]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: fix: rebuild does not continue after reboot
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
106 #define IMSM_DISK_FILLERS 3
107 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
108 };
109
110 /* map selector for map managment
111 */
112 #define MAP_0 0
113 #define MAP_1 1
114 #define MAP_X -1
115
116 /* RAID map configuration infos. */
117 struct imsm_map {
118 __u32 pba_of_lba0_lo; /* start address of partition */
119 __u32 blocks_per_member_lo;/* blocks per member */
120 __u32 num_data_stripes_lo; /* number of data stripes */
121 __u16 blocks_per_strip;
122 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
123 #define IMSM_T_STATE_NORMAL 0
124 #define IMSM_T_STATE_UNINITIALIZED 1
125 #define IMSM_T_STATE_DEGRADED 2
126 #define IMSM_T_STATE_FAILED 3
127 __u8 raid_level;
128 #define IMSM_T_RAID0 0
129 #define IMSM_T_RAID1 1
130 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
131 __u8 num_members; /* number of member disks */
132 __u8 num_domains; /* number of parity domains */
133 __u8 failed_disk_num; /* valid only when state is degraded */
134 __u8 ddf;
135 __u32 pba_of_lba0_hi;
136 __u32 blocks_per_member_hi;
137 __u32 num_data_stripes_hi;
138 __u32 filler[4]; /* expansion area */
139 #define IMSM_ORD_REBUILD (1 << 24)
140 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
141 * top byte contains some flags
142 */
143 } __attribute__ ((packed));
144
145 struct imsm_vol {
146 __u32 curr_migr_unit;
147 __u32 checkpoint_id; /* id to access curr_migr_unit */
148 __u8 migr_state; /* Normal or Migrating */
149 #define MIGR_INIT 0
150 #define MIGR_REBUILD 1
151 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
152 #define MIGR_GEN_MIGR 3
153 #define MIGR_STATE_CHANGE 4
154 #define MIGR_REPAIR 5
155 __u8 migr_type; /* Initializing, Rebuilding, ... */
156 __u8 dirty;
157 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
158 __u16 verify_errors; /* number of mismatches */
159 __u16 bad_blocks; /* number of bad blocks during verify */
160 __u32 filler[4];
161 struct imsm_map map[1];
162 /* here comes another one if migr_state */
163 } __attribute__ ((packed));
164
165 struct imsm_dev {
166 __u8 volume[MAX_RAID_SERIAL_LEN];
167 __u32 size_low;
168 __u32 size_high;
169 #define DEV_BOOTABLE __cpu_to_le32(0x01)
170 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
171 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
172 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
173 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
174 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
175 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
176 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
177 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
178 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
179 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
180 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
181 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
182 __u32 status; /* Persistent RaidDev status */
183 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
184 __u8 migr_priority;
185 __u8 num_sub_vols;
186 __u8 tid;
187 __u8 cng_master_disk;
188 __u16 cache_policy;
189 __u8 cng_state;
190 __u8 cng_sub_state;
191 #define IMSM_DEV_FILLERS 10
192 __u32 filler[IMSM_DEV_FILLERS];
193 struct imsm_vol vol;
194 } __attribute__ ((packed));
195
196 struct imsm_super {
197 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
198 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
199 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
200 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
201 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
202 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
203 __u32 attributes; /* 0x34 - 0x37 */
204 __u8 num_disks; /* 0x38 Number of configured disks */
205 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
206 __u8 error_log_pos; /* 0x3A */
207 __u8 fill[1]; /* 0x3B */
208 __u32 cache_size; /* 0x3c - 0x40 in mb */
209 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
210 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
211 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
212 #define IMSM_FILLERS 35
213 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
214 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
215 /* here comes imsm_dev[num_raid_devs] */
216 /* here comes BBM logs */
217 } __attribute__ ((packed));
218
219 #define BBM_LOG_MAX_ENTRIES 254
220
221 struct bbm_log_entry {
222 __u64 defective_block_start;
223 #define UNREADABLE 0xFFFFFFFF
224 __u32 spare_block_offset;
225 __u16 remapped_marked_count;
226 __u16 disk_ordinal;
227 } __attribute__ ((__packed__));
228
229 struct bbm_log {
230 __u32 signature; /* 0xABADB10C */
231 __u32 entry_count;
232 __u32 reserved_spare_block_count; /* 0 */
233 __u32 reserved; /* 0xFFFF */
234 __u64 first_spare_lba;
235 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
236 } __attribute__ ((__packed__));
237
238
239 #ifndef MDASSEMBLE
240 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
241 #endif
242
243 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
244
245 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
246
247 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
248 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
249 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
250 */
251
252
253 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
254 * be recovered using srcMap */
255 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
256 * already been migrated and must
257 * be recovered from checkpoint area */
258 struct migr_record {
259 __u32 rec_status; /* Status used to determine how to restart
260 * migration in case it aborts
261 * in some fashion */
262 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
263 __u32 family_num; /* Family number of MPB
264 * containing the RaidDev
265 * that is migrating */
266 __u32 ascending_migr; /* True if migrating in increasing
267 * order of lbas */
268 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
269 __u32 dest_depth_per_unit; /* Num member blocks each destMap
270 * member disk
271 * advances per unit-of-operation */
272 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
273 __u32 dest_1st_member_lba; /* First member lba on first
274 * stripe of destination */
275 __u32 num_migr_units; /* Total num migration units-of-op */
276 __u32 post_migr_vol_cap; /* Size of volume after
277 * migration completes */
278 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
279 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
280 * migration ckpt record was read from
281 * (for recovered migrations) */
282 } __attribute__ ((__packed__));
283
284 struct md_list {
285 /* usage marker:
286 * 1: load metadata
287 * 2: metadata does not match
288 * 4: already checked
289 */
290 int used;
291 char *devname;
292 int found;
293 int container;
294 dev_t st_rdev;
295 struct md_list *next;
296 };
297
298 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
299
300 static __u8 migr_type(struct imsm_dev *dev)
301 {
302 if (dev->vol.migr_type == MIGR_VERIFY &&
303 dev->status & DEV_VERIFY_AND_FIX)
304 return MIGR_REPAIR;
305 else
306 return dev->vol.migr_type;
307 }
308
309 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
310 {
311 /* for compatibility with older oroms convert MIGR_REPAIR, into
312 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
313 */
314 if (migr_type == MIGR_REPAIR) {
315 dev->vol.migr_type = MIGR_VERIFY;
316 dev->status |= DEV_VERIFY_AND_FIX;
317 } else {
318 dev->vol.migr_type = migr_type;
319 dev->status &= ~DEV_VERIFY_AND_FIX;
320 }
321 }
322
323 static unsigned int sector_count(__u32 bytes)
324 {
325 return ROUND_UP(bytes, 512) / 512;
326 }
327
328 static unsigned int mpb_sectors(struct imsm_super *mpb)
329 {
330 return sector_count(__le32_to_cpu(mpb->mpb_size));
331 }
332
333 struct intel_dev {
334 struct imsm_dev *dev;
335 struct intel_dev *next;
336 unsigned index;
337 };
338
339 struct intel_hba {
340 enum sys_dev_type type;
341 char *path;
342 char *pci_id;
343 struct intel_hba *next;
344 };
345
346 enum action {
347 DISK_REMOVE = 1,
348 DISK_ADD
349 };
350 /* internal representation of IMSM metadata */
351 struct intel_super {
352 union {
353 void *buf; /* O_DIRECT buffer for reading/writing metadata */
354 struct imsm_super *anchor; /* immovable parameters */
355 };
356 union {
357 void *migr_rec_buf; /* buffer for I/O operations */
358 struct migr_record *migr_rec; /* migration record */
359 };
360 int clean_migration_record_by_mdmon; /* when reshape is switched to next
361 array, it indicates that mdmon is allowed to clean migration
362 record */
363 size_t len; /* size of the 'buf' allocation */
364 void *next_buf; /* for realloc'ing buf from the manager */
365 size_t next_len;
366 int updates_pending; /* count of pending updates for mdmon */
367 int current_vol; /* index of raid device undergoing creation */
368 unsigned long long create_offset; /* common start for 'current_vol' */
369 __u32 random; /* random data for seeding new family numbers */
370 struct intel_dev *devlist;
371 struct dl {
372 struct dl *next;
373 int index;
374 __u8 serial[MAX_RAID_SERIAL_LEN];
375 int major, minor;
376 char *devname;
377 struct imsm_disk disk;
378 int fd;
379 int extent_cnt;
380 struct extent *e; /* for determining freespace @ create */
381 int raiddisk; /* slot to fill in autolayout */
382 enum action action;
383 } *disks, *current_disk;
384 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
385 active */
386 struct dl *missing; /* disks removed while we weren't looking */
387 struct bbm_log *bbm_log;
388 struct intel_hba *hba; /* device path of the raid controller for this metadata */
389 const struct imsm_orom *orom; /* platform firmware support */
390 struct intel_super *next; /* (temp) list for disambiguating family_num */
391 };
392
393 struct intel_disk {
394 struct imsm_disk disk;
395 #define IMSM_UNKNOWN_OWNER (-1)
396 int owner;
397 struct intel_disk *next;
398 };
399
400 struct extent {
401 unsigned long long start, size;
402 };
403
404 /* definitions of reshape process types */
405 enum imsm_reshape_type {
406 CH_TAKEOVER,
407 CH_MIGRATION,
408 CH_ARRAY_SIZE,
409 };
410
411 /* definition of messages passed to imsm_process_update */
412 enum imsm_update_type {
413 update_activate_spare,
414 update_create_array,
415 update_kill_array,
416 update_rename_array,
417 update_add_remove_disk,
418 update_reshape_container_disks,
419 update_reshape_migration,
420 update_takeover,
421 update_general_migration_checkpoint,
422 update_size_change,
423 };
424
425 struct imsm_update_activate_spare {
426 enum imsm_update_type type;
427 struct dl *dl;
428 int slot;
429 int array;
430 struct imsm_update_activate_spare *next;
431 };
432
433 struct geo_params {
434 int dev_id;
435 char *dev_name;
436 long long size;
437 int level;
438 int layout;
439 int chunksize;
440 int raid_disks;
441 };
442
443 enum takeover_direction {
444 R10_TO_R0,
445 R0_TO_R10
446 };
447 struct imsm_update_takeover {
448 enum imsm_update_type type;
449 int subarray;
450 enum takeover_direction direction;
451 };
452
453 struct imsm_update_reshape {
454 enum imsm_update_type type;
455 int old_raid_disks;
456 int new_raid_disks;
457
458 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
459 };
460
461 struct imsm_update_reshape_migration {
462 enum imsm_update_type type;
463 int old_raid_disks;
464 int new_raid_disks;
465 /* fields for array migration changes
466 */
467 int subdev;
468 int new_level;
469 int new_layout;
470 int new_chunksize;
471
472 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
473 };
474
475 struct imsm_update_size_change {
476 enum imsm_update_type type;
477 int subdev;
478 long long new_size;
479 };
480
481 struct imsm_update_general_migration_checkpoint {
482 enum imsm_update_type type;
483 __u32 curr_migr_unit;
484 };
485
486 struct disk_info {
487 __u8 serial[MAX_RAID_SERIAL_LEN];
488 };
489
490 struct imsm_update_create_array {
491 enum imsm_update_type type;
492 int dev_idx;
493 struct imsm_dev dev;
494 };
495
496 struct imsm_update_kill_array {
497 enum imsm_update_type type;
498 int dev_idx;
499 };
500
501 struct imsm_update_rename_array {
502 enum imsm_update_type type;
503 __u8 name[MAX_RAID_SERIAL_LEN];
504 int dev_idx;
505 };
506
507 struct imsm_update_add_remove_disk {
508 enum imsm_update_type type;
509 };
510
511
512 static const char *_sys_dev_type[] = {
513 [SYS_DEV_UNKNOWN] = "Unknown",
514 [SYS_DEV_SAS] = "SAS",
515 [SYS_DEV_SATA] = "SATA"
516 };
517
518 const char *get_sys_dev_type(enum sys_dev_type type)
519 {
520 if (type >= SYS_DEV_MAX)
521 type = SYS_DEV_UNKNOWN;
522
523 return _sys_dev_type[type];
524 }
525
526 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
527 {
528 struct intel_hba *result = malloc(sizeof(*result));
529 if (result) {
530 result->type = device->type;
531 result->path = strdup(device->path);
532 result->next = NULL;
533 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
534 result->pci_id++;
535 }
536 return result;
537 }
538
539 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
540 {
541 struct intel_hba *result=NULL;
542 for (result = hba; result; result = result->next) {
543 if (result->type == device->type && strcmp(result->path, device->path) == 0)
544 break;
545 }
546 return result;
547 }
548
549 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
550 {
551 struct intel_hba *hba;
552
553 /* check if disk attached to Intel HBA */
554 hba = find_intel_hba(super->hba, device);
555 if (hba != NULL)
556 return 1;
557 /* Check if HBA is already attached to super */
558 if (super->hba == NULL) {
559 super->hba = alloc_intel_hba(device);
560 return 1;
561 }
562
563 hba = super->hba;
564 /* Intel metadata allows for all disks attached to the same type HBA.
565 * Do not sypport odf HBA types mixing
566 */
567 if (device->type != hba->type)
568 return 2;
569
570 while (hba->next)
571 hba = hba->next;
572
573 hba->next = alloc_intel_hba(device);
574 return 1;
575 }
576
577 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
578 {
579 struct sys_dev *list, *elem, *prev;
580 char *disk_path;
581
582 if ((list = find_intel_devices()) == NULL)
583 return 0;
584
585 if (fd < 0)
586 disk_path = (char *) devname;
587 else
588 disk_path = diskfd_to_devpath(fd);
589
590 if (!disk_path) {
591 free_sys_dev(&list);
592 return 0;
593 }
594
595 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
596 if (path_attached_to_hba(disk_path, elem->path)) {
597 if (prev == NULL)
598 list = list->next;
599 else
600 prev->next = elem->next;
601 elem->next = NULL;
602 if (disk_path != devname)
603 free(disk_path);
604 free_sys_dev(&list);
605 return elem;
606 }
607 }
608 if (disk_path != devname)
609 free(disk_path);
610 free_sys_dev(&list);
611
612 return NULL;
613 }
614
615
616 static int find_intel_hba_capability(int fd, struct intel_super *super,
617 char *devname);
618
619 static struct supertype *match_metadata_desc_imsm(char *arg)
620 {
621 struct supertype *st;
622
623 if (strcmp(arg, "imsm") != 0 &&
624 strcmp(arg, "default") != 0
625 )
626 return NULL;
627
628 st = malloc(sizeof(*st));
629 if (!st)
630 return NULL;
631 memset(st, 0, sizeof(*st));
632 st->container_dev = NoMdDev;
633 st->ss = &super_imsm;
634 st->max_devs = IMSM_MAX_DEVICES;
635 st->minor_version = 0;
636 st->sb = NULL;
637 return st;
638 }
639
640 #ifndef MDASSEMBLE
641 static __u8 *get_imsm_version(struct imsm_super *mpb)
642 {
643 return &mpb->sig[MPB_SIG_LEN];
644 }
645 #endif
646
647 /* retrieve a disk directly from the anchor when the anchor is known to be
648 * up-to-date, currently only at load time
649 */
650 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
651 {
652 if (index >= mpb->num_disks)
653 return NULL;
654 return &mpb->disk[index];
655 }
656
657 /* retrieve the disk description based on a index of the disk
658 * in the sub-array
659 */
660 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
661 {
662 struct dl *d;
663
664 for (d = super->disks; d; d = d->next)
665 if (d->index == index)
666 return d;
667
668 return NULL;
669 }
670 /* retrieve a disk from the parsed metadata */
671 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
672 {
673 struct dl *dl;
674
675 dl = get_imsm_dl_disk(super, index);
676 if (dl)
677 return &dl->disk;
678
679 return NULL;
680 }
681
682 /* generate a checksum directly from the anchor when the anchor is known to be
683 * up-to-date, currently only at load or write_super after coalescing
684 */
685 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
686 {
687 __u32 end = mpb->mpb_size / sizeof(end);
688 __u32 *p = (__u32 *) mpb;
689 __u32 sum = 0;
690
691 while (end--) {
692 sum += __le32_to_cpu(*p);
693 p++;
694 }
695
696 return sum - __le32_to_cpu(mpb->check_sum);
697 }
698
699 static size_t sizeof_imsm_map(struct imsm_map *map)
700 {
701 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
702 }
703
704 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
705 {
706 /* A device can have 2 maps if it is in the middle of a migration.
707 * If second_map is:
708 * MAP_0 - we return the first map
709 * MAP_1 - we return the second map if it exists, else NULL
710 * MAP_X - we return the second map if it exists, else the first
711 */
712 struct imsm_map *map = &dev->vol.map[0];
713 struct imsm_map *map2 = NULL;
714
715 if (dev->vol.migr_state)
716 map2 = (void *)map + sizeof_imsm_map(map);
717
718 switch (second_map) {
719 case MAP_0:
720 break;
721 case MAP_1:
722 map = map2;
723 break;
724 case MAP_X:
725 if (map2)
726 map = map2;
727 break;
728 default:
729 map = NULL;
730 }
731 return map;
732
733 }
734
735 /* return the size of the device.
736 * migr_state increases the returned size if map[0] were to be duplicated
737 */
738 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
739 {
740 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
741 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
742
743 /* migrating means an additional map */
744 if (dev->vol.migr_state)
745 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
746 else if (migr_state)
747 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
748
749 return size;
750 }
751
752 #ifndef MDASSEMBLE
753 /* retrieve disk serial number list from a metadata update */
754 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
755 {
756 void *u = update;
757 struct disk_info *inf;
758
759 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
760 sizeof_imsm_dev(&update->dev, 0);
761
762 return inf;
763 }
764 #endif
765
766 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
767 {
768 int offset;
769 int i;
770 void *_mpb = mpb;
771
772 if (index >= mpb->num_raid_devs)
773 return NULL;
774
775 /* devices start after all disks */
776 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
777
778 for (i = 0; i <= index; i++)
779 if (i == index)
780 return _mpb + offset;
781 else
782 offset += sizeof_imsm_dev(_mpb + offset, 0);
783
784 return NULL;
785 }
786
787 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
788 {
789 struct intel_dev *dv;
790
791 if (index >= super->anchor->num_raid_devs)
792 return NULL;
793 for (dv = super->devlist; dv; dv = dv->next)
794 if (dv->index == index)
795 return dv->dev;
796 return NULL;
797 }
798
799 /*
800 * for second_map:
801 * == MAP_0 get first map
802 * == MAP_1 get second map
803 * == MAP_X than get map according to the current migr_state
804 */
805 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
806 int slot,
807 int second_map)
808 {
809 struct imsm_map *map;
810
811 map = get_imsm_map(dev, second_map);
812
813 /* top byte identifies disk under rebuild */
814 return __le32_to_cpu(map->disk_ord_tbl[slot]);
815 }
816
817 #define ord_to_idx(ord) (((ord) << 8) >> 8)
818 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
819 {
820 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
821
822 return ord_to_idx(ord);
823 }
824
825 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
826 {
827 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
828 }
829
830 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
831 {
832 int slot;
833 __u32 ord;
834
835 for (slot = 0; slot < map->num_members; slot++) {
836 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
837 if (ord_to_idx(ord) == idx)
838 return slot;
839 }
840
841 return -1;
842 }
843
844 static int get_imsm_raid_level(struct imsm_map *map)
845 {
846 if (map->raid_level == 1) {
847 if (map->num_members == 2)
848 return 1;
849 else
850 return 10;
851 }
852
853 return map->raid_level;
854 }
855
856 static int cmp_extent(const void *av, const void *bv)
857 {
858 const struct extent *a = av;
859 const struct extent *b = bv;
860 if (a->start < b->start)
861 return -1;
862 if (a->start > b->start)
863 return 1;
864 return 0;
865 }
866
867 static int count_memberships(struct dl *dl, struct intel_super *super)
868 {
869 int memberships = 0;
870 int i;
871
872 for (i = 0; i < super->anchor->num_raid_devs; i++) {
873 struct imsm_dev *dev = get_imsm_dev(super, i);
874 struct imsm_map *map = get_imsm_map(dev, MAP_0);
875
876 if (get_imsm_disk_slot(map, dl->index) >= 0)
877 memberships++;
878 }
879
880 return memberships;
881 }
882
883 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
884
885 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
886 {
887 if (lo == 0 || hi == 0)
888 return 1;
889 *lo = __le32_to_cpu((unsigned)n);
890 *hi = __le32_to_cpu((unsigned)(n >> 32));
891 return 0;
892 }
893
894 static unsigned long long join_u32(__u32 lo, __u32 hi)
895 {
896 return (unsigned long long)__le32_to_cpu(lo) |
897 (((unsigned long long)__le32_to_cpu(hi)) << 32);
898 }
899
900 static unsigned long long total_blocks(struct imsm_disk *disk)
901 {
902 if (disk == NULL)
903 return 0;
904 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
905 }
906
907 static unsigned long long pba_of_lba0(struct imsm_map *map)
908 {
909 if (map == NULL)
910 return 0;
911 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
912 }
913
914 static unsigned long long blocks_per_member(struct imsm_map *map)
915 {
916 if (map == NULL)
917 return 0;
918 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
919 }
920
921 #ifndef MDASSEMBLE
922 static unsigned long long num_data_stripes(struct imsm_map *map)
923 {
924 if (map == NULL)
925 return 0;
926 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
927 }
928
929 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
930 {
931 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
932 }
933 #endif
934
935 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
936 {
937 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
938 }
939
940 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
941 {
942 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
943 }
944
945 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
946 {
947 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
948 }
949
950 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
951 {
952 /* find a list of used extents on the given physical device */
953 struct extent *rv, *e;
954 int i;
955 int memberships = count_memberships(dl, super);
956 __u32 reservation;
957
958 /* trim the reserved area for spares, so they can join any array
959 * regardless of whether the OROM has assigned sectors from the
960 * IMSM_RESERVED_SECTORS region
961 */
962 if (dl->index == -1)
963 reservation = imsm_min_reserved_sectors(super);
964 else
965 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
966
967 rv = malloc(sizeof(struct extent) * (memberships + 1));
968 if (!rv)
969 return NULL;
970 e = rv;
971
972 for (i = 0; i < super->anchor->num_raid_devs; i++) {
973 struct imsm_dev *dev = get_imsm_dev(super, i);
974 struct imsm_map *map = get_imsm_map(dev, MAP_0);
975
976 if (get_imsm_disk_slot(map, dl->index) >= 0) {
977 e->start = pba_of_lba0(map);
978 e->size = blocks_per_member(map);
979 e++;
980 }
981 }
982 qsort(rv, memberships, sizeof(*rv), cmp_extent);
983
984 /* determine the start of the metadata
985 * when no raid devices are defined use the default
986 * ...otherwise allow the metadata to truncate the value
987 * as is the case with older versions of imsm
988 */
989 if (memberships) {
990 struct extent *last = &rv[memberships - 1];
991 unsigned long long remainder;
992
993 remainder = total_blocks(&dl->disk) - (last->start + last->size);
994 /* round down to 1k block to satisfy precision of the kernel
995 * 'size' interface
996 */
997 remainder &= ~1UL;
998 /* make sure remainder is still sane */
999 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
1000 remainder = ROUND_UP(super->len, 512) >> 9;
1001 if (reservation > remainder)
1002 reservation = remainder;
1003 }
1004 e->start = total_blocks(&dl->disk) - reservation;
1005 e->size = 0;
1006 return rv;
1007 }
1008
1009 /* try to determine how much space is reserved for metadata from
1010 * the last get_extents() entry, otherwise fallback to the
1011 * default
1012 */
1013 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1014 {
1015 struct extent *e;
1016 int i;
1017 __u32 rv;
1018
1019 /* for spares just return a minimal reservation which will grow
1020 * once the spare is picked up by an array
1021 */
1022 if (dl->index == -1)
1023 return MPB_SECTOR_CNT;
1024
1025 e = get_extents(super, dl);
1026 if (!e)
1027 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1028
1029 /* scroll to last entry */
1030 for (i = 0; e[i].size; i++)
1031 continue;
1032
1033 rv = total_blocks(&dl->disk) - e[i].start;
1034
1035 free(e);
1036
1037 return rv;
1038 }
1039
1040 static int is_spare(struct imsm_disk *disk)
1041 {
1042 return (disk->status & SPARE_DISK) == SPARE_DISK;
1043 }
1044
1045 static int is_configured(struct imsm_disk *disk)
1046 {
1047 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1048 }
1049
1050 static int is_failed(struct imsm_disk *disk)
1051 {
1052 return (disk->status & FAILED_DISK) == FAILED_DISK;
1053 }
1054
1055 /* try to determine how much space is reserved for metadata from
1056 * the last get_extents() entry on the smallest active disk,
1057 * otherwise fallback to the default
1058 */
1059 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1060 {
1061 struct extent *e;
1062 int i;
1063 unsigned long long min_active;
1064 __u32 remainder;
1065 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1066 struct dl *dl, *dl_min = NULL;
1067
1068 if (!super)
1069 return rv;
1070
1071 min_active = 0;
1072 for (dl = super->disks; dl; dl = dl->next) {
1073 if (dl->index < 0)
1074 continue;
1075 unsigned long long blocks = total_blocks(&dl->disk);
1076 if (blocks < min_active || min_active == 0) {
1077 dl_min = dl;
1078 min_active = blocks;
1079 }
1080 }
1081 if (!dl_min)
1082 return rv;
1083
1084 /* find last lba used by subarrays on the smallest active disk */
1085 e = get_extents(super, dl_min);
1086 if (!e)
1087 return rv;
1088 for (i = 0; e[i].size; i++)
1089 continue;
1090
1091 remainder = min_active - e[i].start;
1092 free(e);
1093
1094 /* to give priority to recovery we should not require full
1095 IMSM_RESERVED_SECTORS from the spare */
1096 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1097
1098 /* if real reservation is smaller use that value */
1099 return (remainder < rv) ? remainder : rv;
1100 }
1101
1102 /* Return minimum size of a spare that can be used in this array*/
1103 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1104 {
1105 struct intel_super *super = st->sb;
1106 struct dl *dl;
1107 struct extent *e;
1108 int i;
1109 unsigned long long rv = 0;
1110
1111 if (!super)
1112 return rv;
1113 /* find first active disk in array */
1114 dl = super->disks;
1115 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1116 dl = dl->next;
1117 if (!dl)
1118 return rv;
1119 /* find last lba used by subarrays */
1120 e = get_extents(super, dl);
1121 if (!e)
1122 return rv;
1123 for (i = 0; e[i].size; i++)
1124 continue;
1125 if (i > 0)
1126 rv = e[i-1].start + e[i-1].size;
1127 free(e);
1128
1129 /* add the amount of space needed for metadata */
1130 rv = rv + imsm_min_reserved_sectors(super);
1131
1132 return rv * 512;
1133 }
1134
1135 static int is_gen_migration(struct imsm_dev *dev);
1136
1137 #ifndef MDASSEMBLE
1138 static __u64 blocks_per_migr_unit(struct intel_super *super,
1139 struct imsm_dev *dev);
1140
1141 static void print_imsm_dev(struct intel_super *super,
1142 struct imsm_dev *dev,
1143 char *uuid,
1144 int disk_idx)
1145 {
1146 __u64 sz;
1147 int slot, i;
1148 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1149 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1150 __u32 ord;
1151
1152 printf("\n");
1153 printf("[%.16s]:\n", dev->volume);
1154 printf(" UUID : %s\n", uuid);
1155 printf(" RAID Level : %d", get_imsm_raid_level(map));
1156 if (map2)
1157 printf(" <-- %d", get_imsm_raid_level(map2));
1158 printf("\n");
1159 printf(" Members : %d", map->num_members);
1160 if (map2)
1161 printf(" <-- %d", map2->num_members);
1162 printf("\n");
1163 printf(" Slots : [");
1164 for (i = 0; i < map->num_members; i++) {
1165 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1166 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1167 }
1168 printf("]");
1169 if (map2) {
1170 printf(" <-- [");
1171 for (i = 0; i < map2->num_members; i++) {
1172 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1173 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1174 }
1175 printf("]");
1176 }
1177 printf("\n");
1178 printf(" Failed disk : ");
1179 if (map->failed_disk_num == 0xff)
1180 printf("none");
1181 else
1182 printf("%i", map->failed_disk_num);
1183 printf("\n");
1184 slot = get_imsm_disk_slot(map, disk_idx);
1185 if (slot >= 0) {
1186 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1187 printf(" This Slot : %d%s\n", slot,
1188 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1189 } else
1190 printf(" This Slot : ?\n");
1191 sz = __le32_to_cpu(dev->size_high);
1192 sz <<= 32;
1193 sz += __le32_to_cpu(dev->size_low);
1194 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1195 human_size(sz * 512));
1196 sz = blocks_per_member(map);
1197 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1198 human_size(sz * 512));
1199 printf(" Sector Offset : %llu\n",
1200 pba_of_lba0(map));
1201 printf(" Num Stripes : %llu\n",
1202 num_data_stripes(map));
1203 printf(" Chunk Size : %u KiB",
1204 __le16_to_cpu(map->blocks_per_strip) / 2);
1205 if (map2)
1206 printf(" <-- %u KiB",
1207 __le16_to_cpu(map2->blocks_per_strip) / 2);
1208 printf("\n");
1209 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1210 printf(" Migrate State : ");
1211 if (dev->vol.migr_state) {
1212 if (migr_type(dev) == MIGR_INIT)
1213 printf("initialize\n");
1214 else if (migr_type(dev) == MIGR_REBUILD)
1215 printf("rebuild\n");
1216 else if (migr_type(dev) == MIGR_VERIFY)
1217 printf("check\n");
1218 else if (migr_type(dev) == MIGR_GEN_MIGR)
1219 printf("general migration\n");
1220 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1221 printf("state change\n");
1222 else if (migr_type(dev) == MIGR_REPAIR)
1223 printf("repair\n");
1224 else
1225 printf("<unknown:%d>\n", migr_type(dev));
1226 } else
1227 printf("idle\n");
1228 printf(" Map State : %s", map_state_str[map->map_state]);
1229 if (dev->vol.migr_state) {
1230 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1231
1232 printf(" <-- %s", map_state_str[map->map_state]);
1233 printf("\n Checkpoint : %u ",
1234 __le32_to_cpu(dev->vol.curr_migr_unit));
1235 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
1236 printf("(N/A)");
1237 else
1238 printf("(%llu)", (unsigned long long)
1239 blocks_per_migr_unit(super, dev));
1240 }
1241 printf("\n");
1242 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1243 }
1244
1245 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1246 {
1247 char str[MAX_RAID_SERIAL_LEN + 1];
1248 __u64 sz;
1249
1250 if (index < -1 || !disk)
1251 return;
1252
1253 printf("\n");
1254 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1255 if (index >= 0)
1256 printf(" Disk%02d Serial : %s\n", index, str);
1257 else
1258 printf(" Disk Serial : %s\n", str);
1259 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1260 is_configured(disk) ? " active" : "",
1261 is_failed(disk) ? " failed" : "");
1262 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1263 sz = total_blocks(disk) - reserved;
1264 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1265 human_size(sz * 512));
1266 }
1267
1268 void examine_migr_rec_imsm(struct intel_super *super)
1269 {
1270 struct migr_record *migr_rec = super->migr_rec;
1271 struct imsm_super *mpb = super->anchor;
1272 int i;
1273
1274 for (i = 0; i < mpb->num_raid_devs; i++) {
1275 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1276 struct imsm_map *map;
1277 int slot = -1;
1278
1279 if (is_gen_migration(dev) == 0)
1280 continue;
1281
1282 printf("\nMigration Record Information:");
1283
1284 /* first map under migration */
1285 map = get_imsm_map(dev, MAP_0);
1286 if (map)
1287 slot = get_imsm_disk_slot(map, super->disks->index);
1288 if ((map == NULL) || (slot > 1) || (slot < 0)) {
1289 printf(" Empty\n ");
1290 printf("Examine one of first two disks in array\n");
1291 break;
1292 }
1293 printf("\n Status : ");
1294 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1295 printf("Normal\n");
1296 else
1297 printf("Contains Data\n");
1298 printf(" Current Unit : %u\n",
1299 __le32_to_cpu(migr_rec->curr_migr_unit));
1300 printf(" Family : %u\n",
1301 __le32_to_cpu(migr_rec->family_num));
1302 printf(" Ascending : %u\n",
1303 __le32_to_cpu(migr_rec->ascending_migr));
1304 printf(" Blocks Per Unit : %u\n",
1305 __le32_to_cpu(migr_rec->blocks_per_unit));
1306 printf(" Dest. Depth Per Unit : %u\n",
1307 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1308 printf(" Checkpoint Area pba : %u\n",
1309 __le32_to_cpu(migr_rec->ckpt_area_pba));
1310 printf(" First member lba : %u\n",
1311 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1312 printf(" Total Number of Units : %u\n",
1313 __le32_to_cpu(migr_rec->num_migr_units));
1314 printf(" Size of volume : %u\n",
1315 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1316 printf(" Expansion space for LBA64 : %u\n",
1317 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1318 printf(" Record was read from : %u\n",
1319 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1320
1321 break;
1322 }
1323 }
1324 #endif /* MDASSEMBLE */
1325 /*******************************************************************************
1326 * function: imsm_check_attributes
1327 * Description: Function checks if features represented by attributes flags
1328 * are supported by mdadm.
1329 * Parameters:
1330 * attributes - Attributes read from metadata
1331 * Returns:
1332 * 0 - passed attributes contains unsupported features flags
1333 * 1 - all features are supported
1334 ******************************************************************************/
1335 static int imsm_check_attributes(__u32 attributes)
1336 {
1337 int ret_val = 1;
1338 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1339
1340 not_supported &= ~MPB_ATTRIB_IGNORED;
1341
1342 not_supported &= attributes;
1343 if (not_supported) {
1344 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1345 (unsigned)__le32_to_cpu(not_supported));
1346 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1347 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1348 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1349 }
1350 if (not_supported & MPB_ATTRIB_2TB) {
1351 dprintf("\t\tMPB_ATTRIB_2TB\n");
1352 not_supported ^= MPB_ATTRIB_2TB;
1353 }
1354 if (not_supported & MPB_ATTRIB_RAID0) {
1355 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1356 not_supported ^= MPB_ATTRIB_RAID0;
1357 }
1358 if (not_supported & MPB_ATTRIB_RAID1) {
1359 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1360 not_supported ^= MPB_ATTRIB_RAID1;
1361 }
1362 if (not_supported & MPB_ATTRIB_RAID10) {
1363 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1364 not_supported ^= MPB_ATTRIB_RAID10;
1365 }
1366 if (not_supported & MPB_ATTRIB_RAID1E) {
1367 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1368 not_supported ^= MPB_ATTRIB_RAID1E;
1369 }
1370 if (not_supported & MPB_ATTRIB_RAID5) {
1371 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1372 not_supported ^= MPB_ATTRIB_RAID5;
1373 }
1374 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1375 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1376 not_supported ^= MPB_ATTRIB_RAIDCNG;
1377 }
1378 if (not_supported & MPB_ATTRIB_BBM) {
1379 dprintf("\t\tMPB_ATTRIB_BBM\n");
1380 not_supported ^= MPB_ATTRIB_BBM;
1381 }
1382 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1383 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1384 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1385 }
1386 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1387 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1388 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1389 }
1390 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1391 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1392 not_supported ^= MPB_ATTRIB_2TB_DISK;
1393 }
1394 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1395 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1396 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1397 }
1398 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1399 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1400 not_supported ^= MPB_ATTRIB_NEVER_USE;
1401 }
1402
1403 if (not_supported)
1404 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1405
1406 ret_val = 0;
1407 }
1408
1409 return ret_val;
1410 }
1411
1412 #ifndef MDASSEMBLE
1413 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1414
1415 static void examine_super_imsm(struct supertype *st, char *homehost)
1416 {
1417 struct intel_super *super = st->sb;
1418 struct imsm_super *mpb = super->anchor;
1419 char str[MAX_SIGNATURE_LENGTH];
1420 int i;
1421 struct mdinfo info;
1422 char nbuf[64];
1423 __u32 sum;
1424 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1425 struct dl *dl;
1426
1427 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1428 printf(" Magic : %s\n", str);
1429 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1430 printf(" Version : %s\n", get_imsm_version(mpb));
1431 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1432 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1433 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1434 printf(" Attributes : ");
1435 if (imsm_check_attributes(mpb->attributes))
1436 printf("All supported\n");
1437 else
1438 printf("not supported\n");
1439 getinfo_super_imsm(st, &info, NULL);
1440 fname_from_uuid(st, &info, nbuf, ':');
1441 printf(" UUID : %s\n", nbuf + 5);
1442 sum = __le32_to_cpu(mpb->check_sum);
1443 printf(" Checksum : %08x %s\n", sum,
1444 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1445 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1446 printf(" Disks : %d\n", mpb->num_disks);
1447 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1448 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1449 if (super->bbm_log) {
1450 struct bbm_log *log = super->bbm_log;
1451
1452 printf("\n");
1453 printf("Bad Block Management Log:\n");
1454 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1455 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1456 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1457 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1458 printf(" First Spare : %llx\n",
1459 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1460 }
1461 for (i = 0; i < mpb->num_raid_devs; i++) {
1462 struct mdinfo info;
1463 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1464
1465 super->current_vol = i;
1466 getinfo_super_imsm(st, &info, NULL);
1467 fname_from_uuid(st, &info, nbuf, ':');
1468 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1469 }
1470 for (i = 0; i < mpb->num_disks; i++) {
1471 if (i == super->disks->index)
1472 continue;
1473 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1474 }
1475
1476 for (dl = super->disks; dl; dl = dl->next)
1477 if (dl->index == -1)
1478 print_imsm_disk(&dl->disk, -1, reserved);
1479
1480 examine_migr_rec_imsm(super);
1481 }
1482
1483 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1484 {
1485 /* We just write a generic IMSM ARRAY entry */
1486 struct mdinfo info;
1487 char nbuf[64];
1488 struct intel_super *super = st->sb;
1489
1490 if (!super->anchor->num_raid_devs) {
1491 printf("ARRAY metadata=imsm\n");
1492 return;
1493 }
1494
1495 getinfo_super_imsm(st, &info, NULL);
1496 fname_from_uuid(st, &info, nbuf, ':');
1497 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1498 }
1499
1500 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1501 {
1502 /* We just write a generic IMSM ARRAY entry */
1503 struct mdinfo info;
1504 char nbuf[64];
1505 char nbuf1[64];
1506 struct intel_super *super = st->sb;
1507 int i;
1508
1509 if (!super->anchor->num_raid_devs)
1510 return;
1511
1512 getinfo_super_imsm(st, &info, NULL);
1513 fname_from_uuid(st, &info, nbuf, ':');
1514 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1515 struct imsm_dev *dev = get_imsm_dev(super, i);
1516
1517 super->current_vol = i;
1518 getinfo_super_imsm(st, &info, NULL);
1519 fname_from_uuid(st, &info, nbuf1, ':');
1520 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1521 dev->volume, nbuf + 5, i, nbuf1 + 5);
1522 }
1523 }
1524
1525 static void export_examine_super_imsm(struct supertype *st)
1526 {
1527 struct intel_super *super = st->sb;
1528 struct imsm_super *mpb = super->anchor;
1529 struct mdinfo info;
1530 char nbuf[64];
1531
1532 getinfo_super_imsm(st, &info, NULL);
1533 fname_from_uuid(st, &info, nbuf, ':');
1534 printf("MD_METADATA=imsm\n");
1535 printf("MD_LEVEL=container\n");
1536 printf("MD_UUID=%s\n", nbuf+5);
1537 printf("MD_DEVICES=%u\n", mpb->num_disks);
1538 }
1539
1540 static void detail_super_imsm(struct supertype *st, char *homehost)
1541 {
1542 struct mdinfo info;
1543 char nbuf[64];
1544
1545 getinfo_super_imsm(st, &info, NULL);
1546 fname_from_uuid(st, &info, nbuf, ':');
1547 printf("\n UUID : %s\n", nbuf + 5);
1548 }
1549
1550 static void brief_detail_super_imsm(struct supertype *st)
1551 {
1552 struct mdinfo info;
1553 char nbuf[64];
1554 getinfo_super_imsm(st, &info, NULL);
1555 fname_from_uuid(st, &info, nbuf, ':');
1556 printf(" UUID=%s", nbuf + 5);
1557 }
1558
1559 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1560 static void fd2devname(int fd, char *name);
1561
1562 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1563 {
1564 /* dump an unsorted list of devices attached to AHCI Intel storage
1565 * controller, as well as non-connected ports
1566 */
1567 int hba_len = strlen(hba_path) + 1;
1568 struct dirent *ent;
1569 DIR *dir;
1570 char *path = NULL;
1571 int err = 0;
1572 unsigned long port_mask = (1 << port_count) - 1;
1573
1574 if (port_count > (int)sizeof(port_mask) * 8) {
1575 if (verbose)
1576 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1577 return 2;
1578 }
1579
1580 /* scroll through /sys/dev/block looking for devices attached to
1581 * this hba
1582 */
1583 dir = opendir("/sys/dev/block");
1584 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1585 int fd;
1586 char model[64];
1587 char vendor[64];
1588 char buf[1024];
1589 int major, minor;
1590 char *device;
1591 char *c;
1592 int port;
1593 int type;
1594
1595 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1596 continue;
1597 path = devt_to_devpath(makedev(major, minor));
1598 if (!path)
1599 continue;
1600 if (!path_attached_to_hba(path, hba_path)) {
1601 free(path);
1602 path = NULL;
1603 continue;
1604 }
1605
1606 /* retrieve the scsi device type */
1607 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1608 if (verbose)
1609 fprintf(stderr, Name ": failed to allocate 'device'\n");
1610 err = 2;
1611 break;
1612 }
1613 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1614 if (load_sys(device, buf) != 0) {
1615 if (verbose)
1616 fprintf(stderr, Name ": failed to read device type for %s\n",
1617 path);
1618 err = 2;
1619 free(device);
1620 break;
1621 }
1622 type = strtoul(buf, NULL, 10);
1623
1624 /* if it's not a disk print the vendor and model */
1625 if (!(type == 0 || type == 7 || type == 14)) {
1626 vendor[0] = '\0';
1627 model[0] = '\0';
1628 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1629 if (load_sys(device, buf) == 0) {
1630 strncpy(vendor, buf, sizeof(vendor));
1631 vendor[sizeof(vendor) - 1] = '\0';
1632 c = (char *) &vendor[sizeof(vendor) - 1];
1633 while (isspace(*c) || *c == '\0')
1634 *c-- = '\0';
1635
1636 }
1637 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1638 if (load_sys(device, buf) == 0) {
1639 strncpy(model, buf, sizeof(model));
1640 model[sizeof(model) - 1] = '\0';
1641 c = (char *) &model[sizeof(model) - 1];
1642 while (isspace(*c) || *c == '\0')
1643 *c-- = '\0';
1644 }
1645
1646 if (vendor[0] && model[0])
1647 sprintf(buf, "%.64s %.64s", vendor, model);
1648 else
1649 switch (type) { /* numbers from hald/linux/device.c */
1650 case 1: sprintf(buf, "tape"); break;
1651 case 2: sprintf(buf, "printer"); break;
1652 case 3: sprintf(buf, "processor"); break;
1653 case 4:
1654 case 5: sprintf(buf, "cdrom"); break;
1655 case 6: sprintf(buf, "scanner"); break;
1656 case 8: sprintf(buf, "media_changer"); break;
1657 case 9: sprintf(buf, "comm"); break;
1658 case 12: sprintf(buf, "raid"); break;
1659 default: sprintf(buf, "unknown");
1660 }
1661 } else
1662 buf[0] = '\0';
1663 free(device);
1664
1665 /* chop device path to 'host%d' and calculate the port number */
1666 c = strchr(&path[hba_len], '/');
1667 if (!c) {
1668 if (verbose)
1669 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1670 err = 2;
1671 break;
1672 }
1673 *c = '\0';
1674 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1675 port -= host_base;
1676 else {
1677 if (verbose) {
1678 *c = '/'; /* repair the full string */
1679 fprintf(stderr, Name ": failed to determine port number for %s\n",
1680 path);
1681 }
1682 err = 2;
1683 break;
1684 }
1685
1686 /* mark this port as used */
1687 port_mask &= ~(1 << port);
1688
1689 /* print out the device information */
1690 if (buf[0]) {
1691 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1692 continue;
1693 }
1694
1695 fd = dev_open(ent->d_name, O_RDONLY);
1696 if (fd < 0)
1697 printf(" Port%d : - disk info unavailable -\n", port);
1698 else {
1699 fd2devname(fd, buf);
1700 printf(" Port%d : %s", port, buf);
1701 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1702 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1703 else
1704 printf(" ()\n");
1705 close(fd);
1706 }
1707 free(path);
1708 path = NULL;
1709 }
1710 if (path)
1711 free(path);
1712 if (dir)
1713 closedir(dir);
1714 if (err == 0) {
1715 int i;
1716
1717 for (i = 0; i < port_count; i++)
1718 if (port_mask & (1 << i))
1719 printf(" Port%d : - no device attached -\n", i);
1720 }
1721
1722 return err;
1723 }
1724
1725 static void print_found_intel_controllers(struct sys_dev *elem)
1726 {
1727 for (; elem; elem = elem->next) {
1728 fprintf(stderr, Name ": found Intel(R) ");
1729 if (elem->type == SYS_DEV_SATA)
1730 fprintf(stderr, "SATA ");
1731 else if (elem->type == SYS_DEV_SAS)
1732 fprintf(stderr, "SAS ");
1733 fprintf(stderr, "RAID controller");
1734 if (elem->pci_id)
1735 fprintf(stderr, " at %s", elem->pci_id);
1736 fprintf(stderr, ".\n");
1737 }
1738 fflush(stderr);
1739 }
1740
1741 static int ahci_get_port_count(const char *hba_path, int *port_count)
1742 {
1743 struct dirent *ent;
1744 DIR *dir;
1745 int host_base = -1;
1746
1747 *port_count = 0;
1748 if ((dir = opendir(hba_path)) == NULL)
1749 return -1;
1750
1751 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1752 int host;
1753
1754 if (sscanf(ent->d_name, "host%d", &host) != 1)
1755 continue;
1756 if (*port_count == 0)
1757 host_base = host;
1758 else if (host < host_base)
1759 host_base = host;
1760
1761 if (host + 1 > *port_count + host_base)
1762 *port_count = host + 1 - host_base;
1763 }
1764 closedir(dir);
1765 return host_base;
1766 }
1767
1768 static void print_imsm_capability(const struct imsm_orom *orom)
1769 {
1770 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1771 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1772 orom->hotfix_ver, orom->build);
1773 printf(" RAID Levels :%s%s%s%s%s\n",
1774 imsm_orom_has_raid0(orom) ? " raid0" : "",
1775 imsm_orom_has_raid1(orom) ? " raid1" : "",
1776 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1777 imsm_orom_has_raid10(orom) ? " raid10" : "",
1778 imsm_orom_has_raid5(orom) ? " raid5" : "");
1779 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1780 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1781 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1782 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1783 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1784 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1785 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1786 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1787 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1788 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1789 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1790 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1791 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1792 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1793 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1794 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1795 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1796 printf(" 2TB volumes :%s supported\n",
1797 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
1798 printf(" 2TB disks :%s supported\n",
1799 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
1800 printf(" Max Disks : %d\n", orom->tds);
1801 printf(" Max Volumes : %d per array, %d per controller\n",
1802 orom->vpa, orom->vphba);
1803 return;
1804 }
1805
1806 static int detail_platform_imsm(int verbose, int enumerate_only)
1807 {
1808 /* There are two components to imsm platform support, the ahci SATA
1809 * controller and the option-rom. To find the SATA controller we
1810 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1811 * controller with the Intel vendor id is present. This approach
1812 * allows mdadm to leverage the kernel's ahci detection logic, with the
1813 * caveat that if ahci.ko is not loaded mdadm will not be able to
1814 * detect platform raid capabilities. The option-rom resides in a
1815 * platform "Adapter ROM". We scan for its signature to retrieve the
1816 * platform capabilities. If raid support is disabled in the BIOS the
1817 * option-rom capability structure will not be available.
1818 */
1819 const struct imsm_orom *orom;
1820 struct sys_dev *list, *hba;
1821 int host_base = 0;
1822 int port_count = 0;
1823 int result=0;
1824
1825 if (enumerate_only) {
1826 if (check_env("IMSM_NO_PLATFORM"))
1827 return 0;
1828 list = find_intel_devices();
1829 if (!list)
1830 return 2;
1831 for (hba = list; hba; hba = hba->next) {
1832 orom = find_imsm_capability(hba->type);
1833 if (!orom) {
1834 result = 2;
1835 break;
1836 }
1837 }
1838 free_sys_dev(&list);
1839 return result;
1840 }
1841
1842 list = find_intel_devices();
1843 if (!list) {
1844 if (verbose)
1845 fprintf(stderr, Name ": no active Intel(R) RAID "
1846 "controller found.\n");
1847 free_sys_dev(&list);
1848 return 2;
1849 } else if (verbose)
1850 print_found_intel_controllers(list);
1851
1852 for (hba = list; hba; hba = hba->next) {
1853 orom = find_imsm_capability(hba->type);
1854 if (!orom)
1855 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1856 hba->path, get_sys_dev_type(hba->type));
1857 else
1858 print_imsm_capability(orom);
1859 }
1860
1861 for (hba = list; hba; hba = hba->next) {
1862 printf(" I/O Controller : %s (%s)\n",
1863 hba->path, get_sys_dev_type(hba->type));
1864
1865 if (hba->type == SYS_DEV_SATA) {
1866 host_base = ahci_get_port_count(hba->path, &port_count);
1867 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1868 if (verbose)
1869 fprintf(stderr, Name ": failed to enumerate "
1870 "ports on SATA controller at %s.", hba->pci_id);
1871 result |= 2;
1872 }
1873 }
1874 }
1875
1876 free_sys_dev(&list);
1877 return result;
1878 }
1879 #endif
1880
1881 static int match_home_imsm(struct supertype *st, char *homehost)
1882 {
1883 /* the imsm metadata format does not specify any host
1884 * identification information. We return -1 since we can never
1885 * confirm nor deny whether a given array is "meant" for this
1886 * host. We rely on compare_super and the 'family_num' fields to
1887 * exclude member disks that do not belong, and we rely on
1888 * mdadm.conf to specify the arrays that should be assembled.
1889 * Auto-assembly may still pick up "foreign" arrays.
1890 */
1891
1892 return -1;
1893 }
1894
1895 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1896 {
1897 /* The uuid returned here is used for:
1898 * uuid to put into bitmap file (Create, Grow)
1899 * uuid for backup header when saving critical section (Grow)
1900 * comparing uuids when re-adding a device into an array
1901 * In these cases the uuid required is that of the data-array,
1902 * not the device-set.
1903 * uuid to recognise same set when adding a missing device back
1904 * to an array. This is a uuid for the device-set.
1905 *
1906 * For each of these we can make do with a truncated
1907 * or hashed uuid rather than the original, as long as
1908 * everyone agrees.
1909 * In each case the uuid required is that of the data-array,
1910 * not the device-set.
1911 */
1912 /* imsm does not track uuid's so we synthesis one using sha1 on
1913 * - The signature (Which is constant for all imsm array, but no matter)
1914 * - the orig_family_num of the container
1915 * - the index number of the volume
1916 * - the 'serial' number of the volume.
1917 * Hopefully these are all constant.
1918 */
1919 struct intel_super *super = st->sb;
1920
1921 char buf[20];
1922 struct sha1_ctx ctx;
1923 struct imsm_dev *dev = NULL;
1924 __u32 family_num;
1925
1926 /* some mdadm versions failed to set ->orig_family_num, in which
1927 * case fall back to ->family_num. orig_family_num will be
1928 * fixed up with the first metadata update.
1929 */
1930 family_num = super->anchor->orig_family_num;
1931 if (family_num == 0)
1932 family_num = super->anchor->family_num;
1933 sha1_init_ctx(&ctx);
1934 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1935 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1936 if (super->current_vol >= 0)
1937 dev = get_imsm_dev(super, super->current_vol);
1938 if (dev) {
1939 __u32 vol = super->current_vol;
1940 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1941 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1942 }
1943 sha1_finish_ctx(&ctx, buf);
1944 memcpy(uuid, buf, 4*4);
1945 }
1946
1947 #if 0
1948 static void
1949 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1950 {
1951 __u8 *v = get_imsm_version(mpb);
1952 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1953 char major[] = { 0, 0, 0 };
1954 char minor[] = { 0 ,0, 0 };
1955 char patch[] = { 0, 0, 0 };
1956 char *ver_parse[] = { major, minor, patch };
1957 int i, j;
1958
1959 i = j = 0;
1960 while (*v != '\0' && v < end) {
1961 if (*v != '.' && j < 2)
1962 ver_parse[i][j++] = *v;
1963 else {
1964 i++;
1965 j = 0;
1966 }
1967 v++;
1968 }
1969
1970 *m = strtol(minor, NULL, 0);
1971 *p = strtol(patch, NULL, 0);
1972 }
1973 #endif
1974
1975 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1976 {
1977 /* migr_strip_size when repairing or initializing parity */
1978 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1979 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1980
1981 switch (get_imsm_raid_level(map)) {
1982 case 5:
1983 case 10:
1984 return chunk;
1985 default:
1986 return 128*1024 >> 9;
1987 }
1988 }
1989
1990 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1991 {
1992 /* migr_strip_size when rebuilding a degraded disk, no idea why
1993 * this is different than migr_strip_size_resync(), but it's good
1994 * to be compatible
1995 */
1996 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1997 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1998
1999 switch (get_imsm_raid_level(map)) {
2000 case 1:
2001 case 10:
2002 if (map->num_members % map->num_domains == 0)
2003 return 128*1024 >> 9;
2004 else
2005 return chunk;
2006 case 5:
2007 return max((__u32) 64*1024 >> 9, chunk);
2008 default:
2009 return 128*1024 >> 9;
2010 }
2011 }
2012
2013 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2014 {
2015 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2016 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2017 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2018 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2019
2020 return max((__u32) 1, hi_chunk / lo_chunk);
2021 }
2022
2023 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2024 {
2025 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2026 int level = get_imsm_raid_level(lo);
2027
2028 if (level == 1 || level == 10) {
2029 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2030
2031 return hi->num_domains;
2032 } else
2033 return num_stripes_per_unit_resync(dev);
2034 }
2035
2036 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2037 {
2038 /* named 'imsm_' because raid0, raid1 and raid10
2039 * counter-intuitively have the same number of data disks
2040 */
2041 struct imsm_map *map = get_imsm_map(dev, second_map);
2042
2043 switch (get_imsm_raid_level(map)) {
2044 case 0:
2045 return map->num_members;
2046 break;
2047 case 1:
2048 case 10:
2049 return map->num_members/2;
2050 case 5:
2051 return map->num_members - 1;
2052 default:
2053 dprintf("%s: unsupported raid level\n", __func__);
2054 return 0;
2055 }
2056 }
2057
2058 static __u32 parity_segment_depth(struct imsm_dev *dev)
2059 {
2060 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2061 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2062
2063 switch(get_imsm_raid_level(map)) {
2064 case 1:
2065 case 10:
2066 return chunk * map->num_domains;
2067 case 5:
2068 return chunk * map->num_members;
2069 default:
2070 return chunk;
2071 }
2072 }
2073
2074 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2075 {
2076 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2077 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2078 __u32 strip = block / chunk;
2079
2080 switch (get_imsm_raid_level(map)) {
2081 case 1:
2082 case 10: {
2083 __u32 vol_strip = (strip * map->num_domains) + 1;
2084 __u32 vol_stripe = vol_strip / map->num_members;
2085
2086 return vol_stripe * chunk + block % chunk;
2087 } case 5: {
2088 __u32 stripe = strip / (map->num_members - 1);
2089
2090 return stripe * chunk + block % chunk;
2091 }
2092 default:
2093 return 0;
2094 }
2095 }
2096
2097 static __u64 blocks_per_migr_unit(struct intel_super *super,
2098 struct imsm_dev *dev)
2099 {
2100 /* calculate the conversion factor between per member 'blocks'
2101 * (md/{resync,rebuild}_start) and imsm migration units, return
2102 * 0 for the 'not migrating' and 'unsupported migration' cases
2103 */
2104 if (!dev->vol.migr_state)
2105 return 0;
2106
2107 switch (migr_type(dev)) {
2108 case MIGR_GEN_MIGR: {
2109 struct migr_record *migr_rec = super->migr_rec;
2110 return __le32_to_cpu(migr_rec->blocks_per_unit);
2111 }
2112 case MIGR_VERIFY:
2113 case MIGR_REPAIR:
2114 case MIGR_INIT: {
2115 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2116 __u32 stripes_per_unit;
2117 __u32 blocks_per_unit;
2118 __u32 parity_depth;
2119 __u32 migr_chunk;
2120 __u32 block_map;
2121 __u32 block_rel;
2122 __u32 segment;
2123 __u32 stripe;
2124 __u8 disks;
2125
2126 /* yes, this is really the translation of migr_units to
2127 * per-member blocks in the 'resync' case
2128 */
2129 stripes_per_unit = num_stripes_per_unit_resync(dev);
2130 migr_chunk = migr_strip_blocks_resync(dev);
2131 disks = imsm_num_data_members(dev, MAP_0);
2132 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2133 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2134 segment = blocks_per_unit / stripe;
2135 block_rel = blocks_per_unit - segment * stripe;
2136 parity_depth = parity_segment_depth(dev);
2137 block_map = map_migr_block(dev, block_rel);
2138 return block_map + parity_depth * segment;
2139 }
2140 case MIGR_REBUILD: {
2141 __u32 stripes_per_unit;
2142 __u32 migr_chunk;
2143
2144 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2145 migr_chunk = migr_strip_blocks_rebuild(dev);
2146 return migr_chunk * stripes_per_unit;
2147 }
2148 case MIGR_STATE_CHANGE:
2149 default:
2150 return 0;
2151 }
2152 }
2153
2154 static int imsm_level_to_layout(int level)
2155 {
2156 switch (level) {
2157 case 0:
2158 case 1:
2159 return 0;
2160 case 5:
2161 case 6:
2162 return ALGORITHM_LEFT_ASYMMETRIC;
2163 case 10:
2164 return 0x102;
2165 }
2166 return UnSet;
2167 }
2168
2169 /*******************************************************************************
2170 * Function: read_imsm_migr_rec
2171 * Description: Function reads imsm migration record from last sector of disk
2172 * Parameters:
2173 * fd : disk descriptor
2174 * super : metadata info
2175 * Returns:
2176 * 0 : success,
2177 * -1 : fail
2178 ******************************************************************************/
2179 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2180 {
2181 int ret_val = -1;
2182 unsigned long long dsize;
2183
2184 get_dev_size(fd, NULL, &dsize);
2185 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2186 fprintf(stderr,
2187 Name ": Cannot seek to anchor block: %s\n",
2188 strerror(errno));
2189 goto out;
2190 }
2191 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2192 MIGR_REC_BUF_SIZE) {
2193 fprintf(stderr,
2194 Name ": Cannot read migr record block: %s\n",
2195 strerror(errno));
2196 goto out;
2197 }
2198 ret_val = 0;
2199
2200 out:
2201 return ret_val;
2202 }
2203
2204 static struct imsm_dev *imsm_get_device_during_migration(
2205 struct intel_super *super)
2206 {
2207
2208 struct intel_dev *dv;
2209
2210 for (dv = super->devlist; dv; dv = dv->next) {
2211 if (is_gen_migration(dv->dev))
2212 return dv->dev;
2213 }
2214 return NULL;
2215 }
2216
2217 /*******************************************************************************
2218 * Function: load_imsm_migr_rec
2219 * Description: Function reads imsm migration record (it is stored at the last
2220 * sector of disk)
2221 * Parameters:
2222 * super : imsm internal array info
2223 * info : general array info
2224 * Returns:
2225 * 0 : success
2226 * -1 : fail
2227 * -2 : no migration in progress
2228 ******************************************************************************/
2229 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2230 {
2231 struct mdinfo *sd;
2232 struct dl *dl = NULL;
2233 char nm[30];
2234 int retval = -1;
2235 int fd = -1;
2236 struct imsm_dev *dev;
2237 struct imsm_map *map = NULL;
2238 int slot = -1;
2239
2240 /* find map under migration */
2241 dev = imsm_get_device_during_migration(super);
2242 /* nothing to load,no migration in progress?
2243 */
2244 if (dev == NULL)
2245 return -2;
2246 map = get_imsm_map(dev, MAP_0);
2247
2248 if (info) {
2249 for (sd = info->devs ; sd ; sd = sd->next) {
2250 /* skip spare and failed disks
2251 */
2252 if (sd->disk.raid_disk < 0)
2253 continue;
2254 /* read only from one of the first two slots */
2255 if (map)
2256 slot = get_imsm_disk_slot(map,
2257 sd->disk.raid_disk);
2258 if ((map == NULL) || (slot > 1) || (slot < 0))
2259 continue;
2260
2261 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2262 fd = dev_open(nm, O_RDONLY);
2263 if (fd >= 0)
2264 break;
2265 }
2266 }
2267 if (fd < 0) {
2268 for (dl = super->disks; dl; dl = dl->next) {
2269 /* skip spare and failed disks
2270 */
2271 if (dl->index < 0)
2272 continue;
2273 /* read only from one of the first two slots */
2274 if (map)
2275 slot = get_imsm_disk_slot(map, dl->index);
2276 if ((map == NULL) || (slot > 1) || (slot < 0))
2277 continue;
2278 sprintf(nm, "%d:%d", dl->major, dl->minor);
2279 fd = dev_open(nm, O_RDONLY);
2280 if (fd >= 0)
2281 break;
2282 }
2283 }
2284 if (fd < 0)
2285 goto out;
2286 retval = read_imsm_migr_rec(fd, super);
2287
2288 out:
2289 if (fd >= 0)
2290 close(fd);
2291 return retval;
2292 }
2293
2294 #ifndef MDASSEMBLE
2295 /*******************************************************************************
2296 * function: imsm_create_metadata_checkpoint_update
2297 * Description: It creates update for checkpoint change.
2298 * Parameters:
2299 * super : imsm internal array info
2300 * u : pointer to prepared update
2301 * Returns:
2302 * Uptate length.
2303 * If length is equal to 0, input pointer u contains no update
2304 ******************************************************************************/
2305 static int imsm_create_metadata_checkpoint_update(
2306 struct intel_super *super,
2307 struct imsm_update_general_migration_checkpoint **u)
2308 {
2309
2310 int update_memory_size = 0;
2311
2312 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2313
2314 if (u == NULL)
2315 return 0;
2316 *u = NULL;
2317
2318 /* size of all update data without anchor */
2319 update_memory_size =
2320 sizeof(struct imsm_update_general_migration_checkpoint);
2321
2322 *u = calloc(1, update_memory_size);
2323 if (*u == NULL) {
2324 dprintf("error: cannot get memory for "
2325 "imsm_create_metadata_checkpoint_update update\n");
2326 return 0;
2327 }
2328 (*u)->type = update_general_migration_checkpoint;
2329 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2330 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2331 (*u)->curr_migr_unit);
2332
2333 return update_memory_size;
2334 }
2335
2336
2337 static void imsm_update_metadata_locally(struct supertype *st,
2338 void *buf, int len);
2339
2340 /*******************************************************************************
2341 * Function: write_imsm_migr_rec
2342 * Description: Function writes imsm migration record
2343 * (at the last sector of disk)
2344 * Parameters:
2345 * super : imsm internal array info
2346 * Returns:
2347 * 0 : success
2348 * -1 : if fail
2349 ******************************************************************************/
2350 static int write_imsm_migr_rec(struct supertype *st)
2351 {
2352 struct intel_super *super = st->sb;
2353 unsigned long long dsize;
2354 char nm[30];
2355 int fd = -1;
2356 int retval = -1;
2357 struct dl *sd;
2358 int len;
2359 struct imsm_update_general_migration_checkpoint *u;
2360 struct imsm_dev *dev;
2361 struct imsm_map *map = NULL;
2362
2363 /* find map under migration */
2364 dev = imsm_get_device_during_migration(super);
2365 /* if no migration, write buffer anyway to clear migr_record
2366 * on disk based on first available device
2367 */
2368 if (dev == NULL)
2369 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2370 super->current_vol);
2371
2372 map = get_imsm_map(dev, MAP_0);
2373
2374 for (sd = super->disks ; sd ; sd = sd->next) {
2375 int slot = -1;
2376
2377 /* skip failed and spare devices */
2378 if (sd->index < 0)
2379 continue;
2380 /* write to 2 first slots only */
2381 if (map)
2382 slot = get_imsm_disk_slot(map, sd->index);
2383 if ((map == NULL) || (slot > 1) || (slot < 0))
2384 continue;
2385
2386 sprintf(nm, "%d:%d", sd->major, sd->minor);
2387 fd = dev_open(nm, O_RDWR);
2388 if (fd < 0)
2389 continue;
2390 get_dev_size(fd, NULL, &dsize);
2391 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2392 fprintf(stderr,
2393 Name ": Cannot seek to anchor block: %s\n",
2394 strerror(errno));
2395 goto out;
2396 }
2397 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2398 MIGR_REC_BUF_SIZE) {
2399 fprintf(stderr,
2400 Name ": Cannot write migr record block: %s\n",
2401 strerror(errno));
2402 goto out;
2403 }
2404 close(fd);
2405 fd = -1;
2406 }
2407 /* update checkpoint information in metadata */
2408 len = imsm_create_metadata_checkpoint_update(super, &u);
2409
2410 if (len <= 0) {
2411 dprintf("imsm: Cannot prepare update\n");
2412 goto out;
2413 }
2414 /* update metadata locally */
2415 imsm_update_metadata_locally(st, u, len);
2416 /* and possibly remotely */
2417 if (st->update_tail) {
2418 append_metadata_update(st, u, len);
2419 /* during reshape we do all work inside metadata handler
2420 * manage_reshape(), so metadata update has to be triggered
2421 * insida it
2422 */
2423 flush_metadata_updates(st);
2424 st->update_tail = &st->updates;
2425 } else
2426 free(u);
2427
2428 retval = 0;
2429 out:
2430 if (fd >= 0)
2431 close(fd);
2432 return retval;
2433 }
2434 #endif /* MDASSEMBLE */
2435
2436 /* spare/missing disks activations are not allowe when
2437 * array/container performs reshape operation, because
2438 * all arrays in container works on the same disks set
2439 */
2440 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2441 {
2442 int rv = 0;
2443 struct intel_dev *i_dev;
2444 struct imsm_dev *dev;
2445
2446 /* check whole container
2447 */
2448 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2449 dev = i_dev->dev;
2450 if (is_gen_migration(dev)) {
2451 /* No repair during any migration in container
2452 */
2453 rv = 1;
2454 break;
2455 }
2456 }
2457 return rv;
2458 }
2459 static unsigned long long imsm_component_size_aligment_check(int level,
2460 int chunk_size,
2461 unsigned long long component_size)
2462 {
2463 unsigned int component_size_alligment;
2464
2465 /* check component size aligment
2466 */
2467 component_size_alligment = component_size % (chunk_size/512);
2468
2469 dprintf("imsm_component_size_aligment_check(Level: %i, "
2470 "chunk_size = %i, component_size = %llu), "
2471 "component_size_alligment = %u\n",
2472 level, chunk_size, component_size,
2473 component_size_alligment);
2474
2475 if (component_size_alligment && (level != 1) && (level != UnSet)) {
2476 dprintf("imsm: reported component size alligned from %llu ",
2477 component_size);
2478 component_size -= component_size_alligment;
2479 dprintf("to %llu (%i).\n",
2480 component_size, component_size_alligment);
2481 }
2482
2483 return component_size;
2484 }
2485
2486 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2487 {
2488 struct intel_super *super = st->sb;
2489 struct migr_record *migr_rec = super->migr_rec;
2490 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2491 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2492 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2493 struct imsm_map *map_to_analyse = map;
2494 struct dl *dl;
2495 char *devname;
2496 int map_disks = info->array.raid_disks;
2497
2498 memset(info, 0, sizeof(*info));
2499 if (prev_map)
2500 map_to_analyse = prev_map;
2501
2502 dl = super->current_disk;
2503
2504 info->container_member = super->current_vol;
2505 info->array.raid_disks = map->num_members;
2506 info->array.level = get_imsm_raid_level(map_to_analyse);
2507 info->array.layout = imsm_level_to_layout(info->array.level);
2508 info->array.md_minor = -1;
2509 info->array.ctime = 0;
2510 info->array.utime = 0;
2511 info->array.chunk_size =
2512 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2513 info->array.state = !dev->vol.dirty;
2514 info->custom_array_size = __le32_to_cpu(dev->size_high);
2515 info->custom_array_size <<= 32;
2516 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2517 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2518
2519 if (is_gen_migration(dev)) {
2520 info->reshape_active = 1;
2521 info->new_level = get_imsm_raid_level(map);
2522 info->new_layout = imsm_level_to_layout(info->new_level);
2523 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2524 info->delta_disks = map->num_members - prev_map->num_members;
2525 if (info->delta_disks) {
2526 /* this needs to be applied to every array
2527 * in the container.
2528 */
2529 info->reshape_active = CONTAINER_RESHAPE;
2530 }
2531 /* We shape information that we give to md might have to be
2532 * modify to cope with md's requirement for reshaping arrays.
2533 * For example, when reshaping a RAID0, md requires it to be
2534 * presented as a degraded RAID4.
2535 * Also if a RAID0 is migrating to a RAID5 we need to specify
2536 * the array as already being RAID5, but the 'before' layout
2537 * is a RAID4-like layout.
2538 */
2539 switch (info->array.level) {
2540 case 0:
2541 switch(info->new_level) {
2542 case 0:
2543 /* conversion is happening as RAID4 */
2544 info->array.level = 4;
2545 info->array.raid_disks += 1;
2546 break;
2547 case 5:
2548 /* conversion is happening as RAID5 */
2549 info->array.level = 5;
2550 info->array.layout = ALGORITHM_PARITY_N;
2551 info->delta_disks -= 1;
2552 break;
2553 default:
2554 /* FIXME error message */
2555 info->array.level = UnSet;
2556 break;
2557 }
2558 break;
2559 }
2560 } else {
2561 info->new_level = UnSet;
2562 info->new_layout = UnSet;
2563 info->new_chunk = info->array.chunk_size;
2564 info->delta_disks = 0;
2565 }
2566
2567 if (dl) {
2568 info->disk.major = dl->major;
2569 info->disk.minor = dl->minor;
2570 info->disk.number = dl->index;
2571 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2572 dl->index);
2573 }
2574
2575 info->data_offset = pba_of_lba0(map_to_analyse);
2576 info->component_size = blocks_per_member(map_to_analyse);
2577
2578 info->component_size = imsm_component_size_aligment_check(
2579 info->array.level,
2580 info->array.chunk_size,
2581 info->component_size);
2582
2583 memset(info->uuid, 0, sizeof(info->uuid));
2584 info->recovery_start = MaxSector;
2585
2586 info->reshape_progress = 0;
2587 info->resync_start = MaxSector;
2588 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2589 dev->vol.dirty) &&
2590 imsm_reshape_blocks_arrays_changes(super) == 0) {
2591 info->resync_start = 0;
2592 }
2593 if (dev->vol.migr_state) {
2594 switch (migr_type(dev)) {
2595 case MIGR_REPAIR:
2596 case MIGR_INIT: {
2597 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2598 dev);
2599 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2600
2601 info->resync_start = blocks_per_unit * units;
2602 break;
2603 }
2604 case MIGR_GEN_MIGR: {
2605 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2606 dev);
2607 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2608 unsigned long long array_blocks;
2609 int used_disks;
2610
2611 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2612 (units <
2613 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2614 (super->migr_rec->rec_status ==
2615 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2616 units++;
2617
2618 info->reshape_progress = blocks_per_unit * units;
2619
2620 dprintf("IMSM: General Migration checkpoint : %llu "
2621 "(%llu) -> read reshape progress : %llu\n",
2622 (unsigned long long)units,
2623 (unsigned long long)blocks_per_unit,
2624 info->reshape_progress);
2625
2626 used_disks = imsm_num_data_members(dev, MAP_1);
2627 if (used_disks > 0) {
2628 array_blocks = blocks_per_member(map) *
2629 used_disks;
2630 /* round array size down to closest MB
2631 */
2632 info->custom_array_size = (array_blocks
2633 >> SECT_PER_MB_SHIFT)
2634 << SECT_PER_MB_SHIFT;
2635 }
2636 }
2637 case MIGR_VERIFY:
2638 /* we could emulate the checkpointing of
2639 * 'sync_action=check' migrations, but for now
2640 * we just immediately complete them
2641 */
2642 case MIGR_REBUILD:
2643 /* this is handled by container_content_imsm() */
2644 case MIGR_STATE_CHANGE:
2645 /* FIXME handle other migrations */
2646 default:
2647 /* we are not dirty, so... */
2648 info->resync_start = MaxSector;
2649 }
2650 }
2651
2652 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2653 info->name[MAX_RAID_SERIAL_LEN] = 0;
2654
2655 info->array.major_version = -1;
2656 info->array.minor_version = -2;
2657 devname = devnum2devname(st->container_dev);
2658 *info->text_version = '\0';
2659 if (devname)
2660 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2661 free(devname);
2662 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2663 uuid_from_super_imsm(st, info->uuid);
2664
2665 if (dmap) {
2666 int i, j;
2667 for (i=0; i<map_disks; i++) {
2668 dmap[i] = 0;
2669 if (i < info->array.raid_disks) {
2670 struct imsm_disk *dsk;
2671 j = get_imsm_disk_idx(dev, i, MAP_X);
2672 dsk = get_imsm_disk(super, j);
2673 if (dsk && (dsk->status & CONFIGURED_DISK))
2674 dmap[i] = 1;
2675 }
2676 }
2677 }
2678 }
2679
2680 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2681 int failed, int look_in_map);
2682
2683 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2684 int look_in_map);
2685
2686
2687 #ifndef MDASSEMBLE
2688 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2689 {
2690 if (is_gen_migration(dev)) {
2691 int failed;
2692 __u8 map_state;
2693 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2694
2695 failed = imsm_count_failed(super, dev, MAP_1);
2696 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2697 if (map2->map_state != map_state) {
2698 map2->map_state = map_state;
2699 super->updates_pending++;
2700 }
2701 }
2702 }
2703 #endif
2704
2705 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2706 {
2707 struct dl *d;
2708
2709 for (d = super->missing; d; d = d->next)
2710 if (d->index == index)
2711 return &d->disk;
2712 return NULL;
2713 }
2714
2715 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2716 {
2717 struct intel_super *super = st->sb;
2718 struct imsm_disk *disk;
2719 int map_disks = info->array.raid_disks;
2720 int max_enough = -1;
2721 int i;
2722 struct imsm_super *mpb;
2723
2724 if (super->current_vol >= 0) {
2725 getinfo_super_imsm_volume(st, info, map);
2726 return;
2727 }
2728 memset(info, 0, sizeof(*info));
2729
2730 /* Set raid_disks to zero so that Assemble will always pull in valid
2731 * spares
2732 */
2733 info->array.raid_disks = 0;
2734 info->array.level = LEVEL_CONTAINER;
2735 info->array.layout = 0;
2736 info->array.md_minor = -1;
2737 info->array.ctime = 0; /* N/A for imsm */
2738 info->array.utime = 0;
2739 info->array.chunk_size = 0;
2740
2741 info->disk.major = 0;
2742 info->disk.minor = 0;
2743 info->disk.raid_disk = -1;
2744 info->reshape_active = 0;
2745 info->array.major_version = -1;
2746 info->array.minor_version = -2;
2747 strcpy(info->text_version, "imsm");
2748 info->safe_mode_delay = 0;
2749 info->disk.number = -1;
2750 info->disk.state = 0;
2751 info->name[0] = 0;
2752 info->recovery_start = MaxSector;
2753 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2754
2755 /* do we have the all the insync disks that we expect? */
2756 mpb = super->anchor;
2757
2758 for (i = 0; i < mpb->num_raid_devs; i++) {
2759 struct imsm_dev *dev = get_imsm_dev(super, i);
2760 int failed, enough, j, missing = 0;
2761 struct imsm_map *map;
2762 __u8 state;
2763
2764 failed = imsm_count_failed(super, dev, MAP_0);
2765 state = imsm_check_degraded(super, dev, failed, MAP_0);
2766 map = get_imsm_map(dev, MAP_0);
2767
2768 /* any newly missing disks?
2769 * (catches single-degraded vs double-degraded)
2770 */
2771 for (j = 0; j < map->num_members; j++) {
2772 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2773 __u32 idx = ord_to_idx(ord);
2774
2775 if (!(ord & IMSM_ORD_REBUILD) &&
2776 get_imsm_missing(super, idx)) {
2777 missing = 1;
2778 break;
2779 }
2780 }
2781
2782 if (state == IMSM_T_STATE_FAILED)
2783 enough = -1;
2784 else if (state == IMSM_T_STATE_DEGRADED &&
2785 (state != map->map_state || missing))
2786 enough = 0;
2787 else /* we're normal, or already degraded */
2788 enough = 1;
2789 if (is_gen_migration(dev) && missing) {
2790 /* during general migration we need all disks
2791 * that process is running on.
2792 * No new missing disk is allowed.
2793 */
2794 max_enough = -1;
2795 enough = -1;
2796 /* no more checks necessary
2797 */
2798 break;
2799 }
2800 /* in the missing/failed disk case check to see
2801 * if at least one array is runnable
2802 */
2803 max_enough = max(max_enough, enough);
2804 }
2805 dprintf("%s: enough: %d\n", __func__, max_enough);
2806 info->container_enough = max_enough;
2807
2808 if (super->disks) {
2809 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2810
2811 disk = &super->disks->disk;
2812 info->data_offset = total_blocks(&super->disks->disk) - reserved;
2813 info->component_size = reserved;
2814 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2815 /* we don't change info->disk.raid_disk here because
2816 * this state will be finalized in mdmon after we have
2817 * found the 'most fresh' version of the metadata
2818 */
2819 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2820 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2821 }
2822
2823 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2824 * ->compare_super may have updated the 'num_raid_devs' field for spares
2825 */
2826 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2827 uuid_from_super_imsm(st, info->uuid);
2828 else
2829 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2830
2831 /* I don't know how to compute 'map' on imsm, so use safe default */
2832 if (map) {
2833 int i;
2834 for (i = 0; i < map_disks; i++)
2835 map[i] = 1;
2836 }
2837
2838 }
2839
2840 /* allocates memory and fills disk in mdinfo structure
2841 * for each disk in array */
2842 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2843 {
2844 struct mdinfo *mddev = NULL;
2845 struct intel_super *super = st->sb;
2846 struct imsm_disk *disk;
2847 int count = 0;
2848 struct dl *dl;
2849 if (!super || !super->disks)
2850 return NULL;
2851 dl = super->disks;
2852 mddev = malloc(sizeof(*mddev));
2853 if (!mddev) {
2854 fprintf(stderr, Name ": Failed to allocate memory.\n");
2855 return NULL;
2856 }
2857 memset(mddev, 0, sizeof(*mddev));
2858 while (dl) {
2859 struct mdinfo *tmp;
2860 disk = &dl->disk;
2861 tmp = malloc(sizeof(*tmp));
2862 if (!tmp) {
2863 fprintf(stderr, Name ": Failed to allocate memory.\n");
2864 if (mddev)
2865 sysfs_free(mddev);
2866 return NULL;
2867 }
2868 memset(tmp, 0, sizeof(*tmp));
2869 if (mddev->devs)
2870 tmp->next = mddev->devs;
2871 mddev->devs = tmp;
2872 tmp->disk.number = count++;
2873 tmp->disk.major = dl->major;
2874 tmp->disk.minor = dl->minor;
2875 tmp->disk.state = is_configured(disk) ?
2876 (1 << MD_DISK_ACTIVE) : 0;
2877 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2878 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2879 tmp->disk.raid_disk = -1;
2880 dl = dl->next;
2881 }
2882 return mddev;
2883 }
2884
2885 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2886 char *update, char *devname, int verbose,
2887 int uuid_set, char *homehost)
2888 {
2889 /* For 'assemble' and 'force' we need to return non-zero if any
2890 * change was made. For others, the return value is ignored.
2891 * Update options are:
2892 * force-one : This device looks a bit old but needs to be included,
2893 * update age info appropriately.
2894 * assemble: clear any 'faulty' flag to allow this device to
2895 * be assembled.
2896 * force-array: Array is degraded but being forced, mark it clean
2897 * if that will be needed to assemble it.
2898 *
2899 * newdev: not used ????
2900 * grow: Array has gained a new device - this is currently for
2901 * linear only
2902 * resync: mark as dirty so a resync will happen.
2903 * name: update the name - preserving the homehost
2904 * uuid: Change the uuid of the array to match watch is given
2905 *
2906 * Following are not relevant for this imsm:
2907 * sparc2.2 : update from old dodgey metadata
2908 * super-minor: change the preferred_minor number
2909 * summaries: update redundant counters.
2910 * homehost: update the recorded homehost
2911 * _reshape_progress: record new reshape_progress position.
2912 */
2913 int rv = 1;
2914 struct intel_super *super = st->sb;
2915 struct imsm_super *mpb;
2916
2917 /* we can only update container info */
2918 if (!super || super->current_vol >= 0 || !super->anchor)
2919 return 1;
2920
2921 mpb = super->anchor;
2922
2923 if (strcmp(update, "uuid") == 0) {
2924 /* We take this to mean that the family_num should be updated.
2925 * However that is much smaller than the uuid so we cannot really
2926 * allow an explicit uuid to be given. And it is hard to reliably
2927 * know if one was.
2928 * So if !uuid_set we know the current uuid is random and just used
2929 * the first 'int' and copy it to the other 3 positions.
2930 * Otherwise we require the 4 'int's to be the same as would be the
2931 * case if we are using a random uuid. So an explicit uuid will be
2932 * accepted as long as all for ints are the same... which shouldn't hurt
2933 */
2934 if (!uuid_set) {
2935 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
2936 rv = 0;
2937 } else {
2938 if (info->uuid[0] != info->uuid[1] ||
2939 info->uuid[1] != info->uuid[2] ||
2940 info->uuid[2] != info->uuid[3])
2941 rv = -1;
2942 else
2943 rv = 0;
2944 }
2945 if (rv == 0)
2946 mpb->orig_family_num = info->uuid[0];
2947 } else if (strcmp(update, "assemble") == 0)
2948 rv = 0;
2949 else
2950 rv = -1;
2951
2952 /* successful update? recompute checksum */
2953 if (rv == 0)
2954 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2955
2956 return rv;
2957 }
2958
2959 static size_t disks_to_mpb_size(int disks)
2960 {
2961 size_t size;
2962
2963 size = sizeof(struct imsm_super);
2964 size += (disks - 1) * sizeof(struct imsm_disk);
2965 size += 2 * sizeof(struct imsm_dev);
2966 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2967 size += (4 - 2) * sizeof(struct imsm_map);
2968 /* 4 possible disk_ord_tbl's */
2969 size += 4 * (disks - 1) * sizeof(__u32);
2970
2971 return size;
2972 }
2973
2974 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2975 {
2976 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2977 return 0;
2978
2979 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2980 }
2981
2982 static void free_devlist(struct intel_super *super)
2983 {
2984 struct intel_dev *dv;
2985
2986 while (super->devlist) {
2987 dv = super->devlist->next;
2988 free(super->devlist->dev);
2989 free(super->devlist);
2990 super->devlist = dv;
2991 }
2992 }
2993
2994 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2995 {
2996 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2997 }
2998
2999 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
3000 {
3001 /*
3002 * return:
3003 * 0 same, or first was empty, and second was copied
3004 * 1 second had wrong number
3005 * 2 wrong uuid
3006 * 3 wrong other info
3007 */
3008 struct intel_super *first = st->sb;
3009 struct intel_super *sec = tst->sb;
3010
3011 if (!first) {
3012 st->sb = tst->sb;
3013 tst->sb = NULL;
3014 return 0;
3015 }
3016 /* in platform dependent environment test if the disks
3017 * use the same Intel hba
3018 */
3019 if (!check_env("IMSM_NO_PLATFORM")) {
3020 if (!first->hba || !sec->hba ||
3021 (first->hba->type != sec->hba->type)) {
3022 fprintf(stderr,
3023 "HBAs of devices does not match %s != %s\n",
3024 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
3025 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
3026 return 3;
3027 }
3028 }
3029
3030 /* if an anchor does not have num_raid_devs set then it is a free
3031 * floating spare
3032 */
3033 if (first->anchor->num_raid_devs > 0 &&
3034 sec->anchor->num_raid_devs > 0) {
3035 /* Determine if these disks might ever have been
3036 * related. Further disambiguation can only take place
3037 * in load_super_imsm_all
3038 */
3039 __u32 first_family = first->anchor->orig_family_num;
3040 __u32 sec_family = sec->anchor->orig_family_num;
3041
3042 if (memcmp(first->anchor->sig, sec->anchor->sig,
3043 MAX_SIGNATURE_LENGTH) != 0)
3044 return 3;
3045
3046 if (first_family == 0)
3047 first_family = first->anchor->family_num;
3048 if (sec_family == 0)
3049 sec_family = sec->anchor->family_num;
3050
3051 if (first_family != sec_family)
3052 return 3;
3053
3054 }
3055
3056
3057 /* if 'first' is a spare promote it to a populated mpb with sec's
3058 * family number
3059 */
3060 if (first->anchor->num_raid_devs == 0 &&
3061 sec->anchor->num_raid_devs > 0) {
3062 int i;
3063 struct intel_dev *dv;
3064 struct imsm_dev *dev;
3065
3066 /* we need to copy raid device info from sec if an allocation
3067 * fails here we don't associate the spare
3068 */
3069 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3070 dv = malloc(sizeof(*dv));
3071 if (!dv)
3072 break;
3073 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3074 if (!dev) {
3075 free(dv);
3076 break;
3077 }
3078 dv->dev = dev;
3079 dv->index = i;
3080 dv->next = first->devlist;
3081 first->devlist = dv;
3082 }
3083 if (i < sec->anchor->num_raid_devs) {
3084 /* allocation failure */
3085 free_devlist(first);
3086 fprintf(stderr, "imsm: failed to associate spare\n");
3087 return 3;
3088 }
3089 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3090 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3091 first->anchor->family_num = sec->anchor->family_num;
3092 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3093 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3094 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3095 }
3096
3097 return 0;
3098 }
3099
3100 static void fd2devname(int fd, char *name)
3101 {
3102 struct stat st;
3103 char path[256];
3104 char dname[PATH_MAX];
3105 char *nm;
3106 int rv;
3107
3108 name[0] = '\0';
3109 if (fstat(fd, &st) != 0)
3110 return;
3111 sprintf(path, "/sys/dev/block/%d:%d",
3112 major(st.st_rdev), minor(st.st_rdev));
3113
3114 rv = readlink(path, dname, sizeof(dname)-1);
3115 if (rv <= 0)
3116 return;
3117
3118 dname[rv] = '\0';
3119 nm = strrchr(dname, '/');
3120 if (nm) {
3121 nm++;
3122 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3123 }
3124 }
3125
3126 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3127
3128 static int imsm_read_serial(int fd, char *devname,
3129 __u8 serial[MAX_RAID_SERIAL_LEN])
3130 {
3131 unsigned char scsi_serial[255];
3132 int rv;
3133 int rsp_len;
3134 int len;
3135 char *dest;
3136 char *src;
3137 char *rsp_buf;
3138 int i;
3139
3140 memset(scsi_serial, 0, sizeof(scsi_serial));
3141
3142 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3143
3144 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3145 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3146 fd2devname(fd, (char *) serial);
3147 return 0;
3148 }
3149
3150 if (rv != 0) {
3151 if (devname)
3152 fprintf(stderr,
3153 Name ": Failed to retrieve serial for %s\n",
3154 devname);
3155 return rv;
3156 }
3157
3158 rsp_len = scsi_serial[3];
3159 if (!rsp_len) {
3160 if (devname)
3161 fprintf(stderr,
3162 Name ": Failed to retrieve serial for %s\n",
3163 devname);
3164 return 2;
3165 }
3166 rsp_buf = (char *) &scsi_serial[4];
3167
3168 /* trim all whitespace and non-printable characters and convert
3169 * ':' to ';'
3170 */
3171 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3172 src = &rsp_buf[i];
3173 if (*src > 0x20) {
3174 /* ':' is reserved for use in placeholder serial
3175 * numbers for missing disks
3176 */
3177 if (*src == ':')
3178 *dest++ = ';';
3179 else
3180 *dest++ = *src;
3181 }
3182 }
3183 len = dest - rsp_buf;
3184 dest = rsp_buf;
3185
3186 /* truncate leading characters */
3187 if (len > MAX_RAID_SERIAL_LEN) {
3188 dest += len - MAX_RAID_SERIAL_LEN;
3189 len = MAX_RAID_SERIAL_LEN;
3190 }
3191
3192 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3193 memcpy(serial, dest, len);
3194
3195 return 0;
3196 }
3197
3198 static int serialcmp(__u8 *s1, __u8 *s2)
3199 {
3200 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3201 }
3202
3203 static void serialcpy(__u8 *dest, __u8 *src)
3204 {
3205 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3206 }
3207
3208 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3209 {
3210 struct dl *dl;
3211
3212 for (dl = super->disks; dl; dl = dl->next)
3213 if (serialcmp(dl->serial, serial) == 0)
3214 break;
3215
3216 return dl;
3217 }
3218
3219 static struct imsm_disk *
3220 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3221 {
3222 int i;
3223
3224 for (i = 0; i < mpb->num_disks; i++) {
3225 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3226
3227 if (serialcmp(disk->serial, serial) == 0) {
3228 if (idx)
3229 *idx = i;
3230 return disk;
3231 }
3232 }
3233
3234 return NULL;
3235 }
3236
3237 static int
3238 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3239 {
3240 struct imsm_disk *disk;
3241 struct dl *dl;
3242 struct stat stb;
3243 int rv;
3244 char name[40];
3245 __u8 serial[MAX_RAID_SERIAL_LEN];
3246
3247 rv = imsm_read_serial(fd, devname, serial);
3248
3249 if (rv != 0)
3250 return 2;
3251
3252 dl = calloc(1, sizeof(*dl));
3253 if (!dl) {
3254 if (devname)
3255 fprintf(stderr,
3256 Name ": failed to allocate disk buffer for %s\n",
3257 devname);
3258 return 2;
3259 }
3260
3261 fstat(fd, &stb);
3262 dl->major = major(stb.st_rdev);
3263 dl->minor = minor(stb.st_rdev);
3264 dl->next = super->disks;
3265 dl->fd = keep_fd ? fd : -1;
3266 assert(super->disks == NULL);
3267 super->disks = dl;
3268 serialcpy(dl->serial, serial);
3269 dl->index = -2;
3270 dl->e = NULL;
3271 fd2devname(fd, name);
3272 if (devname)
3273 dl->devname = strdup(devname);
3274 else
3275 dl->devname = strdup(name);
3276
3277 /* look up this disk's index in the current anchor */
3278 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3279 if (disk) {
3280 dl->disk = *disk;
3281 /* only set index on disks that are a member of a
3282 * populated contianer, i.e. one with raid_devs
3283 */
3284 if (is_failed(&dl->disk))
3285 dl->index = -2;
3286 else if (is_spare(&dl->disk))
3287 dl->index = -1;
3288 }
3289
3290 return 0;
3291 }
3292
3293 #ifndef MDASSEMBLE
3294 /* When migrating map0 contains the 'destination' state while map1
3295 * contains the current state. When not migrating map0 contains the
3296 * current state. This routine assumes that map[0].map_state is set to
3297 * the current array state before being called.
3298 *
3299 * Migration is indicated by one of the following states
3300 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3301 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3302 * map1state=unitialized)
3303 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3304 * map1state=normal)
3305 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3306 * map1state=degraded)
3307 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3308 * map1state=normal)
3309 */
3310 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3311 __u8 to_state, int migr_type)
3312 {
3313 struct imsm_map *dest;
3314 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3315
3316 dev->vol.migr_state = 1;
3317 set_migr_type(dev, migr_type);
3318 dev->vol.curr_migr_unit = 0;
3319 dest = get_imsm_map(dev, MAP_1);
3320
3321 /* duplicate and then set the target end state in map[0] */
3322 memcpy(dest, src, sizeof_imsm_map(src));
3323 if ((migr_type == MIGR_REBUILD) ||
3324 (migr_type == MIGR_GEN_MIGR)) {
3325 __u32 ord;
3326 int i;
3327
3328 for (i = 0; i < src->num_members; i++) {
3329 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3330 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3331 }
3332 }
3333
3334 if (migr_type == MIGR_GEN_MIGR)
3335 /* Clear migration record */
3336 memset(super->migr_rec, 0, sizeof(struct migr_record));
3337
3338 src->map_state = to_state;
3339 }
3340
3341 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3342 __u8 map_state)
3343 {
3344 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3345 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3346 MAP_0 : MAP_1);
3347 int i, j;
3348
3349 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3350 * completed in the last migration.
3351 *
3352 * FIXME add support for raid-level-migration
3353 */
3354 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3355 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3356 /* when final map state is other than expected
3357 * merge maps (not for migration)
3358 */
3359 int failed;
3360
3361 for (i = 0; i < prev->num_members; i++)
3362 for (j = 0; j < map->num_members; j++)
3363 /* during online capacity expansion
3364 * disks position can be changed
3365 * if takeover is used
3366 */
3367 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3368 ord_to_idx(prev->disk_ord_tbl[i])) {
3369 map->disk_ord_tbl[j] |=
3370 prev->disk_ord_tbl[i];
3371 break;
3372 }
3373 failed = imsm_count_failed(super, dev, MAP_0);
3374 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3375 }
3376
3377 dev->vol.migr_state = 0;
3378 set_migr_type(dev, 0);
3379 dev->vol.curr_migr_unit = 0;
3380 map->map_state = map_state;
3381 }
3382 #endif
3383
3384 static int parse_raid_devices(struct intel_super *super)
3385 {
3386 int i;
3387 struct imsm_dev *dev_new;
3388 size_t len, len_migr;
3389 size_t max_len = 0;
3390 size_t space_needed = 0;
3391 struct imsm_super *mpb = super->anchor;
3392
3393 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3394 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3395 struct intel_dev *dv;
3396
3397 len = sizeof_imsm_dev(dev_iter, 0);
3398 len_migr = sizeof_imsm_dev(dev_iter, 1);
3399 if (len_migr > len)
3400 space_needed += len_migr - len;
3401
3402 dv = malloc(sizeof(*dv));
3403 if (!dv)
3404 return 1;
3405 if (max_len < len_migr)
3406 max_len = len_migr;
3407 if (max_len > len_migr)
3408 space_needed += max_len - len_migr;
3409 dev_new = malloc(max_len);
3410 if (!dev_new) {
3411 free(dv);
3412 return 1;
3413 }
3414 imsm_copy_dev(dev_new, dev_iter);
3415 dv->dev = dev_new;
3416 dv->index = i;
3417 dv->next = super->devlist;
3418 super->devlist = dv;
3419 }
3420
3421 /* ensure that super->buf is large enough when all raid devices
3422 * are migrating
3423 */
3424 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3425 void *buf;
3426
3427 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3428 if (posix_memalign(&buf, 512, len) != 0)
3429 return 1;
3430
3431 memcpy(buf, super->buf, super->len);
3432 memset(buf + super->len, 0, len - super->len);
3433 free(super->buf);
3434 super->buf = buf;
3435 super->len = len;
3436 }
3437
3438 return 0;
3439 }
3440
3441 /* retrieve a pointer to the bbm log which starts after all raid devices */
3442 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3443 {
3444 void *ptr = NULL;
3445
3446 if (__le32_to_cpu(mpb->bbm_log_size)) {
3447 ptr = mpb;
3448 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3449 }
3450
3451 return ptr;
3452 }
3453
3454 /*******************************************************************************
3455 * Function: check_mpb_migr_compatibility
3456 * Description: Function checks for unsupported migration features:
3457 * - migration optimization area (pba_of_lba0)
3458 * - descending reshape (ascending_migr)
3459 * Parameters:
3460 * super : imsm metadata information
3461 * Returns:
3462 * 0 : migration is compatible
3463 * -1 : migration is not compatible
3464 ******************************************************************************/
3465 int check_mpb_migr_compatibility(struct intel_super *super)
3466 {
3467 struct imsm_map *map0, *map1;
3468 struct migr_record *migr_rec = super->migr_rec;
3469 int i;
3470
3471 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3472 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3473
3474 if (dev_iter &&
3475 dev_iter->vol.migr_state == 1 &&
3476 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3477 /* This device is migrating */
3478 map0 = get_imsm_map(dev_iter, MAP_0);
3479 map1 = get_imsm_map(dev_iter, MAP_1);
3480 if (pba_of_lba0(map0) != pba_of_lba0(map1))
3481 /* migration optimization area was used */
3482 return -1;
3483 if (migr_rec->ascending_migr == 0
3484 && migr_rec->dest_depth_per_unit > 0)
3485 /* descending reshape not supported yet */
3486 return -1;
3487 }
3488 }
3489 return 0;
3490 }
3491
3492 static void __free_imsm(struct intel_super *super, int free_disks);
3493
3494 /* load_imsm_mpb - read matrix metadata
3495 * allocates super->mpb to be freed by free_imsm
3496 */
3497 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3498 {
3499 unsigned long long dsize;
3500 unsigned long long sectors;
3501 struct stat;
3502 struct imsm_super *anchor;
3503 __u32 check_sum;
3504
3505 get_dev_size(fd, NULL, &dsize);
3506 if (dsize < 1024) {
3507 if (devname)
3508 fprintf(stderr,
3509 Name ": %s: device to small for imsm\n",
3510 devname);
3511 return 1;
3512 }
3513
3514 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3515 if (devname)
3516 fprintf(stderr, Name
3517 ": Cannot seek to anchor block on %s: %s\n",
3518 devname, strerror(errno));
3519 return 1;
3520 }
3521
3522 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3523 if (devname)
3524 fprintf(stderr,
3525 Name ": Failed to allocate imsm anchor buffer"
3526 " on %s\n", devname);
3527 return 1;
3528 }
3529 if (read(fd, anchor, 512) != 512) {
3530 if (devname)
3531 fprintf(stderr,
3532 Name ": Cannot read anchor block on %s: %s\n",
3533 devname, strerror(errno));
3534 free(anchor);
3535 return 1;
3536 }
3537
3538 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3539 if (devname)
3540 fprintf(stderr,
3541 Name ": no IMSM anchor on %s\n", devname);
3542 free(anchor);
3543 return 2;
3544 }
3545
3546 __free_imsm(super, 0);
3547 /* reload capability and hba */
3548
3549 /* capability and hba must be updated with new super allocation */
3550 find_intel_hba_capability(fd, super, devname);
3551 super->len = ROUND_UP(anchor->mpb_size, 512);
3552 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3553 if (devname)
3554 fprintf(stderr,
3555 Name ": unable to allocate %zu byte mpb buffer\n",
3556 super->len);
3557 free(anchor);
3558 return 2;
3559 }
3560 memcpy(super->buf, anchor, 512);
3561
3562 sectors = mpb_sectors(anchor) - 1;
3563 free(anchor);
3564
3565 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3566 fprintf(stderr, Name
3567 ": %s could not allocate migr_rec buffer\n", __func__);
3568 free(super->buf);
3569 return 2;
3570 }
3571 super->clean_migration_record_by_mdmon = 0;
3572
3573 if (!sectors) {
3574 check_sum = __gen_imsm_checksum(super->anchor);
3575 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3576 if (devname)
3577 fprintf(stderr,
3578 Name ": IMSM checksum %x != %x on %s\n",
3579 check_sum,
3580 __le32_to_cpu(super->anchor->check_sum),
3581 devname);
3582 return 2;
3583 }
3584
3585 return 0;
3586 }
3587
3588 /* read the extended mpb */
3589 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3590 if (devname)
3591 fprintf(stderr,
3592 Name ": Cannot seek to extended mpb on %s: %s\n",
3593 devname, strerror(errno));
3594 return 1;
3595 }
3596
3597 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3598 if (devname)
3599 fprintf(stderr,
3600 Name ": Cannot read extended mpb on %s: %s\n",
3601 devname, strerror(errno));
3602 return 2;
3603 }
3604
3605 check_sum = __gen_imsm_checksum(super->anchor);
3606 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3607 if (devname)
3608 fprintf(stderr,
3609 Name ": IMSM checksum %x != %x on %s\n",
3610 check_sum, __le32_to_cpu(super->anchor->check_sum),
3611 devname);
3612 return 3;
3613 }
3614
3615 /* FIXME the BBM log is disk specific so we cannot use this global
3616 * buffer for all disks. Ok for now since we only look at the global
3617 * bbm_log_size parameter to gate assembly
3618 */
3619 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3620
3621 return 0;
3622 }
3623
3624 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3625
3626 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
3627 static void clear_hi(struct intel_super *super)
3628 {
3629 struct imsm_super *mpb = super->anchor;
3630 int i, n;
3631 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
3632 return;
3633 for (i = 0; i < mpb->num_disks; ++i) {
3634 struct imsm_disk *disk = &mpb->disk[i];
3635 disk->total_blocks_hi = 0;
3636 }
3637 for (i = 0; i < mpb->num_raid_devs; ++i) {
3638 struct imsm_dev *dev = get_imsm_dev(super, i);
3639 if (!dev)
3640 return;
3641 for (n = 0; n < 2; ++n) {
3642 struct imsm_map *map = get_imsm_map(dev, n);
3643 if (!map)
3644 continue;
3645 map->pba_of_lba0_hi = 0;
3646 map->blocks_per_member_hi = 0;
3647 map->num_data_stripes_hi = 0;
3648 }
3649 }
3650 }
3651
3652 static int
3653 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3654 {
3655 int err;
3656
3657 err = load_imsm_mpb(fd, super, devname);
3658 if (err)
3659 return err;
3660 err = load_imsm_disk(fd, super, devname, keep_fd);
3661 if (err)
3662 return err;
3663 err = parse_raid_devices(super);
3664 clear_hi(super);
3665 return err;
3666 }
3667
3668 static void __free_imsm_disk(struct dl *d)
3669 {
3670 if (d->fd >= 0)
3671 close(d->fd);
3672 if (d->devname)
3673 free(d->devname);
3674 if (d->e)
3675 free(d->e);
3676 free(d);
3677
3678 }
3679
3680 static void free_imsm_disks(struct intel_super *super)
3681 {
3682 struct dl *d;
3683
3684 while (super->disks) {
3685 d = super->disks;
3686 super->disks = d->next;
3687 __free_imsm_disk(d);
3688 }
3689 while (super->disk_mgmt_list) {
3690 d = super->disk_mgmt_list;
3691 super->disk_mgmt_list = d->next;
3692 __free_imsm_disk(d);
3693 }
3694 while (super->missing) {
3695 d = super->missing;
3696 super->missing = d->next;
3697 __free_imsm_disk(d);
3698 }
3699
3700 }
3701
3702 /* free all the pieces hanging off of a super pointer */
3703 static void __free_imsm(struct intel_super *super, int free_disks)
3704 {
3705 struct intel_hba *elem, *next;
3706
3707 if (super->buf) {
3708 free(super->buf);
3709 super->buf = NULL;
3710 }
3711 /* unlink capability description */
3712 super->orom = NULL;
3713 if (super->migr_rec_buf) {
3714 free(super->migr_rec_buf);
3715 super->migr_rec_buf = NULL;
3716 }
3717 if (free_disks)
3718 free_imsm_disks(super);
3719 free_devlist(super);
3720 elem = super->hba;
3721 while (elem) {
3722 if (elem->path)
3723 free((void *)elem->path);
3724 next = elem->next;
3725 free(elem);
3726 elem = next;
3727 }
3728 super->hba = NULL;
3729 }
3730
3731 static void free_imsm(struct intel_super *super)
3732 {
3733 __free_imsm(super, 1);
3734 free(super);
3735 }
3736
3737 static void free_super_imsm(struct supertype *st)
3738 {
3739 struct intel_super *super = st->sb;
3740
3741 if (!super)
3742 return;
3743
3744 free_imsm(super);
3745 st->sb = NULL;
3746 }
3747
3748 static struct intel_super *alloc_super(void)
3749 {
3750 struct intel_super *super = malloc(sizeof(*super));
3751
3752 if (super) {
3753 memset(super, 0, sizeof(*super));
3754 super->current_vol = -1;
3755 super->create_offset = ~((unsigned long long) 0);
3756 }
3757 return super;
3758 }
3759
3760 /*
3761 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3762 */
3763 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3764 {
3765 struct sys_dev *hba_name;
3766 int rv = 0;
3767
3768 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3769 super->orom = NULL;
3770 super->hba = NULL;
3771 return 0;
3772 }
3773 hba_name = find_disk_attached_hba(fd, NULL);
3774 if (!hba_name) {
3775 if (devname)
3776 fprintf(stderr,
3777 Name ": %s is not attached to Intel(R) RAID controller.\n",
3778 devname);
3779 return 1;
3780 }
3781 rv = attach_hba_to_super(super, hba_name);
3782 if (rv == 2) {
3783 if (devname) {
3784 struct intel_hba *hba = super->hba;
3785
3786 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3787 "controller (%s),\n"
3788 " but the container is assigned to Intel(R) "
3789 "%s RAID controller (",
3790 devname,
3791 hba_name->path,
3792 hba_name->pci_id ? : "Err!",
3793 get_sys_dev_type(hba_name->type));
3794
3795 while (hba) {
3796 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3797 if (hba->next)
3798 fprintf(stderr, ", ");
3799 hba = hba->next;
3800 }
3801
3802 fprintf(stderr, ").\n"
3803 " Mixing devices attached to different controllers "
3804 "is not allowed.\n");
3805 }
3806 free_sys_dev(&hba_name);
3807 return 2;
3808 }
3809 super->orom = find_imsm_capability(hba_name->type);
3810 free_sys_dev(&hba_name);
3811 if (!super->orom)
3812 return 3;
3813 return 0;
3814 }
3815
3816 /* find_missing - helper routine for load_super_imsm_all that identifies
3817 * disks that have disappeared from the system. This routine relies on
3818 * the mpb being uptodate, which it is at load time.
3819 */
3820 static int find_missing(struct intel_super *super)
3821 {
3822 int i;
3823 struct imsm_super *mpb = super->anchor;
3824 struct dl *dl;
3825 struct imsm_disk *disk;
3826
3827 for (i = 0; i < mpb->num_disks; i++) {
3828 disk = __get_imsm_disk(mpb, i);
3829 dl = serial_to_dl(disk->serial, super);
3830 if (dl)
3831 continue;
3832
3833 dl = malloc(sizeof(*dl));
3834 if (!dl)
3835 return 1;
3836 dl->major = 0;
3837 dl->minor = 0;
3838 dl->fd = -1;
3839 dl->devname = strdup("missing");
3840 dl->index = i;
3841 serialcpy(dl->serial, disk->serial);
3842 dl->disk = *disk;
3843 dl->e = NULL;
3844 dl->next = super->missing;
3845 super->missing = dl;
3846 }
3847
3848 return 0;
3849 }
3850
3851 #ifndef MDASSEMBLE
3852 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3853 {
3854 struct intel_disk *idisk = disk_list;
3855
3856 while (idisk) {
3857 if (serialcmp(idisk->disk.serial, serial) == 0)
3858 break;
3859 idisk = idisk->next;
3860 }
3861
3862 return idisk;
3863 }
3864
3865 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3866 struct intel_super *super,
3867 struct intel_disk **disk_list)
3868 {
3869 struct imsm_disk *d = &super->disks->disk;
3870 struct imsm_super *mpb = super->anchor;
3871 int i, j;
3872
3873 for (i = 0; i < tbl_size; i++) {
3874 struct imsm_super *tbl_mpb = table[i]->anchor;
3875 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3876
3877 if (tbl_mpb->family_num == mpb->family_num) {
3878 if (tbl_mpb->check_sum == mpb->check_sum) {
3879 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3880 __func__, super->disks->major,
3881 super->disks->minor,
3882 table[i]->disks->major,
3883 table[i]->disks->minor);
3884 break;
3885 }
3886
3887 if (((is_configured(d) && !is_configured(tbl_d)) ||
3888 is_configured(d) == is_configured(tbl_d)) &&
3889 tbl_mpb->generation_num < mpb->generation_num) {
3890 /* current version of the mpb is a
3891 * better candidate than the one in
3892 * super_table, but copy over "cross
3893 * generational" status
3894 */
3895 struct intel_disk *idisk;
3896
3897 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3898 __func__, super->disks->major,
3899 super->disks->minor,
3900 table[i]->disks->major,
3901 table[i]->disks->minor);
3902
3903 idisk = disk_list_get(tbl_d->serial, *disk_list);
3904 if (idisk && is_failed(&idisk->disk))
3905 tbl_d->status |= FAILED_DISK;
3906 break;
3907 } else {
3908 struct intel_disk *idisk;
3909 struct imsm_disk *disk;
3910
3911 /* tbl_mpb is more up to date, but copy
3912 * over cross generational status before
3913 * returning
3914 */
3915 disk = __serial_to_disk(d->serial, mpb, NULL);
3916 if (disk && is_failed(disk))
3917 d->status |= FAILED_DISK;
3918
3919 idisk = disk_list_get(d->serial, *disk_list);
3920 if (idisk) {
3921 idisk->owner = i;
3922 if (disk && is_configured(disk))
3923 idisk->disk.status |= CONFIGURED_DISK;
3924 }
3925
3926 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3927 __func__, super->disks->major,
3928 super->disks->minor,
3929 table[i]->disks->major,
3930 table[i]->disks->minor);
3931
3932 return tbl_size;
3933 }
3934 }
3935 }
3936
3937 if (i >= tbl_size)
3938 table[tbl_size++] = super;
3939 else
3940 table[i] = super;
3941
3942 /* update/extend the merged list of imsm_disk records */
3943 for (j = 0; j < mpb->num_disks; j++) {
3944 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3945 struct intel_disk *idisk;
3946
3947 idisk = disk_list_get(disk->serial, *disk_list);
3948 if (idisk) {
3949 idisk->disk.status |= disk->status;
3950 if (is_configured(&idisk->disk) ||
3951 is_failed(&idisk->disk))
3952 idisk->disk.status &= ~(SPARE_DISK);
3953 } else {
3954 idisk = calloc(1, sizeof(*idisk));
3955 if (!idisk)
3956 return -1;
3957 idisk->owner = IMSM_UNKNOWN_OWNER;
3958 idisk->disk = *disk;
3959 idisk->next = *disk_list;
3960 *disk_list = idisk;
3961 }
3962
3963 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3964 idisk->owner = i;
3965 }
3966
3967 return tbl_size;
3968 }
3969
3970 static struct intel_super *
3971 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3972 const int owner)
3973 {
3974 struct imsm_super *mpb = super->anchor;
3975 int ok_count = 0;
3976 int i;
3977
3978 for (i = 0; i < mpb->num_disks; i++) {
3979 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3980 struct intel_disk *idisk;
3981
3982 idisk = disk_list_get(disk->serial, disk_list);
3983 if (idisk) {
3984 if (idisk->owner == owner ||
3985 idisk->owner == IMSM_UNKNOWN_OWNER)
3986 ok_count++;
3987 else
3988 dprintf("%s: '%.16s' owner %d != %d\n",
3989 __func__, disk->serial, idisk->owner,
3990 owner);
3991 } else {
3992 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3993 __func__, __le32_to_cpu(mpb->family_num), i,
3994 disk->serial);
3995 break;
3996 }
3997 }
3998
3999 if (ok_count == mpb->num_disks)
4000 return super;
4001 return NULL;
4002 }
4003
4004 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4005 {
4006 struct intel_super *s;
4007
4008 for (s = super_list; s; s = s->next) {
4009 if (family_num != s->anchor->family_num)
4010 continue;
4011 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
4012 __le32_to_cpu(family_num), s->disks->devname);
4013 }
4014 }
4015
4016 static struct intel_super *
4017 imsm_thunderdome(struct intel_super **super_list, int len)
4018 {
4019 struct intel_super *super_table[len];
4020 struct intel_disk *disk_list = NULL;
4021 struct intel_super *champion, *spare;
4022 struct intel_super *s, **del;
4023 int tbl_size = 0;
4024 int conflict;
4025 int i;
4026
4027 memset(super_table, 0, sizeof(super_table));
4028 for (s = *super_list; s; s = s->next)
4029 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4030
4031 for (i = 0; i < tbl_size; i++) {
4032 struct imsm_disk *d;
4033 struct intel_disk *idisk;
4034 struct imsm_super *mpb = super_table[i]->anchor;
4035
4036 s = super_table[i];
4037 d = &s->disks->disk;
4038
4039 /* 'd' must appear in merged disk list for its
4040 * configuration to be valid
4041 */
4042 idisk = disk_list_get(d->serial, disk_list);
4043 if (idisk && idisk->owner == i)
4044 s = validate_members(s, disk_list, i);
4045 else
4046 s = NULL;
4047
4048 if (!s)
4049 dprintf("%s: marking family: %#x from %d:%d offline\n",
4050 __func__, mpb->family_num,
4051 super_table[i]->disks->major,
4052 super_table[i]->disks->minor);
4053 super_table[i] = s;
4054 }
4055
4056 /* This is where the mdadm implementation differs from the Windows
4057 * driver which has no strict concept of a container. We can only
4058 * assemble one family from a container, so when returning a prodigal
4059 * array member to this system the code will not be able to disambiguate
4060 * the container contents that should be assembled ("foreign" versus
4061 * "local"). It requires user intervention to set the orig_family_num
4062 * to a new value to establish a new container. The Windows driver in
4063 * this situation fixes up the volume name in place and manages the
4064 * foreign array as an independent entity.
4065 */
4066 s = NULL;
4067 spare = NULL;
4068 conflict = 0;
4069 for (i = 0; i < tbl_size; i++) {
4070 struct intel_super *tbl_ent = super_table[i];
4071 int is_spare = 0;
4072
4073 if (!tbl_ent)
4074 continue;
4075
4076 if (tbl_ent->anchor->num_raid_devs == 0) {
4077 spare = tbl_ent;
4078 is_spare = 1;
4079 }
4080
4081 if (s && !is_spare) {
4082 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4083 conflict++;
4084 } else if (!s && !is_spare)
4085 s = tbl_ent;
4086 }
4087
4088 if (!s)
4089 s = spare;
4090 if (!s) {
4091 champion = NULL;
4092 goto out;
4093 }
4094 champion = s;
4095
4096 if (conflict)
4097 fprintf(stderr, "Chose family %#x on '%s', "
4098 "assemble conflicts to new container with '--update=uuid'\n",
4099 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4100
4101 /* collect all dl's onto 'champion', and update them to
4102 * champion's version of the status
4103 */
4104 for (s = *super_list; s; s = s->next) {
4105 struct imsm_super *mpb = champion->anchor;
4106 struct dl *dl = s->disks;
4107
4108 if (s == champion)
4109 continue;
4110
4111 for (i = 0; i < mpb->num_disks; i++) {
4112 struct imsm_disk *disk;
4113
4114 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4115 if (disk) {
4116 dl->disk = *disk;
4117 /* only set index on disks that are a member of
4118 * a populated contianer, i.e. one with
4119 * raid_devs
4120 */
4121 if (is_failed(&dl->disk))
4122 dl->index = -2;
4123 else if (is_spare(&dl->disk))
4124 dl->index = -1;
4125 break;
4126 }
4127 }
4128
4129 if (i >= mpb->num_disks) {
4130 struct intel_disk *idisk;
4131
4132 idisk = disk_list_get(dl->serial, disk_list);
4133 if (idisk && is_spare(&idisk->disk) &&
4134 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4135 dl->index = -1;
4136 else {
4137 dl->index = -2;
4138 continue;
4139 }
4140 }
4141
4142 dl->next = champion->disks;
4143 champion->disks = dl;
4144 s->disks = NULL;
4145 }
4146
4147 /* delete 'champion' from super_list */
4148 for (del = super_list; *del; ) {
4149 if (*del == champion) {
4150 *del = (*del)->next;
4151 break;
4152 } else
4153 del = &(*del)->next;
4154 }
4155 champion->next = NULL;
4156
4157 out:
4158 while (disk_list) {
4159 struct intel_disk *idisk = disk_list;
4160
4161 disk_list = disk_list->next;
4162 free(idisk);
4163 }
4164
4165 return champion;
4166 }
4167
4168
4169 static int
4170 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4171 static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4172 int major, int minor, int keep_fd);
4173 static int
4174 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4175 int *max, int keep_fd);
4176
4177
4178 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4179 char *devname, struct md_list *devlist,
4180 int keep_fd)
4181 {
4182 struct intel_super *super_list = NULL;
4183 struct intel_super *super = NULL;
4184 int err = 0;
4185 int i = 0;
4186
4187 if (fd >= 0)
4188 /* 'fd' is an opened container */
4189 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4190 else
4191 /* get super block from devlist devices */
4192 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4193 if (err)
4194 goto error;
4195 /* all mpbs enter, maybe one leaves */
4196 super = imsm_thunderdome(&super_list, i);
4197 if (!super) {
4198 err = 1;
4199 goto error;
4200 }
4201
4202 if (find_missing(super) != 0) {
4203 free_imsm(super);
4204 err = 2;
4205 goto error;
4206 }
4207
4208 /* load migration record */
4209 err = load_imsm_migr_rec(super, NULL);
4210 if (err == -1) {
4211 /* migration is in progress,
4212 * but migr_rec cannot be loaded,
4213 */
4214 err = 4;
4215 goto error;
4216 }
4217
4218 /* Check migration compatibility */
4219 if ((err == 0) && (check_mpb_migr_compatibility(super) != 0)) {
4220 fprintf(stderr, Name ": Unsupported migration detected");
4221 if (devname)
4222 fprintf(stderr, " on %s\n", devname);
4223 else
4224 fprintf(stderr, " (IMSM).\n");
4225
4226 err = 5;
4227 goto error;
4228 }
4229
4230 err = 0;
4231
4232 error:
4233 while (super_list) {
4234 struct intel_super *s = super_list;
4235
4236 super_list = super_list->next;
4237 free_imsm(s);
4238 }
4239
4240
4241 if (err)
4242 return err;
4243
4244 *sbp = super;
4245 if (fd >= 0)
4246 st->container_dev = fd2devnum(fd);
4247 else
4248 st->container_dev = NoMdDev;
4249 if (err == 0 && st->ss == NULL) {
4250 st->ss = &super_imsm;
4251 st->minor_version = 0;
4252 st->max_devs = IMSM_MAX_DEVICES;
4253 }
4254 return 0;
4255 }
4256
4257
4258 static int
4259 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4260 int *max, int keep_fd)
4261 {
4262 struct md_list *tmpdev;
4263 int err = 0;
4264 int i = 0;
4265
4266 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4267 if (tmpdev->used != 1)
4268 continue;
4269 if (tmpdev->container == 1) {
4270 int lmax = 0;
4271 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4272 if (fd < 0) {
4273 fprintf(stderr, Name ": cannot open device %s: %s\n",
4274 tmpdev->devname, strerror(errno));
4275 err = 8;
4276 goto error;
4277 }
4278 err = get_sra_super_block(fd, super_list,
4279 tmpdev->devname, &lmax,
4280 keep_fd);
4281 i += lmax;
4282 close(fd);
4283 if (err) {
4284 err = 7;
4285 goto error;
4286 }
4287 } else {
4288 int major = major(tmpdev->st_rdev);
4289 int minor = minor(tmpdev->st_rdev);
4290 err = get_super_block(super_list,
4291 -1,
4292 tmpdev->devname,
4293 major, minor,
4294 keep_fd);
4295 i++;
4296 if (err) {
4297 err = 6;
4298 goto error;
4299 }
4300 }
4301 }
4302 error:
4303 *max = i;
4304 return err;
4305 }
4306
4307 static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4308 int major, int minor, int keep_fd)
4309 {
4310 struct intel_super*s = NULL;
4311 char nm[32];
4312 int dfd = -1;
4313 int rv;
4314 int err = 0;
4315 int retry;
4316
4317 s = alloc_super();
4318 if (!s) {
4319 err = 1;
4320 goto error;
4321 }
4322
4323 sprintf(nm, "%d:%d", major, minor);
4324 dfd = dev_open(nm, O_RDWR);
4325 if (dfd < 0) {
4326 err = 2;
4327 goto error;
4328 }
4329
4330 rv = find_intel_hba_capability(dfd, s, devname);
4331 /* no orom/efi or non-intel hba of the disk */
4332 if (rv != 0) {
4333 err = 4;
4334 goto error;
4335 }
4336
4337 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4338
4339 /* retry the load if we might have raced against mdmon */
4340 if (err == 3 && (devnum != -1) && mdmon_running(devnum))
4341 for (retry = 0; retry < 3; retry++) {
4342 usleep(3000);
4343 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4344 if (err != 3)
4345 break;
4346 }
4347 error:
4348 if (!err) {
4349 s->next = *super_list;
4350 *super_list = s;
4351 } else {
4352 if (s)
4353 free(s);
4354 if (dfd)
4355 close(dfd);
4356 }
4357 if ((dfd >= 0) && (!keep_fd))
4358 close(dfd);
4359 return err;
4360
4361 }
4362
4363 static int
4364 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4365 {
4366 struct mdinfo *sra;
4367 int devnum;
4368 struct mdinfo *sd;
4369 int err = 0;
4370 int i = 0;
4371 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4372 if (!sra)
4373 return 1;
4374
4375 if (sra->array.major_version != -1 ||
4376 sra->array.minor_version != -2 ||
4377 strcmp(sra->text_version, "imsm") != 0) {
4378 err = 1;
4379 goto error;
4380 }
4381 /* load all mpbs */
4382 devnum = fd2devnum(fd);
4383 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4384 if (get_super_block(super_list, devnum, devname,
4385 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4386 err = 7;
4387 goto error;
4388 }
4389 }
4390 error:
4391 sysfs_free(sra);
4392 *max = i;
4393 return err;
4394 }
4395
4396 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4397 {
4398 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
4399 }
4400 #endif
4401
4402 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4403 {
4404 struct intel_super *super;
4405 int rv;
4406
4407 if (test_partition(fd))
4408 /* IMSM not allowed on partitions */
4409 return 1;
4410
4411 free_super_imsm(st);
4412
4413 super = alloc_super();
4414 if (!super) {
4415 fprintf(stderr,
4416 Name ": malloc of %zu failed.\n",
4417 sizeof(*super));
4418 return 1;
4419 }
4420 /* Load hba and capabilities if they exist.
4421 * But do not preclude loading metadata in case capabilities or hba are
4422 * non-compliant and ignore_hw_compat is set.
4423 */
4424 rv = find_intel_hba_capability(fd, super, devname);
4425 /* no orom/efi or non-intel hba of the disk */
4426 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4427 if (devname)
4428 fprintf(stderr,
4429 Name ": No OROM/EFI properties for %s\n", devname);
4430 free_imsm(super);
4431 return 2;
4432 }
4433 rv = load_and_parse_mpb(fd, super, devname, 0);
4434
4435 if (rv) {
4436 if (devname)
4437 fprintf(stderr,
4438 Name ": Failed to load all information "
4439 "sections on %s\n", devname);
4440 free_imsm(super);
4441 return rv;
4442 }
4443
4444 st->sb = super;
4445 if (st->ss == NULL) {
4446 st->ss = &super_imsm;
4447 st->minor_version = 0;
4448 st->max_devs = IMSM_MAX_DEVICES;
4449 }
4450
4451 /* load migration record */
4452 if (load_imsm_migr_rec(super, NULL) == 0) {
4453 /* Check for unsupported migration features */
4454 if (check_mpb_migr_compatibility(super) != 0) {
4455 fprintf(stderr,
4456 Name ": Unsupported migration detected");
4457 if (devname)
4458 fprintf(stderr, " on %s\n", devname);
4459 else
4460 fprintf(stderr, " (IMSM).\n");
4461 return 3;
4462 }
4463 }
4464
4465 return 0;
4466 }
4467
4468 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4469 {
4470 if (info->level == 1)
4471 return 128;
4472 return info->chunk_size >> 9;
4473 }
4474
4475 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4476 unsigned long long size)
4477 {
4478 if (info->level == 1)
4479 return size * 2;
4480 else
4481 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4482 }
4483
4484 static void imsm_update_version_info(struct intel_super *super)
4485 {
4486 /* update the version and attributes */
4487 struct imsm_super *mpb = super->anchor;
4488 char *version;
4489 struct imsm_dev *dev;
4490 struct imsm_map *map;
4491 int i;
4492
4493 for (i = 0; i < mpb->num_raid_devs; i++) {
4494 dev = get_imsm_dev(super, i);
4495 map = get_imsm_map(dev, MAP_0);
4496 if (__le32_to_cpu(dev->size_high) > 0)
4497 mpb->attributes |= MPB_ATTRIB_2TB;
4498
4499 /* FIXME detect when an array spans a port multiplier */
4500 #if 0
4501 mpb->attributes |= MPB_ATTRIB_PM;
4502 #endif
4503
4504 if (mpb->num_raid_devs > 1 ||
4505 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4506 version = MPB_VERSION_ATTRIBS;
4507 switch (get_imsm_raid_level(map)) {
4508 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4509 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4510 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4511 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4512 }
4513 } else {
4514 if (map->num_members >= 5)
4515 version = MPB_VERSION_5OR6_DISK_ARRAY;
4516 else if (dev->status == DEV_CLONE_N_GO)
4517 version = MPB_VERSION_CNG;
4518 else if (get_imsm_raid_level(map) == 5)
4519 version = MPB_VERSION_RAID5;
4520 else if (map->num_members >= 3)
4521 version = MPB_VERSION_3OR4_DISK_ARRAY;
4522 else if (get_imsm_raid_level(map) == 1)
4523 version = MPB_VERSION_RAID1;
4524 else
4525 version = MPB_VERSION_RAID0;
4526 }
4527 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4528 }
4529 }
4530
4531 static int check_name(struct intel_super *super, char *name, int quiet)
4532 {
4533 struct imsm_super *mpb = super->anchor;
4534 char *reason = NULL;
4535 int i;
4536
4537 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4538 reason = "must be 16 characters or less";
4539
4540 for (i = 0; i < mpb->num_raid_devs; i++) {
4541 struct imsm_dev *dev = get_imsm_dev(super, i);
4542
4543 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4544 reason = "already exists";
4545 break;
4546 }
4547 }
4548
4549 if (reason && !quiet)
4550 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4551
4552 return !reason;
4553 }
4554
4555 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4556 unsigned long long size, char *name,
4557 char *homehost, int *uuid)
4558 {
4559 /* We are creating a volume inside a pre-existing container.
4560 * so st->sb is already set.
4561 */
4562 struct intel_super *super = st->sb;
4563 struct imsm_super *mpb = super->anchor;
4564 struct intel_dev *dv;
4565 struct imsm_dev *dev;
4566 struct imsm_vol *vol;
4567 struct imsm_map *map;
4568 int idx = mpb->num_raid_devs;
4569 int i;
4570 unsigned long long array_blocks;
4571 size_t size_old, size_new;
4572 unsigned long long num_data_stripes;
4573
4574 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4575 fprintf(stderr, Name": This imsm-container already has the "
4576 "maximum of %d volumes\n", super->orom->vpa);
4577 return 0;
4578 }
4579
4580 /* ensure the mpb is large enough for the new data */
4581 size_old = __le32_to_cpu(mpb->mpb_size);
4582 size_new = disks_to_mpb_size(info->nr_disks);
4583 if (size_new > size_old) {
4584 void *mpb_new;
4585 size_t size_round = ROUND_UP(size_new, 512);
4586
4587 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4588 fprintf(stderr, Name": could not allocate new mpb\n");
4589 return 0;
4590 }
4591 if (posix_memalign(&super->migr_rec_buf, 512,
4592 MIGR_REC_BUF_SIZE) != 0) {
4593 fprintf(stderr, Name
4594 ": %s could not allocate migr_rec buffer\n",
4595 __func__);
4596 free(super->buf);
4597 free(super);
4598 free(mpb_new);
4599 return 0;
4600 }
4601 memcpy(mpb_new, mpb, size_old);
4602 free(mpb);
4603 mpb = mpb_new;
4604 super->anchor = mpb_new;
4605 mpb->mpb_size = __cpu_to_le32(size_new);
4606 memset(mpb_new + size_old, 0, size_round - size_old);
4607 }
4608 super->current_vol = idx;
4609
4610 /* handle 'failed_disks' by either:
4611 * a) create dummy disk entries in the table if this the first
4612 * volume in the array. We add them here as this is the only
4613 * opportunity to add them. add_to_super_imsm_volume()
4614 * handles the non-failed disks and continues incrementing
4615 * mpb->num_disks.
4616 * b) validate that 'failed_disks' matches the current number
4617 * of missing disks if the container is populated
4618 */
4619 if (super->current_vol == 0) {
4620 mpb->num_disks = 0;
4621 for (i = 0; i < info->failed_disks; i++) {
4622 struct imsm_disk *disk;
4623
4624 mpb->num_disks++;
4625 disk = __get_imsm_disk(mpb, i);
4626 disk->status = CONFIGURED_DISK | FAILED_DISK;
4627 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4628 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4629 "missing:%d", i);
4630 }
4631 find_missing(super);
4632 } else {
4633 int missing = 0;
4634 struct dl *d;
4635
4636 for (d = super->missing; d; d = d->next)
4637 missing++;
4638 if (info->failed_disks > missing) {
4639 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4640 return 0;
4641 }
4642 }
4643
4644 if (!check_name(super, name, 0))
4645 return 0;
4646 dv = malloc(sizeof(*dv));
4647 if (!dv) {
4648 fprintf(stderr, Name ": failed to allocate device list entry\n");
4649 return 0;
4650 }
4651 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4652 if (!dev) {
4653 free(dv);
4654 fprintf(stderr, Name": could not allocate raid device\n");
4655 return 0;
4656 }
4657
4658 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4659 array_blocks = calc_array_size(info->level, info->raid_disks,
4660 info->layout, info->chunk_size,
4661 size * 2);
4662 /* round array size down to closest MB */
4663 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4664
4665 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4666 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4667 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4668 vol = &dev->vol;
4669 vol->migr_state = 0;
4670 set_migr_type(dev, MIGR_INIT);
4671 vol->dirty = !info->state;
4672 vol->curr_migr_unit = 0;
4673 map = get_imsm_map(dev, MAP_0);
4674 set_pba_of_lba0(map, super->create_offset);
4675 set_blocks_per_member(map, info_to_blocks_per_member(info, size));
4676 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4677 map->failed_disk_num = ~0;
4678 if (info->level > 0)
4679 map->map_state = IMSM_T_STATE_UNINITIALIZED;
4680 else
4681 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4682 IMSM_T_STATE_NORMAL;
4683 map->ddf = 1;
4684
4685 if (info->level == 1 && info->raid_disks > 2) {
4686 free(dev);
4687 free(dv);
4688 fprintf(stderr, Name": imsm does not support more than 2 disks"
4689 "in a raid1 volume\n");
4690 return 0;
4691 }
4692
4693 map->raid_level = info->level;
4694 if (info->level == 10) {
4695 map->raid_level = 1;
4696 map->num_domains = info->raid_disks / 2;
4697 } else if (info->level == 1)
4698 map->num_domains = info->raid_disks;
4699 else
4700 map->num_domains = 1;
4701
4702 /* info->size is only int so use the 'size' parameter instead */
4703 num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4704 num_data_stripes /= map->num_domains;
4705 set_num_data_stripes(map, num_data_stripes);
4706
4707 map->num_members = info->raid_disks;
4708 for (i = 0; i < map->num_members; i++) {
4709 /* initialized in add_to_super */
4710 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4711 }
4712 mpb->num_raid_devs++;
4713
4714 dv->dev = dev;
4715 dv->index = super->current_vol;
4716 dv->next = super->devlist;
4717 super->devlist = dv;
4718
4719 imsm_update_version_info(super);
4720
4721 return 1;
4722 }
4723
4724 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4725 unsigned long long size, char *name,
4726 char *homehost, int *uuid)
4727 {
4728 /* This is primarily called by Create when creating a new array.
4729 * We will then get add_to_super called for each component, and then
4730 * write_init_super called to write it out to each device.
4731 * For IMSM, Create can create on fresh devices or on a pre-existing
4732 * array.
4733 * To create on a pre-existing array a different method will be called.
4734 * This one is just for fresh drives.
4735 */
4736 struct intel_super *super;
4737 struct imsm_super *mpb;
4738 size_t mpb_size;
4739 char *version;
4740
4741 if (st->sb)
4742 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4743
4744 if (info)
4745 mpb_size = disks_to_mpb_size(info->nr_disks);
4746 else
4747 mpb_size = 512;
4748
4749 super = alloc_super();
4750 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4751 free(super);
4752 super = NULL;
4753 }
4754 if (!super) {
4755 fprintf(stderr, Name
4756 ": %s could not allocate superblock\n", __func__);
4757 return 0;
4758 }
4759 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
4760 fprintf(stderr, Name
4761 ": %s could not allocate migr_rec buffer\n", __func__);
4762 free(super->buf);
4763 free(super);
4764 return 0;
4765 }
4766 memset(super->buf, 0, mpb_size);
4767 mpb = super->buf;
4768 mpb->mpb_size = __cpu_to_le32(mpb_size);
4769 st->sb = super;
4770
4771 if (info == NULL) {
4772 /* zeroing superblock */
4773 return 0;
4774 }
4775
4776 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4777
4778 version = (char *) mpb->sig;
4779 strcpy(version, MPB_SIGNATURE);
4780 version += strlen(MPB_SIGNATURE);
4781 strcpy(version, MPB_VERSION_RAID0);
4782
4783 return 1;
4784 }
4785
4786 #ifndef MDASSEMBLE
4787 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4788 int fd, char *devname)
4789 {
4790 struct intel_super *super = st->sb;
4791 struct imsm_super *mpb = super->anchor;
4792 struct imsm_disk *_disk;
4793 struct imsm_dev *dev;
4794 struct imsm_map *map;
4795 struct dl *dl, *df;
4796 int slot;
4797
4798 dev = get_imsm_dev(super, super->current_vol);
4799 map = get_imsm_map(dev, MAP_0);
4800
4801 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4802 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4803 devname);
4804 return 1;
4805 }
4806
4807 if (fd == -1) {
4808 /* we're doing autolayout so grab the pre-marked (in
4809 * validate_geometry) raid_disk
4810 */
4811 for (dl = super->disks; dl; dl = dl->next)
4812 if (dl->raiddisk == dk->raid_disk)
4813 break;
4814 } else {
4815 for (dl = super->disks; dl ; dl = dl->next)
4816 if (dl->major == dk->major &&
4817 dl->minor == dk->minor)
4818 break;
4819 }
4820
4821 if (!dl) {
4822 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4823 return 1;
4824 }
4825
4826 /* add a pristine spare to the metadata */
4827 if (dl->index < 0) {
4828 dl->index = super->anchor->num_disks;
4829 super->anchor->num_disks++;
4830 }
4831 /* Check the device has not already been added */
4832 slot = get_imsm_disk_slot(map, dl->index);
4833 if (slot >= 0 &&
4834 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
4835 fprintf(stderr, Name ": %s has been included in this array twice\n",
4836 devname);
4837 return 1;
4838 }
4839 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4840 dl->disk.status = CONFIGURED_DISK;
4841
4842 /* update size of 'missing' disks to be at least as large as the
4843 * largest acitve member (we only have dummy missing disks when
4844 * creating the first volume)
4845 */
4846 if (super->current_vol == 0) {
4847 for (df = super->missing; df; df = df->next) {
4848 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
4849 set_total_blocks(&df->disk, total_blocks(&dl->disk));
4850 _disk = __get_imsm_disk(mpb, df->index);
4851 *_disk = df->disk;
4852 }
4853 }
4854
4855 /* refresh unset/failed slots to point to valid 'missing' entries */
4856 for (df = super->missing; df; df = df->next)
4857 for (slot = 0; slot < mpb->num_disks; slot++) {
4858 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4859
4860 if ((ord & IMSM_ORD_REBUILD) == 0)
4861 continue;
4862 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4863 if (is_gen_migration(dev)) {
4864 struct imsm_map *map2 = get_imsm_map(dev,
4865 MAP_1);
4866 int slot2 = get_imsm_disk_slot(map2, df->index);
4867 if ((slot2 < map2->num_members) &&
4868 (slot2 >= 0)) {
4869 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4870 slot2,
4871 MAP_1);
4872 if ((unsigned)df->index ==
4873 ord_to_idx(ord2))
4874 set_imsm_ord_tbl_ent(map2,
4875 slot2,
4876 df->index |
4877 IMSM_ORD_REBUILD);
4878 }
4879 }
4880 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4881 break;
4882 }
4883
4884 /* if we are creating the first raid device update the family number */
4885 if (super->current_vol == 0) {
4886 __u32 sum;
4887 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4888
4889 _disk = __get_imsm_disk(mpb, dl->index);
4890 if (!_dev || !_disk) {
4891 fprintf(stderr, Name ": BUG mpb setup error\n");
4892 return 1;
4893 }
4894 *_dev = *dev;
4895 *_disk = dl->disk;
4896 sum = random32();
4897 sum += __gen_imsm_checksum(mpb);
4898 mpb->family_num = __cpu_to_le32(sum);
4899 mpb->orig_family_num = mpb->family_num;
4900 }
4901 super->current_disk = dl;
4902 return 0;
4903 }
4904
4905 /* mark_spare()
4906 * Function marks disk as spare and restores disk serial
4907 * in case it was previously marked as failed by takeover operation
4908 * reruns:
4909 * -1 : critical error
4910 * 0 : disk is marked as spare but serial is not set
4911 * 1 : success
4912 */
4913 int mark_spare(struct dl *disk)
4914 {
4915 __u8 serial[MAX_RAID_SERIAL_LEN];
4916 int ret_val = -1;
4917
4918 if (!disk)
4919 return ret_val;
4920
4921 ret_val = 0;
4922 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4923 /* Restore disk serial number, because takeover marks disk
4924 * as failed and adds to serial ':0' before it becomes
4925 * a spare disk.
4926 */
4927 serialcpy(disk->serial, serial);
4928 serialcpy(disk->disk.serial, serial);
4929 ret_val = 1;
4930 }
4931 disk->disk.status = SPARE_DISK;
4932 disk->index = -1;
4933
4934 return ret_val;
4935 }
4936
4937 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4938 int fd, char *devname)
4939 {
4940 struct intel_super *super = st->sb;
4941 struct dl *dd;
4942 unsigned long long size;
4943 __u32 id;
4944 int rv;
4945 struct stat stb;
4946
4947 /* If we are on an RAID enabled platform check that the disk is
4948 * attached to the raid controller.
4949 * We do not need to test disks attachment for container based additions,
4950 * they shall be already tested when container was created/assembled.
4951 */
4952 rv = find_intel_hba_capability(fd, super, devname);
4953 /* no orom/efi or non-intel hba of the disk */
4954 if (rv != 0) {
4955 dprintf("capability: %p fd: %d ret: %d\n",
4956 super->orom, fd, rv);
4957 return 1;
4958 }
4959
4960 if (super->current_vol >= 0)
4961 return add_to_super_imsm_volume(st, dk, fd, devname);
4962
4963 fstat(fd, &stb);
4964 dd = malloc(sizeof(*dd));
4965 if (!dd) {
4966 fprintf(stderr,
4967 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4968 return 1;
4969 }
4970 memset(dd, 0, sizeof(*dd));
4971 dd->major = major(stb.st_rdev);
4972 dd->minor = minor(stb.st_rdev);
4973 dd->devname = devname ? strdup(devname) : NULL;
4974 dd->fd = fd;
4975 dd->e = NULL;
4976 dd->action = DISK_ADD;
4977 rv = imsm_read_serial(fd, devname, dd->serial);
4978 if (rv) {
4979 fprintf(stderr,
4980 Name ": failed to retrieve scsi serial, aborting\n");
4981 free(dd);
4982 abort();
4983 }
4984
4985 get_dev_size(fd, NULL, &size);
4986 size /= 512;
4987 serialcpy(dd->disk.serial, dd->serial);
4988 set_total_blocks(&dd->disk, size);
4989 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
4990 struct imsm_super *mpb = super->anchor;
4991 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
4992 }
4993 mark_spare(dd);
4994 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4995 dd->disk.scsi_id = __cpu_to_le32(id);
4996 else
4997 dd->disk.scsi_id = __cpu_to_le32(0);
4998
4999 if (st->update_tail) {
5000 dd->next = super->disk_mgmt_list;
5001 super->disk_mgmt_list = dd;
5002 } else {
5003 dd->next = super->disks;
5004 super->disks = dd;
5005 super->updates_pending++;
5006 }
5007
5008 return 0;
5009 }
5010
5011
5012 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
5013 {
5014 struct intel_super *super = st->sb;
5015 struct dl *dd;
5016
5017 /* remove from super works only in mdmon - for communication
5018 * manager - monitor. Check if communication memory buffer
5019 * is prepared.
5020 */
5021 if (!st->update_tail) {
5022 fprintf(stderr,
5023 Name ": %s shall be used in mdmon context only"
5024 "(line %d).\n", __func__, __LINE__);
5025 return 1;
5026 }
5027 dd = malloc(sizeof(*dd));
5028 if (!dd) {
5029 fprintf(stderr,
5030 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
5031 return 1;
5032 }
5033 memset(dd, 0, sizeof(*dd));
5034 dd->major = dk->major;
5035 dd->minor = dk->minor;
5036 dd->fd = -1;
5037 mark_spare(dd);
5038 dd->action = DISK_REMOVE;
5039
5040 dd->next = super->disk_mgmt_list;
5041 super->disk_mgmt_list = dd;
5042
5043
5044 return 0;
5045 }
5046
5047 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5048
5049 static union {
5050 char buf[512];
5051 struct imsm_super anchor;
5052 } spare_record __attribute__ ((aligned(512)));
5053
5054 /* spare records have their own family number and do not have any defined raid
5055 * devices
5056 */
5057 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5058 {
5059 struct imsm_super *mpb = super->anchor;
5060 struct imsm_super *spare = &spare_record.anchor;
5061 __u32 sum;
5062 struct dl *d;
5063
5064 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
5065 spare->generation_num = __cpu_to_le32(1UL),
5066 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5067 spare->num_disks = 1,
5068 spare->num_raid_devs = 0,
5069 spare->cache_size = mpb->cache_size,
5070 spare->pwr_cycle_count = __cpu_to_le32(1),
5071
5072 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5073 MPB_SIGNATURE MPB_VERSION_RAID0);
5074
5075 for (d = super->disks; d; d = d->next) {
5076 if (d->index != -1)
5077 continue;
5078
5079 spare->disk[0] = d->disk;
5080 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5081 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5082
5083 sum = __gen_imsm_checksum(spare);
5084 spare->family_num = __cpu_to_le32(sum);
5085 spare->orig_family_num = 0;
5086 sum = __gen_imsm_checksum(spare);
5087 spare->check_sum = __cpu_to_le32(sum);
5088
5089 if (store_imsm_mpb(d->fd, spare)) {
5090 fprintf(stderr, "%s: failed for device %d:%d %s\n",
5091 __func__, d->major, d->minor, strerror(errno));
5092 return 1;
5093 }
5094 if (doclose) {
5095 close(d->fd);
5096 d->fd = -1;
5097 }
5098 }
5099
5100 return 0;
5101 }
5102
5103 static int write_super_imsm(struct supertype *st, int doclose)
5104 {
5105 struct intel_super *super = st->sb;
5106 struct imsm_super *mpb = super->anchor;
5107 struct dl *d;
5108 __u32 generation;
5109 __u32 sum;
5110 int spares = 0;
5111 int i;
5112 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5113 int num_disks = 0;
5114 int clear_migration_record = 1;
5115
5116 /* 'generation' is incremented everytime the metadata is written */
5117 generation = __le32_to_cpu(mpb->generation_num);
5118 generation++;
5119 mpb->generation_num = __cpu_to_le32(generation);
5120
5121 /* fix up cases where previous mdadm releases failed to set
5122 * orig_family_num
5123 */
5124 if (mpb->orig_family_num == 0)
5125 mpb->orig_family_num = mpb->family_num;
5126
5127 for (d = super->disks; d; d = d->next) {
5128 if (d->index == -1)
5129 spares++;
5130 else {
5131 mpb->disk[d->index] = d->disk;
5132 num_disks++;
5133 }
5134 }
5135 for (d = super->missing; d; d = d->next) {
5136 mpb->disk[d->index] = d->disk;
5137 num_disks++;
5138 }
5139 mpb->num_disks = num_disks;
5140 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5141
5142 for (i = 0; i < mpb->num_raid_devs; i++) {
5143 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5144 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5145 if (dev && dev2) {
5146 imsm_copy_dev(dev, dev2);
5147 mpb_size += sizeof_imsm_dev(dev, 0);
5148 }
5149 if (is_gen_migration(dev2))
5150 clear_migration_record = 0;
5151 }
5152 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5153 mpb->mpb_size = __cpu_to_le32(mpb_size);
5154
5155 /* recalculate checksum */
5156 sum = __gen_imsm_checksum(mpb);
5157 mpb->check_sum = __cpu_to_le32(sum);
5158
5159 if (super->clean_migration_record_by_mdmon) {
5160 clear_migration_record = 1;
5161 super->clean_migration_record_by_mdmon = 0;
5162 }
5163 if (clear_migration_record)
5164 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5165
5166 /* write the mpb for disks that compose raid devices */
5167 for (d = super->disks; d ; d = d->next) {
5168 if (d->index < 0 || is_failed(&d->disk))
5169 continue;
5170
5171 if (clear_migration_record) {
5172 unsigned long long dsize;
5173
5174 get_dev_size(d->fd, NULL, &dsize);
5175 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
5176 if (write(d->fd, super->migr_rec_buf,
5177 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5178 perror("Write migr_rec failed");
5179 }
5180 }
5181
5182 if (store_imsm_mpb(d->fd, mpb))
5183 fprintf(stderr,
5184 "%s: failed for device %d:%d (fd: %d)%s\n",
5185 __func__, d->major, d->minor,
5186 d->fd, strerror(errno));
5187
5188 if (doclose) {
5189 close(d->fd);
5190 d->fd = -1;
5191 }
5192 }
5193
5194 if (spares)
5195 return write_super_imsm_spares(super, doclose);
5196
5197 return 0;
5198 }
5199
5200
5201 static int create_array(struct supertype *st, int dev_idx)
5202 {
5203 size_t len;
5204 struct imsm_update_create_array *u;
5205 struct intel_super *super = st->sb;
5206 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5207 struct imsm_map *map = get_imsm_map(dev, MAP_0);
5208 struct disk_info *inf;
5209 struct imsm_disk *disk;
5210 int i;
5211
5212 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5213 sizeof(*inf) * map->num_members;
5214 u = malloc(len);
5215 if (!u) {
5216 fprintf(stderr, "%s: failed to allocate update buffer\n",
5217 __func__);
5218 return 1;
5219 }
5220
5221 u->type = update_create_array;
5222 u->dev_idx = dev_idx;
5223 imsm_copy_dev(&u->dev, dev);
5224 inf = get_disk_info(u);
5225 for (i = 0; i < map->num_members; i++) {
5226 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5227
5228 disk = get_imsm_disk(super, idx);
5229 serialcpy(inf[i].serial, disk->serial);
5230 }
5231 append_metadata_update(st, u, len);
5232
5233 return 0;
5234 }
5235
5236 static int mgmt_disk(struct supertype *st)
5237 {
5238 struct intel_super *super = st->sb;
5239 size_t len;
5240 struct imsm_update_add_remove_disk *u;
5241
5242 if (!super->disk_mgmt_list)
5243 return 0;
5244
5245 len = sizeof(*u);
5246 u = malloc(len);
5247 if (!u) {
5248 fprintf(stderr, "%s: failed to allocate update buffer\n",
5249 __func__);
5250 return 1;
5251 }
5252
5253 u->type = update_add_remove_disk;
5254 append_metadata_update(st, u, len);
5255
5256 return 0;
5257 }
5258
5259 static int write_init_super_imsm(struct supertype *st)
5260 {
5261 struct intel_super *super = st->sb;
5262 int current_vol = super->current_vol;
5263
5264 /* we are done with current_vol reset it to point st at the container */
5265 super->current_vol = -1;
5266
5267 if (st->update_tail) {
5268 /* queue the recently created array / added disk
5269 * as a metadata update */
5270 int rv;
5271
5272 /* determine if we are creating a volume or adding a disk */
5273 if (current_vol < 0) {
5274 /* in the mgmt (add/remove) disk case we are running
5275 * in mdmon context, so don't close fd's
5276 */
5277 return mgmt_disk(st);
5278 } else
5279 rv = create_array(st, current_vol);
5280
5281 return rv;
5282 } else {
5283 struct dl *d;
5284 for (d = super->disks; d; d = d->next)
5285 Kill(d->devname, NULL, 0, 1, 1);
5286 return write_super_imsm(st, 1);
5287 }
5288 }
5289 #endif
5290
5291 static int store_super_imsm(struct supertype *st, int fd)
5292 {
5293 struct intel_super *super = st->sb;
5294 struct imsm_super *mpb = super ? super->anchor : NULL;
5295
5296 if (!mpb)
5297 return 1;
5298
5299 #ifndef MDASSEMBLE
5300 return store_imsm_mpb(fd, mpb);
5301 #else
5302 return 1;
5303 #endif
5304 }
5305
5306 static int imsm_bbm_log_size(struct imsm_super *mpb)
5307 {
5308 return __le32_to_cpu(mpb->bbm_log_size);
5309 }
5310
5311 #ifndef MDASSEMBLE
5312 static int validate_geometry_imsm_container(struct supertype *st, int level,
5313 int layout, int raiddisks, int chunk,
5314 unsigned long long size, char *dev,
5315 unsigned long long *freesize,
5316 int verbose)
5317 {
5318 int fd;
5319 unsigned long long ldsize;
5320 struct intel_super *super=NULL;
5321 int rv = 0;
5322
5323 if (level != LEVEL_CONTAINER)
5324 return 0;
5325 if (!dev)
5326 return 1;
5327
5328 fd = open(dev, O_RDONLY|O_EXCL, 0);
5329 if (fd < 0) {
5330 if (verbose)
5331 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
5332 dev, strerror(errno));
5333 return 0;
5334 }
5335 if (!get_dev_size(fd, dev, &ldsize)) {
5336 close(fd);
5337 return 0;
5338 }
5339
5340 /* capabilities retrieve could be possible
5341 * note that there is no fd for the disks in array.
5342 */
5343 super = alloc_super();
5344 if (!super) {
5345 fprintf(stderr,
5346 Name ": malloc of %zu failed.\n",
5347 sizeof(*super));
5348 close(fd);
5349 return 0;
5350 }
5351
5352 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
5353 if (rv != 0) {
5354 #if DEBUG
5355 char str[256];
5356 fd2devname(fd, str);
5357 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5358 fd, str, super->orom, rv, raiddisks);
5359 #endif
5360 /* no orom/efi or non-intel hba of the disk */
5361 close(fd);
5362 free_imsm(super);
5363 return 0;
5364 }
5365 close(fd);
5366 if (super->orom) {
5367 if (raiddisks > super->orom->tds) {
5368 if (verbose)
5369 fprintf(stderr, Name ": %d exceeds maximum number of"
5370 " platform supported disks: %d\n",
5371 raiddisks, super->orom->tds);
5372 free_imsm(super);
5373 return 0;
5374 }
5375 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
5376 (ldsize >> 9) >> 32 > 0) {
5377 if (verbose)
5378 fprintf(stderr, Name ": %s exceeds maximum platform supported size\n", dev);
5379 free_imsm(super);
5380 return 0;
5381 }
5382 }
5383
5384 *freesize = avail_size_imsm(st, ldsize >> 9);
5385 free_imsm(super);
5386
5387 return 1;
5388 }
5389
5390 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5391 {
5392 const unsigned long long base_start = e[*idx].start;
5393 unsigned long long end = base_start + e[*idx].size;
5394 int i;
5395
5396 if (base_start == end)
5397 return 0;
5398
5399 *idx = *idx + 1;
5400 for (i = *idx; i < num_extents; i++) {
5401 /* extend overlapping extents */
5402 if (e[i].start >= base_start &&
5403 e[i].start <= end) {
5404 if (e[i].size == 0)
5405 return 0;
5406 if (e[i].start + e[i].size > end)
5407 end = e[i].start + e[i].size;
5408 } else if (e[i].start > end) {
5409 *idx = i;
5410 break;
5411 }
5412 }
5413
5414 return end - base_start;
5415 }
5416
5417 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5418 {
5419 /* build a composite disk with all known extents and generate a new
5420 * 'maxsize' given the "all disks in an array must share a common start
5421 * offset" constraint
5422 */
5423 struct extent *e = calloc(sum_extents, sizeof(*e));
5424 struct dl *dl;
5425 int i, j;
5426 int start_extent;
5427 unsigned long long pos;
5428 unsigned long long start = 0;
5429 unsigned long long maxsize;
5430 unsigned long reserve;
5431
5432 if (!e)
5433 return 0;
5434
5435 /* coalesce and sort all extents. also, check to see if we need to
5436 * reserve space between member arrays
5437 */
5438 j = 0;
5439 for (dl = super->disks; dl; dl = dl->next) {
5440 if (!dl->e)
5441 continue;
5442 for (i = 0; i < dl->extent_cnt; i++)
5443 e[j++] = dl->e[i];
5444 }
5445 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5446
5447 /* merge extents */
5448 i = 0;
5449 j = 0;
5450 while (i < sum_extents) {
5451 e[j].start = e[i].start;
5452 e[j].size = find_size(e, &i, sum_extents);
5453 j++;
5454 if (e[j-1].size == 0)
5455 break;
5456 }
5457
5458 pos = 0;
5459 maxsize = 0;
5460 start_extent = 0;
5461 i = 0;
5462 do {
5463 unsigned long long esize;
5464
5465 esize = e[i].start - pos;
5466 if (esize >= maxsize) {
5467 maxsize = esize;
5468 start = pos;
5469 start_extent = i;
5470 }
5471 pos = e[i].start + e[i].size;
5472 i++;
5473 } while (e[i-1].size);
5474 free(e);
5475
5476 if (maxsize == 0)
5477 return 0;
5478
5479 /* FIXME assumes volume at offset 0 is the first volume in a
5480 * container
5481 */
5482 if (start_extent > 0)
5483 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5484 else
5485 reserve = 0;
5486
5487 if (maxsize < reserve)
5488 return 0;
5489
5490 super->create_offset = ~((unsigned long long) 0);
5491 if (start + reserve > super->create_offset)
5492 return 0; /* start overflows create_offset */
5493 super->create_offset = start + reserve;
5494
5495 return maxsize - reserve;
5496 }
5497
5498 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5499 {
5500 if (level < 0 || level == 6 || level == 4)
5501 return 0;
5502
5503 /* if we have an orom prevent invalid raid levels */
5504 if (orom)
5505 switch (level) {
5506 case 0: return imsm_orom_has_raid0(orom);
5507 case 1:
5508 if (raiddisks > 2)
5509 return imsm_orom_has_raid1e(orom);
5510 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5511 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5512 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5513 }
5514 else
5515 return 1; /* not on an Intel RAID platform so anything goes */
5516
5517 return 0;
5518 }
5519
5520
5521 static int
5522 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5523 int dpa, int verbose)
5524 {
5525 struct mdstat_ent *mdstat = mdstat_read(0, 0);
5526 struct mdstat_ent *memb = NULL;
5527 int count = 0;
5528 int num = 0;
5529 struct md_list *dv = NULL;
5530 int found;
5531
5532 for (memb = mdstat ; memb ; memb = memb->next) {
5533 if (memb->metadata_version &&
5534 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
5535 (strcmp(&memb->metadata_version[9], name) == 0) &&
5536 !is_subarray(memb->metadata_version+9) &&
5537 memb->members) {
5538 struct dev_member *dev = memb->members;
5539 int fd = -1;
5540 while(dev && (fd < 0)) {
5541 char *path = malloc(strlen(dev->name) + strlen("/dev/") + 1);
5542 if (path) {
5543 num = sprintf(path, "%s%s", "/dev/", dev->name);
5544 if (num > 0)
5545 fd = open(path, O_RDONLY, 0);
5546 if ((num <= 0) || (fd < 0)) {
5547 pr_vrb(": Cannot open %s: %s\n",
5548 dev->name, strerror(errno));
5549 }
5550 free(path);
5551 }
5552 dev = dev->next;
5553 }
5554 found = 0;
5555 if ((fd >= 0) && disk_attached_to_hba(fd, hba)) {
5556 struct mdstat_ent *vol;
5557 for (vol = mdstat ; vol ; vol = vol->next) {
5558 if ((vol->active > 0) &&
5559 vol->metadata_version &&
5560 is_container_member(vol, memb->dev)) {
5561 found++;
5562 count++;
5563 }
5564 }
5565 if (*devlist && (found < dpa)) {
5566 dv = calloc(1, sizeof(*dv));
5567 if (dv == NULL)
5568 fprintf(stderr, Name ": calloc failed\n");
5569 else {
5570 dv->devname = malloc(strlen(memb->dev) + strlen("/dev/") + 1);
5571 if (dv->devname != NULL) {
5572 sprintf(dv->devname, "%s%s", "/dev/", memb->dev);
5573 dv->found = found;
5574 dv->used = 0;
5575 dv->next = *devlist;
5576 *devlist = dv;
5577 } else
5578 free(dv);
5579 }
5580 }
5581 }
5582 if (fd >= 0)
5583 close(fd);
5584 }
5585 }
5586 free_mdstat(mdstat);
5587 return count;
5588 }
5589
5590 #ifdef DEBUG_LOOP
5591 static struct md_list*
5592 get_loop_devices(void)
5593 {
5594 int i;
5595 struct md_list *devlist = NULL;
5596 struct md_list *dv = NULL;
5597
5598 for(i = 0; i < 12; i++) {
5599 dv = calloc(1, sizeof(*dv));
5600 if (dv == NULL) {
5601 fprintf(stderr, Name ": calloc failed\n");
5602 break;
5603 }
5604 dv->devname = malloc(40);
5605 if (dv->devname == NULL) {
5606 fprintf(stderr, Name ": malloc failed\n");
5607 free(dv);
5608 break;
5609 }
5610 sprintf(dv->devname, "/dev/loop%d", i);
5611 dv->next = devlist;
5612 devlist = dv;
5613 }
5614 return devlist;
5615 }
5616 #endif
5617
5618 static struct md_list*
5619 get_devices(const char *hba_path)
5620 {
5621 struct md_list *devlist = NULL;
5622 struct md_list *dv = NULL;
5623 struct dirent *ent;
5624 DIR *dir;
5625 int err = 0;
5626
5627 #if DEBUG_LOOP
5628 devlist = get_loop_devices();
5629 return devlist;
5630 #endif
5631 /* scroll through /sys/dev/block looking for devices attached to
5632 * this hba
5633 */
5634 dir = opendir("/sys/dev/block");
5635 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5636 int fd;
5637 char buf[1024];
5638 int major, minor;
5639 char *path = NULL;
5640 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5641 continue;
5642 path = devt_to_devpath(makedev(major, minor));
5643 if (!path)
5644 continue;
5645 if (!path_attached_to_hba(path, hba_path)) {
5646 free(path);
5647 path = NULL;
5648 continue;
5649 }
5650 free(path);
5651 path = NULL;
5652 fd = dev_open(ent->d_name, O_RDONLY);
5653 if (fd >= 0) {
5654 fd2devname(fd, buf);
5655 close(fd);
5656 } else {
5657 fprintf(stderr, Name ": cannot open device: %s\n",
5658 ent->d_name);
5659 continue;
5660 }
5661
5662
5663 dv = calloc(1, sizeof(*dv));
5664 if (dv == NULL) {
5665 fprintf(stderr, Name ": malloc failed\n");
5666 err = 1;
5667 break;
5668 }
5669 dv->devname = strdup(buf);
5670 if (dv->devname == NULL) {
5671 fprintf(stderr, Name ": malloc failed\n");
5672 err = 1;
5673 free(dv);
5674 break;
5675 }
5676 dv->next = devlist;
5677 devlist = dv;
5678 }
5679 if (err) {
5680 while(devlist) {
5681 dv = devlist;
5682 devlist = devlist->next;
5683 free(dv->devname);
5684 free(dv);
5685 }
5686 }
5687 return devlist;
5688 }
5689
5690 static int
5691 count_volumes_list(struct md_list *devlist, char *homehost,
5692 int verbose, int *found)
5693 {
5694 struct md_list *tmpdev;
5695 int count = 0;
5696 struct supertype *st = NULL;
5697
5698 /* first walk the list of devices to find a consistent set
5699 * that match the criterea, if that is possible.
5700 * We flag the ones we like with 'used'.
5701 */
5702 *found = 0;
5703 st = match_metadata_desc_imsm("imsm");
5704 if (st == NULL) {
5705 pr_vrb(": cannot allocate memory for imsm supertype\n");
5706 return 0;
5707 }
5708
5709 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5710 char *devname = tmpdev->devname;
5711 struct stat stb;
5712 struct supertype *tst;
5713 int dfd;
5714 if (tmpdev->used > 1)
5715 continue;
5716 tst = dup_super(st);
5717 if (tst == NULL) {
5718 pr_vrb(": cannot allocate memory for imsm supertype\n");
5719 goto err_1;
5720 }
5721 tmpdev->container = 0;
5722 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5723 if (dfd < 0) {
5724 dprintf(": cannot open device %s: %s\n",
5725 devname, strerror(errno));
5726 tmpdev->used = 2;
5727 } else if (fstat(dfd, &stb)< 0) {
5728 /* Impossible! */
5729 dprintf(": fstat failed for %s: %s\n",
5730 devname, strerror(errno));
5731 tmpdev->used = 2;
5732 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
5733 dprintf(": %s is not a block device.\n",
5734 devname);
5735 tmpdev->used = 2;
5736 } else if (must_be_container(dfd)) {
5737 struct supertype *cst;
5738 cst = super_by_fd(dfd, NULL);
5739 if (cst == NULL) {
5740 dprintf(": cannot recognize container type %s\n",
5741 devname);
5742 tmpdev->used = 2;
5743 } else if (tst->ss != st->ss) {
5744 dprintf(": non-imsm container - ignore it: %s\n",
5745 devname);
5746 tmpdev->used = 2;
5747 } else if (!tst->ss->load_container ||
5748 tst->ss->load_container(tst, dfd, NULL))
5749 tmpdev->used = 2;
5750 else {
5751 tmpdev->container = 1;
5752 }
5753 if (cst)
5754 cst->ss->free_super(cst);
5755 } else {
5756 tmpdev->st_rdev = stb.st_rdev;
5757 if (tst->ss->load_super(tst,dfd, NULL)) {
5758 dprintf(": no RAID superblock on %s\n",
5759 devname);
5760 tmpdev->used = 2;
5761 } else if (tst->ss->compare_super == NULL) {
5762 dprintf(": Cannot assemble %s metadata on %s\n",
5763 tst->ss->name, devname);
5764 tmpdev->used = 2;
5765 }
5766 }
5767 if (dfd >= 0)
5768 close(dfd);
5769 if (tmpdev->used == 2 || tmpdev->used == 4) {
5770 /* Ignore unrecognised devices during auto-assembly */
5771 goto loop;
5772 }
5773 else {
5774 struct mdinfo info;
5775 tst->ss->getinfo_super(tst, &info, NULL);
5776
5777 if (st->minor_version == -1)
5778 st->minor_version = tst->minor_version;
5779
5780 if (memcmp(info.uuid, uuid_zero,
5781 sizeof(int[4])) == 0) {
5782 /* this is a floating spare. It cannot define
5783 * an array unless there are no more arrays of
5784 * this type to be found. It can be included
5785 * in an array of this type though.
5786 */
5787 tmpdev->used = 3;
5788 goto loop;
5789 }
5790
5791 if (st->ss != tst->ss ||
5792 st->minor_version != tst->minor_version ||
5793 st->ss->compare_super(st, tst) != 0) {
5794 /* Some mismatch. If exactly one array matches this host,
5795 * we can resolve on that one.
5796 * Or, if we are auto assembling, we just ignore the second
5797 * for now.
5798 */
5799 dprintf(": superblock on %s doesn't match others - assembly aborted\n",
5800 devname);
5801 goto loop;
5802 }
5803 tmpdev->used = 1;
5804 *found = 1;
5805 dprintf("found: devname: %s\n", devname);
5806 }
5807 loop:
5808 if (tst)
5809 tst->ss->free_super(tst);
5810 }
5811 if (*found != 0) {
5812 int err;
5813 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
5814 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
5815 for (iter = head; iter; iter = iter->next) {
5816 dprintf("content->text_version: %s vol\n",
5817 iter->text_version);
5818 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
5819 /* do not assemble arrays with unsupported
5820 configurations */
5821 dprintf(": Cannot activate member %s.\n",
5822 iter->text_version);
5823 } else
5824 count++;
5825 }
5826 sysfs_free(head);
5827
5828 } else {
5829 dprintf(" no valid super block on device list: err: %d %p\n",
5830 err, st->sb);
5831 }
5832 } else {
5833 dprintf(" no more devices to examin\n");
5834 }
5835
5836 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5837 if ((tmpdev->used == 1) && (tmpdev->found)) {
5838 if (count) {
5839 if (count < tmpdev->found)
5840 count = 0;
5841 else
5842 count -= tmpdev->found;
5843 }
5844 }
5845 if (tmpdev->used == 1)
5846 tmpdev->used = 4;
5847 }
5848 err_1:
5849 if (st)
5850 st->ss->free_super(st);
5851 return count;
5852 }
5853
5854
5855 static int
5856 count_volumes(char *hba, int dpa, int verbose)
5857 {
5858 struct md_list *devlist = NULL;
5859 int count = 0;
5860 int found = 0;;
5861
5862 devlist = get_devices(hba);
5863 /* if no intel devices return zero volumes */
5864 if (devlist == NULL)
5865 return 0;
5866
5867 count = active_arrays_by_format("imsm", hba, &devlist, dpa, verbose);
5868 dprintf(" path: %s active arrays: %d\n", hba, count);
5869 if (devlist == NULL)
5870 return 0;
5871 do {
5872 found = 0;
5873 count += count_volumes_list(devlist,
5874 NULL,
5875 verbose,
5876 &found);
5877 dprintf("found %d count: %d\n", found, count);
5878 } while (found);
5879
5880 dprintf("path: %s total number of volumes: %d\n", hba, count);
5881
5882 while(devlist) {
5883 struct md_list *dv = devlist;
5884 devlist = devlist->next;
5885 free(dv->devname);
5886 free(dv);
5887 }
5888 return count;
5889 }
5890
5891 static int imsm_default_chunk(const struct imsm_orom *orom)
5892 {
5893 /* up to 512 if the plaform supports it, otherwise the platform max.
5894 * 128 if no platform detected
5895 */
5896 int fs = max(7, orom ? fls(orom->sss) : 0);
5897
5898 return min(512, (1 << fs));
5899 }
5900
5901 static int
5902 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5903 int raiddisks, int *chunk, unsigned long long size, int verbose)
5904 {
5905 /* check/set platform and metadata limits/defaults */
5906 if (super->orom && raiddisks > super->orom->dpa) {
5907 pr_vrb(": platform supports a maximum of %d disks per array\n",
5908 super->orom->dpa);
5909 return 0;
5910 }
5911
5912 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5913 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5914 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5915 level, raiddisks, raiddisks > 1 ? "s" : "");
5916 return 0;
5917 }
5918
5919 if (chunk && (*chunk == 0 || *chunk == UnSet))
5920 *chunk = imsm_default_chunk(super->orom);
5921
5922 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5923 pr_vrb(": platform does not support a chunk size of: "
5924 "%d\n", *chunk);
5925 return 0;
5926 }
5927
5928 if (layout != imsm_level_to_layout(level)) {
5929 if (level == 5)
5930 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5931 else if (level == 10)
5932 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5933 else
5934 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5935 layout, level);
5936 return 0;
5937 }
5938
5939 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 && chunk &&
5940 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
5941 pr_vrb(": platform does not support a volume size over 2TB\n");
5942 return 0;
5943 }
5944 return 1;
5945 }
5946
5947 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5948 * FIX ME add ahci details
5949 */
5950 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5951 int layout, int raiddisks, int *chunk,
5952 unsigned long long size, char *dev,
5953 unsigned long long *freesize,
5954 int verbose)
5955 {
5956 struct stat stb;
5957 struct intel_super *super = st->sb;
5958 struct imsm_super *mpb;
5959 struct dl *dl;
5960 unsigned long long pos = 0;
5961 unsigned long long maxsize;
5962 struct extent *e;
5963 int i;
5964
5965 /* We must have the container info already read in. */
5966 if (!super)
5967 return 0;
5968
5969 mpb = super->anchor;
5970
5971 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
5972 fprintf(stderr, Name ": RAID gemetry validation failed. "
5973 "Cannot proceed with the action(s).\n");
5974 return 0;
5975 }
5976 if (!dev) {
5977 /* General test: make sure there is space for
5978 * 'raiddisks' device extents of size 'size' at a given
5979 * offset
5980 */
5981 unsigned long long minsize = size;
5982 unsigned long long start_offset = MaxSector;
5983 int dcnt = 0;
5984 if (minsize == 0)
5985 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5986 for (dl = super->disks; dl ; dl = dl->next) {
5987 int found = 0;
5988
5989 pos = 0;
5990 i = 0;
5991 e = get_extents(super, dl);
5992 if (!e) continue;
5993 do {
5994 unsigned long long esize;
5995 esize = e[i].start - pos;
5996 if (esize >= minsize)
5997 found = 1;
5998 if (found && start_offset == MaxSector) {
5999 start_offset = pos;
6000 break;
6001 } else if (found && pos != start_offset) {
6002 found = 0;
6003 break;
6004 }
6005 pos = e[i].start + e[i].size;
6006 i++;
6007 } while (e[i-1].size);
6008 if (found)
6009 dcnt++;
6010 free(e);
6011 }
6012 if (dcnt < raiddisks) {
6013 if (verbose)
6014 fprintf(stderr, Name ": imsm: Not enough "
6015 "devices with space for this array "
6016 "(%d < %d)\n",
6017 dcnt, raiddisks);
6018 return 0;
6019 }
6020 return 1;
6021 }
6022
6023 /* This device must be a member of the set */
6024 if (stat(dev, &stb) < 0)
6025 return 0;
6026 if ((S_IFMT & stb.st_mode) != S_IFBLK)
6027 return 0;
6028 for (dl = super->disks ; dl ; dl = dl->next) {
6029 if (dl->major == (int)major(stb.st_rdev) &&
6030 dl->minor == (int)minor(stb.st_rdev))
6031 break;
6032 }
6033 if (!dl) {
6034 if (verbose)
6035 fprintf(stderr, Name ": %s is not in the "
6036 "same imsm set\n", dev);
6037 return 0;
6038 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6039 /* If a volume is present then the current creation attempt
6040 * cannot incorporate new spares because the orom may not
6041 * understand this configuration (all member disks must be
6042 * members of each array in the container).
6043 */
6044 fprintf(stderr, Name ": %s is a spare and a volume"
6045 " is already defined for this container\n", dev);
6046 fprintf(stderr, Name ": The option-rom requires all member"
6047 " disks to be a member of all volumes\n");
6048 return 0;
6049 } else if (super->orom && mpb->num_raid_devs > 0 &&
6050 mpb->num_disks != raiddisks) {
6051 fprintf(stderr, Name ": The option-rom requires all member"
6052 " disks to be a member of all volumes\n");
6053 return 0;
6054 }
6055
6056 /* retrieve the largest free space block */
6057 e = get_extents(super, dl);
6058 maxsize = 0;
6059 i = 0;
6060 if (e) {
6061 do {
6062 unsigned long long esize;
6063
6064 esize = e[i].start - pos;
6065 if (esize >= maxsize)
6066 maxsize = esize;
6067 pos = e[i].start + e[i].size;
6068 i++;
6069 } while (e[i-1].size);
6070 dl->e = e;
6071 dl->extent_cnt = i;
6072 } else {
6073 if (verbose)
6074 fprintf(stderr, Name ": unable to determine free space for: %s\n",
6075 dev);
6076 return 0;
6077 }
6078 if (maxsize < size) {
6079 if (verbose)
6080 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
6081 dev, maxsize, size);
6082 return 0;
6083 }
6084
6085 /* count total number of extents for merge */
6086 i = 0;
6087 for (dl = super->disks; dl; dl = dl->next)
6088 if (dl->e)
6089 i += dl->extent_cnt;
6090
6091 maxsize = merge_extents(super, i);
6092
6093 if (!check_env("IMSM_NO_PLATFORM") &&
6094 mpb->num_raid_devs > 0 && size && size != maxsize) {
6095 fprintf(stderr, Name ": attempting to create a second "
6096 "volume with size less then remaining space. "
6097 "Aborting...\n");
6098 return 0;
6099 }
6100
6101 if (maxsize < size || maxsize == 0) {
6102 if (verbose) {
6103 if (maxsize == 0)
6104 fprintf(stderr, Name ": no free space"
6105 " left on device. Aborting...\n");
6106 else
6107 fprintf(stderr, Name ": not enough space"
6108 " to create volume of given size"
6109 " (%llu < %llu). Aborting...\n",
6110 maxsize, size);
6111 }
6112 return 0;
6113 }
6114
6115 *freesize = maxsize;
6116
6117 if (super->orom) {
6118 int count = count_volumes(super->hba->path,
6119 super->orom->dpa, verbose);
6120 if (super->orom->vphba <= count) {
6121 pr_vrb(": platform does not support more than %d raid volumes.\n",
6122 super->orom->vphba);
6123 return 0;
6124 }
6125 }
6126 return 1;
6127 }
6128
6129 static int imsm_get_free_size(struct supertype *st, int raiddisks,
6130 unsigned long long size, int chunk,
6131 unsigned long long *freesize)
6132 {
6133 struct intel_super *super = st->sb;
6134 struct imsm_super *mpb = super->anchor;
6135 struct dl *dl;
6136 int i;
6137 int extent_cnt;
6138 struct extent *e;
6139 unsigned long long maxsize;
6140 unsigned long long minsize;
6141 int cnt;
6142 int used;
6143
6144 /* find the largest common start free region of the possible disks */
6145 used = 0;
6146 extent_cnt = 0;
6147 cnt = 0;
6148 for (dl = super->disks; dl; dl = dl->next) {
6149 dl->raiddisk = -1;
6150
6151 if (dl->index >= 0)
6152 used++;
6153
6154 /* don't activate new spares if we are orom constrained
6155 * and there is already a volume active in the container
6156 */
6157 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6158 continue;
6159
6160 e = get_extents(super, dl);
6161 if (!e)
6162 continue;
6163 for (i = 1; e[i-1].size; i++)
6164 ;
6165 dl->e = e;
6166 dl->extent_cnt = i;
6167 extent_cnt += i;
6168 cnt++;
6169 }
6170
6171 maxsize = merge_extents(super, extent_cnt);
6172 minsize = size;
6173 if (size == 0)
6174 /* chunk is in K */
6175 minsize = chunk * 2;
6176
6177 if (cnt < raiddisks ||
6178 (super->orom && used && used != raiddisks) ||
6179 maxsize < minsize ||
6180 maxsize == 0) {
6181 fprintf(stderr, Name ": not enough devices with space to create array.\n");
6182 return 0; /* No enough free spaces large enough */
6183 }
6184
6185 if (size == 0) {
6186 size = maxsize;
6187 if (chunk) {
6188 size /= 2 * chunk;
6189 size *= 2 * chunk;
6190 }
6191 maxsize = size;
6192 }
6193 if (!check_env("IMSM_NO_PLATFORM") &&
6194 mpb->num_raid_devs > 0 && size && size != maxsize) {
6195 fprintf(stderr, Name ": attempting to create a second "
6196 "volume with size less then remaining space. "
6197 "Aborting...\n");
6198 return 0;
6199 }
6200 cnt = 0;
6201 for (dl = super->disks; dl; dl = dl->next)
6202 if (dl->e)
6203 dl->raiddisk = cnt++;
6204
6205 *freesize = size;
6206
6207 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
6208
6209 return 1;
6210 }
6211
6212 static int reserve_space(struct supertype *st, int raiddisks,
6213 unsigned long long size, int chunk,
6214 unsigned long long *freesize)
6215 {
6216 struct intel_super *super = st->sb;
6217 struct dl *dl;
6218 int cnt;
6219 int rv = 0;
6220
6221 rv = imsm_get_free_size(st, raiddisks, size, chunk, freesize);
6222 if (rv) {
6223 cnt = 0;
6224 for (dl = super->disks; dl; dl = dl->next)
6225 if (dl->e)
6226 dl->raiddisk = cnt++;
6227 rv = 1;
6228 }
6229
6230 return rv;
6231 }
6232
6233 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
6234 int raiddisks, int *chunk, unsigned long long size,
6235 char *dev, unsigned long long *freesize,
6236 int verbose)
6237 {
6238 int fd, cfd;
6239 struct mdinfo *sra;
6240 int is_member = 0;
6241
6242 /* load capability
6243 * if given unused devices create a container
6244 * if given given devices in a container create a member volume
6245 */
6246 if (level == LEVEL_CONTAINER) {
6247 /* Must be a fresh device to add to a container */
6248 return validate_geometry_imsm_container(st, level, layout,
6249 raiddisks,
6250 chunk?*chunk:0, size,
6251 dev, freesize,
6252 verbose);
6253 }
6254
6255 if (!dev) {
6256 if (st->sb) {
6257 struct intel_super *super = st->sb;
6258 if (!validate_geometry_imsm_orom(st->sb, level, layout,
6259 raiddisks, chunk, size,
6260 verbose))
6261 return 0;
6262 /* we are being asked to automatically layout a
6263 * new volume based on the current contents of
6264 * the container. If the the parameters can be
6265 * satisfied reserve_space will record the disks,
6266 * start offset, and size of the volume to be
6267 * created. add_to_super and getinfo_super
6268 * detect when autolayout is in progress.
6269 */
6270 /* assuming that freesize is always given when array is
6271 created */
6272 if (super->orom && freesize) {
6273 int count;
6274 count = count_volumes(super->hba->path,
6275 super->orom->dpa, verbose);
6276 if (super->orom->vphba <= count) {
6277 pr_vrb(": platform does not support more"
6278 " than %d raid volumes.\n",
6279 super->orom->vphba);
6280 return 0;
6281 }
6282 }
6283 if (freesize)
6284 return reserve_space(st, raiddisks, size,
6285 chunk?*chunk:0, freesize);
6286 }
6287 return 1;
6288 }
6289 if (st->sb) {
6290 /* creating in a given container */
6291 return validate_geometry_imsm_volume(st, level, layout,
6292 raiddisks, chunk, size,
6293 dev, freesize, verbose);
6294 }
6295
6296 /* This device needs to be a device in an 'imsm' container */
6297 fd = open(dev, O_RDONLY|O_EXCL, 0);
6298 if (fd >= 0) {
6299 if (verbose)
6300 fprintf(stderr,
6301 Name ": Cannot create this array on device %s\n",
6302 dev);
6303 close(fd);
6304 return 0;
6305 }
6306 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6307 if (verbose)
6308 fprintf(stderr, Name ": Cannot open %s: %s\n",
6309 dev, strerror(errno));
6310 return 0;
6311 }
6312 /* Well, it is in use by someone, maybe an 'imsm' container. */
6313 cfd = open_container(fd);
6314 close(fd);
6315 if (cfd < 0) {
6316 if (verbose)
6317 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
6318 dev);
6319 return 0;
6320 }
6321 sra = sysfs_read(cfd, 0, GET_VERSION);
6322 if (sra && sra->array.major_version == -1 &&
6323 strcmp(sra->text_version, "imsm") == 0)
6324 is_member = 1;
6325 sysfs_free(sra);
6326 if (is_member) {
6327 /* This is a member of a imsm container. Load the container
6328 * and try to create a volume
6329 */
6330 struct intel_super *super;
6331
6332 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
6333 st->sb = super;
6334 st->container_dev = fd2devnum(cfd);
6335 close(cfd);
6336 return validate_geometry_imsm_volume(st, level, layout,
6337 raiddisks, chunk,
6338 size, dev,
6339 freesize, 1)
6340 ? 1 : -1;
6341 }
6342 }
6343
6344 if (verbose)
6345 fprintf(stderr, Name ": failed container membership check\n");
6346
6347 close(cfd);
6348 return 0;
6349 }
6350
6351 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
6352 {
6353 struct intel_super *super = st->sb;
6354
6355 if (level && *level == UnSet)
6356 *level = LEVEL_CONTAINER;
6357
6358 if (level && layout && *layout == UnSet)
6359 *layout = imsm_level_to_layout(*level);
6360
6361 if (chunk && (*chunk == UnSet || *chunk == 0))
6362 *chunk = imsm_default_chunk(super->orom);
6363 }
6364
6365 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6366
6367 static int kill_subarray_imsm(struct supertype *st)
6368 {
6369 /* remove the subarray currently referenced by ->current_vol */
6370 __u8 i;
6371 struct intel_dev **dp;
6372 struct intel_super *super = st->sb;
6373 __u8 current_vol = super->current_vol;
6374 struct imsm_super *mpb = super->anchor;
6375
6376 if (super->current_vol < 0)
6377 return 2;
6378 super->current_vol = -1; /* invalidate subarray cursor */
6379
6380 /* block deletions that would change the uuid of active subarrays
6381 *
6382 * FIXME when immutable ids are available, but note that we'll
6383 * also need to fixup the invalidated/active subarray indexes in
6384 * mdstat
6385 */
6386 for (i = 0; i < mpb->num_raid_devs; i++) {
6387 char subarray[4];
6388
6389 if (i < current_vol)
6390 continue;
6391 sprintf(subarray, "%u", i);
6392 if (is_subarray_active(subarray, st->devname)) {
6393 fprintf(stderr,
6394 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6395 current_vol, i);
6396
6397 return 2;
6398 }
6399 }
6400
6401 if (st->update_tail) {
6402 struct imsm_update_kill_array *u = malloc(sizeof(*u));
6403
6404 if (!u)
6405 return 2;
6406 u->type = update_kill_array;
6407 u->dev_idx = current_vol;
6408 append_metadata_update(st, u, sizeof(*u));
6409
6410 return 0;
6411 }
6412
6413 for (dp = &super->devlist; *dp;)
6414 if ((*dp)->index == current_vol) {
6415 *dp = (*dp)->next;
6416 } else {
6417 handle_missing(super, (*dp)->dev);
6418 if ((*dp)->index > current_vol)
6419 (*dp)->index--;
6420 dp = &(*dp)->next;
6421 }
6422
6423 /* no more raid devices, all active components are now spares,
6424 * but of course failed are still failed
6425 */
6426 if (--mpb->num_raid_devs == 0) {
6427 struct dl *d;
6428
6429 for (d = super->disks; d; d = d->next)
6430 if (d->index > -2)
6431 mark_spare(d);
6432 }
6433
6434 super->updates_pending++;
6435
6436 return 0;
6437 }
6438
6439 static int update_subarray_imsm(struct supertype *st, char *subarray,
6440 char *update, struct mddev_ident *ident)
6441 {
6442 /* update the subarray currently referenced by ->current_vol */
6443 struct intel_super *super = st->sb;
6444 struct imsm_super *mpb = super->anchor;
6445
6446 if (strcmp(update, "name") == 0) {
6447 char *name = ident->name;
6448 char *ep;
6449 int vol;
6450
6451 if (is_subarray_active(subarray, st->devname)) {
6452 fprintf(stderr,
6453 Name ": Unable to update name of active subarray\n");
6454 return 2;
6455 }
6456
6457 if (!check_name(super, name, 0))
6458 return 2;
6459
6460 vol = strtoul(subarray, &ep, 10);
6461 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6462 return 2;
6463
6464 if (st->update_tail) {
6465 struct imsm_update_rename_array *u = malloc(sizeof(*u));
6466
6467 if (!u)
6468 return 2;
6469 u->type = update_rename_array;
6470 u->dev_idx = vol;
6471 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6472 append_metadata_update(st, u, sizeof(*u));
6473 } else {
6474 struct imsm_dev *dev;
6475 int i;
6476
6477 dev = get_imsm_dev(super, vol);
6478 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6479 for (i = 0; i < mpb->num_raid_devs; i++) {
6480 dev = get_imsm_dev(super, i);
6481 handle_missing(super, dev);
6482 }
6483 super->updates_pending++;
6484 }
6485 } else
6486 return 2;
6487
6488 return 0;
6489 }
6490 #endif /* MDASSEMBLE */
6491
6492 static int is_gen_migration(struct imsm_dev *dev)
6493 {
6494 if (dev == NULL)
6495 return 0;
6496
6497 if (!dev->vol.migr_state)
6498 return 0;
6499
6500 if (migr_type(dev) == MIGR_GEN_MIGR)
6501 return 1;
6502
6503 return 0;
6504 }
6505
6506 static int is_rebuilding(struct imsm_dev *dev)
6507 {
6508 struct imsm_map *migr_map;
6509
6510 if (!dev->vol.migr_state)
6511 return 0;
6512
6513 if (migr_type(dev) != MIGR_REBUILD)
6514 return 0;
6515
6516 migr_map = get_imsm_map(dev, MAP_1);
6517
6518 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6519 return 1;
6520 else
6521 return 0;
6522 }
6523
6524 #ifndef MDASSEMBLE
6525 static int is_initializing(struct imsm_dev *dev)
6526 {
6527 struct imsm_map *migr_map;
6528
6529 if (!dev->vol.migr_state)
6530 return 0;
6531
6532 if (migr_type(dev) != MIGR_INIT)
6533 return 0;
6534
6535 migr_map = get_imsm_map(dev, MAP_1);
6536
6537 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6538 return 1;
6539
6540 return 0;
6541 }
6542 #endif
6543
6544 static void update_recovery_start(struct intel_super *super,
6545 struct imsm_dev *dev,
6546 struct mdinfo *array)
6547 {
6548 struct mdinfo *rebuild = NULL;
6549 struct mdinfo *d;
6550 __u32 units;
6551
6552 if (!is_rebuilding(dev))
6553 return;
6554
6555 /* Find the rebuild target, but punt on the dual rebuild case */
6556 for (d = array->devs; d; d = d->next)
6557 if (d->recovery_start == 0) {
6558 if (rebuild)
6559 return;
6560 rebuild = d;
6561 }
6562
6563 if (!rebuild) {
6564 /* (?) none of the disks are marked with
6565 * IMSM_ORD_REBUILD, so assume they are missing and the
6566 * disk_ord_tbl was not correctly updated
6567 */
6568 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
6569 return;
6570 }
6571
6572 units = __le32_to_cpu(dev->vol.curr_migr_unit);
6573 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
6574 }
6575
6576 #ifndef MDASSEMBLE
6577 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
6578 #endif
6579
6580 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
6581 {
6582 /* Given a container loaded by load_super_imsm_all,
6583 * extract information about all the arrays into
6584 * an mdinfo tree.
6585 * If 'subarray' is given, just extract info about that array.
6586 *
6587 * For each imsm_dev create an mdinfo, fill it in,
6588 * then look for matching devices in super->disks
6589 * and create appropriate device mdinfo.
6590 */
6591 struct intel_super *super = st->sb;
6592 struct imsm_super *mpb = super->anchor;
6593 struct mdinfo *rest = NULL;
6594 unsigned int i;
6595 int sb_errors = 0;
6596 struct dl *d;
6597 int spare_disks = 0;
6598
6599 /* do not assemble arrays when not all attributes are supported */
6600 if (imsm_check_attributes(mpb->attributes) == 0) {
6601 sb_errors = 1;
6602 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
6603 "Arrays activation is blocked.\n");
6604 }
6605
6606 /* check for bad blocks */
6607 if (imsm_bbm_log_size(super->anchor)) {
6608 fprintf(stderr, Name ": BBM log found in IMSM metadata."
6609 "Arrays activation is blocked.\n");
6610 sb_errors = 1;
6611 }
6612
6613
6614 /* count spare devices, not used in maps
6615 */
6616 for (d = super->disks; d; d = d->next)
6617 if (d->index == -1)
6618 spare_disks++;
6619
6620 for (i = 0; i < mpb->num_raid_devs; i++) {
6621 struct imsm_dev *dev;
6622 struct imsm_map *map;
6623 struct imsm_map *map2;
6624 struct mdinfo *this;
6625 int slot;
6626 #ifndef MDASSEMBLE
6627 int chunk;
6628 #endif
6629 char *ep;
6630
6631 if (subarray &&
6632 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6633 continue;
6634
6635 dev = get_imsm_dev(super, i);
6636 map = get_imsm_map(dev, MAP_0);
6637 map2 = get_imsm_map(dev, MAP_1);
6638
6639 /* do not publish arrays that are in the middle of an
6640 * unsupported migration
6641 */
6642 if (dev->vol.migr_state &&
6643 (migr_type(dev) == MIGR_STATE_CHANGE)) {
6644 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
6645 " unsupported migration in progress\n",
6646 dev->volume);
6647 continue;
6648 }
6649 /* do not publish arrays that are not support by controller's
6650 * OROM/EFI
6651 */
6652
6653 this = malloc(sizeof(*this));
6654 if (!this) {
6655 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
6656 sizeof(*this));
6657 break;
6658 }
6659
6660 super->current_vol = i;
6661 getinfo_super_imsm_volume(st, this, NULL);
6662 this->next = rest;
6663 #ifndef MDASSEMBLE
6664 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
6665 /* mdadm does not support all metadata features- set the bit in all arrays state */
6666 if (!validate_geometry_imsm_orom(super,
6667 get_imsm_raid_level(map), /* RAID level */
6668 imsm_level_to_layout(get_imsm_raid_level(map)),
6669 map->num_members, /* raid disks */
6670 &chunk, join_u32(dev->size_low, dev->size_high),
6671 1 /* verbose */)) {
6672 fprintf(stderr, Name ": IMSM RAID geometry validation"
6673 " failed. Array %s activation is blocked.\n",
6674 dev->volume);
6675 this->array.state |=
6676 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6677 (1<<MD_SB_BLOCK_VOLUME);
6678 }
6679 #endif
6680
6681 /* if array has bad blocks, set suitable bit in all arrays state */
6682 if (sb_errors)
6683 this->array.state |=
6684 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6685 (1<<MD_SB_BLOCK_VOLUME);
6686
6687 for (slot = 0 ; slot < map->num_members; slot++) {
6688 unsigned long long recovery_start;
6689 struct mdinfo *info_d;
6690 struct dl *d;
6691 int idx;
6692 int skip;
6693 __u32 ord;
6694
6695 skip = 0;
6696 idx = get_imsm_disk_idx(dev, slot, MAP_0);
6697 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
6698 for (d = super->disks; d ; d = d->next)
6699 if (d->index == idx)
6700 break;
6701
6702 recovery_start = MaxSector;
6703 if (d == NULL)
6704 skip = 1;
6705 if (d && is_failed(&d->disk))
6706 skip = 1;
6707 if (ord & IMSM_ORD_REBUILD)
6708 recovery_start = 0;
6709
6710 /*
6711 * if we skip some disks the array will be assmebled degraded;
6712 * reset resync start to avoid a dirty-degraded
6713 * situation when performing the intial sync
6714 *
6715 * FIXME handle dirty degraded
6716 */
6717 if ((skip || recovery_start == 0) && !dev->vol.dirty)
6718 this->resync_start = MaxSector;
6719 if (skip)
6720 continue;
6721
6722 info_d = calloc(1, sizeof(*info_d));
6723 if (!info_d) {
6724 fprintf(stderr, Name ": failed to allocate disk"
6725 " for volume %.16s\n", dev->volume);
6726 info_d = this->devs;
6727 while (info_d) {
6728 struct mdinfo *d = info_d->next;
6729
6730 free(info_d);
6731 info_d = d;
6732 }
6733 free(this);
6734 this = rest;
6735 break;
6736 }
6737 info_d->next = this->devs;
6738 this->devs = info_d;
6739
6740 info_d->disk.number = d->index;
6741 info_d->disk.major = d->major;
6742 info_d->disk.minor = d->minor;
6743 info_d->disk.raid_disk = slot;
6744 info_d->recovery_start = recovery_start;
6745 if (map2) {
6746 if (slot < map2->num_members)
6747 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6748 else
6749 this->array.spare_disks++;
6750 } else {
6751 if (slot < map->num_members)
6752 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6753 else
6754 this->array.spare_disks++;
6755 }
6756 if (info_d->recovery_start == MaxSector)
6757 this->array.working_disks++;
6758
6759 info_d->events = __le32_to_cpu(mpb->generation_num);
6760 info_d->data_offset = pba_of_lba0(map);
6761 info_d->component_size = blocks_per_member(map);
6762 }
6763 /* now that the disk list is up-to-date fixup recovery_start */
6764 update_recovery_start(super, dev, this);
6765 this->array.spare_disks += spare_disks;
6766
6767 #ifndef MDASSEMBLE
6768 /* check for reshape */
6769 if (this->reshape_active == 1)
6770 recover_backup_imsm(st, this);
6771 #endif
6772 rest = this;
6773 }
6774
6775 return rest;
6776 }
6777
6778
6779 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6780 int failed, int look_in_map)
6781 {
6782 struct imsm_map *map;
6783
6784 map = get_imsm_map(dev, look_in_map);
6785
6786 if (!failed)
6787 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6788 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6789
6790 switch (get_imsm_raid_level(map)) {
6791 case 0:
6792 return IMSM_T_STATE_FAILED;
6793 break;
6794 case 1:
6795 if (failed < map->num_members)
6796 return IMSM_T_STATE_DEGRADED;
6797 else
6798 return IMSM_T_STATE_FAILED;
6799 break;
6800 case 10:
6801 {
6802 /**
6803 * check to see if any mirrors have failed, otherwise we
6804 * are degraded. Even numbered slots are mirrored on
6805 * slot+1
6806 */
6807 int i;
6808 /* gcc -Os complains that this is unused */
6809 int insync = insync;
6810
6811 for (i = 0; i < map->num_members; i++) {
6812 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6813 int idx = ord_to_idx(ord);
6814 struct imsm_disk *disk;
6815
6816 /* reset the potential in-sync count on even-numbered
6817 * slots. num_copies is always 2 for imsm raid10
6818 */
6819 if ((i & 1) == 0)
6820 insync = 2;
6821
6822 disk = get_imsm_disk(super, idx);
6823 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6824 insync--;
6825
6826 /* no in-sync disks left in this mirror the
6827 * array has failed
6828 */
6829 if (insync == 0)
6830 return IMSM_T_STATE_FAILED;
6831 }
6832
6833 return IMSM_T_STATE_DEGRADED;
6834 }
6835 case 5:
6836 if (failed < 2)
6837 return IMSM_T_STATE_DEGRADED;
6838 else
6839 return IMSM_T_STATE_FAILED;
6840 break;
6841 default:
6842 break;
6843 }
6844
6845 return map->map_state;
6846 }
6847
6848 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6849 int look_in_map)
6850 {
6851 int i;
6852 int failed = 0;
6853 struct imsm_disk *disk;
6854 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6855 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6856 struct imsm_map *map_for_loop;
6857 __u32 ord;
6858 int idx;
6859 int idx_1;
6860
6861 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6862 * disks that are being rebuilt. New failures are recorded to
6863 * map[0]. So we look through all the disks we started with and
6864 * see if any failures are still present, or if any new ones
6865 * have arrived
6866 */
6867 map_for_loop = map;
6868 if (prev && (map->num_members < prev->num_members))
6869 map_for_loop = prev;
6870
6871 for (i = 0; i < map_for_loop->num_members; i++) {
6872 idx_1 = -255;
6873 /* when MAP_X is passed both maps failures are counted
6874 */
6875 if (prev &&
6876 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6877 (i < prev->num_members)) {
6878 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6879 idx_1 = ord_to_idx(ord);
6880
6881 disk = get_imsm_disk(super, idx_1);
6882 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6883 failed++;
6884 }
6885 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6886 (i < map->num_members)) {
6887 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6888 idx = ord_to_idx(ord);
6889
6890 if (idx != idx_1) {
6891 disk = get_imsm_disk(super, idx);
6892 if (!disk || is_failed(disk) ||
6893 ord & IMSM_ORD_REBUILD)
6894 failed++;
6895 }
6896 }
6897 }
6898
6899 return failed;
6900 }
6901
6902 #ifndef MDASSEMBLE
6903 static int imsm_open_new(struct supertype *c, struct active_array *a,
6904 char *inst)
6905 {
6906 struct intel_super *super = c->sb;
6907 struct imsm_super *mpb = super->anchor;
6908
6909 if (atoi(inst) >= mpb->num_raid_devs) {
6910 fprintf(stderr, "%s: subarry index %d, out of range\n",
6911 __func__, atoi(inst));
6912 return -ENODEV;
6913 }
6914
6915 dprintf("imsm: open_new %s\n", inst);
6916 a->info.container_member = atoi(inst);
6917 return 0;
6918 }
6919
6920 static int is_resyncing(struct imsm_dev *dev)
6921 {
6922 struct imsm_map *migr_map;
6923
6924 if (!dev->vol.migr_state)
6925 return 0;
6926
6927 if (migr_type(dev) == MIGR_INIT ||
6928 migr_type(dev) == MIGR_REPAIR)
6929 return 1;
6930
6931 if (migr_type(dev) == MIGR_GEN_MIGR)
6932 return 0;
6933
6934 migr_map = get_imsm_map(dev, MAP_1);
6935
6936 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6937 (dev->vol.migr_type != MIGR_GEN_MIGR))
6938 return 1;
6939 else
6940 return 0;
6941 }
6942
6943 /* return true if we recorded new information */
6944 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6945 {
6946 __u32 ord;
6947 int slot;
6948 struct imsm_map *map;
6949 char buf[MAX_RAID_SERIAL_LEN+3];
6950 unsigned int len, shift = 0;
6951
6952 /* new failures are always set in map[0] */
6953 map = get_imsm_map(dev, MAP_0);
6954
6955 slot = get_imsm_disk_slot(map, idx);
6956 if (slot < 0)
6957 return 0;
6958
6959 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6960 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6961 return 0;
6962
6963 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6964 buf[MAX_RAID_SERIAL_LEN] = '\000';
6965 strcat(buf, ":0");
6966 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6967 shift = len - MAX_RAID_SERIAL_LEN + 1;
6968 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6969
6970 disk->status |= FAILED_DISK;
6971 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6972 /* mark failures in second map if second map exists and this disk
6973 * in this slot.
6974 * This is valid for migration, initialization and rebuild
6975 */
6976 if (dev->vol.migr_state) {
6977 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
6978 int slot2 = get_imsm_disk_slot(map2, idx);
6979
6980 if ((slot2 < map2->num_members) &&
6981 (slot2 >= 0))
6982 set_imsm_ord_tbl_ent(map2, slot2,
6983 idx | IMSM_ORD_REBUILD);
6984 }
6985 if (map->failed_disk_num == 0xff)
6986 map->failed_disk_num = slot;
6987 return 1;
6988 }
6989
6990 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6991 {
6992 mark_failure(dev, disk, idx);
6993
6994 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6995 return;
6996
6997 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6998 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6999 }
7000
7001 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
7002 {
7003 struct dl *dl;
7004
7005 if (!super->missing)
7006 return;
7007
7008 dprintf("imsm: mark missing\n");
7009 /* end process for initialization and rebuild only
7010 */
7011 if (is_gen_migration(dev) == 0) {
7012 __u8 map_state;
7013 int failed;
7014
7015 failed = imsm_count_failed(super, dev, MAP_0);
7016 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7017
7018 end_migration(dev, super, map_state);
7019 }
7020 for (dl = super->missing; dl; dl = dl->next)
7021 mark_missing(dev, &dl->disk, dl->index);
7022 super->updates_pending++;
7023 }
7024
7025 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
7026 long long new_size)
7027 {
7028 int used_disks = imsm_num_data_members(dev, MAP_0);
7029 unsigned long long array_blocks;
7030 struct imsm_map *map;
7031
7032 if (used_disks == 0) {
7033 /* when problems occures
7034 * return current array_blocks value
7035 */
7036 array_blocks = __le32_to_cpu(dev->size_high);
7037 array_blocks = array_blocks << 32;
7038 array_blocks += __le32_to_cpu(dev->size_low);
7039
7040 return array_blocks;
7041 }
7042
7043 /* set array size in metadata
7044 */
7045 if (new_size <= 0) {
7046 /* OLCE size change is caused by added disks
7047 */
7048 map = get_imsm_map(dev, MAP_0);
7049 array_blocks = blocks_per_member(map) * used_disks;
7050 } else {
7051 /* Online Volume Size Change
7052 * Using available free space
7053 */
7054 array_blocks = new_size;
7055 }
7056
7057 /* round array size down to closest MB
7058 */
7059 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
7060 dev->size_low = __cpu_to_le32((__u32)array_blocks);
7061 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7062
7063 return array_blocks;
7064 }
7065
7066 static void imsm_set_disk(struct active_array *a, int n, int state);
7067
7068 static void imsm_progress_container_reshape(struct intel_super *super)
7069 {
7070 /* if no device has a migr_state, but some device has a
7071 * different number of members than the previous device, start
7072 * changing the number of devices in this device to match
7073 * previous.
7074 */
7075 struct imsm_super *mpb = super->anchor;
7076 int prev_disks = -1;
7077 int i;
7078 int copy_map_size;
7079
7080 for (i = 0; i < mpb->num_raid_devs; i++) {
7081 struct imsm_dev *dev = get_imsm_dev(super, i);
7082 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7083 struct imsm_map *map2;
7084 int prev_num_members;
7085
7086 if (dev->vol.migr_state)
7087 return;
7088
7089 if (prev_disks == -1)
7090 prev_disks = map->num_members;
7091 if (prev_disks == map->num_members)
7092 continue;
7093
7094 /* OK, this array needs to enter reshape mode.
7095 * i.e it needs a migr_state
7096 */
7097
7098 copy_map_size = sizeof_imsm_map(map);
7099 prev_num_members = map->num_members;
7100 map->num_members = prev_disks;
7101 dev->vol.migr_state = 1;
7102 dev->vol.curr_migr_unit = 0;
7103 set_migr_type(dev, MIGR_GEN_MIGR);
7104 for (i = prev_num_members;
7105 i < map->num_members; i++)
7106 set_imsm_ord_tbl_ent(map, i, i);
7107 map2 = get_imsm_map(dev, MAP_1);
7108 /* Copy the current map */
7109 memcpy(map2, map, copy_map_size);
7110 map2->num_members = prev_num_members;
7111
7112 imsm_set_array_size(dev, -1);
7113 super->clean_migration_record_by_mdmon = 1;
7114 super->updates_pending++;
7115 }
7116 }
7117
7118 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
7119 * states are handled in imsm_set_disk() with one exception, when a
7120 * resync is stopped due to a new failure this routine will set the
7121 * 'degraded' state for the array.
7122 */
7123 static int imsm_set_array_state(struct active_array *a, int consistent)
7124 {
7125 int inst = a->info.container_member;
7126 struct intel_super *super = a->container->sb;
7127 struct imsm_dev *dev = get_imsm_dev(super, inst);
7128 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7129 int failed = imsm_count_failed(super, dev, MAP_0);
7130 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7131 __u32 blocks_per_unit;
7132
7133 if (dev->vol.migr_state &&
7134 dev->vol.migr_type == MIGR_GEN_MIGR) {
7135 /* array state change is blocked due to reshape action
7136 * We might need to
7137 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7138 * - finish the reshape (if last_checkpoint is big and action != reshape)
7139 * - update curr_migr_unit
7140 */
7141 if (a->curr_action == reshape) {
7142 /* still reshaping, maybe update curr_migr_unit */
7143 goto mark_checkpoint;
7144 } else {
7145 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7146 /* for some reason we aborted the reshape.
7147 *
7148 * disable automatic metadata rollback
7149 * user action is required to recover process
7150 */
7151 if (0) {
7152 struct imsm_map *map2 =
7153 get_imsm_map(dev, MAP_1);
7154 dev->vol.migr_state = 0;
7155 set_migr_type(dev, 0);
7156 dev->vol.curr_migr_unit = 0;
7157 memcpy(map, map2,
7158 sizeof_imsm_map(map2));
7159 super->updates_pending++;
7160 }
7161 }
7162 if (a->last_checkpoint >= a->info.component_size) {
7163 unsigned long long array_blocks;
7164 int used_disks;
7165 struct mdinfo *mdi;
7166
7167 used_disks = imsm_num_data_members(dev, MAP_0);
7168 if (used_disks > 0) {
7169 array_blocks =
7170 blocks_per_member(map) *
7171 used_disks;
7172 /* round array size down to closest MB
7173 */
7174 array_blocks = (array_blocks
7175 >> SECT_PER_MB_SHIFT)
7176 << SECT_PER_MB_SHIFT;
7177 a->info.custom_array_size = array_blocks;
7178 /* encourage manager to update array
7179 * size
7180 */
7181
7182 a->check_reshape = 1;
7183 }
7184 /* finalize online capacity expansion/reshape */
7185 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7186 imsm_set_disk(a,
7187 mdi->disk.raid_disk,
7188 mdi->curr_state);
7189
7190 imsm_progress_container_reshape(super);
7191 }
7192 }
7193 }
7194
7195 /* before we activate this array handle any missing disks */
7196 if (consistent == 2)
7197 handle_missing(super, dev);
7198
7199 if (consistent == 2 &&
7200 (!is_resync_complete(&a->info) ||
7201 map_state != IMSM_T_STATE_NORMAL ||
7202 dev->vol.migr_state))
7203 consistent = 0;
7204
7205 if (is_resync_complete(&a->info)) {
7206 /* complete intialization / resync,
7207 * recovery and interrupted recovery is completed in
7208 * ->set_disk
7209 */
7210 if (is_resyncing(dev)) {
7211 dprintf("imsm: mark resync done\n");
7212 end_migration(dev, super, map_state);
7213 super->updates_pending++;
7214 a->last_checkpoint = 0;
7215 }
7216 } else if ((!is_resyncing(dev) && !failed) &&
7217 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
7218 /* mark the start of the init process if nothing is failed */
7219 dprintf("imsm: mark resync start\n");
7220 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
7221 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
7222 else
7223 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
7224 super->updates_pending++;
7225 }
7226
7227 mark_checkpoint:
7228 /* skip checkpointing for general migration,
7229 * it is controlled in mdadm
7230 */
7231 if (is_gen_migration(dev))
7232 goto skip_mark_checkpoint;
7233
7234 /* check if we can update curr_migr_unit from resync_start, recovery_start */
7235 blocks_per_unit = blocks_per_migr_unit(super, dev);
7236 if (blocks_per_unit) {
7237 __u32 units32;
7238 __u64 units;
7239
7240 units = a->last_checkpoint / blocks_per_unit;
7241 units32 = units;
7242
7243 /* check that we did not overflow 32-bits, and that
7244 * curr_migr_unit needs updating
7245 */
7246 if (units32 == units &&
7247 units32 != 0 &&
7248 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7249 dprintf("imsm: mark checkpoint (%u)\n", units32);
7250 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7251 super->updates_pending++;
7252 }
7253 }
7254
7255 skip_mark_checkpoint:
7256 /* mark dirty / clean */
7257 if (dev->vol.dirty != !consistent) {
7258 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
7259 if (consistent)
7260 dev->vol.dirty = 0;
7261 else
7262 dev->vol.dirty = 1;
7263 super->updates_pending++;
7264 }
7265
7266 return consistent;
7267 }
7268
7269 static void imsm_set_disk(struct active_array *a, int n, int state)
7270 {
7271 int inst = a->info.container_member;
7272 struct intel_super *super = a->container->sb;
7273 struct imsm_dev *dev = get_imsm_dev(super, inst);
7274 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7275 struct imsm_disk *disk;
7276 struct mdinfo *mdi;
7277 int recovery_not_finished = 0;
7278 int failed;
7279 __u32 ord;
7280 __u8 map_state;
7281
7282 if (n > map->num_members)
7283 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
7284 n, map->num_members - 1);
7285
7286 if (n < 0)
7287 return;
7288
7289 dprintf("imsm: set_disk %d:%x\n", n, state);
7290
7291 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
7292 disk = get_imsm_disk(super, ord_to_idx(ord));
7293
7294 /* check for new failures */
7295 if (state & DS_FAULTY) {
7296 if (mark_failure(dev, disk, ord_to_idx(ord)))
7297 super->updates_pending++;
7298 }
7299
7300 /* check if in_sync */
7301 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
7302 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7303
7304 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
7305 super->updates_pending++;
7306 }
7307
7308 failed = imsm_count_failed(super, dev, MAP_0);
7309 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7310
7311 /* check if recovery complete, newly degraded, or failed */
7312 dprintf("imsm: Detected transition to state ");
7313 switch (map_state) {
7314 case IMSM_T_STATE_NORMAL: /* transition to normal state */
7315 dprintf("normal: ");
7316 if (is_rebuilding(dev)) {
7317 dprintf("while rebuilding");
7318 /* check if recovery is really finished */
7319 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
7320 if (mdi->recovery_start != MaxSector) {
7321 recovery_not_finished = 1;
7322 break;
7323 }
7324 if (recovery_not_finished) {
7325 dprintf("\nimsm: Rebuild has not finished yet, "
7326 "state not changed");
7327 if (a->last_checkpoint < mdi->recovery_start) {
7328 a->last_checkpoint = mdi->recovery_start;
7329 super->updates_pending++;
7330 }
7331 break;
7332 }
7333 end_migration(dev, super, map_state);
7334 map = get_imsm_map(dev, MAP_0);
7335 map->failed_disk_num = ~0;
7336 super->updates_pending++;
7337 a->last_checkpoint = 0;
7338 break;
7339 }
7340 if (is_gen_migration(dev)) {
7341 dprintf("while general migration");
7342 if (a->last_checkpoint >= a->info.component_size)
7343 end_migration(dev, super, map_state);
7344 else
7345 map->map_state = map_state;
7346 map = get_imsm_map(dev, MAP_0);
7347 map->failed_disk_num = ~0;
7348 super->updates_pending++;
7349 break;
7350 }
7351 break;
7352 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
7353 dprintf("degraded: ");
7354 if ((map->map_state != map_state) &&
7355 !dev->vol.migr_state) {
7356 dprintf("mark degraded");
7357 map->map_state = map_state;
7358 super->updates_pending++;
7359 a->last_checkpoint = 0;
7360 break;
7361 }
7362 if (is_rebuilding(dev)) {
7363 dprintf("while rebuilding.");
7364 if (map->map_state != map_state) {
7365 dprintf(" Map state change");
7366 end_migration(dev, super, map_state);
7367 super->updates_pending++;
7368 }
7369 break;
7370 }
7371 if (is_gen_migration(dev)) {
7372 dprintf("while general migration");
7373 if (a->last_checkpoint >= a->info.component_size)
7374 end_migration(dev, super, map_state);
7375 else {
7376 map->map_state = map_state;
7377 manage_second_map(super, dev);
7378 }
7379 super->updates_pending++;
7380 break;
7381 }
7382 if (is_initializing(dev)) {
7383 dprintf("while initialization.");
7384 map->map_state = map_state;
7385 super->updates_pending++;
7386 break;
7387 }
7388 break;
7389 case IMSM_T_STATE_FAILED: /* transition to failed state */
7390 dprintf("failed: ");
7391 if (is_gen_migration(dev)) {
7392 dprintf("while general migration");
7393 map->map_state = map_state;
7394 super->updates_pending++;
7395 break;
7396 }
7397 if (map->map_state != map_state) {
7398 dprintf("mark failed");
7399 end_migration(dev, super, map_state);
7400 super->updates_pending++;
7401 a->last_checkpoint = 0;
7402 break;
7403 }
7404 break;
7405 default:
7406 dprintf("state %i\n", map_state);
7407 }
7408 dprintf("\n");
7409
7410 }
7411
7412 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
7413 {
7414 void *buf = mpb;
7415 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7416 unsigned long long dsize;
7417 unsigned long long sectors;
7418
7419 get_dev_size(fd, NULL, &dsize);
7420
7421 if (mpb_size > 512) {
7422 /* -1 to account for anchor */
7423 sectors = mpb_sectors(mpb) - 1;
7424
7425 /* write the extended mpb to the sectors preceeding the anchor */
7426 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
7427 return 1;
7428
7429 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
7430 != 512 * sectors)
7431 return 1;
7432 }
7433
7434 /* first block is stored on second to last sector of the disk */
7435 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
7436 return 1;
7437
7438 if (write(fd, buf, 512) != 512)
7439 return 1;
7440
7441 return 0;
7442 }
7443
7444 static void imsm_sync_metadata(struct supertype *container)
7445 {
7446 struct intel_super *super = container->sb;
7447
7448 dprintf("sync metadata: %d\n", super->updates_pending);
7449 if (!super->updates_pending)
7450 return;
7451
7452 write_super_imsm(container, 0);
7453
7454 super->updates_pending = 0;
7455 }
7456
7457 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7458 {
7459 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7460 int i = get_imsm_disk_idx(dev, idx, MAP_X);
7461 struct dl *dl;
7462
7463 for (dl = super->disks; dl; dl = dl->next)
7464 if (dl->index == i)
7465 break;
7466
7467 if (dl && is_failed(&dl->disk))
7468 dl = NULL;
7469
7470 if (dl)
7471 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
7472
7473 return dl;
7474 }
7475
7476 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
7477 struct active_array *a, int activate_new,
7478 struct mdinfo *additional_test_list)
7479 {
7480 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7481 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
7482 struct imsm_super *mpb = super->anchor;
7483 struct imsm_map *map;
7484 unsigned long long pos;
7485 struct mdinfo *d;
7486 struct extent *ex;
7487 int i, j;
7488 int found;
7489 __u32 array_start = 0;
7490 __u32 array_end = 0;
7491 struct dl *dl;
7492 struct mdinfo *test_list;
7493
7494 for (dl = super->disks; dl; dl = dl->next) {
7495 /* If in this array, skip */
7496 for (d = a->info.devs ; d ; d = d->next)
7497 if (d->state_fd >= 0 &&
7498 d->disk.major == dl->major &&
7499 d->disk.minor == dl->minor) {
7500 dprintf("%x:%x already in array\n",
7501 dl->major, dl->minor);
7502 break;
7503 }
7504 if (d)
7505 continue;
7506 test_list = additional_test_list;
7507 while (test_list) {
7508 if (test_list->disk.major == dl->major &&
7509 test_list->disk.minor == dl->minor) {
7510 dprintf("%x:%x already in additional test list\n",
7511 dl->major, dl->minor);
7512 break;
7513 }
7514 test_list = test_list->next;
7515 }
7516 if (test_list)
7517 continue;
7518
7519 /* skip in use or failed drives */
7520 if (is_failed(&dl->disk) || idx == dl->index ||
7521 dl->index == -2) {
7522 dprintf("%x:%x status (failed: %d index: %d)\n",
7523 dl->major, dl->minor, is_failed(&dl->disk), idx);
7524 continue;
7525 }
7526
7527 /* skip pure spares when we are looking for partially
7528 * assimilated drives
7529 */
7530 if (dl->index == -1 && !activate_new)
7531 continue;
7532
7533 /* Does this unused device have the requisite free space?
7534 * It needs to be able to cover all member volumes
7535 */
7536 ex = get_extents(super, dl);
7537 if (!ex) {
7538 dprintf("cannot get extents\n");
7539 continue;
7540 }
7541 for (i = 0; i < mpb->num_raid_devs; i++) {
7542 dev = get_imsm_dev(super, i);
7543 map = get_imsm_map(dev, MAP_0);
7544
7545 /* check if this disk is already a member of
7546 * this array
7547 */
7548 if (get_imsm_disk_slot(map, dl->index) >= 0)
7549 continue;
7550
7551 found = 0;
7552 j = 0;
7553 pos = 0;
7554 array_start = pba_of_lba0(map);
7555 array_end = array_start +
7556 blocks_per_member(map) - 1;
7557
7558 do {
7559 /* check that we can start at pba_of_lba0 with
7560 * blocks_per_member of space
7561 */
7562 if (array_start >= pos && array_end < ex[j].start) {
7563 found = 1;
7564 break;
7565 }
7566 pos = ex[j].start + ex[j].size;
7567 j++;
7568 } while (ex[j-1].size);
7569
7570 if (!found)
7571 break;
7572 }
7573
7574 free(ex);
7575 if (i < mpb->num_raid_devs) {
7576 dprintf("%x:%x does not have %u to %u available\n",
7577 dl->major, dl->minor, array_start, array_end);
7578 /* No room */
7579 continue;
7580 }
7581 return dl;
7582 }
7583
7584 return dl;
7585 }
7586
7587
7588 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7589 {
7590 struct imsm_dev *dev2;
7591 struct imsm_map *map;
7592 struct dl *idisk;
7593 int slot;
7594 int idx;
7595 __u8 state;
7596
7597 dev2 = get_imsm_dev(cont->sb, dev_idx);
7598 if (dev2) {
7599 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
7600 if (state == IMSM_T_STATE_FAILED) {
7601 map = get_imsm_map(dev2, MAP_0);
7602 if (!map)
7603 return 1;
7604 for (slot = 0; slot < map->num_members; slot++) {
7605 /*
7606 * Check if failed disks are deleted from intel
7607 * disk list or are marked to be deleted
7608 */
7609 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
7610 idisk = get_imsm_dl_disk(cont->sb, idx);
7611 /*
7612 * Do not rebuild the array if failed disks
7613 * from failed sub-array are not removed from
7614 * container.
7615 */
7616 if (idisk &&
7617 is_failed(&idisk->disk) &&
7618 (idisk->action != DISK_REMOVE))
7619 return 0;
7620 }
7621 }
7622 }
7623 return 1;
7624 }
7625
7626 static struct mdinfo *imsm_activate_spare(struct active_array *a,
7627 struct metadata_update **updates)
7628 {
7629 /**
7630 * Find a device with unused free space and use it to replace a
7631 * failed/vacant region in an array. We replace failed regions one a
7632 * array at a time. The result is that a new spare disk will be added
7633 * to the first failed array and after the monitor has finished
7634 * propagating failures the remainder will be consumed.
7635 *
7636 * FIXME add a capability for mdmon to request spares from another
7637 * container.
7638 */
7639
7640 struct intel_super *super = a->container->sb;
7641 int inst = a->info.container_member;
7642 struct imsm_dev *dev = get_imsm_dev(super, inst);
7643 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7644 int failed = a->info.array.raid_disks;
7645 struct mdinfo *rv = NULL;
7646 struct mdinfo *d;
7647 struct mdinfo *di;
7648 struct metadata_update *mu;
7649 struct dl *dl;
7650 struct imsm_update_activate_spare *u;
7651 int num_spares = 0;
7652 int i;
7653 int allowed;
7654
7655 for (d = a->info.devs ; d ; d = d->next) {
7656 if ((d->curr_state & DS_FAULTY) &&
7657 d->state_fd >= 0)
7658 /* wait for Removal to happen */
7659 return NULL;
7660 if (d->state_fd >= 0)
7661 failed--;
7662 }
7663
7664 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7665 inst, failed, a->info.array.raid_disks, a->info.array.level);
7666
7667 if (imsm_reshape_blocks_arrays_changes(super))
7668 return NULL;
7669
7670 /* Cannot activate another spare if rebuild is in progress already
7671 */
7672 if (is_rebuilding(dev)) {
7673 dprintf("imsm: No spare activation allowed. "
7674 "Rebuild in progress already.\n");
7675 return NULL;
7676 }
7677
7678 if (a->info.array.level == 4)
7679 /* No repair for takeovered array
7680 * imsm doesn't support raid4
7681 */
7682 return NULL;
7683
7684 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7685 IMSM_T_STATE_DEGRADED)
7686 return NULL;
7687
7688 /*
7689 * If there are any failed disks check state of the other volume.
7690 * Block rebuild if the another one is failed until failed disks
7691 * are removed from container.
7692 */
7693 if (failed) {
7694 dprintf("found failed disks in %.*s, check if there another"
7695 "failed sub-array.\n",
7696 MAX_RAID_SERIAL_LEN, dev->volume);
7697 /* check if states of the other volumes allow for rebuild */
7698 for (i = 0; i < super->anchor->num_raid_devs; i++) {
7699 if (i != inst) {
7700 allowed = imsm_rebuild_allowed(a->container,
7701 i, failed);
7702 if (!allowed)
7703 return NULL;
7704 }
7705 }
7706 }
7707
7708 /* For each slot, if it is not working, find a spare */
7709 for (i = 0; i < a->info.array.raid_disks; i++) {
7710 for (d = a->info.devs ; d ; d = d->next)
7711 if (d->disk.raid_disk == i)
7712 break;
7713 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7714 if (d && (d->state_fd >= 0))
7715 continue;
7716
7717 /*
7718 * OK, this device needs recovery. Try to re-add the
7719 * previous occupant of this slot, if this fails see if
7720 * we can continue the assimilation of a spare that was
7721 * partially assimilated, finally try to activate a new
7722 * spare.
7723 */
7724 dl = imsm_readd(super, i, a);
7725 if (!dl)
7726 dl = imsm_add_spare(super, i, a, 0, rv);
7727 if (!dl)
7728 dl = imsm_add_spare(super, i, a, 1, rv);
7729 if (!dl)
7730 continue;
7731
7732 /* found a usable disk with enough space */
7733 di = malloc(sizeof(*di));
7734 if (!di)
7735 continue;
7736 memset(di, 0, sizeof(*di));
7737
7738 /* dl->index will be -1 in the case we are activating a
7739 * pristine spare. imsm_process_update() will create a
7740 * new index in this case. Once a disk is found to be
7741 * failed in all member arrays it is kicked from the
7742 * metadata
7743 */
7744 di->disk.number = dl->index;
7745
7746 /* (ab)use di->devs to store a pointer to the device
7747 * we chose
7748 */
7749 di->devs = (struct mdinfo *) dl;
7750
7751 di->disk.raid_disk = i;
7752 di->disk.major = dl->major;
7753 di->disk.minor = dl->minor;
7754 di->disk.state = 0;
7755 di->recovery_start = 0;
7756 di->data_offset = pba_of_lba0(map);
7757 di->component_size = a->info.component_size;
7758 di->container_member = inst;
7759 super->random = random32();
7760 di->next = rv;
7761 rv = di;
7762 num_spares++;
7763 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7764 i, di->data_offset);
7765 }
7766
7767 if (!rv)
7768 /* No spares found */
7769 return rv;
7770 /* Now 'rv' has a list of devices to return.
7771 * Create a metadata_update record to update the
7772 * disk_ord_tbl for the array
7773 */
7774 mu = malloc(sizeof(*mu));
7775 if (mu) {
7776 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
7777 if (mu->buf == NULL) {
7778 free(mu);
7779 mu = NULL;
7780 }
7781 }
7782 if (!mu) {
7783 while (rv) {
7784 struct mdinfo *n = rv->next;
7785
7786 free(rv);
7787 rv = n;
7788 }
7789 return NULL;
7790 }
7791
7792 mu->space = NULL;
7793 mu->space_list = NULL;
7794 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7795 mu->next = *updates;
7796 u = (struct imsm_update_activate_spare *) mu->buf;
7797
7798 for (di = rv ; di ; di = di->next) {
7799 u->type = update_activate_spare;
7800 u->dl = (struct dl *) di->devs;
7801 di->devs = NULL;
7802 u->slot = di->disk.raid_disk;
7803 u->array = inst;
7804 u->next = u + 1;
7805 u++;
7806 }
7807 (u-1)->next = NULL;
7808 *updates = mu;
7809
7810 return rv;
7811 }
7812
7813 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7814 {
7815 struct imsm_dev *dev = get_imsm_dev(super, idx);
7816 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7817 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7818 struct disk_info *inf = get_disk_info(u);
7819 struct imsm_disk *disk;
7820 int i;
7821 int j;
7822
7823 for (i = 0; i < map->num_members; i++) {
7824 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7825 for (j = 0; j < new_map->num_members; j++)
7826 if (serialcmp(disk->serial, inf[j].serial) == 0)
7827 return 1;
7828 }
7829
7830 return 0;
7831 }
7832
7833
7834 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7835 {
7836 struct dl *dl = NULL;
7837 for (dl = super->disks; dl; dl = dl->next)
7838 if ((dl->major == major) && (dl->minor == minor))
7839 return dl;
7840 return NULL;
7841 }
7842
7843 static int remove_disk_super(struct intel_super *super, int major, int minor)
7844 {
7845 struct dl *prev = NULL;
7846 struct dl *dl;
7847
7848 prev = NULL;
7849 for (dl = super->disks; dl; dl = dl->next) {
7850 if ((dl->major == major) && (dl->minor == minor)) {
7851 /* remove */
7852 if (prev)
7853 prev->next = dl->next;
7854 else
7855 super->disks = dl->next;
7856 dl->next = NULL;
7857 __free_imsm_disk(dl);
7858 dprintf("%s: removed %x:%x\n",
7859 __func__, major, minor);
7860 break;
7861 }
7862 prev = dl;
7863 }
7864 return 0;
7865 }
7866
7867 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7868
7869 static int add_remove_disk_update(struct intel_super *super)
7870 {
7871 int check_degraded = 0;
7872 struct dl *disk = NULL;
7873 /* add/remove some spares to/from the metadata/contrainer */
7874 while (super->disk_mgmt_list) {
7875 struct dl *disk_cfg;
7876
7877 disk_cfg = super->disk_mgmt_list;
7878 super->disk_mgmt_list = disk_cfg->next;
7879 disk_cfg->next = NULL;
7880
7881 if (disk_cfg->action == DISK_ADD) {
7882 disk_cfg->next = super->disks;
7883 super->disks = disk_cfg;
7884 check_degraded = 1;
7885 dprintf("%s: added %x:%x\n",
7886 __func__, disk_cfg->major,
7887 disk_cfg->minor);
7888 } else if (disk_cfg->action == DISK_REMOVE) {
7889 dprintf("Disk remove action processed: %x.%x\n",
7890 disk_cfg->major, disk_cfg->minor);
7891 disk = get_disk_super(super,
7892 disk_cfg->major,
7893 disk_cfg->minor);
7894 if (disk) {
7895 /* store action status */
7896 disk->action = DISK_REMOVE;
7897 /* remove spare disks only */
7898 if (disk->index == -1) {
7899 remove_disk_super(super,
7900 disk_cfg->major,
7901 disk_cfg->minor);
7902 }
7903 }
7904 /* release allocate disk structure */
7905 __free_imsm_disk(disk_cfg);
7906 }
7907 }
7908 return check_degraded;
7909 }
7910
7911
7912 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7913 struct intel_super *super,
7914 void ***space_list)
7915 {
7916 struct intel_dev *id;
7917 void **tofree = NULL;
7918 int ret_val = 0;
7919
7920 dprintf("apply_reshape_migration_update()\n");
7921 if ((u->subdev < 0) ||
7922 (u->subdev > 1)) {
7923 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7924 return ret_val;
7925 }
7926 if ((space_list == NULL) || (*space_list == NULL)) {
7927 dprintf("imsm: Error: Memory is not allocated\n");
7928 return ret_val;
7929 }
7930
7931 for (id = super->devlist ; id; id = id->next) {
7932 if (id->index == (unsigned)u->subdev) {
7933 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7934 struct imsm_map *map;
7935 struct imsm_dev *new_dev =
7936 (struct imsm_dev *)*space_list;
7937 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7938 int to_state;
7939 struct dl *new_disk;
7940
7941 if (new_dev == NULL)
7942 return ret_val;
7943 *space_list = **space_list;
7944 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
7945 map = get_imsm_map(new_dev, MAP_0);
7946 if (migr_map) {
7947 dprintf("imsm: Error: migration in progress");
7948 return ret_val;
7949 }
7950
7951 to_state = map->map_state;
7952 if ((u->new_level == 5) && (map->raid_level == 0)) {
7953 map->num_members++;
7954 /* this should not happen */
7955 if (u->new_disks[0] < 0) {
7956 map->failed_disk_num =
7957 map->num_members - 1;
7958 to_state = IMSM_T_STATE_DEGRADED;
7959 } else
7960 to_state = IMSM_T_STATE_NORMAL;
7961 }
7962 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
7963 if (u->new_level > -1)
7964 map->raid_level = u->new_level;
7965 migr_map = get_imsm_map(new_dev, MAP_1);
7966 if ((u->new_level == 5) &&
7967 (migr_map->raid_level == 0)) {
7968 int ord = map->num_members - 1;
7969 migr_map->num_members--;
7970 if (u->new_disks[0] < 0)
7971 ord |= IMSM_ORD_REBUILD;
7972 set_imsm_ord_tbl_ent(map,
7973 map->num_members - 1,
7974 ord);
7975 }
7976 id->dev = new_dev;
7977 tofree = (void **)dev;
7978
7979 /* update chunk size
7980 */
7981 if (u->new_chunksize > 0)
7982 map->blocks_per_strip =
7983 __cpu_to_le16(u->new_chunksize * 2);
7984
7985 /* add disk
7986 */
7987 if ((u->new_level != 5) ||
7988 (migr_map->raid_level != 0) ||
7989 (migr_map->raid_level == map->raid_level))
7990 goto skip_disk_add;
7991
7992 if (u->new_disks[0] >= 0) {
7993 /* use passes spare
7994 */
7995 new_disk = get_disk_super(super,
7996 major(u->new_disks[0]),
7997 minor(u->new_disks[0]));
7998 dprintf("imsm: new disk for reshape is: %i:%i "
7999 "(%p, index = %i)\n",
8000 major(u->new_disks[0]),
8001 minor(u->new_disks[0]),
8002 new_disk, new_disk->index);
8003 if (new_disk == NULL)
8004 goto error_disk_add;
8005
8006 new_disk->index = map->num_members - 1;
8007 /* slot to fill in autolayout
8008 */
8009 new_disk->raiddisk = new_disk->index;
8010 new_disk->disk.status |= CONFIGURED_DISK;
8011 new_disk->disk.status &= ~SPARE_DISK;
8012 } else
8013 goto error_disk_add;
8014
8015 skip_disk_add:
8016 *tofree = *space_list;
8017 /* calculate new size
8018 */
8019 imsm_set_array_size(new_dev, -1);
8020
8021 ret_val = 1;
8022 }
8023 }
8024
8025 if (tofree)
8026 *space_list = tofree;
8027 return ret_val;
8028
8029 error_disk_add:
8030 dprintf("Error: imsm: Cannot find disk.\n");
8031 return ret_val;
8032 }
8033
8034 static int apply_size_change_update(struct imsm_update_size_change *u,
8035 struct intel_super *super)
8036 {
8037 struct intel_dev *id;
8038 int ret_val = 0;
8039
8040 dprintf("apply_size_change_update()\n");
8041 if ((u->subdev < 0) ||
8042 (u->subdev > 1)) {
8043 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
8044 return ret_val;
8045 }
8046
8047 for (id = super->devlist ; id; id = id->next) {
8048 if (id->index == (unsigned)u->subdev) {
8049 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
8050 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8051 int used_disks = imsm_num_data_members(dev, MAP_0);
8052 unsigned long long blocks_per_member;
8053
8054 /* calculate new size
8055 */
8056 blocks_per_member = u->new_size / used_disks;
8057 dprintf("imsm: apply_size_change_update(size: %llu, "
8058 "blocks per member: %llu)\n",
8059 u->new_size, blocks_per_member);
8060 set_blocks_per_member(map, blocks_per_member);
8061 imsm_set_array_size(dev, u->new_size);
8062
8063 ret_val = 1;
8064 break;
8065 }
8066 }
8067
8068 return ret_val;
8069 }
8070
8071
8072 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
8073 struct intel_super *super,
8074 struct active_array *active_array)
8075 {
8076 struct imsm_super *mpb = super->anchor;
8077 struct imsm_dev *dev = get_imsm_dev(super, u->array);
8078 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8079 struct imsm_map *migr_map;
8080 struct active_array *a;
8081 struct imsm_disk *disk;
8082 __u8 to_state;
8083 struct dl *dl;
8084 unsigned int found;
8085 int failed;
8086 int victim;
8087 int i;
8088 int second_map_created = 0;
8089
8090 for (; u; u = u->next) {
8091 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
8092
8093 if (victim < 0)
8094 return 0;
8095
8096 for (dl = super->disks; dl; dl = dl->next)
8097 if (dl == u->dl)
8098 break;
8099
8100 if (!dl) {
8101 fprintf(stderr, "error: imsm_activate_spare passed "
8102 "an unknown disk (index: %d)\n",
8103 u->dl->index);
8104 return 0;
8105 }
8106
8107 /* count failures (excluding rebuilds and the victim)
8108 * to determine map[0] state
8109 */
8110 failed = 0;
8111 for (i = 0; i < map->num_members; i++) {
8112 if (i == u->slot)
8113 continue;
8114 disk = get_imsm_disk(super,
8115 get_imsm_disk_idx(dev, i, MAP_X));
8116 if (!disk || is_failed(disk))
8117 failed++;
8118 }
8119
8120 /* adding a pristine spare, assign a new index */
8121 if (dl->index < 0) {
8122 dl->index = super->anchor->num_disks;
8123 super->anchor->num_disks++;
8124 }
8125 disk = &dl->disk;
8126 disk->status |= CONFIGURED_DISK;
8127 disk->status &= ~SPARE_DISK;
8128
8129 /* mark rebuild */
8130 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
8131 if (!second_map_created) {
8132 second_map_created = 1;
8133 map->map_state = IMSM_T_STATE_DEGRADED;
8134 migrate(dev, super, to_state, MIGR_REBUILD);
8135 } else
8136 map->map_state = to_state;
8137 migr_map = get_imsm_map(dev, MAP_1);
8138 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8139 set_imsm_ord_tbl_ent(migr_map, u->slot,
8140 dl->index | IMSM_ORD_REBUILD);
8141
8142 /* update the family_num to mark a new container
8143 * generation, being careful to record the existing
8144 * family_num in orig_family_num to clean up after
8145 * earlier mdadm versions that neglected to set it.
8146 */
8147 if (mpb->orig_family_num == 0)
8148 mpb->orig_family_num = mpb->family_num;
8149 mpb->family_num += super->random;
8150
8151 /* count arrays using the victim in the metadata */
8152 found = 0;
8153 for (a = active_array; a ; a = a->next) {
8154 dev = get_imsm_dev(super, a->info.container_member);
8155 map = get_imsm_map(dev, MAP_0);
8156
8157 if (get_imsm_disk_slot(map, victim) >= 0)
8158 found++;
8159 }
8160
8161 /* delete the victim if it is no longer being
8162 * utilized anywhere
8163 */
8164 if (!found) {
8165 struct dl **dlp;
8166
8167 /* We know that 'manager' isn't touching anything,
8168 * so it is safe to delete
8169 */
8170 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
8171 if ((*dlp)->index == victim)
8172 break;
8173
8174 /* victim may be on the missing list */
8175 if (!*dlp)
8176 for (dlp = &super->missing; *dlp;
8177 dlp = &(*dlp)->next)
8178 if ((*dlp)->index == victim)
8179 break;
8180 imsm_delete(super, dlp, victim);
8181 }
8182 }
8183
8184 return 1;
8185 }
8186
8187 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8188 struct intel_super *super,
8189 void ***space_list)
8190 {
8191 struct dl *new_disk;
8192 struct intel_dev *id;
8193 int i;
8194 int delta_disks = u->new_raid_disks - u->old_raid_disks;
8195 int disk_count = u->old_raid_disks;
8196 void **tofree = NULL;
8197 int devices_to_reshape = 1;
8198 struct imsm_super *mpb = super->anchor;
8199 int ret_val = 0;
8200 unsigned int dev_id;
8201
8202 dprintf("imsm: apply_reshape_container_disks_update()\n");
8203
8204 /* enable spares to use in array */
8205 for (i = 0; i < delta_disks; i++) {
8206 new_disk = get_disk_super(super,
8207 major(u->new_disks[i]),
8208 minor(u->new_disks[i]));
8209 dprintf("imsm: new disk for reshape is: %i:%i "
8210 "(%p, index = %i)\n",
8211 major(u->new_disks[i]), minor(u->new_disks[i]),
8212 new_disk, new_disk->index);
8213 if ((new_disk == NULL) ||
8214 ((new_disk->index >= 0) &&
8215 (new_disk->index < u->old_raid_disks)))
8216 goto update_reshape_exit;
8217 new_disk->index = disk_count++;
8218 /* slot to fill in autolayout
8219 */
8220 new_disk->raiddisk = new_disk->index;
8221 new_disk->disk.status |=
8222 CONFIGURED_DISK;
8223 new_disk->disk.status &= ~SPARE_DISK;
8224 }
8225
8226 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8227 mpb->num_raid_devs);
8228 /* manage changes in volume
8229 */
8230 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
8231 void **sp = *space_list;
8232 struct imsm_dev *newdev;
8233 struct imsm_map *newmap, *oldmap;
8234
8235 for (id = super->devlist ; id; id = id->next) {
8236 if (id->index == dev_id)
8237 break;
8238 }
8239 if (id == NULL)
8240 break;
8241 if (!sp)
8242 continue;
8243 *space_list = *sp;
8244 newdev = (void*)sp;
8245 /* Copy the dev, but not (all of) the map */
8246 memcpy(newdev, id->dev, sizeof(*newdev));
8247 oldmap = get_imsm_map(id->dev, MAP_0);
8248 newmap = get_imsm_map(newdev, MAP_0);
8249 /* Copy the current map */
8250 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8251 /* update one device only
8252 */
8253 if (devices_to_reshape) {
8254 dprintf("imsm: modifying subdev: %i\n",
8255 id->index);
8256 devices_to_reshape--;
8257 newdev->vol.migr_state = 1;
8258 newdev->vol.curr_migr_unit = 0;
8259 set_migr_type(newdev, MIGR_GEN_MIGR);
8260 newmap->num_members = u->new_raid_disks;
8261 for (i = 0; i < delta_disks; i++) {
8262 set_imsm_ord_tbl_ent(newmap,
8263 u->old_raid_disks + i,
8264 u->old_raid_disks + i);
8265 }
8266 /* New map is correct, now need to save old map
8267 */
8268 newmap = get_imsm_map(newdev, MAP_1);
8269 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8270
8271 imsm_set_array_size(newdev, -1);
8272 }
8273
8274 sp = (void **)id->dev;
8275 id->dev = newdev;
8276 *sp = tofree;
8277 tofree = sp;
8278
8279 /* Clear migration record */
8280 memset(super->migr_rec, 0, sizeof(struct migr_record));
8281 }
8282 if (tofree)
8283 *space_list = tofree;
8284 ret_val = 1;
8285
8286 update_reshape_exit:
8287
8288 return ret_val;
8289 }
8290
8291 static int apply_takeover_update(struct imsm_update_takeover *u,
8292 struct intel_super *super,
8293 void ***space_list)
8294 {
8295 struct imsm_dev *dev = NULL;
8296 struct intel_dev *dv;
8297 struct imsm_dev *dev_new;
8298 struct imsm_map *map;
8299 struct dl *dm, *du;
8300 int i;
8301
8302 for (dv = super->devlist; dv; dv = dv->next)
8303 if (dv->index == (unsigned int)u->subarray) {
8304 dev = dv->dev;
8305 break;
8306 }
8307
8308 if (dev == NULL)
8309 return 0;
8310
8311 map = get_imsm_map(dev, MAP_0);
8312
8313 if (u->direction == R10_TO_R0) {
8314 /* Number of failed disks must be half of initial disk number */
8315 if (imsm_count_failed(super, dev, MAP_0) !=
8316 (map->num_members / 2))
8317 return 0;
8318
8319 /* iterate through devices to mark removed disks as spare */
8320 for (dm = super->disks; dm; dm = dm->next) {
8321 if (dm->disk.status & FAILED_DISK) {
8322 int idx = dm->index;
8323 /* update indexes on the disk list */
8324 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
8325 the index values will end up being correct.... NB */
8326 for (du = super->disks; du; du = du->next)
8327 if (du->index > idx)
8328 du->index--;
8329 /* mark as spare disk */
8330 mark_spare(dm);
8331 }
8332 }
8333 /* update map */
8334 map->num_members = map->num_members / 2;
8335 map->map_state = IMSM_T_STATE_NORMAL;
8336 map->num_domains = 1;
8337 map->raid_level = 0;
8338 map->failed_disk_num = -1;
8339 }
8340
8341 if (u->direction == R0_TO_R10) {
8342 void **space;
8343 /* update slots in current disk list */
8344 for (dm = super->disks; dm; dm = dm->next) {
8345 if (dm->index >= 0)
8346 dm->index *= 2;
8347 }
8348 /* create new *missing* disks */
8349 for (i = 0; i < map->num_members; i++) {
8350 space = *space_list;
8351 if (!space)
8352 continue;
8353 *space_list = *space;
8354 du = (void *)space;
8355 memcpy(du, super->disks, sizeof(*du));
8356 du->fd = -1;
8357 du->minor = 0;
8358 du->major = 0;
8359 du->index = (i * 2) + 1;
8360 sprintf((char *)du->disk.serial,
8361 " MISSING_%d", du->index);
8362 sprintf((char *)du->serial,
8363 "MISSING_%d", du->index);
8364 du->next = super->missing;
8365 super->missing = du;
8366 }
8367 /* create new dev and map */
8368 space = *space_list;
8369 if (!space)
8370 return 0;
8371 *space_list = *space;
8372 dev_new = (void *)space;
8373 memcpy(dev_new, dev, sizeof(*dev));
8374 /* update new map */
8375 map = get_imsm_map(dev_new, MAP_0);
8376 map->num_members = map->num_members * 2;
8377 map->map_state = IMSM_T_STATE_DEGRADED;
8378 map->num_domains = 2;
8379 map->raid_level = 1;
8380 /* replace dev<->dev_new */
8381 dv->dev = dev_new;
8382 }
8383 /* update disk order table */
8384 for (du = super->disks; du; du = du->next)
8385 if (du->index >= 0)
8386 set_imsm_ord_tbl_ent(map, du->index, du->index);
8387 for (du = super->missing; du; du = du->next)
8388 if (du->index >= 0) {
8389 set_imsm_ord_tbl_ent(map, du->index, du->index);
8390 mark_missing(dv->dev, &du->disk, du->index);
8391 }
8392
8393 return 1;
8394 }
8395
8396 static void imsm_process_update(struct supertype *st,
8397 struct metadata_update *update)
8398 {
8399 /**
8400 * crack open the metadata_update envelope to find the update record
8401 * update can be one of:
8402 * update_reshape_container_disks - all the arrays in the container
8403 * are being reshaped to have more devices. We need to mark
8404 * the arrays for general migration and convert selected spares
8405 * into active devices.
8406 * update_activate_spare - a spare device has replaced a failed
8407 * device in an array, update the disk_ord_tbl. If this disk is
8408 * present in all member arrays then also clear the SPARE_DISK
8409 * flag
8410 * update_create_array
8411 * update_kill_array
8412 * update_rename_array
8413 * update_add_remove_disk
8414 */
8415 struct intel_super *super = st->sb;
8416 struct imsm_super *mpb;
8417 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8418
8419 /* update requires a larger buf but the allocation failed */
8420 if (super->next_len && !super->next_buf) {
8421 super->next_len = 0;
8422 return;
8423 }
8424
8425 if (super->next_buf) {
8426 memcpy(super->next_buf, super->buf, super->len);
8427 free(super->buf);
8428 super->len = super->next_len;
8429 super->buf = super->next_buf;
8430
8431 super->next_len = 0;
8432 super->next_buf = NULL;
8433 }
8434
8435 mpb = super->anchor;
8436
8437 switch (type) {
8438 case update_general_migration_checkpoint: {
8439 struct intel_dev *id;
8440 struct imsm_update_general_migration_checkpoint *u =
8441 (void *)update->buf;
8442
8443 dprintf("imsm: process_update() "
8444 "for update_general_migration_checkpoint called\n");
8445
8446 /* find device under general migration */
8447 for (id = super->devlist ; id; id = id->next) {
8448 if (is_gen_migration(id->dev)) {
8449 id->dev->vol.curr_migr_unit =
8450 __cpu_to_le32(u->curr_migr_unit);
8451 super->updates_pending++;
8452 }
8453 }
8454 break;
8455 }
8456 case update_takeover: {
8457 struct imsm_update_takeover *u = (void *)update->buf;
8458 if (apply_takeover_update(u, super, &update->space_list)) {
8459 imsm_update_version_info(super);
8460 super->updates_pending++;
8461 }
8462 break;
8463 }
8464
8465 case update_reshape_container_disks: {
8466 struct imsm_update_reshape *u = (void *)update->buf;
8467 if (apply_reshape_container_disks_update(
8468 u, super, &update->space_list))
8469 super->updates_pending++;
8470 break;
8471 }
8472 case update_reshape_migration: {
8473 struct imsm_update_reshape_migration *u = (void *)update->buf;
8474 if (apply_reshape_migration_update(
8475 u, super, &update->space_list))
8476 super->updates_pending++;
8477 break;
8478 }
8479 case update_size_change: {
8480 struct imsm_update_size_change *u = (void *)update->buf;
8481 if (apply_size_change_update(u, super))
8482 super->updates_pending++;
8483 break;
8484 }
8485 case update_activate_spare: {
8486 struct imsm_update_activate_spare *u = (void *) update->buf;
8487 if (apply_update_activate_spare(u, super, st->arrays))
8488 super->updates_pending++;
8489 break;
8490 }
8491 case update_create_array: {
8492 /* someone wants to create a new array, we need to be aware of
8493 * a few races/collisions:
8494 * 1/ 'Create' called by two separate instances of mdadm
8495 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8496 * devices that have since been assimilated via
8497 * activate_spare.
8498 * In the event this update can not be carried out mdadm will
8499 * (FIX ME) notice that its update did not take hold.
8500 */
8501 struct imsm_update_create_array *u = (void *) update->buf;
8502 struct intel_dev *dv;
8503 struct imsm_dev *dev;
8504 struct imsm_map *map, *new_map;
8505 unsigned long long start, end;
8506 unsigned long long new_start, new_end;
8507 int i;
8508 struct disk_info *inf;
8509 struct dl *dl;
8510
8511 /* handle racing creates: first come first serve */
8512 if (u->dev_idx < mpb->num_raid_devs) {
8513 dprintf("%s: subarray %d already defined\n",
8514 __func__, u->dev_idx);
8515 goto create_error;
8516 }
8517
8518 /* check update is next in sequence */
8519 if (u->dev_idx != mpb->num_raid_devs) {
8520 dprintf("%s: can not create array %d expected index %d\n",
8521 __func__, u->dev_idx, mpb->num_raid_devs);
8522 goto create_error;
8523 }
8524
8525 new_map = get_imsm_map(&u->dev, MAP_0);
8526 new_start = pba_of_lba0(new_map);
8527 new_end = new_start + blocks_per_member(new_map);
8528 inf = get_disk_info(u);
8529
8530 /* handle activate_spare versus create race:
8531 * check to make sure that overlapping arrays do not include
8532 * overalpping disks
8533 */
8534 for (i = 0; i < mpb->num_raid_devs; i++) {
8535 dev = get_imsm_dev(super, i);
8536 map = get_imsm_map(dev, MAP_0);
8537 start = pba_of_lba0(map);
8538 end = start + blocks_per_member(map);
8539 if ((new_start >= start && new_start <= end) ||
8540 (start >= new_start && start <= new_end))
8541 /* overlap */;
8542 else
8543 continue;
8544
8545 if (disks_overlap(super, i, u)) {
8546 dprintf("%s: arrays overlap\n", __func__);
8547 goto create_error;
8548 }
8549 }
8550
8551 /* check that prepare update was successful */
8552 if (!update->space) {
8553 dprintf("%s: prepare update failed\n", __func__);
8554 goto create_error;
8555 }
8556
8557 /* check that all disks are still active before committing
8558 * changes. FIXME: could we instead handle this by creating a
8559 * degraded array? That's probably not what the user expects,
8560 * so better to drop this update on the floor.
8561 */
8562 for (i = 0; i < new_map->num_members; i++) {
8563 dl = serial_to_dl(inf[i].serial, super);
8564 if (!dl) {
8565 dprintf("%s: disk disappeared\n", __func__);
8566 goto create_error;
8567 }
8568 }
8569
8570 super->updates_pending++;
8571
8572 /* convert spares to members and fixup ord_tbl */
8573 for (i = 0; i < new_map->num_members; i++) {
8574 dl = serial_to_dl(inf[i].serial, super);
8575 if (dl->index == -1) {
8576 dl->index = mpb->num_disks;
8577 mpb->num_disks++;
8578 dl->disk.status |= CONFIGURED_DISK;
8579 dl->disk.status &= ~SPARE_DISK;
8580 }
8581 set_imsm_ord_tbl_ent(new_map, i, dl->index);
8582 }
8583
8584 dv = update->space;
8585 dev = dv->dev;
8586 update->space = NULL;
8587 imsm_copy_dev(dev, &u->dev);
8588 dv->index = u->dev_idx;
8589 dv->next = super->devlist;
8590 super->devlist = dv;
8591 mpb->num_raid_devs++;
8592
8593 imsm_update_version_info(super);
8594 break;
8595 create_error:
8596 /* mdmon knows how to release update->space, but not
8597 * ((struct intel_dev *) update->space)->dev
8598 */
8599 if (update->space) {
8600 dv = update->space;
8601 free(dv->dev);
8602 }
8603 break;
8604 }
8605 case update_kill_array: {
8606 struct imsm_update_kill_array *u = (void *) update->buf;
8607 int victim = u->dev_idx;
8608 struct active_array *a;
8609 struct intel_dev **dp;
8610 struct imsm_dev *dev;
8611
8612 /* sanity check that we are not affecting the uuid of
8613 * active arrays, or deleting an active array
8614 *
8615 * FIXME when immutable ids are available, but note that
8616 * we'll also need to fixup the invalidated/active
8617 * subarray indexes in mdstat
8618 */
8619 for (a = st->arrays; a; a = a->next)
8620 if (a->info.container_member >= victim)
8621 break;
8622 /* by definition if mdmon is running at least one array
8623 * is active in the container, so checking
8624 * mpb->num_raid_devs is just extra paranoia
8625 */
8626 dev = get_imsm_dev(super, victim);
8627 if (a || !dev || mpb->num_raid_devs == 1) {
8628 dprintf("failed to delete subarray-%d\n", victim);
8629 break;
8630 }
8631
8632 for (dp = &super->devlist; *dp;)
8633 if ((*dp)->index == (unsigned)super->current_vol) {
8634 *dp = (*dp)->next;
8635 } else {
8636 if ((*dp)->index > (unsigned)victim)
8637 (*dp)->index--;
8638 dp = &(*dp)->next;
8639 }
8640 mpb->num_raid_devs--;
8641 super->updates_pending++;
8642 break;
8643 }
8644 case update_rename_array: {
8645 struct imsm_update_rename_array *u = (void *) update->buf;
8646 char name[MAX_RAID_SERIAL_LEN+1];
8647 int target = u->dev_idx;
8648 struct active_array *a;
8649 struct imsm_dev *dev;
8650
8651 /* sanity check that we are not affecting the uuid of
8652 * an active array
8653 */
8654 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8655 name[MAX_RAID_SERIAL_LEN] = '\0';
8656 for (a = st->arrays; a; a = a->next)
8657 if (a->info.container_member == target)
8658 break;
8659 dev = get_imsm_dev(super, u->dev_idx);
8660 if (a || !dev || !check_name(super, name, 1)) {
8661 dprintf("failed to rename subarray-%d\n", target);
8662 break;
8663 }
8664
8665 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
8666 super->updates_pending++;
8667 break;
8668 }
8669 case update_add_remove_disk: {
8670 /* we may be able to repair some arrays if disks are
8671 * being added, check teh status of add_remove_disk
8672 * if discs has been added.
8673 */
8674 if (add_remove_disk_update(super)) {
8675 struct active_array *a;
8676
8677 super->updates_pending++;
8678 for (a = st->arrays; a; a = a->next)
8679 a->check_degraded = 1;
8680 }
8681 break;
8682 }
8683 default:
8684 fprintf(stderr, "error: unsuported process update type:"
8685 "(type: %d)\n", type);
8686 }
8687 }
8688
8689 static struct mdinfo *get_spares_for_grow(struct supertype *st);
8690
8691 static void imsm_prepare_update(struct supertype *st,
8692 struct metadata_update *update)
8693 {
8694 /**
8695 * Allocate space to hold new disk entries, raid-device entries or a new
8696 * mpb if necessary. The manager synchronously waits for updates to
8697 * complete in the monitor, so new mpb buffers allocated here can be
8698 * integrated by the monitor thread without worrying about live pointers
8699 * in the manager thread.
8700 */
8701 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8702 struct intel_super *super = st->sb;
8703 struct imsm_super *mpb = super->anchor;
8704 size_t buf_len;
8705 size_t len = 0;
8706
8707 switch (type) {
8708 case update_general_migration_checkpoint:
8709 dprintf("imsm: prepare_update() "
8710 "for update_general_migration_checkpoint called\n");
8711 break;
8712 case update_takeover: {
8713 struct imsm_update_takeover *u = (void *)update->buf;
8714 if (u->direction == R0_TO_R10) {
8715 void **tail = (void **)&update->space_list;
8716 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
8717 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8718 int num_members = map->num_members;
8719 void *space;
8720 int size, i;
8721 int err = 0;
8722 /* allocate memory for added disks */
8723 for (i = 0; i < num_members; i++) {
8724 size = sizeof(struct dl);
8725 space = malloc(size);
8726 if (!space) {
8727 err++;
8728 break;
8729 }
8730 *tail = space;
8731 tail = space;
8732 *tail = NULL;
8733 }
8734 /* allocate memory for new device */
8735 size = sizeof_imsm_dev(super->devlist->dev, 0) +
8736 (num_members * sizeof(__u32));
8737 space = malloc(size);
8738 if (!space)
8739 err++;
8740 else {
8741 *tail = space;
8742 tail = space;
8743 *tail = NULL;
8744 }
8745 if (!err) {
8746 len = disks_to_mpb_size(num_members * 2);
8747 } else {
8748 /* if allocation didn't success, free buffer */
8749 while (update->space_list) {
8750 void **sp = update->space_list;
8751 update->space_list = *sp;
8752 free(sp);
8753 }
8754 }
8755 }
8756
8757 break;
8758 }
8759 case update_reshape_container_disks: {
8760 /* Every raid device in the container is about to
8761 * gain some more devices, and we will enter a
8762 * reconfiguration.
8763 * So each 'imsm_map' will be bigger, and the imsm_vol
8764 * will now hold 2 of them.
8765 * Thus we need new 'struct imsm_dev' allocations sized
8766 * as sizeof_imsm_dev but with more devices in both maps.
8767 */
8768 struct imsm_update_reshape *u = (void *)update->buf;
8769 struct intel_dev *dl;
8770 void **space_tail = (void**)&update->space_list;
8771
8772 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8773
8774 for (dl = super->devlist; dl; dl = dl->next) {
8775 int size = sizeof_imsm_dev(dl->dev, 1);
8776 void *s;
8777 if (u->new_raid_disks > u->old_raid_disks)
8778 size += sizeof(__u32)*2*
8779 (u->new_raid_disks - u->old_raid_disks);
8780 s = malloc(size);
8781 if (!s)
8782 break;
8783 *space_tail = s;
8784 space_tail = s;
8785 *space_tail = NULL;
8786 }
8787
8788 len = disks_to_mpb_size(u->new_raid_disks);
8789 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8790 break;
8791 }
8792 case update_reshape_migration: {
8793 /* for migration level 0->5 we need to add disks
8794 * so the same as for container operation we will copy
8795 * device to the bigger location.
8796 * in memory prepared device and new disk area are prepared
8797 * for usage in process update
8798 */
8799 struct imsm_update_reshape_migration *u = (void *)update->buf;
8800 struct intel_dev *id;
8801 void **space_tail = (void **)&update->space_list;
8802 int size;
8803 void *s;
8804 int current_level = -1;
8805
8806 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8807
8808 /* add space for bigger array in update
8809 */
8810 for (id = super->devlist; id; id = id->next) {
8811 if (id->index == (unsigned)u->subdev) {
8812 size = sizeof_imsm_dev(id->dev, 1);
8813 if (u->new_raid_disks > u->old_raid_disks)
8814 size += sizeof(__u32)*2*
8815 (u->new_raid_disks - u->old_raid_disks);
8816 s = malloc(size);
8817 if (!s)
8818 break;
8819 *space_tail = s;
8820 space_tail = s;
8821 *space_tail = NULL;
8822 break;
8823 }
8824 }
8825 if (update->space_list == NULL)
8826 break;
8827
8828 /* add space for disk in update
8829 */
8830 size = sizeof(struct dl);
8831 s = malloc(size);
8832 if (!s) {
8833 free(update->space_list);
8834 update->space_list = NULL;
8835 break;
8836 }
8837 *space_tail = s;
8838 space_tail = s;
8839 *space_tail = NULL;
8840
8841 /* add spare device to update
8842 */
8843 for (id = super->devlist ; id; id = id->next)
8844 if (id->index == (unsigned)u->subdev) {
8845 struct imsm_dev *dev;
8846 struct imsm_map *map;
8847
8848 dev = get_imsm_dev(super, u->subdev);
8849 map = get_imsm_map(dev, MAP_0);
8850 current_level = map->raid_level;
8851 break;
8852 }
8853 if ((u->new_level == 5) && (u->new_level != current_level)) {
8854 struct mdinfo *spares;
8855
8856 spares = get_spares_for_grow(st);
8857 if (spares) {
8858 struct dl *dl;
8859 struct mdinfo *dev;
8860
8861 dev = spares->devs;
8862 if (dev) {
8863 u->new_disks[0] =
8864 makedev(dev->disk.major,
8865 dev->disk.minor);
8866 dl = get_disk_super(super,
8867 dev->disk.major,
8868 dev->disk.minor);
8869 dl->index = u->old_raid_disks;
8870 dev = dev->next;
8871 }
8872 sysfs_free(spares);
8873 }
8874 }
8875 len = disks_to_mpb_size(u->new_raid_disks);
8876 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8877 break;
8878 }
8879 case update_size_change: {
8880 break;
8881 }
8882 case update_create_array: {
8883 struct imsm_update_create_array *u = (void *) update->buf;
8884 struct intel_dev *dv;
8885 struct imsm_dev *dev = &u->dev;
8886 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8887 struct dl *dl;
8888 struct disk_info *inf;
8889 int i;
8890 int activate = 0;
8891
8892 inf = get_disk_info(u);
8893 len = sizeof_imsm_dev(dev, 1);
8894 /* allocate a new super->devlist entry */
8895 dv = malloc(sizeof(*dv));
8896 if (dv) {
8897 dv->dev = malloc(len);
8898 if (dv->dev)
8899 update->space = dv;
8900 else {
8901 free(dv);
8902 update->space = NULL;
8903 }
8904 }
8905
8906 /* count how many spares will be converted to members */
8907 for (i = 0; i < map->num_members; i++) {
8908 dl = serial_to_dl(inf[i].serial, super);
8909 if (!dl) {
8910 /* hmm maybe it failed?, nothing we can do about
8911 * it here
8912 */
8913 continue;
8914 }
8915 if (count_memberships(dl, super) == 0)
8916 activate++;
8917 }
8918 len += activate * sizeof(struct imsm_disk);
8919 break;
8920 default:
8921 break;
8922 }
8923 }
8924
8925 /* check if we need a larger metadata buffer */
8926 if (super->next_buf)
8927 buf_len = super->next_len;
8928 else
8929 buf_len = super->len;
8930
8931 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8932 /* ok we need a larger buf than what is currently allocated
8933 * if this allocation fails process_update will notice that
8934 * ->next_len is set and ->next_buf is NULL
8935 */
8936 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8937 if (super->next_buf)
8938 free(super->next_buf);
8939
8940 super->next_len = buf_len;
8941 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
8942 memset(super->next_buf, 0, buf_len);
8943 else
8944 super->next_buf = NULL;
8945 }
8946 }
8947
8948 /* must be called while manager is quiesced */
8949 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
8950 {
8951 struct imsm_super *mpb = super->anchor;
8952 struct dl *iter;
8953 struct imsm_dev *dev;
8954 struct imsm_map *map;
8955 int i, j, num_members;
8956 __u32 ord;
8957
8958 dprintf("%s: deleting device[%d] from imsm_super\n",
8959 __func__, index);
8960
8961 /* shift all indexes down one */
8962 for (iter = super->disks; iter; iter = iter->next)
8963 if (iter->index > (int)index)
8964 iter->index--;
8965 for (iter = super->missing; iter; iter = iter->next)
8966 if (iter->index > (int)index)
8967 iter->index--;
8968
8969 for (i = 0; i < mpb->num_raid_devs; i++) {
8970 dev = get_imsm_dev(super, i);
8971 map = get_imsm_map(dev, MAP_0);
8972 num_members = map->num_members;
8973 for (j = 0; j < num_members; j++) {
8974 /* update ord entries being careful not to propagate
8975 * ord-flags to the first map
8976 */
8977 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
8978
8979 if (ord_to_idx(ord) <= index)
8980 continue;
8981
8982 map = get_imsm_map(dev, MAP_0);
8983 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
8984 map = get_imsm_map(dev, MAP_1);
8985 if (map)
8986 set_imsm_ord_tbl_ent(map, j, ord - 1);
8987 }
8988 }
8989
8990 mpb->num_disks--;
8991 super->updates_pending++;
8992 if (*dlp) {
8993 struct dl *dl = *dlp;
8994
8995 *dlp = (*dlp)->next;
8996 __free_imsm_disk(dl);
8997 }
8998 }
8999 #endif /* MDASSEMBLE */
9000
9001 static void close_targets(int *targets, int new_disks)
9002 {
9003 int i;
9004
9005 if (!targets)
9006 return;
9007
9008 for (i = 0; i < new_disks; i++) {
9009 if (targets[i] >= 0) {
9010 close(targets[i]);
9011 targets[i] = -1;
9012 }
9013 }
9014 }
9015
9016 static int imsm_get_allowed_degradation(int level, int raid_disks,
9017 struct intel_super *super,
9018 struct imsm_dev *dev)
9019 {
9020 switch (level) {
9021 case 1:
9022 case 10:{
9023 int ret_val = 0;
9024 struct imsm_map *map;
9025 int i;
9026
9027 ret_val = raid_disks/2;
9028 /* check map if all disks pairs not failed
9029 * in both maps
9030 */
9031 map = get_imsm_map(dev, MAP_0);
9032 for (i = 0; i < ret_val; i++) {
9033 int degradation = 0;
9034 if (get_imsm_disk(super, i) == NULL)
9035 degradation++;
9036 if (get_imsm_disk(super, i + 1) == NULL)
9037 degradation++;
9038 if (degradation == 2)
9039 return 0;
9040 }
9041 map = get_imsm_map(dev, MAP_1);
9042 /* if there is no second map
9043 * result can be returned
9044 */
9045 if (map == NULL)
9046 return ret_val;
9047 /* check degradation in second map
9048 */
9049 for (i = 0; i < ret_val; i++) {
9050 int degradation = 0;
9051 if (get_imsm_disk(super, i) == NULL)
9052 degradation++;
9053 if (get_imsm_disk(super, i + 1) == NULL)
9054 degradation++;
9055 if (degradation == 2)
9056 return 0;
9057 }
9058 return ret_val;
9059 }
9060 case 5:
9061 return 1;
9062 case 6:
9063 return 2;
9064 default:
9065 return 0;
9066 }
9067 }
9068
9069
9070 /*******************************************************************************
9071 * Function: open_backup_targets
9072 * Description: Function opens file descriptors for all devices given in
9073 * info->devs
9074 * Parameters:
9075 * info : general array info
9076 * raid_disks : number of disks
9077 * raid_fds : table of device's file descriptors
9078 * super : intel super for raid10 degradation check
9079 * dev : intel device for raid10 degradation check
9080 * Returns:
9081 * 0 : success
9082 * -1 : fail
9083 ******************************************************************************/
9084 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
9085 struct intel_super *super, struct imsm_dev *dev)
9086 {
9087 struct mdinfo *sd;
9088 int i;
9089 int opened = 0;
9090
9091 for (i = 0; i < raid_disks; i++)
9092 raid_fds[i] = -1;
9093
9094 for (sd = info->devs ; sd ; sd = sd->next) {
9095 char *dn;
9096
9097 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
9098 dprintf("disk is faulty!!\n");
9099 continue;
9100 }
9101
9102 if ((sd->disk.raid_disk >= raid_disks) ||
9103 (sd->disk.raid_disk < 0))
9104 continue;
9105
9106 dn = map_dev(sd->disk.major,
9107 sd->disk.minor, 1);
9108 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
9109 if (raid_fds[sd->disk.raid_disk] < 0) {
9110 fprintf(stderr, "cannot open component\n");
9111 continue;
9112 }
9113 opened++;
9114 }
9115 /* check if maximum array degradation level is not exceeded
9116 */
9117 if ((raid_disks - opened) >
9118 imsm_get_allowed_degradation(info->new_level,
9119 raid_disks,
9120 super, dev)) {
9121 fprintf(stderr, "Not enough disks can be opened.\n");
9122 close_targets(raid_fds, raid_disks);
9123 return -2;
9124 }
9125 return 0;
9126 }
9127
9128 #ifndef MDASSEMBLE
9129 /*******************************************************************************
9130 * Function: init_migr_record_imsm
9131 * Description: Function inits imsm migration record
9132 * Parameters:
9133 * super : imsm internal array info
9134 * dev : device under migration
9135 * info : general array info to find the smallest device
9136 * Returns:
9137 * none
9138 ******************************************************************************/
9139 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
9140 struct mdinfo *info)
9141 {
9142 struct intel_super *super = st->sb;
9143 struct migr_record *migr_rec = super->migr_rec;
9144 int new_data_disks;
9145 unsigned long long dsize, dev_sectors;
9146 long long unsigned min_dev_sectors = -1LLU;
9147 struct mdinfo *sd;
9148 char nm[30];
9149 int fd;
9150 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9151 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
9152 unsigned long long num_migr_units;
9153 unsigned long long array_blocks;
9154
9155 memset(migr_rec, 0, sizeof(struct migr_record));
9156 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9157
9158 /* only ascending reshape supported now */
9159 migr_rec->ascending_migr = __cpu_to_le32(1);
9160
9161 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9162 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9163 migr_rec->dest_depth_per_unit *=
9164 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9165 new_data_disks = imsm_num_data_members(dev, MAP_0);
9166 migr_rec->blocks_per_unit =
9167 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9168 migr_rec->dest_depth_per_unit =
9169 __cpu_to_le32(migr_rec->dest_depth_per_unit);
9170 array_blocks = info->component_size * new_data_disks;
9171 num_migr_units =
9172 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9173
9174 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9175 num_migr_units++;
9176 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9177
9178 migr_rec->post_migr_vol_cap = dev->size_low;
9179 migr_rec->post_migr_vol_cap_hi = dev->size_high;
9180
9181
9182 /* Find the smallest dev */
9183 for (sd = info->devs ; sd ; sd = sd->next) {
9184 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9185 fd = dev_open(nm, O_RDONLY);
9186 if (fd < 0)
9187 continue;
9188 get_dev_size(fd, NULL, &dsize);
9189 dev_sectors = dsize / 512;
9190 if (dev_sectors < min_dev_sectors)
9191 min_dev_sectors = dev_sectors;
9192 close(fd);
9193 }
9194 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9195 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9196
9197 write_imsm_migr_rec(st);
9198
9199 return;
9200 }
9201
9202 /*******************************************************************************
9203 * Function: save_backup_imsm
9204 * Description: Function saves critical data stripes to Migration Copy Area
9205 * and updates the current migration unit status.
9206 * Use restore_stripes() to form a destination stripe,
9207 * and to write it to the Copy Area.
9208 * Parameters:
9209 * st : supertype information
9210 * dev : imsm device that backup is saved for
9211 * info : general array info
9212 * buf : input buffer
9213 * length : length of data to backup (blocks_per_unit)
9214 * Returns:
9215 * 0 : success
9216 *, -1 : fail
9217 ******************************************************************************/
9218 int save_backup_imsm(struct supertype *st,
9219 struct imsm_dev *dev,
9220 struct mdinfo *info,
9221 void *buf,
9222 int length)
9223 {
9224 int rv = -1;
9225 struct intel_super *super = st->sb;
9226 unsigned long long *target_offsets = NULL;
9227 int *targets = NULL;
9228 int i;
9229 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9230 int new_disks = map_dest->num_members;
9231 int dest_layout = 0;
9232 int dest_chunk;
9233 unsigned long long start;
9234 int data_disks = imsm_num_data_members(dev, MAP_0);
9235
9236 targets = malloc(new_disks * sizeof(int));
9237 if (!targets)
9238 goto abort;
9239
9240 for (i = 0; i < new_disks; i++)
9241 targets[i] = -1;
9242
9243 target_offsets = malloc(new_disks * sizeof(unsigned long long));
9244 if (!target_offsets)
9245 goto abort;
9246
9247 start = info->reshape_progress * 512;
9248 for (i = 0; i < new_disks; i++) {
9249 target_offsets[i] = (unsigned long long)
9250 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
9251 /* move back copy area adderss, it will be moved forward
9252 * in restore_stripes() using start input variable
9253 */
9254 target_offsets[i] -= start/data_disks;
9255 }
9256
9257 if (open_backup_targets(info, new_disks, targets,
9258 super, dev))
9259 goto abort;
9260
9261 dest_layout = imsm_level_to_layout(map_dest->raid_level);
9262 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9263
9264 if (restore_stripes(targets, /* list of dest devices */
9265 target_offsets, /* migration record offsets */
9266 new_disks,
9267 dest_chunk,
9268 map_dest->raid_level,
9269 dest_layout,
9270 -1, /* source backup file descriptor */
9271 0, /* input buf offset
9272 * always 0 buf is already offseted */
9273 start,
9274 length,
9275 buf) != 0) {
9276 fprintf(stderr, Name ": Error restoring stripes\n");
9277 goto abort;
9278 }
9279
9280 rv = 0;
9281
9282 abort:
9283 if (targets) {
9284 close_targets(targets, new_disks);
9285 free(targets);
9286 }
9287 free(target_offsets);
9288
9289 return rv;
9290 }
9291
9292 /*******************************************************************************
9293 * Function: save_checkpoint_imsm
9294 * Description: Function called for current unit status update
9295 * in the migration record. It writes it to disk.
9296 * Parameters:
9297 * super : imsm internal array info
9298 * info : general array info
9299 * Returns:
9300 * 0: success
9301 * 1: failure
9302 * 2: failure, means no valid migration record
9303 * / no general migration in progress /
9304 ******************************************************************************/
9305 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9306 {
9307 struct intel_super *super = st->sb;
9308 unsigned long long blocks_per_unit;
9309 unsigned long long curr_migr_unit;
9310
9311 if (load_imsm_migr_rec(super, info) != 0) {
9312 dprintf("imsm: ERROR: Cannot read migration record "
9313 "for checkpoint save.\n");
9314 return 1;
9315 }
9316
9317 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9318 if (blocks_per_unit == 0) {
9319 dprintf("imsm: no migration in progress.\n");
9320 return 2;
9321 }
9322 curr_migr_unit = info->reshape_progress / blocks_per_unit;
9323 /* check if array is alligned to copy area
9324 * if it is not alligned, add one to current migration unit value
9325 * this can happend on array reshape finish only
9326 */
9327 if (info->reshape_progress % blocks_per_unit)
9328 curr_migr_unit++;
9329
9330 super->migr_rec->curr_migr_unit =
9331 __cpu_to_le32(curr_migr_unit);
9332 super->migr_rec->rec_status = __cpu_to_le32(state);
9333 super->migr_rec->dest_1st_member_lba =
9334 __cpu_to_le32(curr_migr_unit *
9335 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
9336 if (write_imsm_migr_rec(st) < 0) {
9337 dprintf("imsm: Cannot write migration record "
9338 "outside backup area\n");
9339 return 1;
9340 }
9341
9342 return 0;
9343 }
9344
9345 /*******************************************************************************
9346 * Function: recover_backup_imsm
9347 * Description: Function recovers critical data from the Migration Copy Area
9348 * while assembling an array.
9349 * Parameters:
9350 * super : imsm internal array info
9351 * info : general array info
9352 * Returns:
9353 * 0 : success (or there is no data to recover)
9354 * 1 : fail
9355 ******************************************************************************/
9356 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9357 {
9358 struct intel_super *super = st->sb;
9359 struct migr_record *migr_rec = super->migr_rec;
9360 struct imsm_map *map_dest = NULL;
9361 struct intel_dev *id = NULL;
9362 unsigned long long read_offset;
9363 unsigned long long write_offset;
9364 unsigned unit_len;
9365 int *targets = NULL;
9366 int new_disks, i, err;
9367 char *buf = NULL;
9368 int retval = 1;
9369 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9370 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
9371 char buffer[20];
9372 int skipped_disks = 0;
9373
9374 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9375 if (err < 1)
9376 return 1;
9377
9378 /* recover data only during assemblation */
9379 if (strncmp(buffer, "inactive", 8) != 0)
9380 return 0;
9381 /* no data to recover */
9382 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9383 return 0;
9384 if (curr_migr_unit >= num_migr_units)
9385 return 1;
9386
9387 /* find device during reshape */
9388 for (id = super->devlist; id; id = id->next)
9389 if (is_gen_migration(id->dev))
9390 break;
9391 if (id == NULL)
9392 return 1;
9393
9394 map_dest = get_imsm_map(id->dev, MAP_0);
9395 new_disks = map_dest->num_members;
9396
9397 read_offset = (unsigned long long)
9398 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9399
9400 write_offset = ((unsigned long long)
9401 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
9402 pba_of_lba0(map_dest)) * 512;
9403
9404 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9405 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
9406 goto abort;
9407 targets = malloc(new_disks * sizeof(int));
9408 if (!targets)
9409 goto abort;
9410
9411 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
9412 fprintf(stderr,
9413 Name ": Cannot open some devices belonging to array.\n");
9414 goto abort;
9415 }
9416
9417 for (i = 0; i < new_disks; i++) {
9418 if (targets[i] < 0) {
9419 skipped_disks++;
9420 continue;
9421 }
9422 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
9423 fprintf(stderr,
9424 Name ": Cannot seek to block: %s\n",
9425 strerror(errno));
9426 skipped_disks++;
9427 continue;
9428 }
9429 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
9430 fprintf(stderr,
9431 Name ": Cannot read copy area block: %s\n",
9432 strerror(errno));
9433 skipped_disks++;
9434 continue;
9435 }
9436 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
9437 fprintf(stderr,
9438 Name ": Cannot seek to block: %s\n",
9439 strerror(errno));
9440 skipped_disks++;
9441 continue;
9442 }
9443 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
9444 fprintf(stderr,
9445 Name ": Cannot restore block: %s\n",
9446 strerror(errno));
9447 skipped_disks++;
9448 continue;
9449 }
9450 }
9451
9452 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9453 new_disks,
9454 super,
9455 id->dev)) {
9456 fprintf(stderr,
9457 Name ": Cannot restore data from backup."
9458 " Too many failed disks\n");
9459 goto abort;
9460 }
9461
9462 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9463 /* ignore error == 2, this can mean end of reshape here
9464 */
9465 dprintf("imsm: Cannot write checkpoint to "
9466 "migration record (UNIT_SRC_NORMAL) during restart\n");
9467 } else
9468 retval = 0;
9469
9470 abort:
9471 if (targets) {
9472 for (i = 0; i < new_disks; i++)
9473 if (targets[i])
9474 close(targets[i]);
9475 free(targets);
9476 }
9477 free(buf);
9478 return retval;
9479 }
9480
9481 static char disk_by_path[] = "/dev/disk/by-path/";
9482
9483 static const char *imsm_get_disk_controller_domain(const char *path)
9484 {
9485 char disk_path[PATH_MAX];
9486 char *drv=NULL;
9487 struct stat st;
9488
9489 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
9490 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9491 if (stat(disk_path, &st) == 0) {
9492 struct sys_dev* hba;
9493 char *path=NULL;
9494
9495 path = devt_to_devpath(st.st_rdev);
9496 if (path == NULL)
9497 return "unknown";
9498 hba = find_disk_attached_hba(-1, path);
9499 if (hba && hba->type == SYS_DEV_SAS)
9500 drv = "isci";
9501 else if (hba && hba->type == SYS_DEV_SATA)
9502 drv = "ahci";
9503 else
9504 drv = "unknown";
9505 dprintf("path: %s hba: %s attached: %s\n",
9506 path, (hba) ? hba->path : "NULL", drv);
9507 free(path);
9508 if (hba)
9509 free_sys_dev(&hba);
9510 }
9511 return drv;
9512 }
9513
9514 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
9515 {
9516 char subdev_name[20];
9517 struct mdstat_ent *mdstat;
9518
9519 sprintf(subdev_name, "%d", subdev);
9520 mdstat = mdstat_by_subdev(subdev_name, container);
9521 if (!mdstat)
9522 return -1;
9523
9524 *minor = mdstat->devnum;
9525 free_mdstat(mdstat);
9526 return 0;
9527 }
9528
9529 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9530 struct geo_params *geo,
9531 int *old_raid_disks,
9532 int direction)
9533 {
9534 /* currently we only support increasing the number of devices
9535 * for a container. This increases the number of device for each
9536 * member array. They must all be RAID0 or RAID5.
9537 */
9538 int ret_val = 0;
9539 struct mdinfo *info, *member;
9540 int devices_that_can_grow = 0;
9541
9542 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
9543 "st->devnum = (%i)\n",
9544 st->devnum);
9545
9546 if (geo->size != -1 ||
9547 geo->level != UnSet ||
9548 geo->layout != UnSet ||
9549 geo->chunksize != 0 ||
9550 geo->raid_disks == UnSet) {
9551 dprintf("imsm: Container operation is allowed for "
9552 "raid disks number change only.\n");
9553 return ret_val;
9554 }
9555
9556 if (direction == ROLLBACK_METADATA_CHANGES) {
9557 dprintf("imsm: Metadata changes rollback is not supported for "
9558 "container operation.\n");
9559 return ret_val;
9560 }
9561
9562 info = container_content_imsm(st, NULL);
9563 for (member = info; member; member = member->next) {
9564 int result;
9565 int minor;
9566
9567 dprintf("imsm: checking device_num: %i\n",
9568 member->container_member);
9569
9570 if (geo->raid_disks <= member->array.raid_disks) {
9571 /* we work on container for Online Capacity Expansion
9572 * only so raid_disks has to grow
9573 */
9574 dprintf("imsm: for container operation raid disks "
9575 "increase is required\n");
9576 break;
9577 }
9578
9579 if ((info->array.level != 0) &&
9580 (info->array.level != 5)) {
9581 /* we cannot use this container with other raid level
9582 */
9583 dprintf("imsm: for container operation wrong"
9584 " raid level (%i) detected\n",
9585 info->array.level);
9586 break;
9587 } else {
9588 /* check for platform support
9589 * for this raid level configuration
9590 */
9591 struct intel_super *super = st->sb;
9592 if (!is_raid_level_supported(super->orom,
9593 member->array.level,
9594 geo->raid_disks)) {
9595 dprintf("platform does not support raid%d with"
9596 " %d disk%s\n",
9597 info->array.level,
9598 geo->raid_disks,
9599 geo->raid_disks > 1 ? "s" : "");
9600 break;
9601 }
9602 /* check if component size is aligned to chunk size
9603 */
9604 if (info->component_size %
9605 (info->array.chunk_size/512)) {
9606 dprintf("Component size is not aligned to "
9607 "chunk size\n");
9608 break;
9609 }
9610 }
9611
9612 if (*old_raid_disks &&
9613 info->array.raid_disks != *old_raid_disks)
9614 break;
9615 *old_raid_disks = info->array.raid_disks;
9616
9617 /* All raid5 and raid0 volumes in container
9618 * have to be ready for Online Capacity Expansion
9619 * so they need to be assembled. We have already
9620 * checked that no recovery etc is happening.
9621 */
9622 result = imsm_find_array_minor_by_subdev(member->container_member,
9623 st->container_dev,
9624 &minor);
9625 if (result < 0) {
9626 dprintf("imsm: cannot find array\n");
9627 break;
9628 }
9629 devices_that_can_grow++;
9630 }
9631 sysfs_free(info);
9632 if (!member && devices_that_can_grow)
9633 ret_val = 1;
9634
9635 if (ret_val)
9636 dprintf("\tContainer operation allowed\n");
9637 else
9638 dprintf("\tError: %i\n", ret_val);
9639
9640 return ret_val;
9641 }
9642
9643 /* Function: get_spares_for_grow
9644 * Description: Allocates memory and creates list of spare devices
9645 * avaliable in container. Checks if spare drive size is acceptable.
9646 * Parameters: Pointer to the supertype structure
9647 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
9648 * NULL if fail
9649 */
9650 static struct mdinfo *get_spares_for_grow(struct supertype *st)
9651 {
9652 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
9653 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
9654 }
9655
9656 /******************************************************************************
9657 * function: imsm_create_metadata_update_for_reshape
9658 * Function creates update for whole IMSM container.
9659 *
9660 ******************************************************************************/
9661 static int imsm_create_metadata_update_for_reshape(
9662 struct supertype *st,
9663 struct geo_params *geo,
9664 int old_raid_disks,
9665 struct imsm_update_reshape **updatep)
9666 {
9667 struct intel_super *super = st->sb;
9668 struct imsm_super *mpb = super->anchor;
9669 int update_memory_size = 0;
9670 struct imsm_update_reshape *u = NULL;
9671 struct mdinfo *spares = NULL;
9672 int i;
9673 int delta_disks = 0;
9674 struct mdinfo *dev;
9675
9676 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
9677 geo->raid_disks);
9678
9679 delta_disks = geo->raid_disks - old_raid_disks;
9680
9681 /* size of all update data without anchor */
9682 update_memory_size = sizeof(struct imsm_update_reshape);
9683
9684 /* now add space for spare disks that we need to add. */
9685 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9686
9687 u = calloc(1, update_memory_size);
9688 if (u == NULL) {
9689 dprintf("error: "
9690 "cannot get memory for imsm_update_reshape update\n");
9691 return 0;
9692 }
9693 u->type = update_reshape_container_disks;
9694 u->old_raid_disks = old_raid_disks;
9695 u->new_raid_disks = geo->raid_disks;
9696
9697 /* now get spare disks list
9698 */
9699 spares = get_spares_for_grow(st);
9700
9701 if (spares == NULL
9702 || delta_disks > spares->array.spare_disks) {
9703 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
9704 "for %s.\n", geo->dev_name);
9705 i = -1;
9706 goto abort;
9707 }
9708
9709 /* we have got spares
9710 * update disk list in imsm_disk list table in anchor
9711 */
9712 dprintf("imsm: %i spares are available.\n\n",
9713 spares->array.spare_disks);
9714
9715 dev = spares->devs;
9716 for (i = 0; i < delta_disks; i++) {
9717 struct dl *dl;
9718
9719 if (dev == NULL)
9720 break;
9721 u->new_disks[i] = makedev(dev->disk.major,
9722 dev->disk.minor);
9723 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
9724 dl->index = mpb->num_disks;
9725 mpb->num_disks++;
9726 dev = dev->next;
9727 }
9728
9729 abort:
9730 /* free spares
9731 */
9732 sysfs_free(spares);
9733
9734 dprintf("imsm: reshape update preparation :");
9735 if (i == delta_disks) {
9736 dprintf(" OK\n");
9737 *updatep = u;
9738 return update_memory_size;
9739 }
9740 free(u);
9741 dprintf(" Error\n");
9742
9743 return 0;
9744 }
9745
9746
9747 /******************************************************************************
9748 * function: imsm_create_metadata_update_for_size_change()
9749 * Creates update for IMSM array for array size change.
9750 *
9751 ******************************************************************************/
9752 static int imsm_create_metadata_update_for_size_change(
9753 struct supertype *st,
9754 struct geo_params *geo,
9755 struct imsm_update_size_change **updatep)
9756 {
9757 struct intel_super *super = st->sb;
9758 int update_memory_size = 0;
9759 struct imsm_update_size_change *u = NULL;
9760
9761 dprintf("imsm_create_metadata_update_for_size_change(enter)"
9762 " New size = %llu\n", geo->size);
9763
9764 /* size of all update data without anchor */
9765 update_memory_size = sizeof(struct imsm_update_size_change);
9766
9767 u = calloc(1, update_memory_size);
9768 if (u == NULL) {
9769 dprintf("error: cannot get memory for "
9770 "imsm_create_metadata_update_for_size_change\n");
9771 return 0;
9772 }
9773 u->type = update_size_change;
9774 u->subdev = super->current_vol;
9775 u->new_size = geo->size;
9776
9777 dprintf("imsm: reshape update preparation : OK\n");
9778 *updatep = u;
9779
9780 return update_memory_size;
9781 }
9782
9783 /******************************************************************************
9784 * function: imsm_create_metadata_update_for_migration()
9785 * Creates update for IMSM array.
9786 *
9787 ******************************************************************************/
9788 static int imsm_create_metadata_update_for_migration(
9789 struct supertype *st,
9790 struct geo_params *geo,
9791 struct imsm_update_reshape_migration **updatep)
9792 {
9793 struct intel_super *super = st->sb;
9794 int update_memory_size = 0;
9795 struct imsm_update_reshape_migration *u = NULL;
9796 struct imsm_dev *dev;
9797 int previous_level = -1;
9798
9799 dprintf("imsm_create_metadata_update_for_migration(enter)"
9800 " New Level = %i\n", geo->level);
9801
9802 /* size of all update data without anchor */
9803 update_memory_size = sizeof(struct imsm_update_reshape_migration);
9804
9805 u = calloc(1, update_memory_size);
9806 if (u == NULL) {
9807 dprintf("error: cannot get memory for "
9808 "imsm_create_metadata_update_for_migration\n");
9809 return 0;
9810 }
9811 u->type = update_reshape_migration;
9812 u->subdev = super->current_vol;
9813 u->new_level = geo->level;
9814 u->new_layout = geo->layout;
9815 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
9816 u->new_disks[0] = -1;
9817 u->new_chunksize = -1;
9818
9819 dev = get_imsm_dev(super, u->subdev);
9820 if (dev) {
9821 struct imsm_map *map;
9822
9823 map = get_imsm_map(dev, MAP_0);
9824 if (map) {
9825 int current_chunk_size =
9826 __le16_to_cpu(map->blocks_per_strip) / 2;
9827
9828 if (geo->chunksize != current_chunk_size) {
9829 u->new_chunksize = geo->chunksize / 1024;
9830 dprintf("imsm: "
9831 "chunk size change from %i to %i\n",
9832 current_chunk_size, u->new_chunksize);
9833 }
9834 previous_level = map->raid_level;
9835 }
9836 }
9837 if ((geo->level == 5) && (previous_level == 0)) {
9838 struct mdinfo *spares = NULL;
9839
9840 u->new_raid_disks++;
9841 spares = get_spares_for_grow(st);
9842 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9843 free(u);
9844 sysfs_free(spares);
9845 update_memory_size = 0;
9846 dprintf("error: cannot get spare device "
9847 "for requested migration");
9848 return 0;
9849 }
9850 sysfs_free(spares);
9851 }
9852 dprintf("imsm: reshape update preparation : OK\n");
9853 *updatep = u;
9854
9855 return update_memory_size;
9856 }
9857
9858 static void imsm_update_metadata_locally(struct supertype *st,
9859 void *buf, int len)
9860 {
9861 struct metadata_update mu;
9862
9863 mu.buf = buf;
9864 mu.len = len;
9865 mu.space = NULL;
9866 mu.space_list = NULL;
9867 mu.next = NULL;
9868 imsm_prepare_update(st, &mu);
9869 imsm_process_update(st, &mu);
9870
9871 while (mu.space_list) {
9872 void **space = mu.space_list;
9873 mu.space_list = *space;
9874 free(space);
9875 }
9876 }
9877
9878 /***************************************************************************
9879 * Function: imsm_analyze_change
9880 * Description: Function analyze change for single volume
9881 * and validate if transition is supported
9882 * Parameters: Geometry parameters, supertype structure,
9883 * metadata change direction (apply/rollback)
9884 * Returns: Operation type code on success, -1 if fail
9885 ****************************************************************************/
9886 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9887 struct geo_params *geo,
9888 int direction)
9889 {
9890 struct mdinfo info;
9891 int change = -1;
9892 int check_devs = 0;
9893 int chunk;
9894 /* number of added/removed disks in operation result */
9895 int devNumChange = 0;
9896 /* imsm compatible layout value for array geometry verification */
9897 int imsm_layout = -1;
9898 int data_disks;
9899 struct imsm_dev *dev;
9900 struct intel_super *super;
9901 long long current_size;
9902
9903 getinfo_super_imsm_volume(st, &info, NULL);
9904 if ((geo->level != info.array.level) &&
9905 (geo->level >= 0) &&
9906 (geo->level != UnSet)) {
9907 switch (info.array.level) {
9908 case 0:
9909 if (geo->level == 5) {
9910 change = CH_MIGRATION;
9911 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
9912 fprintf(stderr,
9913 Name " Error. Requested Layout "
9914 "not supported (left-asymmetric layout "
9915 "is supported only)!\n");
9916 change = -1;
9917 goto analyse_change_exit;
9918 }
9919 imsm_layout = geo->layout;
9920 check_devs = 1;
9921 devNumChange = 1; /* parity disk added */
9922 } else if (geo->level == 10) {
9923 change = CH_TAKEOVER;
9924 check_devs = 1;
9925 devNumChange = 2; /* two mirrors added */
9926 imsm_layout = 0x102; /* imsm supported layout */
9927 }
9928 break;
9929 case 1:
9930 case 10:
9931 if (geo->level == 0) {
9932 change = CH_TAKEOVER;
9933 check_devs = 1;
9934 devNumChange = -(geo->raid_disks/2);
9935 imsm_layout = 0; /* imsm raid0 layout */
9936 }
9937 break;
9938 }
9939 if (change == -1) {
9940 fprintf(stderr,
9941 Name " Error. Level Migration from %d to %d "
9942 "not supported!\n",
9943 info.array.level, geo->level);
9944 goto analyse_change_exit;
9945 }
9946 } else
9947 geo->level = info.array.level;
9948
9949 if ((geo->layout != info.array.layout)
9950 && ((geo->layout != UnSet) && (geo->layout != -1))) {
9951 change = CH_MIGRATION;
9952 if ((info.array.layout == 0)
9953 && (info.array.level == 5)
9954 && (geo->layout == 5)) {
9955 /* reshape 5 -> 4 */
9956 } else if ((info.array.layout == 5)
9957 && (info.array.level == 5)
9958 && (geo->layout == 0)) {
9959 /* reshape 4 -> 5 */
9960 geo->layout = 0;
9961 geo->level = 5;
9962 } else {
9963 fprintf(stderr,
9964 Name " Error. Layout Migration from %d to %d "
9965 "not supported!\n",
9966 info.array.layout, geo->layout);
9967 change = -1;
9968 goto analyse_change_exit;
9969 }
9970 } else {
9971 geo->layout = info.array.layout;
9972 if (imsm_layout == -1)
9973 imsm_layout = info.array.layout;
9974 }
9975
9976 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
9977 && (geo->chunksize != info.array.chunk_size))
9978 change = CH_MIGRATION;
9979 else
9980 geo->chunksize = info.array.chunk_size;
9981
9982 chunk = geo->chunksize / 1024;
9983
9984 super = st->sb;
9985 dev = get_imsm_dev(super, super->current_vol);
9986 data_disks = imsm_num_data_members(dev , MAP_0);
9987 /* compute current size per disk member
9988 */
9989 current_size = info.custom_array_size / data_disks;
9990
9991 if (geo->size > 0) {
9992 /* align component size
9993 */
9994 geo->size = imsm_component_size_aligment_check(
9995 get_imsm_raid_level(dev->vol.map),
9996 chunk * 1024,
9997 geo->size * 2);
9998 }
9999
10000 if ((current_size != geo->size) && (geo->size >= 0)) {
10001 if (change != -1) {
10002 fprintf(stderr,
10003 Name " Error. Size change should be the only "
10004 "one at a time.\n");
10005 change = -1;
10006 goto analyse_change_exit;
10007 }
10008 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
10009 fprintf(stderr,
10010 Name " Error. The last volume in container "
10011 "can be expanded only (%i/%i).\n",
10012 super->current_vol, st->devnum);
10013 goto analyse_change_exit;
10014 }
10015 if (geo->size == 0) {
10016 /* requested size change to the maximum available size
10017 */
10018 unsigned long long freesize;
10019 int rv;
10020
10021 rv = imsm_get_free_size(st, dev->vol.map->num_members,
10022 0, chunk, &freesize);
10023 if (rv == 0) {
10024 fprintf(stderr, Name " Error. Cannot find "
10025 "maximum available space.\n");
10026 change = -1;
10027 goto analyse_change_exit;
10028 }
10029 geo->size = freesize + current_size;
10030
10031 /* align component size
10032 */
10033 geo->size = imsm_component_size_aligment_check(
10034 get_imsm_raid_level(dev->vol.map),
10035 chunk * 1024,
10036 geo->size);
10037 }
10038
10039 if ((direction == ROLLBACK_METADATA_CHANGES)) {
10040 /* accept size for rollback only
10041 */
10042 } else {
10043 /* round size due to metadata compatibility
10044 */
10045 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
10046 << SECT_PER_MB_SHIFT;
10047 dprintf("Prepare update for size change to %llu\n",
10048 geo->size );
10049 if (current_size >= geo->size) {
10050 fprintf(stderr,
10051 Name " Error. Size expanssion is "
10052 "supported only (current size is %llu, "
10053 "requested size /rounded/ is %llu).\n",
10054 current_size, geo->size);
10055 goto analyse_change_exit;
10056 }
10057 }
10058 geo->size *= data_disks;
10059 geo->raid_disks = dev->vol.map->num_members;
10060 change = CH_ARRAY_SIZE;
10061 }
10062 if (!validate_geometry_imsm(st,
10063 geo->level,
10064 imsm_layout,
10065 geo->raid_disks + devNumChange,
10066 &chunk,
10067 geo->size,
10068 0, 0, 1))
10069 change = -1;
10070
10071 if (check_devs) {
10072 struct intel_super *super = st->sb;
10073 struct imsm_super *mpb = super->anchor;
10074
10075 if (mpb->num_raid_devs > 1) {
10076 fprintf(stderr,
10077 Name " Error. Cannot perform operation on %s"
10078 "- for this operation it MUST be single "
10079 "array in container\n",
10080 geo->dev_name);
10081 change = -1;
10082 }
10083 }
10084
10085 analyse_change_exit:
10086 if ((direction == ROLLBACK_METADATA_CHANGES) &&
10087 ((change == CH_MIGRATION) || (change == CH_TAKEOVER))) {
10088 dprintf("imsm: Metadata changes rollback is not supported for "
10089 "migration and takeover operations.\n");
10090 change = -1;
10091 }
10092 return change;
10093 }
10094
10095 int imsm_takeover(struct supertype *st, struct geo_params *geo)
10096 {
10097 struct intel_super *super = st->sb;
10098 struct imsm_update_takeover *u;
10099
10100 u = malloc(sizeof(struct imsm_update_takeover));
10101 if (u == NULL)
10102 return 1;
10103
10104 u->type = update_takeover;
10105 u->subarray = super->current_vol;
10106
10107 /* 10->0 transition */
10108 if (geo->level == 0)
10109 u->direction = R10_TO_R0;
10110
10111 /* 0->10 transition */
10112 if (geo->level == 10)
10113 u->direction = R0_TO_R10;
10114
10115 /* update metadata locally */
10116 imsm_update_metadata_locally(st, u,
10117 sizeof(struct imsm_update_takeover));
10118 /* and possibly remotely */
10119 if (st->update_tail)
10120 append_metadata_update(st, u,
10121 sizeof(struct imsm_update_takeover));
10122 else
10123 free(u);
10124
10125 return 0;
10126 }
10127
10128 static int imsm_reshape_super(struct supertype *st, long long size, int level,
10129 int layout, int chunksize, int raid_disks,
10130 int delta_disks, char *backup, char *dev,
10131 int direction, int verbose)
10132 {
10133 int ret_val = 1;
10134 struct geo_params geo;
10135
10136 dprintf("imsm: reshape_super called.\n");
10137
10138 memset(&geo, 0, sizeof(struct geo_params));
10139
10140 geo.dev_name = dev;
10141 geo.dev_id = st->devnum;
10142 geo.size = size;
10143 geo.level = level;
10144 geo.layout = layout;
10145 geo.chunksize = chunksize;
10146 geo.raid_disks = raid_disks;
10147 if (delta_disks != UnSet)
10148 geo.raid_disks += delta_disks;
10149
10150 dprintf("\tfor level : %i\n", geo.level);
10151 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
10152
10153 if (experimental() == 0)
10154 return ret_val;
10155
10156 if (st->container_dev == st->devnum) {
10157 /* On container level we can only increase number of devices. */
10158 dprintf("imsm: info: Container operation\n");
10159 int old_raid_disks = 0;
10160
10161 if (imsm_reshape_is_allowed_on_container(
10162 st, &geo, &old_raid_disks, direction)) {
10163 struct imsm_update_reshape *u = NULL;
10164 int len;
10165
10166 len = imsm_create_metadata_update_for_reshape(
10167 st, &geo, old_raid_disks, &u);
10168
10169 if (len <= 0) {
10170 dprintf("imsm: Cannot prepare update\n");
10171 goto exit_imsm_reshape_super;
10172 }
10173
10174 ret_val = 0;
10175 /* update metadata locally */
10176 imsm_update_metadata_locally(st, u, len);
10177 /* and possibly remotely */
10178 if (st->update_tail)
10179 append_metadata_update(st, u, len);
10180 else
10181 free(u);
10182
10183 } else {
10184 fprintf(stderr, Name ": (imsm) Operation "
10185 "is not allowed on this container\n");
10186 }
10187 } else {
10188 /* On volume level we support following operations
10189 * - takeover: raid10 -> raid0; raid0 -> raid10
10190 * - chunk size migration
10191 * - migration: raid5 -> raid0; raid0 -> raid5
10192 */
10193 struct intel_super *super = st->sb;
10194 struct intel_dev *dev = super->devlist;
10195 int change, devnum;
10196 dprintf("imsm: info: Volume operation\n");
10197 /* find requested device */
10198 while (dev) {
10199 if (imsm_find_array_minor_by_subdev(
10200 dev->index, st->container_dev, &devnum) == 0
10201 && devnum == geo.dev_id)
10202 break;
10203 dev = dev->next;
10204 }
10205 if (dev == NULL) {
10206 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
10207 geo.dev_name, geo.dev_id);
10208 goto exit_imsm_reshape_super;
10209 }
10210 super->current_vol = dev->index;
10211 change = imsm_analyze_change(st, &geo, direction);
10212 switch (change) {
10213 case CH_TAKEOVER:
10214 ret_val = imsm_takeover(st, &geo);
10215 break;
10216 case CH_MIGRATION: {
10217 struct imsm_update_reshape_migration *u = NULL;
10218 int len =
10219 imsm_create_metadata_update_for_migration(
10220 st, &geo, &u);
10221 if (len < 1) {
10222 dprintf("imsm: "
10223 "Cannot prepare update\n");
10224 break;
10225 }
10226 ret_val = 0;
10227 /* update metadata locally */
10228 imsm_update_metadata_locally(st, u, len);
10229 /* and possibly remotely */
10230 if (st->update_tail)
10231 append_metadata_update(st, u, len);
10232 else
10233 free(u);
10234 }
10235 break;
10236 case CH_ARRAY_SIZE: {
10237 struct imsm_update_size_change *u = NULL;
10238 int len =
10239 imsm_create_metadata_update_for_size_change(
10240 st, &geo, &u);
10241 if (len < 1) {
10242 dprintf("imsm: "
10243 "Cannot prepare update\n");
10244 break;
10245 }
10246 ret_val = 0;
10247 /* update metadata locally */
10248 imsm_update_metadata_locally(st, u, len);
10249 /* and possibly remotely */
10250 if (st->update_tail)
10251 append_metadata_update(st, u, len);
10252 else
10253 free(u);
10254 }
10255 break;
10256 default:
10257 ret_val = 1;
10258 }
10259 }
10260
10261 exit_imsm_reshape_super:
10262 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
10263 return ret_val;
10264 }
10265
10266 /*******************************************************************************
10267 * Function: wait_for_reshape_imsm
10268 * Description: Function writes new sync_max value and waits until
10269 * reshape process reach new position
10270 * Parameters:
10271 * sra : general array info
10272 * ndata : number of disks in new array's layout
10273 * Returns:
10274 * 0 : success,
10275 * 1 : there is no reshape in progress,
10276 * -1 : fail
10277 ******************************************************************************/
10278 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
10279 {
10280 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
10281 unsigned long long completed;
10282 /* to_complete : new sync_max position */
10283 unsigned long long to_complete = sra->reshape_progress;
10284 unsigned long long position_to_set = to_complete / ndata;
10285
10286 if (fd < 0) {
10287 dprintf("imsm: wait_for_reshape_imsm() "
10288 "cannot open reshape_position\n");
10289 return 1;
10290 }
10291
10292 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10293 dprintf("imsm: wait_for_reshape_imsm() "
10294 "cannot read reshape_position (no reshape in progres)\n");
10295 close(fd);
10296 return 0;
10297 }
10298
10299 if (completed > to_complete) {
10300 dprintf("imsm: wait_for_reshape_imsm() "
10301 "wrong next position to set %llu (%llu)\n",
10302 to_complete, completed);
10303 close(fd);
10304 return -1;
10305 }
10306 dprintf("Position set: %llu\n", position_to_set);
10307 if (sysfs_set_num(sra, NULL, "sync_max",
10308 position_to_set) != 0) {
10309 dprintf("imsm: wait_for_reshape_imsm() "
10310 "cannot set reshape position to %llu\n",
10311 position_to_set);
10312 close(fd);
10313 return -1;
10314 }
10315
10316 do {
10317 char action[20];
10318 fd_set rfds;
10319 FD_ZERO(&rfds);
10320 FD_SET(fd, &rfds);
10321 select(fd+1, &rfds, NULL, NULL, NULL);
10322 if (sysfs_get_str(sra, NULL, "sync_action",
10323 action, 20) > 0 &&
10324 strncmp(action, "reshape", 7) != 0)
10325 break;
10326 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10327 dprintf("imsm: wait_for_reshape_imsm() "
10328 "cannot read reshape_position (in loop)\n");
10329 close(fd);
10330 return 1;
10331 }
10332 } while (completed < to_complete);
10333 close(fd);
10334 return 0;
10335
10336 }
10337
10338 /*******************************************************************************
10339 * Function: check_degradation_change
10340 * Description: Check that array hasn't become failed.
10341 * Parameters:
10342 * info : for sysfs access
10343 * sources : source disks descriptors
10344 * degraded: previous degradation level
10345 * Returns:
10346 * degradation level
10347 ******************************************************************************/
10348 int check_degradation_change(struct mdinfo *info,
10349 int *sources,
10350 int degraded)
10351 {
10352 unsigned long long new_degraded;
10353 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10354 if (new_degraded != (unsigned long long)degraded) {
10355 /* check each device to ensure it is still working */
10356 struct mdinfo *sd;
10357 new_degraded = 0;
10358 for (sd = info->devs ; sd ; sd = sd->next) {
10359 if (sd->disk.state & (1<<MD_DISK_FAULTY))
10360 continue;
10361 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10362 char sbuf[20];
10363 if (sysfs_get_str(info,
10364 sd, "state", sbuf, 20) < 0 ||
10365 strstr(sbuf, "faulty") ||
10366 strstr(sbuf, "in_sync") == NULL) {
10367 /* this device is dead */
10368 sd->disk.state = (1<<MD_DISK_FAULTY);
10369 if (sd->disk.raid_disk >= 0 &&
10370 sources[sd->disk.raid_disk] >= 0) {
10371 close(sources[
10372 sd->disk.raid_disk]);
10373 sources[sd->disk.raid_disk] =
10374 -1;
10375 }
10376 new_degraded++;
10377 }
10378 }
10379 }
10380 }
10381
10382 return new_degraded;
10383 }
10384
10385 /*******************************************************************************
10386 * Function: imsm_manage_reshape
10387 * Description: Function finds array under reshape and it manages reshape
10388 * process. It creates stripes backups (if required) and sets
10389 * checheckpoits.
10390 * Parameters:
10391 * afd : Backup handle (nattive) - not used
10392 * sra : general array info
10393 * reshape : reshape parameters - not used
10394 * st : supertype structure
10395 * blocks : size of critical section [blocks]
10396 * fds : table of source device descriptor
10397 * offsets : start of array (offest per devices)
10398 * dests : not used
10399 * destfd : table of destination device descriptor
10400 * destoffsets : table of destination offsets (per device)
10401 * Returns:
10402 * 1 : success, reshape is done
10403 * 0 : fail
10404 ******************************************************************************/
10405 static int imsm_manage_reshape(
10406 int afd, struct mdinfo *sra, struct reshape *reshape,
10407 struct supertype *st, unsigned long backup_blocks,
10408 int *fds, unsigned long long *offsets,
10409 int dests, int *destfd, unsigned long long *destoffsets)
10410 {
10411 int ret_val = 0;
10412 struct intel_super *super = st->sb;
10413 struct intel_dev *dv = NULL;
10414 struct imsm_dev *dev = NULL;
10415 struct imsm_map *map_src;
10416 int migr_vol_qan = 0;
10417 int ndata, odata; /* [bytes] */
10418 int chunk; /* [bytes] */
10419 struct migr_record *migr_rec;
10420 char *buf = NULL;
10421 unsigned int buf_size; /* [bytes] */
10422 unsigned long long max_position; /* array size [bytes] */
10423 unsigned long long next_step; /* [blocks]/[bytes] */
10424 unsigned long long old_data_stripe_length;
10425 unsigned long long start_src; /* [bytes] */
10426 unsigned long long start; /* [bytes] */
10427 unsigned long long start_buf_shift; /* [bytes] */
10428 int degraded = 0;
10429 int source_layout = 0;
10430
10431 if (!fds || !offsets || !sra)
10432 goto abort;
10433
10434 /* Find volume during the reshape */
10435 for (dv = super->devlist; dv; dv = dv->next) {
10436 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10437 && dv->dev->vol.migr_state == 1) {
10438 dev = dv->dev;
10439 migr_vol_qan++;
10440 }
10441 }
10442 /* Only one volume can migrate at the same time */
10443 if (migr_vol_qan != 1) {
10444 fprintf(stderr, Name " : %s", migr_vol_qan ?
10445 "Number of migrating volumes greater than 1\n" :
10446 "There is no volume during migrationg\n");
10447 goto abort;
10448 }
10449
10450 map_src = get_imsm_map(dev, MAP_1);
10451 if (map_src == NULL)
10452 goto abort;
10453
10454 ndata = imsm_num_data_members(dev, MAP_0);
10455 odata = imsm_num_data_members(dev, MAP_1);
10456
10457 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10458 old_data_stripe_length = odata * chunk;
10459
10460 migr_rec = super->migr_rec;
10461
10462 /* initialize migration record for start condition */
10463 if (sra->reshape_progress == 0)
10464 init_migr_record_imsm(st, dev, sra);
10465 else {
10466 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
10467 dprintf("imsm: cannot restart migration when data "
10468 "are present in copy area.\n");
10469 goto abort;
10470 }
10471 /* Save checkpoint to update migration record for current
10472 * reshape position (in md). It can be farther than current
10473 * reshape position in metadata.
10474 */
10475 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10476 /* ignore error == 2, this can mean end of reshape here
10477 */
10478 dprintf("imsm: Cannot write checkpoint to "
10479 "migration record (UNIT_SRC_NORMAL, "
10480 "initial save)\n");
10481 goto abort;
10482 }
10483 }
10484
10485 /* size for data */
10486 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10487 /* extend buffer size for parity disk */
10488 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10489 /* add space for stripe aligment */
10490 buf_size += old_data_stripe_length;
10491 if (posix_memalign((void **)&buf, 4096, buf_size)) {
10492 dprintf("imsm: Cannot allocate checpoint buffer\n");
10493 goto abort;
10494 }
10495
10496 max_position = sra->component_size * ndata;
10497 source_layout = imsm_level_to_layout(map_src->raid_level);
10498
10499 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10500 __le32_to_cpu(migr_rec->num_migr_units)) {
10501 /* current reshape position [blocks] */
10502 unsigned long long current_position =
10503 __le32_to_cpu(migr_rec->blocks_per_unit)
10504 * __le32_to_cpu(migr_rec->curr_migr_unit);
10505 unsigned long long border;
10506
10507 /* Check that array hasn't become failed.
10508 */
10509 degraded = check_degradation_change(sra, fds, degraded);
10510 if (degraded > 1) {
10511 dprintf("imsm: Abort reshape due to degradation"
10512 " level (%i)\n", degraded);
10513 goto abort;
10514 }
10515
10516 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10517
10518 if ((current_position + next_step) > max_position)
10519 next_step = max_position - current_position;
10520
10521 start = current_position * 512;
10522
10523 /* allign reading start to old geometry */
10524 start_buf_shift = start % old_data_stripe_length;
10525 start_src = start - start_buf_shift;
10526
10527 border = (start_src / odata) - (start / ndata);
10528 border /= 512;
10529 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10530 /* save critical stripes to buf
10531 * start - start address of current unit
10532 * to backup [bytes]
10533 * start_src - start address of current unit
10534 * to backup alligned to source array
10535 * [bytes]
10536 */
10537 unsigned long long next_step_filler = 0;
10538 unsigned long long copy_length = next_step * 512;
10539
10540 /* allign copy area length to stripe in old geometry */
10541 next_step_filler = ((copy_length + start_buf_shift)
10542 % old_data_stripe_length);
10543 if (next_step_filler)
10544 next_step_filler = (old_data_stripe_length
10545 - next_step_filler);
10546 dprintf("save_stripes() parameters: start = %llu,"
10547 "\tstart_src = %llu,\tnext_step*512 = %llu,"
10548 "\tstart_in_buf_shift = %llu,"
10549 "\tnext_step_filler = %llu\n",
10550 start, start_src, copy_length,
10551 start_buf_shift, next_step_filler);
10552
10553 if (save_stripes(fds, offsets, map_src->num_members,
10554 chunk, map_src->raid_level,
10555 source_layout, 0, NULL, start_src,
10556 copy_length +
10557 next_step_filler + start_buf_shift,
10558 buf)) {
10559 dprintf("imsm: Cannot save stripes"
10560 " to buffer\n");
10561 goto abort;
10562 }
10563 /* Convert data to destination format and store it
10564 * in backup general migration area
10565 */
10566 if (save_backup_imsm(st, dev, sra,
10567 buf + start_buf_shift, copy_length)) {
10568 dprintf("imsm: Cannot save stripes to "
10569 "target devices\n");
10570 goto abort;
10571 }
10572 if (save_checkpoint_imsm(st, sra,
10573 UNIT_SRC_IN_CP_AREA)) {
10574 dprintf("imsm: Cannot write checkpoint to "
10575 "migration record (UNIT_SRC_IN_CP_AREA)\n");
10576 goto abort;
10577 }
10578 } else {
10579 /* set next step to use whole border area */
10580 border /= next_step;
10581 if (border > 1)
10582 next_step *= border;
10583 }
10584 /* When data backed up, checkpoint stored,
10585 * kick the kernel to reshape unit of data
10586 */
10587 next_step = next_step + sra->reshape_progress;
10588 /* limit next step to array max position */
10589 if (next_step > max_position)
10590 next_step = max_position;
10591 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10592 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
10593 sra->reshape_progress = next_step;
10594
10595 /* wait until reshape finish */
10596 if (wait_for_reshape_imsm(sra, ndata) < 0) {
10597 dprintf("wait_for_reshape_imsm returned error!\n");
10598 goto abort;
10599 }
10600
10601 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10602 /* ignore error == 2, this can mean end of reshape here
10603 */
10604 dprintf("imsm: Cannot write checkpoint to "
10605 "migration record (UNIT_SRC_NORMAL)\n");
10606 goto abort;
10607 }
10608
10609 }
10610
10611 /* return '1' if done */
10612 ret_val = 1;
10613 abort:
10614 free(buf);
10615 abort_reshape(sra);
10616
10617 return ret_val;
10618 }
10619 #endif /* MDASSEMBLE */
10620
10621 struct superswitch super_imsm = {
10622 #ifndef MDASSEMBLE
10623 .examine_super = examine_super_imsm,
10624 .brief_examine_super = brief_examine_super_imsm,
10625 .brief_examine_subarrays = brief_examine_subarrays_imsm,
10626 .export_examine_super = export_examine_super_imsm,
10627 .detail_super = detail_super_imsm,
10628 .brief_detail_super = brief_detail_super_imsm,
10629 .write_init_super = write_init_super_imsm,
10630 .validate_geometry = validate_geometry_imsm,
10631 .add_to_super = add_to_super_imsm,
10632 .remove_from_super = remove_from_super_imsm,
10633 .detail_platform = detail_platform_imsm,
10634 .kill_subarray = kill_subarray_imsm,
10635 .update_subarray = update_subarray_imsm,
10636 .load_container = load_container_imsm,
10637 .default_geometry = default_geometry_imsm,
10638 .get_disk_controller_domain = imsm_get_disk_controller_domain,
10639 .reshape_super = imsm_reshape_super,
10640 .manage_reshape = imsm_manage_reshape,
10641 .recover_backup = recover_backup_imsm,
10642 #endif
10643 .match_home = match_home_imsm,
10644 .uuid_from_super= uuid_from_super_imsm,
10645 .getinfo_super = getinfo_super_imsm,
10646 .getinfo_super_disks = getinfo_super_disks_imsm,
10647 .update_super = update_super_imsm,
10648
10649 .avail_size = avail_size_imsm,
10650 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
10651
10652 .compare_super = compare_super_imsm,
10653
10654 .load_super = load_super_imsm,
10655 .init_super = init_super_imsm,
10656 .store_super = store_super_imsm,
10657 .free_super = free_super_imsm,
10658 .match_metadata_desc = match_metadata_desc_imsm,
10659 .container_content = container_content_imsm,
10660
10661
10662 .external = 1,
10663 .name = "imsm",
10664
10665 #ifndef MDASSEMBLE
10666 /* for mdmon */
10667 .open_new = imsm_open_new,
10668 .set_array_state= imsm_set_array_state,
10669 .set_disk = imsm_set_disk,
10670 .sync_metadata = imsm_sync_metadata,
10671 .activate_spare = imsm_activate_spare,
10672 .process_update = imsm_process_update,
10673 .prepare_update = imsm_prepare_update,
10674 #endif /* MDASSEMBLE */
10675 };