_super *super = NULL;
4200 int err = 0;
4201 int i = 0;
4202
4203 if (fd >= 0)
4204 /* 'fd' is an opened container */
4205 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4206 else
4207 /* get super block from devlist devices */
4208 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4209 if (err)
4210 goto error;
4211 /* all mpbs enter, maybe one leaves */
4212 super = imsm_thunderdome(&super_list, i);
4213 if (!super) {
4214 err = 1;
4215 goto error;
4216 }
4217
4218 if (find_missing(super) != 0) {
4219 free_imsm(super);
4220 err = 2;
4221 goto error;
4222 }
4223
4224 /* load migration record */
4225 err = load_imsm_migr_rec(super, NULL);
4226 if (err == -1) {
4227 /* migration is in progress,
4228 * but migr_rec cannot be loaded,
4229 */
4230 err = 4;
4231 goto error;
4232 }
4233
4234 /* Check migration compatibility */
4235 if ((err == 0) && (check_mpb_migr_compatibility(super) != 0)) {
4236 pr_err("Unsupported migration detected");
4237 if (devname)
4238 fprintf(stderr, " on %s\n", devname);
4239 else
4240 fprintf(stderr, " (IMSM).\n");
4241
4242 err = 5;
4243 goto error;
4244 }
4245
4246 err = 0;
4247
4248 error:
4249 while (super_list) {
4250 struct intel_super *s = super_list;
4251
4252 super_list = super_list->next;
4253 free_imsm(s);
4254 }
4255
4256
4257 if (err)
4258 return err;
4259
4260 *sbp = super;
4261 if (fd >= 0)
4262 st->container_dev = fd2devnum(fd);
4263 else
4264 st->container_dev = NoMdDev;
4265 if (err == 0 && st->ss == NULL) {
4266 st->ss = &super_imsm;
4267 st->minor_version = 0;
4268 st->max_devs = IMSM_MAX_DEVICES;
4269 }
4270 return 0;
4271 }
4272
4273
4274 static int
4275 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4276 int *max, int keep_fd)
4277 {
4278 struct md_list *tmpdev;
4279 int err = 0;
4280 int i = 0;
4281
4282 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4283 if (tmpdev->used != 1)
4284 continue;
4285 if (tmpdev->container == 1) {
4286 int lmax = 0;
4287 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4288 if (fd < 0) {
4289 pr_err("cannot open device %s: %s\n",
4290 tmpdev->devname, strerror(errno));
4291 err = 8;
4292 goto error;
4293 }
4294 err = get_sra_super_block(fd, super_list,
4295 tmpdev->devname, &lmax,
4296 keep_fd);
4297 i += lmax;
4298 close(fd);
4299 if (err) {
4300 err = 7;
4301 goto error;
4302 }
4303 } else {
4304 int major = major(tmpdev->st_rdev);
4305 int minor = minor(tmpdev->st_rdev);
4306 err = get_super_block(super_list,
4307 -1,
4308 tmpdev->devname,
4309 major, minor,
4310 keep_fd);
4311 i++;
4312 if (err) {
4313 err = 6;
4314 goto error;
4315 }
4316 }
4317 }
4318 error:
4319 *max = i;
4320 return err;
4321 }
4322
4323 static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4324 int major, int minor, int keep_fd)
4325 {
4326 struct intel_super*s = NULL;
4327 char nm[32];
4328 int dfd = -1;
4329 int rv;
4330 int err = 0;
4331 int retry;
4332
4333 s = alloc_super();
4334 if (!s) {
4335 err = 1;
4336 goto error;
4337 }
4338
4339 sprintf(nm, "%d:%d", major, minor);
4340 dfd = dev_open(nm, O_RDWR);
4341 if (dfd < 0) {
4342 err = 2;
4343 goto error;
4344 }
4345
4346 rv = find_intel_hba_capability(dfd, s, devname);
4347 /* no orom/efi or non-intel hba of the disk */
4348 if (rv != 0) {
4349 err = 4;
4350 goto error;
4351 }
4352
4353 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4354
4355 /* retry the load if we might have raced against mdmon */
4356 if (err == 3 && (devnum != -1) && mdmon_running(devnum))
4357 for (retry = 0; retry < 3; retry++) {
4358 usleep(3000);
4359 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4360 if (err != 3)
4361 break;
4362 }
4363 error:
4364 if (!err) {
4365 s->next = *super_list;
4366 *super_list = s;
4367 } else {
4368 if (s)
4369 free(s);
4370 if (dfd >= 0)
4371 close(dfd);
4372 }
4373 if ((dfd >= 0) && (!keep_fd))
4374 close(dfd);
4375 return err;
4376
4377 }
4378
4379 static int
4380 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4381 {
4382 struct mdinfo *sra;
4383 int devnum;
4384 struct mdinfo *sd;
4385 int err = 0;
4386 int i = 0;
4387 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4388 if (!sra)
4389 return 1;
4390
4391 if (sra->array.major_version != -1 ||
4392 sra->array.minor_version != -2 ||
4393 strcmp(sra->text_version, "imsm") != 0) {
4394 err = 1;
4395 goto error;
4396 }
4397 /* load all mpbs */
4398 devnum = fd2devnum(fd);
4399 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4400 if (get_super_block(super_list, devnum, devname,
4401 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4402 err = 7;
4403 goto error;
4404 }
4405 }
4406 error:
4407 sysfs_free(sra);
4408 *max = i;
4409 return err;
4410 }
4411
4412 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4413 {
4414 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
4415 }
4416 #endif
4417
4418 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4419 {
4420 struct intel_super *super;
4421 int rv;
4422
4423 if (test_partition(fd))
4424 /* IMSM not allowed on partitions */
4425 return 1;
4426
4427 free_super_imsm(st);
4428
4429 super = alloc_super();
4430 /* Load hba and capabilities if they exist.
4431 * But do not preclude loading metadata in case capabilities or hba are
4432 * non-compliant and ignore_hw_compat is set.
4433 */
4434 rv = find_intel_hba_capability(fd, super, devname);
4435 /* no orom/efi or non-intel hba of the disk */
4436 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4437 if (devname)
4438 pr_err("No OROM/EFI properties for %s\n", devname);
4439 free_imsm(super);
4440 return 2;
4441 }
4442 rv = load_and_parse_mpb(fd, super, devname, 0);
4443
4444 if (rv) {
4445 if (devname)
4446 pr_err("Failed to load all information "
4447 "sections on %s\n", devname);
4448 free_imsm(super);
4449 return rv;
4450 }
4451
4452 st->sb = super;
4453 if (st->ss == NULL) {
4454 st->ss = &super_imsm;
4455 st->minor_version = 0;
4456 st->max_devs = IMSM_MAX_DEVICES;
4457 }
4458
4459 /* load migration record */
4460 if (load_imsm_migr_rec(super, NULL) == 0) {
4461 /* Check for unsupported migration features */
4462 if (check_mpb_migr_compatibility(super) != 0) {
4463 pr_err("Unsupported migration detected");
4464 if (devname)
4465 fprintf(stderr, " on %s\n", devname);
4466 else
4467 fprintf(stderr, " (IMSM).\n");
4468 return 3;
4469 }
4470 }
4471
4472 return 0;
4473 }
4474
4475 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4476 {
4477 if (info->level == 1)
4478 return 128;
4479 return info->chunk_size >> 9;
4480 }
4481
4482 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4483 unsigned long long size)
4484 {
4485 if (info->level == 1)
4486 return size * 2;
4487 else
4488 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4489 }
4490
4491 static void imsm_update_version_info(struct intel_super *super)
4492 {
4493 /* update the version and attributes */
4494 struct imsm_super *mpb = super->anchor;
4495 char *version;
4496 struct imsm_dev *dev;
4497 struct imsm_map *map;
4498 int i;
4499
4500 for (i = 0; i < mpb->num_raid_devs; i++) {
4501 dev = get_imsm_dev(super, i);
4502 map = get_imsm_map(dev, MAP_0);
4503 if (__le32_to_cpu(dev->size_high) > 0)
4504 mpb->attributes |= MPB_ATTRIB_2TB;
4505
4506 /* FIXME detect when an array spans a port multiplier */
4507 #if 0
4508 mpb->attributes |= MPB_ATTRIB_PM;
4509 #endif
4510
4511 if (mpb->num_raid_devs > 1 ||
4512 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4513 version = MPB_VERSION_ATTRIBS;
4514 switch (get_imsm_raid_level(map)) {
4515 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4516 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4517 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4518 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4519 }
4520 } else {
4521 if (map->num_members >= 5)
4522 version = MPB_VERSION_5OR6_DISK_ARRAY;
4523 else if (dev->status == DEV_CLONE_N_GO)
4524 version = MPB_VERSION_CNG;
4525 else if (get_imsm_raid_level(map) == 5)
4526 version = MPB_VERSION_RAID5;
4527 else if (map->num_members >= 3)
4528 version = MPB_VERSION_3OR4_DISK_ARRAY;
4529 else if (get_imsm_raid_level(map) == 1)
4530 version = MPB_VERSION_RAID1;
4531 else
4532 version = MPB_VERSION_RAID0;
4533 }
4534 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4535 }
4536 }
4537
4538 static int check_name(struct intel_super *super, char *name, int quiet)
4539 {
4540 struct imsm_super *mpb = super->anchor;
4541 char *reason = NULL;
4542 int i;
4543
4544 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4545 reason = "must be 16 characters or less";
4546
4547 for (i = 0; i < mpb->num_raid_devs; i++) {
4548 struct imsm_dev *dev = get_imsm_dev(super, i);
4549
4550 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4551 reason = "already exists";
4552 break;
4553 }
4554 }
4555
4556 if (reason && !quiet)
4557 pr_err("imsm volume name %s\n", reason);
4558
4559 return !reason;
4560 }
4561
4562 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4563 unsigned long long size, char *name,
4564 char *homehost, int *uuid,
4565 long long data_offset)
4566 {
4567 /* We are creating a volume inside a pre-existing container.
4568 * so st->sb is already set.
4569 */
4570 struct intel_super *super = st->sb;
4571 struct imsm_super *mpb = super->anchor;
4572 struct intel_dev *dv;
4573 struct imsm_dev *dev;
4574 struct imsm_vol *vol;
4575 struct imsm_map *map;
4576 int idx = mpb->num_raid_devs;
4577 int i;
4578 unsigned long long array_blocks;
4579 size_t size_old, size_new;
4580 unsigned long long num_data_stripes;
4581
4582 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4583 pr_err("This imsm-container already has the "
4584 "maximum of %d volumes\n", super->orom->vpa);
4585 return 0;
4586 }
4587
4588 /* ensure the mpb is large enough for the new data */
4589 size_old = __le32_to_cpu(mpb->mpb_size);
4590 size_new = disks_to_mpb_size(info->nr_disks);
4591 if (size_new > size_old) {
4592 void *mpb_new;
4593 size_t size_round = ROUND_UP(size_new, 512);
4594
4595 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4596 pr_err("could not allocate new mpb\n");
4597 return 0;
4598 }
4599 if (posix_memalign(&super->migr_rec_buf, 512,
4600 MIGR_REC_BUF_SIZE) != 0) {
4601 pr_err("%s could not allocate migr_rec buffer\n",
4602 __func__);
4603 free(super->buf);
4604 free(super);
4605 free(mpb_new);
4606 return 0;
4607 }
4608 memcpy(mpb_new, mpb, size_old);
4609 free(mpb);
4610 mpb = mpb_new;
4611 super->anchor = mpb_new;
4612 mpb->mpb_size = __cpu_to_le32(size_new);
4613 memset(mpb_new + size_old, 0, size_round - size_old);
4614 }
4615 super->current_vol = idx;
4616
4617 /* handle 'failed_disks' by either:
4618 * a) create dummy disk entries in the table if this the first
4619 * volume in the array. We add them here as this is the only
4620 * opportunity to add them. add_to_super_imsm_volume()
4621 * handles the non-failed disks and continues incrementing
4622 * mpb->num_disks.
4623 * b) validate that 'failed_disks' matches the current number
4624 * of missing disks if the container is populated
4625 */
4626 if (super->current_vol == 0) {
4627 mpb->num_disks = 0;
4628 for (i = 0; i < info->failed_disks; i++) {
4629 struct imsm_disk *disk;
4630
4631 mpb->num_disks++;
4632 disk = __get_imsm_disk(mpb, i);
4633 disk->status = CONFIGURED_DISK | FAILED_DISK;
4634 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4635 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4636 "missing:%d", i);
4637 }
4638 find_missing(super);
4639 } else {
4640 int missing = 0;
4641 struct dl *d;
4642
4643 for (d = super->missing; d; d = d->next)
4644 missing++;
4645 if (info->failed_disks > missing) {
4646 pr_err("unable to add 'missing' disk to container\n");
4647 return 0;
4648 }
4649 }
4650
4651 if (!check_name(super, name, 0))
4652 return 0;
4653 dv = xmalloc(sizeof(*dv));
4654 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4655 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4656 array_blocks = calc_array_size(info->level, info->raid_disks,
4657 info->layout, info->chunk_size,
4658 size * 2);
4659 /* round array size down to closest MB */
4660 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4661
4662 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4663 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4664 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4665 vol = &dev->vol;
4666 vol->migr_state = 0;
4667 set_migr_type(dev, MIGR_INIT);
4668 vol->dirty = !info->state;
4669 vol->curr_migr_unit = 0;
4670 map = get_imsm_map(dev, MAP_0);
4671 set_pba_of_lba0(map, super->create_offset);
4672 set_blocks_per_member(map, info_to_blocks_per_member(info, size));
4673 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4674 map->failed_disk_num = ~0;
4675 if (info->level > 0)
4676 map->map_state = IMSM_T_STATE_UNINITIALIZED;
4677 else
4678 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4679 IMSM_T_STATE_NORMAL;
4680 map->ddf = 1;
4681
4682 if (info->level == 1 && info->raid_disks > 2) {
4683 free(dev);
4684 free(dv);
4685 pr_err("imsm does not support more than 2 disks"
4686 "in a raid1 volume\n");
4687 return 0;
4688 }
4689
4690 map->raid_level = info->level;
4691 if (info->level == 10) {
4692 map->raid_level = 1;
4693 map->num_domains = info->raid_disks / 2;
4694 } else if (info->level == 1)
4695 map->num_domains = info->raid_disks;
4696 else
4697 map->num_domains = 1;
4698
4699 /* info->size is only int so use the 'size' parameter instead */
4700 num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4701 num_data_stripes /= map->num_domains;
4702 set_num_data_stripes(map, num_data_stripes);
4703
4704 map->num_members = info->raid_disks;
4705 for (i = 0; i < map->num_members; i++) {
4706 /* initialized in add_to_super */
4707 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4708 }
4709 mpb->num_raid_devs++;
4710
4711 dv->dev = dev;
4712 dv->index = super->current_vol;
4713 dv->next = super->devlist;
4714 super->devlist = dv;
4715
4716 imsm_update_version_info(super);
4717
4718 return 1;
4719 }
4720
4721 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4722 unsigned long long size, char *name,
4723 char *homehost, int *uuid,
4724 unsigned long long data_offset)
4725 {
4726 /* This is primarily called by Create when creating a new array.
4727 * We will then get add_to_super called for each component, and then
4728 * write_init_super called to write it out to each device.
4729 * For IMSM, Create can create on fresh devices or on a pre-existing
4730 * array.
4731 * To create on a pre-existing array a different method will be called.
4732 * This one is just for fresh drives.
4733 */
4734 struct intel_super *super;
4735 struct imsm_super *mpb;
4736 size_t mpb_size;
4737 char *version;
4738
4739 if (data_offset != INVALID_SECTORS) {
4740 fprintf(stderr, Name ": data-offset not supported by imsm\n");
4741 return 0;
4742 }
4743
4744 if (st->sb)
4745 return init_super_imsm_volume(st, info, size, name, homehost, uuid,
4746 data_offset);
4747
4748 if (info)
4749 mpb_size = disks_to_mpb_size(info->nr_disks);
4750 else
4751 mpb_size = 512;
4752
4753 super = alloc_super();
4754 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4755 free(super);
4756 super = NULL;
4757 }
4758 if (!super) {
4759 pr_err("%s could not allocate superblock\n", __func__);
4760 return 0;
4761 }
4762 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
4763 pr_err("%s could not allocate migr_rec buffer\n", __func__);
4764 free(super->buf);
4765 free(super);
4766 return 0;
4767 }
4768 memset(super->buf, 0, mpb_size);
4769 mpb = super->buf;
4770 mpb->mpb_size = __cpu_to_le32(mpb_size);
4771 st->sb = super;
4772
4773 if (info == NULL) {
4774 /* zeroing superblock */
4775 return 0;
4776 }
4777
4778 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4779
4780 version = (char *) mpb->sig;
4781 strcpy(version, MPB_SIGNATURE);
4782 version += strlen(MPB_SIGNATURE);
4783 strcpy(version, MPB_VERSION_RAID0);
4784
4785 return 1;
4786 }
4787
4788 #ifndef MDASSEMBLE
4789 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4790 int fd, char *devname)
4791 {
4792 struct intel_super *super = st->sb;
4793 struct imsm_super *mpb = super->anchor;
4794 struct imsm_disk *_disk;
4795 struct imsm_dev *dev;
4796 struct imsm_map *map;
4797 struct dl *dl, *df;
4798 int slot;
4799
4800 dev = get_imsm_dev(super, super->current_vol);
4801 map = get_imsm_map(dev, MAP_0);
4802
4803 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4804 pr_err("%s: Cannot add spare devices to IMSM volume\n",
4805 devname);
4806 return 1;
4807 }
4808
4809 if (fd == -1) {
4810 /* we're doing autolayout so grab the pre-marked (in
4811 * validate_geometry) raid_disk
4812 */
4813 for (dl = super->disks; dl; dl = dl->next)
4814 if (dl->raiddisk == dk->raid_disk)
4815 break;
4816 } else {
4817 for (dl = super->disks; dl ; dl = dl->next)
4818 if (dl->major == dk->major &&
4819 dl->minor == dk->minor)
4820 break;
4821 }
4822
4823 if (!dl) {
4824 pr_err("%s is not a member of the same container\n", devname);
4825 return 1;
4826 }
4827
4828 /* add a pristine spare to the metadata */
4829 if (dl->index < 0) {
4830 dl->index = super->anchor->num_disks;
4831 super->anchor->num_disks++;
4832 }
4833 /* Check the device has not already been added */
4834 slot = get_imsm_disk_slot(map, dl->index);
4835 if (slot >= 0 &&
4836 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
4837 pr_err("%s has been included in this array twice\n",
4838 devname);
4839 return 1;
4840 }
4841 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4842 dl->disk.status = CONFIGURED_DISK;
4843
4844 /* update size of 'missing' disks to be at least as large as the
4845 * largest acitve member (we only have dummy missing disks when
4846 * creating the first volume)
4847 */
4848 if (super->current_vol == 0) {
4849 for (df = super->missing; df; df = df->next) {
4850 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
4851 set_total_blocks(&df->disk, total_blocks(&dl->disk));
4852 _disk = __get_imsm_disk(mpb, df->index);
4853 *_disk = df->disk;
4854 }
4855 }
4856
4857 /* refresh unset/failed slots to point to valid 'missing' entries */
4858 for (df = super->missing; df; df = df->next)
4859 for (slot = 0; slot < mpb->num_disks; slot++) {
4860 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4861
4862 if ((ord & IMSM_ORD_REBUILD) == 0)
4863 continue;
4864 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4865 if (is_gen_migration(dev)) {
4866 struct imsm_map *map2 = get_imsm_map(dev,
4867 MAP_1);
4868 int slot2 = get_imsm_disk_slot(map2, df->index);
4869 if ((slot2 < map2->num_members) &&
4870 (slot2 >= 0)) {
4871 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4872 slot2,
4873 MAP_1);
4874 if ((unsigned)df->index ==
4875 ord_to_idx(ord2))
4876 set_imsm_ord_tbl_ent(map2,
4877 slot2,
4878 df->index |
4879 IMSM_ORD_REBUILD);
4880 }
4881 }
4882 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4883 break;
4884 }
4885
4886 /* if we are creating the first raid device update the family number */
4887 if (super->current_vol == 0) {
4888 __u32 sum;
4889 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4890
4891 _disk = __get_imsm_disk(mpb, dl->index);
4892 if (!_dev || !_disk) {
4893 pr_err("BUG mpb setup error\n");
4894 return 1;
4895 }
4896 *_dev = *dev;
4897 *_disk = dl->disk;
4898 sum = random32();
4899 sum += __gen_imsm_checksum(mpb);
4900 mpb->family_num = __cpu_to_le32(sum);
4901 mpb->orig_family_num = mpb->family_num;
4902 }
4903 super->current_disk = dl;
4904 return 0;
4905 }
4906
4907 /* mark_spare()
4908 * Function marks disk as spare and restores disk serial
4909 * in case it was previously marked as failed by takeover operation
4910 * reruns:
4911 * -1 : critical error
4912 * 0 : disk is marked as spare but serial is not set
4913 * 1 : success
4914 */
4915 int mark_spare(struct dl *disk)
4916 {
4917 __u8 serial[MAX_RAID_SERIAL_LEN];
4918 int ret_val = -1;
4919
4920 if (!disk)
4921 return ret_val;
4922
4923 ret_val = 0;
4924 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4925 /* Restore disk serial number, because takeover marks disk
4926 * as failed and adds to serial ':0' before it becomes
4927 * a spare disk.
4928 */
4929 serialcpy(disk->serial, serial);
4930 serialcpy(disk->disk.serial, serial);
4931 ret_val = 1;
4932 }
4933 disk->disk.status = SPARE_DISK;
4934 disk->index = -1;
4935
4936 return ret_val;
4937 }
4938
4939 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4940 int fd, char *devname,
4941 unsigned long long data_offset)
4942 {
4943 struct intel_super *super = st->sb;
4944 struct dl *dd;
4945 unsigned long long size;
4946 __u32 id;
4947 int rv;
4948 struct stat stb;
4949
4950 /* If we are on an RAID enabled platform check that the disk is
4951 * attached to the raid controller.
4952 * We do not need to test disks attachment for container based additions,
4953 * they shall be already tested when container was created/assembled.
4954 */
4955 rv = find_intel_hba_capability(fd, super, devname);
4956 /* no orom/efi or non-intel hba of the disk */
4957 if (rv != 0) {
4958 dprintf("capability: %p fd: %d ret: %d\n",
4959 super->orom, fd, rv);
4960 return 1;
4961 }
4962
4963 if (super->current_vol >= 0)
4964 return add_to_super_imsm_volume(st, dk, fd, devname);
4965
4966 fstat(fd, &stb);
4967 dd = xcalloc(sizeof(*dd), 1);
4968 dd->major = major(stb.st_rdev);
4969 dd->minor = minor(stb.st_rdev);
4970 dd->devname = devname ? xstrdup(devname) : NULL;
4971 dd->fd = fd;
4972 dd->e = NULL;
4973 dd->action = DISK_ADD;
4974 rv = imsm_read_serial(fd, devname, dd->serial);
4975 if (rv) {
4976 pr_err("failed to retrieve scsi serial, aborting\n");
4977 free(dd);
4978 abort();
4979 }
4980
4981 get_dev_size(fd, NULL, &size);
4982 size /= 512;
4983 serialcpy(dd->disk.serial, dd->serial);
4984 set_total_blocks(&dd->disk, size);
4985 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
4986 struct imsm_super *mpb = super->anchor;
4987 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
4988 }
4989 mark_spare(dd);
4990 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4991 dd->disk.scsi_id = __cpu_to_le32(id);
4992 else
4993 dd->disk.scsi_id = __cpu_to_le32(0);
4994
4995 if (st->update_tail) {
4996 dd->next = super->disk_mgmt_list;
4997 super->disk_mgmt_list = dd;
4998 } else {
4999 dd->next = super->disks;
5000 super->disks = dd;
5001 super->updates_pending++;
5002 }
5003
5004 return 0;
5005 }
5006
5007
5008 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5009 {
5010 struct intel_super *super = st->sb;
5011 struct dl *dd;
5012
5013 /* remove from super works only in mdmon - for communication
5014 * manager - monitor. Check if communication memory buffer
5015 * is prepared.
5016 */
5017 if (!st->update_tail) {
5018 pr_err("%s shall be used in mdmon context only"
5019 "(line %d).\n", __func__, __LINE__);
5020 return 1;
5021 }
5022 dd = xcalloc(1, sizeof(*dd));
5023 dd->major = dk->major;
5024 dd->minor = dk->minor;
5025 dd->fd = -1;
5026 mark_spare(dd);
5027 dd->action = DISK_REMOVE;
5028
5029 dd->next = super->disk_mgmt_list;
5030 super->disk_mgmt_list = dd;
5031
5032
5033 return 0;
5034 }
5035
5036 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5037
5038 static union {
5039 char buf[512];
5040 struct imsm_super anchor;
5041 } spare_record __attribute__ ((aligned(512)));
5042
5043 /* spare records have their own family number and do not have any defined raid
5044 * devices
5045 */
5046 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5047 {
5048 struct imsm_super *mpb = super->anchor;
5049 struct imsm_super *spare = &spare_record.anchor;
5050 __u32 sum;
5051 struct dl *d;
5052
5053 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
5054 spare->generation_num = __cpu_to_le32(1UL),
5055 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5056 spare->num_disks = 1,
5057 spare->num_raid_devs = 0,
5058 spare->cache_size = mpb->cache_size,
5059 spare->pwr_cycle_count = __cpu_to_le32(1),
5060
5061 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5062 MPB_SIGNATURE MPB_VERSION_RAID0);
5063
5064 for (d = super->disks; d; d = d->next) {
5065 if (d->index != -1)
5066 continue;
5067
5068 spare->disk[0] = d->disk;
5069 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5070 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5071
5072 sum = __gen_imsm_checksum(spare);
5073 spare->family_num = __cpu_to_le32(sum);
5074 spare->orig_family_num = 0;
5075 sum = __gen_imsm_checksum(spare);
5076 spare->check_sum = __cpu_to_le32(sum);
5077
5078 if (store_imsm_mpb(d->fd, spare)) {
5079 fprintf(stderr, "%s: failed for device %d:%d %s\n",
5080 __func__, d->major, d->minor, strerror(errno));
5081 return 1;
5082 }
5083 if (doclose) {
5084 close(d->fd);
5085 d->fd = -1;
5086 }
5087 }
5088
5089 return 0;
5090 }
5091
5092 static int write_super_imsm(struct supertype *st, int doclose)
5093 {
5094 struct intel_super *super = st->sb;
5095 struct imsm_super *mpb = super->anchor;
5096 struct dl *d;
5097 __u32 generation;
5098 __u32 sum;
5099 int spares = 0;
5100 int i;
5101 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5102 int num_disks = 0;
5103 int clear_migration_record = 1;
5104
5105 /* 'generation' is incremented everytime the metadata is written */
5106 generation = __le32_to_cpu(mpb->generation_num);
5107 generation++;
5108 mpb->generation_num = __cpu_to_le32(generation);
5109
5110 /* fix up cases where previous mdadm releases failed to set
5111 * orig_family_num
5112 */
5113 if (mpb->orig_family_num == 0)
5114 mpb->orig_family_num = mpb->family_num;
5115
5116 for (d = super->disks; d; d = d->next) {
5117 if (d->index == -1)
5118 spares++;
5119 else {
5120 mpb->disk[d->index] = d->disk;
5121 num_disks++;
5122 }
5123 }
5124 for (d = super->missing; d; d = d->next) {
5125 mpb->disk[d->index] = d->disk;
5126 num_disks++;
5127 }
5128 mpb->num_disks = num_disks;
5129 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5130
5131 for (i = 0; i < mpb->num_raid_devs; i++) {
5132 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5133 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5134 if (dev && dev2) {
5135 imsm_copy_dev(dev, dev2);
5136 mpb_size += sizeof_imsm_dev(dev, 0);
5137 }
5138 if (is_gen_migration(dev2))
5139 clear_migration_record = 0;
5140 }
5141 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5142 mpb->mpb_size = __cpu_to_le32(mpb_size);
5143
5144 /* recalculate checksum */
5145 sum = __gen_imsm_checksum(mpb);
5146 mpb->check_sum = __cpu_to_le32(sum);
5147
5148 if (super->clean_migration_record_by_mdmon) {
5149 clear_migration_record = 1;
5150 super->clean_migration_record_by_mdmon = 0;
5151 }
5152 if (clear_migration_record)
5153 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5154
5155 /* write the mpb for disks that compose raid devices */
5156 for (d = super->disks; d ; d = d->next) {
5157 if (d->index < 0 || is_failed(&d->disk))
5158 continue;
5159
5160 if (clear_migration_record) {
5161 unsigned long long dsize;
5162
5163 get_dev_size(d->fd, NULL, &dsize);
5164 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
5165 if (write(d->fd, super->migr_rec_buf,
5166 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5167 perror("Write migr_rec failed");
5168 }
5169 }
5170
5171 if (store_imsm_mpb(d->fd, mpb))
5172 fprintf(stderr,
5173 "%s: failed for device %d:%d (fd: %d)%s\n",
5174 __func__, d->major, d->minor,
5175 d->fd, strerror(errno));
5176
5177 if (doclose) {
5178 close(d->fd);
5179 d->fd = -1;
5180 }
5181 }
5182
5183 if (spares)
5184 return write_super_imsm_spares(super, doclose);
5185
5186 return 0;
5187 }
5188
5189
5190 static int create_array(struct supertype *st, int dev_idx)
5191 {
5192 size_t len;
5193 struct imsm_update_create_array *u;
5194 struct intel_super *super = st->sb;
5195 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5196 struct imsm_map *map = get_imsm_map(dev, MAP_0);
5197 struct disk_info *inf;
5198 struct imsm_disk *disk;
5199 int i;
5200
5201 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5202 sizeof(*inf) * map->num_members;
5203 u = xmalloc(len);
5204 u->type = update_create_array;
5205 u->dev_idx = dev_idx;
5206 imsm_copy_dev(&u->dev, dev);
5207 inf = get_disk_info(u);
5208 for (i = 0; i < map->num_members; i++) {
5209 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5210
5211 disk = get_imsm_disk(super, idx);
5212 serialcpy(inf[i].serial, disk->serial);
5213 }
5214 append_metadata_update(st, u, len);
5215
5216 return 0;
5217 }
5218
5219 static int mgmt_disk(struct supertype *st)
5220 {
5221 struct intel_super *super = st->sb;
5222 size_t len;
5223 struct imsm_update_add_remove_disk *u;
5224
5225 if (!super->disk_mgmt_list)
5226 return 0;
5227
5228 len = sizeof(*u);
5229 u = xmalloc(len);
5230 u->type = update_add_remove_disk;
5231 append_metadata_update(st, u, len);
5232
5233 return 0;
5234 }
5235
5236 static int write_init_super_imsm(struct supertype *st)
5237 {
5238 struct intel_super *super = st->sb;
5239 int current_vol = super->current_vol;
5240
5241 /* we are done with current_vol reset it to point st at the container */
5242 super->current_vol = -1;
5243
5244 if (st->update_tail) {
5245 /* queue the recently created array / added disk
5246 * as a metadata update */
5247 int rv;
5248
5249 /* determine if we are creating a volume or adding a disk */
5250 if (current_vol < 0) {
5251 /* in the mgmt (add/remove) disk case we are running
5252 * in mdmon context, so don't close fd's
5253 */
5254 return mgmt_disk(st);
5255 } else
5256 rv = create_array(st, current_vol);
5257
5258 return rv;
5259 } else {
5260 struct dl *d;
5261 for (d = super->disks; d; d = d->next)
5262 Kill(d->devname, NULL, 0, -1, 1);
5263 return write_super_imsm(st, 1);
5264 }
5265 }
5266 #endif
5267
5268 static int store_super_imsm(struct supertype *st, int fd)
5269 {
5270 struct intel_super *super = st->sb;
5271 struct imsm_super *mpb = super ? super->anchor : NULL;
5272
5273 if (!mpb)
5274 return 1;
5275
5276 #ifndef MDASSEMBLE
5277 return store_imsm_mpb(fd, mpb);
5278 #else
5279 return 1;
5280 #endif
5281 }
5282
5283 static int imsm_bbm_log_size(struct imsm_super *mpb)
5284 {
5285 return __le32_to_cpu(mpb->bbm_log_size);
5286 }
5287
5288 #ifndef MDASSEMBLE
5289 static int validate_geometry_imsm_container(struct supertype *st, int level,
5290 int layout, int raiddisks, int chunk,
5291 unsigned long long size,
5292 unsigned long long data_offset,
5293 char *dev,
5294 unsigned long long *freesize,
5295 int verbose)
5296 {
5297 int fd;
5298 unsigned long long ldsize;
5299 struct intel_super *super=NULL;
5300 int rv = 0;
5301
5302 if (level != LEVEL_CONTAINER)
5303 return 0;
5304 if (!dev)
5305 return 1;
5306
5307 fd = open(dev, O_RDONLY|O_EXCL, 0);
5308 if (fd < 0) {
5309 if (verbose > 0)
5310 pr_err("imsm: Cannot open %s: %s\n",
5311 dev, strerror(errno));
5312 return 0;
5313 }
5314 if (!get_dev_size(fd, dev, &ldsize)) {
5315 close(fd);
5316 return 0;
5317 }
5318
5319 /* capabilities retrieve could be possible
5320 * note that there is no fd for the disks in array.
5321 */
5322 super = alloc_super();
5323 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
5324 if (rv != 0) {
5325 #if DEBUG
5326 char str[256];
5327 fd2devname(fd, str);
5328 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5329 fd, str, super->orom, rv, raiddisks);
5330 #endif
5331 /* no orom/efi or non-intel hba of the disk */
5332 close(fd);
5333 free_imsm(super);
5334 return 0;
5335 }
5336 close(fd);
5337 if (super->orom) {
5338 if (raiddisks > super->orom->tds) {
5339 if (verbose)
5340 pr_err("%d exceeds maximum number of"
5341 " platform supported disks: %d\n",
5342 raiddisks, super->orom->tds);
5343 free_imsm(super);
5344 return 0;
5345 }
5346 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
5347 (ldsize >> 9) >> 32 > 0) {
5348 if (verbose)
5349 pr_err("%s exceeds maximum platform supported size\n", dev);
5350 free_imsm(super);
5351 return 0;
5352 }
5353 }
5354
5355 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
5356 free_imsm(super);
5357
5358 return 1;
5359 }
5360
5361 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5362 {
5363 const unsigned long long base_start = e[*idx].start;
5364 unsigned long long end = base_start + e[*idx].size;
5365 int i;
5366
5367 if (base_start == end)
5368 return 0;
5369
5370 *idx = *idx + 1;
5371 for (i = *idx; i < num_extents; i++) {
5372 /* extend overlapping extents */
5373 if (e[i].start >= base_start &&
5374 e[i].start <= end) {
5375 if (e[i].size == 0)
5376 return 0;
5377 if (e[i].start + e[i].size > end)
5378 end = e[i].start + e[i].size;
5379 } else if (e[i].start > end) {
5380 *idx = i;
5381 break;
5382 }
5383 }
5384
5385 return end - base_start;
5386 }
5387
5388 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5389 {
5390 /* build a composite disk with all known extents and generate a new
5391 * 'maxsize' given the "all disks in an array must share a common start
5392 * offset" constraint
5393 */
5394 struct extent *e = xcalloc(sum_extents, sizeof(*e));
5395 struct dl *dl;
5396 int i, j;
5397 int start_extent;
5398 unsigned long long pos;
5399 unsigned long long start = 0;
5400 unsigned long long maxsize;
5401 unsigned long reserve;
5402
5403 /* coalesce and sort all extents. also, check to see if we need to
5404 * reserve space between member arrays
5405 */
5406 j = 0;
5407 for (dl = super->disks; dl; dl = dl->next) {
5408 if (!dl->e)
5409 continue;
5410 for (i = 0; i < dl->extent_cnt; i++)
5411 e[j++] = dl->e[i];
5412 }
5413 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5414
5415 /* merge extents */
5416 i = 0;
5417 j = 0;
5418 while (i < sum_extents) {
5419 e[j].start = e[i].start;
5420 e[j].size = find_size(e, &i, sum_extents);
5421 j++;
5422 if (e[j-1].size == 0)
5423 break;
5424 }
5425
5426 pos = 0;
5427 maxsize = 0;
5428 start_extent = 0;
5429 i = 0;
5430 do {
5431 unsigned long long esize;
5432
5433 esize = e[i].start - pos;
5434 if (esize >= maxsize) {
5435 maxsize = esize;
5436 start = pos;
5437 start_extent = i;
5438 }
5439 pos = e[i].start + e[i].size;
5440 i++;
5441 } while (e[i-1].size);
5442 free(e);
5443
5444 if (maxsize == 0)
5445 return 0;
5446
5447 /* FIXME assumes volume at offset 0 is the first volume in a
5448 * container
5449 */
5450 if (start_extent > 0)
5451 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5452 else
5453 reserve = 0;
5454
5455 if (maxsize < reserve)
5456 return 0;
5457
5458 super->create_offset = ~((unsigned long long) 0);
5459 if (start + reserve > super->create_offset)
5460 return 0; /* start overflows create_offset */
5461 super->create_offset = start + reserve;
5462
5463 return maxsize - reserve;
5464 }
5465
5466 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5467 {
5468 if (level < 0 || level == 6 || level == 4)
5469 return 0;
5470
5471 /* if we have an orom prevent invalid raid levels */
5472 if (orom)
5473 switch (level) {
5474 case 0: return imsm_orom_has_raid0(orom);
5475 case 1:
5476 if (raiddisks > 2)
5477 return imsm_orom_has_raid1e(orom);
5478 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5479 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5480 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5481 }
5482 else
5483 return 1; /* not on an Intel RAID platform so anything goes */
5484
5485 return 0;
5486 }
5487
5488
5489 static int
5490 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5491 int dpa, int verbose)
5492 {
5493 struct mdstat_ent *mdstat = mdstat_read(0, 0);
5494 struct mdstat_ent *memb = NULL;
5495 int count = 0;
5496 int num = 0;
5497 struct md_list *dv = NULL;
5498 int found;
5499
5500 for (memb = mdstat ; memb ; memb = memb->next) {
5501 if (memb->metadata_version &&
5502 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
5503 (strcmp(&memb->metadata_version[9], name) == 0) &&
5504 !is_subarray(memb->metadata_version+9) &&
5505 memb->members) {
5506 struct dev_member *dev = memb->members;
5507 int fd = -1;
5508 while(dev && (fd < 0)) {
5509 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
5510 num = sprintf(path, "%s%s", "/dev/", dev->name);
5511 if (num > 0)
5512 fd = open(path, O_RDONLY, 0);
5513 if ((num <= 0) || (fd < 0)) {
5514 pr_vrb(": Cannot open %s: %s\n",
5515 dev->name, strerror(errno));
5516 }
5517 free(path);
5518 dev = dev->next;
5519 }
5520 found = 0;
5521 if ((fd >= 0) && disk_attached_to_hba(fd, hba)) {
5522 struct mdstat_ent *vol;
5523 for (vol = mdstat ; vol ; vol = vol->next) {
5524 if ((vol->active > 0) &&
5525 vol->metadata_version &&
5526 is_container_member(vol, memb->dev)) {
5527 found++;
5528 count++;
5529 }
5530 }
5531 if (*devlist && (found < dpa)) {
5532 dv = xcalloc(1, sizeof(*dv));
5533 dv->devname = xmalloc(strlen(memb->dev) + strlen("/dev/") + 1);
5534 sprintf(dv->devname, "%s%s", "/dev/", memb->dev);
5535 dv->found = found;
5536 dv->used = 0;
5537 dv->next = *devlist;
5538 *devlist = dv;
5539 }
5540 }
5541 if (fd >= 0)
5542 close(fd);
5543 }
5544 }
5545 free_mdstat(mdstat);
5546 return count;
5547 }
5548
5549 #ifdef DEBUG_LOOP
5550 static struct md_list*
5551 get_loop_devices(void)
5552 {
5553 int i;
5554 struct md_list *devlist = NULL;
5555 struct md_list *dv = NULL;
5556
5557 for(i = 0; i < 12; i++) {
5558 dv = xcalloc(1, sizeof(*dv));
5559 dv->devname = xmalloc(40);
5560 sprintf(dv->devname, "/dev/loop%d", i);
5561 dv->next = devlist;
5562 devlist = dv;
5563 }
5564 return devlist;
5565 }
5566 #endif
5567
5568 static struct md_list*
5569 get_devices(const char *hba_path)
5570 {
5571 struct md_list *devlist = NULL;
5572 struct md_list *dv = NULL;
5573 struct dirent *ent;
5574 DIR *dir;
5575 int err = 0;
5576
5577 #if DEBUG_LOOP
5578 devlist = get_loop_devices();
5579 return devlist;
5580 #endif
5581 /* scroll through /sys/dev/block looking for devices attached to
5582 * this hba
5583 */
5584 dir = opendir("/sys/dev/block");
5585 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5586 int fd;
5587 char buf[1024];
5588 int major, minor;
5589 char *path = NULL;
5590 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5591 continue;
5592 path = devt_to_devpath(makedev(major, minor));
5593 if (!path)
5594 continue;
5595 if (!path_attached_to_hba(path, hba_path)) {
5596 free(path);
5597 path = NULL;
5598 continue;
5599 }
5600 free(path);
5601 path = NULL;
5602 fd = dev_open(ent->d_name, O_RDONLY);
5603 if (fd >= 0) {
5604 fd2devname(fd, buf);
5605 close(fd);
5606 } else {
5607 pr_err("cannot open device: %s\n",
5608 ent->d_name);
5609 continue;
5610 }
5611
5612
5613 dv = xcalloc(1, sizeof(*dv));
5614 dv->devname = xstrdup(buf);
5615 dv->next = devlist;
5616 devlist = dv;
5617 }
5618 if (err) {
5619 while(devlist) {
5620 dv = devlist;
5621 devlist = devlist->next;
5622 free(dv->devname);
5623 free(dv);
5624 }
5625 }
5626 closedir(dir);
5627 return devlist;
5628 }
5629
5630 static int
5631 count_volumes_list(struct md_list *devlist, char *homehost,
5632 int verbose, int *found)
5633 {
5634 struct md_list *tmpdev;
5635 int count = 0;
5636 struct supertype *st = NULL;
5637
5638 /* first walk the list of devices to find a consistent set
5639 * that match the criterea, if that is possible.
5640 * We flag the ones we like with 'used'.
5641 */
5642 *found = 0;
5643 st = match_metadata_desc_imsm("imsm");
5644 if (st == NULL) {
5645 pr_vrb(": cannot allocate memory for imsm supertype\n");
5646 return 0;
5647 }
5648
5649 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5650 char *devname = tmpdev->devname;
5651 struct stat stb;
5652 struct supertype *tst;
5653 int dfd;
5654 if (tmpdev->used > 1)
5655 continue;
5656 tst = dup_super(st);
5657 if (tst == NULL) {
5658 pr_vrb(": cannot allocate memory for imsm supertype\n");
5659 goto err_1;
5660 }
5661 tmpdev->container = 0;
5662 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5663 if (dfd < 0) {
5664 dprintf(": cannot open device %s: %s\n",
5665 devname, strerror(errno));
5666 tmpdev->used = 2;
5667 } else if (fstat(dfd, &stb)< 0) {
5668 /* Impossible! */
5669 dprintf(": fstat failed for %s: %s\n",
5670 devname, strerror(errno));
5671 tmpdev->used = 2;
5672 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
5673 dprintf(": %s is not a block device.\n",
5674 devname);
5675 tmpdev->used = 2;
5676 } else if (must_be_container(dfd)) {
5677 struct supertype *cst;
5678 cst = super_by_fd(dfd, NULL);
5679 if (cst == NULL) {
5680 dprintf(": cannot recognize container type %s\n",
5681 devname);
5682 tmpdev->used = 2;
5683 } else if (tst->ss != st->ss) {
5684 dprintf(": non-imsm container - ignore it: %s\n",
5685 devname);
5686 tmpdev->used = 2;
5687 } else if (!tst->ss->load_container ||
5688 tst->ss->load_container(tst, dfd, NULL))
5689 tmpdev->used = 2;
5690 else {
5691 tmpdev->container = 1;
5692 }
5693 if (cst)
5694 cst->ss->free_super(cst);
5695 } else {
5696 tmpdev->st_rdev = stb.st_rdev;
5697 if (tst->ss->load_super(tst,dfd, NULL)) {
5698 dprintf(": no RAID superblock on %s\n",
5699 devname);
5700 tmpdev->used = 2;
5701 } else if (tst->ss->compare_super == NULL) {
5702 dprintf(": Cannot assemble %s metadata on %s\n",
5703 tst->ss->name, devname);
5704 tmpdev->used = 2;
5705 }
5706 }
5707 if (dfd >= 0)
5708 close(dfd);
5709 if (tmpdev->used == 2 || tmpdev->used == 4) {
5710 /* Ignore unrecognised devices during auto-assembly */
5711 goto loop;
5712 }
5713 else {
5714 struct mdinfo info;
5715 tst->ss->getinfo_super(tst, &info, NULL);
5716
5717 if (st->minor_version == -1)
5718 st->minor_version = tst->minor_version;
5719
5720 if (memcmp(info.uuid, uuid_zero,
5721 sizeof(int[4])) == 0) {
5722 /* this is a floating spare. It cannot define
5723 * an array unless there are no more arrays of
5724 * this type to be found. It can be included
5725 * in an array of this type though.
5726 */
5727 tmpdev->used = 3;
5728 goto loop;
5729 }
5730
5731 if (st->ss != tst->ss ||
5732 st->minor_version != tst->minor_version ||
5733 st->ss->compare_super(st, tst) != 0) {
5734 /* Some mismatch. If exactly one array matches this host,
5735 * we can resolve on that one.
5736 * Or, if we are auto assembling, we just ignore the second
5737 * for now.
5738 */
5739 dprintf(": superblock on %s doesn't match others - assembly aborted\n",
5740 devname);
5741 goto loop;
5742 }
5743 tmpdev->used = 1;
5744 *found = 1;
5745 dprintf("found: devname: %s\n", devname);
5746 }
5747 loop:
5748 if (tst)
5749 tst->ss->free_super(tst);
5750 }
5751 if (*found != 0) {
5752 int err;
5753 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
5754 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
5755 for (iter = head; iter; iter = iter->next) {
5756 dprintf("content->text_version: %s vol\n",
5757 iter->text_version);
5758 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
5759 /* do not assemble arrays with unsupported
5760 configurations */
5761 dprintf(": Cannot activate member %s.\n",
5762 iter->text_version);
5763 } else
5764 count++;
5765 }
5766 sysfs_free(head);
5767
5768 } else {
5769 dprintf(" no valid super block on device list: err: %d %p\n",
5770 err, st->sb);
5771 }
5772 } else {
5773 dprintf(" no more devices to examin\n");
5774 }
5775
5776 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5777 if ((tmpdev->used == 1) && (tmpdev->found)) {
5778 if (count) {
5779 if (count < tmpdev->found)
5780 count = 0;
5781 else
5782 count -= tmpdev->found;
5783 }
5784 }
5785 if (tmpdev->used == 1)
5786 tmpdev->used = 4;
5787 }
5788 err_1:
5789 if (st)
5790 st->ss->free_super(st);
5791 return count;
5792 }
5793
5794
5795 static int
5796 count_volumes(char *hba, int dpa, int verbose)
5797 {
5798 struct md_list *devlist = NULL;
5799 int count = 0;
5800 int found = 0;;
5801
5802 devlist = get_devices(hba);
5803 /* if no intel devices return zero volumes */
5804 if (devlist == NULL)
5805 return 0;
5806
5807 count = active_arrays_by_format("imsm", hba, &devlist, dpa, verbose);
5808 dprintf(" path: %s active arrays: %d\n", hba, count);
5809 if (devlist == NULL)
5810 return 0;
5811 do {
5812 found = 0;
5813 count += count_volumes_list(devlist,
5814 NULL,
5815 verbose,
5816 &found);
5817 dprintf("found %d count: %d\n", found, count);
5818 } while (found);
5819
5820 dprintf("path: %s total number of volumes: %d\n", hba, count);
5821
5822 while(devlist) {
5823 struct md_list *dv = devlist;
5824 devlist = devlist->next;
5825 free(dv->devname);
5826 free(dv);
5827 }
5828 return count;
5829 }
5830
5831 static int imsm_default_chunk(const struct imsm_orom *orom)
5832 {
5833 /* up to 512 if the plaform supports it, otherwise the platform max.
5834 * 128 if no platform detected
5835 */
5836 int fs = max(7, orom ? fls(orom->sss) : 0);
5837
5838 return min(512, (1 << fs));
5839 }
5840
5841 static int
5842 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5843 int raiddisks, int *chunk, unsigned long long size, int verbose)
5844 {
5845 /* check/set platform and metadata limits/defaults */
5846 if (super->orom && raiddisks > super->orom->dpa) {
5847 pr_vrb(": platform supports a maximum of %d disks per array\n",
5848 super->orom->dpa);
5849 return 0;
5850 }
5851
5852 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5853 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5854 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5855 level, raiddisks, raiddisks > 1 ? "s" : "");
5856 return 0;
5857 }
5858
5859 if (chunk && (*chunk == 0 || *chunk == UnSet))
5860 *chunk = imsm_default_chunk(super->orom);
5861
5862 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5863 pr_vrb(": platform does not support a chunk size of: "
5864 "%d\n", *chunk);
5865 return 0;
5866 }
5867
5868 if (layout != imsm_level_to_layout(level)) {
5869 if (level == 5)
5870 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5871 else if (level == 10)
5872 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5873 else
5874 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5875 layout, level);
5876 return 0;
5877 }
5878
5879 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 && chunk &&
5880 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
5881 pr_vrb(": platform does not support a volume size over 2TB\n");
5882 return 0;
5883 }
5884 return 1;
5885 }
5886
5887 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5888 * FIX ME add ahci details
5889 */
5890 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5891 int layout, int raiddisks, int *chunk,
5892 unsigned long long size,
5893 unsigned long long data_offset,
5894 char *dev,
5895 unsigned long long *freesize,
5896 int verbose)
5897 {
5898 struct stat stb;
5899 struct intel_super *super = st->sb;
5900 struct imsm_super *mpb;
5901 struct dl *dl;
5902 unsigned long long pos = 0;
5903 unsigned long long maxsize;
5904 struct extent *e;
5905 int i;
5906
5907 /* We must have the container info already read in. */
5908 if (!super)
5909 return 0;
5910
5911 mpb = super->anchor;
5912
5913 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
5914 pr_err("RAID gemetry validation failed. "
5915 "Cannot proceed with the action(s).\n");
5916 return 0;
5917 }
5918 if (!dev) {
5919 /* General test: make sure there is space for
5920 * 'raiddisks' device extents of size 'size' at a given
5921 * offset
5922 */
5923 unsigned long long minsize = size;
5924 unsigned long long start_offset = MaxSector;
5925 int dcnt = 0;
5926 if (minsize == 0)
5927 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5928 for (dl = super->disks; dl ; dl = dl->next) {
5929 int found = 0;
5930
5931 pos = 0;
5932 i = 0;
5933 e = get_extents(super, dl);
5934 if (!e) continue;
5935 do {
5936 unsigned long long esize;
5937 esize = e[i].start - pos;
5938 if (esize >= minsize)
5939 found = 1;
5940 if (found && start_offset == MaxSector) {
5941 start_offset = pos;
5942 break;
5943 } else if (found && pos != start_offset) {
5944 found = 0;
5945 break;
5946 }
5947 pos = e[i].start + e[i].size;
5948 i++;
5949 } while (e[i-1].size);
5950 if (found)
5951 dcnt++;
5952 free(e);
5953 }
5954 if (dcnt < raiddisks) {
5955 if (verbose)
5956 pr_err("imsm: Not enough "
5957 "devices with space for this array "
5958 "(%d < %d)\n",
5959 dcnt, raiddisks);
5960 return 0;
5961 }
5962 return 1;
5963 }
5964
5965 /* This device must be a member of the set */
5966 if (stat(dev, &stb) < 0)
5967 return 0;
5968 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5969 return 0;
5970 for (dl = super->disks ; dl ; dl = dl->next) {
5971 if (dl->major == (int)major(stb.st_rdev) &&
5972 dl->minor == (int)minor(stb.st_rdev))
5973 break;
5974 }
5975 if (!dl) {
5976 if (verbose)
5977 pr_err("%s is not in the "
5978 "same imsm set\n", dev);
5979 return 0;
5980 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5981 /* If a volume is present then the current creation attempt
5982 * cannot incorporate new spares because the orom may not
5983 * understand this configuration (all member disks must be
5984 * members of each array in the container).
5985 */
5986 pr_err("%s is a spare and a volume"
5987 " is already defined for this container\n", dev);
5988 pr_err("The option-rom requires all member"
5989 " disks to be a member of all volumes\n");
5990 return 0;
5991 } else if (super->orom && mpb->num_raid_devs > 0 &&
5992 mpb->num_disks != raiddisks) {
5993 pr_err("The option-rom requires all member"
5994 " disks to be a member of all volumes\n");
5995 return 0;
5996 }
5997
5998 /* retrieve the largest free space block */
5999 e = get_extents(super, dl);
6000 maxsize = 0;
6001 i = 0;
6002 if (e) {
6003 do {
6004 unsigned long long esize;
6005
6006 esize = e[i].start - pos;
6007 if (esize >= maxsize)
6008 maxsize = esize;
6009 pos = e[i].start + e[i].size;
6010 i++;
6011 } while (e[i-1].size);
6012 dl->e = e;
6013 dl->extent_cnt = i;
6014 } else {
6015 if (verbose)
6016 pr_err("unable to determine free space for: %s\n",
6017 dev);
6018 return 0;
6019 }
6020 if (maxsize < size) {
6021 if (verbose)
6022 pr_err("%s not enough space (%llu < %llu)\n",
6023 dev, maxsize, size);
6024 return 0;
6025 }
6026
6027 /* count total number of extents for merge */
6028 i = 0;
6029 for (dl = super->disks; dl; dl = dl->next)
6030 if (dl->e)
6031 i += dl->extent_cnt;
6032
6033 maxsize = merge_extents(super, i);
6034
6035 if (!check_env("IMSM_NO_PLATFORM") &&
6036 mpb->num_raid_devs > 0 && size && size != maxsize) {
6037 pr_err("attempting to create a second "
6038 "volume with size less then remaining space. "
6039 "Aborting...\n");
6040 return 0;
6041 }
6042
6043 if (maxsize < size || maxsize == 0) {
6044 if (verbose) {
6045 if (maxsize == 0)
6046 pr_err("no free space"
6047 " left on device. Aborting...\n");
6048 else
6049 pr_err("not enough space"
6050 " to create volume of given size"
6051 " (%llu < %llu). Aborting...\n",
6052 maxsize, size);
6053 }
6054 return 0;
6055 }
6056
6057 *freesize = maxsize;
6058
6059 if (super->orom) {
6060 int count = count_volumes(super->hba->path,
6061 super->orom->dpa, verbose);
6062 if (super->orom->vphba <= count) {
6063 pr_vrb(": platform does not support more than %d raid volumes.\n",
6064 super->orom->vphba);
6065 return 0;
6066 }
6067 }
6068 return 1;
6069 }
6070
6071 static int imsm_get_free_size(struct supertype *st, int raiddisks,
6072 unsigned long long size, int chunk,
6073 unsigned long long *freesize)
6074 {
6075 struct intel_super *super = st->sb;
6076 struct imsm_super *mpb = super->anchor;
6077 struct dl *dl;
6078 int i;
6079 int extent_cnt;
6080 struct extent *e;
6081 unsigned long long maxsize;
6082 unsigned long long minsize;
6083 int cnt;
6084 int used;
6085
6086 /* find the largest common start free region of the possible disks */
6087 used = 0;
6088 extent_cnt = 0;
6089 cnt = 0;
6090 for (dl = super->disks; dl; dl = dl->next) {
6091 dl->raiddisk = -1;
6092
6093 if (dl->index >= 0)
6094 used++;
6095
6096 /* don't activate new spares if we are orom constrained
6097 * and there is already a volume active in the container
6098 */
6099 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6100 continue;
6101
6102 e = get_extents(super, dl);
6103 if (!e)
6104 continue;
6105 for (i = 1; e[i-1].size; i++)
6106 ;
6107 dl->e = e;
6108 dl->extent_cnt = i;
6109 extent_cnt += i;
6110 cnt++;
6111 }
6112
6113 maxsize = merge_extents(super, extent_cnt);
6114 minsize = size;
6115 if (size == 0)
6116 /* chunk is in K */
6117 minsize = chunk * 2;
6118
6119 if (cnt < raiddisks ||
6120 (super->orom && used && used != raiddisks) ||
6121 maxsize < minsize ||
6122 maxsize == 0) {
6123 pr_err("not enough devices with space to create array.\n");
6124 return 0; /* No enough free spaces large enough */
6125 }
6126
6127 if (size == 0) {
6128 size = maxsize;
6129 if (chunk) {
6130 size /= 2 * chunk;
6131 size *= 2 * chunk;
6132 }
6133 maxsize = size;
6134 }
6135 if (!check_env("IMSM_NO_PLATFORM") &&
6136 mpb->num_raid_devs > 0 && size && size != maxsize) {
6137 pr_err("attempting to create a second "
6138 "volume with size less then remaining space. "
6139 "Aborting...\n");
6140 return 0;
6141 }
6142 cnt = 0;
6143 for (dl = super->disks; dl; dl = dl->next)
6144 if (dl->e)
6145 dl->raiddisk = cnt++;
6146
6147 *freesize = size;
6148
6149 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
6150
6151 return 1;
6152 }
6153
6154 static int reserve_space(struct supertype *st, int raiddisks,
6155 unsigned long long size, int chunk,
6156 unsigned long long *freesize)
6157 {
6158 struct intel_super *super = st->sb;
6159 struct dl *dl;
6160 int cnt;
6161 int rv = 0;
6162
6163 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
6164 if (rv) {
6165 cnt = 0;
6166 for (dl = super->disks; dl; dl = dl->next)
6167 if (dl->e)
6168 dl->raiddisk = cnt++;
6169 rv = 1;
6170 }
6171
6172 return rv;
6173 }
6174
6175 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
6176 int raiddisks, int *chunk, unsigned long long size,
6177 unsigned long long data_offset,
6178 char *dev, unsigned long long *freesize,
6179 int verbose)
6180 {
6181 int fd, cfd;
6182 struct mdinfo *sra;
6183 int is_member = 0;
6184
6185 /* load capability
6186 * if given unused devices create a container
6187 * if given given devices in a container create a member volume
6188 */
6189 if (level == LEVEL_CONTAINER) {
6190 /* Must be a fresh device to add to a container */
6191 return validate_geometry_imsm_container(st, level, layout,
6192 raiddisks,
6193 chunk?*chunk:0,
6194 size, data_offset,
6195 dev, freesize,
6196 verbose);
6197 }
6198
6199 if (!dev) {
6200 if (st->sb) {
6201 struct intel_super *super = st->sb;
6202 if (!validate_geometry_imsm_orom(st->sb, level, layout,
6203 raiddisks, chunk, size,
6204 verbose))
6205 return 0;
6206 /* we are being asked to automatically layout a
6207 * new volume based on the current contents of
6208 * the container. If the the parameters can be
6209 * satisfied reserve_space will record the disks,
6210 * start offset, and size of the volume to be
6211 * created. add_to_super and getinfo_super
6212 * detect when autolayout is in progress.
6213 */
6214 /* assuming that freesize is always given when array is
6215 created */
6216 if (super->orom && freesize) {
6217 int count;
6218 count = count_volumes(super->hba->path,
6219 super->orom->dpa, verbose);
6220 if (super->orom->vphba <= count) {
6221 pr_vrb(": platform does not support more"
6222 " than %d raid volumes.\n",
6223 super->orom->vphba);
6224 return 0;
6225 }
6226 }
6227 if (freesize)
6228 return reserve_space(st, raiddisks, size,
6229 chunk?*chunk:0, freesize);
6230 }
6231 return 1;
6232 }
6233 if (st->sb) {
6234 /* creating in a given container */
6235 return validate_geometry_imsm_volume(st, level, layout,
6236 raiddisks, chunk, size,
6237 data_offset,
6238 dev, freesize, verbose);
6239 }
6240
6241 /* This device needs to be a device in an 'imsm' container */
6242 fd = open(dev, O_RDONLY|O_EXCL, 0);
6243 if (fd >= 0) {
6244 if (verbose)
6245 pr_err("Cannot create this array on device %s\n",
6246 dev);
6247 close(fd);
6248 return 0;
6249 }
6250 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6251 if (verbose)
6252 pr_err("Cannot open %s: %s\n",
6253 dev, strerror(errno));
6254 return 0;
6255 }
6256 /* Well, it is in use by someone, maybe an 'imsm' container. */
6257 cfd = open_container(fd);
6258 close(fd);
6259 if (cfd < 0) {
6260 if (verbose)
6261 pr_err("Cannot use %s: It is busy\n",
6262 dev);
6263 return 0;
6264 }
6265 sra = sysfs_read(cfd, 0, GET_VERSION);
6266 if (sra && sra->array.major_version == -1 &&
6267 strcmp(sra->text_version, "imsm") == 0)
6268 is_member = 1;
6269 sysfs_free(sra);
6270 if (is_member) {
6271 /* This is a member of a imsm container. Load the container
6272 * and try to create a volume
6273 */
6274 struct intel_super *super;
6275
6276 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
6277 st->sb = super;
6278 st->container_dev = fd2devnum(cfd);
6279 close(cfd);
6280 return validate_geometry_imsm_volume(st, level, layout,
6281 raiddisks, chunk,
6282 size, data_offset, dev,
6283 freesize, 1)
6284 ? 1 : -1;
6285 }
6286 }
6287
6288 if (verbose)
6289 pr_err("failed container membership check\n");
6290
6291 close(cfd);
6292 return 0;
6293 }
6294
6295 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
6296 {
6297 struct intel_super *super = st->sb;
6298
6299 if (level && *level == UnSet)
6300 *level = LEVEL_CONTAINER;
6301
6302 if (level && layout && *layout == UnSet)
6303 *layout = imsm_level_to_layout(*level);
6304
6305 if (chunk && (*chunk == UnSet || *chunk == 0))
6306 *chunk = imsm_default_chunk(super->orom);
6307 }
6308
6309 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6310
6311 static int kill_subarray_imsm(struct supertype *st)
6312 {
6313 /* remove the subarray currently referenced by ->current_vol */
6314 __u8 i;
6315 struct intel_dev **dp;
6316 struct intel_super *super = st->sb;
6317 __u8 current_vol = super->current_vol;
6318 struct imsm_super *mpb = super->anchor;
6319
6320 if (super->current_vol < 0)
6321 return 2;
6322 super->current_vol = -1; /* invalidate subarray cursor */
6323
6324 /* block deletions that would change the uuid of active subarrays
6325 *
6326 * FIXME when immutable ids are available, but note that we'll
6327 * also need to fixup the invalidated/active subarray indexes in
6328 * mdstat
6329 */
6330 for (i = 0; i < mpb->num_raid_devs; i++) {
6331 char subarray[4];
6332
6333 if (i < current_vol)
6334 continue;
6335 sprintf(subarray, "%u", i);
6336 if (is_subarray_active(subarray, st->devname)) {
6337 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6338 current_vol, i);
6339
6340 return 2;
6341 }
6342 }
6343
6344 if (st->update_tail) {
6345 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
6346
6347 u->type = update_kill_array;
6348 u->dev_idx = current_vol;
6349 append_metadata_update(st, u, sizeof(*u));
6350
6351 return 0;
6352 }
6353
6354 for (dp = &super->devlist; *dp;)
6355 if ((*dp)->index == current_vol) {
6356 *dp = (*dp)->next;
6357 } else {
6358 handle_missing(super, (*dp)->dev);
6359 if ((*dp)->index > current_vol)
6360 (*dp)->index--;
6361 dp = &(*dp)->next;
6362 }
6363
6364 /* no more raid devices, all active components are now spares,
6365 * but of course failed are still failed
6366 */
6367 if (--mpb->num_raid_devs == 0) {
6368 struct dl *d;
6369
6370 for (d = super->disks; d; d = d->next)
6371 if (d->index > -2)
6372 mark_spare(d);
6373 }
6374
6375 super->updates_pending++;
6376
6377 return 0;
6378 }
6379
6380 static int update_subarray_imsm(struct supertype *st, char *subarray,
6381 char *update, struct mddev_ident *ident)
6382 {
6383 /* update the subarray currently referenced by ->current_vol */
6384 struct intel_super *super = st->sb;
6385 struct imsm_super *mpb = super->anchor;
6386
6387 if (strcmp(update, "name") == 0) {
6388 char *name = ident->name;
6389 char *ep;
6390 int vol;
6391
6392 if (is_subarray_active(subarray, st->devname)) {
6393 pr_err("Unable to update name of active subarray\n");
6394 return 2;
6395 }
6396
6397 if (!check_name(super, name, 0))
6398 return 2;
6399
6400 vol = strtoul(subarray, &ep, 10);
6401 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6402 return 2;
6403
6404 if (st->update_tail) {
6405 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
6406
6407 u->type = update_rename_array;
6408 u->dev_idx = vol;
6409 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6410 append_metadata_update(st, u, sizeof(*u));
6411 } else {
6412 struct imsm_dev *dev;
6413 int i;
6414
6415 dev = get_imsm_dev(super, vol);
6416 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6417 for (i = 0; i < mpb->num_raid_devs; i++) {
6418 dev = get_imsm_dev(super, i);
6419 handle_missing(super, dev);
6420 }
6421 super->updates_pending++;
6422 }
6423 } else
6424 return 2;
6425
6426 return 0;
6427 }
6428 #endif /* MDASSEMBLE */
6429
6430 static int is_gen_migration(struct imsm_dev *dev)
6431 {
6432 if (dev == NULL)
6433 return 0;
6434
6435 if (!dev->vol.migr_state)
6436 return 0;
6437
6438 if (migr_type(dev) == MIGR_GEN_MIGR)
6439 return 1;
6440
6441 return 0;
6442 }
6443
6444 static int is_rebuilding(struct imsm_dev *dev)
6445 {
6446 struct imsm_map *migr_map;
6447
6448 if (!dev->vol.migr_state)
6449 return 0;
6450
6451 if (migr_type(dev) != MIGR_REBUILD)
6452 return 0;
6453
6454 migr_map = get_imsm_map(dev, MAP_1);
6455
6456 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6457 return 1;
6458 else
6459 return 0;
6460 }
6461
6462 #ifndef MDASSEMBLE
6463 static int is_initializing(struct imsm_dev *dev)
6464 {
6465 struct imsm_map *migr_map;
6466
6467 if (!dev->vol.migr_state)
6468 return 0;
6469
6470 if (migr_type(dev) != MIGR_INIT)
6471 return 0;
6472
6473 migr_map = get_imsm_map(dev, MAP_1);
6474
6475 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6476 return 1;
6477
6478 return 0;
6479 }
6480 #endif
6481
6482 static void update_recovery_start(struct intel_super *super,
6483 struct imsm_dev *dev,
6484 struct mdinfo *array)
6485 {
6486 struct mdinfo *rebuild = NULL;
6487 struct mdinfo *d;
6488 __u32 units;
6489
6490 if (!is_rebuilding(dev))
6491 return;
6492
6493 /* Find the rebuild target, but punt on the dual rebuild case */
6494 for (d = array->devs; d; d = d->next)
6495 if (d->recovery_start == 0) {
6496 if (rebuild)
6497 return;
6498 rebuild = d;
6499 }
6500
6501 if (!rebuild) {
6502 /* (?) none of the disks are marked with
6503 * IMSM_ORD_REBUILD, so assume they are missing and the
6504 * disk_ord_tbl was not correctly updated
6505 */
6506 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
6507 return;
6508 }
6509
6510 units = __le32_to_cpu(dev->vol.curr_migr_unit);
6511 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
6512 }
6513
6514 #ifndef MDASSEMBLE
6515 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
6516 #endif
6517
6518 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
6519 {
6520 /* Given a container loaded by load_super_imsm_all,
6521 * extract information about all the arrays into
6522 * an mdinfo tree.
6523 * If 'subarray' is given, just extract info about that array.
6524 *
6525 * For each imsm_dev create an mdinfo, fill it in,
6526 * then look for matching devices in super->disks
6527 * and create appropriate device mdinfo.
6528 */
6529 struct intel_super *super = st->sb;
6530 struct imsm_super *mpb = super->anchor;
6531 struct mdinfo *rest = NULL;
6532 unsigned int i;
6533 int sb_errors = 0;
6534 struct dl *d;
6535 int spare_disks = 0;
6536
6537 /* do not assemble arrays when not all attributes are supported */
6538 if (imsm_check_attributes(mpb->attributes) == 0) {
6539 sb_errors = 1;
6540 pr_err("Unsupported attributes in IMSM metadata."
6541 "Arrays activation is blocked.\n");
6542 }
6543
6544 /* check for bad blocks */
6545 if (imsm_bbm_log_size(super->anchor)) {
6546 pr_err("BBM log found in IMSM metadata."
6547 "Arrays activation is blocked.\n");
6548 sb_errors = 1;
6549 }
6550
6551
6552 /* count spare devices, not used in maps
6553 */
6554 for (d = super->disks; d; d = d->next)
6555 if (d->index == -1)
6556 spare_disks++;
6557
6558 for (i = 0; i < mpb->num_raid_devs; i++) {
6559 struct imsm_dev *dev;
6560 struct imsm_map *map;
6561 struct imsm_map *map2;
6562 struct mdinfo *this;
6563 int slot;
6564 #ifndef MDASSEMBLE
6565 int chunk;
6566 #endif
6567 char *ep;
6568
6569 if (subarray &&
6570 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6571 continue;
6572
6573 dev = get_imsm_dev(super, i);
6574 map = get_imsm_map(dev, MAP_0);
6575 map2 = get_imsm_map(dev, MAP_1);
6576
6577 /* do not publish arrays that are in the middle of an
6578 * unsupported migration
6579 */
6580 if (dev->vol.migr_state &&
6581 (migr_type(dev) == MIGR_STATE_CHANGE)) {
6582 pr_err("cannot assemble volume '%.16s':"
6583 " unsupported migration in progress\n",
6584 dev->volume);
6585 continue;
6586 }
6587 /* do not publish arrays that are not support by controller's
6588 * OROM/EFI
6589 */
6590
6591 this = xmalloc(sizeof(*this));
6592
6593 super->current_vol = i;
6594 getinfo_super_imsm_volume(st, this, NULL);
6595 this->next = rest;
6596 #ifndef MDASSEMBLE
6597 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
6598 /* mdadm does not support all metadata features- set the bit in all arrays state */
6599 if (!validate_geometry_imsm_orom(super,
6600 get_imsm_raid_level(map), /* RAID level */
6601 imsm_level_to_layout(get_imsm_raid_level(map)),
6602 map->num_members, /* raid disks */
6603 &chunk, join_u32(dev->size_low, dev->size_high),
6604 1 /* verbose */)) {
6605 pr_err("IMSM RAID geometry validation"
6606 " failed. Array %s activation is blocked.\n",
6607 dev->volume);
6608 this->array.state |=
6609 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6610 (1<<MD_SB_BLOCK_VOLUME);
6611 }
6612 #endif
6613
6614 /* if array has bad blocks, set suitable bit in all arrays state */
6615 if (sb_errors)
6616 this->array.state |=
6617 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6618 (1<<MD_SB_BLOCK_VOLUME);
6619
6620 for (slot = 0 ; slot < map->num_members; slot++) {
6621 unsigned long long recovery_start;
6622 struct mdinfo *info_d;
6623 struct dl *d;
6624 int idx;
6625 int skip;
6626 __u32 ord;
6627
6628 skip = 0;
6629 idx = get_imsm_disk_idx(dev, slot, MAP_0);
6630 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
6631 for (d = super->disks; d ; d = d->next)
6632 if (d->index == idx)
6633 break;
6634
6635 recovery_start = MaxSector;
6636 if (d == NULL)
6637 skip = 1;
6638 if (d && is_failed(&d->disk))
6639 skip = 1;
6640 if (ord & IMSM_ORD_REBUILD)
6641 recovery_start = 0;
6642
6643 /*
6644 * if we skip some disks the array will be assmebled degraded;
6645 * reset resync start to avoid a dirty-degraded
6646 * situation when performing the intial sync
6647 *
6648 * FIXME handle dirty degraded
6649 */
6650 if ((skip || recovery_start == 0) && !dev->vol.dirty)
6651 this->resync_start = MaxSector;
6652 if (skip)
6653 continue;
6654
6655 info_d = xcalloc(1, sizeof(*info_d));
6656 info_d->next = this->devs;
6657 this->devs = info_d;
6658
6659 info_d->disk.number = d->index;
6660 info_d->disk.major = d->major;
6661 info_d->disk.minor = d->minor;
6662 info_d->disk.raid_disk = slot;
6663 info_d->recovery_start = recovery_start;
6664 if (map2) {
6665 if (slot < map2->num_members)
6666 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6667 else
6668 this->array.spare_disks++;
6669 } else {
6670 if (slot < map->num_members)
6671 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6672 else
6673 this->array.spare_disks++;
6674 }
6675 if (info_d->recovery_start == MaxSector)
6676 this->array.working_disks++;
6677
6678 info_d->events = __le32_to_cpu(mpb->generation_num);
6679 info_d->data_offset = pba_of_lba0(map);
6680 info_d->component_size = blocks_per_member(map);
6681 }
6682 /* now that the disk list is up-to-date fixup recovery_start */
6683 update_recovery_start(super, dev, this);
6684 this->array.spare_disks += spare_disks;
6685
6686 #ifndef MDASSEMBLE
6687 /* check for reshape */
6688 if (this->reshape_active == 1)
6689 recover_backup_imsm(st, this);
6690 #endif
6691 rest = this;
6692 }
6693
6694 return rest;
6695 }
6696
6697
6698 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6699 int failed, int look_in_map)
6700 {
6701 struct imsm_map *map;
6702
6703 map = get_imsm_map(dev, look_in_map);
6704
6705 if (!failed)
6706 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6707 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6708
6709 switch (get_imsm_raid_level(map)) {
6710 case 0:
6711 return IMSM_T_STATE_FAILED;
6712 break;
6713 case 1:
6714 if (failed < map->num_members)
6715 return IMSM_T_STATE_DEGRADED;
6716 else
6717 return IMSM_T_STATE_FAILED;
6718 break;
6719 case 10:
6720 {
6721 /**
6722 * check to see if any mirrors have failed, otherwise we
6723 * are degraded. Even numbered slots are mirrored on
6724 * slot+1
6725 */
6726 int i;
6727 /* gcc -Os complains that this is unused */
6728 int insync = insync;
6729
6730 for (i = 0; i < map->num_members; i++) {
6731 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6732 int idx = ord_to_idx(ord);
6733 struct imsm_disk *disk;
6734
6735 /* reset the potential in-sync count on even-numbered
6736 * slots. num_copies is always 2 for imsm raid10
6737 */
6738 if ((i & 1) == 0)
6739 insync = 2;
6740
6741 disk = get_imsm_disk(super, idx);
6742 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6743 insync--;
6744
6745 /* no in-sync disks left in this mirror the
6746 * array has failed
6747 */
6748 if (insync == 0)
6749 return IMSM_T_STATE_FAILED;
6750 }
6751
6752 return IMSM_T_STATE_DEGRADED;
6753 }
6754 case 5:
6755 if (failed < 2)
6756 return IMSM_T_STATE_DEGRADED;
6757 else
6758 return IMSM_T_STATE_FAILED;
6759 break;
6760 default:
6761 break;
6762 }
6763
6764 return map->map_state;
6765 }
6766
6767 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6768 int look_in_map)
6769 {
6770 int i;
6771 int failed = 0;
6772 struct imsm_disk *disk;
6773 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6774 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6775 struct imsm_map *map_for_loop;
6776 __u32 ord;
6777 int idx;
6778 int idx_1;
6779
6780 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6781 * disks that are being rebuilt. New failures are recorded to
6782 * map[0]. So we look through all the disks we started with and
6783 * see if any failures are still present, or if any new ones
6784 * have arrived
6785 */
6786 map_for_loop = map;
6787 if (prev && (map->num_members < prev->num_members))
6788 map_for_loop = prev;
6789
6790 for (i = 0; i < map_for_loop->num_members; i++) {
6791 idx_1 = -255;
6792 /* when MAP_X is passed both maps failures are counted
6793 */
6794 if (prev &&
6795 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6796 (i < prev->num_members)) {
6797 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6798 idx_1 = ord_to_idx(ord);
6799
6800 disk = get_imsm_disk(super, idx_1);
6801 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6802 failed++;
6803 }
6804 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6805 (i < map->num_members)) {
6806 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6807 idx = ord_to_idx(ord);
6808
6809 if (idx != idx_1) {
6810 disk = get_imsm_disk(super, idx);
6811 if (!disk || is_failed(disk) ||
6812 ord & IMSM_ORD_REBUILD)
6813 failed++;
6814 }
6815 }
6816 }
6817
6818 return failed;
6819 }
6820
6821 #ifndef MDASSEMBLE
6822 static int imsm_open_new(struct supertype *c, struct active_array *a,
6823 char *inst)
6824 {
6825 struct intel_super *super = c->sb;
6826 struct imsm_super *mpb = super->anchor;
6827
6828 if (atoi(inst) >= mpb->num_raid_devs) {
6829 fprintf(stderr, "%s: subarry index %d, out of range\n",
6830 __func__, atoi(inst));
6831 return -ENODEV;
6832 }
6833
6834 dprintf("imsm: open_new %s\n", inst);
6835 a->info.container_member = atoi(inst);
6836 return 0;
6837 }
6838
6839 static int is_resyncing(struct imsm_dev *dev)
6840 {
6841 struct imsm_map *migr_map;
6842
6843 if (!dev->vol.migr_state)
6844 return 0;
6845
6846 if (migr_type(dev) == MIGR_INIT ||
6847 migr_type(dev) == MIGR_REPAIR)
6848 return 1;
6849
6850 if (migr_type(dev) == MIGR_GEN_MIGR)
6851 return 0;
6852
6853 migr_map = get_imsm_map(dev, MAP_1);
6854
6855 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6856 (dev->vol.migr_type != MIGR_GEN_MIGR))
6857 return 1;
6858 else
6859 return 0;
6860 }
6861
6862 /* return true if we recorded new information */
6863 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6864 {
6865 __u32 ord;
6866 int slot;
6867 struct imsm_map *map;
6868 char buf[MAX_RAID_SERIAL_LEN+3];
6869 unsigned int len, shift = 0;
6870
6871 /* new failures are always set in map[0] */
6872 map = get_imsm_map(dev, MAP_0);
6873
6874 slot = get_imsm_disk_slot(map, idx);
6875 if (slot < 0)
6876 return 0;
6877
6878 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6879 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6880 return 0;
6881
6882 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6883 buf[MAX_RAID_SERIAL_LEN] = '\000';
6884 strcat(buf, ":0");
6885 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6886 shift = len - MAX_RAID_SERIAL_LEN + 1;
6887 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6888
6889 disk->status |= FAILED_DISK;
6890 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6891 /* mark failures in second map if second map exists and this disk
6892 * in this slot.
6893 * This is valid for migration, initialization and rebuild
6894 */
6895 if (dev->vol.migr_state) {
6896 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
6897 int slot2 = get_imsm_disk_slot(map2, idx);
6898
6899 if ((slot2 < map2->num_members) &&
6900 (slot2 >= 0))
6901 set_imsm_ord_tbl_ent(map2, slot2,
6902 idx | IMSM_ORD_REBUILD);
6903 }
6904 if (map->failed_disk_num == 0xff)
6905 map->failed_disk_num = slot;
6906 return 1;
6907 }
6908
6909 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6910 {
6911 mark_failure(dev, disk, idx);
6912
6913 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6914 return;
6915
6916 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6917 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6918 }
6919
6920 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6921 {
6922 struct dl *dl;
6923
6924 if (!super->missing)
6925 return;
6926
6927 dprintf("imsm: mark missing\n");
6928 /* end process for initialization and rebuild only
6929 */
6930 if (is_gen_migration(dev) == 0) {
6931 __u8 map_state;
6932 int failed;
6933
6934 failed = imsm_count_failed(super, dev, MAP_0);
6935 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6936
6937 end_migration(dev, super, map_state);
6938 }
6939 for (dl = super->missing; dl; dl = dl->next)
6940 mark_missing(dev, &dl->disk, dl->index);
6941 super->updates_pending++;
6942 }
6943
6944 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
6945 long long new_size)
6946 {
6947 int used_disks = imsm_num_data_members(dev, MAP_0);
6948 unsigned long long array_blocks;
6949 struct imsm_map *map;
6950
6951 if (used_disks == 0) {
6952 /* when problems occures
6953 * return current array_blocks value
6954 */
6955 array_blocks = __le32_to_cpu(dev->size_high);
6956 array_blocks = array_blocks << 32;
6957 array_blocks += __le32_to_cpu(dev->size_low);
6958
6959 return array_blocks;
6960 }
6961
6962 /* set array size in metadata
6963 */
6964 if (new_size <= 0) {
6965 /* OLCE size change is caused by added disks
6966 */
6967 map = get_imsm_map(dev, MAP_0);
6968 array_blocks = blocks_per_member(map) * used_disks;
6969 } else {
6970 /* Online Volume Size Change
6971 * Using available free space
6972 */
6973 array_blocks = new_size;
6974 }
6975
6976 /* round array size down to closest MB
6977 */
6978 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6979 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6980 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6981
6982 return array_blocks;
6983 }
6984
6985 static void imsm_set_disk(struct active_array *a, int n, int state);
6986
6987 static void imsm_progress_container_reshape(struct intel_super *super)
6988 {
6989 /* if no device has a migr_state, but some device has a
6990 * different number of members than the previous device, start
6991 * changing the number of devices in this device to match
6992 * previous.
6993 */
6994 struct imsm_super *mpb = super->anchor;
6995 int prev_disks = -1;
6996 int i;
6997 int copy_map_size;
6998
6999 for (i = 0; i < mpb->num_raid_devs; i++) {
7000 struct imsm_dev *dev = get_imsm_dev(super, i);
7001 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7002 struct imsm_map *map2;
7003 int prev_num_members;
7004
7005 if (dev->vol.migr_state)
7006 return;
7007
7008 if (prev_disks == -1)
7009 prev_disks = map->num_members;
7010 if (prev_disks == map->num_members)
7011 continue;
7012
7013 /* OK, this array needs to enter reshape mode.
7014 * i.e it needs a migr_state
7015 */
7016
7017 copy_map_size = sizeof_imsm_map(map);
7018 prev_num_members = map->num_members;
7019 map->num_members = prev_disks;
7020 dev->vol.migr_state = 1;
7021 dev->vol.curr_migr_unit = 0;
7022 set_migr_type(dev, MIGR_GEN_MIGR);
7023 for (i = prev_num_members;
7024 i < map->num_members; i++)
7025 set_imsm_ord_tbl_ent(map, i, i);
7026 map2 = get_imsm_map(dev, MAP_1);
7027 /* Copy the current map */
7028 memcpy(map2, map, copy_map_size);
7029 map2->num_members = prev_num_members;
7030
7031 imsm_set_array_size(dev, -1);
7032 super->clean_migration_record_by_mdmon = 1;
7033 super->updates_pending++;
7034 }
7035 }
7036
7037 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
7038 * states are handled in imsm_set_disk() with one exception, when a
7039 * resync is stopped due to a new failure this routine will set the
7040 * 'degraded' state for the array.
7041 */
7042 static int imsm_set_array_state(struct active_array *a, int consistent)
7043 {
7044 int inst = a->info.container_member;
7045 struct intel_super *super = a->container->sb;
7046 struct imsm_dev *dev = get_imsm_dev(super, inst);
7047 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7048 int failed = imsm_count_failed(super, dev, MAP_0);
7049 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7050 __u32 blocks_per_unit;
7051
7052 if (dev->vol.migr_state &&
7053 dev->vol.migr_type == MIGR_GEN_MIGR) {
7054 /* array state change is blocked due to reshape action
7055 * We might need to
7056 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7057 * - finish the reshape (if last_checkpoint is big and action != reshape)
7058 * - update curr_migr_unit
7059 */
7060 if (a->curr_action == reshape) {
7061 /* still reshaping, maybe update curr_migr_unit */
7062 goto mark_checkpoint;
7063 } else {
7064 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7065 /* for some reason we aborted the reshape.
7066 *
7067 * disable automatic metadata rollback
7068 * user action is required to recover process
7069 */
7070 if (0) {
7071 struct imsm_map *map2 =
7072 get_imsm_map(dev, MAP_1);
7073 dev->vol.migr_state = 0;
7074 set_migr_type(dev, 0);
7075 dev->vol.curr_migr_unit = 0;
7076 memcpy(map, map2,
7077 sizeof_imsm_map(map2));
7078 super->updates_pending++;
7079 }
7080 }
7081 if (a->last_checkpoint >= a->info.component_size) {
7082 unsigned long long array_blocks;
7083 int used_disks;
7084 struct mdinfo *mdi;
7085
7086 used_disks = imsm_num_data_members(dev, MAP_0);
7087 if (used_disks > 0) {
7088 array_blocks =
7089 blocks_per_member(map) *
7090 used_disks;
7091 /* round array size down to closest MB
7092 */
7093 array_blocks = (array_blocks
7094 >> SECT_PER_MB_SHIFT)
7095 << SECT_PER_MB_SHIFT;
7096 a->info.custom_array_size = array_blocks;
7097 /* encourage manager to update array
7098 * size
7099 */
7100
7101 a->check_reshape = 1;
7102 }
7103 /* finalize online capacity expansion/reshape */
7104 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7105 imsm_set_disk(a,
7106 mdi->disk.raid_disk,
7107 mdi->curr_state);
7108
7109 imsm_progress_container_reshape(super);
7110 }
7111 }
7112 }
7113
7114 /* before we activate this array handle any missing disks */
7115 if (consistent == 2)
7116 handle_missing(super, dev);
7117
7118 if (consistent == 2 &&
7119 (!is_resync_complete(&a->info) ||
7120 map_state != IMSM_T_STATE_NORMAL ||
7121 dev->vol.migr_state))
7122 consistent = 0;
7123
7124 if (is_resync_complete(&a->info)) {
7125 /* complete intialization / resync,
7126 * recovery and interrupted recovery is completed in
7127 * ->set_disk
7128 */
7129 if (is_resyncing(dev)) {
7130 dprintf("imsm: mark resync done\n");
7131 end_migration(dev, super, map_state);
7132 super->updates_pending++;
7133 a->last_checkpoint = 0;
7134 }
7135 } else if ((!is_resyncing(dev) && !failed) &&
7136 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
7137 /* mark the start of the init process if nothing is failed */
7138 dprintf("imsm: mark resync start\n");
7139 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
7140 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
7141 else
7142 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
7143 super->updates_pending++;
7144 }
7145
7146 mark_checkpoint:
7147 /* skip checkpointing for general migration,
7148 * it is controlled in mdadm
7149 */
7150 if (is_gen_migration(dev))
7151 goto skip_mark_checkpoint;
7152
7153 /* check if we can update curr_migr_unit from resync_start, recovery_start */
7154 blocks_per_unit = blocks_per_migr_unit(super, dev);
7155 if (blocks_per_unit) {
7156 __u32 units32;
7157 __u64 units;
7158
7159 units = a->last_checkpoint / blocks_per_unit;
7160 units32 = units;
7161
7162 /* check that we did not overflow 32-bits, and that
7163 * curr_migr_unit needs updating
7164 */
7165 if (units32 == units &&
7166 units32 != 0 &&
7167 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7168 dprintf("imsm: mark checkpoint (%u)\n", units32);
7169 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7170 super->updates_pending++;
7171 }
7172 }
7173
7174 skip_mark_checkpoint:
7175 /* mark dirty / clean */
7176 if (dev->vol.dirty != !consistent) {
7177 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
7178 if (consistent)
7179 dev->vol.dirty = 0;
7180 else
7181 dev->vol.dirty = 1;
7182 super->updates_pending++;
7183 }
7184
7185 return consistent;
7186 }
7187
7188 static void imsm_set_disk(struct active_array *a, int n, int state)
7189 {
7190 int inst = a->info.container_member;
7191 struct intel_super *super = a->container->sb;
7192 struct imsm_dev *dev = get_imsm_dev(super, inst);
7193 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7194 struct imsm_disk *disk;
7195 struct mdinfo *mdi;
7196 int recovery_not_finished = 0;
7197 int failed;
7198 __u32 ord;
7199 __u8 map_state;
7200
7201 if (n > map->num_members)
7202 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
7203 n, map->num_members - 1);
7204
7205 if (n < 0)
7206 return;
7207
7208 dprintf("imsm: set_disk %d:%x\n", n, state);
7209
7210 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
7211 disk = get_imsm_disk(super, ord_to_idx(ord));
7212
7213 /* check for new failures */
7214 if (state & DS_FAULTY) {
7215 if (mark_failure(dev, disk, ord_to_idx(ord)))
7216 super->updates_pending++;
7217 }
7218
7219 /* check if in_sync */
7220 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
7221 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7222
7223 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
7224 super->updates_pending++;
7225 }
7226
7227 failed = imsm_count_failed(super, dev, MAP_0);
7228 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7229
7230 /* check if recovery complete, newly degraded, or failed */
7231 dprintf("imsm: Detected transition to state ");
7232 switch (map_state) {
7233 case IMSM_T_STATE_NORMAL: /* transition to normal state */
7234 dprintf("normal: ");
7235 if (is_rebuilding(dev)) {
7236 dprintf("while rebuilding");
7237 /* check if recovery is really finished */
7238 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
7239 if (mdi->recovery_start != MaxSector) {
7240 recovery_not_finished = 1;
7241 break;
7242 }
7243 if (recovery_not_finished) {
7244 dprintf("\nimsm: Rebuild has not finished yet, "
7245 "state not changed");
7246 if (a->last_checkpoint < mdi->recovery_start) {
7247 a->last_checkpoint = mdi->recovery_start;
7248 super->updates_pending++;
7249 }
7250 break;
7251 }
7252 end_migration(dev, super, map_state);
7253 map = get_imsm_map(dev, MAP_0);
7254 map->failed_disk_num = ~0;
7255 super->updates_pending++;
7256 a->last_checkpoint = 0;
7257 break;
7258 }
7259 if (is_gen_migration(dev)) {
7260 dprintf("while general migration");
7261 if (a->last_checkpoint >= a->info.component_size)
7262 end_migration(dev, super, map_state);
7263 else
7264 map->map_state = map_state;
7265 map = get_imsm_map(dev, MAP_0);
7266 map->failed_disk_num = ~0;
7267 super->updates_pending++;
7268 break;
7269 }
7270 break;
7271 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
7272 dprintf("degraded: ");
7273 if ((map->map_state != map_state) &&
7274 !dev->vol.migr_state) {
7275 dprintf("mark degraded");
7276 map->map_state = map_state;
7277 super->updates_pending++;
7278 a->last_checkpoint = 0;
7279 break;
7280 }
7281 if (is_rebuilding(dev)) {
7282 dprintf("while rebuilding.");
7283 if (map->map_state != map_state) {
7284 dprintf(" Map state change");
7285 end_migration(dev, super, map_state);
7286 super->updates_pending++;
7287 }
7288 break;
7289 }
7290 if (is_gen_migration(dev)) {
7291 dprintf("while general migration");
7292 if (a->last_checkpoint >= a->info.component_size)
7293 end_migration(dev, super, map_state);
7294 else {
7295 map->map_state = map_state;
7296 manage_second_map(super, dev);
7297 }
7298 super->updates_pending++;
7299 break;
7300 }
7301 if (is_initializing(dev)) {
7302 dprintf("while initialization.");
7303 map->map_state = map_state;
7304 super->updates_pending++;
7305 break;
7306 }
7307 break;
7308 case IMSM_T_STATE_FAILED: /* transition to failed state */
7309 dprintf("failed: ");
7310 if (is_gen_migration(dev)) {
7311 dprintf("while general migration");
7312 map->map_state = map_state;
7313 super->updates_pending++;
7314 break;
7315 }
7316 if (map->map_state != map_state) {
7317 dprintf("mark failed");
7318 end_migration(dev, super, map_state);
7319 super->updates_pending++;
7320 a->last_checkpoint = 0;
7321 break;
7322 }
7323 break;
7324 default:
7325 dprintf("state %i\n", map_state);
7326 }
7327 dprintf("\n");
7328
7329 }
7330
7331 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
7332 {
7333 void *buf = mpb;
7334 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7335 unsigned long long dsize;
7336 unsigned long long sectors;
7337
7338 get_dev_size(fd, NULL, &dsize);
7339
7340 if (mpb_size > 512) {
7341 /* -1 to account for anchor */
7342 sectors = mpb_sectors(mpb) - 1;
7343
7344 /* write the extended mpb to the sectors preceeding the anchor */
7345 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
7346 return 1;
7347
7348 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
7349 != 512 * sectors)
7350 return 1;
7351 }
7352
7353 /* first block is stored on second to last sector of the disk */
7354 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
7355 return 1;
7356
7357 if (write(fd, buf, 512) != 512)
7358 return 1;
7359
7360 return 0;
7361 }
7362
7363 static void imsm_sync_metadata(struct supertype *container)
7364 {
7365 struct intel_super *super = container->sb;
7366
7367 dprintf("sync metadata: %d\n", super->updates_pending);
7368 if (!super->updates_pending)
7369 return;
7370
7371 write_super_imsm(container, 0);
7372
7373 super->updates_pending = 0;
7374 }
7375
7376 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7377 {
7378 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7379 int i = get_imsm_disk_idx(dev, idx, MAP_X);
7380 struct dl *dl;
7381
7382 for (dl = super->disks; dl; dl = dl->next)
7383 if (dl->index == i)
7384 break;
7385
7386 if (dl && is_failed(&dl->disk))
7387 dl = NULL;
7388
7389 if (dl)
7390 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
7391
7392 return dl;
7393 }
7394
7395 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
7396 struct active_array *a, int activate_new,
7397 struct mdinfo *additional_test_list)
7398 {
7399 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7400 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
7401 struct imsm_super *mpb = super->anchor;
7402 struct imsm_map *map;
7403 unsigned long long pos;
7404 struct mdinfo *d;
7405 struct extent *ex;
7406 int i, j;
7407 int found;
7408 __u32 array_start = 0;
7409 __u32 array_end = 0;
7410 struct dl *dl;
7411 struct mdinfo *test_list;
7412
7413 for (dl = super->disks; dl; dl = dl->next) {
7414 /* If in this array, skip */
7415 for (d = a->info.devs ; d ; d = d->next)
7416 if (d->state_fd >= 0 &&
7417 d->disk.major == dl->major &&
7418 d->disk.minor == dl->minor) {
7419 dprintf("%x:%x already in array\n",
7420 dl->major, dl->minor);
7421 break;
7422 }
7423 if (d)
7424 continue;
7425 test_list = additional_test_list;
7426 while (test_list) {
7427 if (test_list->disk.major == dl->major &&
7428 test_list->disk.minor == dl->minor) {
7429 dprintf("%x:%x already in additional test list\n",
7430 dl->major, dl->minor);
7431 break;
7432 }
7433 test_list = test_list->next;
7434 }
7435 if (test_list)
7436 continue;
7437
7438 /* skip in use or failed drives */
7439 if (is_failed(&dl->disk) || idx == dl->index ||
7440 dl->index == -2) {
7441 dprintf("%x:%x status (failed: %d index: %d)\n",
7442 dl->major, dl->minor, is_failed(&dl->disk), idx);
7443 continue;
7444 }
7445
7446 /* skip pure spares when we are looking for partially
7447 * assimilated drives
7448 */
7449 if (dl->index == -1 && !activate_new)
7450 continue;
7451
7452 /* Does this unused device have the requisite free space?
7453 * It needs to be able to cover all member volumes
7454 */
7455 ex = get_extents(super, dl);
7456 if (!ex) {
7457 dprintf("cannot get extents\n");
7458 continue;
7459 }
7460 for (i = 0; i < mpb->num_raid_devs; i++) {
7461 dev = get_imsm_dev(super, i);
7462 map = get_imsm_map(dev, MAP_0);
7463
7464 /* check if this disk is already a member of
7465 * this array
7466 */
7467 if (get_imsm_disk_slot(map, dl->index) >= 0)
7468 continue;
7469
7470 found = 0;
7471 j = 0;
7472 pos = 0;
7473 array_start = pba_of_lba0(map);
7474 array_end = array_start +
7475 blocks_per_member(map) - 1;
7476
7477 do {
7478 /* check that we can start at pba_of_lba0 with
7479 * blocks_per_member of space
7480 */
7481 if (array_start >= pos && array_end < ex[j].start) {
7482 found = 1;
7483 break;
7484 }
7485 pos = ex[j].start + ex[j].size;
7486 j++;
7487 } while (ex[j-1].size);
7488
7489 if (!found)
7490 break;
7491 }
7492
7493 free(ex);
7494 if (i < mpb->num_raid_devs) {
7495 dprintf("%x:%x does not have %u to %u available\n",
7496 dl->major, dl->minor, array_start, array_end);
7497 /* No room */
7498 continue;
7499 }
7500 return dl;
7501 }
7502
7503 return dl;
7504 }
7505
7506
7507 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7508 {
7509 struct imsm_dev *dev2;
7510 struct imsm_map *map;
7511 struct dl *idisk;
7512 int slot;
7513 int idx;
7514 __u8 state;
7515
7516 dev2 = get_imsm_dev(cont->sb, dev_idx);
7517 if (dev2) {
7518 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
7519 if (state == IMSM_T_STATE_FAILED) {
7520 map = get_imsm_map(dev2, MAP_0);
7521 if (!map)
7522 return 1;
7523 for (slot = 0; slot < map->num_members; slot++) {
7524 /*
7525 * Check if failed disks are deleted from intel
7526 * disk list or are marked to be deleted
7527 */
7528 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
7529 idisk = get_imsm_dl_disk(cont->sb, idx);
7530 /*
7531 * Do not rebuild the array if failed disks
7532 * from failed sub-array are not removed from
7533 * container.
7534 */
7535 if (idisk &&
7536 is_failed(&idisk->disk) &&
7537 (idisk->action != DISK_REMOVE))
7538 return 0;
7539 }
7540 }
7541 }
7542 return 1;
7543 }
7544
7545 static struct mdinfo *imsm_activate_spare(struct active_array *a,
7546 struct metadata_update **updates)
7547 {
7548 /**
7549 * Find a device with unused free space and use it to replace a
7550 * failed/vacant region in an array. We replace failed regions one a
7551 * array at a time. The result is that a new spare disk will be added
7552 * to the first failed array and after the monitor has finished
7553 * propagating failures the remainder will be consumed.
7554 *
7555 * FIXME add a capability for mdmon to request spares from another
7556 * container.
7557 */
7558
7559 struct intel_super *super = a->container->sb;
7560 int inst = a->info.container_member;
7561 struct imsm_dev *dev = get_imsm_dev(super, inst);
7562 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7563 int failed = a->info.array.raid_disks;
7564 struct mdinfo *rv = NULL;
7565 struct mdinfo *d;
7566 struct mdinfo *di;
7567 struct metadata_update *mu;
7568 struct dl *dl;
7569 struct imsm_update_activate_spare *u;
7570 int num_spares = 0;
7571 int i;
7572 int allowed;
7573
7574 for (d = a->info.devs ; d ; d = d->next) {
7575 if ((d->curr_state & DS_FAULTY) &&
7576 d->state_fd >= 0)
7577 /* wait for Removal to happen */
7578 return NULL;
7579 if (d->state_fd >= 0)
7580 failed--;
7581 }
7582
7583 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7584 inst, failed, a->info.array.raid_disks, a->info.array.level);
7585
7586 if (imsm_reshape_blocks_arrays_changes(super))
7587 return NULL;
7588
7589 /* Cannot activate another spare if rebuild is in progress already
7590 */
7591 if (is_rebuilding(dev)) {
7592 dprintf("imsm: No spare activation allowed. "
7593 "Rebuild in progress already.\n");
7594 return NULL;
7595 }
7596
7597 if (a->info.array.level == 4)
7598 /* No repair for takeovered array
7599 * imsm doesn't support raid4
7600 */
7601 return NULL;
7602
7603 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7604 IMSM_T_STATE_DEGRADED)
7605 return NULL;
7606
7607 /*
7608 * If there are any failed disks check state of the other volume.
7609 * Block rebuild if the another one is failed until failed disks
7610 * are removed from container.
7611 */
7612 if (failed) {
7613 dprintf("found failed disks in %.*s, check if there another"
7614 "failed sub-array.\n",
7615 MAX_RAID_SERIAL_LEN, dev->volume);
7616 /* check if states of the other volumes allow for rebuild */
7617 for (i = 0; i < super->anchor->num_raid_devs; i++) {
7618 if (i != inst) {
7619 allowed = imsm_rebuild_allowed(a->container,
7620 i, failed);
7621 if (!allowed)
7622 return NULL;
7623 }
7624 }
7625 }
7626
7627 /* For each slot, if it is not working, find a spare */
7628 for (i = 0; i < a->info.array.raid_disks; i++) {
7629 for (d = a->info.devs ; d ; d = d->next)
7630 if (d->disk.raid_disk == i)
7631 break;
7632 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7633 if (d && (d->state_fd >= 0))
7634 continue;
7635
7636 /*
7637 * OK, this device needs recovery. Try to re-add the
7638 * previous occupant of this slot, if this fails see if
7639 * we can continue the assimilation of a spare that was
7640 * partially assimilated, finally try to activate a new
7641 * spare.
7642 */
7643 dl = imsm_readd(super, i, a);
7644 if (!dl)
7645 dl = imsm_add_spare(super, i, a, 0, rv);
7646 if (!dl)
7647 dl = imsm_add_spare(super, i, a, 1, rv);
7648 if (!dl)
7649 continue;
7650
7651 /* found a usable disk with enough space */
7652 di = xcalloc(1, sizeof(*di));
7653
7654 /* dl->index will be -1 in the case we are activating a
7655 * pristine spare. imsm_process_update() will create a
7656 * new index in this case. Once a disk is found to be
7657 * failed in all member arrays it is kicked from the
7658 * metadata
7659 */
7660 di->disk.number = dl->index;
7661
7662 /* (ab)use di->devs to store a pointer to the device
7663 * we chose
7664 */
7665 di->devs = (struct mdinfo *) dl;
7666
7667 di->disk.raid_disk = i;
7668 di->disk.major = dl->major;
7669 di->disk.minor = dl->minor;
7670 di->disk.state = 0;
7671 di->recovery_start = 0;
7672 di->data_offset = pba_of_lba0(map);
7673 di->component_size = a->info.component_size;
7674 di->container_member = inst;
7675 super->random = random32();
7676 di->next = rv;
7677 rv = di;
7678 num_spares++;
7679 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7680 i, di->data_offset);
7681 }
7682
7683 if (!rv)
7684 /* No spares found */
7685 return rv;
7686 /* Now 'rv' has a list of devices to return.
7687 * Create a metadata_update record to update the
7688 * disk_ord_tbl for the array
7689 */
7690 mu = xmalloc(sizeof(*mu));
7691 mu->buf = xcalloc(num_spares,
7692 sizeof(struct imsm_update_activate_spare));
7693 mu->space = NULL;
7694 mu->space_list = NULL;
7695 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7696 mu->next = *updates;
7697 u = (struct imsm_update_activate_spare *) mu->buf;
7698
7699 for (di = rv ; di ; di = di->next) {
7700 u->type = update_activate_spare;
7701 u->dl = (struct dl *) di->devs;
7702 di->devs = NULL;
7703 u->slot = di->disk.raid_disk;
7704 u->array = inst;
7705 u->next = u + 1;
7706 u++;
7707 }
7708 (u-1)->next = NULL;
7709 *updates = mu;
7710
7711 return rv;
7712 }
7713
7714 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7715 {
7716 struct imsm_dev *dev = get_imsm_dev(super, idx);
7717 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7718 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7719 struct disk_info *inf = get_disk_info(u);
7720 struct imsm_disk *disk;
7721 int i;
7722 int j;
7723
7724 for (i = 0; i < map->num_members; i++) {
7725 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7726 for (j = 0; j < new_map->num_members; j++)
7727 if (serialcmp(disk->serial, inf[j].serial) == 0)
7728 return 1;
7729 }
7730
7731 return 0;
7732 }
7733
7734
7735 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7736 {
7737 struct dl *dl = NULL;
7738 for (dl = super->disks; dl; dl = dl->next)
7739 if ((dl->major == major) && (dl->minor == minor))
7740 return dl;
7741 return NULL;
7742 }
7743
7744 static int remove_disk_super(struct intel_super *super, int major, int minor)
7745 {
7746 struct dl *prev = NULL;
7747 struct dl *dl;
7748
7749 prev = NULL;
7750 for (dl = super->disks; dl; dl = dl->next) {
7751 if ((dl->major == major) && (dl->minor == minor)) {
7752 /* remove */
7753 if (prev)
7754 prev->next = dl->next;
7755 else
7756 super->disks = dl->next;
7757 dl->next = NULL;
7758 __free_imsm_disk(dl);
7759 dprintf("%s: removed %x:%x\n",
7760 __func__, major, minor);
7761 break;
7762 }
7763 prev = dl;
7764 }
7765 return 0;
7766 }
7767
7768 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7769
7770 static int add_remove_disk_update(struct intel_super *super)
7771 {
7772 int check_degraded = 0;
7773 struct dl *disk = NULL;
7774 /* add/remove some spares to/from the metadata/contrainer */
7775 while (super->disk_mgmt_list) {
7776 struct dl *disk_cfg;
7777
7778 disk_cfg = super->disk_mgmt_list;
7779 super->disk_mgmt_list = disk_cfg->next;
7780 disk_cfg->next = NULL;
7781
7782 if (disk_cfg->action == DISK_ADD) {
7783 disk_cfg->next = super->disks;
7784 super->disks = disk_cfg;
7785 check_degraded = 1;
7786 dprintf("%s: added %x:%x\n",
7787 __func__, disk_cfg->major,
7788 disk_cfg->minor);
7789 } else if (disk_cfg->action == DISK_REMOVE) {
7790 dprintf("Disk remove action processed: %x.%x\n",
7791 disk_cfg->major, disk_cfg->minor);
7792 disk = get_disk_super(super,
7793 disk_cfg->major,
7794 disk_cfg->minor);
7795 if (disk) {
7796 /* store action status */
7797 disk->action = DISK_REMOVE;
7798 /* remove spare disks only */
7799 if (disk->index == -1) {
7800 remove_disk_super(super,
7801 disk_cfg->major,
7802 disk_cfg->minor);
7803 }
7804 }
7805 /* release allocate disk structure */
7806 __free_imsm_disk(disk_cfg);
7807 }
7808 }
7809 return check_degraded;
7810 }
7811
7812
7813 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7814 struct intel_super *super,
7815 void ***space_list)
7816 {
7817 struct intel_dev *id;
7818 void **tofree = NULL;
7819 int ret_val = 0;
7820
7821 dprintf("apply_reshape_migration_update()\n");
7822 if ((u->subdev < 0) ||
7823 (u->subdev > 1)) {
7824 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7825 return ret_val;
7826 }
7827 if ((space_list == NULL) || (*space_list == NULL)) {
7828 dprintf("imsm: Error: Memory is not allocated\n");
7829 return ret_val;
7830 }
7831
7832 for (id = super->devlist ; id; id = id->next) {
7833 if (id->index == (unsigned)u->subdev) {
7834 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7835 struct imsm_map *map;
7836 struct imsm_dev *new_dev =
7837 (struct imsm_dev *)*space_list;
7838 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7839 int to_state;
7840 struct dl *new_disk;
7841
7842 if (new_dev == NULL)
7843 return ret_val;
7844 *space_list = **space_list;
7845 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
7846 map = get_imsm_map(new_dev, MAP_0);
7847 if (migr_map) {
7848 dprintf("imsm: Error: migration in progress");
7849 return ret_val;
7850 }
7851
7852 to_state = map->map_state;
7853 if ((u->new_level == 5) && (map->raid_level == 0)) {
7854 map->num_members++;
7855 /* this should not happen */
7856 if (u->new_disks[0] < 0) {
7857 map->failed_disk_num =
7858 map->num_members - 1;
7859 to_state = IMSM_T_STATE_DEGRADED;
7860 } else
7861 to_state = IMSM_T_STATE_NORMAL;
7862 }
7863 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
7864 if (u->new_level > -1)
7865 map->raid_level = u->new_level;
7866 migr_map = get_imsm_map(new_dev, MAP_1);
7867 if ((u->new_level == 5) &&
7868 (migr_map->raid_level == 0)) {
7869 int ord = map->num_members - 1;
7870 migr_map->num_members--;
7871 if (u->new_disks[0] < 0)
7872 ord |= IMSM_ORD_REBUILD;
7873 set_imsm_ord_tbl_ent(map,
7874 map->num_members - 1,
7875 ord);
7876 }
7877 id->dev = new_dev;
7878 tofree = (void **)dev;
7879
7880 /* update chunk size
7881 */
7882 if (u->new_chunksize > 0)
7883 map->blocks_per_strip =
7884 __cpu_to_le16(u->new_chunksize * 2);
7885
7886 /* add disk
7887 */
7888 if ((u->new_level != 5) ||
7889 (migr_map->raid_level != 0) ||
7890 (migr_map->raid_level == map->raid_level))
7891 goto skip_disk_add;
7892
7893 if (u->new_disks[0] >= 0) {
7894 /* use passes spare
7895 */
7896 new_disk = get_disk_super(super,
7897 major(u->new_disks[0]),
7898 minor(u->new_disks[0]));
7899 dprintf("imsm: new disk for reshape is: %i:%i "
7900 "(%p, index = %i)\n",
7901 major(u->new_disks[0]),
7902 minor(u->new_disks[0]),
7903 new_disk, new_disk->index);
7904 if (new_disk == NULL)
7905 goto error_disk_add;
7906
7907 new_disk->index = map->num_members - 1;
7908 /* slot to fill in autolayout
7909 */
7910 new_disk->raiddisk = new_disk->index;
7911 new_disk->disk.status |= CONFIGURED_DISK;
7912 new_disk->disk.status &= ~SPARE_DISK;
7913 } else
7914 goto error_disk_add;
7915
7916 skip_disk_add:
7917 *tofree = *space_list;
7918 /* calculate new size
7919 */
7920 imsm_set_array_size(new_dev, -1);
7921
7922 ret_val = 1;
7923 }
7924 }
7925
7926 if (tofree)
7927 *space_list = tofree;
7928 return ret_val;
7929
7930 error_disk_add:
7931 dprintf("Error: imsm: Cannot find disk.\n");
7932 return ret_val;
7933 }
7934
7935 static int apply_size_change_update(struct imsm_update_size_change *u,
7936 struct intel_super *super)
7937 {
7938 struct intel_dev *id;
7939 int ret_val = 0;
7940
7941 dprintf("apply_size_change_update()\n");
7942 if ((u->subdev < 0) ||
7943 (u->subdev > 1)) {
7944 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7945 return ret_val;
7946 }
7947
7948 for (id = super->devlist ; id; id = id->next) {
7949 if (id->index == (unsigned)u->subdev) {
7950 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7951 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7952 int used_disks = imsm_num_data_members(dev, MAP_0);
7953 unsigned long long blocks_per_member;
7954
7955 /* calculate new size
7956 */
7957 blocks_per_member = u->new_size / used_disks;
7958 dprintf("imsm: apply_size_change_update(size: %llu, "
7959 "blocks per member: %llu)\n",
7960 u->new_size, blocks_per_member);
7961 set_blocks_per_member(map, blocks_per_member);
7962 imsm_set_array_size(dev, u->new_size);
7963
7964 ret_val = 1;
7965 break;
7966 }
7967 }
7968
7969 return ret_val;
7970 }
7971
7972
7973 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7974 struct intel_super *super,
7975 struct active_array *active_array)
7976 {
7977 struct imsm_super *mpb = super->anchor;
7978 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7979 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7980 struct imsm_map *migr_map;
7981 struct active_array *a;
7982 struct imsm_disk *disk;
7983 __u8 to_state;
7984 struct dl *dl;
7985 unsigned int found;
7986 int failed;
7987 int victim;
7988 int i;
7989 int second_map_created = 0;
7990
7991 for (; u; u = u->next) {
7992 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
7993
7994 if (victim < 0)
7995 return 0;
7996
7997 for (dl = super->disks; dl; dl = dl->next)
7998 if (dl == u->dl)
7999 break;
8000
8001 if (!dl) {
8002 fprintf(stderr, "error: imsm_activate_spare passed "
8003 "an unknown disk (index: %d)\n",
8004 u->dl->index);
8005 return 0;
8006 }
8007
8008 /* count failures (excluding rebuilds and the victim)
8009 * to determine map[0] state
8010 */
8011 failed = 0;
8012 for (i = 0; i < map->num_members; i++) {
8013 if (i == u->slot)
8014 continue;
8015 disk = get_imsm_disk(super,
8016 get_imsm_disk_idx(dev, i, MAP_X));
8017 if (!disk || is_failed(disk))
8018 failed++;
8019 }
8020
8021 /* adding a pristine spare, assign a new index */
8022 if (dl->index < 0) {
8023 dl->index = super->anchor->num_disks;
8024 super->anchor->num_disks++;
8025 }
8026 disk = &dl->disk;
8027 disk->status |= CONFIGURED_DISK;
8028 disk->status &= ~SPARE_DISK;
8029
8030 /* mark rebuild */
8031 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
8032 if (!second_map_created) {
8033 second_map_created = 1;
8034 map->map_state = IMSM_T_STATE_DEGRADED;
8035 migrate(dev, super, to_state, MIGR_REBUILD);
8036 } else
8037 map->map_state = to_state;
8038 migr_map = get_imsm_map(dev, MAP_1);
8039 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8040 set_imsm_ord_tbl_ent(migr_map, u->slot,
8041 dl->index | IMSM_ORD_REBUILD);
8042
8043 /* update the family_num to mark a new container
8044 * generation, being careful to record the existing
8045 * family_num in orig_family_num to clean up after
8046 * earlier mdadm versions that neglected to set it.
8047 */
8048 if (mpb->orig_family_num == 0)
8049 mpb->orig_family_num = mpb->family_num;
8050 mpb->family_num += super->random;
8051
8052 /* count arrays using the victim in the metadata */
8053 found = 0;
8054 for (a = active_array; a ; a = a->next) {
8055 dev = get_imsm_dev(super, a->info.container_member);
8056 map = get_imsm_map(dev, MAP_0);
8057
8058 if (get_imsm_disk_slot(map, victim) >= 0)
8059 found++;
8060 }
8061
8062 /* delete the victim if it is no longer being
8063 * utilized anywhere
8064 */
8065 if (!found) {
8066 struct dl **dlp;
8067
8068 /* We know that 'manager' isn't touching anything,
8069 * so it is safe to delete
8070 */
8071 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
8072 if ((*dlp)->index == victim)
8073 break;
8074
8075 /* victim may be on the missing list */
8076 if (!*dlp)
8077 for (dlp = &super->missing; *dlp;
8078 dlp = &(*dlp)->next)
8079 if ((*dlp)->index == victim)
8080 break;
8081 imsm_delete(super, dlp, victim);
8082 }
8083 }
8084
8085 return 1;
8086 }
8087
8088 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8089 struct intel_super *super,
8090 void ***space_list)
8091 {
8092 struct dl *new_disk;
8093 struct intel_dev *id;
8094 int i;
8095 int delta_disks = u->new_raid_disks - u->old_raid_disks;
8096 int disk_count = u->old_raid_disks;
8097 void **tofree = NULL;
8098 int devices_to_reshape = 1;
8099 struct imsm_super *mpb = super->anchor;
8100 int ret_val = 0;
8101 unsigned int dev_id;
8102
8103 dprintf("imsm: apply_reshape_container_disks_update()\n");
8104
8105 /* enable spares to use in array */
8106 for (i = 0; i < delta_disks; i++) {
8107 new_disk = get_disk_super(super,
8108 major(u->new_disks[i]),
8109 minor(u->new_disks[i]));
8110 dprintf("imsm: new disk for reshape is: %i:%i "
8111 "(%p, index = %i)\n",
8112 major(u->new_disks[i]), minor(u->new_disks[i]),
8113 new_disk, new_disk->index);
8114 if ((new_disk == NULL) ||
8115 ((new_disk->index >= 0) &&
8116 (new_disk->index < u->old_raid_disks)))
8117 goto update_reshape_exit;
8118 new_disk->index = disk_count++;
8119 /* slot to fill in autolayout
8120 */
8121 new_disk->raiddisk = new_disk->index;
8122 new_disk->disk.status |=
8123 CONFIGURED_DISK;
8124 new_disk->disk.status &= ~SPARE_DISK;
8125 }
8126
8127 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8128 mpb->num_raid_devs);
8129 /* manage changes in volume
8130 */
8131 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
8132 void **sp = *space_list;
8133 struct imsm_dev *newdev;
8134 struct imsm_map *newmap, *oldmap;
8135
8136 for (id = super->devlist ; id; id = id->next) {
8137 if (id->index == dev_id)
8138 break;
8139 }
8140 if (id == NULL)
8141 break;
8142 if (!sp)
8143 continue;
8144 *space_list = *sp;
8145 newdev = (void*)sp;
8146 /* Copy the dev, but not (all of) the map */
8147 memcpy(newdev, id->dev, sizeof(*newdev));
8148 oldmap = get_imsm_map(id->dev, MAP_0);
8149 newmap = get_imsm_map(newdev, MAP_0);
8150 /* Copy the current map */
8151 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8152 /* update one device only
8153 */
8154 if (devices_to_reshape) {
8155 dprintf("imsm: modifying subdev: %i\n",
8156 id->index);
8157 devices_to_reshape--;
8158 newdev->vol.migr_state = 1;
8159 newdev->vol.curr_migr_unit = 0;
8160 set_migr_type(newdev, MIGR_GEN_MIGR);
8161 newmap->num_members = u->new_raid_disks;
8162 for (i = 0; i < delta_disks; i++) {
8163 set_imsm_ord_tbl_ent(newmap,
8164 u->old_raid_disks + i,
8165 u->old_raid_disks + i);
8166 }
8167 /* New map is correct, now need to save old map
8168 */
8169 newmap = get_imsm_map(newdev, MAP_1);
8170 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8171
8172 imsm_set_array_size(newdev, -1);
8173 }
8174
8175 sp = (void **)id->dev;
8176 id->dev = newdev;
8177 *sp = tofree;
8178 tofree = sp;
8179
8180 /* Clear migration record */
8181 memset(super->migr_rec, 0, sizeof(struct migr_record));
8182 }
8183 if (tofree)
8184 *space_list = tofree;
8185 ret_val = 1;
8186
8187 update_reshape_exit:
8188
8189 return ret_val;
8190 }
8191
8192 static int apply_takeover_update(struct imsm_update_takeover *u,
8193 struct intel_super *super,
8194 void ***space_list)
8195 {
8196 struct imsm_dev *dev = NULL;
8197 struct intel_dev *dv;
8198 struct imsm_dev *dev_new;
8199 struct imsm_map *map;
8200 struct dl *dm, *du;
8201 int i;
8202
8203 for (dv = super->devlist; dv; dv = dv->next)
8204 if (dv->index == (unsigned int)u->subarray) {
8205 dev = dv->dev;
8206 break;
8207 }
8208
8209 if (dev == NULL)
8210 return 0;
8211
8212 map = get_imsm_map(dev, MAP_0);
8213
8214 if (u->direction == R10_TO_R0) {
8215 /* Number of failed disks must be half of initial disk number */
8216 if (imsm_count_failed(super, dev, MAP_0) !=
8217 (map->num_members / 2))
8218 return 0;
8219
8220 /* iterate through devices to mark removed disks as spare */
8221 for (dm = super->disks; dm; dm = dm->next) {
8222 if (dm->disk.status & FAILED_DISK) {
8223 int idx = dm->index;
8224 /* update indexes on the disk list */
8225 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
8226 the index values will end up being correct.... NB */
8227 for (du = super->disks; du; du = du->next)
8228 if (du->index > idx)
8229 du->index--;
8230 /* mark as spare disk */
8231 mark_spare(dm);
8232 }
8233 }
8234 /* update map */
8235 map->num_members = map->num_members / 2;
8236 map->map_state = IMSM_T_STATE_NORMAL;
8237 map->num_domains = 1;
8238 map->raid_level = 0;
8239 map->failed_disk_num = -1;
8240 }
8241
8242 if (u->direction == R0_TO_R10) {
8243 void **space;
8244 /* update slots in current disk list */
8245 for (dm = super->disks; dm; dm = dm->next) {
8246 if (dm->index >= 0)
8247 dm->index *= 2;
8248 }
8249 /* create new *missing* disks */
8250 for (i = 0; i < map->num_members; i++) {
8251 space = *space_list;
8252 if (!space)
8253 continue;
8254 *space_list = *space;
8255 du = (void *)space;
8256 memcpy(du, super->disks, sizeof(*du));
8257 du->fd = -1;
8258 du->minor = 0;
8259 du->major = 0;
8260 du->index = (i * 2) + 1;
8261 sprintf((char *)du->disk.serial,
8262 " MISSING_%d", du->index);
8263 sprintf((char *)du->serial,
8264 "MISSING_%d", du->index);
8265 du->next = super->missing;
8266 super->missing = du;
8267 }
8268 /* create new dev and map */
8269 space = *space_list;
8270 if (!space)
8271 return 0;
8272 *space_list = *space;
8273 dev_new = (void *)space;
8274 memcpy(dev_new, dev, sizeof(*dev));
8275 /* update new map */
8276 map = get_imsm_map(dev_new, MAP_0);
8277 map->num_members = map->num_members * 2;
8278 map->map_state = IMSM_T_STATE_DEGRADED;
8279 map->num_domains = 2;
8280 map->raid_level = 1;
8281 /* replace dev<->dev_new */
8282 dv->dev = dev_new;
8283 }
8284 /* update disk order table */
8285 for (du = super->disks; du; du = du->next)
8286 if (du->index >= 0)
8287 set_imsm_ord_tbl_ent(map, du->index, du->index);
8288 for (du = super->missing; du; du = du->next)
8289 if (du->index >= 0) {
8290 set_imsm_ord_tbl_ent(map, du->index, du->index);
8291 mark_missing(dv->dev, &du->disk, du->index);
8292 }
8293
8294 return 1;
8295 }
8296
8297 static void imsm_process_update(struct supertype *st,
8298 struct metadata_update *update)
8299 {
8300 /**
8301 * crack open the metadata_update envelope to find the update record
8302 * update can be one of:
8303 * update_reshape_container_disks - all the arrays in the container
8304 * are being reshaped to have more devices. We need to mark
8305 * the arrays for general migration and convert selected spares
8306 * into active devices.
8307 * update_activate_spare - a spare device has replaced a failed
8308 * device in an array, update the disk_ord_tbl. If this disk is
8309 * present in all member arrays then also clear the SPARE_DISK
8310 * flag
8311 * update_create_array
8312 * update_kill_array
8313 * update_rename_array
8314 * update_add_remove_disk
8315 */
8316 struct intel_super *super = st->sb;
8317 struct imsm_super *mpb;
8318 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8319
8320 /* update requires a larger buf but the allocation failed */
8321 if (super->next_len && !super->next_buf) {
8322 super->next_len = 0;
8323 return;
8324 }
8325
8326 if (super->next_buf) {
8327 memcpy(super->next_buf, super->buf, super->len);
8328 free(super->buf);
8329 super->len = super->next_len;
8330 super->buf = super->next_buf;
8331
8332 super->next_len = 0;
8333 super->next_buf = NULL;
8334 }
8335
8336 mpb = super->anchor;
8337
8338 switch (type) {
8339 case update_general_migration_checkpoint: {
8340 struct intel_dev *id;
8341 struct imsm_update_general_migration_checkpoint *u =
8342 (void *)update->buf;
8343
8344 dprintf("imsm: process_update() "
8345 "for update_general_migration_checkpoint called\n");
8346
8347 /* find device under general migration */
8348 for (id = super->devlist ; id; id = id->next) {
8349 if (is_gen_migration(id->dev)) {
8350 id->dev->vol.curr_migr_unit =
8351 __cpu_to_le32(u->curr_migr_unit);
8352 super->updates_pending++;
8353 }
8354 }
8355 break;
8356 }
8357 case update_takeover: {
8358 struct imsm_update_takeover *u = (void *)update->buf;
8359 if (apply_takeover_update(u, super, &update->space_list)) {
8360 imsm_update_version_info(super);
8361 super->updates_pending++;
8362 }
8363 break;
8364 }
8365
8366 case update_reshape_container_disks: {
8367 struct imsm_update_reshape *u = (void *)update->buf;
8368 if (apply_reshape_container_disks_update(
8369 u, super, &update->space_list))
8370 super->updates_pending++;
8371 break;
8372 }
8373 case update_reshape_migration: {
8374 struct imsm_update_reshape_migration *u = (void *)update->buf;
8375 if (apply_reshape_migration_update(
8376 u, super, &update->space_list))
8377 super->updates_pending++;
8378 break;
8379 }
8380 case update_size_change: {
8381 struct imsm_update_size_change *u = (void *)update->buf;
8382 if (apply_size_change_update(u, super))
8383 super->updates_pending++;
8384 break;
8385 }
8386 case update_activate_spare: {
8387 struct imsm_update_activate_spare *u = (void *) update->buf;
8388 if (apply_update_activate_spare(u, super, st->arrays))
8389 super->updates_pending++;
8390 break;
8391 }
8392 case update_create_array: {
8393 /* someone wants to create a new array, we need to be aware of
8394 * a few races/collisions:
8395 * 1/ 'Create' called by two separate instances of mdadm
8396 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8397 * devices that have since been assimilated via
8398 * activate_spare.
8399 * In the event this update can not be carried out mdadm will
8400 * (FIX ME) notice that its update did not take hold.
8401 */
8402 struct imsm_update_create_array *u = (void *) update->buf;
8403 struct intel_dev *dv;
8404 struct imsm_dev *dev;
8405 struct imsm_map *map, *new_map;
8406 unsigned long long start, end;
8407 unsigned long long new_start, new_end;
8408 int i;
8409 struct disk_info *inf;
8410 struct dl *dl;
8411
8412 /* handle racing creates: first come first serve */
8413 if (u->dev_idx < mpb->num_raid_devs) {
8414 dprintf("%s: subarray %d already defined\n",
8415 __func__, u->dev_idx);
8416 goto create_error;
8417 }
8418
8419 /* check update is next in sequence */
8420 if (u->dev_idx != mpb->num_raid_devs) {
8421 dprintf("%s: can not create array %d expected index %d\n",
8422 __func__, u->dev_idx, mpb->num_raid_devs);
8423 goto create_error;
8424 }
8425
8426 new_map = get_imsm_map(&u->dev, MAP_0);
8427 new_start = pba_of_lba0(new_map);
8428 new_end = new_start + blocks_per_member(new_map);
8429 inf = get_disk_info(u);
8430
8431 /* handle activate_spare versus create race:
8432 * check to make sure that overlapping arrays do not include
8433 * overalpping disks
8434 */
8435 for (i = 0; i < mpb->num_raid_devs; i++) {
8436 dev = get_imsm_dev(super, i);
8437 map = get_imsm_map(dev, MAP_0);
8438 start = pba_of_lba0(map);
8439 end = start + blocks_per_member(map);
8440 if ((new_start >= start && new_start <= end) ||
8441 (start >= new_start && start <= new_end))
8442 /* overlap */;
8443 else
8444 continue;
8445
8446 if (disks_overlap(super, i, u)) {
8447 dprintf("%s: arrays overlap\n", __func__);
8448 goto create_error;
8449 }
8450 }
8451
8452 /* check that prepare update was successful */
8453 if (!update->space) {
8454 dprintf("%s: prepare update failed\n", __func__);
8455 goto create_error;
8456 }
8457
8458 /* check that all disks are still active before committing
8459 * changes. FIXME: could we instead handle this by creating a
8460 * degraded array? That's probably not what the user expects,
8461 * so better to drop this update on the floor.
8462 */
8463 for (i = 0; i < new_map->num_members; i++) {
8464 dl = serial_to_dl(inf[i].serial, super);
8465 if (!dl) {
8466 dprintf("%s: disk disappeared\n", __func__);
8467 goto create_error;
8468 }
8469 }
8470
8471 super->updates_pending++;
8472
8473 /* convert spares to members and fixup ord_tbl */
8474 for (i = 0; i < new_map->num_members; i++) {
8475 dl = serial_to_dl(inf[i].serial, super);
8476 if (dl->index == -1) {
8477 dl->index = mpb->num_disks;
8478 mpb->num_disks++;
8479 dl->disk.status |= CONFIGURED_DISK;
8480 dl->disk.status &= ~SPARE_DISK;
8481 }
8482 set_imsm_ord_tbl_ent(new_map, i, dl->index);
8483 }
8484
8485 dv = update->space;
8486 dev = dv->dev;
8487 update->space = NULL;
8488 imsm_copy_dev(dev, &u->dev);
8489 dv->index = u->dev_idx;
8490 dv->next = super->devlist;
8491 super->devlist = dv;
8492 mpb->num_raid_devs++;
8493
8494 imsm_update_version_info(super);
8495 break;
8496 create_error:
8497 /* mdmon knows how to release update->space, but not
8498 * ((struct intel_dev *) update->space)->dev
8499 */
8500 if (update->space) {
8501 dv = update->space;
8502 free(dv->dev);
8503 }
8504 break;
8505 }
8506 case update_kill_array: {
8507 struct imsm_update_kill_array *u = (void *) update->buf;
8508 int victim = u->dev_idx;
8509 struct active_array *a;
8510 struct intel_dev **dp;
8511 struct imsm_dev *dev;
8512
8513 /* sanity check that we are not affecting the uuid of
8514 * active arrays, or deleting an active array
8515 *
8516 * FIXME when immutable ids are available, but note that
8517 * we'll also need to fixup the invalidated/active
8518 * subarray indexes in mdstat
8519 */
8520 for (a = st->arrays; a; a = a->next)
8521 if (a->info.container_member >= victim)
8522 break;
8523 /* by definition if mdmon is running at least one array
8524 * is active in the container, so checking
8525 * mpb->num_raid_devs is just extra paranoia
8526 */
8527 dev = get_imsm_dev(super, victim);
8528 if (a || !dev || mpb->num_raid_devs == 1) {
8529 dprintf("failed to delete subarray-%d\n", victim);
8530 break;
8531 }
8532
8533 for (dp = &super->devlist; *dp;)
8534 if ((*dp)->index == (unsigned)super->current_vol) {
8535 *dp = (*dp)->next;
8536 } else {
8537 if ((*dp)->index > (unsigned)victim)
8538 (*dp)->index--;
8539 dp = &(*dp)->next;
8540 }
8541 mpb->num_raid_devs--;
8542 super->updates_pending++;
8543 break;
8544 }
8545 case update_rename_array: {
8546 struct imsm_update_rename_array *u = (void *) update->buf;
8547 char name[MAX_RAID_SERIAL_LEN+1];
8548 int target = u->dev_idx;
8549 struct active_array *a;
8550 struct imsm_dev *dev;
8551
8552 /* sanity check that we are not affecting the uuid of
8553 * an active array
8554 */
8555 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8556 name[MAX_RAID_SERIAL_LEN] = '\0';
8557 for (a = st->arrays; a; a = a->next)
8558 if (a->info.container_member == target)
8559 break;
8560 dev = get_imsm_dev(super, u->dev_idx);
8561 if (a || !dev || !check_name(super, name, 1)) {
8562 dprintf("failed to rename subarray-%d\n", target);
8563 break;
8564 }
8565
8566 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
8567 super->updates_pending++;
8568 break;
8569 }
8570 case update_add_remove_disk: {
8571 /* we may be able to repair some arrays if disks are
8572 * being added, check teh status of add_remove_disk
8573 * if discs has been added.
8574 */
8575 if (add_remove_disk_update(super)) {
8576 struct active_array *a;
8577
8578 super->updates_pending++;
8579 for (a = st->arrays; a; a = a->next)
8580 a->check_degraded = 1;
8581 }
8582 break;
8583 }
8584 default:
8585 fprintf(stderr, "error: unsuported process update type:"
8586 "(type: %d)\n", type);
8587 }
8588 }
8589
8590 static struct mdinfo *get_spares_for_grow(struct supertype *st);
8591
8592 static void imsm_prepare_update(struct supertype *st,
8593 struct metadata_update *update)
8594 {
8595 /**
8596 * Allocate space to hold new disk entries, raid-device entries or a new
8597 * mpb if necessary. The manager synchronously waits for updates to
8598 * complete in the monitor, so new mpb buffers allocated here can be
8599 * integrated by the monitor thread without worrying about live pointers
8600 * in the manager thread.
8601 */
8602 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8603 struct intel_super *super = st->sb;
8604 struct imsm_super *mpb = super->anchor;
8605 size_t buf_len;
8606 size_t len = 0;
8607
8608 switch (type) {
8609 case update_general_migration_checkpoint:
8610 dprintf("imsm: prepare_update() "
8611 "for update_general_migration_checkpoint called\n");
8612 break;
8613 case update_takeover: {
8614 struct imsm_update_takeover *u = (void *)update->buf;
8615 if (u->direction == R0_TO_R10) {
8616 void **tail = (void **)&update->space_list;
8617 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
8618 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8619 int num_members = map->num_members;
8620 void *space;
8621 int size, i;
8622 /* allocate memory for added disks */
8623 for (i = 0; i < num_members; i++) {
8624 size = sizeof(struct dl);
8625 space = xmalloc(size);
8626 *tail = space;
8627 tail = space;
8628 *tail = NULL;
8629 }
8630 /* allocate memory for new device */
8631 size = sizeof_imsm_dev(super->devlist->dev, 0) +
8632 (num_members * sizeof(__u32));
8633 space = xmalloc(size);
8634 *tail = space;
8635 tail = space;
8636 *tail = NULL;
8637 len = disks_to_mpb_size(num_members * 2);
8638 }
8639
8640 break;
8641 }
8642 case update_reshape_container_disks: {
8643 /* Every raid device in the container is about to
8644 * gain some more devices, and we will enter a
8645 * reconfiguration.
8646 * So each 'imsm_map' will be bigger, and the imsm_vol
8647 * will now hold 2 of them.
8648 * Thus we need new 'struct imsm_dev' allocations sized
8649 * as sizeof_imsm_dev but with more devices in both maps.
8650 */
8651 struct imsm_update_reshape *u = (void *)update->buf;
8652 struct intel_dev *dl;
8653 void **space_tail = (void**)&update->space_list;
8654
8655 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8656
8657 for (dl = super->devlist; dl; dl = dl->next) {
8658 int size = sizeof_imsm_dev(dl->dev, 1);
8659 void *s;
8660 if (u->new_raid_disks > u->old_raid_disks)
8661 size += sizeof(__u32)*2*
8662 (u->new_raid_disks - u->old_raid_disks);
8663 s = xmalloc(size);
8664 *space_tail = s;
8665 space_tail = s;
8666 *space_tail = NULL;
8667 }
8668
8669 len = disks_to_mpb_size(u->new_raid_disks);
8670 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8671 break;
8672 }
8673 case update_reshape_migration: {
8674 /* for migration level 0->5 we need to add disks
8675 * so the same as for container operation we will copy
8676 * device to the bigger location.
8677 * in memory prepared device and new disk area are prepared
8678 * for usage in process update
8679 */
8680 struct imsm_update_reshape_migration *u = (void *)update->buf;
8681 struct intel_dev *id;
8682 void **space_tail = (void **)&update->space_list;
8683 int size;
8684 void *s;
8685 int current_level = -1;
8686
8687 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8688
8689 /* add space for bigger array in update
8690 */
8691 for (id = super->devlist; id; id = id->next) {
8692 if (id->index == (unsigned)u->subdev) {
8693 size = sizeof_imsm_dev(id->dev, 1);
8694 if (u->new_raid_disks > u->old_raid_disks)
8695 size += sizeof(__u32)*2*
8696 (u->new_raid_disks - u->old_raid_disks);
8697 s = xmalloc(size);
8698 *space_tail = s;
8699 space_tail = s;
8700 *space_tail = NULL;
8701 break;
8702 }
8703 }
8704 if (update->space_list == NULL)
8705 break;
8706
8707 /* add space for disk in update
8708 */
8709 size = sizeof(struct dl);
8710 s = xmalloc(size);
8711 *space_tail = s;
8712 space_tail = s;
8713 *space_tail = NULL;
8714
8715 /* add spare device to update
8716 */
8717 for (id = super->devlist ; id; id = id->next)
8718 if (id->index == (unsigned)u->subdev) {
8719 struct imsm_dev *dev;
8720 struct imsm_map *map;
8721
8722 dev = get_imsm_dev(super, u->subdev);
8723 map = get_imsm_map(dev, MAP_0);
8724 current_level = map->raid_level;
8725 break;
8726 }
8727 if ((u->new_level == 5) && (u->new_level != current_level)) {
8728 struct mdinfo *spares;
8729
8730 spares = get_spares_for_grow(st);
8731 if (spares) {
8732 struct dl *dl;
8733 struct mdinfo *dev;
8734
8735 dev = spares->devs;
8736 if (dev) {
8737 u->new_disks[0] =
8738 makedev(dev->disk.major,
8739 dev->disk.minor);
8740 dl = get_disk_super(super,
8741 dev->disk.major,
8742 dev->disk.minor);
8743 dl->index = u->old_raid_disks;
8744 dev = dev->next;
8745 }
8746 sysfs_free(spares);
8747 }
8748 }
8749 len = disks_to_mpb_size(u->new_raid_disks);
8750 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8751 break;
8752 }
8753 case update_size_change: {
8754 break;
8755 }
8756 case update_create_array: {
8757 struct imsm_update_create_array *u = (void *) update->buf;
8758 struct intel_dev *dv;
8759 struct imsm_dev *dev = &u->dev;
8760 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8761 struct dl *dl;
8762 struct disk_info *inf;
8763 int i;
8764 int activate = 0;
8765
8766 inf = get_disk_info(u);
8767 len = sizeof_imsm_dev(dev, 1);
8768 /* allocate a new super->devlist entry */
8769 dv = xmalloc(sizeof(*dv));
8770 dv->dev = xmalloc(len);
8771 update->space = dv;
8772
8773 /* count how many spares will be converted to members */
8774 for (i = 0; i < map->num_members; i++) {
8775 dl = serial_to_dl(inf[i].serial, super);
8776 if (!dl) {
8777 /* hmm maybe it failed?, nothing we can do about
8778 * it here
8779 */
8780 continue;
8781 }
8782 if (count_memberships(dl, super) == 0)
8783 activate++;
8784 }
8785 len += activate * sizeof(struct imsm_disk);
8786 break;
8787 default:
8788 break;
8789 }
8790 }
8791
8792 /* check if we need a larger metadata buffer */
8793 if (super->next_buf)
8794 buf_len = super->next_len;
8795 else
8796 buf_len = super->len;
8797
8798 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8799 /* ok we need a larger buf than what is currently allocated
8800 * if this allocation fails process_update will notice that
8801 * ->next_len is set and ->next_buf is NULL
8802 */
8803 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8804 if (super->next_buf)
8805 free(super->next_buf);
8806
8807 super->next_len = buf_len;
8808 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
8809 memset(super->next_buf, 0, buf_len);
8810 else
8811 super->next_buf = NULL;
8812 }
8813 }
8814
8815 /* must be called while manager is quiesced */
8816 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
8817 {
8818 struct imsm_super *mpb = super->anchor;
8819 struct dl *iter;
8820 struct imsm_dev *dev;
8821 struct imsm_map *map;
8822 int i, j, num_members;
8823 __u32 ord;
8824
8825 dprintf("%s: deleting device[%d] from imsm_super\n",
8826 __func__, index);
8827
8828 /* shift all indexes down one */
8829 for (iter = super->disks; iter; iter = iter->next)
8830 if (iter->index > (int)index)
8831 iter->index--;
8832 for (iter = super->missing; iter; iter = iter->next)
8833 if (iter->index > (int)index)
8834 iter->index--;
8835
8836 for (i = 0; i < mpb->num_raid_devs; i++) {
8837 dev = get_imsm_dev(super, i);
8838 map = get_imsm_map(dev, MAP_0);
8839 num_members = map->num_members;
8840 for (j = 0; j < num_members; j++) {
8841 /* update ord entries being careful not to propagate
8842 * ord-flags to the first map
8843 */
8844 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
8845
8846 if (ord_to_idx(ord) <= index)
8847 continue;
8848
8849 map = get_imsm_map(dev, MAP_0);
8850 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
8851 map = get_imsm_map(dev, MAP_1);
8852 if (map)
8853 set_imsm_ord_tbl_ent(map, j, ord - 1);
8854 }
8855 }
8856
8857 mpb->num_disks--;
8858 super->updates_pending++;
8859 if (*dlp) {
8860 struct dl *dl = *dlp;
8861
8862 *dlp = (*dlp)->next;
8863 __free_imsm_disk(dl);
8864 }
8865 }
8866 #endif /* MDASSEMBLE */
8867
8868 static void close_targets(int *targets, int new_disks)
8869 {
8870 int i;
8871
8872 if (!targets)
8873 return;
8874
8875 for (i = 0; i < new_disks; i++) {
8876 if (targets[i] >= 0) {
8877 close(targets[i]);
8878 targets[i] = -1;
8879 }
8880 }
8881 }
8882
8883 static int imsm_get_allowed_degradation(int level, int raid_disks,
8884 struct intel_super *super,
8885 struct imsm_dev *dev)
8886 {
8887 switch (level) {
8888 case 1:
8889 case 10:{
8890 int ret_val = 0;
8891 struct imsm_map *map;
8892 int i;
8893
8894 ret_val = raid_disks/2;
8895 /* check map if all disks pairs not failed
8896 * in both maps
8897 */
8898 map = get_imsm_map(dev, MAP_0);
8899 for (i = 0; i < ret_val; i++) {
8900 int degradation = 0;
8901 if (get_imsm_disk(super, i) == NULL)
8902 degradation++;
8903 if (get_imsm_disk(super, i + 1) == NULL)
8904 degradation++;
8905 if (degradation == 2)
8906 return 0;
8907 }
8908 map = get_imsm_map(dev, MAP_1);
8909 /* if there is no second map
8910 * result can be returned
8911 */
8912 if (map == NULL)
8913 return ret_val;
8914 /* check degradation in second map
8915 */
8916 for (i = 0; i < ret_val; i++) {
8917 int degradation = 0;
8918 if (get_imsm_disk(super, i) == NULL)
8919 degradation++;
8920 if (get_imsm_disk(super, i + 1) == NULL)
8921 degradation++;
8922 if (degradation == 2)
8923 return 0;
8924 }
8925 return ret_val;
8926 }
8927 case 5:
8928 return 1;
8929 case 6:
8930 return 2;
8931 default:
8932 return 0;
8933 }
8934 }
8935
8936
8937 /*******************************************************************************
8938 * Function: open_backup_targets
8939 * Description: Function opens file descriptors for all devices given in
8940 * info->devs
8941 * Parameters:
8942 * info : general array info
8943 * raid_disks : number of disks
8944 * raid_fds : table of device's file descriptors
8945 * super : intel super for raid10 degradation check
8946 * dev : intel device for raid10 degradation check
8947 * Returns:
8948 * 0 : success
8949 * -1 : fail
8950 ******************************************************************************/
8951 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
8952 struct intel_super *super, struct imsm_dev *dev)
8953 {
8954 struct mdinfo *sd;
8955 int i;
8956 int opened = 0;
8957
8958 for (i = 0; i < raid_disks; i++)
8959 raid_fds[i] = -1;
8960
8961 for (sd = info->devs ; sd ; sd = sd->next) {
8962 char *dn;
8963
8964 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
8965 dprintf("disk is faulty!!\n");
8966 continue;
8967 }
8968
8969 if ((sd->disk.raid_disk >= raid_disks) ||
8970 (sd->disk.raid_disk < 0))
8971 continue;
8972
8973 dn = map_dev(sd->disk.major,
8974 sd->disk.minor, 1);
8975 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8976 if (raid_fds[sd->disk.raid_disk] < 0) {
8977 fprintf(stderr, "cannot open component\n");
8978 continue;
8979 }
8980 opened++;
8981 }
8982 /* check if maximum array degradation level is not exceeded
8983 */
8984 if ((raid_disks - opened) >
8985 imsm_get_allowed_degradation(info->new_level,
8986 raid_disks,
8987 super, dev)) {
8988 fprintf(stderr, "Not enough disks can be opened.\n");
8989 close_targets(raid_fds, raid_disks);
8990 return -2;
8991 }
8992 return 0;
8993 }
8994
8995 #ifndef MDASSEMBLE
8996 /*******************************************************************************
8997 * Function: init_migr_record_imsm
8998 * Description: Function inits imsm migration record
8999 * Parameters:
9000 * super : imsm internal array info
9001 * dev : device under migration
9002 * info : general array info to find the smallest device
9003 * Returns:
9004 * none
9005 ******************************************************************************/
9006 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
9007 struct mdinfo *info)
9008 {
9009 struct intel_super *super = st->sb;
9010 struct migr_record *migr_rec = super->migr_rec;
9011 int new_data_disks;
9012 unsigned long long dsize, dev_sectors;
9013 long long unsigned min_dev_sectors = -1LLU;
9014 struct mdinfo *sd;
9015 char nm[30];
9016 int fd;
9017 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9018 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
9019 unsigned long long num_migr_units;
9020 unsigned long long array_blocks;
9021
9022 memset(migr_rec, 0, sizeof(struct migr_record));
9023 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9024
9025 /* only ascending reshape supported now */
9026 migr_rec->ascending_migr = __cpu_to_le32(1);
9027
9028 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9029 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9030 migr_rec->dest_depth_per_unit *=
9031 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9032 new_data_disks = imsm_num_data_members(dev, MAP_0);
9033 migr_rec->blocks_per_unit =
9034 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9035 migr_rec->dest_depth_per_unit =
9036 __cpu_to_le32(migr_rec->dest_depth_per_unit);
9037 array_blocks = info->component_size * new_data_disks;
9038 num_migr_units =
9039 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9040
9041 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9042 num_migr_units++;
9043 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9044
9045 migr_rec->post_migr_vol_cap = dev->size_low;
9046 migr_rec->post_migr_vol_cap_hi = dev->size_high;
9047
9048
9049 /* Find the smallest dev */
9050 for (sd = info->devs ; sd ; sd = sd->next) {
9051 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9052 fd = dev_open(nm, O_RDONLY);
9053 if (fd < 0)
9054 continue;
9055 get_dev_size(fd, NULL, &dsize);
9056 dev_sectors = dsize / 512;
9057 if (dev_sectors < min_dev_sectors)
9058 min_dev_sectors = dev_sectors;
9059 close(fd);
9060 }
9061 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9062 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9063
9064 write_imsm_migr_rec(st);
9065
9066 return;
9067 }
9068
9069 /*******************************************************************************
9070 * Function: save_backup_imsm
9071 * Description: Function saves critical data stripes to Migration Copy Area
9072 * and updates the current migration unit status.
9073 * Use restore_stripes() to form a destination stripe,
9074 * and to write it to the Copy Area.
9075 * Parameters:
9076 * st : supertype information
9077 * dev : imsm device that backup is saved for
9078 * info : general array info
9079 * buf : input buffer
9080 * length : length of data to backup (blocks_per_unit)
9081 * Returns:
9082 * 0 : success
9083 *, -1 : fail
9084 ******************************************************************************/
9085 int save_backup_imsm(struct supertype *st,
9086 struct imsm_dev *dev,
9087 struct mdinfo *info,
9088 void *buf,
9089 int length)
9090 {
9091 int rv = -1;
9092 struct intel_super *super = st->sb;
9093 unsigned long long *target_offsets = NULL;
9094 int *targets = NULL;
9095 int i;
9096 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9097 int new_disks = map_dest->num_members;
9098 int dest_layout = 0;
9099 int dest_chunk;
9100 unsigned long long start;
9101 int data_disks = imsm_num_data_members(dev, MAP_0);
9102
9103 targets = xmalloc(new_disks * sizeof(int));
9104
9105 for (i = 0; i < new_disks; i++)
9106 targets[i] = -1;
9107
9108 target_offsets = xcalloc(new_disks, sizeof(unsigned long long));
9109
9110 start = info->reshape_progress * 512;
9111 for (i = 0; i < new_disks; i++) {
9112 target_offsets[i] = (unsigned long long)
9113 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
9114 /* move back copy area adderss, it will be moved forward
9115 * in restore_stripes() using start input variable
9116 */
9117 target_offsets[i] -= start/data_disks;
9118 }
9119
9120 if (open_backup_targets(info, new_disks, targets,
9121 super, dev))
9122 goto abort;
9123
9124 dest_layout = imsm_level_to_layout(map_dest->raid_level);
9125 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9126
9127 if (restore_stripes(targets, /* list of dest devices */
9128 target_offsets, /* migration record offsets */
9129 new_disks,
9130 dest_chunk,
9131 map_dest->raid_level,
9132 dest_layout,
9133 -1, /* source backup file descriptor */
9134 0, /* input buf offset
9135 * always 0 buf is already offseted */
9136 start,
9137 length,
9138 buf) != 0) {
9139 pr_err("Error restoring stripes\n");
9140 goto abort;
9141 }
9142
9143 rv = 0;
9144
9145 abort:
9146 if (targets) {
9147 close_targets(targets, new_disks);
9148 free(targets);
9149 }
9150 free(target_offsets);
9151
9152 return rv;
9153 }
9154
9155 /*******************************************************************************
9156 * Function: save_checkpoint_imsm
9157 * Description: Function called for current unit status update
9158 * in the migration record. It writes it to disk.
9159 * Parameters:
9160 * super : imsm internal array info
9161 * info : general array info
9162 * Returns:
9163 * 0: success
9164 * 1: failure
9165 * 2: failure, means no valid migration record
9166 * / no general migration in progress /
9167 ******************************************************************************/
9168 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9169 {
9170 struct intel_super *super = st->sb;
9171 unsigned long long blocks_per_unit;
9172 unsigned long long curr_migr_unit;
9173
9174 if (load_imsm_migr_rec(super, info) != 0) {
9175 dprintf("imsm: ERROR: Cannot read migration record "
9176 "for checkpoint save.\n");
9177 return 1;
9178 }
9179
9180 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9181 if (blocks_per_unit == 0) {
9182 dprintf("imsm: no migration in progress.\n");
9183 return 2;
9184 }
9185 curr_migr_unit = info->reshape_progress / blocks_per_unit;
9186 /* check if array is alligned to copy area
9187 * if it is not alligned, add one to current migration unit value
9188 * this can happend on array reshape finish only
9189 */
9190 if (info->reshape_progress % blocks_per_unit)
9191 curr_migr_unit++;
9192
9193 super->migr_rec->curr_migr_unit =
9194 __cpu_to_le32(curr_migr_unit);
9195 super->migr_rec->rec_status = __cpu_to_le32(state);
9196 super->migr_rec->dest_1st_member_lba =
9197 __cpu_to_le32(curr_migr_unit *
9198 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
9199 if (write_imsm_migr_rec(st) < 0) {
9200 dprintf("imsm: Cannot write migration record "
9201 "outside backup area\n");
9202 return 1;
9203 }
9204
9205 return 0;
9206 }
9207
9208 /*******************************************************************************
9209 * Function: recover_backup_imsm
9210 * Description: Function recovers critical data from the Migration Copy Area
9211 * while assembling an array.
9212 * Parameters:
9213 * super : imsm internal array info
9214 * info : general array info
9215 * Returns:
9216 * 0 : success (or there is no data to recover)
9217 * 1 : fail
9218 ******************************************************************************/
9219 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9220 {
9221 struct intel_super *super = st->sb;
9222 struct migr_record *migr_rec = super->migr_rec;
9223 struct imsm_map *map_dest = NULL;
9224 struct intel_dev *id = NULL;
9225 unsigned long long read_offset;
9226 unsigned long long write_offset;
9227 unsigned unit_len;
9228 int *targets = NULL;
9229 int new_disks, i, err;
9230 char *buf = NULL;
9231 int retval = 1;
9232 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9233 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
9234 char buffer[20];
9235 int skipped_disks = 0;
9236
9237 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9238 if (err < 1)
9239 return 1;
9240
9241 /* recover data only during assemblation */
9242 if (strncmp(buffer, "inactive", 8) != 0)
9243 return 0;
9244 /* no data to recover */
9245 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9246 return 0;
9247 if (curr_migr_unit >= num_migr_units)
9248 return 1;
9249
9250 /* find device during reshape */
9251 for (id = super->devlist; id; id = id->next)
9252 if (is_gen_migration(id->dev))
9253 break;
9254 if (id == NULL)
9255 return 1;
9256
9257 map_dest = get_imsm_map(id->dev, MAP_0);
9258 new_disks = map_dest->num_members;
9259
9260 read_offset = (unsigned long long)
9261 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9262
9263 write_offset = ((unsigned long long)
9264 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
9265 pba_of_lba0(map_dest)) * 512;
9266
9267 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9268 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
9269 goto abort;
9270 targets = xcalloc(new_disks, sizeof(int));
9271
9272 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
9273 pr_err("Cannot open some devices belonging to array.\n");
9274 goto abort;
9275 }
9276
9277 for (i = 0; i < new_disks; i++) {
9278 if (targets[i] < 0) {
9279 skipped_disks++;
9280 continue;
9281 }
9282 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
9283 pr_err("Cannot seek to block: %s\n",
9284 strerror(errno));
9285 skipped_disks++;
9286 continue;
9287 }
9288 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
9289 pr_err("Cannot read copy area block: %s\n",
9290 strerror(errno));
9291 skipped_disks++;
9292 continue;
9293 }
9294 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
9295 pr_err("Cannot seek to block: %s\n",
9296 strerror(errno));
9297 skipped_disks++;
9298 continue;
9299 }
9300 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
9301 pr_err("Cannot restore block: %s\n",
9302 strerror(errno));
9303 skipped_disks++;
9304 continue;
9305 }
9306 }
9307
9308 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9309 new_disks,
9310 super,
9311 id->dev)) {
9312 pr_err("Cannot restore data from backup."
9313 " Too many failed disks\n");
9314 goto abort;
9315 }
9316
9317 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9318 /* ignore error == 2, this can mean end of reshape here
9319 */
9320 dprintf("imsm: Cannot write checkpoint to "
9321 "migration record (UNIT_SRC_NORMAL) during restart\n");
9322 } else
9323 retval = 0;
9324
9325 abort:
9326 if (targets) {
9327 for (i = 0; i < new_disks; i++)
9328 if (targets[i])
9329 close(targets[i]);
9330 free(targets);
9331 }
9332 free(buf);
9333 return retval;
9334 }
9335
9336 static char disk_by_path[] = "/dev/disk/by-path/";
9337
9338 static const char *imsm_get_disk_controller_domain(const char *path)
9339 {
9340 char disk_path[PATH_MAX];
9341 char *drv=NULL;
9342 struct stat st;
9343
9344 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
9345 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9346 if (stat(disk_path, &st) == 0) {
9347 struct sys_dev* hba;
9348 char *path=NULL;
9349
9350 path = devt_to_devpath(st.st_rdev);
9351 if (path == NULL)
9352 return "unknown";
9353 hba = find_disk_attached_hba(-1, path);
9354 if (hba && hba->type == SYS_DEV_SAS)
9355 drv = "isci";
9356 else if (hba && hba->type == SYS_DEV_SATA)
9357 drv = "ahci";
9358 else
9359 drv = "unknown";
9360 dprintf("path: %s hba: %s attached: %s\n",
9361 path, (hba) ? hba->path : "NULL", drv);
9362 free(path);
9363 if (hba)
9364 free_sys_dev(&hba);
9365 }
9366 return drv;
9367 }
9368
9369 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
9370 {
9371 char subdev_name[20];
9372 struct mdstat_ent *mdstat;
9373
9374 sprintf(subdev_name, "%d", subdev);
9375 mdstat = mdstat_by_subdev(subdev_name, container);
9376 if (!mdstat)
9377 return -1;
9378
9379 *minor = mdstat->devnum;
9380 free_mdstat(mdstat);
9381 return 0;
9382 }
9383
9384 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9385 struct geo_params *geo,
9386 int *old_raid_disks,
9387 int direction)
9388 {
9389 /* currently we only support increasing the number of devices
9390 * for a container. This increases the number of device for each
9391 * member array. They must all be RAID0 or RAID5.
9392 */
9393 int ret_val = 0;
9394 struct mdinfo *info, *member;
9395 int devices_that_can_grow = 0;
9396
9397 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
9398 "st->devnum = (%i)\n",
9399 st->devnum);
9400
9401 if (geo->size > 0 ||
9402 geo->level != UnSet ||
9403 geo->layout != UnSet ||
9404 geo->chunksize != 0 ||
9405 geo->raid_disks == UnSet) {
9406 dprintf("imsm: Container operation is allowed for "
9407 "raid disks number change only.\n");
9408 return ret_val;
9409 }
9410
9411 if (direction == ROLLBACK_METADATA_CHANGES) {
9412 dprintf("imsm: Metadata changes rollback is not supported for "
9413 "container operation.\n");
9414 return ret_val;
9415 }
9416
9417 info = container_content_imsm(st, NULL);
9418 for (member = info; member; member = member->next) {
9419 int result;
9420 int minor;
9421
9422 dprintf("imsm: checking device_num: %i\n",
9423 member->container_member);
9424
9425 if (geo->raid_disks <= member->array.raid_disks) {
9426 /* we work on container for Online Capacity Expansion
9427 * only so raid_disks has to grow
9428 */
9429 dprintf("imsm: for container operation raid disks "
9430 "increase is required\n");
9431 break;
9432 }
9433
9434 if ((info->array.level != 0) &&
9435 (info->array.level != 5)) {
9436 /* we cannot use this container with other raid level
9437 */
9438 dprintf("imsm: for container operation wrong"
9439 " raid level (%i) detected\n",
9440 info->array.level);
9441 break;
9442 } else {
9443 /* check for platform support
9444 * for this raid level configuration
9445 */
9446 struct intel_super *super = st->sb;
9447 if (!is_raid_level_supported(super->orom,
9448 member->array.level,
9449 geo->raid_disks)) {
9450 dprintf("platform does not support raid%d with"
9451 " %d disk%s\n",
9452 info->array.level,
9453 geo->raid_disks,
9454 geo->raid_disks > 1 ? "s" : "");
9455 break;
9456 }
9457 /* check if component size is aligned to chunk size
9458 */
9459 if (info->component_size %
9460 (info->array.chunk_size/512)) {
9461 dprintf("Component size is not aligned to "
9462 "chunk size\n");
9463 break;
9464 }
9465 }
9466
9467 if (*old_raid_disks &&
9468 info->array.raid_disks != *old_raid_disks)
9469 break;
9470 *old_raid_disks = info->array.raid_disks;
9471
9472 /* All raid5 and raid0 volumes in container
9473 * have to be ready for Online Capacity Expansion
9474 * so they need to be assembled. We have already
9475 * checked that no recovery etc is happening.
9476 */
9477 result = imsm_find_array_minor_by_subdev(member->container_member,
9478 st->container_dev,
9479 &minor);
9480 if (result < 0) {
9481 dprintf("imsm: cannot find array\n");
9482 break;
9483 }
9484 devices_that_can_grow++;
9485 }
9486 sysfs_free(info);
9487 if (!member && devices_that_can_grow)
9488 ret_val = 1;
9489
9490 if (ret_val)
9491 dprintf("\tContainer operation allowed\n");
9492 else
9493 dprintf("\tError: %i\n", ret_val);
9494
9495 return ret_val;
9496 }
9497
9498 /* Function: get_spares_for_grow
9499 * Description: Allocates memory and creates list of spare devices
9500 * avaliable in container. Checks if spare drive size is acceptable.
9501 * Parameters: Pointer to the supertype structure
9502 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
9503 * NULL if fail
9504 */
9505 static struct mdinfo *get_spares_for_grow(struct supertype *st)
9506 {
9507 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
9508 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
9509 }
9510
9511 /******************************************************************************
9512 * function: imsm_create_metadata_update_for_reshape
9513 * Function creates update for whole IMSM container.
9514 *
9515 ******************************************************************************/
9516 static int imsm_create_metadata_update_for_reshape(
9517 struct supertype *st,
9518 struct geo_params *geo,
9519 int old_raid_disks,
9520 struct imsm_update_reshape **updatep)
9521 {
9522 struct intel_super *super = st->sb;
9523 struct imsm_super *mpb = super->anchor;
9524 int update_memory_size = 0;
9525 struct imsm_update_reshape *u = NULL;
9526 struct mdinfo *spares = NULL;
9527 int i;
9528 int delta_disks = 0;
9529 struct mdinfo *dev;
9530
9531 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
9532 geo->raid_disks);
9533
9534 delta_disks = geo->raid_disks - old_raid_disks;
9535
9536 /* size of all update data without anchor */
9537 update_memory_size = sizeof(struct imsm_update_reshape);
9538
9539 /* now add space for spare disks that we need to add. */
9540 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9541
9542 u = xcalloc(1, update_memory_size);
9543 u->type = update_reshape_container_disks;
9544 u->old_raid_disks = old_raid_disks;
9545 u->new_raid_disks = geo->raid_disks;
9546
9547 /* now get spare disks list
9548 */
9549 spares = get_spares_for_grow(st);
9550
9551 if (spares == NULL
9552 || delta_disks > spares->array.spare_disks) {
9553 pr_err("imsm: ERROR: Cannot get spare devices "
9554 "for %s.\n", geo->dev_name);
9555 i = -1;
9556 goto abort;
9557 }
9558
9559 /* we have got spares
9560 * update disk list in imsm_disk list table in anchor
9561 */
9562 dprintf("imsm: %i spares are available.\n\n",
9563 spares->array.spare_disks);
9564
9565 dev = spares->devs;
9566 for (i = 0; i < delta_disks; i++) {
9567 struct dl *dl;
9568
9569 if (dev == NULL)
9570 break;
9571 u->new_disks[i] = makedev(dev->disk.major,
9572 dev->disk.minor);
9573 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
9574 dl->index = mpb->num_disks;
9575 mpb->num_disks++;
9576 dev = dev->next;
9577 }
9578
9579 abort:
9580 /* free spares
9581 */
9582 sysfs_free(spares);
9583
9584 dprintf("imsm: reshape update preparation :");
9585 if (i == delta_disks) {
9586 dprintf(" OK\n");
9587 *updatep = u;
9588 return update_memory_size;
9589 }
9590 free(u);
9591 dprintf(" Error\n");
9592
9593 return 0;
9594 }
9595
9596
9597 /******************************************************************************
9598 * function: imsm_create_metadata_update_for_size_change()
9599 * Creates update for IMSM array for array size change.
9600 *
9601 ******************************************************************************/
9602 static int imsm_create_metadata_update_for_size_change(
9603 struct supertype *st,
9604 struct geo_params *geo,
9605 struct imsm_update_size_change **updatep)
9606 {
9607 struct intel_super *super = st->sb;
9608 int update_memory_size = 0;
9609 struct imsm_update_size_change *u = NULL;
9610
9611 dprintf("imsm_create_metadata_update_for_size_change(enter)"
9612 " New size = %llu\n", geo->size);
9613
9614 /* size of all update data without anchor */
9615 update_memory_size = sizeof(struct imsm_update_size_change);
9616
9617 u = xcalloc(1, update_memory_size);
9618 u->type = update_size_change;
9619 u->subdev = super->current_vol;
9620 u->new_size = geo->size;
9621
9622 dprintf("imsm: reshape update preparation : OK\n");
9623 *updatep = u;
9624
9625 return update_memory_size;
9626 }
9627
9628 /******************************************************************************
9629 * function: imsm_create_metadata_update_for_migration()
9630 * Creates update for IMSM array.
9631 *
9632 ******************************************************************************/
9633 static int imsm_create_metadata_update_for_migration(
9634 struct supertype *st,
9635 struct geo_params *geo,
9636 struct imsm_update_reshape_migration **updatep)
9637 {
9638 struct intel_super *super = st->sb;
9639 int update_memory_size = 0;
9640 struct imsm_update_reshape_migration *u = NULL;
9641 struct imsm_dev *dev;
9642 int previous_level = -1;
9643
9644 dprintf("imsm_create_metadata_update_for_migration(enter)"
9645 " New Level = %i\n", geo->level);
9646
9647 /* size of all update data without anchor */
9648 update_memory_size = sizeof(struct imsm_update_reshape_migration);
9649
9650 u = xcalloc(1, update_memory_size);
9651 u->type = update_reshape_migration;
9652 u->subdev = super->current_vol;
9653 u->new_level = geo->level;
9654 u->new_layout = geo->layout;
9655 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
9656 u->new_disks[0] = -1;
9657 u->new_chunksize = -1;
9658
9659 dev = get_imsm_dev(super, u->subdev);
9660 if (dev) {
9661 struct imsm_map *map;
9662
9663 map = get_imsm_map(dev, MAP_0);
9664 if (map) {
9665 int current_chunk_size =
9666 __le16_to_cpu(map->blocks_per_strip) / 2;
9667
9668 if (geo->chunksize != current_chunk_size) {
9669 u->new_chunksize = geo->chunksize / 1024;
9670 dprintf("imsm: "
9671 "chunk size change from %i to %i\n",
9672 current_chunk_size, u->new_chunksize);
9673 }
9674 previous_level = map->raid_level;
9675 }
9676 }
9677 if ((geo->level == 5) && (previous_level == 0)) {
9678 struct mdinfo *spares = NULL;
9679
9680 u->new_raid_disks++;
9681 spares = get_spares_for_grow(st);
9682 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9683 free(u);
9684 sysfs_free(spares);
9685 update_memory_size = 0;
9686 dprintf("error: cannot get spare device "
9687 "for requested migration");
9688 return 0;
9689 }
9690 sysfs_free(spares);
9691 }
9692 dprintf("imsm: reshape update preparation : OK\n");
9693 *updatep = u;
9694
9695 return update_memory_size;
9696 }
9697
9698 static void imsm_update_metadata_locally(struct supertype *st,
9699 void *buf, int len)
9700 {
9701 struct metadata_update mu;
9702
9703 mu.buf = buf;
9704 mu.len = len;
9705 mu.space = NULL;
9706 mu.space_list = NULL;
9707 mu.next = NULL;
9708 imsm_prepare_update(st, &mu);
9709 imsm_process_update(st, &mu);
9710
9711 while (mu.space_list) {
9712 void **space = mu.space_list;
9713 mu.space_list = *space;
9714 free(space);
9715 }
9716 }
9717
9718 /***************************************************************************
9719 * Function: imsm_analyze_change
9720 * Description: Function analyze change for single volume
9721 * and validate if transition is supported
9722 * Parameters: Geometry parameters, supertype structure,
9723 * metadata change direction (apply/rollback)
9724 * Returns: Operation type code on success, -1 if fail
9725 ****************************************************************************/
9726 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9727 struct geo_params *geo,
9728 int direction)
9729 {
9730 struct mdinfo info;
9731 int change = -1;
9732 int check_devs = 0;
9733 int chunk;
9734 /* number of added/removed disks in operation result */
9735 int devNumChange = 0;
9736 /* imsm compatible layout value for array geometry verification */
9737 int imsm_layout = -1;
9738 int data_disks;
9739 struct imsm_dev *dev;
9740 struct intel_super *super;
9741 unsigned long long current_size;
9742 unsigned long long free_size;
9743 unsigned long long max_size;
9744 int rv;
9745
9746 getinfo_super_imsm_volume(st, &info, NULL);
9747 if ((geo->level != info.array.level) &&
9748 (geo->level >= 0) &&
9749 (geo->level != UnSet)) {
9750 switch (info.array.level) {
9751 case 0:
9752 if (geo->level == 5) {
9753 change = CH_MIGRATION;
9754 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
9755 pr_err("Error. Requested Layout "
9756 "not supported (left-asymmetric layout "
9757 "is supported only)!\n");
9758 change = -1;
9759 goto analyse_change_exit;
9760 }
9761 imsm_layout = geo->layout;
9762 check_devs = 1;
9763 devNumChange = 1; /* parity disk added */
9764 } else if (geo->level == 10) {
9765 change = CH_TAKEOVER;
9766 check_devs = 1;
9767 devNumChange = 2; /* two mirrors added */
9768 imsm_layout = 0x102; /* imsm supported layout */
9769 }
9770 break;
9771 case 1:
9772 case 10:
9773 if (geo->level == 0) {
9774 change = CH_TAKEOVER;
9775 check_devs = 1;
9776 devNumChange = -(geo->raid_disks/2);
9777 imsm_layout = 0; /* imsm raid0 layout */
9778 }
9779 break;
9780 }
9781 if (change == -1) {
9782 pr_err("Error. Level Migration from %d to %d "
9783 "not supported!\n",
9784 info.array.level, geo->level);
9785 goto analyse_change_exit;
9786 }
9787 } else
9788 geo->level = info.array.level;
9789
9790 if ((geo->layout != info.array.layout)
9791 && ((geo->layout != UnSet) && (geo->layout != -1))) {
9792 change = CH_MIGRATION;
9793 if ((info.array.layout == 0)
9794 && (info.array.level == 5)
9795 && (geo->layout == 5)) {
9796 /* reshape 5 -> 4 */
9797 } else if ((info.array.layout == 5)
9798 && (info.array.level == 5)
9799 && (geo->layout == 0)) {
9800 /* reshape 4 -> 5 */
9801 geo->layout = 0;
9802 geo->level = 5;
9803 } else {
9804 pr_err("Error. Layout Migration from %d to %d "
9805 "not supported!\n",
9806 info.array.layout, geo->layout);
9807 change = -1;
9808 goto analyse_change_exit;
9809 }
9810 } else {
9811 geo->layout = info.array.layout;
9812 if (imsm_layout == -1)
9813 imsm_layout = info.array.layout;
9814 }
9815
9816 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
9817 && (geo->chunksize != info.array.chunk_size))
9818 change = CH_MIGRATION;
9819 else
9820 geo->chunksize = info.array.chunk_size;
9821
9822 chunk = geo->chunksize / 1024;
9823
9824 super = st->sb;
9825 dev = get_imsm_dev(super, super->current_vol);
9826 data_disks = imsm_num_data_members(dev , MAP_0);
9827 /* compute current size per disk member
9828 */
9829 current_size = info.custom_array_size / data_disks;
9830
9831 if ((geo->size > 0) && (geo->size != MAX_SIZE)) {
9832 /* align component size
9833 */
9834 geo->size = imsm_component_size_aligment_check(
9835 get_imsm_raid_level(dev->vol.map),
9836 chunk * 1024,
9837 geo->size * 2);
9838 if (geo->size == 0) {
9839 pr_err("Error. Size expansion is " \
9840 "supported only (current size is %llu, " \
9841 "requested size /rounded/ is 0).\n",
9842 current_size);
9843 goto analyse_change_exit;
9844 }
9845 }
9846
9847 if ((current_size != geo->size) && (geo->size > 0)) {
9848 if (change != -1) {
9849 pr_err("Error. Size change should be the only "
9850 "one at a time.\n");
9851 change = -1;
9852 goto analyse_change_exit;
9853 }
9854 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
9855 pr_err("Error. The last volume in container "
9856 "can be expanded only (%i/%i).\n",
9857 super->current_vol, st->devnum);
9858 goto analyse_change_exit;
9859 }
9860 /* check the maximum available size
9861 */
9862 rv = imsm_get_free_size(st, dev->vol.map->num_members,
9863 0, chunk, &free_size);
9864 if (rv == 0)
9865 /* Cannot find maximum available space
9866 */
9867 max_size = 0;
9868 else {
9869 max_size = free_size + current_size;
9870 /* align component size
9871 */
9872 max_size = imsm_component_size_aligment_check(
9873 get_imsm_raid_level(dev->vol.map),
9874 chunk * 1024,
9875 max_size);
9876 }
9877 if (geo->size == MAX_SIZE) {
9878 /* requested size change to the maximum available size
9879 */
9880 if (max_size == 0) {
9881 pr_err("Error. Cannot find "
9882 "maximum available space.\n");
9883 change = -1;
9884 goto analyse_change_exit;
9885 } else
9886 geo->size = max_size;
9887 }
9888
9889 if ((direction == ROLLBACK_METADATA_CHANGES)) {
9890 /* accept size for rollback only
9891 */
9892 } else {
9893 /* round size due to metadata compatibility
9894 */
9895 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
9896 << SECT_PER_MB_SHIFT;
9897 dprintf("Prepare update for size change to %llu\n",
9898 geo->size );
9899 if (current_size >= geo->size) {
9900 pr_err("Error. Size expansion is "
9901 "supported only (current size is %llu, "
9902 "requested size /rounded/ is %llu).\n",
9903 current_size, geo->size);
9904 goto analyse_change_exit;
9905 }
9906 if (max_size && geo->size > max_size) {
9907 pr_err("Error. Requested size is larger "
9908 "than maximum available size (maximum "
9909 "available size is %llu, "
9910 "requested size /rounded/ is %llu).\n",
9911 max_size, geo->size);
9912 goto analyse_change_exit;
9913 }
9914 }
9915 geo->size *= data_disks;
9916 geo->raid_disks = dev->vol.map->num_members;
9917 change = CH_ARRAY_SIZE;
9918 }
9919 if (!validate_geometry_imsm(st,
9920 geo->level,
9921 imsm_layout,
9922 geo->raid_disks + devNumChange,
9923 &chunk,
9924 geo->size, INVALID_SECTORS,
9925 0, 0, 1))
9926 change = -1;
9927
9928 if (check_devs) {
9929 struct intel_super *super = st->sb;
9930 struct imsm_super *mpb = super->anchor;
9931
9932 if (mpb->num_raid_devs > 1) {
9933 pr_err("Error. Cannot perform operation on %s"
9934 "- for this operation it MUST be single "
9935 "array in container\n",
9936 geo->dev_name);
9937 change = -1;
9938 }
9939 }
9940
9941 analyse_change_exit:
9942 if ((direction == ROLLBACK_METADATA_CHANGES) &&
9943 ((change == CH_MIGRATION) || (change == CH_TAKEOVER))) {
9944 dprintf("imsm: Metadata changes rollback is not supported for "
9945 "migration and takeover operations.\n");
9946 change = -1;
9947 }
9948 return change;
9949 }
9950
9951 int imsm_takeover(struct supertype *st, struct geo_params *geo)
9952 {
9953 struct intel_super *super = st->sb;
9954 struct imsm_update_takeover *u;
9955
9956 u = xmalloc(sizeof(struct imsm_update_takeover));
9957
9958 u->type = update_takeover;
9959 u->subarray = super->current_vol;
9960
9961 /* 10->0 transition */
9962 if (geo->level == 0)
9963 u->direction = R10_TO_R0;
9964
9965 /* 0->10 transition */
9966 if (geo->level == 10)
9967 u->direction = R0_TO_R10;
9968
9969 /* update metadata locally */
9970 imsm_update_metadata_locally(st, u,
9971 sizeof(struct imsm_update_takeover));
9972 /* and possibly remotely */
9973 if (st->update_tail)
9974 append_metadata_update(st, u,
9975 sizeof(struct imsm_update_takeover));
9976 else
9977 free(u);
9978
9979 return 0;
9980 }
9981
9982 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
9983 int level,
9984 int layout, int chunksize, int raid_disks,
9985 int delta_disks, char *backup, char *dev,
9986 int direction, int verbose)
9987 {
9988 int ret_val = 1;
9989 struct geo_params geo;
9990
9991 dprintf("imsm: reshape_super called.\n");
9992
9993 memset(&geo, 0, sizeof(struct geo_params));
9994
9995 geo.dev_name = dev;
9996 geo.dev_id = st->devnum;
9997 geo.size = size;
9998 geo.level = level;
9999 geo.layout = layout;
10000 geo.chunksize = chunksize;
10001 geo.raid_disks = raid_disks;
10002 if (delta_disks != UnSet)
10003 geo.raid_disks += delta_disks;
10004
10005 dprintf("\tfor level : %i\n", geo.level);
10006 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
10007
10008 if (experimental() == 0)
10009 return ret_val;
10010
10011 if (st->container_dev == st->devnum) {
10012 /* On container level we can only increase number of devices. */
10013 dprintf("imsm: info: Container operation\n");
10014 int old_raid_disks = 0;
10015
10016 if (imsm_reshape_is_allowed_on_container(
10017 st, &geo, &old_raid_disks, direction)) {
10018 struct imsm_update_reshape *u = NULL;
10019 int len;
10020
10021 len = imsm_create_metadata_update_for_reshape(
10022 st, &geo, old_raid_disks, &u);
10023
10024 if (len <= 0) {
10025 dprintf("imsm: Cannot prepare update\n");
10026 goto exit_imsm_reshape_super;
10027 }
10028
10029 ret_val = 0;
10030 /* update metadata locally */
10031 imsm_update_metadata_locally(st, u, len);
10032 /* and possibly remotely */
10033 if (st->update_tail)
10034 append_metadata_update(st, u, len);
10035 else
10036 free(u);
10037
10038 } else {
10039 pr_err("(imsm) Operation "
10040 "is not allowed on this container\n");
10041 }
10042 } else {
10043 /* On volume level we support following operations
10044 * - takeover: raid10 -> raid0; raid0 -> raid10
10045 * - chunk size migration
10046 * - migration: raid5 -> raid0; raid0 -> raid5
10047 */
10048 struct intel_super *super = st->sb;
10049 struct intel_dev *dev = super->devlist;
10050 int change, devnum;
10051 dprintf("imsm: info: Volume operation\n");
10052 /* find requested device */
10053 while (dev) {
10054 if (imsm_find_array_minor_by_subdev(
10055 dev->index, st->container_dev, &devnum) == 0
10056 && devnum == geo.dev_id)
10057 break;
10058 dev = dev->next;
10059 }
10060 if (dev == NULL) {
10061 pr_err("Cannot find %s (%i) subarray\n",
10062 geo.dev_name, geo.dev_id);
10063 goto exit_imsm_reshape_super;
10064 }
10065 super->current_vol = dev->index;
10066 change = imsm_analyze_change(st, &geo, direction);
10067 switch (change) {
10068 case CH_TAKEOVER:
10069 ret_val = imsm_takeover(st, &geo);
10070 break;
10071 case CH_MIGRATION: {
10072 struct imsm_update_reshape_migration *u = NULL;
10073 int len =
10074 imsm_create_metadata_update_for_migration(
10075 st, &geo, &u);
10076 if (len < 1) {
10077 dprintf("imsm: "
10078 "Cannot prepare update\n");
10079 break;
10080 }
10081 ret_val = 0;
10082 /* update metadata locally */
10083 imsm_update_metadata_locally(st, u, len);
10084 /* and possibly remotely */
10085 if (st->update_tail)
10086 append_metadata_update(st, u, len);
10087 else
10088 free(u);
10089 }
10090 break;
10091 case CH_ARRAY_SIZE: {
10092 struct imsm_update_size_change *u = NULL;
10093 int len =
10094 imsm_create_metadata_update_for_size_change(
10095 st, &geo, &u);
10096 if (len < 1) {
10097 dprintf("imsm: "
10098 "Cannot prepare update\n");
10099 break;
10100 }
10101 ret_val = 0;
10102 /* update metadata locally */
10103 imsm_update_metadata_locally(st, u, len);
10104 /* and possibly remotely */
10105 if (st->update_tail)
10106 append_metadata_update(st, u, len);
10107 else
10108 free(u);
10109 }
10110 break;
10111 default:
10112 ret_val = 1;
10113 }
10114 }
10115
10116 exit_imsm_reshape_super:
10117 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
10118 return ret_val;
10119 }
10120
10121 /*******************************************************************************
10122 * Function: wait_for_reshape_imsm
10123 * Description: Function writes new sync_max value and waits until
10124 * reshape process reach new position
10125 * Parameters:
10126 * sra : general array info
10127 * ndata : number of disks in new array's layout
10128 * Returns:
10129 * 0 : success,
10130 * 1 : there is no reshape in progress,
10131 * -1 : fail
10132 ******************************************************************************/
10133 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
10134 {
10135 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
10136 unsigned long long completed;
10137 /* to_complete : new sync_max position */
10138 unsigned long long to_complete = sra->reshape_progress;
10139 unsigned long long position_to_set = to_complete / ndata;
10140
10141 if (fd < 0) {
10142 dprintf("imsm: wait_for_reshape_imsm() "
10143 "cannot open reshape_position\n");
10144 return 1;
10145 }
10146
10147 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10148 dprintf("imsm: wait_for_reshape_imsm() "
10149 "cannot read reshape_position (no reshape in progres)\n");
10150 close(fd);
10151 return 0;
10152 }
10153
10154 if (completed > to_complete) {
10155 dprintf("imsm: wait_for_reshape_imsm() "
10156 "wrong next position to set %llu (%llu)\n",
10157 to_complete, completed);
10158 close(fd);
10159 return -1;
10160 }
10161 dprintf("Position set: %llu\n", position_to_set);
10162 if (sysfs_set_num(sra, NULL, "sync_max",
10163 position_to_set) != 0) {
10164 dprintf("imsm: wait_for_reshape_imsm() "
10165 "cannot set reshape position to %llu\n",
10166 position_to_set);
10167 close(fd);
10168 return -1;
10169 }
10170
10171 do {
10172 char action[20];
10173 fd_set rfds;
10174 FD_ZERO(&rfds);
10175 FD_SET(fd, &rfds);
10176 select(fd+1, &rfds, NULL, NULL, NULL);
10177 if (sysfs_get_str(sra, NULL, "sync_action",
10178 action, 20) > 0 &&
10179 strncmp(action, "reshape", 7) != 0)
10180 break;
10181 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10182 dprintf("imsm: wait_for_reshape_imsm() "
10183 "cannot read reshape_position (in loop)\n");
10184 close(fd);
10185 return 1;
10186 }
10187 } while (completed < to_complete);
10188 close(fd);
10189 return 0;
10190
10191 }
10192
10193 /*******************************************************************************
10194 * Function: check_degradation_change
10195 * Description: Check that array hasn't become failed.
10196 * Parameters:
10197 * info : for sysfs access
10198 * sources : source disks descriptors
10199 * degraded: previous degradation level
10200 * Returns:
10201 * degradation level
10202 ******************************************************************************/
10203 int check_degradation_change(struct mdinfo *info,
10204 int *sources,
10205 int degraded)
10206 {
10207 unsigned long long new_degraded;
10208 int rv;
10209
10210 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10211 if ((rv == -1) || (new_degraded != (unsigned long long)degraded)) {
10212 /* check each device to ensure it is still working */
10213 struct mdinfo *sd;
10214 new_degraded = 0;
10215 for (sd = info->devs ; sd ; sd = sd->next) {
10216 if (sd->disk.state & (1<<MD_DISK_FAULTY))
10217 continue;
10218 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10219 char sbuf[20];
10220 if (sysfs_get_str(info,
10221 sd, "state", sbuf, 20) < 0 ||
10222 strstr(sbuf, "faulty") ||
10223 strstr(sbuf, "in_sync") == NULL) {
10224 /* this device is dead */
10225 sd->disk.state = (1<<MD_DISK_FAULTY);
10226 if (sd->disk.raid_disk >= 0 &&
10227 sources[sd->disk.raid_disk] >= 0) {
10228 close(sources[
10229 sd->disk.raid_disk]);
10230 sources[sd->disk.raid_disk] =
10231 -1;
10232 }
10233 new_degraded++;
10234 }
10235 }
10236 }
10237 }
10238
10239 return new_degraded;
10240 }
10241
10242 /*******************************************************************************
10243 * Function: imsm_manage_reshape
10244 * Description: Function finds array under reshape and it manages reshape
10245 * process. It creates stripes backups (if required) and sets
10246 * checheckpoits.
10247 * Parameters:
10248 * afd : Backup handle (nattive) - not used
10249 * sra : general array info
10250 * reshape : reshape parameters - not used
10251 * st : supertype structure
10252 * blocks : size of critical section [blocks]
10253 * fds : table of source device descriptor
10254 * offsets : start of array (offest per devices)
10255 * dests : not used
10256 * destfd : table of destination device descriptor
10257 * destoffsets : table of destination offsets (per device)
10258 * Returns:
10259 * 1 : success, reshape is done
10260 * 0 : fail
10261 ******************************************************************************/
10262 static int imsm_manage_reshape(
10263 int afd, struct mdinfo *sra, struct reshape *reshape,
10264 struct supertype *st, unsigned long backup_blocks,
10265 int *fds, unsigned long long *offsets,
10266 int dests, int *destfd, unsigned long long *destoffsets)
10267 {
10268 int ret_val = 0;
10269 struct intel_super *super = st->sb;
10270 struct intel_dev *dv = NULL;
10271 struct imsm_dev *dev = NULL;
10272 struct imsm_map *map_src;
10273 int migr_vol_qan = 0;
10274 int ndata, odata; /* [bytes] */
10275 int chunk; /* [bytes] */
10276 struct migr_record *migr_rec;
10277 char *buf = NULL;
10278 unsigned int buf_size; /* [bytes] */
10279 unsigned long long max_position; /* array size [bytes] */
10280 unsigned long long next_step; /* [blocks]/[bytes] */
10281 unsigned long long old_data_stripe_length;
10282 unsigned long long start_src; /* [bytes] */
10283 unsigned long long start; /* [bytes] */
10284 unsigned long long start_buf_shift; /* [bytes] */
10285 int degraded = 0;
10286 int source_layout = 0;
10287
10288 if (!fds || !offsets || !sra)
10289 goto abort;
10290
10291 /* Find volume during the reshape */
10292 for (dv = super->devlist; dv; dv = dv->next) {
10293 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10294 && dv->dev->vol.migr_state == 1) {
10295 dev = dv->dev;
10296 migr_vol_qan++;
10297 }
10298 }
10299 /* Only one volume can migrate at the same time */
10300 if (migr_vol_qan != 1) {
10301 pr_err(": %s", migr_vol_qan ?
10302 "Number of migrating volumes greater than 1\n" :
10303 "There is no volume during migrationg\n");
10304 goto abort;
10305 }
10306
10307 map_src = get_imsm_map(dev, MAP_1);
10308 if (map_src == NULL)
10309 goto abort;
10310
10311 ndata = imsm_num_data_members(dev, MAP_0);
10312 odata = imsm_num_data_members(dev, MAP_1);
10313
10314 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10315 old_data_stripe_length = odata * chunk;
10316
10317 migr_rec = super->migr_rec;
10318
10319 /* initialize migration record for start condition */
10320 if (sra->reshape_progress == 0)
10321 init_migr_record_imsm(st, dev, sra);
10322 else {
10323 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
10324 dprintf("imsm: cannot restart migration when data "
10325 "are present in copy area.\n");
10326 goto abort;
10327 }
10328 /* Save checkpoint to update migration record for current
10329 * reshape position (in md). It can be farther than current
10330 * reshape position in metadata.
10331 */
10332 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10333 /* ignore error == 2, this can mean end of reshape here
10334 */
10335 dprintf("imsm: Cannot write checkpoint to "
10336 "migration record (UNIT_SRC_NORMAL, "
10337 "initial save)\n");
10338 goto abort;
10339 }
10340 }
10341
10342 /* size for data */
10343 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10344 /* extend buffer size for parity disk */
10345 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10346 /* add space for stripe aligment */
10347 buf_size += old_data_stripe_length;
10348 if (posix_memalign((void **)&buf, 4096, buf_size)) {
10349 dprintf("imsm: Cannot allocate checpoint buffer\n");
10350 goto abort;
10351 }
10352
10353 max_position = sra->component_size * ndata;
10354 source_layout = imsm_level_to_layout(map_src->raid_level);
10355
10356 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10357 __le32_to_cpu(migr_rec->num_migr_units)) {
10358 /* current reshape position [blocks] */
10359 unsigned long long current_position =
10360 __le32_to_cpu(migr_rec->blocks_per_unit)
10361 * __le32_to_cpu(migr_rec->curr_migr_unit);
10362 unsigned long long border;
10363
10364 /* Check that array hasn't become failed.
10365 */
10366 degraded = check_degradation_change(sra, fds, degraded);
10367 if (degraded > 1) {
10368 dprintf("imsm: Abort reshape due to degradation"
10369 " level (%i)\n", degraded);
10370 goto abort;
10371 }
10372
10373 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10374
10375 if ((current_position + next_step) > max_position)
10376 next_step = max_position - current_position;
10377
10378 start = current_position * 512;
10379
10380 /* allign reading start to old geometry */
10381 start_buf_shift = start % old_data_stripe_length;
10382 start_src = start - start_buf_shift;
10383
10384 border = (start_src / odata) - (start / ndata);
10385 border /= 512;
10386 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10387 /* save critical stripes to buf
10388 * start - start address of current unit
10389 * to backup [bytes]
10390 * start_src - start address of current unit
10391 * to backup alligned to source array
10392 * [bytes]
10393 */
10394 unsigned long long next_step_filler = 0;
10395 unsigned long long copy_length = next_step * 512;
10396
10397 /* allign copy area length to stripe in old geometry */
10398 next_step_filler = ((copy_length + start_buf_shift)
10399 % old_data_stripe_length);
10400 if (next_step_filler)
10401 next_step_filler = (old_data_stripe_length
10402 - next_step_filler);
10403 dprintf("save_stripes() parameters: start = %llu,"
10404 "\tstart_src = %llu,\tnext_step*512 = %llu,"
10405 "\tstart_in_buf_shift = %llu,"
10406 "\tnext_step_filler = %llu\n",
10407 start, start_src, copy_length,
10408 start_buf_shift, next_step_filler);
10409
10410 if (save_stripes(fds, offsets, map_src->num_members,
10411 chunk, map_src->raid_level,
10412 source_layout, 0, NULL, start_src,
10413 copy_length +
10414 next_step_filler + start_buf_shift,
10415 buf)) {
10416 dprintf("imsm: Cannot save stripes"
10417 " to buffer\n");
10418 goto abort;
10419 }
10420 /* Convert data to destination format and store it
10421 * in backup general migration area
10422 */
10423 if (save_backup_imsm(st, dev, sra,
10424 buf + start_buf_shift, copy_length)) {
10425 dprintf("imsm: Cannot save stripes to "
10426 "target devices\n");
10427 goto abort;
10428 }
10429 if (save_checkpoint_imsm(st, sra,
10430 UNIT_SRC_IN_CP_AREA)) {
10431 dprintf("imsm: Cannot write checkpoint to "
10432 "migration record (UNIT_SRC_IN_CP_AREA)\n");
10433 goto abort;
10434 }
10435 } else {
10436 /* set next step to use whole border area */
10437 border /= next_step;
10438 if (border > 1)
10439 next_step *= border;
10440 }
10441 /* When data backed up, checkpoint stored,
10442 * kick the kernel to reshape unit of data
10443 */
10444 next_step = next_step + sra->reshape_progress;
10445 /* limit next step to array max position */
10446 if (next_step > max_position)
10447 next_step = max_position;
10448 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10449 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
10450 sra->reshape_progress = next_step;
10451
10452 /* wait until reshape finish */
10453 if (wait_for_reshape_imsm(sra, ndata) < 0) {
10454 dprintf("wait_for_reshape_imsm returned error!\n");
10455 goto abort;
10456 }
10457
10458 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10459 /* ignore error == 2, this can mean end of reshape here
10460 */
10461 dprintf("imsm: Cannot write checkpoint to "
10462 "migration record (UNIT_SRC_NORMAL)\n");
10463 goto abort;
10464 }
10465
10466 }
10467
10468 /* return '1' if done */
10469 ret_val = 1;
10470 abort:
10471 free(buf);
10472 abort_reshape(sra);
10473
10474 return ret_val;
10475 }
10476 #endif /* MDASSEMBLE */
10477
10478 struct superswitch super_imsm = {
10479 #ifndef MDASSEMBLE
10480 .examine_super = examine_super_imsm,
10481 .brief_examine_super = brief_examine_super_imsm,
10482 .brief_examine_subarrays = brief_examine_subarrays_imsm,
10483 .export_examine_super = export_examine_super_imsm,
10484 .detail_super = detail_super_imsm,
10485 .brief_detail_super = brief_detail_super_imsm,
10486 .write_init_super = write_init_super_imsm,
10487 .validate_geometry = validate_geometry_imsm,
10488 .add_to_super = add_to_super_imsm,
10489 .remove_from_super = remove_from_super_imsm,
10490 .detail_platform = detail_platform_imsm,
10491 .export_detail_platform = export_detail_platform_imsm,
10492 .kill_subarray = kill_subarray_imsm,
10493 .update_subarray = update_subarray_imsm,
10494 .load_container = load_container_imsm,
10495 .default_geometry = default_geometry_imsm,
10496 .get_disk_controller_domain = imsm_get_disk_controller_domain,
10497 .reshape_super = imsm_reshape_super,
10498 .manage_reshape = imsm_manage_reshape,
10499 .recover_backup = recover_backup_imsm,
10500 #endif
10501 .match_home = match_home_imsm,
10502 .uuid_from_super= uuid_from_super_imsm,
10503 .getinfo_super = getinfo_super_imsm,
10504 .getinfo_super_disks = getinfo_super_disks_imsm,
10505 .update_super = update_super_imsm,
10506
10507 .avail_size = avail_size_imsm,
10508 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
10509
10510 .compare_super = compare_super_imsm,
10511
10512 .load_super = load_super_imsm,
10513 .init_super = init_super_imsm,
10514 .store_super = store_super_imsm,
10515 .free_super = free_super_imsm,
10516 .match_metadata_desc = match_metadata_desc_imsm,
10517 .container_content = container_content_imsm,
10518
10519
10520 .external = 1,
10521 .name = "imsm",
10522
10523 #ifndef MDASSEMBLE
10524 /* for mdmon */
10525 .open_new = imsm_open_new,
10526 .set_array_state= imsm_set_array_state,
10527 .set_disk = imsm_set_disk,
10528 .sync_metadata = imsm_sync_metadata,
10529 .activate_spare = imsm_activate_spare,
10530 .process_update = imsm_process_update,
10531 .prepare_update = imsm_prepare_update,
10532 #endif /* MDASSEMBLE */
10533 };