]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: drop 'external' from imsm_examine_brief
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2007 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "mdadm.h"
21 #include "mdmon.h"
22 #include <values.h>
23 #include <scsi/sg.h>
24 #include <ctype.h>
25
26 /* MPB == Metadata Parameter Block */
27 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
28 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
29 #define MPB_VERSION_RAID0 "1.0.00"
30 #define MPB_VERSION_RAID1 "1.1.00"
31 #define MPB_VERSION_RAID5 "1.2.02"
32 #define MAX_SIGNATURE_LENGTH 32
33 #define MAX_RAID_SERIAL_LEN 16
34 #define MPB_SECTOR_CNT 418
35 #define IMSM_RESERVED_SECTORS 4096
36
37 /* Disk configuration info. */
38 #define IMSM_MAX_DEVICES 255
39 struct imsm_disk {
40 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
41 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
42 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
43 __u32 status; /* 0xF0 - 0xF3 */
44 #define SPARE_DISK 0x01 /* Spare */
45 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
46 #define FAILED_DISK 0x04 /* Permanent failure */
47 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
48
49 #define IMSM_DISK_FILLERS 5
50 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
51 };
52
53 /* RAID map configuration infos. */
54 struct imsm_map {
55 __u32 pba_of_lba0; /* start address of partition */
56 __u32 blocks_per_member;/* blocks per member */
57 __u32 num_data_stripes; /* number of data stripes */
58 __u16 blocks_per_strip;
59 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
60 #define IMSM_T_STATE_NORMAL 0
61 #define IMSM_T_STATE_UNINITIALIZED 1
62 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
63 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
64 __u8 raid_level;
65 #define IMSM_T_RAID0 0
66 #define IMSM_T_RAID1 1
67 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
68 __u8 num_members; /* number of member disks */
69 __u8 reserved[3];
70 __u32 filler[7]; /* expansion area */
71 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
72 top byte special */
73 } __attribute__ ((packed));
74
75 struct imsm_vol {
76 __u32 reserved[2];
77 __u8 migr_state; /* Normal or Migrating */
78 __u8 migr_type; /* Initializing, Rebuilding, ... */
79 __u8 dirty;
80 __u8 fill[1];
81 __u32 filler[5];
82 struct imsm_map map[1];
83 /* here comes another one if migr_state */
84 } __attribute__ ((packed));
85
86 struct imsm_dev {
87 __u8 volume[MAX_RAID_SERIAL_LEN];
88 __u32 size_low;
89 __u32 size_high;
90 __u32 status; /* Persistent RaidDev status */
91 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
92 #define IMSM_DEV_FILLERS 12
93 __u32 filler[IMSM_DEV_FILLERS];
94 struct imsm_vol vol;
95 } __attribute__ ((packed));
96
97 struct imsm_super {
98 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
99 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
100 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
101 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
102 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
103 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
104 __u32 attributes; /* 0x34 - 0x37 */
105 __u8 num_disks; /* 0x38 Number of configured disks */
106 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
107 __u8 error_log_pos; /* 0x3A */
108 __u8 fill[1]; /* 0x3B */
109 __u32 cache_size; /* 0x3c - 0x40 in mb */
110 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
111 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
112 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
113 #define IMSM_FILLERS 35
114 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
115 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
116 /* here comes imsm_dev[num_raid_devs] */
117 /* here comes BBM logs */
118 } __attribute__ ((packed));
119
120 #define BBM_LOG_MAX_ENTRIES 254
121
122 struct bbm_log_entry {
123 __u64 defective_block_start;
124 #define UNREADABLE 0xFFFFFFFF
125 __u32 spare_block_offset;
126 __u16 remapped_marked_count;
127 __u16 disk_ordinal;
128 } __attribute__ ((__packed__));
129
130 struct bbm_log {
131 __u32 signature; /* 0xABADB10C */
132 __u32 entry_count;
133 __u32 reserved_spare_block_count; /* 0 */
134 __u32 reserved; /* 0xFFFF */
135 __u64 first_spare_lba;
136 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
137 } __attribute__ ((__packed__));
138
139
140 #ifndef MDASSEMBLE
141 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
142 #endif
143
144 static unsigned int sector_count(__u32 bytes)
145 {
146 return ((bytes + (512-1)) & (~(512-1))) / 512;
147 }
148
149 static unsigned int mpb_sectors(struct imsm_super *mpb)
150 {
151 return sector_count(__le32_to_cpu(mpb->mpb_size));
152 }
153
154 /* internal representation of IMSM metadata */
155 struct intel_super {
156 union {
157 void *buf; /* O_DIRECT buffer for reading/writing metadata */
158 struct imsm_super *anchor; /* immovable parameters */
159 };
160 size_t len; /* size of the 'buf' allocation */
161 int updates_pending; /* count of pending updates for mdmon */
162 int creating_imsm; /* flag to indicate container creation */
163 int current_vol; /* index of raid device undergoing creation */
164 #define IMSM_MAX_RAID_DEVS 2
165 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
166 struct dl {
167 struct dl *next;
168 int index;
169 __u8 serial[MAX_RAID_SERIAL_LEN];
170 int major, minor;
171 char *devname;
172 struct imsm_disk disk;
173 int fd;
174 } *disks;
175 struct bbm_log *bbm_log;
176 };
177
178 struct extent {
179 unsigned long long start, size;
180 };
181
182 /* definition of messages passed to imsm_process_update */
183 enum imsm_update_type {
184 update_activate_spare,
185 update_create_array,
186 };
187
188 struct imsm_update_activate_spare {
189 enum imsm_update_type type;
190 struct dl *dl;
191 int slot;
192 int array;
193 struct imsm_update_activate_spare *next;
194 };
195
196 struct imsm_update_create_array {
197 enum imsm_update_type type;
198 struct imsm_dev dev;
199 int dev_idx;
200 };
201
202 static int imsm_env_devname_as_serial(void)
203 {
204 char *val = getenv("IMSM_DEVNAME_AS_SERIAL");
205
206 if (val && atoi(val) == 1)
207 return 1;
208
209 return 0;
210 }
211
212
213 static struct supertype *match_metadata_desc_imsm(char *arg)
214 {
215 struct supertype *st;
216
217 if (strcmp(arg, "imsm") != 0 &&
218 strcmp(arg, "default") != 0
219 )
220 return NULL;
221
222 st = malloc(sizeof(*st));
223 memset(st, 0, sizeof(*st));
224 st->ss = &super_imsm;
225 st->max_devs = IMSM_MAX_DEVICES;
226 st->minor_version = 0;
227 st->sb = NULL;
228 return st;
229 }
230
231 static __u8 *get_imsm_version(struct imsm_super *mpb)
232 {
233 return &mpb->sig[MPB_SIG_LEN];
234 }
235
236 /* retrieve a disk directly from the anchor when the anchor is known to be
237 * up-to-date, currently only at load time
238 */
239 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
240 {
241 if (index >= mpb->num_disks)
242 return NULL;
243 return &mpb->disk[index];
244 }
245
246 /* retrieve a disk from the parsed metadata */
247 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
248 {
249 struct dl *d;
250
251 for (d = super->disks; d; d = d->next)
252 if (d->index == index)
253 return &d->disk;
254
255 return NULL;
256 }
257
258 /* generate a checksum directly from the anchor when the anchor is known to be
259 * up-to-date, currently only at load or write_super after coalescing
260 */
261 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
262 {
263 __u32 end = mpb->mpb_size / sizeof(end);
264 __u32 *p = (__u32 *) mpb;
265 __u32 sum = 0;
266
267 while (end--)
268 sum += __le32_to_cpu(*p++);
269
270 return sum - __le32_to_cpu(mpb->check_sum);
271 }
272
273 static size_t sizeof_imsm_dev(struct imsm_dev *dev)
274 {
275 size_t size = sizeof(*dev);
276
277 /* each map has disk_ord_tbl[num_members - 1] additional space */
278 size += sizeof(__u32) * (dev->vol.map[0].num_members - 1);
279
280 /* migrating means an additional map */
281 if (dev->vol.migr_state) {
282 size += sizeof(struct imsm_map);
283 size += sizeof(__u32) * (dev->vol.map[1].num_members - 1);
284 }
285
286 return size;
287 }
288
289 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
290 {
291 int offset;
292 int i;
293 void *_mpb = mpb;
294
295 if (index >= mpb->num_raid_devs)
296 return NULL;
297
298 /* devices start after all disks */
299 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
300
301 for (i = 0; i <= index; i++)
302 if (i == index)
303 return _mpb + offset;
304 else
305 offset += sizeof_imsm_dev(_mpb + offset);
306
307 return NULL;
308 }
309
310 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
311 {
312 if (index >= super->anchor->num_raid_devs)
313 return NULL;
314 return super->dev_tbl[index];
315 }
316
317 static __u32 get_imsm_disk_idx(struct imsm_map *map, int slot)
318 {
319 __u32 *ord_tbl = &map->disk_ord_tbl[slot];
320
321 /* top byte is 'special' */
322 return __le32_to_cpu(*ord_tbl & ~(0xff << 24));
323 }
324
325 static int get_imsm_raid_level(struct imsm_map *map)
326 {
327 if (map->raid_level == 1) {
328 if (map->num_members == 2)
329 return 1;
330 else
331 return 10;
332 }
333
334 return map->raid_level;
335 }
336
337 static int cmp_extent(const void *av, const void *bv)
338 {
339 const struct extent *a = av;
340 const struct extent *b = bv;
341 if (a->start < b->start)
342 return -1;
343 if (a->start > b->start)
344 return 1;
345 return 0;
346 }
347
348 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
349 {
350 /* find a list of used extents on the given physical device */
351 struct extent *rv, *e;
352 int i, j;
353 int memberships = 0;
354
355 for (i = 0; i < super->anchor->num_raid_devs; i++) {
356 struct imsm_dev *dev = get_imsm_dev(super, i);
357 struct imsm_map *map = dev->vol.map;
358
359 for (j = 0; j < map->num_members; j++) {
360 __u32 index = get_imsm_disk_idx(map, j);
361
362 if (index == dl->index)
363 memberships++;
364 }
365 }
366 rv = malloc(sizeof(struct extent) * (memberships + 1));
367 if (!rv)
368 return NULL;
369 e = rv;
370
371 for (i = 0; i < super->anchor->num_raid_devs; i++) {
372 struct imsm_dev *dev = get_imsm_dev(super, i);
373 struct imsm_map *map = dev->vol.map;
374
375 for (j = 0; j < map->num_members; j++) {
376 __u32 index = get_imsm_disk_idx(map, j);
377
378 if (index == dl->index) {
379 e->start = __le32_to_cpu(map->pba_of_lba0);
380 e->size = __le32_to_cpu(map->blocks_per_member);
381 e++;
382 }
383 }
384 }
385 qsort(rv, memberships, sizeof(*rv), cmp_extent);
386
387 e->start = __le32_to_cpu(dl->disk.total_blocks) -
388 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
389 e->size = 0;
390 return rv;
391 }
392
393 #ifndef MDASSEMBLE
394 static void print_imsm_dev(struct imsm_dev *dev, int index)
395 {
396 __u64 sz;
397 int slot;
398 struct imsm_map *map = dev->vol.map;
399
400 printf("\n");
401 printf("[%s]:\n", dev->volume);
402 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
403 printf(" Members : %d\n", map->num_members);
404 for (slot = 0; slot < map->num_members; slot++)
405 if (index == get_imsm_disk_idx(map, slot))
406 break;
407 if (slot < map->num_members)
408 printf(" This Slot : %d\n", slot);
409 else
410 printf(" This Slot : ?\n");
411 sz = __le32_to_cpu(dev->size_high);
412 sz <<= 32;
413 sz += __le32_to_cpu(dev->size_low);
414 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
415 human_size(sz * 512));
416 sz = __le32_to_cpu(map->blocks_per_member);
417 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
418 human_size(sz * 512));
419 printf(" Sector Offset : %u\n",
420 __le32_to_cpu(map->pba_of_lba0));
421 printf(" Num Stripes : %u\n",
422 __le32_to_cpu(map->num_data_stripes));
423 printf(" Chunk Size : %u KiB\n",
424 __le16_to_cpu(map->blocks_per_strip) / 2);
425 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
426 printf(" Migrate State : %s\n", dev->vol.migr_state ? "migrating" : "idle");
427 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
428 printf(" Map State : %s\n", map_state_str[map->map_state]);
429 }
430
431 static void print_imsm_disk(struct imsm_super *mpb, int index)
432 {
433 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
434 char str[MAX_RAID_SERIAL_LEN];
435 __u32 s;
436 __u64 sz;
437
438 if (index < 0)
439 return;
440
441 printf("\n");
442 snprintf(str, MAX_RAID_SERIAL_LEN, "%s", disk->serial);
443 printf(" Disk%02d Serial : %s\n", index, str);
444 s = __le32_to_cpu(disk->status);
445 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
446 s&CONFIGURED_DISK ? " active" : "",
447 s&FAILED_DISK ? " failed" : "",
448 s&USABLE_DISK ? " usable" : "");
449 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
450 sz = __le32_to_cpu(disk->total_blocks) -
451 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS * mpb->num_raid_devs);
452 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
453 human_size(sz * 512));
454 }
455
456 static void examine_super_imsm(struct supertype *st, char *homehost)
457 {
458 struct intel_super *super = st->sb;
459 struct imsm_super *mpb = super->anchor;
460 char str[MAX_SIGNATURE_LENGTH];
461 int i;
462 __u32 sum;
463
464 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
465 printf(" Magic : %s\n", str);
466 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
467 printf(" Version : %s\n", get_imsm_version(mpb));
468 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
469 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
470 sum = __le32_to_cpu(mpb->check_sum);
471 printf(" Checksum : %08x %s\n", sum,
472 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
473 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
474 printf(" Disks : %d\n", mpb->num_disks);
475 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
476 print_imsm_disk(mpb, super->disks->index);
477 if (super->bbm_log) {
478 struct bbm_log *log = super->bbm_log;
479
480 printf("\n");
481 printf("Bad Block Management Log:\n");
482 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
483 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
484 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
485 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
486 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
487 }
488 for (i = 0; i < mpb->num_raid_devs; i++)
489 print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
490 for (i = 0; i < mpb->num_disks; i++) {
491 if (i == super->disks->index)
492 continue;
493 print_imsm_disk(mpb, i);
494 }
495 }
496
497 static void brief_examine_super_imsm(struct supertype *st)
498 {
499 printf("ARRAY /dev/imsm metadata=imsm\n");
500 }
501
502 static void detail_super_imsm(struct supertype *st, char *homehost)
503 {
504 printf("%s\n", __FUNCTION__);
505 }
506
507 static void brief_detail_super_imsm(struct supertype *st)
508 {
509 printf("%s\n", __FUNCTION__);
510 }
511 #endif
512
513 static int match_home_imsm(struct supertype *st, char *homehost)
514 {
515 printf("%s\n", __FUNCTION__);
516
517 return 0;
518 }
519
520 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
521 {
522 printf("%s\n", __FUNCTION__);
523 }
524
525 #if 0
526 static void
527 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
528 {
529 __u8 *v = get_imsm_version(mpb);
530 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
531 char major[] = { 0, 0, 0 };
532 char minor[] = { 0 ,0, 0 };
533 char patch[] = { 0, 0, 0 };
534 char *ver_parse[] = { major, minor, patch };
535 int i, j;
536
537 i = j = 0;
538 while (*v != '\0' && v < end) {
539 if (*v != '.' && j < 2)
540 ver_parse[i][j++] = *v;
541 else {
542 i++;
543 j = 0;
544 }
545 v++;
546 }
547
548 *m = strtol(minor, NULL, 0);
549 *p = strtol(patch, NULL, 0);
550 }
551 #endif
552
553 static int imsm_level_to_layout(int level)
554 {
555 switch (level) {
556 case 0:
557 case 1:
558 return 0;
559 case 5:
560 case 6:
561 return ALGORITHM_LEFT_ASYMMETRIC;
562 case 10:
563 return 0x102; //FIXME is this correct?
564 }
565 return -1;
566 }
567
568 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
569 {
570 struct intel_super *super = st->sb;
571 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
572 struct imsm_map *map = &dev->vol.map[0];
573
574 info->container_member = super->current_vol;
575 info->array.raid_disks = map->num_members;
576 info->array.level = get_imsm_raid_level(map);
577 info->array.layout = imsm_level_to_layout(info->array.level);
578 info->array.md_minor = -1;
579 info->array.ctime = 0;
580 info->array.utime = 0;
581 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip * 512);
582
583 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
584 info->component_size = __le32_to_cpu(map->blocks_per_member);
585
586 info->disk.major = 0;
587 info->disk.minor = 0;
588
589 sprintf(info->text_version, "/%s/%d",
590 devnum2devname(st->container_dev),
591 info->container_member);
592 }
593
594
595 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
596 {
597 struct intel_super *super = st->sb;
598 struct imsm_disk *disk;
599 __u32 s;
600
601 if (super->current_vol >= 0) {
602 getinfo_super_imsm_volume(st, info);
603 return;
604 }
605
606 /* Set raid_disks to zero so that Assemble will always pull in valid
607 * spares
608 */
609 info->array.raid_disks = 0;
610 info->array.level = LEVEL_CONTAINER;
611 info->array.layout = 0;
612 info->array.md_minor = -1;
613 info->array.ctime = 0; /* N/A for imsm */
614 info->array.utime = 0;
615 info->array.chunk_size = 0;
616
617 info->disk.major = 0;
618 info->disk.minor = 0;
619 info->disk.raid_disk = -1;
620 info->reshape_active = 0;
621 strcpy(info->text_version, "imsm");
622 info->disk.number = -1;
623 info->disk.state = 0;
624
625 if (super->disks) {
626 disk = &super->disks->disk;
627 info->disk.number = super->disks->index;
628 info->disk.raid_disk = super->disks->index;
629 info->data_offset = __le32_to_cpu(disk->total_blocks) -
630 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
631 info->component_size = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
632 s = __le32_to_cpu(disk->status);
633 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
634 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
635 info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
636 }
637 }
638
639 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
640 char *update, char *devname, int verbose,
641 int uuid_set, char *homehost)
642 {
643 /* FIXME */
644
645 /* For 'assemble' and 'force' we need to return non-zero if any
646 * change was made. For others, the return value is ignored.
647 * Update options are:
648 * force-one : This device looks a bit old but needs to be included,
649 * update age info appropriately.
650 * assemble: clear any 'faulty' flag to allow this device to
651 * be assembled.
652 * force-array: Array is degraded but being forced, mark it clean
653 * if that will be needed to assemble it.
654 *
655 * newdev: not used ????
656 * grow: Array has gained a new device - this is currently for
657 * linear only
658 * resync: mark as dirty so a resync will happen.
659 * name: update the name - preserving the homehost
660 *
661 * Following are not relevant for this imsm:
662 * sparc2.2 : update from old dodgey metadata
663 * super-minor: change the preferred_minor number
664 * summaries: update redundant counters.
665 * uuid: Change the uuid of the array to match watch is given
666 * homehost: update the recorded homehost
667 * _reshape_progress: record new reshape_progress position.
668 */
669 int rv = 0;
670 //struct intel_super *super = st->sb;
671 //struct imsm_super *mpb = super->mpb;
672
673 if (strcmp(update, "grow") == 0) {
674 }
675 if (strcmp(update, "resync") == 0) {
676 /* dev->vol.dirty = 1; */
677 }
678
679 /* IMSM has no concept of UUID or homehost */
680
681 return rv;
682 }
683
684 static size_t disks_to_mpb_size(int disks)
685 {
686 size_t size;
687
688 size = sizeof(struct imsm_super);
689 size += (disks - 1) * sizeof(struct imsm_disk);
690 size += 2 * sizeof(struct imsm_dev);
691 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
692 size += (4 - 2) * sizeof(struct imsm_map);
693 /* 4 possible disk_ord_tbl's */
694 size += 4 * (disks - 1) * sizeof(__u32);
695
696 return size;
697 }
698
699 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
700 {
701 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
702 return 0;
703
704 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
705 }
706
707 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
708 {
709 /*
710 * return:
711 * 0 same, or first was empty, and second was copied
712 * 1 second had wrong number
713 * 2 wrong uuid
714 * 3 wrong other info
715 */
716 struct intel_super *first = st->sb;
717 struct intel_super *sec = tst->sb;
718
719 if (!first) {
720 st->sb = tst->sb;
721 tst->sb = NULL;
722 return 0;
723 }
724
725 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
726 return 3;
727
728 /* if an anchor does not have num_raid_devs set then it is a free
729 * floating spare
730 */
731 if (first->anchor->num_raid_devs > 0 &&
732 sec->anchor->num_raid_devs > 0) {
733 if (first->anchor->family_num != sec->anchor->family_num)
734 return 3;
735 if (first->anchor->mpb_size != sec->anchor->mpb_size)
736 return 3;
737 if (first->anchor->check_sum != sec->anchor->check_sum)
738 return 3;
739 }
740
741 return 0;
742 }
743
744 static void fd2devname(int fd, char *name)
745 {
746 struct stat st;
747 char path[256];
748 char dname[100];
749 char *nm;
750 int rv;
751
752 name[0] = '\0';
753 if (fstat(fd, &st) != 0)
754 return;
755 sprintf(path, "/sys/dev/block/%d:%d",
756 major(st.st_rdev), minor(st.st_rdev));
757
758 rv = readlink(path, dname, sizeof(dname));
759 if (rv <= 0)
760 return;
761
762 dname[rv] = '\0';
763 nm = strrchr(dname, '/');
764 nm++;
765 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
766 }
767
768
769 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
770
771 static int imsm_read_serial(int fd, char *devname,
772 __u8 serial[MAX_RAID_SERIAL_LEN])
773 {
774 unsigned char scsi_serial[255];
775 int rv;
776 int rsp_len;
777 int i, cnt;
778
779 memset(scsi_serial, 0, sizeof(scsi_serial));
780
781 if (imsm_env_devname_as_serial()) {
782 char name[MAX_RAID_SERIAL_LEN];
783
784 fd2devname(fd, name);
785 strcpy((char *) serial, name);
786 return 0;
787 }
788
789 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
790
791 if (rv != 0) {
792 if (devname)
793 fprintf(stderr,
794 Name ": Failed to retrieve serial for %s\n",
795 devname);
796 return rv;
797 }
798
799 rsp_len = scsi_serial[3];
800 for (i = 0, cnt = 0; i < rsp_len; i++) {
801 if (!isspace(scsi_serial[4 + i]))
802 serial[cnt++] = scsi_serial[4 + i];
803 if (cnt == MAX_RAID_SERIAL_LEN)
804 break;
805 }
806
807 serial[MAX_RAID_SERIAL_LEN - 1] = '\0';
808
809 return 0;
810 }
811
812 static int
813 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
814 {
815 struct dl *dl;
816 struct stat stb;
817 int rv;
818 int i;
819 int alloc = 1;
820 __u8 serial[MAX_RAID_SERIAL_LEN];
821
822 rv = imsm_read_serial(fd, devname, serial);
823
824 if (rv != 0)
825 return 2;
826
827 /* check if this is a disk we have seen before. it may be a spare in
828 * super->disks while the current anchor believes it is a raid member,
829 * check if we need to update dl->index
830 */
831 for (dl = super->disks; dl; dl = dl->next)
832 if (memcmp(dl->serial, serial, MAX_RAID_SERIAL_LEN) == 0)
833 break;
834
835 if (!dl)
836 dl = malloc(sizeof(*dl));
837 else
838 alloc = 0;
839
840 if (!dl) {
841 if (devname)
842 fprintf(stderr,
843 Name ": failed to allocate disk buffer for %s\n",
844 devname);
845 return 2;
846 }
847
848 if (alloc) {
849 fstat(fd, &stb);
850 dl->major = major(stb.st_rdev);
851 dl->minor = minor(stb.st_rdev);
852 dl->next = super->disks;
853 dl->fd = keep_fd ? fd : -1;
854 dl->devname = devname ? strdup(devname) : NULL;
855 strncpy((char *) dl->serial, (char *) serial, MAX_RAID_SERIAL_LEN);
856 } else if (keep_fd) {
857 close(dl->fd);
858 dl->fd = fd;
859 }
860
861 /* look up this disk's index in the current anchor */
862 for (i = 0; i < super->anchor->num_disks; i++) {
863 struct imsm_disk *disk_iter;
864
865 disk_iter = __get_imsm_disk(super->anchor, i);
866
867 if (memcmp(disk_iter->serial, dl->serial,
868 MAX_RAID_SERIAL_LEN) == 0) {
869 __u32 status;
870
871 dl->disk = *disk_iter;
872 status = __le32_to_cpu(dl->disk.status);
873 /* only set index on disks that are a member of a
874 * populated contianer, i.e. one with raid_devs
875 */
876 if (status & SPARE_DISK)
877 dl->index = -1;
878 else
879 dl->index = i;
880 break;
881 }
882 }
883
884 if (i == super->anchor->num_disks && alloc) {
885 if (devname)
886 fprintf(stderr,
887 Name ": failed to load disk with serial \'%s\' for %s\n",
888 dl->serial, devname);
889 free(dl);
890 return 1;
891 }
892 if (i == super->anchor->num_disks && dl->index >= 0) {
893 if (devname)
894 fprintf(stderr,
895 Name ": confused... disk %d with serial \'%s\' "
896 "is not listed in the current anchor\n",
897 dl->index, dl->serial);
898 return 1;
899 }
900
901 if (alloc)
902 super->disks = dl;
903
904 return 0;
905 }
906
907 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
908 {
909 int i;
910
911 *dest = *src;
912
913 for (i = 0; i < src->vol.map[0].num_members; i++)
914 dest->vol.map[0].disk_ord_tbl[i] = src->vol.map[0].disk_ord_tbl[i];
915
916 if (!src->vol.migr_state)
917 return;
918
919 dest->vol.map[1] = src->vol.map[1];
920 for (i = 0; i < src->vol.map[1].num_members; i++)
921 dest->vol.map[1].disk_ord_tbl[i] = src->vol.map[1].disk_ord_tbl[i];
922 }
923
924 static int parse_raid_devices(struct intel_super *super)
925 {
926 int i;
927 struct imsm_dev *dev_new;
928 size_t len;
929
930 for (i = 0; i < super->anchor->num_raid_devs; i++) {
931 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
932
933 len = sizeof_imsm_dev(dev_iter);
934 dev_new = malloc(len);
935 if (!dev_new)
936 return 1;
937 imsm_copy_dev(dev_new, dev_iter);
938 super->dev_tbl[i] = dev_new;
939 }
940
941 return 0;
942 }
943
944 /* retrieve a pointer to the bbm log which starts after all raid devices */
945 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
946 {
947 void *ptr = NULL;
948
949 if (__le32_to_cpu(mpb->bbm_log_size)) {
950 ptr = mpb;
951 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
952 }
953
954 return ptr;
955 }
956
957 static void __free_imsm(struct intel_super *super, int free_disks);
958
959 /* load_imsm_mpb - read matrix metadata
960 * allocates super->mpb to be freed by free_super
961 */
962 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
963 {
964 unsigned long long dsize;
965 unsigned long long sectors;
966 struct stat;
967 struct imsm_super *anchor;
968 __u32 check_sum;
969 int rc;
970
971 get_dev_size(fd, NULL, &dsize);
972
973 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
974 if (devname)
975 fprintf(stderr,
976 Name ": Cannot seek to anchor block on %s: %s\n",
977 devname, strerror(errno));
978 return 1;
979 }
980
981 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
982 if (devname)
983 fprintf(stderr,
984 Name ": Failed to allocate imsm anchor buffer"
985 " on %s\n", devname);
986 return 1;
987 }
988 if (read(fd, anchor, 512) != 512) {
989 if (devname)
990 fprintf(stderr,
991 Name ": Cannot read anchor block on %s: %s\n",
992 devname, strerror(errno));
993 free(anchor);
994 return 1;
995 }
996
997 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
998 if (devname)
999 fprintf(stderr,
1000 Name ": no IMSM anchor on %s\n", devname);
1001 free(anchor);
1002 return 2;
1003 }
1004
1005 __free_imsm(super, 0);
1006 super->len = __le32_to_cpu(anchor->mpb_size);
1007 super->len = ROUND_UP(anchor->mpb_size, 512);
1008 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1009 if (devname)
1010 fprintf(stderr,
1011 Name ": unable to allocate %zu byte mpb buffer\n",
1012 super->len);
1013 free(anchor);
1014 return 2;
1015 }
1016 memcpy(super->buf, anchor, 512);
1017
1018 sectors = mpb_sectors(anchor) - 1;
1019 free(anchor);
1020 if (!sectors) {
1021 rc = load_imsm_disk(fd, super, devname, 0);
1022 if (rc == 0)
1023 rc = parse_raid_devices(super);
1024 return rc;
1025 }
1026
1027 /* read the extended mpb */
1028 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1029 if (devname)
1030 fprintf(stderr,
1031 Name ": Cannot seek to extended mpb on %s: %s\n",
1032 devname, strerror(errno));
1033 return 1;
1034 }
1035
1036 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1037 if (devname)
1038 fprintf(stderr,
1039 Name ": Cannot read extended mpb on %s: %s\n",
1040 devname, strerror(errno));
1041 return 2;
1042 }
1043
1044 check_sum = __gen_imsm_checksum(super->anchor);
1045 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1046 if (devname)
1047 fprintf(stderr,
1048 Name ": IMSM checksum %x != %x on %s\n",
1049 check_sum, __le32_to_cpu(super->anchor->check_sum),
1050 devname);
1051 return 2;
1052 }
1053
1054 /* FIXME the BBM log is disk specific so we cannot use this global
1055 * buffer for all disks. Ok for now since we only look at the global
1056 * bbm_log_size parameter to gate assembly
1057 */
1058 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1059
1060 rc = load_imsm_disk(fd, super, devname, 0);
1061 if (rc == 0)
1062 rc = parse_raid_devices(super);
1063 return rc;
1064 }
1065
1066 static void free_imsm_disks(struct intel_super *super)
1067 {
1068 while (super->disks) {
1069 struct dl *d = super->disks;
1070
1071 super->disks = d->next;
1072 if (d->fd >= 0)
1073 close(d->fd);
1074 if (d->devname)
1075 free(d->devname);
1076 free(d);
1077 }
1078 }
1079
1080 /* free all the pieces hanging off of a super pointer */
1081 static void __free_imsm(struct intel_super *super, int free_disks)
1082 {
1083 int i;
1084
1085 if (super->buf) {
1086 free(super->buf);
1087 super->buf = NULL;
1088 }
1089 if (free_disks)
1090 free_imsm_disks(super);
1091 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1092 if (super->dev_tbl[i]) {
1093 free(super->dev_tbl[i]);
1094 super->dev_tbl[i] = NULL;
1095 }
1096 }
1097
1098 static void free_imsm(struct intel_super *super)
1099 {
1100 __free_imsm(super, 1);
1101 free(super);
1102 }
1103
1104 static void free_super_imsm(struct supertype *st)
1105 {
1106 struct intel_super *super = st->sb;
1107
1108 if (!super)
1109 return;
1110
1111 free_imsm(super);
1112 st->sb = NULL;
1113 }
1114
1115 static struct intel_super *alloc_super(int creating_imsm)
1116 {
1117 struct intel_super *super = malloc(sizeof(*super));
1118
1119 if (super) {
1120 memset(super, 0, sizeof(*super));
1121 super->creating_imsm = creating_imsm;
1122 super->current_vol = -1;
1123 }
1124
1125 return super;
1126 }
1127
1128 #ifndef MDASSEMBLE
1129 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1130 char *devname, int keep_fd)
1131 {
1132 struct mdinfo *sra;
1133 struct intel_super *super;
1134 struct mdinfo *sd, *best = NULL;
1135 __u32 bestgen = 0;
1136 __u32 gen;
1137 char nm[20];
1138 int dfd;
1139 int rv;
1140
1141 /* check if this disk is a member of an active array */
1142 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1143 if (!sra)
1144 return 1;
1145
1146 if (sra->array.major_version != -1 ||
1147 sra->array.minor_version != -2 ||
1148 strcmp(sra->text_version, "imsm") != 0)
1149 return 1;
1150
1151 super = alloc_super(0);
1152 if (!super)
1153 return 1;
1154
1155 /* find the most up to date disk in this array, skipping spares */
1156 for (sd = sra->devs; sd; sd = sd->next) {
1157 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1158 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1159 if (!dfd) {
1160 free_imsm(super);
1161 return 2;
1162 }
1163 rv = load_imsm_mpb(dfd, super, NULL);
1164 if (!keep_fd)
1165 close(dfd);
1166 if (rv == 0) {
1167 if (super->anchor->num_raid_devs == 0)
1168 gen = 0;
1169 else
1170 gen = __le32_to_cpu(super->anchor->generation_num);
1171 if (!best || gen > bestgen) {
1172 bestgen = gen;
1173 best = sd;
1174 }
1175 } else {
1176 free_imsm(super);
1177 return 2;
1178 }
1179 }
1180
1181 if (!best) {
1182 free_imsm(super);
1183 return 1;
1184 }
1185
1186 /* load the most up to date anchor */
1187 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1188 dfd = dev_open(nm, O_RDONLY);
1189 if (!dfd) {
1190 free_imsm(super);
1191 return 1;
1192 }
1193 rv = load_imsm_mpb(dfd, super, NULL);
1194 close(dfd);
1195 if (rv != 0) {
1196 free_imsm(super);
1197 return 2;
1198 }
1199
1200 /* re-parse the disk list with the current anchor */
1201 for (sd = sra->devs ; sd ; sd = sd->next) {
1202 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1203 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1204 if (!dfd) {
1205 free_imsm(super);
1206 return 2;
1207 }
1208 load_imsm_disk(dfd, super, NULL, keep_fd);
1209 if (!keep_fd)
1210 close(dfd);
1211 }
1212
1213 if (st->subarray[0]) {
1214 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1215 super->current_vol = atoi(st->subarray);
1216 else
1217 return 1;
1218 }
1219
1220 *sbp = super;
1221 if (st->ss == NULL) {
1222 st->ss = &super_imsm;
1223 st->minor_version = 0;
1224 st->max_devs = IMSM_MAX_DEVICES;
1225 st->container_dev = fd2devnum(fd);
1226 }
1227
1228 return 0;
1229 }
1230 #endif
1231
1232 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1233 {
1234 struct intel_super *super;
1235 int rv;
1236
1237 #ifndef MDASSEMBLE
1238 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1239 return 0;
1240 #endif
1241 if (st->subarray[0])
1242 return 1; /* FIXME */
1243
1244 super = alloc_super(0);
1245 if (!super) {
1246 fprintf(stderr,
1247 Name ": malloc of %zu failed.\n",
1248 sizeof(*super));
1249 return 1;
1250 }
1251
1252 rv = load_imsm_mpb(fd, super, devname);
1253
1254 if (rv) {
1255 if (devname)
1256 fprintf(stderr,
1257 Name ": Failed to load all information "
1258 "sections on %s\n", devname);
1259 free_imsm(super);
1260 return rv;
1261 }
1262
1263 st->sb = super;
1264 if (st->ss == NULL) {
1265 st->ss = &super_imsm;
1266 st->minor_version = 0;
1267 st->max_devs = IMSM_MAX_DEVICES;
1268 }
1269
1270 return 0;
1271 }
1272
1273 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1274 {
1275 if (info->level == 1)
1276 return 128;
1277 return info->chunk_size >> 9;
1278 }
1279
1280 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1281 {
1282 __u32 num_stripes;
1283
1284 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1285 if (info->level == 1)
1286 num_stripes /= 2;
1287
1288 return num_stripes;
1289 }
1290
1291 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1292 {
1293 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1294 }
1295
1296 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1297 unsigned long long size, char *name,
1298 char *homehost, int *uuid)
1299 {
1300 /* We are creating a volume inside a pre-existing container.
1301 * so st->sb is already set.
1302 */
1303 struct intel_super *super = st->sb;
1304 struct imsm_super *mpb = super->anchor;
1305 struct imsm_dev *dev;
1306 struct imsm_vol *vol;
1307 struct imsm_map *map;
1308 int idx = mpb->num_raid_devs;
1309 int i;
1310 unsigned long long array_blocks;
1311 __u32 offset = 0;
1312 size_t size_old, size_new;
1313
1314 if (mpb->num_raid_devs >= 2) {
1315 fprintf(stderr, Name": This imsm-container already has the "
1316 "maximum of 2 volumes\n");
1317 return 0;
1318 }
1319
1320 /* ensure the mpb is large enough for the new data */
1321 size_old = __le32_to_cpu(mpb->mpb_size);
1322 size_new = disks_to_mpb_size(info->nr_disks);
1323 if (size_new > size_old) {
1324 void *mpb_new;
1325 size_t size_round = ROUND_UP(size_new, 512);
1326
1327 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1328 fprintf(stderr, Name": could not allocate new mpb\n");
1329 return 0;
1330 }
1331 memcpy(mpb_new, mpb, size_old);
1332 free(mpb);
1333 mpb = mpb_new;
1334 super->anchor = mpb_new;
1335 mpb->mpb_size = __cpu_to_le32(size_new);
1336 memset(mpb_new + size_old, 0, size_round - size_old);
1337 }
1338 super->current_vol = idx;
1339 /* when creating the first raid device in this container set num_disks
1340 * to zero, i.e. delete this spare and add raid member devices in
1341 * add_to_super_imsm_volume()
1342 */
1343 if (super->current_vol == 0)
1344 mpb->num_disks = 0;
1345 sprintf(st->subarray, "%d", idx);
1346 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1347 if (!dev) {
1348 fprintf(stderr, Name": could not allocate raid device\n");
1349 return 0;
1350 }
1351 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1352 array_blocks = calc_array_size(info->level, info->raid_disks,
1353 info->layout, info->chunk_size,
1354 info->size*2);
1355 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1356 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1357 dev->status = __cpu_to_le32(0);
1358 dev->reserved_blocks = __cpu_to_le32(0);
1359 vol = &dev->vol;
1360 vol->migr_state = 0;
1361 vol->migr_type = 0;
1362 vol->dirty = 0;
1363 for (i = 0; i < idx; i++) {
1364 struct imsm_dev *prev = get_imsm_dev(super, i);
1365 struct imsm_map *pmap = &prev->vol.map[0];
1366
1367 offset += __le32_to_cpu(pmap->blocks_per_member);
1368 offset += IMSM_RESERVED_SECTORS;
1369 }
1370 map = &vol->map[0];
1371 map->pba_of_lba0 = __cpu_to_le32(offset);
1372 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1373 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1374 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1375 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1376 IMSM_T_STATE_NORMAL;
1377
1378 if (info->level == 1 && info->raid_disks > 2) {
1379 fprintf(stderr, Name": imsm does not support more than 2 disks"
1380 "in a raid1 volume\n");
1381 return 0;
1382 }
1383 if (info->level == 10)
1384 map->raid_level = 1;
1385 else
1386 map->raid_level = info->level;
1387
1388 map->num_members = info->raid_disks;
1389 for (i = 0; i < map->num_members; i++) {
1390 /* initialized in add_to_super */
1391 map->disk_ord_tbl[i] = __cpu_to_le32(0);
1392 }
1393 mpb->num_raid_devs++;
1394 super->dev_tbl[super->current_vol] = dev;
1395
1396 return 1;
1397 }
1398
1399 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1400 unsigned long long size, char *name,
1401 char *homehost, int *uuid)
1402 {
1403 /* This is primarily called by Create when creating a new array.
1404 * We will then get add_to_super called for each component, and then
1405 * write_init_super called to write it out to each device.
1406 * For IMSM, Create can create on fresh devices or on a pre-existing
1407 * array.
1408 * To create on a pre-existing array a different method will be called.
1409 * This one is just for fresh drives.
1410 */
1411 struct intel_super *super;
1412 struct imsm_super *mpb;
1413 size_t mpb_size;
1414
1415 if (!info) {
1416 st->sb = NULL;
1417 return 0;
1418 }
1419 if (st->sb)
1420 return init_super_imsm_volume(st, info, size, name, homehost,
1421 uuid);
1422
1423 super = alloc_super(1);
1424 if (!super)
1425 return 0;
1426 mpb_size = disks_to_mpb_size(info->nr_disks);
1427 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1428 free(super);
1429 return 0;
1430 }
1431 mpb = super->buf;
1432 memset(mpb, 0, mpb_size);
1433
1434 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1435 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1436 strlen(MPB_VERSION_RAID5));
1437 mpb->mpb_size = mpb_size;
1438
1439 st->sb = super;
1440 return 1;
1441 }
1442
1443 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1444 int fd, char *devname)
1445 {
1446 struct intel_super *super = st->sb;
1447 struct imsm_super *mpb = super->anchor;
1448 struct dl *dl;
1449 struct imsm_dev *dev;
1450 struct imsm_map *map;
1451 __u32 status;
1452
1453 dev = get_imsm_dev(super, super->current_vol);
1454 map = &dev->vol.map[0];
1455
1456 for (dl = super->disks; dl ; dl = dl->next)
1457 if (dl->major == dk->major &&
1458 dl->minor == dk->minor)
1459 break;
1460
1461 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1462 return;
1463
1464 /* add a pristine spare to the metadata */
1465 if (dl->index < 0) {
1466 dl->index = super->anchor->num_disks;
1467 super->anchor->num_disks++;
1468 }
1469 map->disk_ord_tbl[dk->number] = __cpu_to_le32(dl->index);
1470 status = CONFIGURED_DISK | USABLE_DISK;
1471 dl->disk.status = __cpu_to_le32(status);
1472
1473 /* if we are creating the first raid device update the family number */
1474 if (super->current_vol == 0) {
1475 __u32 sum;
1476 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1477 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1478
1479 *_dev = *dev;
1480 *_disk = dl->disk;
1481 sum = __gen_imsm_checksum(mpb);
1482 mpb->family_num = __cpu_to_le32(sum);
1483 }
1484 }
1485
1486 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1487 int fd, char *devname)
1488 {
1489 struct intel_super *super = st->sb;
1490 struct dl *dd;
1491 unsigned long long size;
1492 __u32 status, id;
1493 int rv;
1494 struct stat stb;
1495
1496 if (super->current_vol >= 0) {
1497 add_to_super_imsm_volume(st, dk, fd, devname);
1498 return;
1499 }
1500
1501 fstat(fd, &stb);
1502 dd = malloc(sizeof(*dd));
1503 if (!dd) {
1504 fprintf(stderr,
1505 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1506 abort();
1507 }
1508 memset(dd, 0, sizeof(*dd));
1509 dd->major = major(stb.st_rdev);
1510 dd->minor = minor(stb.st_rdev);
1511 dd->index = -1;
1512 dd->devname = devname ? strdup(devname) : NULL;
1513 dd->next = super->disks;
1514 dd->fd = fd;
1515 rv = imsm_read_serial(fd, devname, dd->serial);
1516 if (rv) {
1517 fprintf(stderr,
1518 Name ": failed to retrieve scsi serial, aborting\n");
1519 free(dd);
1520 abort();
1521 }
1522
1523 get_dev_size(fd, NULL, &size);
1524 size /= 512;
1525 status = USABLE_DISK | SPARE_DISK;
1526 strcpy((char *) dd->disk.serial, (char *) dd->serial);
1527 dd->disk.total_blocks = __cpu_to_le32(size);
1528 dd->disk.status = __cpu_to_le32(status);
1529 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1530 dd->disk.scsi_id = __cpu_to_le32(id);
1531 else
1532 dd->disk.scsi_id = __cpu_to_le32(0);
1533 super->disks = dd;
1534 }
1535
1536 static int store_imsm_mpb(int fd, struct intel_super *super);
1537
1538 /* spare records have their own family number and do not have any defined raid
1539 * devices
1540 */
1541 static int write_super_imsm_spares(struct intel_super *super, int doclose)
1542 {
1543 struct imsm_super mpb_save;
1544 struct imsm_super *mpb = super->anchor;
1545 __u32 sum;
1546 struct dl *d;
1547
1548 mpb_save = *mpb;
1549 mpb->num_raid_devs = 0;
1550 mpb->num_disks = 1;
1551 mpb->mpb_size = sizeof(struct imsm_super);
1552 mpb->generation_num = __cpu_to_le32(1UL);
1553
1554 for (d = super->disks; d; d = d->next) {
1555 if (d->index >= 0)
1556 continue;
1557
1558 mpb->disk[0] = d->disk;
1559 sum = __gen_imsm_checksum(mpb);
1560 mpb->family_num = __cpu_to_le32(sum);
1561 sum = __gen_imsm_checksum(mpb);
1562 mpb->check_sum = __cpu_to_le32(sum);
1563
1564 if (store_imsm_mpb(d->fd, super)) {
1565 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1566 __func__, d->major, d->minor, strerror(errno));
1567 *mpb = mpb_save;
1568 return 0;
1569 }
1570 if (doclose) {
1571 close(d->fd);
1572 d->fd = -1;
1573 }
1574 }
1575
1576 *mpb = mpb_save;
1577 return 1;
1578 }
1579
1580 static int write_super_imsm(struct intel_super *super, int doclose)
1581 {
1582 struct imsm_super *mpb = super->anchor;
1583 struct dl *d;
1584 __u32 generation;
1585 __u32 sum;
1586 int spares = 0;
1587 int raid_disks = 0;
1588 int i;
1589
1590 /* 'generation' is incremented everytime the metadata is written */
1591 generation = __le32_to_cpu(mpb->generation_num);
1592 generation++;
1593 mpb->generation_num = __cpu_to_le32(generation);
1594
1595 for (d = super->disks; d; d = d->next) {
1596 if (d->index < 0)
1597 spares++;
1598 else {
1599 raid_disks++;
1600 mpb->disk[d->index] = d->disk;
1601 }
1602 }
1603 if (raid_disks != mpb->num_disks) {
1604 fprintf(stderr, "%s: expected %d disks only found %d\n",
1605 __func__, mpb->num_disks, raid_disks);
1606 return 0;
1607 }
1608
1609 for (i = 0; i < mpb->num_raid_devs; i++) {
1610 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1611
1612 imsm_copy_dev(dev, super->dev_tbl[i]);
1613 }
1614
1615 /* recalculate checksum */
1616 sum = __gen_imsm_checksum(mpb);
1617 mpb->check_sum = __cpu_to_le32(sum);
1618
1619 /* write the mpb for disks that compose raid devices */
1620 for (d = super->disks; d ; d = d->next) {
1621 if (d->index < 0)
1622 continue;
1623 if (store_imsm_mpb(d->fd, super)) {
1624 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1625 __func__, d->major, d->minor, strerror(errno));
1626 return 0;
1627 }
1628 if (doclose) {
1629 close(d->fd);
1630 d->fd = -1;
1631 }
1632 }
1633
1634 if (spares)
1635 return write_super_imsm_spares(super, doclose);
1636
1637 return 1;
1638 }
1639
1640 static int write_init_super_imsm(struct supertype *st)
1641 {
1642 if (st->update_tail) {
1643 /* queue the recently created array as a metadata update */
1644 size_t len;
1645 struct imsm_update_create_array *u;
1646 struct intel_super *super = st->sb;
1647 struct imsm_dev *dev;
1648 struct dl *d;
1649
1650 if (super->current_vol < 0 ||
1651 !(dev = get_imsm_dev(super, super->current_vol))) {
1652 fprintf(stderr, "%s: could not determine sub-array\n",
1653 __func__);
1654 return 1;
1655 }
1656
1657
1658 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev);
1659 u = malloc(len);
1660 if (!u) {
1661 fprintf(stderr, "%s: failed to allocate update buffer\n",
1662 __func__);
1663 return 1;
1664 }
1665
1666 u->type = update_create_array;
1667 u->dev_idx = super->current_vol;
1668 imsm_copy_dev(&u->dev, dev);
1669 append_metadata_update(st, u, len);
1670
1671 for (d = super->disks; d ; d = d->next) {
1672 close(d->fd);
1673 d->fd = -1;
1674 }
1675
1676 return 0;
1677 } else
1678 return write_super_imsm(st->sb, 1);
1679 }
1680
1681 static int store_zero_imsm(struct supertype *st, int fd)
1682 {
1683 unsigned long long dsize;
1684 void *buf;
1685
1686 get_dev_size(fd, NULL, &dsize);
1687
1688 /* first block is stored on second to last sector of the disk */
1689 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1690 return 1;
1691
1692 if (posix_memalign(&buf, 512, 512) != 0)
1693 return 1;
1694
1695 memset(buf, 0, 512);
1696 if (write(fd, buf, 512) != 512)
1697 return 1;
1698 return 0;
1699 }
1700
1701 static int validate_geometry_imsm_container(struct supertype *st, int level,
1702 int layout, int raiddisks, int chunk,
1703 unsigned long long size, char *dev,
1704 unsigned long long *freesize,
1705 int verbose)
1706 {
1707 int fd;
1708 unsigned long long ldsize;
1709
1710 if (level != LEVEL_CONTAINER)
1711 return 0;
1712 if (!dev)
1713 return 1;
1714
1715 fd = open(dev, O_RDONLY|O_EXCL, 0);
1716 if (fd < 0) {
1717 if (verbose)
1718 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
1719 dev, strerror(errno));
1720 return 0;
1721 }
1722 if (!get_dev_size(fd, dev, &ldsize)) {
1723 close(fd);
1724 return 0;
1725 }
1726 close(fd);
1727
1728 *freesize = avail_size_imsm(st, ldsize >> 9);
1729
1730 return 1;
1731 }
1732
1733 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
1734 * FIX ME add ahci details
1735 */
1736 static int validate_geometry_imsm_volume(struct supertype *st, int level,
1737 int layout, int raiddisks, int chunk,
1738 unsigned long long size, char *dev,
1739 unsigned long long *freesize,
1740 int verbose)
1741 {
1742 struct stat stb;
1743 struct intel_super *super = st->sb;
1744 struct dl *dl;
1745 unsigned long long pos = 0;
1746 unsigned long long maxsize;
1747 struct extent *e;
1748 int i;
1749
1750 if (level == LEVEL_CONTAINER)
1751 return 0;
1752
1753 if (level == 1 && raiddisks > 2) {
1754 if (verbose)
1755 fprintf(stderr, Name ": imsm does not support more "
1756 "than 2 in a raid1 configuration\n");
1757 return 0;
1758 }
1759
1760 /* We must have the container info already read in. */
1761 if (!super)
1762 return 0;
1763
1764 if (!dev) {
1765 /* General test: make sure there is space for
1766 * 'raiddisks' device extents of size 'size' at a given
1767 * offset
1768 */
1769 unsigned long long minsize = size*2 /* convert to blocks */;
1770 unsigned long long start_offset = ~0ULL;
1771 int dcnt = 0;
1772 if (minsize == 0)
1773 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1774 for (dl = super->disks; dl ; dl = dl->next) {
1775 int found = 0;
1776
1777 pos = 0;
1778 i = 0;
1779 e = get_extents(super, dl);
1780 if (!e) continue;
1781 do {
1782 unsigned long long esize;
1783 esize = e[i].start - pos;
1784 if (esize >= minsize)
1785 found = 1;
1786 if (found && start_offset == ~0ULL) {
1787 start_offset = pos;
1788 break;
1789 } else if (found && pos != start_offset) {
1790 found = 0;
1791 break;
1792 }
1793 pos = e[i].start + e[i].size;
1794 i++;
1795 } while (e[i-1].size);
1796 if (found)
1797 dcnt++;
1798 free(e);
1799 }
1800 if (dcnt < raiddisks) {
1801 if (verbose)
1802 fprintf(stderr, Name ": imsm: Not enough "
1803 "devices with space for this array "
1804 "(%d < %d)\n",
1805 dcnt, raiddisks);
1806 return 0;
1807 }
1808 return 1;
1809 }
1810 /* This device must be a member of the set */
1811 if (stat(dev, &stb) < 0)
1812 return 0;
1813 if ((S_IFMT & stb.st_mode) != S_IFBLK)
1814 return 0;
1815 for (dl = super->disks ; dl ; dl = dl->next) {
1816 if (dl->major == major(stb.st_rdev) &&
1817 dl->minor == minor(stb.st_rdev))
1818 break;
1819 }
1820 if (!dl) {
1821 if (verbose)
1822 fprintf(stderr, Name ": %s is not in the "
1823 "same imsm set\n", dev);
1824 return 0;
1825 }
1826 e = get_extents(super, dl);
1827 maxsize = 0;
1828 i = 0;
1829 if (e) do {
1830 unsigned long long esize;
1831 esize = e[i].start - pos;
1832 if (esize >= maxsize)
1833 maxsize = esize;
1834 pos = e[i].start + e[i].size;
1835 i++;
1836 } while (e[i-1].size);
1837 *freesize = maxsize;
1838
1839 return 1;
1840 }
1841
1842 int imsm_bbm_log_size(struct imsm_super *mpb)
1843 {
1844 return __le32_to_cpu(mpb->bbm_log_size);
1845 }
1846
1847 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
1848 int raiddisks, int chunk, unsigned long long size,
1849 char *dev, unsigned long long *freesize,
1850 int verbose)
1851 {
1852 int fd, cfd;
1853 struct mdinfo *sra;
1854
1855 /* if given unused devices create a container
1856 * if given given devices in a container create a member volume
1857 */
1858 if (level == LEVEL_CONTAINER) {
1859 /* Must be a fresh device to add to a container */
1860 return validate_geometry_imsm_container(st, level, layout,
1861 raiddisks, chunk, size,
1862 dev, freesize,
1863 verbose);
1864 }
1865
1866 if (st->sb) {
1867 /* creating in a given container */
1868 return validate_geometry_imsm_volume(st, level, layout,
1869 raiddisks, chunk, size,
1870 dev, freesize, verbose);
1871 }
1872
1873 /* limit creation to the following levels */
1874 if (!dev)
1875 switch (level) {
1876 case 0:
1877 case 1:
1878 case 10:
1879 case 5:
1880 break;
1881 default:
1882 return 1;
1883 }
1884
1885 /* This device needs to be a device in an 'imsm' container */
1886 fd = open(dev, O_RDONLY|O_EXCL, 0);
1887 if (fd >= 0) {
1888 if (verbose)
1889 fprintf(stderr,
1890 Name ": Cannot create this array on device %s\n",
1891 dev);
1892 close(fd);
1893 return 0;
1894 }
1895 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
1896 if (verbose)
1897 fprintf(stderr, Name ": Cannot open %s: %s\n",
1898 dev, strerror(errno));
1899 return 0;
1900 }
1901 /* Well, it is in use by someone, maybe an 'imsm' container. */
1902 cfd = open_container(fd);
1903 if (cfd < 0) {
1904 close(fd);
1905 if (verbose)
1906 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
1907 dev);
1908 return 0;
1909 }
1910 sra = sysfs_read(cfd, 0, GET_VERSION);
1911 close(fd);
1912 if (sra && sra->array.major_version == -1 &&
1913 strcmp(sra->text_version, "imsm") == 0) {
1914 /* This is a member of a imsm container. Load the container
1915 * and try to create a volume
1916 */
1917 struct intel_super *super;
1918
1919 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
1920 st->sb = super;
1921 st->container_dev = fd2devnum(cfd);
1922 close(cfd);
1923 return validate_geometry_imsm_volume(st, level, layout,
1924 raiddisks, chunk,
1925 size, dev,
1926 freesize, verbose);
1927 }
1928 close(cfd);
1929 } else /* may belong to another container */
1930 return 0;
1931
1932 return 1;
1933 }
1934
1935 static struct mdinfo *container_content_imsm(struct supertype *st)
1936 {
1937 /* Given a container loaded by load_super_imsm_all,
1938 * extract information about all the arrays into
1939 * an mdinfo tree.
1940 *
1941 * For each imsm_dev create an mdinfo, fill it in,
1942 * then look for matching devices in super->disks
1943 * and create appropriate device mdinfo.
1944 */
1945 struct intel_super *super = st->sb;
1946 struct imsm_super *mpb = super->anchor;
1947 struct mdinfo *rest = NULL;
1948 int i;
1949
1950 /* do not assemble arrays that might have bad blocks */
1951 if (imsm_bbm_log_size(super->anchor)) {
1952 fprintf(stderr, Name ": BBM log found in metadata. "
1953 "Cannot activate array(s).\n");
1954 return NULL;
1955 }
1956
1957 for (i = 0; i < mpb->num_raid_devs; i++) {
1958 struct imsm_dev *dev = get_imsm_dev(super, i);
1959 struct imsm_vol *vol = &dev->vol;
1960 struct imsm_map *map = vol->map;
1961 struct mdinfo *this;
1962 int slot;
1963
1964 this = malloc(sizeof(*this));
1965 memset(this, 0, sizeof(*this));
1966 this->next = rest;
1967 rest = this;
1968
1969 this->array.level = get_imsm_raid_level(map);
1970 this->array.raid_disks = map->num_members;
1971 this->array.layout = imsm_level_to_layout(this->array.level);
1972 this->array.md_minor = -1;
1973 this->array.ctime = 0;
1974 this->array.utime = 0;
1975 this->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1976 this->array.state = !vol->dirty;
1977 this->container_member = i;
1978 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
1979 this->resync_start = 0;
1980 else
1981 this->resync_start = ~0ULL;
1982
1983 strncpy(this->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1984 this->name[MAX_RAID_SERIAL_LEN] = 0;
1985
1986 sprintf(this->text_version, "/%s/%d",
1987 devnum2devname(st->container_dev),
1988 this->container_member);
1989
1990 memset(this->uuid, 0, sizeof(this->uuid));
1991
1992 this->component_size = __le32_to_cpu(map->blocks_per_member);
1993
1994 for (slot = 0 ; slot < map->num_members; slot++) {
1995 struct mdinfo *info_d;
1996 struct dl *d;
1997 int idx;
1998 __u32 s;
1999
2000 idx = get_imsm_disk_idx(map, slot);
2001 for (d = super->disks; d ; d = d->next)
2002 if (d->index == idx)
2003 break;
2004
2005 if (d == NULL)
2006 break; /* shouldn't this be continue ?? */
2007
2008 info_d = malloc(sizeof(*info_d));
2009 if (!info_d)
2010 break; /* ditto ?? */
2011 memset(info_d, 0, sizeof(*info_d));
2012 info_d->next = this->devs;
2013 this->devs = info_d;
2014
2015 s = __le32_to_cpu(d->disk.status);
2016
2017 info_d->disk.number = d->index;
2018 info_d->disk.major = d->major;
2019 info_d->disk.minor = d->minor;
2020 info_d->disk.raid_disk = slot;
2021 info_d->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
2022 info_d->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
2023 info_d->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
2024
2025 this->array.working_disks++;
2026
2027 info_d->events = __le32_to_cpu(mpb->generation_num);
2028 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2029 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2030 if (d->devname)
2031 strcpy(info_d->name, d->devname);
2032 }
2033 }
2034
2035 return rest;
2036 }
2037
2038
2039 static int imsm_open_new(struct supertype *c, struct active_array *a,
2040 char *inst)
2041 {
2042 struct intel_super *super = c->sb;
2043 struct imsm_super *mpb = super->anchor;
2044
2045 if (atoi(inst) >= mpb->num_raid_devs) {
2046 fprintf(stderr, "%s: subarry index %d, out of range\n",
2047 __func__, atoi(inst));
2048 return -ENODEV;
2049 }
2050
2051 dprintf("imsm: open_new %s\n", inst);
2052 a->info.container_member = atoi(inst);
2053 return 0;
2054 }
2055
2056 static __u8 imsm_check_degraded(struct intel_super *super, int n, int failed)
2057 {
2058 struct imsm_dev *dev = get_imsm_dev(super, n);
2059 struct imsm_map *map = dev->vol.map;
2060
2061 if (!failed)
2062 return map->map_state;
2063
2064 switch (get_imsm_raid_level(map)) {
2065 case 0:
2066 return IMSM_T_STATE_FAILED;
2067 break;
2068 case 1:
2069 if (failed < map->num_members)
2070 return IMSM_T_STATE_DEGRADED;
2071 else
2072 return IMSM_T_STATE_FAILED;
2073 break;
2074 case 10:
2075 {
2076 /**
2077 * check to see if any mirrors have failed,
2078 * otherwise we are degraded
2079 */
2080 int device_per_mirror = 2; /* FIXME is this always the case?
2081 * and are they always adjacent?
2082 */
2083 int failed = 0;
2084 int i;
2085
2086 for (i = 0; i < map->num_members; i++) {
2087 int idx = get_imsm_disk_idx(map, i);
2088 struct imsm_disk *disk = get_imsm_disk(super, idx);
2089
2090 if (__le32_to_cpu(disk->status) & FAILED_DISK)
2091 failed++;
2092
2093 if (failed >= device_per_mirror)
2094 return IMSM_T_STATE_FAILED;
2095
2096 /* reset 'failed' for next mirror set */
2097 if (!((i + 1) % device_per_mirror))
2098 failed = 0;
2099 }
2100
2101 return IMSM_T_STATE_DEGRADED;
2102 }
2103 case 5:
2104 if (failed < 2)
2105 return IMSM_T_STATE_DEGRADED;
2106 else
2107 return IMSM_T_STATE_FAILED;
2108 break;
2109 default:
2110 break;
2111 }
2112
2113 return map->map_state;
2114 }
2115
2116 static int imsm_count_failed(struct intel_super *super, struct imsm_map *map)
2117 {
2118 int i;
2119 int failed = 0;
2120 struct imsm_disk *disk;
2121
2122 for (i = 0; i < map->num_members; i++) {
2123 int idx = get_imsm_disk_idx(map, i);
2124
2125 disk = get_imsm_disk(super, idx);
2126 if (__le32_to_cpu(disk->status) & FAILED_DISK)
2127 failed++;
2128 }
2129
2130 return failed;
2131 }
2132
2133 static void imsm_set_array_state(struct active_array *a, int consistent)
2134 {
2135 int inst = a->info.container_member;
2136 struct intel_super *super = a->container->sb;
2137 struct imsm_dev *dev = get_imsm_dev(super, inst);
2138 struct imsm_map *map = &dev->vol.map[0];
2139 int dirty = !consistent;
2140 int failed;
2141 __u8 map_state;
2142
2143 if (a->resync_start == ~0ULL) {
2144 failed = imsm_count_failed(super, map);
2145 map_state = imsm_check_degraded(super, inst, failed);
2146 /* complete recovery or initial resync */
2147 if (!failed)
2148 map_state = IMSM_T_STATE_NORMAL;
2149 if (map->map_state != map_state) {
2150 dprintf("imsm: map_state %d: %d\n",
2151 inst, map_state);
2152 map->map_state = map_state;
2153 super->updates_pending++;
2154 }
2155
2156 /* complete resync */
2157 if (!dirty && dev->vol.dirty) {
2158 dprintf("imsm: mark 'clean'\n");
2159 dev->vol.dirty = 0;
2160 super->updates_pending++;
2161
2162 }
2163 }
2164
2165 /* mark dirty */
2166 if (dirty && !dev->vol.dirty) {
2167 dprintf("imsm: mark 'dirty' (%llu)\n", a->resync_start);
2168 dev->vol.dirty = 1;
2169 super->updates_pending++;
2170 }
2171 }
2172
2173 static void imsm_set_disk(struct active_array *a, int n, int state)
2174 {
2175 int inst = a->info.container_member;
2176 struct intel_super *super = a->container->sb;
2177 struct imsm_dev *dev = get_imsm_dev(super, inst);
2178 struct imsm_map *map = dev->vol.map;
2179 struct imsm_disk *disk;
2180 __u32 status;
2181 int failed = 0;
2182 int new_failure = 0;
2183
2184 if (n > map->num_members)
2185 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2186 n, map->num_members - 1);
2187
2188 if (n < 0)
2189 return;
2190
2191 dprintf("imsm: set_disk %d:%x\n", n, state);
2192
2193 disk = get_imsm_disk(super, get_imsm_disk_idx(map, n));
2194
2195 /* check for new failures */
2196 status = __le32_to_cpu(disk->status);
2197 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2198 status |= FAILED_DISK;
2199 disk->status = __cpu_to_le32(status);
2200 new_failure = 1;
2201 super->updates_pending++;
2202 }
2203 /* check if in_sync */
2204 if ((state & DS_INSYNC) && !(status & USABLE_DISK)) {
2205 status |= USABLE_DISK;
2206 disk->status = __cpu_to_le32(status);
2207 super->updates_pending++;
2208 }
2209
2210 /* the number of failures have changed, count up 'failed' to determine
2211 * degraded / failed status
2212 */
2213 if (new_failure && map->map_state != IMSM_T_STATE_FAILED)
2214 failed = imsm_count_failed(super, map);
2215
2216 /* determine map_state based on failed or in_sync count */
2217 if (failed)
2218 map->map_state = imsm_check_degraded(super, inst, failed);
2219 else if (map->map_state == IMSM_T_STATE_DEGRADED) {
2220 struct mdinfo *d;
2221 int working = 0;
2222
2223 for (d = a->info.devs ; d ; d = d->next)
2224 if (d->curr_state & DS_INSYNC)
2225 working++;
2226
2227 if (working == a->info.array.raid_disks) {
2228 map->map_state = IMSM_T_STATE_NORMAL;
2229 super->updates_pending++;
2230 }
2231 }
2232 }
2233
2234 static int store_imsm_mpb(int fd, struct intel_super *super)
2235 {
2236 struct imsm_super *mpb = super->anchor;
2237 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2238 unsigned long long dsize;
2239 unsigned long long sectors;
2240
2241 get_dev_size(fd, NULL, &dsize);
2242
2243 if (mpb_size > 512) {
2244 /* -1 to account for anchor */
2245 sectors = mpb_sectors(mpb) - 1;
2246
2247 /* write the extended mpb to the sectors preceeding the anchor */
2248 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2249 return 1;
2250
2251 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2252 return 1;
2253 }
2254
2255 /* first block is stored on second to last sector of the disk */
2256 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2257 return 1;
2258
2259 if (write(fd, super->buf, 512) != 512)
2260 return 1;
2261
2262 return 0;
2263 }
2264
2265 static void imsm_sync_metadata(struct supertype *container)
2266 {
2267 struct intel_super *super = container->sb;
2268
2269 if (!super->updates_pending)
2270 return;
2271
2272 write_super_imsm(super, 0);
2273
2274 super->updates_pending = 0;
2275 }
2276
2277 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2278 struct metadata_update **updates)
2279 {
2280 /**
2281 * Find a device with unused free space and use it to replace a
2282 * failed/vacant region in an array. We replace failed regions one a
2283 * array at a time. The result is that a new spare disk will be added
2284 * to the first failed array and after the monitor has finished
2285 * propagating failures the remainder will be consumed.
2286 *
2287 * FIXME add a capability for mdmon to request spares from another
2288 * container.
2289 */
2290
2291 struct intel_super *super = a->container->sb;
2292 int inst = a->info.container_member;
2293 struct imsm_dev *dev = get_imsm_dev(super, inst);
2294 struct imsm_map *map = dev->vol.map;
2295 int failed = a->info.array.raid_disks;
2296 struct mdinfo *rv = NULL;
2297 struct mdinfo *d;
2298 struct mdinfo *di;
2299 struct metadata_update *mu;
2300 struct dl *dl;
2301 struct imsm_update_activate_spare *u;
2302 int num_spares = 0;
2303 int i;
2304
2305 for (d = a->info.devs ; d ; d = d->next) {
2306 if ((d->curr_state & DS_FAULTY) &&
2307 d->state_fd >= 0)
2308 /* wait for Removal to happen */
2309 return NULL;
2310 if (d->state_fd >= 0)
2311 failed--;
2312 }
2313
2314 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2315 inst, failed, a->info.array.raid_disks, a->info.array.level);
2316 if (imsm_check_degraded(super, inst, failed) != IMSM_T_STATE_DEGRADED)
2317 return NULL;
2318
2319 /* For each slot, if it is not working, find a spare */
2320 dl = super->disks;
2321 for (i = 0; i < a->info.array.raid_disks; i++) {
2322 for (d = a->info.devs ; d ; d = d->next)
2323 if (d->disk.raid_disk == i)
2324 break;
2325 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2326 if (d && (d->state_fd >= 0))
2327 continue;
2328
2329 /* OK, this device needs recovery. Find a spare */
2330 for ( ; dl ; dl = dl->next) {
2331 unsigned long long esize;
2332 unsigned long long pos;
2333 struct mdinfo *d2;
2334 struct extent *ex;
2335 int j;
2336 int found;
2337 __u32 array_start;
2338
2339 /* If in this array, skip */
2340 for (d2 = a->info.devs ; d2 ; d2 = d2->next)
2341 if (d2->disk.major == dl->major &&
2342 d2->disk.minor == dl->minor) {
2343 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2344 break;
2345 }
2346 if (d2)
2347 continue;
2348
2349 /* Does this unused device have the requisite free space?
2350 * We need a->info.component_size sectors
2351 */
2352 ex = get_extents(super, dl);
2353 if (!ex) {
2354 dprintf("cannot get extents\n");
2355 continue;
2356 }
2357 found = 0;
2358 j = 0;
2359 pos = 0;
2360 array_start = __le32_to_cpu(map->pba_of_lba0);
2361
2362 do {
2363 /* check that we can start at pba_of_lba0 with
2364 * a->info.component_size of space
2365 */
2366 esize = ex[j].start - pos;
2367 if (array_start >= pos &&
2368 array_start + a->info.component_size < ex[j].start) {
2369 found = 1;
2370 break;
2371 }
2372 pos = ex[j].start + ex[j].size;
2373 j++;
2374
2375 } while (ex[j-1].size);
2376
2377 free(ex);
2378 if (!found) {
2379 dprintf("%x:%x does not have %llu at %d\n",
2380 dl->major, dl->minor,
2381 a->info.component_size,
2382 __le32_to_cpu(map->pba_of_lba0));
2383 /* No room */
2384 continue;
2385 }
2386
2387 /* found a usable disk with enough space */
2388 di = malloc(sizeof(*di));
2389 memset(di, 0, sizeof(*di));
2390
2391 /* dl->index will be -1 in the case we are activating a
2392 * pristine spare. imsm_process_update() will create a
2393 * new index in this case. Once a disk is found to be
2394 * failed in all member arrays it is kicked from the
2395 * metadata
2396 */
2397 di->disk.number = dl->index;
2398
2399 /* (ab)use di->devs to store a pointer to the device
2400 * we chose
2401 */
2402 di->devs = (struct mdinfo *) dl;
2403
2404 di->disk.raid_disk = i;
2405 di->disk.major = dl->major;
2406 di->disk.minor = dl->minor;
2407 di->disk.state = 0;
2408 di->data_offset = array_start;
2409 di->component_size = a->info.component_size;
2410 di->container_member = inst;
2411 di->next = rv;
2412 rv = di;
2413 num_spares++;
2414 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2415 i, pos);
2416
2417 break;
2418 }
2419 }
2420
2421 if (!rv)
2422 /* No spares found */
2423 return rv;
2424 /* Now 'rv' has a list of devices to return.
2425 * Create a metadata_update record to update the
2426 * disk_ord_tbl for the array
2427 */
2428 mu = malloc(sizeof(*mu));
2429 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2430 mu->space = NULL;
2431 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2432 mu->next = *updates;
2433 u = (struct imsm_update_activate_spare *) mu->buf;
2434
2435 for (di = rv ; di ; di = di->next) {
2436 u->type = update_activate_spare;
2437 u->dl = (struct dl *) di->devs;
2438 di->devs = NULL;
2439 u->slot = di->disk.raid_disk;
2440 u->array = inst;
2441 u->next = u + 1;
2442 u++;
2443 }
2444 (u-1)->next = NULL;
2445 *updates = mu;
2446
2447 return rv;
2448 }
2449
2450 static int disks_overlap(struct imsm_map *m1, struct imsm_map *m2)
2451 {
2452 int i;
2453 int j;
2454 int idx;
2455
2456 for (i = 0; i < m1->num_members; i++) {
2457 idx = get_imsm_disk_idx(m1, i);
2458 for (j = 0; j < m2->num_members; j++)
2459 if (idx == get_imsm_disk_idx(m2, j))
2460 return 1;
2461 }
2462
2463 return 0;
2464 }
2465
2466 static void imsm_process_update(struct supertype *st,
2467 struct metadata_update *update)
2468 {
2469 /**
2470 * crack open the metadata_update envelope to find the update record
2471 * update can be one of:
2472 * update_activate_spare - a spare device has replaced a failed
2473 * device in an array, update the disk_ord_tbl. If this disk is
2474 * present in all member arrays then also clear the SPARE_DISK
2475 * flag
2476 */
2477 struct intel_super *super = st->sb;
2478 struct imsm_super *mpb = super->anchor;
2479 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2480
2481 switch (type) {
2482 case update_activate_spare: {
2483 struct imsm_update_activate_spare *u = (void *) update->buf;
2484 struct imsm_dev *dev = get_imsm_dev(super, u->array);
2485 struct imsm_map *map = &dev->vol.map[0];
2486 struct active_array *a;
2487 struct imsm_disk *disk;
2488 __u32 status;
2489 struct dl *dl;
2490 unsigned int found;
2491 int victim;
2492 int i;
2493
2494 for (dl = super->disks; dl; dl = dl->next)
2495 if (dl == u->dl)
2496 break;
2497
2498 if (!dl) {
2499 fprintf(stderr, "error: imsm_activate_spare passed "
2500 "an unknown disk (index: %d serial: %s)\n",
2501 u->dl->index, u->dl->serial);
2502 return;
2503 }
2504
2505 super->updates_pending++;
2506
2507 /* adding a pristine spare, assign a new index */
2508 if (dl->index < 0) {
2509 dl->index = super->anchor->num_disks;
2510 super->anchor->num_disks++;
2511 }
2512 victim = get_imsm_disk_idx(map, u->slot);
2513 map->disk_ord_tbl[u->slot] = __cpu_to_le32(dl->index);
2514 disk = &dl->disk;
2515 status = __le32_to_cpu(disk->status);
2516 status |= CONFIGURED_DISK;
2517 status &= ~(SPARE_DISK | USABLE_DISK);
2518 disk->status = __cpu_to_le32(status);
2519
2520 /* count arrays using the victim in the metadata */
2521 found = 0;
2522 for (a = st->arrays; a ; a = a->next) {
2523 dev = get_imsm_dev(super, a->info.container_member);
2524 map = &dev->vol.map[0];
2525 for (i = 0; i < map->num_members; i++)
2526 if (victim == get_imsm_disk_idx(map, i))
2527 found++;
2528 }
2529
2530 /* clear some flags if the victim is no longer being
2531 * utilized anywhere
2532 */
2533 if (!found) {
2534 disk = get_imsm_disk(super, victim);
2535 status = __le32_to_cpu(disk->status);
2536 status &= ~(CONFIGURED_DISK | USABLE_DISK);
2537 disk->status = __cpu_to_le32(status);
2538 /* at this point the disk can be removed from the
2539 * metadata, however we need to guarantee that we do
2540 * not race with any manager thread routine that relies
2541 * on dl->index or map->disk_ord_tbl
2542 */
2543 }
2544 break;
2545 }
2546 case update_create_array: {
2547 /* someone wants to create a new array, we need to be aware of
2548 * a few races/collisions:
2549 * 1/ 'Create' called by two separate instances of mdadm
2550 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
2551 * devices that have since been assimilated via
2552 * activate_spare.
2553 * In the event this update can not be carried out mdadm will
2554 * (FIX ME) notice that its update did not take hold.
2555 */
2556 struct imsm_update_create_array *u = (void *) update->buf;
2557 struct imsm_dev *dev;
2558 struct imsm_map *map, *new_map;
2559 unsigned long long start, end;
2560 unsigned long long new_start, new_end;
2561 int i;
2562 int overlap = 0;
2563
2564 /* handle racing creates: first come first serve */
2565 if (u->dev_idx < mpb->num_raid_devs) {
2566 dprintf("%s: subarray %d already defined\n",
2567 __func__, u->dev_idx);
2568 return;
2569 }
2570
2571 /* check update is next in sequence */
2572 if (u->dev_idx != mpb->num_raid_devs) {
2573 dprintf("%s: can not create arrays out of sequence\n",
2574 __func__);
2575 return;
2576 }
2577
2578 new_map = &u->dev.vol.map[0];
2579 new_start = __le32_to_cpu(new_map->pba_of_lba0);
2580 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
2581
2582 /* handle activate_spare versus create race:
2583 * check to make sure that overlapping arrays do not include
2584 * overalpping disks
2585 */
2586 for (i = 0; i < mpb->num_raid_devs; i++) {
2587 dev = get_imsm_dev(super, i);
2588 map = &dev->vol.map[0];
2589 start = __le32_to_cpu(map->pba_of_lba0);
2590 end = start + __le32_to_cpu(map->blocks_per_member);
2591 if ((new_start >= start && new_start <= end) ||
2592 (start >= new_start && start <= new_end))
2593 overlap = 1;
2594 if (overlap && disks_overlap(map, new_map)) {
2595 dprintf("%s: arrays overlap\n", __func__);
2596 return;
2597 }
2598 }
2599 /* check num_members sanity */
2600 if (new_map->num_members > mpb->num_disks) {
2601 dprintf("%s: num_disks out of range\n", __func__);
2602 return;
2603 }
2604
2605 /* check that prepare update was successful */
2606 if (!update->space) {
2607 dprintf("%s: prepare update failed\n", __func__);
2608 return;
2609 }
2610
2611 super->updates_pending++;
2612 dev = update->space;
2613 update->space = NULL;
2614 imsm_copy_dev(dev, &u->dev);
2615 super->dev_tbl[u->dev_idx] = dev;
2616 mpb->num_raid_devs++;
2617
2618 /* fix up flags, if arrays overlap then the drives can not be
2619 * spares
2620 */
2621 for (i = 0; i < map->num_members; i++) {
2622 struct imsm_disk *disk;
2623 __u32 status;
2624
2625 disk = get_imsm_disk(super, get_imsm_disk_idx(map, i));
2626 status = __le32_to_cpu(disk->status);
2627 status |= CONFIGURED_DISK;
2628 if (overlap)
2629 status &= ~SPARE_DISK;
2630 disk->status = __cpu_to_le32(status);
2631 }
2632 break;
2633 }
2634 }
2635 }
2636
2637 static void imsm_prepare_update(struct supertype *st,
2638 struct metadata_update *update)
2639 {
2640 /**
2641 * Allocate space to hold new disk entries, raid-device entries or a
2642 * new mpb if necessary. We currently maintain an mpb large enough to
2643 * hold 2 subarrays for the given number of disks. This may not be
2644 * sufficient when reshaping.
2645 *
2646 * FIX ME handle the reshape case.
2647 *
2648 * The monitor will be able to safely change super->mpb by arranging
2649 * for it to be freed in check_update_queue(). I.e. the monitor thread
2650 * will start using the new pointer and the manager can continue to use
2651 * the old value until check_update_queue() runs.
2652 */
2653 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2654
2655 switch (type) {
2656 case update_create_array: {
2657 struct imsm_update_create_array *u = (void *) update->buf;
2658 size_t len = sizeof_imsm_dev(&u->dev);
2659
2660 update->space = malloc(len);
2661 break;
2662 default:
2663 break;
2664 }
2665 }
2666
2667 return;
2668 }
2669
2670 struct superswitch super_imsm = {
2671 #ifndef MDASSEMBLE
2672 .examine_super = examine_super_imsm,
2673 .brief_examine_super = brief_examine_super_imsm,
2674 .detail_super = detail_super_imsm,
2675 .brief_detail_super = brief_detail_super_imsm,
2676 .write_init_super = write_init_super_imsm,
2677 #endif
2678 .match_home = match_home_imsm,
2679 .uuid_from_super= uuid_from_super_imsm,
2680 .getinfo_super = getinfo_super_imsm,
2681 .update_super = update_super_imsm,
2682
2683 .avail_size = avail_size_imsm,
2684
2685 .compare_super = compare_super_imsm,
2686
2687 .load_super = load_super_imsm,
2688 .init_super = init_super_imsm,
2689 .add_to_super = add_to_super_imsm,
2690 .store_super = store_zero_imsm,
2691 .free_super = free_super_imsm,
2692 .match_metadata_desc = match_metadata_desc_imsm,
2693 .container_content = container_content_imsm,
2694
2695 .validate_geometry = validate_geometry_imsm,
2696 .external = 1,
2697
2698 /* for mdmon */
2699 .open_new = imsm_open_new,
2700 .load_super = load_super_imsm,
2701 .set_array_state= imsm_set_array_state,
2702 .set_disk = imsm_set_disk,
2703 .sync_metadata = imsm_sync_metadata,
2704 .activate_spare = imsm_activate_spare,
2705 .process_update = imsm_process_update,
2706 .prepare_update = imsm_prepare_update,
2707 };