]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: fix spare-uuid assignment
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54 #define MPB_SECTOR_CNT 418
55 #define IMSM_RESERVED_SECTORS 4096
56 #define SECT_PER_MB_SHIFT 11
57
58 /* Disk configuration info. */
59 #define IMSM_MAX_DEVICES 255
60 struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67 #define USABLE_DISK __cpu_to_le32(0x08) /* Fully usable unless FAILED_DISK is set */
68 __u32 status; /* 0xF0 - 0xF3 */
69 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
70 #define IMSM_DISK_FILLERS 4
71 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
72 };
73
74 /* RAID map configuration infos. */
75 struct imsm_map {
76 __u32 pba_of_lba0; /* start address of partition */
77 __u32 blocks_per_member;/* blocks per member */
78 __u32 num_data_stripes; /* number of data stripes */
79 __u16 blocks_per_strip;
80 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
81 #define IMSM_T_STATE_NORMAL 0
82 #define IMSM_T_STATE_UNINITIALIZED 1
83 #define IMSM_T_STATE_DEGRADED 2
84 #define IMSM_T_STATE_FAILED 3
85 __u8 raid_level;
86 #define IMSM_T_RAID0 0
87 #define IMSM_T_RAID1 1
88 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
89 __u8 num_members; /* number of member disks */
90 __u8 num_domains; /* number of parity domains */
91 __u8 failed_disk_num; /* valid only when state is degraded */
92 __u8 ddf;
93 __u32 filler[7]; /* expansion area */
94 #define IMSM_ORD_REBUILD (1 << 24)
95 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
96 * top byte contains some flags
97 */
98 } __attribute__ ((packed));
99
100 struct imsm_vol {
101 __u32 curr_migr_unit;
102 __u32 checkpoint_id; /* id to access curr_migr_unit */
103 __u8 migr_state; /* Normal or Migrating */
104 #define MIGR_INIT 0
105 #define MIGR_REBUILD 1
106 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
107 #define MIGR_GEN_MIGR 3
108 #define MIGR_STATE_CHANGE 4
109 #define MIGR_REPAIR 5
110 __u8 migr_type; /* Initializing, Rebuilding, ... */
111 __u8 dirty;
112 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
113 __u16 verify_errors; /* number of mismatches */
114 __u16 bad_blocks; /* number of bad blocks during verify */
115 __u32 filler[4];
116 struct imsm_map map[1];
117 /* here comes another one if migr_state */
118 } __attribute__ ((packed));
119
120 struct imsm_dev {
121 __u8 volume[MAX_RAID_SERIAL_LEN];
122 __u32 size_low;
123 __u32 size_high;
124 #define DEV_BOOTABLE __cpu_to_le32(0x01)
125 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
126 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
127 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
128 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
129 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
130 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
131 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
132 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
133 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
134 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
135 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
136 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
137 __u32 status; /* Persistent RaidDev status */
138 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
139 __u8 migr_priority;
140 __u8 num_sub_vols;
141 __u8 tid;
142 __u8 cng_master_disk;
143 __u16 cache_policy;
144 __u8 cng_state;
145 __u8 cng_sub_state;
146 #define IMSM_DEV_FILLERS 10
147 __u32 filler[IMSM_DEV_FILLERS];
148 struct imsm_vol vol;
149 } __attribute__ ((packed));
150
151 struct imsm_super {
152 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
153 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
154 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
155 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
156 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
157 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
158 __u32 attributes; /* 0x34 - 0x37 */
159 __u8 num_disks; /* 0x38 Number of configured disks */
160 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
161 __u8 error_log_pos; /* 0x3A */
162 __u8 fill[1]; /* 0x3B */
163 __u32 cache_size; /* 0x3c - 0x40 in mb */
164 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
165 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
166 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
167 #define IMSM_FILLERS 35
168 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
169 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
170 /* here comes imsm_dev[num_raid_devs] */
171 /* here comes BBM logs */
172 } __attribute__ ((packed));
173
174 #define BBM_LOG_MAX_ENTRIES 254
175
176 struct bbm_log_entry {
177 __u64 defective_block_start;
178 #define UNREADABLE 0xFFFFFFFF
179 __u32 spare_block_offset;
180 __u16 remapped_marked_count;
181 __u16 disk_ordinal;
182 } __attribute__ ((__packed__));
183
184 struct bbm_log {
185 __u32 signature; /* 0xABADB10C */
186 __u32 entry_count;
187 __u32 reserved_spare_block_count; /* 0 */
188 __u32 reserved; /* 0xFFFF */
189 __u64 first_spare_lba;
190 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
191 } __attribute__ ((__packed__));
192
193
194 #ifndef MDASSEMBLE
195 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
196 #endif
197
198 static __u8 migr_type(struct imsm_dev *dev)
199 {
200 if (dev->vol.migr_type == MIGR_VERIFY &&
201 dev->status & DEV_VERIFY_AND_FIX)
202 return MIGR_REPAIR;
203 else
204 return dev->vol.migr_type;
205 }
206
207 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
208 {
209 /* for compatibility with older oroms convert MIGR_REPAIR, into
210 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
211 */
212 if (migr_type == MIGR_REPAIR) {
213 dev->vol.migr_type = MIGR_VERIFY;
214 dev->status |= DEV_VERIFY_AND_FIX;
215 } else {
216 dev->vol.migr_type = migr_type;
217 dev->status &= ~DEV_VERIFY_AND_FIX;
218 }
219 }
220
221 static unsigned int sector_count(__u32 bytes)
222 {
223 return ((bytes + (512-1)) & (~(512-1))) / 512;
224 }
225
226 static unsigned int mpb_sectors(struct imsm_super *mpb)
227 {
228 return sector_count(__le32_to_cpu(mpb->mpb_size));
229 }
230
231 struct intel_dev {
232 struct imsm_dev *dev;
233 struct intel_dev *next;
234 int index;
235 };
236
237 /* internal representation of IMSM metadata */
238 struct intel_super {
239 union {
240 void *buf; /* O_DIRECT buffer for reading/writing metadata */
241 struct imsm_super *anchor; /* immovable parameters */
242 };
243 size_t len; /* size of the 'buf' allocation */
244 void *next_buf; /* for realloc'ing buf from the manager */
245 size_t next_len;
246 int updates_pending; /* count of pending updates for mdmon */
247 int creating_imsm; /* flag to indicate container creation */
248 int current_vol; /* index of raid device undergoing creation */
249 __u32 create_offset; /* common start for 'current_vol' */
250 __u32 random; /* random data for seeding new family numbers */
251 struct intel_dev *devlist;
252 struct dl {
253 struct dl *next;
254 int index;
255 __u8 serial[MAX_RAID_SERIAL_LEN];
256 int major, minor;
257 char *devname;
258 struct imsm_disk disk;
259 int fd;
260 int extent_cnt;
261 struct extent *e; /* for determining freespace @ create */
262 int raiddisk; /* slot to fill in autolayout */
263 } *disks;
264 struct dl *add; /* list of disks to add while mdmon active */
265 struct dl *missing; /* disks removed while we weren't looking */
266 struct bbm_log *bbm_log;
267 const char *hba; /* device path of the raid controller for this metadata */
268 const struct imsm_orom *orom; /* platform firmware support */
269 };
270
271 struct extent {
272 unsigned long long start, size;
273 };
274
275 /* definition of messages passed to imsm_process_update */
276 enum imsm_update_type {
277 update_activate_spare,
278 update_create_array,
279 update_add_disk,
280 };
281
282 struct imsm_update_activate_spare {
283 enum imsm_update_type type;
284 struct dl *dl;
285 int slot;
286 int array;
287 struct imsm_update_activate_spare *next;
288 };
289
290 struct disk_info {
291 __u8 serial[MAX_RAID_SERIAL_LEN];
292 };
293
294 struct imsm_update_create_array {
295 enum imsm_update_type type;
296 int dev_idx;
297 struct imsm_dev dev;
298 };
299
300 struct imsm_update_add_disk {
301 enum imsm_update_type type;
302 };
303
304 static struct supertype *match_metadata_desc_imsm(char *arg)
305 {
306 struct supertype *st;
307
308 if (strcmp(arg, "imsm") != 0 &&
309 strcmp(arg, "default") != 0
310 )
311 return NULL;
312
313 st = malloc(sizeof(*st));
314 memset(st, 0, sizeof(*st));
315 st->ss = &super_imsm;
316 st->max_devs = IMSM_MAX_DEVICES;
317 st->minor_version = 0;
318 st->sb = NULL;
319 return st;
320 }
321
322 #ifndef MDASSEMBLE
323 static __u8 *get_imsm_version(struct imsm_super *mpb)
324 {
325 return &mpb->sig[MPB_SIG_LEN];
326 }
327 #endif
328
329 /* retrieve a disk directly from the anchor when the anchor is known to be
330 * up-to-date, currently only at load time
331 */
332 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
333 {
334 if (index >= mpb->num_disks)
335 return NULL;
336 return &mpb->disk[index];
337 }
338
339 #ifndef MDASSEMBLE
340 /* retrieve a disk from the parsed metadata */
341 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
342 {
343 struct dl *d;
344
345 for (d = super->disks; d; d = d->next)
346 if (d->index == index)
347 return &d->disk;
348
349 return NULL;
350 }
351 #endif
352
353 /* generate a checksum directly from the anchor when the anchor is known to be
354 * up-to-date, currently only at load or write_super after coalescing
355 */
356 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
357 {
358 __u32 end = mpb->mpb_size / sizeof(end);
359 __u32 *p = (__u32 *) mpb;
360 __u32 sum = 0;
361
362 while (end--) {
363 sum += __le32_to_cpu(*p);
364 p++;
365 }
366
367 return sum - __le32_to_cpu(mpb->check_sum);
368 }
369
370 static size_t sizeof_imsm_map(struct imsm_map *map)
371 {
372 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
373 }
374
375 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
376 {
377 struct imsm_map *map = &dev->vol.map[0];
378
379 if (second_map && !dev->vol.migr_state)
380 return NULL;
381 else if (second_map) {
382 void *ptr = map;
383
384 return ptr + sizeof_imsm_map(map);
385 } else
386 return map;
387
388 }
389
390 /* return the size of the device.
391 * migr_state increases the returned size if map[0] were to be duplicated
392 */
393 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
394 {
395 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
396 sizeof_imsm_map(get_imsm_map(dev, 0));
397
398 /* migrating means an additional map */
399 if (dev->vol.migr_state)
400 size += sizeof_imsm_map(get_imsm_map(dev, 1));
401 else if (migr_state)
402 size += sizeof_imsm_map(get_imsm_map(dev, 0));
403
404 return size;
405 }
406
407 #ifndef MDASSEMBLE
408 /* retrieve disk serial number list from a metadata update */
409 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
410 {
411 void *u = update;
412 struct disk_info *inf;
413
414 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
415 sizeof_imsm_dev(&update->dev, 0);
416
417 return inf;
418 }
419 #endif
420
421 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
422 {
423 int offset;
424 int i;
425 void *_mpb = mpb;
426
427 if (index >= mpb->num_raid_devs)
428 return NULL;
429
430 /* devices start after all disks */
431 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
432
433 for (i = 0; i <= index; i++)
434 if (i == index)
435 return _mpb + offset;
436 else
437 offset += sizeof_imsm_dev(_mpb + offset, 0);
438
439 return NULL;
440 }
441
442 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
443 {
444 struct intel_dev *dv;
445
446 if (index >= super->anchor->num_raid_devs)
447 return NULL;
448 for (dv = super->devlist; dv; dv = dv->next)
449 if (dv->index == index)
450 return dv->dev;
451 return NULL;
452 }
453
454 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
455 {
456 struct imsm_map *map;
457
458 if (dev->vol.migr_state)
459 map = get_imsm_map(dev, 1);
460 else
461 map = get_imsm_map(dev, 0);
462
463 /* top byte identifies disk under rebuild */
464 return __le32_to_cpu(map->disk_ord_tbl[slot]);
465 }
466
467 #define ord_to_idx(ord) (((ord) << 8) >> 8)
468 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
469 {
470 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
471
472 return ord_to_idx(ord);
473 }
474
475 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
476 {
477 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
478 }
479
480 static int get_imsm_disk_slot(struct imsm_map *map, int idx)
481 {
482 int slot;
483 __u32 ord;
484
485 for (slot = 0; slot < map->num_members; slot++) {
486 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
487 if (ord_to_idx(ord) == idx)
488 return slot;
489 }
490
491 return -1;
492 }
493
494 static int get_imsm_raid_level(struct imsm_map *map)
495 {
496 if (map->raid_level == 1) {
497 if (map->num_members == 2)
498 return 1;
499 else
500 return 10;
501 }
502
503 return map->raid_level;
504 }
505
506 static int cmp_extent(const void *av, const void *bv)
507 {
508 const struct extent *a = av;
509 const struct extent *b = bv;
510 if (a->start < b->start)
511 return -1;
512 if (a->start > b->start)
513 return 1;
514 return 0;
515 }
516
517 static int count_memberships(struct dl *dl, struct intel_super *super)
518 {
519 int memberships = 0;
520 int i;
521
522 for (i = 0; i < super->anchor->num_raid_devs; i++) {
523 struct imsm_dev *dev = get_imsm_dev(super, i);
524 struct imsm_map *map = get_imsm_map(dev, 0);
525
526 if (get_imsm_disk_slot(map, dl->index) >= 0)
527 memberships++;
528 }
529
530 return memberships;
531 }
532
533 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
534 {
535 /* find a list of used extents on the given physical device */
536 struct extent *rv, *e;
537 int i;
538 int memberships = count_memberships(dl, super);
539 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
540
541 rv = malloc(sizeof(struct extent) * (memberships + 1));
542 if (!rv)
543 return NULL;
544 e = rv;
545
546 for (i = 0; i < super->anchor->num_raid_devs; i++) {
547 struct imsm_dev *dev = get_imsm_dev(super, i);
548 struct imsm_map *map = get_imsm_map(dev, 0);
549
550 if (get_imsm_disk_slot(map, dl->index) >= 0) {
551 e->start = __le32_to_cpu(map->pba_of_lba0);
552 e->size = __le32_to_cpu(map->blocks_per_member);
553 e++;
554 }
555 }
556 qsort(rv, memberships, sizeof(*rv), cmp_extent);
557
558 /* determine the start of the metadata
559 * when no raid devices are defined use the default
560 * ...otherwise allow the metadata to truncate the value
561 * as is the case with older versions of imsm
562 */
563 if (memberships) {
564 struct extent *last = &rv[memberships - 1];
565 __u32 remainder;
566
567 remainder = __le32_to_cpu(dl->disk.total_blocks) -
568 (last->start + last->size);
569 /* round down to 1k block to satisfy precision of the kernel
570 * 'size' interface
571 */
572 remainder &= ~1UL;
573 /* make sure remainder is still sane */
574 if (remainder < ROUND_UP(super->len, 512) >> 9)
575 remainder = ROUND_UP(super->len, 512) >> 9;
576 if (reservation > remainder)
577 reservation = remainder;
578 }
579 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
580 e->size = 0;
581 return rv;
582 }
583
584 /* try to determine how much space is reserved for metadata from
585 * the last get_extents() entry, otherwise fallback to the
586 * default
587 */
588 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
589 {
590 struct extent *e;
591 int i;
592 __u32 rv;
593
594 /* for spares just return a minimal reservation which will grow
595 * once the spare is picked up by an array
596 */
597 if (dl->index == -1)
598 return MPB_SECTOR_CNT;
599
600 e = get_extents(super, dl);
601 if (!e)
602 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
603
604 /* scroll to last entry */
605 for (i = 0; e[i].size; i++)
606 continue;
607
608 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
609
610 free(e);
611
612 return rv;
613 }
614
615 #ifndef MDASSEMBLE
616 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
617 {
618 __u64 sz;
619 int slot;
620 struct imsm_map *map = get_imsm_map(dev, 0);
621 __u32 ord;
622
623 printf("\n");
624 printf("[%.16s]:\n", dev->volume);
625 printf(" UUID : %s\n", uuid);
626 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
627 printf(" Members : %d\n", map->num_members);
628 slot = get_imsm_disk_slot(map, disk_idx);
629 if (slot >= 0) {
630 ord = get_imsm_ord_tbl_ent(dev, slot);
631 printf(" This Slot : %d%s\n", slot,
632 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
633 } else
634 printf(" This Slot : ?\n");
635 sz = __le32_to_cpu(dev->size_high);
636 sz <<= 32;
637 sz += __le32_to_cpu(dev->size_low);
638 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
639 human_size(sz * 512));
640 sz = __le32_to_cpu(map->blocks_per_member);
641 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
642 human_size(sz * 512));
643 printf(" Sector Offset : %u\n",
644 __le32_to_cpu(map->pba_of_lba0));
645 printf(" Num Stripes : %u\n",
646 __le32_to_cpu(map->num_data_stripes));
647 printf(" Chunk Size : %u KiB\n",
648 __le16_to_cpu(map->blocks_per_strip) / 2);
649 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
650 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle\n");
651 if (dev->vol.migr_state) {
652 if (migr_type(dev) == MIGR_INIT)
653 printf(": initializing\n");
654 else if (migr_type(dev) == MIGR_REBUILD)
655 printf(": rebuilding\n");
656 else if (migr_type(dev) == MIGR_VERIFY)
657 printf(": check\n");
658 else if (migr_type(dev) == MIGR_GEN_MIGR)
659 printf(": general migration\n");
660 else if (migr_type(dev) == MIGR_STATE_CHANGE)
661 printf(": state change\n");
662 else if (migr_type(dev) == MIGR_REPAIR)
663 printf(": repair\n");
664 else
665 printf(": <unknown:%d>\n", migr_type(dev));
666 }
667 printf(" Map State : %s", map_state_str[map->map_state]);
668 if (dev->vol.migr_state) {
669 struct imsm_map *map = get_imsm_map(dev, 1);
670 printf(" <-- %s", map_state_str[map->map_state]);
671 }
672 printf("\n");
673 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
674 }
675
676 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
677 {
678 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
679 char str[MAX_RAID_SERIAL_LEN + 1];
680 __u32 s;
681 __u64 sz;
682
683 if (index < 0)
684 return;
685
686 printf("\n");
687 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
688 printf(" Disk%02d Serial : %s\n", index, str);
689 s = disk->status;
690 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
691 s&CONFIGURED_DISK ? " active" : "",
692 s&FAILED_DISK ? " failed" : "",
693 s&USABLE_DISK ? " usable" : "");
694 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
695 sz = __le32_to_cpu(disk->total_blocks) - reserved;
696 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
697 human_size(sz * 512));
698 }
699
700 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
701
702 static void examine_super_imsm(struct supertype *st, char *homehost)
703 {
704 struct intel_super *super = st->sb;
705 struct imsm_super *mpb = super->anchor;
706 char str[MAX_SIGNATURE_LENGTH];
707 int i;
708 struct mdinfo info;
709 char nbuf[64];
710 __u32 sum;
711 __u32 reserved = imsm_reserved_sectors(super, super->disks);
712
713
714 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
715 printf(" Magic : %s\n", str);
716 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
717 printf(" Version : %s\n", get_imsm_version(mpb));
718 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
719 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
720 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
721 getinfo_super_imsm(st, &info);
722 fname_from_uuid(st, &info, nbuf, ':');
723 printf(" UUID : %s\n", nbuf + 5);
724 sum = __le32_to_cpu(mpb->check_sum);
725 printf(" Checksum : %08x %s\n", sum,
726 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
727 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
728 printf(" Disks : %d\n", mpb->num_disks);
729 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
730 print_imsm_disk(mpb, super->disks->index, reserved);
731 if (super->bbm_log) {
732 struct bbm_log *log = super->bbm_log;
733
734 printf("\n");
735 printf("Bad Block Management Log:\n");
736 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
737 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
738 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
739 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
740 printf(" First Spare : %llx\n",
741 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
742 }
743 for (i = 0; i < mpb->num_raid_devs; i++) {
744 struct mdinfo info;
745 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
746
747 super->current_vol = i;
748 getinfo_super_imsm(st, &info);
749 fname_from_uuid(st, &info, nbuf, ':');
750 print_imsm_dev(dev, nbuf + 5, super->disks->index);
751 }
752 for (i = 0; i < mpb->num_disks; i++) {
753 if (i == super->disks->index)
754 continue;
755 print_imsm_disk(mpb, i, reserved);
756 }
757 }
758
759 static void brief_examine_super_imsm(struct supertype *st, int verbose)
760 {
761 /* We just write a generic IMSM ARRAY entry */
762 struct mdinfo info;
763 char nbuf[64];
764 char nbuf1[64];
765 struct intel_super *super = st->sb;
766 int i;
767
768 if (!super->anchor->num_raid_devs) {
769 printf("ARRAY metadata=imsm\n");
770 return;
771 }
772
773 getinfo_super_imsm(st, &info);
774 fname_from_uuid(st, &info, nbuf, ':');
775 for (i = 0; i < super->anchor->num_raid_devs; i++) {
776 struct imsm_dev *dev = get_imsm_dev(super, i);
777
778 super->current_vol = i;
779 getinfo_super_imsm(st, &info);
780 fname_from_uuid(st, &info, nbuf1, ':');
781 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
782 dev->volume, nbuf + 5, i, nbuf1 + 5);
783 }
784 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
785 }
786
787 static void export_examine_super_imsm(struct supertype *st)
788 {
789 struct intel_super *super = st->sb;
790 struct imsm_super *mpb = super->anchor;
791 struct mdinfo info;
792 char nbuf[64];
793
794 getinfo_super_imsm(st, &info);
795 fname_from_uuid(st, &info, nbuf, ':');
796 printf("MD_METADATA=imsm\n");
797 printf("MD_LEVEL=container\n");
798 printf("MD_UUID=%s\n", nbuf+5);
799 printf("MD_DEVICES=%u\n", mpb->num_disks);
800 }
801
802 static void detail_super_imsm(struct supertype *st, char *homehost)
803 {
804 struct mdinfo info;
805 char nbuf[64];
806
807 getinfo_super_imsm(st, &info);
808 fname_from_uuid(st, &info, nbuf, ':');
809 printf("\n UUID : %s\n", nbuf + 5);
810 }
811
812 static void brief_detail_super_imsm(struct supertype *st)
813 {
814 struct mdinfo info;
815 char nbuf[64];
816 getinfo_super_imsm(st, &info);
817 fname_from_uuid(st, &info, nbuf, ':');
818 printf(" UUID=%s", nbuf + 5);
819 }
820
821 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
822 static void fd2devname(int fd, char *name);
823
824 static int imsm_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
825 {
826 /* dump an unsorted list of devices attached to ahci, as well as
827 * non-connected ports
828 */
829 int hba_len = strlen(hba_path) + 1;
830 struct dirent *ent;
831 DIR *dir;
832 char *path = NULL;
833 int err = 0;
834 unsigned long port_mask = (1 << port_count) - 1;
835
836 if (port_count > sizeof(port_mask) * 8) {
837 if (verbose)
838 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
839 return 2;
840 }
841
842 /* scroll through /sys/dev/block looking for devices attached to
843 * this hba
844 */
845 dir = opendir("/sys/dev/block");
846 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
847 int fd;
848 char model[64];
849 char vendor[64];
850 char buf[1024];
851 int major, minor;
852 char *device;
853 char *c;
854 int port;
855 int type;
856
857 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
858 continue;
859 path = devt_to_devpath(makedev(major, minor));
860 if (!path)
861 continue;
862 if (!path_attached_to_hba(path, hba_path)) {
863 free(path);
864 path = NULL;
865 continue;
866 }
867
868 /* retrieve the scsi device type */
869 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
870 if (verbose)
871 fprintf(stderr, Name ": failed to allocate 'device'\n");
872 err = 2;
873 break;
874 }
875 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
876 if (load_sys(device, buf) != 0) {
877 if (verbose)
878 fprintf(stderr, Name ": failed to read device type for %s\n",
879 path);
880 err = 2;
881 free(device);
882 break;
883 }
884 type = strtoul(buf, NULL, 10);
885
886 /* if it's not a disk print the vendor and model */
887 if (!(type == 0 || type == 7 || type == 14)) {
888 vendor[0] = '\0';
889 model[0] = '\0';
890 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
891 if (load_sys(device, buf) == 0) {
892 strncpy(vendor, buf, sizeof(vendor));
893 vendor[sizeof(vendor) - 1] = '\0';
894 c = (char *) &vendor[sizeof(vendor) - 1];
895 while (isspace(*c) || *c == '\0')
896 *c-- = '\0';
897
898 }
899 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
900 if (load_sys(device, buf) == 0) {
901 strncpy(model, buf, sizeof(model));
902 model[sizeof(model) - 1] = '\0';
903 c = (char *) &model[sizeof(model) - 1];
904 while (isspace(*c) || *c == '\0')
905 *c-- = '\0';
906 }
907
908 if (vendor[0] && model[0])
909 sprintf(buf, "%.64s %.64s", vendor, model);
910 else
911 switch (type) { /* numbers from hald/linux/device.c */
912 case 1: sprintf(buf, "tape"); break;
913 case 2: sprintf(buf, "printer"); break;
914 case 3: sprintf(buf, "processor"); break;
915 case 4:
916 case 5: sprintf(buf, "cdrom"); break;
917 case 6: sprintf(buf, "scanner"); break;
918 case 8: sprintf(buf, "media_changer"); break;
919 case 9: sprintf(buf, "comm"); break;
920 case 12: sprintf(buf, "raid"); break;
921 default: sprintf(buf, "unknown");
922 }
923 } else
924 buf[0] = '\0';
925 free(device);
926
927 /* chop device path to 'host%d' and calculate the port number */
928 c = strchr(&path[hba_len], '/');
929 *c = '\0';
930 if (sscanf(&path[hba_len], "host%d", &port) == 1)
931 port -= host_base;
932 else {
933 if (verbose) {
934 *c = '/'; /* repair the full string */
935 fprintf(stderr, Name ": failed to determine port number for %s\n",
936 path);
937 }
938 err = 2;
939 break;
940 }
941
942 /* mark this port as used */
943 port_mask &= ~(1 << port);
944
945 /* print out the device information */
946 if (buf[0]) {
947 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
948 continue;
949 }
950
951 fd = dev_open(ent->d_name, O_RDONLY);
952 if (fd < 0)
953 printf(" Port%d : - disk info unavailable -\n", port);
954 else {
955 fd2devname(fd, buf);
956 printf(" Port%d : %s", port, buf);
957 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
958 printf(" (%s)\n", buf);
959 else
960 printf("()\n");
961 }
962 close(fd);
963 free(path);
964 path = NULL;
965 }
966 if (path)
967 free(path);
968 if (dir)
969 closedir(dir);
970 if (err == 0) {
971 int i;
972
973 for (i = 0; i < port_count; i++)
974 if (port_mask & (1 << i))
975 printf(" Port%d : - no device attached -\n", i);
976 }
977
978 return err;
979 }
980
981 static int detail_platform_imsm(int verbose, int enumerate_only)
982 {
983 /* There are two components to imsm platform support, the ahci SATA
984 * controller and the option-rom. To find the SATA controller we
985 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
986 * controller with the Intel vendor id is present. This approach
987 * allows mdadm to leverage the kernel's ahci detection logic, with the
988 * caveat that if ahci.ko is not loaded mdadm will not be able to
989 * detect platform raid capabilities. The option-rom resides in a
990 * platform "Adapter ROM". We scan for its signature to retrieve the
991 * platform capabilities. If raid support is disabled in the BIOS the
992 * option-rom capability structure will not be available.
993 */
994 const struct imsm_orom *orom;
995 struct sys_dev *list, *hba;
996 DIR *dir;
997 struct dirent *ent;
998 const char *hba_path;
999 int host_base = 0;
1000 int port_count = 0;
1001
1002 if (enumerate_only) {
1003 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1004 return 0;
1005 return 2;
1006 }
1007
1008 list = find_driver_devices("pci", "ahci");
1009 for (hba = list; hba; hba = hba->next)
1010 if (devpath_to_vendor(hba->path) == 0x8086)
1011 break;
1012
1013 if (!hba) {
1014 if (verbose)
1015 fprintf(stderr, Name ": unable to find active ahci controller\n");
1016 free_sys_dev(&list);
1017 return 2;
1018 } else if (verbose)
1019 fprintf(stderr, Name ": found Intel SATA AHCI Controller\n");
1020 hba_path = hba->path;
1021 hba->path = NULL;
1022 free_sys_dev(&list);
1023
1024 orom = find_imsm_orom();
1025 if (!orom) {
1026 if (verbose)
1027 fprintf(stderr, Name ": imsm option-rom not found\n");
1028 return 2;
1029 }
1030
1031 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1032 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1033 orom->hotfix_ver, orom->build);
1034 printf(" RAID Levels :%s%s%s%s%s\n",
1035 imsm_orom_has_raid0(orom) ? " raid0" : "",
1036 imsm_orom_has_raid1(orom) ? " raid1" : "",
1037 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1038 imsm_orom_has_raid10(orom) ? " raid10" : "",
1039 imsm_orom_has_raid5(orom) ? " raid5" : "");
1040 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1041 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1042 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1043 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1044 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1045 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1046 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1047 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1048 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1049 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1050 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1051 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1052 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1053 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1054 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1055 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1056 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1057 printf(" Max Disks : %d\n", orom->tds);
1058 printf(" Max Volumes : %d\n", orom->vpa);
1059 printf(" I/O Controller : %s\n", hba_path);
1060
1061 /* find the smallest scsi host number to determine a port number base */
1062 dir = opendir(hba_path);
1063 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1064 int host;
1065
1066 if (sscanf(ent->d_name, "host%d", &host) != 1)
1067 continue;
1068 if (port_count == 0)
1069 host_base = host;
1070 else if (host < host_base)
1071 host_base = host;
1072
1073 if (host + 1 > port_count + host_base)
1074 port_count = host + 1 - host_base;
1075
1076 }
1077 if (dir)
1078 closedir(dir);
1079
1080 if (!port_count || imsm_enumerate_ports(hba_path, port_count,
1081 host_base, verbose) != 0) {
1082 if (verbose)
1083 fprintf(stderr, Name ": failed to enumerate ports\n");
1084 return 2;
1085 }
1086
1087 return 0;
1088 }
1089 #endif
1090
1091 static int match_home_imsm(struct supertype *st, char *homehost)
1092 {
1093 /* the imsm metadata format does not specify any host
1094 * identification information. We return -1 since we can never
1095 * confirm nor deny whether a given array is "meant" for this
1096 * host. We rely on compare_super and the 'family_num' fields to
1097 * exclude member disks that do not belong, and we rely on
1098 * mdadm.conf to specify the arrays that should be assembled.
1099 * Auto-assembly may still pick up "foreign" arrays.
1100 */
1101
1102 return -1;
1103 }
1104
1105 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1106 {
1107 /* The uuid returned here is used for:
1108 * uuid to put into bitmap file (Create, Grow)
1109 * uuid for backup header when saving critical section (Grow)
1110 * comparing uuids when re-adding a device into an array
1111 * In these cases the uuid required is that of the data-array,
1112 * not the device-set.
1113 * uuid to recognise same set when adding a missing device back
1114 * to an array. This is a uuid for the device-set.
1115 *
1116 * For each of these we can make do with a truncated
1117 * or hashed uuid rather than the original, as long as
1118 * everyone agrees.
1119 * In each case the uuid required is that of the data-array,
1120 * not the device-set.
1121 */
1122 /* imsm does not track uuid's so we synthesis one using sha1 on
1123 * - The signature (Which is constant for all imsm array, but no matter)
1124 * - the orig_family_num of the container
1125 * - the index number of the volume
1126 * - the 'serial' number of the volume.
1127 * Hopefully these are all constant.
1128 */
1129 struct intel_super *super = st->sb;
1130
1131 char buf[20];
1132 struct sha1_ctx ctx;
1133 struct imsm_dev *dev = NULL;
1134 __u32 family_num;
1135
1136 /* some mdadm versions failed to set ->orig_family_num, in which
1137 * case fall back to ->family_num. orig_family_num will be
1138 * fixed up with the first metadata update.
1139 */
1140 family_num = super->anchor->orig_family_num;
1141 if (family_num == 0)
1142 family_num = super->anchor->family_num;
1143 sha1_init_ctx(&ctx);
1144 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1145 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1146 if (super->current_vol >= 0)
1147 dev = get_imsm_dev(super, super->current_vol);
1148 if (dev) {
1149 __u32 vol = super->current_vol;
1150 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1151 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1152 }
1153 sha1_finish_ctx(&ctx, buf);
1154 memcpy(uuid, buf, 4*4);
1155 }
1156
1157 #if 0
1158 static void
1159 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1160 {
1161 __u8 *v = get_imsm_version(mpb);
1162 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1163 char major[] = { 0, 0, 0 };
1164 char minor[] = { 0 ,0, 0 };
1165 char patch[] = { 0, 0, 0 };
1166 char *ver_parse[] = { major, minor, patch };
1167 int i, j;
1168
1169 i = j = 0;
1170 while (*v != '\0' && v < end) {
1171 if (*v != '.' && j < 2)
1172 ver_parse[i][j++] = *v;
1173 else {
1174 i++;
1175 j = 0;
1176 }
1177 v++;
1178 }
1179
1180 *m = strtol(minor, NULL, 0);
1181 *p = strtol(patch, NULL, 0);
1182 }
1183 #endif
1184
1185 static int imsm_level_to_layout(int level)
1186 {
1187 switch (level) {
1188 case 0:
1189 case 1:
1190 return 0;
1191 case 5:
1192 case 6:
1193 return ALGORITHM_LEFT_ASYMMETRIC;
1194 case 10:
1195 return 0x102;
1196 }
1197 return UnSet;
1198 }
1199
1200 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
1201 {
1202 struct intel_super *super = st->sb;
1203 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1204 struct imsm_map *map = get_imsm_map(dev, 0);
1205 struct dl *dl;
1206
1207 for (dl = super->disks; dl; dl = dl->next)
1208 if (dl->raiddisk == info->disk.raid_disk)
1209 break;
1210 info->container_member = super->current_vol;
1211 info->array.raid_disks = map->num_members;
1212 info->array.level = get_imsm_raid_level(map);
1213 info->array.layout = imsm_level_to_layout(info->array.level);
1214 info->array.md_minor = -1;
1215 info->array.ctime = 0;
1216 info->array.utime = 0;
1217 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1218 info->array.state = !dev->vol.dirty;
1219 info->custom_array_size = __le32_to_cpu(dev->size_high);
1220 info->custom_array_size <<= 32;
1221 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1222
1223 info->disk.major = 0;
1224 info->disk.minor = 0;
1225 if (dl) {
1226 info->disk.major = dl->major;
1227 info->disk.minor = dl->minor;
1228 }
1229
1230 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
1231 info->component_size = __le32_to_cpu(map->blocks_per_member);
1232 memset(info->uuid, 0, sizeof(info->uuid));
1233
1234 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
1235 info->resync_start = 0;
1236 else if (dev->vol.migr_state)
1237 /* FIXME add curr_migr_unit to resync_start conversion */
1238 info->resync_start = 0;
1239 else
1240 info->resync_start = ~0ULL;
1241
1242 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1243 info->name[MAX_RAID_SERIAL_LEN] = 0;
1244
1245 info->array.major_version = -1;
1246 info->array.minor_version = -2;
1247 sprintf(info->text_version, "/%s/%d",
1248 devnum2devname(st->container_dev),
1249 info->container_member);
1250 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1251 uuid_from_super_imsm(st, info->uuid);
1252 }
1253
1254 /* check the config file to see if we can return a real uuid for this spare */
1255 static void fixup_container_spare_uuid(struct mdinfo *inf)
1256 {
1257 struct mddev_ident_s *array_list;
1258
1259 if (inf->array.level != LEVEL_CONTAINER ||
1260 memcmp(inf->uuid, uuid_match_any, sizeof(int[4])) != 0)
1261 return;
1262
1263 array_list = conf_get_ident(NULL);
1264
1265 for (; array_list; array_list = array_list->next) {
1266 if (array_list->uuid_set) {
1267 struct supertype *_sst; /* spare supertype */
1268 struct supertype *_cst; /* container supertype */
1269
1270 _cst = array_list->st;
1271 if (_cst)
1272 _sst = _cst->ss->match_metadata_desc(inf->text_version);
1273 else
1274 _sst = NULL;
1275
1276 if (_sst) {
1277 memcpy(inf->uuid, array_list->uuid, sizeof(int[4]));
1278 free(_sst);
1279 break;
1280 }
1281 }
1282 }
1283 }
1284
1285 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
1286 {
1287 struct intel_super *super = st->sb;
1288 struct imsm_disk *disk;
1289 __u32 s;
1290
1291 if (super->current_vol >= 0) {
1292 getinfo_super_imsm_volume(st, info);
1293 return;
1294 }
1295
1296 /* Set raid_disks to zero so that Assemble will always pull in valid
1297 * spares
1298 */
1299 info->array.raid_disks = 0;
1300 info->array.level = LEVEL_CONTAINER;
1301 info->array.layout = 0;
1302 info->array.md_minor = -1;
1303 info->array.ctime = 0; /* N/A for imsm */
1304 info->array.utime = 0;
1305 info->array.chunk_size = 0;
1306
1307 info->disk.major = 0;
1308 info->disk.minor = 0;
1309 info->disk.raid_disk = -1;
1310 info->reshape_active = 0;
1311 info->array.major_version = -1;
1312 info->array.minor_version = -2;
1313 strcpy(info->text_version, "imsm");
1314 info->safe_mode_delay = 0;
1315 info->disk.number = -1;
1316 info->disk.state = 0;
1317 info->name[0] = 0;
1318
1319 if (super->disks) {
1320 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1321
1322 disk = &super->disks->disk;
1323 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1324 info->component_size = reserved;
1325 s = disk->status;
1326 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
1327 /* we don't change info->disk.raid_disk here because
1328 * this state will be finalized in mdmon after we have
1329 * found the 'most fresh' version of the metadata
1330 */
1331 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
1332 info->disk.state |= s & SPARE_DISK ? 0 : (1 << MD_DISK_SYNC);
1333 }
1334
1335 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1336 * ->compare_super may have updated the 'num_raid_devs' field for spares
1337 */
1338 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
1339 uuid_from_super_imsm(st, info->uuid);
1340 else {
1341 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
1342 fixup_container_spare_uuid(info);
1343 }
1344 }
1345
1346 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
1347 char *update, char *devname, int verbose,
1348 int uuid_set, char *homehost)
1349 {
1350 /* FIXME */
1351
1352 /* For 'assemble' and 'force' we need to return non-zero if any
1353 * change was made. For others, the return value is ignored.
1354 * Update options are:
1355 * force-one : This device looks a bit old but needs to be included,
1356 * update age info appropriately.
1357 * assemble: clear any 'faulty' flag to allow this device to
1358 * be assembled.
1359 * force-array: Array is degraded but being forced, mark it clean
1360 * if that will be needed to assemble it.
1361 *
1362 * newdev: not used ????
1363 * grow: Array has gained a new device - this is currently for
1364 * linear only
1365 * resync: mark as dirty so a resync will happen.
1366 * name: update the name - preserving the homehost
1367 *
1368 * Following are not relevant for this imsm:
1369 * sparc2.2 : update from old dodgey metadata
1370 * super-minor: change the preferred_minor number
1371 * summaries: update redundant counters.
1372 * uuid: Change the uuid of the array to match watch is given
1373 * homehost: update the recorded homehost
1374 * _reshape_progress: record new reshape_progress position.
1375 */
1376 int rv = 0;
1377 //struct intel_super *super = st->sb;
1378 //struct imsm_super *mpb = super->mpb;
1379
1380 if (strcmp(update, "grow") == 0) {
1381 }
1382 if (strcmp(update, "resync") == 0) {
1383 /* dev->vol.dirty = 1; */
1384 }
1385
1386 /* IMSM has no concept of UUID or homehost */
1387
1388 return rv;
1389 }
1390
1391 static size_t disks_to_mpb_size(int disks)
1392 {
1393 size_t size;
1394
1395 size = sizeof(struct imsm_super);
1396 size += (disks - 1) * sizeof(struct imsm_disk);
1397 size += 2 * sizeof(struct imsm_dev);
1398 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
1399 size += (4 - 2) * sizeof(struct imsm_map);
1400 /* 4 possible disk_ord_tbl's */
1401 size += 4 * (disks - 1) * sizeof(__u32);
1402
1403 return size;
1404 }
1405
1406 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
1407 {
1408 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
1409 return 0;
1410
1411 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
1412 }
1413
1414 static void free_devlist(struct intel_super *super)
1415 {
1416 struct intel_dev *dv;
1417
1418 while (super->devlist) {
1419 dv = super->devlist->next;
1420 free(super->devlist->dev);
1421 free(super->devlist);
1422 super->devlist = dv;
1423 }
1424 }
1425
1426 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1427 {
1428 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1429 }
1430
1431 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
1432 {
1433 /*
1434 * return:
1435 * 0 same, or first was empty, and second was copied
1436 * 1 second had wrong number
1437 * 2 wrong uuid
1438 * 3 wrong other info
1439 */
1440 struct intel_super *first = st->sb;
1441 struct intel_super *sec = tst->sb;
1442
1443 if (!first) {
1444 st->sb = tst->sb;
1445 tst->sb = NULL;
1446 return 0;
1447 }
1448
1449 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
1450 return 3;
1451
1452 /* if an anchor does not have num_raid_devs set then it is a free
1453 * floating spare
1454 */
1455 if (first->anchor->num_raid_devs > 0 &&
1456 sec->anchor->num_raid_devs > 0) {
1457 if (first->anchor->orig_family_num != sec->anchor->orig_family_num ||
1458 first->anchor->family_num != sec->anchor->family_num)
1459 return 3;
1460 }
1461
1462 /* if 'first' is a spare promote it to a populated mpb with sec's
1463 * family number
1464 */
1465 if (first->anchor->num_raid_devs == 0 &&
1466 sec->anchor->num_raid_devs > 0) {
1467 int i;
1468 struct intel_dev *dv;
1469 struct imsm_dev *dev;
1470
1471 /* we need to copy raid device info from sec if an allocation
1472 * fails here we don't associate the spare
1473 */
1474 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
1475 dv = malloc(sizeof(*dv));
1476 if (!dv)
1477 break;
1478 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
1479 if (!dev) {
1480 free(dv);
1481 break;
1482 }
1483 dv->dev = dev;
1484 dv->index = i;
1485 dv->next = first->devlist;
1486 first->devlist = dv;
1487 }
1488 if (i <= sec->anchor->num_raid_devs) {
1489 /* allocation failure */
1490 free_devlist(first);
1491 fprintf(stderr, "imsm: failed to associate spare\n");
1492 return 3;
1493 }
1494 for (i = 0; i < sec->anchor->num_raid_devs; i++)
1495 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
1496
1497 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
1498 first->anchor->orig_family_num = sec->anchor->orig_family_num;
1499 first->anchor->family_num = sec->anchor->family_num;
1500 }
1501
1502 return 0;
1503 }
1504
1505 static void fd2devname(int fd, char *name)
1506 {
1507 struct stat st;
1508 char path[256];
1509 char dname[100];
1510 char *nm;
1511 int rv;
1512
1513 name[0] = '\0';
1514 if (fstat(fd, &st) != 0)
1515 return;
1516 sprintf(path, "/sys/dev/block/%d:%d",
1517 major(st.st_rdev), minor(st.st_rdev));
1518
1519 rv = readlink(path, dname, sizeof(dname));
1520 if (rv <= 0)
1521 return;
1522
1523 dname[rv] = '\0';
1524 nm = strrchr(dname, '/');
1525 nm++;
1526 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1527 }
1528
1529
1530 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1531
1532 static int imsm_read_serial(int fd, char *devname,
1533 __u8 serial[MAX_RAID_SERIAL_LEN])
1534 {
1535 unsigned char scsi_serial[255];
1536 int rv;
1537 int rsp_len;
1538 int len;
1539 char *dest;
1540 char *src;
1541 char *rsp_buf;
1542 int i;
1543
1544 memset(scsi_serial, 0, sizeof(scsi_serial));
1545
1546 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1547
1548 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
1549 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1550 fd2devname(fd, (char *) serial);
1551 return 0;
1552 }
1553
1554 if (rv != 0) {
1555 if (devname)
1556 fprintf(stderr,
1557 Name ": Failed to retrieve serial for %s\n",
1558 devname);
1559 return rv;
1560 }
1561
1562 rsp_len = scsi_serial[3];
1563 if (!rsp_len) {
1564 if (devname)
1565 fprintf(stderr,
1566 Name ": Failed to retrieve serial for %s\n",
1567 devname);
1568 return 2;
1569 }
1570 rsp_buf = (char *) &scsi_serial[4];
1571
1572 /* trim all whitespace and non-printable characters and convert
1573 * ':' to ';'
1574 */
1575 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
1576 src = &rsp_buf[i];
1577 if (*src > 0x20) {
1578 /* ':' is reserved for use in placeholder serial
1579 * numbers for missing disks
1580 */
1581 if (*src == ':')
1582 *dest++ = ';';
1583 else
1584 *dest++ = *src;
1585 }
1586 }
1587 len = dest - rsp_buf;
1588 dest = rsp_buf;
1589
1590 /* truncate leading characters */
1591 if (len > MAX_RAID_SERIAL_LEN) {
1592 dest += len - MAX_RAID_SERIAL_LEN;
1593 len = MAX_RAID_SERIAL_LEN;
1594 }
1595
1596 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1597 memcpy(serial, dest, len);
1598
1599 return 0;
1600 }
1601
1602 static int serialcmp(__u8 *s1, __u8 *s2)
1603 {
1604 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1605 }
1606
1607 static void serialcpy(__u8 *dest, __u8 *src)
1608 {
1609 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1610 }
1611
1612 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
1613 {
1614 struct dl *dl;
1615
1616 for (dl = super->disks; dl; dl = dl->next)
1617 if (serialcmp(dl->serial, serial) == 0)
1618 break;
1619
1620 return dl;
1621 }
1622
1623 static int
1624 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1625 {
1626 struct dl *dl;
1627 struct stat stb;
1628 int rv;
1629 int i;
1630 int alloc = 1;
1631 __u8 serial[MAX_RAID_SERIAL_LEN];
1632
1633 rv = imsm_read_serial(fd, devname, serial);
1634
1635 if (rv != 0)
1636 return 2;
1637
1638 /* check if this is a disk we have seen before. it may be a spare in
1639 * super->disks while the current anchor believes it is a raid member,
1640 * check if we need to update dl->index
1641 */
1642 dl = serial_to_dl(serial, super);
1643 if (!dl)
1644 dl = malloc(sizeof(*dl));
1645 else
1646 alloc = 0;
1647
1648 if (!dl) {
1649 if (devname)
1650 fprintf(stderr,
1651 Name ": failed to allocate disk buffer for %s\n",
1652 devname);
1653 return 2;
1654 }
1655
1656 if (alloc) {
1657 fstat(fd, &stb);
1658 dl->major = major(stb.st_rdev);
1659 dl->minor = minor(stb.st_rdev);
1660 dl->next = super->disks;
1661 dl->fd = keep_fd ? fd : -1;
1662 dl->devname = devname ? strdup(devname) : NULL;
1663 serialcpy(dl->serial, serial);
1664 dl->index = -2;
1665 dl->e = NULL;
1666 } else if (keep_fd) {
1667 close(dl->fd);
1668 dl->fd = fd;
1669 }
1670
1671 /* look up this disk's index in the current anchor */
1672 for (i = 0; i < super->anchor->num_disks; i++) {
1673 struct imsm_disk *disk_iter;
1674
1675 disk_iter = __get_imsm_disk(super->anchor, i);
1676
1677 if (serialcmp(disk_iter->serial, dl->serial) == 0) {
1678 dl->disk = *disk_iter;
1679 /* only set index on disks that are a member of a
1680 * populated contianer, i.e. one with raid_devs
1681 */
1682 if (dl->disk.status & FAILED_DISK)
1683 dl->index = -2;
1684 else if (dl->disk.status & SPARE_DISK)
1685 dl->index = -1;
1686 else
1687 dl->index = i;
1688
1689 break;
1690 }
1691 }
1692
1693 /* no match, maybe a stale failed drive */
1694 if (i == super->anchor->num_disks && dl->index >= 0) {
1695 dl->disk = *__get_imsm_disk(super->anchor, dl->index);
1696 if (dl->disk.status & FAILED_DISK)
1697 dl->index = -2;
1698 }
1699
1700 if (alloc)
1701 super->disks = dl;
1702
1703 return 0;
1704 }
1705
1706 #ifndef MDASSEMBLE
1707 /* When migrating map0 contains the 'destination' state while map1
1708 * contains the current state. When not migrating map0 contains the
1709 * current state. This routine assumes that map[0].map_state is set to
1710 * the current array state before being called.
1711 *
1712 * Migration is indicated by one of the following states
1713 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1714 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
1715 * map1state=unitialized)
1716 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
1717 * map1state=normal)
1718 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
1719 * map1state=degraded)
1720 */
1721 static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
1722 {
1723 struct imsm_map *dest;
1724 struct imsm_map *src = get_imsm_map(dev, 0);
1725
1726 dev->vol.migr_state = 1;
1727 set_migr_type(dev, migr_type);
1728 dev->vol.curr_migr_unit = 0;
1729 dest = get_imsm_map(dev, 1);
1730
1731 /* duplicate and then set the target end state in map[0] */
1732 memcpy(dest, src, sizeof_imsm_map(src));
1733 if (migr_type == MIGR_REBUILD) {
1734 __u32 ord;
1735 int i;
1736
1737 for (i = 0; i < src->num_members; i++) {
1738 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
1739 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
1740 }
1741 }
1742
1743 src->map_state = to_state;
1744 }
1745
1746 static void end_migration(struct imsm_dev *dev, __u8 map_state)
1747 {
1748 struct imsm_map *map = get_imsm_map(dev, 0);
1749 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
1750 int i;
1751
1752 /* merge any IMSM_ORD_REBUILD bits that were not successfully
1753 * completed in the last migration.
1754 *
1755 * FIXME add support for online capacity expansion and
1756 * raid-level-migration
1757 */
1758 for (i = 0; i < prev->num_members; i++)
1759 map->disk_ord_tbl[i] |= prev->disk_ord_tbl[i];
1760
1761 dev->vol.migr_state = 0;
1762 dev->vol.curr_migr_unit = 0;
1763 map->map_state = map_state;
1764 }
1765 #endif
1766
1767 static int parse_raid_devices(struct intel_super *super)
1768 {
1769 int i;
1770 struct imsm_dev *dev_new;
1771 size_t len, len_migr;
1772 size_t space_needed = 0;
1773 struct imsm_super *mpb = super->anchor;
1774
1775 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1776 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
1777 struct intel_dev *dv;
1778
1779 len = sizeof_imsm_dev(dev_iter, 0);
1780 len_migr = sizeof_imsm_dev(dev_iter, 1);
1781 if (len_migr > len)
1782 space_needed += len_migr - len;
1783
1784 dv = malloc(sizeof(*dv));
1785 if (!dv)
1786 return 1;
1787 dev_new = malloc(len_migr);
1788 if (!dev_new) {
1789 free(dv);
1790 return 1;
1791 }
1792 imsm_copy_dev(dev_new, dev_iter);
1793 dv->dev = dev_new;
1794 dv->index = i;
1795 dv->next = super->devlist;
1796 super->devlist = dv;
1797 }
1798
1799 /* ensure that super->buf is large enough when all raid devices
1800 * are migrating
1801 */
1802 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1803 void *buf;
1804
1805 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1806 if (posix_memalign(&buf, 512, len) != 0)
1807 return 1;
1808
1809 memcpy(buf, super->buf, super->len);
1810 memset(buf + super->len, 0, len - super->len);
1811 free(super->buf);
1812 super->buf = buf;
1813 super->len = len;
1814 }
1815
1816 return 0;
1817 }
1818
1819 /* retrieve a pointer to the bbm log which starts after all raid devices */
1820 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1821 {
1822 void *ptr = NULL;
1823
1824 if (__le32_to_cpu(mpb->bbm_log_size)) {
1825 ptr = mpb;
1826 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1827 }
1828
1829 return ptr;
1830 }
1831
1832 static void __free_imsm(struct intel_super *super, int free_disks);
1833
1834 /* load_imsm_mpb - read matrix metadata
1835 * allocates super->mpb to be freed by free_super
1836 */
1837 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1838 {
1839 unsigned long long dsize;
1840 unsigned long long sectors;
1841 struct stat;
1842 struct imsm_super *anchor;
1843 __u32 check_sum;
1844 int rc;
1845
1846 get_dev_size(fd, NULL, &dsize);
1847
1848 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1849 if (devname)
1850 fprintf(stderr,
1851 Name ": Cannot seek to anchor block on %s: %s\n",
1852 devname, strerror(errno));
1853 return 1;
1854 }
1855
1856 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1857 if (devname)
1858 fprintf(stderr,
1859 Name ": Failed to allocate imsm anchor buffer"
1860 " on %s\n", devname);
1861 return 1;
1862 }
1863 if (read(fd, anchor, 512) != 512) {
1864 if (devname)
1865 fprintf(stderr,
1866 Name ": Cannot read anchor block on %s: %s\n",
1867 devname, strerror(errno));
1868 free(anchor);
1869 return 1;
1870 }
1871
1872 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1873 if (devname)
1874 fprintf(stderr,
1875 Name ": no IMSM anchor on %s\n", devname);
1876 free(anchor);
1877 return 2;
1878 }
1879
1880 __free_imsm(super, 0);
1881 super->len = ROUND_UP(anchor->mpb_size, 512);
1882 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1883 if (devname)
1884 fprintf(stderr,
1885 Name ": unable to allocate %zu byte mpb buffer\n",
1886 super->len);
1887 free(anchor);
1888 return 2;
1889 }
1890 memcpy(super->buf, anchor, 512);
1891
1892 sectors = mpb_sectors(anchor) - 1;
1893 free(anchor);
1894 if (!sectors) {
1895 check_sum = __gen_imsm_checksum(super->anchor);
1896 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1897 if (devname)
1898 fprintf(stderr,
1899 Name ": IMSM checksum %x != %x on %s\n",
1900 check_sum,
1901 __le32_to_cpu(super->anchor->check_sum),
1902 devname);
1903 return 2;
1904 }
1905
1906 rc = load_imsm_disk(fd, super, devname, 0);
1907 if (rc == 0)
1908 rc = parse_raid_devices(super);
1909 return rc;
1910 }
1911
1912 /* read the extended mpb */
1913 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1914 if (devname)
1915 fprintf(stderr,
1916 Name ": Cannot seek to extended mpb on %s: %s\n",
1917 devname, strerror(errno));
1918 return 1;
1919 }
1920
1921 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1922 if (devname)
1923 fprintf(stderr,
1924 Name ": Cannot read extended mpb on %s: %s\n",
1925 devname, strerror(errno));
1926 return 2;
1927 }
1928
1929 check_sum = __gen_imsm_checksum(super->anchor);
1930 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1931 if (devname)
1932 fprintf(stderr,
1933 Name ": IMSM checksum %x != %x on %s\n",
1934 check_sum, __le32_to_cpu(super->anchor->check_sum),
1935 devname);
1936 return 3;
1937 }
1938
1939 /* FIXME the BBM log is disk specific so we cannot use this global
1940 * buffer for all disks. Ok for now since we only look at the global
1941 * bbm_log_size parameter to gate assembly
1942 */
1943 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1944
1945 rc = load_imsm_disk(fd, super, devname, 0);
1946 if (rc == 0)
1947 rc = parse_raid_devices(super);
1948
1949 return rc;
1950 }
1951
1952 static void __free_imsm_disk(struct dl *d)
1953 {
1954 if (d->fd >= 0)
1955 close(d->fd);
1956 if (d->devname)
1957 free(d->devname);
1958 if (d->e)
1959 free(d->e);
1960 free(d);
1961
1962 }
1963 static void free_imsm_disks(struct intel_super *super)
1964 {
1965 struct dl *d;
1966
1967 while (super->disks) {
1968 d = super->disks;
1969 super->disks = d->next;
1970 __free_imsm_disk(d);
1971 }
1972 while (super->missing) {
1973 d = super->missing;
1974 super->missing = d->next;
1975 __free_imsm_disk(d);
1976 }
1977
1978 }
1979
1980 /* free all the pieces hanging off of a super pointer */
1981 static void __free_imsm(struct intel_super *super, int free_disks)
1982 {
1983 if (super->buf) {
1984 free(super->buf);
1985 super->buf = NULL;
1986 }
1987 if (free_disks)
1988 free_imsm_disks(super);
1989 free_devlist(super);
1990 if (super->hba) {
1991 free((void *) super->hba);
1992 super->hba = NULL;
1993 }
1994 }
1995
1996 static void free_imsm(struct intel_super *super)
1997 {
1998 __free_imsm(super, 1);
1999 free(super);
2000 }
2001
2002 static void free_super_imsm(struct supertype *st)
2003 {
2004 struct intel_super *super = st->sb;
2005
2006 if (!super)
2007 return;
2008
2009 free_imsm(super);
2010 st->sb = NULL;
2011 }
2012
2013 static struct intel_super *alloc_super(int creating_imsm)
2014 {
2015 struct intel_super *super = malloc(sizeof(*super));
2016
2017 if (super) {
2018 memset(super, 0, sizeof(*super));
2019 super->creating_imsm = creating_imsm;
2020 super->current_vol = -1;
2021 super->create_offset = ~((__u32 ) 0);
2022 if (!check_env("IMSM_NO_PLATFORM"))
2023 super->orom = find_imsm_orom();
2024 if (super->orom && !check_env("IMSM_TEST_OROM")) {
2025 struct sys_dev *list, *ent;
2026
2027 /* find the first intel ahci controller */
2028 list = find_driver_devices("pci", "ahci");
2029 for (ent = list; ent; ent = ent->next)
2030 if (devpath_to_vendor(ent->path) == 0x8086)
2031 break;
2032 if (ent) {
2033 super->hba = ent->path;
2034 ent->path = NULL;
2035 }
2036 free_sys_dev(&list);
2037 }
2038 }
2039
2040 return super;
2041 }
2042
2043 #ifndef MDASSEMBLE
2044 /* find_missing - helper routine for load_super_imsm_all that identifies
2045 * disks that have disappeared from the system. This routine relies on
2046 * the mpb being uptodate, which it is at load time.
2047 */
2048 static int find_missing(struct intel_super *super)
2049 {
2050 int i;
2051 struct imsm_super *mpb = super->anchor;
2052 struct dl *dl;
2053 struct imsm_disk *disk;
2054
2055 for (i = 0; i < mpb->num_disks; i++) {
2056 disk = __get_imsm_disk(mpb, i);
2057 dl = serial_to_dl(disk->serial, super);
2058 if (dl)
2059 continue;
2060
2061 dl = malloc(sizeof(*dl));
2062 if (!dl)
2063 return 1;
2064 dl->major = 0;
2065 dl->minor = 0;
2066 dl->fd = -1;
2067 dl->devname = strdup("missing");
2068 dl->index = i;
2069 serialcpy(dl->serial, disk->serial);
2070 dl->disk = *disk;
2071 dl->e = NULL;
2072 dl->next = super->missing;
2073 super->missing = dl;
2074 }
2075
2076 return 0;
2077 }
2078
2079 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
2080 char *devname, int keep_fd)
2081 {
2082 struct mdinfo *sra;
2083 struct intel_super *super;
2084 struct mdinfo *sd, *best = NULL;
2085 __u32 bestgen = 0;
2086 __u32 gen;
2087 char nm[20];
2088 int dfd;
2089 int rv;
2090 int devnum = fd2devnum(fd);
2091 int retry;
2092 enum sysfs_read_flags flags;
2093
2094 flags = GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE;
2095 if (mdmon_running(devnum))
2096 flags |= SKIP_GONE_DEVS;
2097
2098 /* check if 'fd' an opened container */
2099 sra = sysfs_read(fd, 0, flags);
2100 if (!sra)
2101 return 1;
2102
2103 if (sra->array.major_version != -1 ||
2104 sra->array.minor_version != -2 ||
2105 strcmp(sra->text_version, "imsm") != 0)
2106 return 1;
2107
2108 super = alloc_super(0);
2109 if (!super)
2110 return 1;
2111
2112 /* find the most up to date disk in this array, skipping spares */
2113 for (sd = sra->devs; sd; sd = sd->next) {
2114 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2115 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
2116 if (dfd < 0) {
2117 free_imsm(super);
2118 return 2;
2119 }
2120 rv = load_imsm_mpb(dfd, super, NULL);
2121
2122 /* retry the load if we might have raced against mdmon */
2123 if (rv == 3 && mdmon_running(devnum))
2124 for (retry = 0; retry < 3; retry++) {
2125 usleep(3000);
2126 rv = load_imsm_mpb(dfd, super, NULL);
2127 if (rv != 3)
2128 break;
2129 }
2130 if (!keep_fd)
2131 close(dfd);
2132 if (rv == 0) {
2133 if (super->anchor->num_raid_devs == 0)
2134 gen = 0;
2135 else
2136 gen = __le32_to_cpu(super->anchor->generation_num);
2137 if (!best || gen > bestgen) {
2138 bestgen = gen;
2139 best = sd;
2140 }
2141 } else {
2142 free_imsm(super);
2143 return rv;
2144 }
2145 }
2146
2147 if (!best) {
2148 free_imsm(super);
2149 return 1;
2150 }
2151
2152 /* load the most up to date anchor */
2153 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
2154 dfd = dev_open(nm, O_RDONLY);
2155 if (dfd < 0) {
2156 free_imsm(super);
2157 return 1;
2158 }
2159 rv = load_imsm_mpb(dfd, super, NULL);
2160 close(dfd);
2161 if (rv != 0) {
2162 free_imsm(super);
2163 return 2;
2164 }
2165
2166 /* re-parse the disk list with the current anchor */
2167 for (sd = sra->devs ; sd ; sd = sd->next) {
2168 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2169 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
2170 if (dfd < 0) {
2171 free_imsm(super);
2172 return 2;
2173 }
2174 load_imsm_disk(dfd, super, NULL, keep_fd);
2175 if (!keep_fd)
2176 close(dfd);
2177 }
2178
2179
2180 if (find_missing(super) != 0) {
2181 free_imsm(super);
2182 return 2;
2183 }
2184
2185 if (st->subarray[0]) {
2186 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2187 super->current_vol = atoi(st->subarray);
2188 else {
2189 free_imsm(super);
2190 return 1;
2191 }
2192 }
2193
2194 *sbp = super;
2195 st->container_dev = devnum;
2196 if (st->ss == NULL) {
2197 st->ss = &super_imsm;
2198 st->minor_version = 0;
2199 st->max_devs = IMSM_MAX_DEVICES;
2200 }
2201 st->loaded_container = 1;
2202
2203 return 0;
2204 }
2205 #endif
2206
2207 static int load_super_imsm(struct supertype *st, int fd, char *devname)
2208 {
2209 struct intel_super *super;
2210 int rv;
2211
2212 #ifndef MDASSEMBLE
2213 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
2214 return 0;
2215 #endif
2216
2217 free_super_imsm(st);
2218
2219 super = alloc_super(0);
2220 if (!super) {
2221 fprintf(stderr,
2222 Name ": malloc of %zu failed.\n",
2223 sizeof(*super));
2224 return 1;
2225 }
2226
2227 rv = load_imsm_mpb(fd, super, devname);
2228
2229 if (rv) {
2230 if (devname)
2231 fprintf(stderr,
2232 Name ": Failed to load all information "
2233 "sections on %s\n", devname);
2234 free_imsm(super);
2235 return rv;
2236 }
2237
2238 if (st->subarray[0]) {
2239 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2240 super->current_vol = atoi(st->subarray);
2241 else {
2242 free_imsm(super);
2243 return 1;
2244 }
2245 }
2246
2247 st->sb = super;
2248 if (st->ss == NULL) {
2249 st->ss = &super_imsm;
2250 st->minor_version = 0;
2251 st->max_devs = IMSM_MAX_DEVICES;
2252 }
2253 st->loaded_container = 0;
2254
2255 return 0;
2256 }
2257
2258 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
2259 {
2260 if (info->level == 1)
2261 return 128;
2262 return info->chunk_size >> 9;
2263 }
2264
2265 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
2266 {
2267 __u32 num_stripes;
2268
2269 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
2270 num_stripes /= num_domains;
2271
2272 return num_stripes;
2273 }
2274
2275 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
2276 {
2277 if (info->level == 1)
2278 return info->size * 2;
2279 else
2280 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
2281 }
2282
2283 static void imsm_update_version_info(struct intel_super *super)
2284 {
2285 /* update the version and attributes */
2286 struct imsm_super *mpb = super->anchor;
2287 char *version;
2288 struct imsm_dev *dev;
2289 struct imsm_map *map;
2290 int i;
2291
2292 for (i = 0; i < mpb->num_raid_devs; i++) {
2293 dev = get_imsm_dev(super, i);
2294 map = get_imsm_map(dev, 0);
2295 if (__le32_to_cpu(dev->size_high) > 0)
2296 mpb->attributes |= MPB_ATTRIB_2TB;
2297
2298 /* FIXME detect when an array spans a port multiplier */
2299 #if 0
2300 mpb->attributes |= MPB_ATTRIB_PM;
2301 #endif
2302
2303 if (mpb->num_raid_devs > 1 ||
2304 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
2305 version = MPB_VERSION_ATTRIBS;
2306 switch (get_imsm_raid_level(map)) {
2307 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
2308 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
2309 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
2310 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
2311 }
2312 } else {
2313 if (map->num_members >= 5)
2314 version = MPB_VERSION_5OR6_DISK_ARRAY;
2315 else if (dev->status == DEV_CLONE_N_GO)
2316 version = MPB_VERSION_CNG;
2317 else if (get_imsm_raid_level(map) == 5)
2318 version = MPB_VERSION_RAID5;
2319 else if (map->num_members >= 3)
2320 version = MPB_VERSION_3OR4_DISK_ARRAY;
2321 else if (get_imsm_raid_level(map) == 1)
2322 version = MPB_VERSION_RAID1;
2323 else
2324 version = MPB_VERSION_RAID0;
2325 }
2326 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
2327 }
2328 }
2329
2330 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
2331 unsigned long long size, char *name,
2332 char *homehost, int *uuid)
2333 {
2334 /* We are creating a volume inside a pre-existing container.
2335 * so st->sb is already set.
2336 */
2337 struct intel_super *super = st->sb;
2338 struct imsm_super *mpb = super->anchor;
2339 struct intel_dev *dv;
2340 struct imsm_dev *dev;
2341 struct imsm_vol *vol;
2342 struct imsm_map *map;
2343 int idx = mpb->num_raid_devs;
2344 int i;
2345 unsigned long long array_blocks;
2346 size_t size_old, size_new;
2347 __u32 num_data_stripes;
2348
2349 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
2350 fprintf(stderr, Name": This imsm-container already has the "
2351 "maximum of %d volumes\n", super->orom->vpa);
2352 return 0;
2353 }
2354
2355 /* ensure the mpb is large enough for the new data */
2356 size_old = __le32_to_cpu(mpb->mpb_size);
2357 size_new = disks_to_mpb_size(info->nr_disks);
2358 if (size_new > size_old) {
2359 void *mpb_new;
2360 size_t size_round = ROUND_UP(size_new, 512);
2361
2362 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
2363 fprintf(stderr, Name": could not allocate new mpb\n");
2364 return 0;
2365 }
2366 memcpy(mpb_new, mpb, size_old);
2367 free(mpb);
2368 mpb = mpb_new;
2369 super->anchor = mpb_new;
2370 mpb->mpb_size = __cpu_to_le32(size_new);
2371 memset(mpb_new + size_old, 0, size_round - size_old);
2372 }
2373 super->current_vol = idx;
2374 /* when creating the first raid device in this container set num_disks
2375 * to zero, i.e. delete this spare and add raid member devices in
2376 * add_to_super_imsm_volume()
2377 */
2378 if (super->current_vol == 0)
2379 mpb->num_disks = 0;
2380
2381 for (i = 0; i < super->current_vol; i++) {
2382 dev = get_imsm_dev(super, i);
2383 if (strncmp((char *) dev->volume, name,
2384 MAX_RAID_SERIAL_LEN) == 0) {
2385 fprintf(stderr, Name": '%s' is already defined for this container\n",
2386 name);
2387 return 0;
2388 }
2389 }
2390
2391 sprintf(st->subarray, "%d", idx);
2392 dv = malloc(sizeof(*dv));
2393 if (!dv) {
2394 fprintf(stderr, Name ": failed to allocate device list entry\n");
2395 return 0;
2396 }
2397 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
2398 if (!dev) {
2399 free(dv);
2400 fprintf(stderr, Name": could not allocate raid device\n");
2401 return 0;
2402 }
2403 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
2404 if (info->level == 1)
2405 array_blocks = info_to_blocks_per_member(info);
2406 else
2407 array_blocks = calc_array_size(info->level, info->raid_disks,
2408 info->layout, info->chunk_size,
2409 info->size*2);
2410 /* round array size down to closest MB */
2411 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
2412
2413 dev->size_low = __cpu_to_le32((__u32) array_blocks);
2414 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
2415 dev->status = __cpu_to_le32(0);
2416 dev->reserved_blocks = __cpu_to_le32(0);
2417 vol = &dev->vol;
2418 vol->migr_state = 0;
2419 set_migr_type(dev, MIGR_INIT);
2420 vol->dirty = 0;
2421 vol->curr_migr_unit = 0;
2422 map = get_imsm_map(dev, 0);
2423 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
2424 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
2425 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
2426 map->failed_disk_num = ~0;
2427 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
2428 IMSM_T_STATE_NORMAL;
2429 map->ddf = 1;
2430
2431 if (info->level == 1 && info->raid_disks > 2) {
2432 fprintf(stderr, Name": imsm does not support more than 2 disks"
2433 "in a raid1 volume\n");
2434 return 0;
2435 }
2436
2437 map->raid_level = info->level;
2438 if (info->level == 10) {
2439 map->raid_level = 1;
2440 map->num_domains = info->raid_disks / 2;
2441 } else if (info->level == 1)
2442 map->num_domains = info->raid_disks;
2443 else
2444 map->num_domains = 1;
2445
2446 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
2447 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
2448
2449 map->num_members = info->raid_disks;
2450 for (i = 0; i < map->num_members; i++) {
2451 /* initialized in add_to_super */
2452 set_imsm_ord_tbl_ent(map, i, 0);
2453 }
2454 mpb->num_raid_devs++;
2455
2456 dv->dev = dev;
2457 dv->index = super->current_vol;
2458 dv->next = super->devlist;
2459 super->devlist = dv;
2460
2461 imsm_update_version_info(super);
2462
2463 return 1;
2464 }
2465
2466 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
2467 unsigned long long size, char *name,
2468 char *homehost, int *uuid)
2469 {
2470 /* This is primarily called by Create when creating a new array.
2471 * We will then get add_to_super called for each component, and then
2472 * write_init_super called to write it out to each device.
2473 * For IMSM, Create can create on fresh devices or on a pre-existing
2474 * array.
2475 * To create on a pre-existing array a different method will be called.
2476 * This one is just for fresh drives.
2477 */
2478 struct intel_super *super;
2479 struct imsm_super *mpb;
2480 size_t mpb_size;
2481 char *version;
2482
2483 if (!info) {
2484 st->sb = NULL;
2485 return 0;
2486 }
2487 if (st->sb)
2488 return init_super_imsm_volume(st, info, size, name, homehost,
2489 uuid);
2490
2491 super = alloc_super(1);
2492 if (!super)
2493 return 0;
2494 mpb_size = disks_to_mpb_size(info->nr_disks);
2495 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
2496 free(super);
2497 return 0;
2498 }
2499 mpb = super->buf;
2500 memset(mpb, 0, mpb_size);
2501
2502 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
2503
2504 version = (char *) mpb->sig;
2505 strcpy(version, MPB_SIGNATURE);
2506 version += strlen(MPB_SIGNATURE);
2507 strcpy(version, MPB_VERSION_RAID0);
2508 mpb->mpb_size = mpb_size;
2509
2510 st->sb = super;
2511 return 1;
2512 }
2513
2514 #ifndef MDASSEMBLE
2515 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
2516 int fd, char *devname)
2517 {
2518 struct intel_super *super = st->sb;
2519 struct imsm_super *mpb = super->anchor;
2520 struct dl *dl;
2521 struct imsm_dev *dev;
2522 struct imsm_map *map;
2523
2524 dev = get_imsm_dev(super, super->current_vol);
2525 map = get_imsm_map(dev, 0);
2526
2527 if (! (dk->state & (1<<MD_DISK_SYNC))) {
2528 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
2529 devname);
2530 return 1;
2531 }
2532
2533 if (fd == -1) {
2534 /* we're doing autolayout so grab the pre-marked (in
2535 * validate_geometry) raid_disk
2536 */
2537 for (dl = super->disks; dl; dl = dl->next)
2538 if (dl->raiddisk == dk->raid_disk)
2539 break;
2540 } else {
2541 for (dl = super->disks; dl ; dl = dl->next)
2542 if (dl->major == dk->major &&
2543 dl->minor == dk->minor)
2544 break;
2545 }
2546
2547 if (!dl) {
2548 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
2549 return 1;
2550 }
2551
2552 /* add a pristine spare to the metadata */
2553 if (dl->index < 0) {
2554 dl->index = super->anchor->num_disks;
2555 super->anchor->num_disks++;
2556 }
2557 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
2558 dl->disk.status = CONFIGURED_DISK | USABLE_DISK;
2559
2560 /* if we are creating the first raid device update the family number */
2561 if (super->current_vol == 0) {
2562 __u32 sum;
2563 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
2564 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
2565
2566 *_dev = *dev;
2567 *_disk = dl->disk;
2568 sum = random32();
2569 sum += __gen_imsm_checksum(mpb);
2570 mpb->family_num = __cpu_to_le32(sum);
2571 mpb->orig_family_num = mpb->family_num;
2572 }
2573
2574 return 0;
2575 }
2576
2577 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
2578 int fd, char *devname)
2579 {
2580 struct intel_super *super = st->sb;
2581 struct dl *dd;
2582 unsigned long long size;
2583 __u32 id;
2584 int rv;
2585 struct stat stb;
2586
2587 /* if we are on an RAID enabled platform check that the disk is
2588 * attached to the raid controller
2589 */
2590 if (super->hba && !disk_attached_to_hba(fd, super->hba)) {
2591 fprintf(stderr,
2592 Name ": %s is not attached to the raid controller: %s\n",
2593 devname ? : "disk", super->hba);
2594 return 1;
2595 }
2596
2597 if (super->current_vol >= 0)
2598 return add_to_super_imsm_volume(st, dk, fd, devname);
2599
2600 fstat(fd, &stb);
2601 dd = malloc(sizeof(*dd));
2602 if (!dd) {
2603 fprintf(stderr,
2604 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
2605 return 1;
2606 }
2607 memset(dd, 0, sizeof(*dd));
2608 dd->major = major(stb.st_rdev);
2609 dd->minor = minor(stb.st_rdev);
2610 dd->index = -1;
2611 dd->devname = devname ? strdup(devname) : NULL;
2612 dd->fd = fd;
2613 dd->e = NULL;
2614 rv = imsm_read_serial(fd, devname, dd->serial);
2615 if (rv) {
2616 fprintf(stderr,
2617 Name ": failed to retrieve scsi serial, aborting\n");
2618 free(dd);
2619 abort();
2620 }
2621
2622 get_dev_size(fd, NULL, &size);
2623 size /= 512;
2624 serialcpy(dd->disk.serial, dd->serial);
2625 dd->disk.total_blocks = __cpu_to_le32(size);
2626 dd->disk.status = USABLE_DISK | SPARE_DISK;
2627 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
2628 dd->disk.scsi_id = __cpu_to_le32(id);
2629 else
2630 dd->disk.scsi_id = __cpu_to_le32(0);
2631
2632 if (st->update_tail) {
2633 dd->next = super->add;
2634 super->add = dd;
2635 } else {
2636 dd->next = super->disks;
2637 super->disks = dd;
2638 }
2639
2640 return 0;
2641 }
2642
2643 static int store_imsm_mpb(int fd, struct intel_super *super);
2644
2645 /* spare records have their own family number and do not have any defined raid
2646 * devices
2647 */
2648 static int write_super_imsm_spares(struct intel_super *super, int doclose)
2649 {
2650 struct imsm_super mpb_save;
2651 struct imsm_super *mpb = super->anchor;
2652 __u32 sum;
2653 struct dl *d;
2654
2655 mpb_save = *mpb;
2656 mpb->num_raid_devs = 0;
2657 mpb->num_disks = 1;
2658 mpb->mpb_size = sizeof(struct imsm_super);
2659 mpb->generation_num = __cpu_to_le32(1UL);
2660
2661 for (d = super->disks; d; d = d->next) {
2662 if (d->index != -1)
2663 continue;
2664
2665 mpb->disk[0] = d->disk;
2666 sum = __gen_imsm_checksum(mpb);
2667 mpb->family_num = __cpu_to_le32(sum);
2668 mpb->orig_family_num = 0;
2669 sum = __gen_imsm_checksum(mpb);
2670 mpb->check_sum = __cpu_to_le32(sum);
2671
2672 if (store_imsm_mpb(d->fd, super)) {
2673 fprintf(stderr, "%s: failed for device %d:%d %s\n",
2674 __func__, d->major, d->minor, strerror(errno));
2675 *mpb = mpb_save;
2676 return 1;
2677 }
2678 if (doclose) {
2679 close(d->fd);
2680 d->fd = -1;
2681 }
2682 }
2683
2684 *mpb = mpb_save;
2685 return 0;
2686 }
2687
2688 static int write_super_imsm(struct intel_super *super, int doclose)
2689 {
2690 struct imsm_super *mpb = super->anchor;
2691 struct dl *d;
2692 __u32 generation;
2693 __u32 sum;
2694 int spares = 0;
2695 int i;
2696 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
2697
2698 /* 'generation' is incremented everytime the metadata is written */
2699 generation = __le32_to_cpu(mpb->generation_num);
2700 generation++;
2701 mpb->generation_num = __cpu_to_le32(generation);
2702
2703 /* fix up cases where previous mdadm releases failed to set
2704 * orig_family_num
2705 */
2706 if (mpb->orig_family_num == 0)
2707 mpb->orig_family_num = mpb->family_num;
2708
2709 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
2710 for (d = super->disks; d; d = d->next) {
2711 if (d->index == -1)
2712 spares++;
2713 else
2714 mpb->disk[d->index] = d->disk;
2715 }
2716 for (d = super->missing; d; d = d->next)
2717 mpb->disk[d->index] = d->disk;
2718
2719 for (i = 0; i < mpb->num_raid_devs; i++) {
2720 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2721
2722 imsm_copy_dev(dev, get_imsm_dev(super, i));
2723 mpb_size += sizeof_imsm_dev(dev, 0);
2724 }
2725 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
2726 mpb->mpb_size = __cpu_to_le32(mpb_size);
2727
2728 /* recalculate checksum */
2729 sum = __gen_imsm_checksum(mpb);
2730 mpb->check_sum = __cpu_to_le32(sum);
2731
2732 /* write the mpb for disks that compose raid devices */
2733 for (d = super->disks; d ; d = d->next) {
2734 if (d->index < 0)
2735 continue;
2736 if (store_imsm_mpb(d->fd, super))
2737 fprintf(stderr, "%s: failed for device %d:%d %s\n",
2738 __func__, d->major, d->minor, strerror(errno));
2739 if (doclose) {
2740 close(d->fd);
2741 d->fd = -1;
2742 }
2743 }
2744
2745 if (spares)
2746 return write_super_imsm_spares(super, doclose);
2747
2748 return 0;
2749 }
2750
2751
2752 static int create_array(struct supertype *st, int dev_idx)
2753 {
2754 size_t len;
2755 struct imsm_update_create_array *u;
2756 struct intel_super *super = st->sb;
2757 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
2758 struct imsm_map *map = get_imsm_map(dev, 0);
2759 struct disk_info *inf;
2760 struct imsm_disk *disk;
2761 int i;
2762
2763 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
2764 sizeof(*inf) * map->num_members;
2765 u = malloc(len);
2766 if (!u) {
2767 fprintf(stderr, "%s: failed to allocate update buffer\n",
2768 __func__);
2769 return 1;
2770 }
2771
2772 u->type = update_create_array;
2773 u->dev_idx = dev_idx;
2774 imsm_copy_dev(&u->dev, dev);
2775 inf = get_disk_info(u);
2776 for (i = 0; i < map->num_members; i++) {
2777 int idx = get_imsm_disk_idx(dev, i);
2778
2779 disk = get_imsm_disk(super, idx);
2780 serialcpy(inf[i].serial, disk->serial);
2781 }
2782 append_metadata_update(st, u, len);
2783
2784 return 0;
2785 }
2786
2787 static int _add_disk(struct supertype *st)
2788 {
2789 struct intel_super *super = st->sb;
2790 size_t len;
2791 struct imsm_update_add_disk *u;
2792
2793 if (!super->add)
2794 return 0;
2795
2796 len = sizeof(*u);
2797 u = malloc(len);
2798 if (!u) {
2799 fprintf(stderr, "%s: failed to allocate update buffer\n",
2800 __func__);
2801 return 1;
2802 }
2803
2804 u->type = update_add_disk;
2805 append_metadata_update(st, u, len);
2806
2807 return 0;
2808 }
2809
2810 static int write_init_super_imsm(struct supertype *st)
2811 {
2812 struct intel_super *super = st->sb;
2813 int current_vol = super->current_vol;
2814
2815 /* we are done with current_vol reset it to point st at the container */
2816 super->current_vol = -1;
2817
2818 if (st->update_tail) {
2819 /* queue the recently created array / added disk
2820 * as a metadata update */
2821 struct dl *d;
2822 int rv;
2823
2824 /* determine if we are creating a volume or adding a disk */
2825 if (current_vol < 0) {
2826 /* in the add disk case we are running in mdmon
2827 * context, so don't close fd's
2828 */
2829 return _add_disk(st);
2830 } else
2831 rv = create_array(st, current_vol);
2832
2833 for (d = super->disks; d ; d = d->next) {
2834 close(d->fd);
2835 d->fd = -1;
2836 }
2837
2838 return rv;
2839 } else
2840 return write_super_imsm(st->sb, 1);
2841 }
2842 #endif
2843
2844 static int store_zero_imsm(struct supertype *st, int fd)
2845 {
2846 unsigned long long dsize;
2847 void *buf;
2848
2849 get_dev_size(fd, NULL, &dsize);
2850
2851 /* first block is stored on second to last sector of the disk */
2852 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2853 return 1;
2854
2855 if (posix_memalign(&buf, 512, 512) != 0)
2856 return 1;
2857
2858 memset(buf, 0, 512);
2859 if (write(fd, buf, 512) != 512)
2860 return 1;
2861 return 0;
2862 }
2863
2864 static int imsm_bbm_log_size(struct imsm_super *mpb)
2865 {
2866 return __le32_to_cpu(mpb->bbm_log_size);
2867 }
2868
2869 #ifndef MDASSEMBLE
2870 static int validate_geometry_imsm_container(struct supertype *st, int level,
2871 int layout, int raiddisks, int chunk,
2872 unsigned long long size, char *dev,
2873 unsigned long long *freesize,
2874 int verbose)
2875 {
2876 int fd;
2877 unsigned long long ldsize;
2878 const struct imsm_orom *orom;
2879
2880 if (level != LEVEL_CONTAINER)
2881 return 0;
2882 if (!dev)
2883 return 1;
2884
2885 if (check_env("IMSM_NO_PLATFORM"))
2886 orom = NULL;
2887 else
2888 orom = find_imsm_orom();
2889 if (orom && raiddisks > orom->tds) {
2890 if (verbose)
2891 fprintf(stderr, Name ": %d exceeds maximum number of"
2892 " platform supported disks: %d\n",
2893 raiddisks, orom->tds);
2894 return 0;
2895 }
2896
2897 fd = open(dev, O_RDONLY|O_EXCL, 0);
2898 if (fd < 0) {
2899 if (verbose)
2900 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
2901 dev, strerror(errno));
2902 return 0;
2903 }
2904 if (!get_dev_size(fd, dev, &ldsize)) {
2905 close(fd);
2906 return 0;
2907 }
2908 close(fd);
2909
2910 *freesize = avail_size_imsm(st, ldsize >> 9);
2911
2912 return 1;
2913 }
2914
2915 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
2916 {
2917 const unsigned long long base_start = e[*idx].start;
2918 unsigned long long end = base_start + e[*idx].size;
2919 int i;
2920
2921 if (base_start == end)
2922 return 0;
2923
2924 *idx = *idx + 1;
2925 for (i = *idx; i < num_extents; i++) {
2926 /* extend overlapping extents */
2927 if (e[i].start >= base_start &&
2928 e[i].start <= end) {
2929 if (e[i].size == 0)
2930 return 0;
2931 if (e[i].start + e[i].size > end)
2932 end = e[i].start + e[i].size;
2933 } else if (e[i].start > end) {
2934 *idx = i;
2935 break;
2936 }
2937 }
2938
2939 return end - base_start;
2940 }
2941
2942 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
2943 {
2944 /* build a composite disk with all known extents and generate a new
2945 * 'maxsize' given the "all disks in an array must share a common start
2946 * offset" constraint
2947 */
2948 struct extent *e = calloc(sum_extents, sizeof(*e));
2949 struct dl *dl;
2950 int i, j;
2951 int start_extent;
2952 unsigned long long pos;
2953 unsigned long long start = 0;
2954 unsigned long long maxsize;
2955 unsigned long reserve;
2956
2957 if (!e)
2958 return ~0ULL; /* error */
2959
2960 /* coalesce and sort all extents. also, check to see if we need to
2961 * reserve space between member arrays
2962 */
2963 j = 0;
2964 for (dl = super->disks; dl; dl = dl->next) {
2965 if (!dl->e)
2966 continue;
2967 for (i = 0; i < dl->extent_cnt; i++)
2968 e[j++] = dl->e[i];
2969 }
2970 qsort(e, sum_extents, sizeof(*e), cmp_extent);
2971
2972 /* merge extents */
2973 i = 0;
2974 j = 0;
2975 while (i < sum_extents) {
2976 e[j].start = e[i].start;
2977 e[j].size = find_size(e, &i, sum_extents);
2978 j++;
2979 if (e[j-1].size == 0)
2980 break;
2981 }
2982
2983 pos = 0;
2984 maxsize = 0;
2985 start_extent = 0;
2986 i = 0;
2987 do {
2988 unsigned long long esize;
2989
2990 esize = e[i].start - pos;
2991 if (esize >= maxsize) {
2992 maxsize = esize;
2993 start = pos;
2994 start_extent = i;
2995 }
2996 pos = e[i].start + e[i].size;
2997 i++;
2998 } while (e[i-1].size);
2999 free(e);
3000
3001 if (start_extent > 0)
3002 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
3003 else
3004 reserve = 0;
3005
3006 if (maxsize < reserve)
3007 return ~0ULL;
3008
3009 super->create_offset = ~((__u32) 0);
3010 if (start + reserve > super->create_offset)
3011 return ~0ULL; /* start overflows create_offset */
3012 super->create_offset = start + reserve;
3013
3014 return maxsize - reserve;
3015 }
3016
3017 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
3018 {
3019 if (level < 0 || level == 6 || level == 4)
3020 return 0;
3021
3022 /* if we have an orom prevent invalid raid levels */
3023 if (orom)
3024 switch (level) {
3025 case 0: return imsm_orom_has_raid0(orom);
3026 case 1:
3027 if (raiddisks > 2)
3028 return imsm_orom_has_raid1e(orom);
3029 return imsm_orom_has_raid1(orom) && raiddisks == 2;
3030 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
3031 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
3032 }
3033 else
3034 return 1; /* not on an Intel RAID platform so anything goes */
3035
3036 return 0;
3037 }
3038
3039 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
3040 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
3041 * FIX ME add ahci details
3042 */
3043 static int validate_geometry_imsm_volume(struct supertype *st, int level,
3044 int layout, int raiddisks, int chunk,
3045 unsigned long long size, char *dev,
3046 unsigned long long *freesize,
3047 int verbose)
3048 {
3049 struct stat stb;
3050 struct intel_super *super = st->sb;
3051 struct imsm_super *mpb = super->anchor;
3052 struct dl *dl;
3053 unsigned long long pos = 0;
3054 unsigned long long maxsize;
3055 struct extent *e;
3056 int i;
3057
3058 /* We must have the container info already read in. */
3059 if (!super)
3060 return 0;
3061
3062 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
3063 pr_vrb(": platform does not support raid%d with %d disk%s\n",
3064 level, raiddisks, raiddisks > 1 ? "s" : "");
3065 return 0;
3066 }
3067 if (super->orom && level != 1 &&
3068 !imsm_orom_has_chunk(super->orom, chunk)) {
3069 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
3070 return 0;
3071 }
3072 if (layout != imsm_level_to_layout(level)) {
3073 if (level == 5)
3074 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
3075 else if (level == 10)
3076 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
3077 else
3078 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
3079 layout, level);
3080 return 0;
3081 }
3082
3083 if (!dev) {
3084 /* General test: make sure there is space for
3085 * 'raiddisks' device extents of size 'size' at a given
3086 * offset
3087 */
3088 unsigned long long minsize = size;
3089 unsigned long long start_offset = ~0ULL;
3090 int dcnt = 0;
3091 if (minsize == 0)
3092 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
3093 for (dl = super->disks; dl ; dl = dl->next) {
3094 int found = 0;
3095
3096 pos = 0;
3097 i = 0;
3098 e = get_extents(super, dl);
3099 if (!e) continue;
3100 do {
3101 unsigned long long esize;
3102 esize = e[i].start - pos;
3103 if (esize >= minsize)
3104 found = 1;
3105 if (found && start_offset == ~0ULL) {
3106 start_offset = pos;
3107 break;
3108 } else if (found && pos != start_offset) {
3109 found = 0;
3110 break;
3111 }
3112 pos = e[i].start + e[i].size;
3113 i++;
3114 } while (e[i-1].size);
3115 if (found)
3116 dcnt++;
3117 free(e);
3118 }
3119 if (dcnt < raiddisks) {
3120 if (verbose)
3121 fprintf(stderr, Name ": imsm: Not enough "
3122 "devices with space for this array "
3123 "(%d < %d)\n",
3124 dcnt, raiddisks);
3125 return 0;
3126 }
3127 return 1;
3128 }
3129
3130 /* This device must be a member of the set */
3131 if (stat(dev, &stb) < 0)
3132 return 0;
3133 if ((S_IFMT & stb.st_mode) != S_IFBLK)
3134 return 0;
3135 for (dl = super->disks ; dl ; dl = dl->next) {
3136 if (dl->major == major(stb.st_rdev) &&
3137 dl->minor == minor(stb.st_rdev))
3138 break;
3139 }
3140 if (!dl) {
3141 if (verbose)
3142 fprintf(stderr, Name ": %s is not in the "
3143 "same imsm set\n", dev);
3144 return 0;
3145 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
3146 /* If a volume is present then the current creation attempt
3147 * cannot incorporate new spares because the orom may not
3148 * understand this configuration (all member disks must be
3149 * members of each array in the container).
3150 */
3151 fprintf(stderr, Name ": %s is a spare and a volume"
3152 " is already defined for this container\n", dev);
3153 fprintf(stderr, Name ": The option-rom requires all member"
3154 " disks to be a member of all volumes\n");
3155 return 0;
3156 }
3157
3158 /* retrieve the largest free space block */
3159 e = get_extents(super, dl);
3160 maxsize = 0;
3161 i = 0;
3162 if (e) {
3163 do {
3164 unsigned long long esize;
3165
3166 esize = e[i].start - pos;
3167 if (esize >= maxsize)
3168 maxsize = esize;
3169 pos = e[i].start + e[i].size;
3170 i++;
3171 } while (e[i-1].size);
3172 dl->e = e;
3173 dl->extent_cnt = i;
3174 } else {
3175 if (verbose)
3176 fprintf(stderr, Name ": unable to determine free space for: %s\n",
3177 dev);
3178 return 0;
3179 }
3180 if (maxsize < size) {
3181 if (verbose)
3182 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
3183 dev, maxsize, size);
3184 return 0;
3185 }
3186
3187 /* count total number of extents for merge */
3188 i = 0;
3189 for (dl = super->disks; dl; dl = dl->next)
3190 if (dl->e)
3191 i += dl->extent_cnt;
3192
3193 maxsize = merge_extents(super, i);
3194 if (maxsize < size) {
3195 if (verbose)
3196 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
3197 maxsize, size);
3198 return 0;
3199 } else if (maxsize == ~0ULL) {
3200 if (verbose)
3201 fprintf(stderr, Name ": failed to merge %d extents\n", i);
3202 return 0;
3203 }
3204
3205 *freesize = maxsize;
3206
3207 return 1;
3208 }
3209
3210 static int reserve_space(struct supertype *st, int raiddisks,
3211 unsigned long long size, int chunk,
3212 unsigned long long *freesize)
3213 {
3214 struct intel_super *super = st->sb;
3215 struct imsm_super *mpb = super->anchor;
3216 struct dl *dl;
3217 int i;
3218 int extent_cnt;
3219 struct extent *e;
3220 unsigned long long maxsize;
3221 unsigned long long minsize;
3222 int cnt;
3223 int used;
3224
3225 /* find the largest common start free region of the possible disks */
3226 used = 0;
3227 extent_cnt = 0;
3228 cnt = 0;
3229 for (dl = super->disks; dl; dl = dl->next) {
3230 dl->raiddisk = -1;
3231
3232 if (dl->index >= 0)
3233 used++;
3234
3235 /* don't activate new spares if we are orom constrained
3236 * and there is already a volume active in the container
3237 */
3238 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
3239 continue;
3240
3241 e = get_extents(super, dl);
3242 if (!e)
3243 continue;
3244 for (i = 1; e[i-1].size; i++)
3245 ;
3246 dl->e = e;
3247 dl->extent_cnt = i;
3248 extent_cnt += i;
3249 cnt++;
3250 }
3251
3252 maxsize = merge_extents(super, extent_cnt);
3253 minsize = size;
3254 if (size == 0)
3255 minsize = chunk;
3256
3257 if (cnt < raiddisks ||
3258 (super->orom && used && used != raiddisks) ||
3259 maxsize < minsize) {
3260 fprintf(stderr, Name ": not enough devices with space to create array.\n");
3261 return 0; /* No enough free spaces large enough */
3262 }
3263
3264 if (size == 0) {
3265 size = maxsize;
3266 if (chunk) {
3267 size /= chunk;
3268 size *= chunk;
3269 }
3270 }
3271
3272 cnt = 0;
3273 for (dl = super->disks; dl; dl = dl->next)
3274 if (dl->e)
3275 dl->raiddisk = cnt++;
3276
3277 *freesize = size;
3278
3279 return 1;
3280 }
3281
3282 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
3283 int raiddisks, int chunk, unsigned long long size,
3284 char *dev, unsigned long long *freesize,
3285 int verbose)
3286 {
3287 int fd, cfd;
3288 struct mdinfo *sra;
3289
3290 /* if given unused devices create a container
3291 * if given given devices in a container create a member volume
3292 */
3293 if (level == LEVEL_CONTAINER) {
3294 /* Must be a fresh device to add to a container */
3295 return validate_geometry_imsm_container(st, level, layout,
3296 raiddisks, chunk, size,
3297 dev, freesize,
3298 verbose);
3299 }
3300
3301 if (!dev) {
3302 if (st->sb && freesize) {
3303 /* we are being asked to automatically layout a
3304 * new volume based on the current contents of
3305 * the container. If the the parameters can be
3306 * satisfied reserve_space will record the disks,
3307 * start offset, and size of the volume to be
3308 * created. add_to_super and getinfo_super
3309 * detect when autolayout is in progress.
3310 */
3311 return reserve_space(st, raiddisks, size, chunk, freesize);
3312 }
3313 return 1;
3314 }
3315 if (st->sb) {
3316 /* creating in a given container */
3317 return validate_geometry_imsm_volume(st, level, layout,
3318 raiddisks, chunk, size,
3319 dev, freesize, verbose);
3320 }
3321
3322 /* limit creation to the following levels */
3323 if (!dev)
3324 switch (level) {
3325 case 0:
3326 case 1:
3327 case 10:
3328 case 5:
3329 break;
3330 default:
3331 return 1;
3332 }
3333
3334 /* This device needs to be a device in an 'imsm' container */
3335 fd = open(dev, O_RDONLY|O_EXCL, 0);
3336 if (fd >= 0) {
3337 if (verbose)
3338 fprintf(stderr,
3339 Name ": Cannot create this array on device %s\n",
3340 dev);
3341 close(fd);
3342 return 0;
3343 }
3344 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
3345 if (verbose)
3346 fprintf(stderr, Name ": Cannot open %s: %s\n",
3347 dev, strerror(errno));
3348 return 0;
3349 }
3350 /* Well, it is in use by someone, maybe an 'imsm' container. */
3351 cfd = open_container(fd);
3352 if (cfd < 0) {
3353 close(fd);
3354 if (verbose)
3355 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
3356 dev);
3357 return 0;
3358 }
3359 sra = sysfs_read(cfd, 0, GET_VERSION);
3360 close(fd);
3361 if (sra && sra->array.major_version == -1 &&
3362 strcmp(sra->text_version, "imsm") == 0) {
3363 /* This is a member of a imsm container. Load the container
3364 * and try to create a volume
3365 */
3366 struct intel_super *super;
3367
3368 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
3369 st->sb = super;
3370 st->container_dev = fd2devnum(cfd);
3371 close(cfd);
3372 return validate_geometry_imsm_volume(st, level, layout,
3373 raiddisks, chunk,
3374 size, dev,
3375 freesize, verbose);
3376 }
3377 close(cfd);
3378 } else /* may belong to another container */
3379 return 0;
3380
3381 return 1;
3382 }
3383 #endif /* MDASSEMBLE */
3384
3385 static struct mdinfo *container_content_imsm(struct supertype *st)
3386 {
3387 /* Given a container loaded by load_super_imsm_all,
3388 * extract information about all the arrays into
3389 * an mdinfo tree.
3390 *
3391 * For each imsm_dev create an mdinfo, fill it in,
3392 * then look for matching devices in super->disks
3393 * and create appropriate device mdinfo.
3394 */
3395 struct intel_super *super = st->sb;
3396 struct imsm_super *mpb = super->anchor;
3397 struct mdinfo *rest = NULL;
3398 int i;
3399
3400 /* do not assemble arrays that might have bad blocks */
3401 if (imsm_bbm_log_size(super->anchor)) {
3402 fprintf(stderr, Name ": BBM log found in metadata. "
3403 "Cannot activate array(s).\n");
3404 return NULL;
3405 }
3406
3407 for (i = 0; i < mpb->num_raid_devs; i++) {
3408 struct imsm_dev *dev = get_imsm_dev(super, i);
3409 struct imsm_map *map = get_imsm_map(dev, 0);
3410 struct mdinfo *this;
3411 int slot;
3412
3413 /* do not publish arrays that are in the middle of an
3414 * unsupported migration
3415 */
3416 if (dev->vol.migr_state &&
3417 (migr_type(dev) == MIGR_GEN_MIGR ||
3418 migr_type(dev) == MIGR_STATE_CHANGE)) {
3419 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
3420 " unsupported migration in progress\n",
3421 dev->volume);
3422 continue;
3423 }
3424
3425 this = malloc(sizeof(*this));
3426 memset(this, 0, sizeof(*this));
3427 this->next = rest;
3428
3429 super->current_vol = i;
3430 getinfo_super_imsm_volume(st, this);
3431 for (slot = 0 ; slot < map->num_members; slot++) {
3432 struct mdinfo *info_d;
3433 struct dl *d;
3434 int idx;
3435 int skip;
3436 __u32 s;
3437 __u32 ord;
3438
3439 skip = 0;
3440 idx = get_imsm_disk_idx(dev, slot);
3441 ord = get_imsm_ord_tbl_ent(dev, slot);
3442 for (d = super->disks; d ; d = d->next)
3443 if (d->index == idx)
3444 break;
3445
3446 if (d == NULL)
3447 skip = 1;
3448
3449 s = d ? d->disk.status : 0;
3450 if (s & FAILED_DISK)
3451 skip = 1;
3452 if (!(s & USABLE_DISK))
3453 skip = 1;
3454 if (ord & IMSM_ORD_REBUILD)
3455 skip = 1;
3456
3457 /*
3458 * if we skip some disks the array will be assmebled degraded;
3459 * reset resync start to avoid a dirty-degraded situation
3460 *
3461 * FIXME handle dirty degraded
3462 */
3463 if (skip && !dev->vol.dirty)
3464 this->resync_start = ~0ULL;
3465 if (skip)
3466 continue;
3467
3468 info_d = malloc(sizeof(*info_d));
3469 if (!info_d) {
3470 fprintf(stderr, Name ": failed to allocate disk"
3471 " for volume %.16s\n", dev->volume);
3472 free(this);
3473 this = rest;
3474 break;
3475 }
3476 memset(info_d, 0, sizeof(*info_d));
3477 info_d->next = this->devs;
3478 this->devs = info_d;
3479
3480 info_d->disk.number = d->index;
3481 info_d->disk.major = d->major;
3482 info_d->disk.minor = d->minor;
3483 info_d->disk.raid_disk = slot;
3484
3485 this->array.working_disks++;
3486
3487 info_d->events = __le32_to_cpu(mpb->generation_num);
3488 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
3489 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
3490 if (d->devname)
3491 strcpy(info_d->name, d->devname);
3492 }
3493 rest = this;
3494 }
3495
3496 return rest;
3497 }
3498
3499
3500 #ifndef MDASSEMBLE
3501 static int imsm_open_new(struct supertype *c, struct active_array *a,
3502 char *inst)
3503 {
3504 struct intel_super *super = c->sb;
3505 struct imsm_super *mpb = super->anchor;
3506
3507 if (atoi(inst) >= mpb->num_raid_devs) {
3508 fprintf(stderr, "%s: subarry index %d, out of range\n",
3509 __func__, atoi(inst));
3510 return -ENODEV;
3511 }
3512
3513 dprintf("imsm: open_new %s\n", inst);
3514 a->info.container_member = atoi(inst);
3515 return 0;
3516 }
3517
3518 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
3519 {
3520 struct imsm_map *map = get_imsm_map(dev, 0);
3521
3522 if (!failed)
3523 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3524 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
3525
3526 switch (get_imsm_raid_level(map)) {
3527 case 0:
3528 return IMSM_T_STATE_FAILED;
3529 break;
3530 case 1:
3531 if (failed < map->num_members)
3532 return IMSM_T_STATE_DEGRADED;
3533 else
3534 return IMSM_T_STATE_FAILED;
3535 break;
3536 case 10:
3537 {
3538 /**
3539 * check to see if any mirrors have failed, otherwise we
3540 * are degraded. Even numbered slots are mirrored on
3541 * slot+1
3542 */
3543 int i;
3544 /* gcc -Os complains that this is unused */
3545 int insync = insync;
3546
3547 for (i = 0; i < map->num_members; i++) {
3548 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
3549 int idx = ord_to_idx(ord);
3550 struct imsm_disk *disk;
3551
3552 /* reset the potential in-sync count on even-numbered
3553 * slots. num_copies is always 2 for imsm raid10
3554 */
3555 if ((i & 1) == 0)
3556 insync = 2;
3557
3558 disk = get_imsm_disk(super, idx);
3559 if (!disk || disk->status & FAILED_DISK ||
3560 ord & IMSM_ORD_REBUILD)
3561 insync--;
3562
3563 /* no in-sync disks left in this mirror the
3564 * array has failed
3565 */
3566 if (insync == 0)
3567 return IMSM_T_STATE_FAILED;
3568 }
3569
3570 return IMSM_T_STATE_DEGRADED;
3571 }
3572 case 5:
3573 if (failed < 2)
3574 return IMSM_T_STATE_DEGRADED;
3575 else
3576 return IMSM_T_STATE_FAILED;
3577 break;
3578 default:
3579 break;
3580 }
3581
3582 return map->map_state;
3583 }
3584
3585 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
3586 {
3587 int i;
3588 int failed = 0;
3589 struct imsm_disk *disk;
3590 struct imsm_map *map = get_imsm_map(dev, 0);
3591 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3592 __u32 ord;
3593 int idx;
3594
3595 /* at the beginning of migration we set IMSM_ORD_REBUILD on
3596 * disks that are being rebuilt. New failures are recorded to
3597 * map[0]. So we look through all the disks we started with and
3598 * see if any failures are still present, or if any new ones
3599 * have arrived
3600 *
3601 * FIXME add support for online capacity expansion and
3602 * raid-level-migration
3603 */
3604 for (i = 0; i < prev->num_members; i++) {
3605 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
3606 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
3607 idx = ord_to_idx(ord);
3608
3609 disk = get_imsm_disk(super, idx);
3610 if (!disk || disk->status & FAILED_DISK ||
3611 ord & IMSM_ORD_REBUILD)
3612 failed++;
3613 }
3614
3615 return failed;
3616 }
3617
3618 static int is_resyncing(struct imsm_dev *dev)
3619 {
3620 struct imsm_map *migr_map;
3621
3622 if (!dev->vol.migr_state)
3623 return 0;
3624
3625 if (migr_type(dev) == MIGR_INIT ||
3626 migr_type(dev) == MIGR_REPAIR)
3627 return 1;
3628
3629 migr_map = get_imsm_map(dev, 1);
3630
3631 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
3632 return 1;
3633 else
3634 return 0;
3635 }
3636
3637 static int is_rebuilding(struct imsm_dev *dev)
3638 {
3639 struct imsm_map *migr_map;
3640
3641 if (!dev->vol.migr_state)
3642 return 0;
3643
3644 if (migr_type(dev) != MIGR_REBUILD)
3645 return 0;
3646
3647 migr_map = get_imsm_map(dev, 1);
3648
3649 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
3650 return 1;
3651 else
3652 return 0;
3653 }
3654
3655 /* return true if we recorded new information */
3656 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
3657 {
3658 __u32 ord;
3659 int slot;
3660 struct imsm_map *map;
3661
3662 /* new failures are always set in map[0] */
3663 map = get_imsm_map(dev, 0);
3664
3665 slot = get_imsm_disk_slot(map, idx);
3666 if (slot < 0)
3667 return 0;
3668
3669 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
3670 if ((disk->status & FAILED_DISK) && (ord & IMSM_ORD_REBUILD))
3671 return 0;
3672
3673 disk->status |= FAILED_DISK;
3674 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
3675 if (~map->failed_disk_num == 0)
3676 map->failed_disk_num = slot;
3677 return 1;
3678 }
3679
3680 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
3681 {
3682 mark_failure(dev, disk, idx);
3683
3684 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
3685 return;
3686
3687 disk->scsi_id = __cpu_to_le32(~(__u32)0);
3688 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
3689 }
3690
3691 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
3692 * states are handled in imsm_set_disk() with one exception, when a
3693 * resync is stopped due to a new failure this routine will set the
3694 * 'degraded' state for the array.
3695 */
3696 static int imsm_set_array_state(struct active_array *a, int consistent)
3697 {
3698 int inst = a->info.container_member;
3699 struct intel_super *super = a->container->sb;
3700 struct imsm_dev *dev = get_imsm_dev(super, inst);
3701 struct imsm_map *map = get_imsm_map(dev, 0);
3702 int failed = imsm_count_failed(super, dev);
3703 __u8 map_state = imsm_check_degraded(super, dev, failed);
3704
3705 /* before we activate this array handle any missing disks */
3706 if (consistent == 2 && super->missing) {
3707 struct dl *dl;
3708
3709 dprintf("imsm: mark missing\n");
3710 end_migration(dev, map_state);
3711 for (dl = super->missing; dl; dl = dl->next)
3712 mark_missing(dev, &dl->disk, dl->index);
3713 super->updates_pending++;
3714 }
3715
3716 if (consistent == 2 &&
3717 (!is_resync_complete(a) ||
3718 map_state != IMSM_T_STATE_NORMAL ||
3719 dev->vol.migr_state))
3720 consistent = 0;
3721
3722 if (is_resync_complete(a)) {
3723 /* complete intialization / resync,
3724 * recovery and interrupted recovery is completed in
3725 * ->set_disk
3726 */
3727 if (is_resyncing(dev)) {
3728 dprintf("imsm: mark resync done\n");
3729 end_migration(dev, map_state);
3730 super->updates_pending++;
3731 }
3732 } else if (!is_resyncing(dev) && !failed) {
3733 /* mark the start of the init process if nothing is failed */
3734 dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
3735 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
3736 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
3737 else
3738 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3739 super->updates_pending++;
3740 }
3741
3742 /* FIXME check if we can update curr_migr_unit from resync_start */
3743
3744 /* mark dirty / clean */
3745 if (dev->vol.dirty != !consistent) {
3746 dprintf("imsm: mark '%s' (%llu)\n",
3747 consistent ? "clean" : "dirty", a->resync_start);
3748 if (consistent)
3749 dev->vol.dirty = 0;
3750 else
3751 dev->vol.dirty = 1;
3752 super->updates_pending++;
3753 }
3754 return consistent;
3755 }
3756
3757 static void imsm_set_disk(struct active_array *a, int n, int state)
3758 {
3759 int inst = a->info.container_member;
3760 struct intel_super *super = a->container->sb;
3761 struct imsm_dev *dev = get_imsm_dev(super, inst);
3762 struct imsm_map *map = get_imsm_map(dev, 0);
3763 struct imsm_disk *disk;
3764 int failed;
3765 __u32 ord;
3766 __u8 map_state;
3767
3768 if (n > map->num_members)
3769 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
3770 n, map->num_members - 1);
3771
3772 if (n < 0)
3773 return;
3774
3775 dprintf("imsm: set_disk %d:%x\n", n, state);
3776
3777 ord = get_imsm_ord_tbl_ent(dev, n);
3778 disk = get_imsm_disk(super, ord_to_idx(ord));
3779
3780 /* check for new failures */
3781 if (state & DS_FAULTY) {
3782 if (mark_failure(dev, disk, ord_to_idx(ord)))
3783 super->updates_pending++;
3784 }
3785
3786 /* check if in_sync */
3787 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
3788 struct imsm_map *migr_map = get_imsm_map(dev, 1);
3789
3790 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
3791 super->updates_pending++;
3792 }
3793
3794 failed = imsm_count_failed(super, dev);
3795 map_state = imsm_check_degraded(super, dev, failed);
3796
3797 /* check if recovery complete, newly degraded, or failed */
3798 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
3799 end_migration(dev, map_state);
3800 map = get_imsm_map(dev, 0);
3801 map->failed_disk_num = ~0;
3802 super->updates_pending++;
3803 } else if (map_state == IMSM_T_STATE_DEGRADED &&
3804 map->map_state != map_state &&
3805 !dev->vol.migr_state) {
3806 dprintf("imsm: mark degraded\n");
3807 map->map_state = map_state;
3808 super->updates_pending++;
3809 } else if (map_state == IMSM_T_STATE_FAILED &&
3810 map->map_state != map_state) {
3811 dprintf("imsm: mark failed\n");
3812 end_migration(dev, map_state);
3813 super->updates_pending++;
3814 }
3815 }
3816
3817 static int store_imsm_mpb(int fd, struct intel_super *super)
3818 {
3819 struct imsm_super *mpb = super->anchor;
3820 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
3821 unsigned long long dsize;
3822 unsigned long long sectors;
3823
3824 get_dev_size(fd, NULL, &dsize);
3825
3826 if (mpb_size > 512) {
3827 /* -1 to account for anchor */
3828 sectors = mpb_sectors(mpb) - 1;
3829
3830 /* write the extended mpb to the sectors preceeding the anchor */
3831 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
3832 return 1;
3833
3834 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
3835 return 1;
3836 }
3837
3838 /* first block is stored on second to last sector of the disk */
3839 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
3840 return 1;
3841
3842 if (write(fd, super->buf, 512) != 512)
3843 return 1;
3844
3845 return 0;
3846 }
3847
3848 static void imsm_sync_metadata(struct supertype *container)
3849 {
3850 struct intel_super *super = container->sb;
3851
3852 if (!super->updates_pending)
3853 return;
3854
3855 write_super_imsm(super, 0);
3856
3857 super->updates_pending = 0;
3858 }
3859
3860 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
3861 {
3862 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
3863 int i = get_imsm_disk_idx(dev, idx);
3864 struct dl *dl;
3865
3866 for (dl = super->disks; dl; dl = dl->next)
3867 if (dl->index == i)
3868 break;
3869
3870 if (dl && dl->disk.status & FAILED_DISK)
3871 dl = NULL;
3872
3873 if (dl)
3874 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
3875
3876 return dl;
3877 }
3878
3879 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
3880 struct active_array *a, int activate_new)
3881 {
3882 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
3883 int idx = get_imsm_disk_idx(dev, slot);
3884 struct imsm_super *mpb = super->anchor;
3885 struct imsm_map *map;
3886 unsigned long long pos;
3887 struct mdinfo *d;
3888 struct extent *ex;
3889 int i, j;
3890 int found;
3891 __u32 array_start;
3892 __u32 array_end;
3893 struct dl *dl;
3894
3895 for (dl = super->disks; dl; dl = dl->next) {
3896 /* If in this array, skip */
3897 for (d = a->info.devs ; d ; d = d->next)
3898 if (d->state_fd >= 0 &&
3899 d->disk.major == dl->major &&
3900 d->disk.minor == dl->minor) {
3901 dprintf("%x:%x already in array\n", dl->major, dl->minor);
3902 break;
3903 }
3904 if (d)
3905 continue;
3906
3907 /* skip in use or failed drives */
3908 if (dl->disk.status & FAILED_DISK || idx == dl->index ||
3909 dl->index == -2) {
3910 dprintf("%x:%x status (failed: %d index: %d)\n",
3911 dl->major, dl->minor,
3912 (dl->disk.status & FAILED_DISK) == FAILED_DISK, idx);
3913 continue;
3914 }
3915
3916 /* skip pure spares when we are looking for partially
3917 * assimilated drives
3918 */
3919 if (dl->index == -1 && !activate_new)
3920 continue;
3921
3922 /* Does this unused device have the requisite free space?
3923 * It needs to be able to cover all member volumes
3924 */
3925 ex = get_extents(super, dl);
3926 if (!ex) {
3927 dprintf("cannot get extents\n");
3928 continue;
3929 }
3930 for (i = 0; i < mpb->num_raid_devs; i++) {
3931 dev = get_imsm_dev(super, i);
3932 map = get_imsm_map(dev, 0);
3933
3934 /* check if this disk is already a member of
3935 * this array
3936 */
3937 if (get_imsm_disk_slot(map, dl->index) >= 0)
3938 continue;
3939
3940 found = 0;
3941 j = 0;
3942 pos = 0;
3943 array_start = __le32_to_cpu(map->pba_of_lba0);
3944 array_end = array_start +
3945 __le32_to_cpu(map->blocks_per_member) - 1;
3946
3947 do {
3948 /* check that we can start at pba_of_lba0 with
3949 * blocks_per_member of space
3950 */
3951 if (array_start >= pos && array_end < ex[j].start) {
3952 found = 1;
3953 break;
3954 }
3955 pos = ex[j].start + ex[j].size;
3956 j++;
3957 } while (ex[j-1].size);
3958
3959 if (!found)
3960 break;
3961 }
3962
3963 free(ex);
3964 if (i < mpb->num_raid_devs) {
3965 dprintf("%x:%x does not have %u to %u available\n",
3966 dl->major, dl->minor, array_start, array_end);
3967 /* No room */
3968 continue;
3969 }
3970 return dl;
3971 }
3972
3973 return dl;
3974 }
3975
3976 static struct mdinfo *imsm_activate_spare(struct active_array *a,
3977 struct metadata_update **updates)
3978 {
3979 /**
3980 * Find a device with unused free space and use it to replace a
3981 * failed/vacant region in an array. We replace failed regions one a
3982 * array at a time. The result is that a new spare disk will be added
3983 * to the first failed array and after the monitor has finished
3984 * propagating failures the remainder will be consumed.
3985 *
3986 * FIXME add a capability for mdmon to request spares from another
3987 * container.
3988 */
3989
3990 struct intel_super *super = a->container->sb;
3991 int inst = a->info.container_member;
3992 struct imsm_dev *dev = get_imsm_dev(super, inst);
3993 struct imsm_map *map = get_imsm_map(dev, 0);
3994 int failed = a->info.array.raid_disks;
3995 struct mdinfo *rv = NULL;
3996 struct mdinfo *d;
3997 struct mdinfo *di;
3998 struct metadata_update *mu;
3999 struct dl *dl;
4000 struct imsm_update_activate_spare *u;
4001 int num_spares = 0;
4002 int i;
4003
4004 for (d = a->info.devs ; d ; d = d->next) {
4005 if ((d->curr_state & DS_FAULTY) &&
4006 d->state_fd >= 0)
4007 /* wait for Removal to happen */
4008 return NULL;
4009 if (d->state_fd >= 0)
4010 failed--;
4011 }
4012
4013 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
4014 inst, failed, a->info.array.raid_disks, a->info.array.level);
4015 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
4016 return NULL;
4017
4018 /* For each slot, if it is not working, find a spare */
4019 for (i = 0; i < a->info.array.raid_disks; i++) {
4020 for (d = a->info.devs ; d ; d = d->next)
4021 if (d->disk.raid_disk == i)
4022 break;
4023 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4024 if (d && (d->state_fd >= 0))
4025 continue;
4026
4027 /*
4028 * OK, this device needs recovery. Try to re-add the
4029 * previous occupant of this slot, if this fails see if
4030 * we can continue the assimilation of a spare that was
4031 * partially assimilated, finally try to activate a new
4032 * spare.
4033 */
4034 dl = imsm_readd(super, i, a);
4035 if (!dl)
4036 dl = imsm_add_spare(super, i, a, 0);
4037 if (!dl)
4038 dl = imsm_add_spare(super, i, a, 1);
4039 if (!dl)
4040 continue;
4041
4042 /* found a usable disk with enough space */
4043 di = malloc(sizeof(*di));
4044 if (!di)
4045 continue;
4046 memset(di, 0, sizeof(*di));
4047
4048 /* dl->index will be -1 in the case we are activating a
4049 * pristine spare. imsm_process_update() will create a
4050 * new index in this case. Once a disk is found to be
4051 * failed in all member arrays it is kicked from the
4052 * metadata
4053 */
4054 di->disk.number = dl->index;
4055
4056 /* (ab)use di->devs to store a pointer to the device
4057 * we chose
4058 */
4059 di->devs = (struct mdinfo *) dl;
4060
4061 di->disk.raid_disk = i;
4062 di->disk.major = dl->major;
4063 di->disk.minor = dl->minor;
4064 di->disk.state = 0;
4065 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
4066 di->component_size = a->info.component_size;
4067 di->container_member = inst;
4068 super->random = random32();
4069 di->next = rv;
4070 rv = di;
4071 num_spares++;
4072 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
4073 i, di->data_offset);
4074
4075 break;
4076 }
4077
4078 if (!rv)
4079 /* No spares found */
4080 return rv;
4081 /* Now 'rv' has a list of devices to return.
4082 * Create a metadata_update record to update the
4083 * disk_ord_tbl for the array
4084 */
4085 mu = malloc(sizeof(*mu));
4086 if (mu) {
4087 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
4088 if (mu->buf == NULL) {
4089 free(mu);
4090 mu = NULL;
4091 }
4092 }
4093 if (!mu) {
4094 while (rv) {
4095 struct mdinfo *n = rv->next;
4096
4097 free(rv);
4098 rv = n;
4099 }
4100 return NULL;
4101 }
4102
4103 mu->space = NULL;
4104 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
4105 mu->next = *updates;
4106 u = (struct imsm_update_activate_spare *) mu->buf;
4107
4108 for (di = rv ; di ; di = di->next) {
4109 u->type = update_activate_spare;
4110 u->dl = (struct dl *) di->devs;
4111 di->devs = NULL;
4112 u->slot = di->disk.raid_disk;
4113 u->array = inst;
4114 u->next = u + 1;
4115 u++;
4116 }
4117 (u-1)->next = NULL;
4118 *updates = mu;
4119
4120 return rv;
4121 }
4122
4123 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
4124 {
4125 struct imsm_dev *dev = get_imsm_dev(super, idx);
4126 struct imsm_map *map = get_imsm_map(dev, 0);
4127 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
4128 struct disk_info *inf = get_disk_info(u);
4129 struct imsm_disk *disk;
4130 int i;
4131 int j;
4132
4133 for (i = 0; i < map->num_members; i++) {
4134 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4135 for (j = 0; j < new_map->num_members; j++)
4136 if (serialcmp(disk->serial, inf[j].serial) == 0)
4137 return 1;
4138 }
4139
4140 return 0;
4141 }
4142
4143 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
4144
4145 static void imsm_process_update(struct supertype *st,
4146 struct metadata_update *update)
4147 {
4148 /**
4149 * crack open the metadata_update envelope to find the update record
4150 * update can be one of:
4151 * update_activate_spare - a spare device has replaced a failed
4152 * device in an array, update the disk_ord_tbl. If this disk is
4153 * present in all member arrays then also clear the SPARE_DISK
4154 * flag
4155 */
4156 struct intel_super *super = st->sb;
4157 struct imsm_super *mpb;
4158 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4159
4160 /* update requires a larger buf but the allocation failed */
4161 if (super->next_len && !super->next_buf) {
4162 super->next_len = 0;
4163 return;
4164 }
4165
4166 if (super->next_buf) {
4167 memcpy(super->next_buf, super->buf, super->len);
4168 free(super->buf);
4169 super->len = super->next_len;
4170 super->buf = super->next_buf;
4171
4172 super->next_len = 0;
4173 super->next_buf = NULL;
4174 }
4175
4176 mpb = super->anchor;
4177
4178 switch (type) {
4179 case update_activate_spare: {
4180 struct imsm_update_activate_spare *u = (void *) update->buf;
4181 struct imsm_dev *dev = get_imsm_dev(super, u->array);
4182 struct imsm_map *map = get_imsm_map(dev, 0);
4183 struct imsm_map *migr_map;
4184 struct active_array *a;
4185 struct imsm_disk *disk;
4186 __u8 to_state;
4187 struct dl *dl;
4188 unsigned int found;
4189 int failed;
4190 int victim = get_imsm_disk_idx(dev, u->slot);
4191 int i;
4192
4193 for (dl = super->disks; dl; dl = dl->next)
4194 if (dl == u->dl)
4195 break;
4196
4197 if (!dl) {
4198 fprintf(stderr, "error: imsm_activate_spare passed "
4199 "an unknown disk (index: %d)\n",
4200 u->dl->index);
4201 return;
4202 }
4203
4204 super->updates_pending++;
4205
4206 /* count failures (excluding rebuilds and the victim)
4207 * to determine map[0] state
4208 */
4209 failed = 0;
4210 for (i = 0; i < map->num_members; i++) {
4211 if (i == u->slot)
4212 continue;
4213 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4214 if (!disk || disk->status & FAILED_DISK)
4215 failed++;
4216 }
4217
4218 /* adding a pristine spare, assign a new index */
4219 if (dl->index < 0) {
4220 dl->index = super->anchor->num_disks;
4221 super->anchor->num_disks++;
4222 }
4223 disk = &dl->disk;
4224 disk->status |= CONFIGURED_DISK;
4225 disk->status &= ~SPARE_DISK;
4226
4227 /* mark rebuild */
4228 to_state = imsm_check_degraded(super, dev, failed);
4229 map->map_state = IMSM_T_STATE_DEGRADED;
4230 migrate(dev, to_state, MIGR_REBUILD);
4231 migr_map = get_imsm_map(dev, 1);
4232 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
4233 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
4234
4235 /* update the family_num to mark a new container
4236 * generation, being careful to record the existing
4237 * family_num in orig_family_num to clean up after
4238 * earlier mdadm versions that neglected to set it.
4239 */
4240 if (mpb->orig_family_num == 0)
4241 mpb->orig_family_num = mpb->family_num;
4242 mpb->family_num += super->random;
4243
4244 /* count arrays using the victim in the metadata */
4245 found = 0;
4246 for (a = st->arrays; a ; a = a->next) {
4247 dev = get_imsm_dev(super, a->info.container_member);
4248 map = get_imsm_map(dev, 0);
4249
4250 if (get_imsm_disk_slot(map, victim) >= 0)
4251 found++;
4252 }
4253
4254 /* delete the victim if it is no longer being
4255 * utilized anywhere
4256 */
4257 if (!found) {
4258 struct dl **dlp;
4259
4260 /* We know that 'manager' isn't touching anything,
4261 * so it is safe to delete
4262 */
4263 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
4264 if ((*dlp)->index == victim)
4265 break;
4266
4267 /* victim may be on the missing list */
4268 if (!*dlp)
4269 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
4270 if ((*dlp)->index == victim)
4271 break;
4272 imsm_delete(super, dlp, victim);
4273 }
4274 break;
4275 }
4276 case update_create_array: {
4277 /* someone wants to create a new array, we need to be aware of
4278 * a few races/collisions:
4279 * 1/ 'Create' called by two separate instances of mdadm
4280 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
4281 * devices that have since been assimilated via
4282 * activate_spare.
4283 * In the event this update can not be carried out mdadm will
4284 * (FIX ME) notice that its update did not take hold.
4285 */
4286 struct imsm_update_create_array *u = (void *) update->buf;
4287 struct intel_dev *dv;
4288 struct imsm_dev *dev;
4289 struct imsm_map *map, *new_map;
4290 unsigned long long start, end;
4291 unsigned long long new_start, new_end;
4292 int i;
4293 struct disk_info *inf;
4294 struct dl *dl;
4295
4296 /* handle racing creates: first come first serve */
4297 if (u->dev_idx < mpb->num_raid_devs) {
4298 dprintf("%s: subarray %d already defined\n",
4299 __func__, u->dev_idx);
4300 goto create_error;
4301 }
4302
4303 /* check update is next in sequence */
4304 if (u->dev_idx != mpb->num_raid_devs) {
4305 dprintf("%s: can not create array %d expected index %d\n",
4306 __func__, u->dev_idx, mpb->num_raid_devs);
4307 goto create_error;
4308 }
4309
4310 new_map = get_imsm_map(&u->dev, 0);
4311 new_start = __le32_to_cpu(new_map->pba_of_lba0);
4312 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
4313 inf = get_disk_info(u);
4314
4315 /* handle activate_spare versus create race:
4316 * check to make sure that overlapping arrays do not include
4317 * overalpping disks
4318 */
4319 for (i = 0; i < mpb->num_raid_devs; i++) {
4320 dev = get_imsm_dev(super, i);
4321 map = get_imsm_map(dev, 0);
4322 start = __le32_to_cpu(map->pba_of_lba0);
4323 end = start + __le32_to_cpu(map->blocks_per_member);
4324 if ((new_start >= start && new_start <= end) ||
4325 (start >= new_start && start <= new_end))
4326 /* overlap */;
4327 else
4328 continue;
4329
4330 if (disks_overlap(super, i, u)) {
4331 dprintf("%s: arrays overlap\n", __func__);
4332 goto create_error;
4333 }
4334 }
4335
4336 /* check that prepare update was successful */
4337 if (!update->space) {
4338 dprintf("%s: prepare update failed\n", __func__);
4339 goto create_error;
4340 }
4341
4342 /* check that all disks are still active before committing
4343 * changes. FIXME: could we instead handle this by creating a
4344 * degraded array? That's probably not what the user expects,
4345 * so better to drop this update on the floor.
4346 */
4347 for (i = 0; i < new_map->num_members; i++) {
4348 dl = serial_to_dl(inf[i].serial, super);
4349 if (!dl) {
4350 dprintf("%s: disk disappeared\n", __func__);
4351 goto create_error;
4352 }
4353 }
4354
4355 super->updates_pending++;
4356
4357 /* convert spares to members and fixup ord_tbl */
4358 for (i = 0; i < new_map->num_members; i++) {
4359 dl = serial_to_dl(inf[i].serial, super);
4360 if (dl->index == -1) {
4361 dl->index = mpb->num_disks;
4362 mpb->num_disks++;
4363 dl->disk.status |= CONFIGURED_DISK;
4364 dl->disk.status &= ~SPARE_DISK;
4365 }
4366 set_imsm_ord_tbl_ent(new_map, i, dl->index);
4367 }
4368
4369 dv = update->space;
4370 dev = dv->dev;
4371 update->space = NULL;
4372 imsm_copy_dev(dev, &u->dev);
4373 dv->index = u->dev_idx;
4374 dv->next = super->devlist;
4375 super->devlist = dv;
4376 mpb->num_raid_devs++;
4377
4378 imsm_update_version_info(super);
4379 break;
4380 create_error:
4381 /* mdmon knows how to release update->space, but not
4382 * ((struct intel_dev *) update->space)->dev
4383 */
4384 if (update->space) {
4385 dv = update->space;
4386 free(dv->dev);
4387 }
4388 break;
4389 }
4390 case update_add_disk:
4391
4392 /* we may be able to repair some arrays if disks are
4393 * being added */
4394 if (super->add) {
4395 struct active_array *a;
4396
4397 super->updates_pending++;
4398 for (a = st->arrays; a; a = a->next)
4399 a->check_degraded = 1;
4400 }
4401 /* add some spares to the metadata */
4402 while (super->add) {
4403 struct dl *al;
4404
4405 al = super->add;
4406 super->add = al->next;
4407 al->next = super->disks;
4408 super->disks = al;
4409 dprintf("%s: added %x:%x\n",
4410 __func__, al->major, al->minor);
4411 }
4412
4413 break;
4414 }
4415 }
4416
4417 static void imsm_prepare_update(struct supertype *st,
4418 struct metadata_update *update)
4419 {
4420 /**
4421 * Allocate space to hold new disk entries, raid-device entries or a new
4422 * mpb if necessary. The manager synchronously waits for updates to
4423 * complete in the monitor, so new mpb buffers allocated here can be
4424 * integrated by the monitor thread without worrying about live pointers
4425 * in the manager thread.
4426 */
4427 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4428 struct intel_super *super = st->sb;
4429 struct imsm_super *mpb = super->anchor;
4430 size_t buf_len;
4431 size_t len = 0;
4432
4433 switch (type) {
4434 case update_create_array: {
4435 struct imsm_update_create_array *u = (void *) update->buf;
4436 struct intel_dev *dv;
4437 struct imsm_dev *dev = &u->dev;
4438 struct imsm_map *map = get_imsm_map(dev, 0);
4439 struct dl *dl;
4440 struct disk_info *inf;
4441 int i;
4442 int activate = 0;
4443
4444 inf = get_disk_info(u);
4445 len = sizeof_imsm_dev(dev, 1);
4446 /* allocate a new super->devlist entry */
4447 dv = malloc(sizeof(*dv));
4448 if (dv) {
4449 dv->dev = malloc(len);
4450 if (dv->dev)
4451 update->space = dv;
4452 else {
4453 free(dv);
4454 update->space = NULL;
4455 }
4456 }
4457
4458 /* count how many spares will be converted to members */
4459 for (i = 0; i < map->num_members; i++) {
4460 dl = serial_to_dl(inf[i].serial, super);
4461 if (!dl) {
4462 /* hmm maybe it failed?, nothing we can do about
4463 * it here
4464 */
4465 continue;
4466 }
4467 if (count_memberships(dl, super) == 0)
4468 activate++;
4469 }
4470 len += activate * sizeof(struct imsm_disk);
4471 break;
4472 default:
4473 break;
4474 }
4475 }
4476
4477 /* check if we need a larger metadata buffer */
4478 if (super->next_buf)
4479 buf_len = super->next_len;
4480 else
4481 buf_len = super->len;
4482
4483 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
4484 /* ok we need a larger buf than what is currently allocated
4485 * if this allocation fails process_update will notice that
4486 * ->next_len is set and ->next_buf is NULL
4487 */
4488 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
4489 if (super->next_buf)
4490 free(super->next_buf);
4491
4492 super->next_len = buf_len;
4493 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
4494 memset(super->next_buf, 0, buf_len);
4495 else
4496 super->next_buf = NULL;
4497 }
4498 }
4499
4500 /* must be called while manager is quiesced */
4501 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
4502 {
4503 struct imsm_super *mpb = super->anchor;
4504 struct dl *iter;
4505 struct imsm_dev *dev;
4506 struct imsm_map *map;
4507 int i, j, num_members;
4508 __u32 ord;
4509
4510 dprintf("%s: deleting device[%d] from imsm_super\n",
4511 __func__, index);
4512
4513 /* shift all indexes down one */
4514 for (iter = super->disks; iter; iter = iter->next)
4515 if (iter->index > index)
4516 iter->index--;
4517 for (iter = super->missing; iter; iter = iter->next)
4518 if (iter->index > index)
4519 iter->index--;
4520
4521 for (i = 0; i < mpb->num_raid_devs; i++) {
4522 dev = get_imsm_dev(super, i);
4523 map = get_imsm_map(dev, 0);
4524 num_members = map->num_members;
4525 for (j = 0; j < num_members; j++) {
4526 /* update ord entries being careful not to propagate
4527 * ord-flags to the first map
4528 */
4529 ord = get_imsm_ord_tbl_ent(dev, j);
4530
4531 if (ord_to_idx(ord) <= index)
4532 continue;
4533
4534 map = get_imsm_map(dev, 0);
4535 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
4536 map = get_imsm_map(dev, 1);
4537 if (map)
4538 set_imsm_ord_tbl_ent(map, j, ord - 1);
4539 }
4540 }
4541
4542 mpb->num_disks--;
4543 super->updates_pending++;
4544 if (*dlp) {
4545 struct dl *dl = *dlp;
4546
4547 *dlp = (*dlp)->next;
4548 __free_imsm_disk(dl);
4549 }
4550 }
4551 #endif /* MDASSEMBLE */
4552
4553 struct superswitch super_imsm = {
4554 #ifndef MDASSEMBLE
4555 .examine_super = examine_super_imsm,
4556 .brief_examine_super = brief_examine_super_imsm,
4557 .export_examine_super = export_examine_super_imsm,
4558 .detail_super = detail_super_imsm,
4559 .brief_detail_super = brief_detail_super_imsm,
4560 .write_init_super = write_init_super_imsm,
4561 .validate_geometry = validate_geometry_imsm,
4562 .add_to_super = add_to_super_imsm,
4563 .detail_platform = detail_platform_imsm,
4564 #endif
4565 .match_home = match_home_imsm,
4566 .uuid_from_super= uuid_from_super_imsm,
4567 .getinfo_super = getinfo_super_imsm,
4568 .update_super = update_super_imsm,
4569
4570 .avail_size = avail_size_imsm,
4571
4572 .compare_super = compare_super_imsm,
4573
4574 .load_super = load_super_imsm,
4575 .init_super = init_super_imsm,
4576 .store_super = store_zero_imsm,
4577 .free_super = free_super_imsm,
4578 .match_metadata_desc = match_metadata_desc_imsm,
4579 .container_content = container_content_imsm,
4580 .default_layout = imsm_level_to_layout,
4581
4582 .external = 1,
4583 .name = "imsm",
4584
4585 #ifndef MDASSEMBLE
4586 /* for mdmon */
4587 .open_new = imsm_open_new,
4588 .load_super = load_super_imsm,
4589 .set_array_state= imsm_set_array_state,
4590 .set_disk = imsm_set_disk,
4591 .sync_metadata = imsm_sync_metadata,
4592 .activate_spare = imsm_activate_spare,
4593 .process_update = imsm_process_update,
4594 .prepare_update = imsm_prepare_update,
4595 #endif /* MDASSEMBLE */
4596 };