]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
Allow metadata handler to report that it doesn't record homehost.
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2007 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #include "mdadm.h"
21 #include "mdmon.h"
22 #include <values.h>
23 #include <scsi/sg.h>
24 #include <ctype.h>
25
26 /* MPB == Metadata Parameter Block */
27 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
28 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
29 #define MPB_VERSION_RAID0 "1.0.00"
30 #define MPB_VERSION_RAID1 "1.1.00"
31 #define MPB_VERSION_RAID5 "1.2.02"
32 #define MAX_SIGNATURE_LENGTH 32
33 #define MAX_RAID_SERIAL_LEN 16
34 #define MPB_SECTOR_CNT 418
35 #define IMSM_RESERVED_SECTORS 4096
36
37 /* Disk configuration info. */
38 #define IMSM_MAX_DEVICES 255
39 struct imsm_disk {
40 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
41 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
42 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
43 __u32 status; /* 0xF0 - 0xF3 */
44 #define SPARE_DISK 0x01 /* Spare */
45 #define CONFIGURED_DISK 0x02 /* Member of some RaidDev */
46 #define FAILED_DISK 0x04 /* Permanent failure */
47 #define USABLE_DISK 0x08 /* Fully usable unless FAILED_DISK is set */
48
49 #define IMSM_DISK_FILLERS 5
50 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
51 };
52
53 /* RAID map configuration infos. */
54 struct imsm_map {
55 __u32 pba_of_lba0; /* start address of partition */
56 __u32 blocks_per_member;/* blocks per member */
57 __u32 num_data_stripes; /* number of data stripes */
58 __u16 blocks_per_strip;
59 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
60 #define IMSM_T_STATE_NORMAL 0
61 #define IMSM_T_STATE_UNINITIALIZED 1
62 #define IMSM_T_STATE_DEGRADED 2 /* FIXME: is this correct? */
63 #define IMSM_T_STATE_FAILED 3 /* FIXME: is this correct? */
64 __u8 raid_level;
65 #define IMSM_T_RAID0 0
66 #define IMSM_T_RAID1 1
67 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
68 __u8 num_members; /* number of member disks */
69 __u8 reserved[3];
70 __u32 filler[7]; /* expansion area */
71 #define IMSM_ORD_REBUILD (1 << 24)
72 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
73 * top byte contains some flags
74 */
75 } __attribute__ ((packed));
76
77 struct imsm_vol {
78 __u32 reserved[2];
79 __u8 migr_state; /* Normal or Migrating */
80 __u8 migr_type; /* Initializing, Rebuilding, ... */
81 __u8 dirty;
82 __u8 fill[1];
83 __u32 filler[5];
84 struct imsm_map map[1];
85 /* here comes another one if migr_state */
86 } __attribute__ ((packed));
87
88 struct imsm_dev {
89 __u8 volume[MAX_RAID_SERIAL_LEN];
90 __u32 size_low;
91 __u32 size_high;
92 __u32 status; /* Persistent RaidDev status */
93 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
94 #define IMSM_DEV_FILLERS 12
95 __u32 filler[IMSM_DEV_FILLERS];
96 struct imsm_vol vol;
97 } __attribute__ ((packed));
98
99 struct imsm_super {
100 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
101 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
102 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
103 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
104 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
105 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
106 __u32 attributes; /* 0x34 - 0x37 */
107 __u8 num_disks; /* 0x38 Number of configured disks */
108 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
109 __u8 error_log_pos; /* 0x3A */
110 __u8 fill[1]; /* 0x3B */
111 __u32 cache_size; /* 0x3c - 0x40 in mb */
112 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
113 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
114 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
115 #define IMSM_FILLERS 35
116 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
117 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
118 /* here comes imsm_dev[num_raid_devs] */
119 /* here comes BBM logs */
120 } __attribute__ ((packed));
121
122 #define BBM_LOG_MAX_ENTRIES 254
123
124 struct bbm_log_entry {
125 __u64 defective_block_start;
126 #define UNREADABLE 0xFFFFFFFF
127 __u32 spare_block_offset;
128 __u16 remapped_marked_count;
129 __u16 disk_ordinal;
130 } __attribute__ ((__packed__));
131
132 struct bbm_log {
133 __u32 signature; /* 0xABADB10C */
134 __u32 entry_count;
135 __u32 reserved_spare_block_count; /* 0 */
136 __u32 reserved; /* 0xFFFF */
137 __u64 first_spare_lba;
138 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
139 } __attribute__ ((__packed__));
140
141
142 #ifndef MDASSEMBLE
143 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
144 #endif
145
146 static unsigned int sector_count(__u32 bytes)
147 {
148 return ((bytes + (512-1)) & (~(512-1))) / 512;
149 }
150
151 static unsigned int mpb_sectors(struct imsm_super *mpb)
152 {
153 return sector_count(__le32_to_cpu(mpb->mpb_size));
154 }
155
156 /* internal representation of IMSM metadata */
157 struct intel_super {
158 union {
159 void *buf; /* O_DIRECT buffer for reading/writing metadata */
160 struct imsm_super *anchor; /* immovable parameters */
161 };
162 size_t len; /* size of the 'buf' allocation */
163 void *next_buf; /* for realloc'ing buf from the manager */
164 size_t next_len;
165 int updates_pending; /* count of pending updates for mdmon */
166 int creating_imsm; /* flag to indicate container creation */
167 int current_vol; /* index of raid device undergoing creation */
168 #define IMSM_MAX_RAID_DEVS 2
169 struct imsm_dev *dev_tbl[IMSM_MAX_RAID_DEVS];
170 struct dl {
171 struct dl *next;
172 int index;
173 __u8 serial[MAX_RAID_SERIAL_LEN];
174 int major, minor;
175 char *devname;
176 struct imsm_disk disk;
177 int fd;
178 } *disks;
179 struct dl *add; /* list of disks to add while mdmon active */
180 struct bbm_log *bbm_log;
181 };
182
183 struct extent {
184 unsigned long long start, size;
185 };
186
187 /* definition of messages passed to imsm_process_update */
188 enum imsm_update_type {
189 update_activate_spare,
190 update_create_array,
191 update_add_disk,
192 };
193
194 struct imsm_update_activate_spare {
195 enum imsm_update_type type;
196 struct dl *dl;
197 int slot;
198 int array;
199 struct imsm_update_activate_spare *next;
200 };
201
202 struct imsm_update_create_array {
203 enum imsm_update_type type;
204 int dev_idx;
205 struct imsm_dev dev;
206 };
207
208 struct imsm_update_add_disk {
209 enum imsm_update_type type;
210 };
211
212 static int imsm_env_devname_as_serial(void)
213 {
214 char *val = getenv("IMSM_DEVNAME_AS_SERIAL");
215
216 if (val && atoi(val) == 1)
217 return 1;
218
219 return 0;
220 }
221
222
223 static struct supertype *match_metadata_desc_imsm(char *arg)
224 {
225 struct supertype *st;
226
227 if (strcmp(arg, "imsm") != 0 &&
228 strcmp(arg, "default") != 0
229 )
230 return NULL;
231
232 st = malloc(sizeof(*st));
233 memset(st, 0, sizeof(*st));
234 st->ss = &super_imsm;
235 st->max_devs = IMSM_MAX_DEVICES;
236 st->minor_version = 0;
237 st->sb = NULL;
238 return st;
239 }
240
241 #ifndef MDASSEMBLE
242 static __u8 *get_imsm_version(struct imsm_super *mpb)
243 {
244 return &mpb->sig[MPB_SIG_LEN];
245 }
246 #endif
247
248 /* retrieve a disk directly from the anchor when the anchor is known to be
249 * up-to-date, currently only at load time
250 */
251 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
252 {
253 if (index >= mpb->num_disks)
254 return NULL;
255 return &mpb->disk[index];
256 }
257
258 #ifndef MDASSEMBLE
259 /* retrieve a disk from the parsed metadata */
260 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
261 {
262 struct dl *d;
263
264 for (d = super->disks; d; d = d->next)
265 if (d->index == index)
266 return &d->disk;
267
268 return NULL;
269 }
270 #endif
271
272 /* generate a checksum directly from the anchor when the anchor is known to be
273 * up-to-date, currently only at load or write_super after coalescing
274 */
275 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
276 {
277 __u32 end = mpb->mpb_size / sizeof(end);
278 __u32 *p = (__u32 *) mpb;
279 __u32 sum = 0;
280
281 while (end--)
282 sum += __le32_to_cpu(*p++);
283
284 return sum - __le32_to_cpu(mpb->check_sum);
285 }
286
287 static size_t sizeof_imsm_map(struct imsm_map *map)
288 {
289 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
290 }
291
292 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
293 {
294 struct imsm_map *map = &dev->vol.map[0];
295
296 if (second_map && !dev->vol.migr_state)
297 return NULL;
298 else if (second_map) {
299 void *ptr = map;
300
301 return ptr + sizeof_imsm_map(map);
302 } else
303 return map;
304
305 }
306
307 /* return the size of the device.
308 * migr_state increases the returned size if map[0] were to be duplicated
309 */
310 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
311 {
312 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
313 sizeof_imsm_map(get_imsm_map(dev, 0));
314
315 /* migrating means an additional map */
316 if (dev->vol.migr_state)
317 size += sizeof_imsm_map(get_imsm_map(dev, 1));
318 else if (migr_state)
319 size += sizeof_imsm_map(get_imsm_map(dev, 0));
320
321 return size;
322 }
323
324 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
325 {
326 int offset;
327 int i;
328 void *_mpb = mpb;
329
330 if (index >= mpb->num_raid_devs)
331 return NULL;
332
333 /* devices start after all disks */
334 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
335
336 for (i = 0; i <= index; i++)
337 if (i == index)
338 return _mpb + offset;
339 else
340 offset += sizeof_imsm_dev(_mpb + offset, 0);
341
342 return NULL;
343 }
344
345 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
346 {
347 if (index >= super->anchor->num_raid_devs)
348 return NULL;
349 return super->dev_tbl[index];
350 }
351
352 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
353 {
354 struct imsm_map *map;
355
356 if (dev->vol.migr_state)
357 map = get_imsm_map(dev, 1);
358 else
359 map = get_imsm_map(dev, 0);
360
361 /* top byte identifies disk under rebuild */
362 return __le32_to_cpu(map->disk_ord_tbl[slot]);
363 }
364
365 #define ord_to_idx(ord) (((ord) << 8) >> 8)
366 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
367 {
368 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
369
370 return ord_to_idx(ord);
371 }
372
373 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
374 {
375 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
376 }
377
378 static int get_imsm_raid_level(struct imsm_map *map)
379 {
380 if (map->raid_level == 1) {
381 if (map->num_members == 2)
382 return 1;
383 else
384 return 10;
385 }
386
387 return map->raid_level;
388 }
389
390 #ifndef MDASSEMBLE
391 static int cmp_extent(const void *av, const void *bv)
392 {
393 const struct extent *a = av;
394 const struct extent *b = bv;
395 if (a->start < b->start)
396 return -1;
397 if (a->start > b->start)
398 return 1;
399 return 0;
400 }
401
402 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
403 {
404 /* find a list of used extents on the given physical device */
405 struct extent *rv, *e;
406 int i, j;
407 int memberships = 0;
408
409 for (i = 0; i < super->anchor->num_raid_devs; i++) {
410 struct imsm_dev *dev = get_imsm_dev(super, i);
411 struct imsm_map *map = get_imsm_map(dev, 0);
412
413 for (j = 0; j < map->num_members; j++) {
414 __u32 index = get_imsm_disk_idx(dev, j);
415
416 if (index == dl->index)
417 memberships++;
418 }
419 }
420 rv = malloc(sizeof(struct extent) * (memberships + 1));
421 if (!rv)
422 return NULL;
423 e = rv;
424
425 for (i = 0; i < super->anchor->num_raid_devs; i++) {
426 struct imsm_dev *dev = get_imsm_dev(super, i);
427 struct imsm_map *map = get_imsm_map(dev, 0);
428
429 for (j = 0; j < map->num_members; j++) {
430 __u32 index = get_imsm_disk_idx(dev, j);
431
432 if (index == dl->index) {
433 e->start = __le32_to_cpu(map->pba_of_lba0);
434 e->size = __le32_to_cpu(map->blocks_per_member);
435 e++;
436 }
437 }
438 }
439 qsort(rv, memberships, sizeof(*rv), cmp_extent);
440
441 e->start = __le32_to_cpu(dl->disk.total_blocks) -
442 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
443 e->size = 0;
444 return rv;
445 }
446
447 static void print_imsm_dev(struct imsm_dev *dev, int index)
448 {
449 __u64 sz;
450 int slot;
451 struct imsm_map *map = get_imsm_map(dev, 0);
452 __u32 ord;
453
454 printf("\n");
455 printf("[%s]:\n", dev->volume);
456 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
457 printf(" Members : %d\n", map->num_members);
458 for (slot = 0; slot < map->num_members; slot++)
459 if (index == get_imsm_disk_idx(dev, slot))
460 break;
461 if (slot < map->num_members) {
462 ord = get_imsm_ord_tbl_ent(dev, slot);
463 printf(" This Slot : %d%s\n", slot,
464 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
465 } else
466 printf(" This Slot : ?\n");
467 sz = __le32_to_cpu(dev->size_high);
468 sz <<= 32;
469 sz += __le32_to_cpu(dev->size_low);
470 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
471 human_size(sz * 512));
472 sz = __le32_to_cpu(map->blocks_per_member);
473 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
474 human_size(sz * 512));
475 printf(" Sector Offset : %u\n",
476 __le32_to_cpu(map->pba_of_lba0));
477 printf(" Num Stripes : %u\n",
478 __le32_to_cpu(map->num_data_stripes));
479 printf(" Chunk Size : %u KiB\n",
480 __le16_to_cpu(map->blocks_per_strip) / 2);
481 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
482 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle");
483 if (dev->vol.migr_state)
484 printf(": %s", dev->vol.migr_type ? "rebuilding" : "initializing");
485 printf("\n");
486 printf(" Map State : %s", map_state_str[map->map_state]);
487 if (dev->vol.migr_state) {
488 struct imsm_map *map = get_imsm_map(dev, 1);
489 printf(" <-- %s", map_state_str[map->map_state]);
490 }
491 printf("\n");
492 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
493 }
494
495 static void print_imsm_disk(struct imsm_super *mpb, int index)
496 {
497 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
498 char str[MAX_RAID_SERIAL_LEN + 1];
499 __u32 s;
500 __u64 sz;
501
502 if (index < 0)
503 return;
504
505 printf("\n");
506 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
507 printf(" Disk%02d Serial : %s\n", index, str);
508 s = __le32_to_cpu(disk->status);
509 printf(" State :%s%s%s%s\n", s&SPARE_DISK ? " spare" : "",
510 s&CONFIGURED_DISK ? " active" : "",
511 s&FAILED_DISK ? " failed" : "",
512 s&USABLE_DISK ? " usable" : "");
513 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
514 sz = __le32_to_cpu(disk->total_blocks) -
515 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS * mpb->num_raid_devs);
516 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
517 human_size(sz * 512));
518 }
519
520 static void examine_super_imsm(struct supertype *st, char *homehost)
521 {
522 struct intel_super *super = st->sb;
523 struct imsm_super *mpb = super->anchor;
524 char str[MAX_SIGNATURE_LENGTH];
525 int i;
526 __u32 sum;
527
528 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
529 printf(" Magic : %s\n", str);
530 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
531 printf(" Version : %s\n", get_imsm_version(mpb));
532 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
533 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
534 sum = __le32_to_cpu(mpb->check_sum);
535 printf(" Checksum : %08x %s\n", sum,
536 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
537 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
538 printf(" Disks : %d\n", mpb->num_disks);
539 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
540 print_imsm_disk(mpb, super->disks->index);
541 if (super->bbm_log) {
542 struct bbm_log *log = super->bbm_log;
543
544 printf("\n");
545 printf("Bad Block Management Log:\n");
546 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
547 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
548 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
549 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
550 printf(" First Spare : %llx\n", __le64_to_cpu(log->first_spare_lba));
551 }
552 for (i = 0; i < mpb->num_raid_devs; i++)
553 print_imsm_dev(__get_imsm_dev(mpb, i), super->disks->index);
554 for (i = 0; i < mpb->num_disks; i++) {
555 if (i == super->disks->index)
556 continue;
557 print_imsm_disk(mpb, i);
558 }
559 }
560
561 static void brief_examine_super_imsm(struct supertype *st)
562 {
563 printf("ARRAY /dev/imsm metadata=imsm\n");
564 }
565
566 static void detail_super_imsm(struct supertype *st, char *homehost)
567 {
568 printf("%s\n", __FUNCTION__);
569 }
570
571 static void brief_detail_super_imsm(struct supertype *st)
572 {
573 printf("%s\n", __FUNCTION__);
574 }
575 #endif
576
577 static int match_home_imsm(struct supertype *st, char *homehost)
578 {
579 printf("%s\n", __FUNCTION__);
580
581 return -1;
582 }
583
584 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
585 {
586 /* imsm does not track uuid's so just make sure we never return
587 * the same value twice to break uuid matching in Manage_subdevs
588 * FIXME what about the use of uuid's with bitmap's?
589 */
590 static int dummy_id = 0;
591
592 uuid[0] = dummy_id++;
593 }
594
595 #if 0
596 static void
597 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
598 {
599 __u8 *v = get_imsm_version(mpb);
600 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
601 char major[] = { 0, 0, 0 };
602 char minor[] = { 0 ,0, 0 };
603 char patch[] = { 0, 0, 0 };
604 char *ver_parse[] = { major, minor, patch };
605 int i, j;
606
607 i = j = 0;
608 while (*v != '\0' && v < end) {
609 if (*v != '.' && j < 2)
610 ver_parse[i][j++] = *v;
611 else {
612 i++;
613 j = 0;
614 }
615 v++;
616 }
617
618 *m = strtol(minor, NULL, 0);
619 *p = strtol(patch, NULL, 0);
620 }
621 #endif
622
623 static int imsm_level_to_layout(int level)
624 {
625 switch (level) {
626 case 0:
627 case 1:
628 return 0;
629 case 5:
630 case 6:
631 return ALGORITHM_LEFT_ASYMMETRIC;
632 case 10:
633 return 0x102; //FIXME is this correct?
634 }
635 return -1;
636 }
637
638 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
639 {
640 struct intel_super *super = st->sb;
641 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
642 struct imsm_map *map = get_imsm_map(dev, 0);
643
644 info->container_member = super->current_vol;
645 info->array.raid_disks = map->num_members;
646 info->array.level = get_imsm_raid_level(map);
647 info->array.layout = imsm_level_to_layout(info->array.level);
648 info->array.md_minor = -1;
649 info->array.ctime = 0;
650 info->array.utime = 0;
651 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
652 info->array.state = !dev->vol.dirty;
653
654 info->disk.major = 0;
655 info->disk.minor = 0;
656
657 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
658 info->component_size = __le32_to_cpu(map->blocks_per_member);
659 memset(info->uuid, 0, sizeof(info->uuid));
660
661 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
662 dev->vol.dirty || dev->vol.migr_state)
663 info->resync_start = 0;
664 else
665 info->resync_start = ~0ULL;
666
667 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
668 info->name[MAX_RAID_SERIAL_LEN] = 0;
669
670 info->array.major_version = -1;
671 info->array.minor_version = -2;
672 sprintf(info->text_version, "/%s/%d",
673 devnum2devname(st->container_dev),
674 info->container_member);
675 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
676 }
677
678
679 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
680 {
681 struct intel_super *super = st->sb;
682 struct imsm_disk *disk;
683 __u32 s;
684
685 if (super->current_vol >= 0) {
686 getinfo_super_imsm_volume(st, info);
687 return;
688 }
689
690 /* Set raid_disks to zero so that Assemble will always pull in valid
691 * spares
692 */
693 info->array.raid_disks = 0;
694 info->array.level = LEVEL_CONTAINER;
695 info->array.layout = 0;
696 info->array.md_minor = -1;
697 info->array.ctime = 0; /* N/A for imsm */
698 info->array.utime = 0;
699 info->array.chunk_size = 0;
700
701 info->disk.major = 0;
702 info->disk.minor = 0;
703 info->disk.raid_disk = -1;
704 info->reshape_active = 0;
705 info->array.major_version = -1;
706 info->array.minor_version = -2;
707 strcpy(info->text_version, "imsm");
708 info->safe_mode_delay = 0;
709 info->disk.number = -1;
710 info->disk.state = 0;
711 info->name[0] = 0;
712
713 if (super->disks) {
714 disk = &super->disks->disk;
715 info->disk.number = super->disks->index;
716 info->disk.raid_disk = super->disks->index;
717 info->data_offset = __le32_to_cpu(disk->total_blocks) -
718 (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
719 info->component_size = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
720 s = __le32_to_cpu(disk->status);
721 info->disk.state = s & CONFIGURED_DISK ? (1 << MD_DISK_ACTIVE) : 0;
722 info->disk.state |= s & FAILED_DISK ? (1 << MD_DISK_FAULTY) : 0;
723 info->disk.state |= s & USABLE_DISK ? (1 << MD_DISK_SYNC) : 0;
724 }
725 }
726
727 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
728 char *update, char *devname, int verbose,
729 int uuid_set, char *homehost)
730 {
731 /* FIXME */
732
733 /* For 'assemble' and 'force' we need to return non-zero if any
734 * change was made. For others, the return value is ignored.
735 * Update options are:
736 * force-one : This device looks a bit old but needs to be included,
737 * update age info appropriately.
738 * assemble: clear any 'faulty' flag to allow this device to
739 * be assembled.
740 * force-array: Array is degraded but being forced, mark it clean
741 * if that will be needed to assemble it.
742 *
743 * newdev: not used ????
744 * grow: Array has gained a new device - this is currently for
745 * linear only
746 * resync: mark as dirty so a resync will happen.
747 * name: update the name - preserving the homehost
748 *
749 * Following are not relevant for this imsm:
750 * sparc2.2 : update from old dodgey metadata
751 * super-minor: change the preferred_minor number
752 * summaries: update redundant counters.
753 * uuid: Change the uuid of the array to match watch is given
754 * homehost: update the recorded homehost
755 * _reshape_progress: record new reshape_progress position.
756 */
757 int rv = 0;
758 //struct intel_super *super = st->sb;
759 //struct imsm_super *mpb = super->mpb;
760
761 if (strcmp(update, "grow") == 0) {
762 }
763 if (strcmp(update, "resync") == 0) {
764 /* dev->vol.dirty = 1; */
765 }
766
767 /* IMSM has no concept of UUID or homehost */
768
769 return rv;
770 }
771
772 static size_t disks_to_mpb_size(int disks)
773 {
774 size_t size;
775
776 size = sizeof(struct imsm_super);
777 size += (disks - 1) * sizeof(struct imsm_disk);
778 size += 2 * sizeof(struct imsm_dev);
779 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
780 size += (4 - 2) * sizeof(struct imsm_map);
781 /* 4 possible disk_ord_tbl's */
782 size += 4 * (disks - 1) * sizeof(__u32);
783
784 return size;
785 }
786
787 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
788 {
789 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
790 return 0;
791
792 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
793 }
794
795 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
796 {
797 /*
798 * return:
799 * 0 same, or first was empty, and second was copied
800 * 1 second had wrong number
801 * 2 wrong uuid
802 * 3 wrong other info
803 */
804 struct intel_super *first = st->sb;
805 struct intel_super *sec = tst->sb;
806
807 if (!first) {
808 st->sb = tst->sb;
809 tst->sb = NULL;
810 return 0;
811 }
812
813 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
814 return 3;
815
816 /* if an anchor does not have num_raid_devs set then it is a free
817 * floating spare
818 */
819 if (first->anchor->num_raid_devs > 0 &&
820 sec->anchor->num_raid_devs > 0) {
821 if (first->anchor->family_num != sec->anchor->family_num)
822 return 3;
823 }
824
825 /* if 'first' is a spare promote it to a populated mpb with sec's
826 * family number
827 */
828 if (first->anchor->num_raid_devs == 0 &&
829 sec->anchor->num_raid_devs > 0) {
830 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
831 first->anchor->family_num = sec->anchor->family_num;
832 }
833
834 return 0;
835 }
836
837 static void fd2devname(int fd, char *name)
838 {
839 struct stat st;
840 char path[256];
841 char dname[100];
842 char *nm;
843 int rv;
844
845 name[0] = '\0';
846 if (fstat(fd, &st) != 0)
847 return;
848 sprintf(path, "/sys/dev/block/%d:%d",
849 major(st.st_rdev), minor(st.st_rdev));
850
851 rv = readlink(path, dname, sizeof(dname));
852 if (rv <= 0)
853 return;
854
855 dname[rv] = '\0';
856 nm = strrchr(dname, '/');
857 nm++;
858 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
859 }
860
861
862 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
863
864 static int imsm_read_serial(int fd, char *devname,
865 __u8 serial[MAX_RAID_SERIAL_LEN])
866 {
867 unsigned char scsi_serial[255];
868 int rv;
869 int rsp_len;
870 int len;
871 char *c, *rsp_buf;
872
873 memset(scsi_serial, 0, sizeof(scsi_serial));
874
875 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
876
877 if (rv && imsm_env_devname_as_serial()) {
878 memset(serial, 0, MAX_RAID_SERIAL_LEN);
879 fd2devname(fd, (char *) serial);
880 return 0;
881 }
882
883 if (rv != 0) {
884 if (devname)
885 fprintf(stderr,
886 Name ": Failed to retrieve serial for %s\n",
887 devname);
888 return rv;
889 }
890
891 /* trim whitespace */
892 rsp_len = scsi_serial[3];
893 rsp_buf = (char *) &scsi_serial[4];
894 c = rsp_buf;
895 while (isspace(*c))
896 c++;
897 if (c + MAX_RAID_SERIAL_LEN > rsp_buf + rsp_len)
898 len = rsp_len - (c - rsp_buf);
899 else
900 len = MAX_RAID_SERIAL_LEN;
901 memcpy(serial, c, len);
902 c = (char *) &serial[len - 1];
903 while (isspace(*c) || *c == '\0')
904 *c-- = '\0';
905
906 return 0;
907 }
908
909 static int serialcmp(__u8 *s1, __u8 *s2)
910 {
911 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
912 }
913
914 static void serialcpy(__u8 *dest, __u8 *src)
915 {
916 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
917 }
918
919 static int
920 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
921 {
922 struct dl *dl;
923 struct stat stb;
924 int rv;
925 int i;
926 int alloc = 1;
927 __u8 serial[MAX_RAID_SERIAL_LEN];
928
929 rv = imsm_read_serial(fd, devname, serial);
930
931 if (rv != 0)
932 return 2;
933
934 /* check if this is a disk we have seen before. it may be a spare in
935 * super->disks while the current anchor believes it is a raid member,
936 * check if we need to update dl->index
937 */
938 for (dl = super->disks; dl; dl = dl->next)
939 if (serialcmp(dl->serial, serial) == 0)
940 break;
941
942 if (!dl)
943 dl = malloc(sizeof(*dl));
944 else
945 alloc = 0;
946
947 if (!dl) {
948 if (devname)
949 fprintf(stderr,
950 Name ": failed to allocate disk buffer for %s\n",
951 devname);
952 return 2;
953 }
954
955 if (alloc) {
956 fstat(fd, &stb);
957 dl->major = major(stb.st_rdev);
958 dl->minor = minor(stb.st_rdev);
959 dl->next = super->disks;
960 dl->fd = keep_fd ? fd : -1;
961 dl->devname = devname ? strdup(devname) : NULL;
962 serialcpy(dl->serial, serial);
963 dl->index = -2;
964 } else if (keep_fd) {
965 close(dl->fd);
966 dl->fd = fd;
967 }
968
969 /* look up this disk's index in the current anchor */
970 for (i = 0; i < super->anchor->num_disks; i++) {
971 struct imsm_disk *disk_iter;
972
973 disk_iter = __get_imsm_disk(super->anchor, i);
974
975 if (serialcmp(disk_iter->serial, dl->serial) == 0) {
976 __u32 status;
977
978 dl->disk = *disk_iter;
979 status = __le32_to_cpu(dl->disk.status);
980 /* only set index on disks that are a member of a
981 * populated contianer, i.e. one with raid_devs
982 */
983 if (status & FAILED_DISK)
984 dl->index = -2;
985 else if (status & SPARE_DISK)
986 dl->index = -1;
987 else
988 dl->index = i;
989
990 break;
991 }
992 }
993
994 if (alloc)
995 super->disks = dl;
996
997 return 0;
998 }
999
1000 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1001 {
1002 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1003 }
1004
1005 #ifndef MDASSEMBLE
1006 /* When migrating map0 contains the 'destination' state while map1
1007 * contains the current state. When not migrating map0 contains the
1008 * current state. This routine assumes that map[0].map_state is set to
1009 * the current array state before being called.
1010 *
1011 * Migration is indicated by one of the following states
1012 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1013 * 2/ Initialize (migr_state=1 migr_type=0 map0state=normal
1014 * map1state=unitialized)
1015 * 3/ Verify (Resync) (migr_state=1 migr_type=1 map0state=normal
1016 * map1state=normal)
1017 * 4/ Rebuild (migr_state=1 migr_type=1 map0state=normal
1018 * map1state=degraded)
1019 */
1020 static void migrate(struct imsm_dev *dev, __u8 to_state, int rebuild_resync)
1021 {
1022 struct imsm_map *dest;
1023 struct imsm_map *src = get_imsm_map(dev, 0);
1024
1025 dev->vol.migr_state = 1;
1026 dev->vol.migr_type = rebuild_resync;
1027 dest = get_imsm_map(dev, 1);
1028
1029 memcpy(dest, src, sizeof_imsm_map(src));
1030 src->map_state = to_state;
1031 }
1032 #endif
1033
1034 static int parse_raid_devices(struct intel_super *super)
1035 {
1036 int i;
1037 struct imsm_dev *dev_new;
1038 size_t len, len_migr;
1039 size_t space_needed = 0;
1040 struct imsm_super *mpb = super->anchor;
1041
1042 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1043 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
1044
1045 len = sizeof_imsm_dev(dev_iter, 0);
1046 len_migr = sizeof_imsm_dev(dev_iter, 1);
1047 if (len_migr > len)
1048 space_needed += len_migr - len;
1049
1050 dev_new = malloc(len_migr);
1051 if (!dev_new)
1052 return 1;
1053 imsm_copy_dev(dev_new, dev_iter);
1054 super->dev_tbl[i] = dev_new;
1055 }
1056
1057 /* ensure that super->buf is large enough when all raid devices
1058 * are migrating
1059 */
1060 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1061 void *buf;
1062
1063 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1064 if (posix_memalign(&buf, 512, len) != 0)
1065 return 1;
1066
1067 memcpy(buf, super->buf, len);
1068 free(super->buf);
1069 super->buf = buf;
1070 super->len = len;
1071 }
1072
1073 return 0;
1074 }
1075
1076 /* retrieve a pointer to the bbm log which starts after all raid devices */
1077 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1078 {
1079 void *ptr = NULL;
1080
1081 if (__le32_to_cpu(mpb->bbm_log_size)) {
1082 ptr = mpb;
1083 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1084 }
1085
1086 return ptr;
1087 }
1088
1089 static void __free_imsm(struct intel_super *super, int free_disks);
1090
1091 /* load_imsm_mpb - read matrix metadata
1092 * allocates super->mpb to be freed by free_super
1093 */
1094 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1095 {
1096 unsigned long long dsize;
1097 unsigned long long sectors;
1098 struct stat;
1099 struct imsm_super *anchor;
1100 __u32 check_sum;
1101 int rc;
1102
1103 get_dev_size(fd, NULL, &dsize);
1104
1105 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1106 if (devname)
1107 fprintf(stderr,
1108 Name ": Cannot seek to anchor block on %s: %s\n",
1109 devname, strerror(errno));
1110 return 1;
1111 }
1112
1113 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1114 if (devname)
1115 fprintf(stderr,
1116 Name ": Failed to allocate imsm anchor buffer"
1117 " on %s\n", devname);
1118 return 1;
1119 }
1120 if (read(fd, anchor, 512) != 512) {
1121 if (devname)
1122 fprintf(stderr,
1123 Name ": Cannot read anchor block on %s: %s\n",
1124 devname, strerror(errno));
1125 free(anchor);
1126 return 1;
1127 }
1128
1129 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1130 if (devname)
1131 fprintf(stderr,
1132 Name ": no IMSM anchor on %s\n", devname);
1133 free(anchor);
1134 return 2;
1135 }
1136
1137 __free_imsm(super, 0);
1138 super->len = ROUND_UP(anchor->mpb_size, 512);
1139 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1140 if (devname)
1141 fprintf(stderr,
1142 Name ": unable to allocate %zu byte mpb buffer\n",
1143 super->len);
1144 free(anchor);
1145 return 2;
1146 }
1147 memcpy(super->buf, anchor, 512);
1148
1149 sectors = mpb_sectors(anchor) - 1;
1150 free(anchor);
1151 if (!sectors) {
1152 rc = load_imsm_disk(fd, super, devname, 0);
1153 if (rc == 0)
1154 rc = parse_raid_devices(super);
1155 return rc;
1156 }
1157
1158 /* read the extended mpb */
1159 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1160 if (devname)
1161 fprintf(stderr,
1162 Name ": Cannot seek to extended mpb on %s: %s\n",
1163 devname, strerror(errno));
1164 return 1;
1165 }
1166
1167 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1168 if (devname)
1169 fprintf(stderr,
1170 Name ": Cannot read extended mpb on %s: %s\n",
1171 devname, strerror(errno));
1172 return 2;
1173 }
1174
1175 check_sum = __gen_imsm_checksum(super->anchor);
1176 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1177 if (devname)
1178 fprintf(stderr,
1179 Name ": IMSM checksum %x != %x on %s\n",
1180 check_sum, __le32_to_cpu(super->anchor->check_sum),
1181 devname);
1182 return 2;
1183 }
1184
1185 /* FIXME the BBM log is disk specific so we cannot use this global
1186 * buffer for all disks. Ok for now since we only look at the global
1187 * bbm_log_size parameter to gate assembly
1188 */
1189 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1190
1191 rc = load_imsm_disk(fd, super, devname, 0);
1192 if (rc == 0)
1193 rc = parse_raid_devices(super);
1194
1195 return rc;
1196 }
1197
1198 static void __free_imsm_disk(struct dl *d)
1199 {
1200 if (d->fd >= 0)
1201 close(d->fd);
1202 if (d->devname)
1203 free(d->devname);
1204 free(d);
1205
1206 }
1207 static void free_imsm_disks(struct intel_super *super)
1208 {
1209 while (super->disks) {
1210 struct dl *d = super->disks;
1211
1212 super->disks = d->next;
1213 __free_imsm_disk(d);
1214 }
1215 }
1216
1217 /* free all the pieces hanging off of a super pointer */
1218 static void __free_imsm(struct intel_super *super, int free_disks)
1219 {
1220 int i;
1221
1222 if (super->buf) {
1223 free(super->buf);
1224 super->buf = NULL;
1225 }
1226 if (free_disks)
1227 free_imsm_disks(super);
1228 for (i = 0; i < IMSM_MAX_RAID_DEVS; i++)
1229 if (super->dev_tbl[i]) {
1230 free(super->dev_tbl[i]);
1231 super->dev_tbl[i] = NULL;
1232 }
1233 }
1234
1235 static void free_imsm(struct intel_super *super)
1236 {
1237 __free_imsm(super, 1);
1238 free(super);
1239 }
1240
1241 static void free_super_imsm(struct supertype *st)
1242 {
1243 struct intel_super *super = st->sb;
1244
1245 if (!super)
1246 return;
1247
1248 free_imsm(super);
1249 st->sb = NULL;
1250 }
1251
1252 static struct intel_super *alloc_super(int creating_imsm)
1253 {
1254 struct intel_super *super = malloc(sizeof(*super));
1255
1256 if (super) {
1257 memset(super, 0, sizeof(*super));
1258 super->creating_imsm = creating_imsm;
1259 super->current_vol = -1;
1260 }
1261
1262 return super;
1263 }
1264
1265 #ifndef MDASSEMBLE
1266 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
1267 char *devname, int keep_fd)
1268 {
1269 struct mdinfo *sra;
1270 struct intel_super *super;
1271 struct mdinfo *sd, *best = NULL;
1272 __u32 bestgen = 0;
1273 __u32 gen;
1274 char nm[20];
1275 int dfd;
1276 int rv;
1277
1278 /* check if this disk is a member of an active array */
1279 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
1280 if (!sra)
1281 return 1;
1282
1283 if (sra->array.major_version != -1 ||
1284 sra->array.minor_version != -2 ||
1285 strcmp(sra->text_version, "imsm") != 0)
1286 return 1;
1287
1288 super = alloc_super(0);
1289 if (!super)
1290 return 1;
1291
1292 /* find the most up to date disk in this array, skipping spares */
1293 for (sd = sra->devs; sd; sd = sd->next) {
1294 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1295 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
1296 if (!dfd) {
1297 free_imsm(super);
1298 return 2;
1299 }
1300 rv = load_imsm_mpb(dfd, super, NULL);
1301 if (!keep_fd)
1302 close(dfd);
1303 if (rv == 0) {
1304 if (super->anchor->num_raid_devs == 0)
1305 gen = 0;
1306 else
1307 gen = __le32_to_cpu(super->anchor->generation_num);
1308 if (!best || gen > bestgen) {
1309 bestgen = gen;
1310 best = sd;
1311 }
1312 } else {
1313 free_imsm(super);
1314 return 2;
1315 }
1316 }
1317
1318 if (!best) {
1319 free_imsm(super);
1320 return 1;
1321 }
1322
1323 /* load the most up to date anchor */
1324 sprintf(nm, "%d:%d", best->disk.major, best->disk.minor);
1325 dfd = dev_open(nm, O_RDONLY);
1326 if (!dfd) {
1327 free_imsm(super);
1328 return 1;
1329 }
1330 rv = load_imsm_mpb(dfd, super, NULL);
1331 close(dfd);
1332 if (rv != 0) {
1333 free_imsm(super);
1334 return 2;
1335 }
1336
1337 /* re-parse the disk list with the current anchor */
1338 for (sd = sra->devs ; sd ; sd = sd->next) {
1339 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
1340 dfd = dev_open(nm, keep_fd? O_RDWR : O_RDONLY);
1341 if (!dfd) {
1342 free_imsm(super);
1343 return 2;
1344 }
1345 load_imsm_disk(dfd, super, NULL, keep_fd);
1346 if (!keep_fd)
1347 close(dfd);
1348 }
1349
1350 if (st->subarray[0]) {
1351 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
1352 super->current_vol = atoi(st->subarray);
1353 else
1354 return 1;
1355 }
1356
1357 *sbp = super;
1358 st->container_dev = fd2devnum(fd);
1359 if (st->ss == NULL) {
1360 st->ss = &super_imsm;
1361 st->minor_version = 0;
1362 st->max_devs = IMSM_MAX_DEVICES;
1363 }
1364 st->loaded_container = 1;
1365
1366 return 0;
1367 }
1368 #endif
1369
1370 static int load_super_imsm(struct supertype *st, int fd, char *devname)
1371 {
1372 struct intel_super *super;
1373 int rv;
1374
1375 #ifndef MDASSEMBLE
1376 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
1377 return 0;
1378 #endif
1379 if (st->subarray[0])
1380 return 1; /* FIXME */
1381
1382 super = alloc_super(0);
1383 if (!super) {
1384 fprintf(stderr,
1385 Name ": malloc of %zu failed.\n",
1386 sizeof(*super));
1387 return 1;
1388 }
1389
1390 rv = load_imsm_mpb(fd, super, devname);
1391
1392 if (rv) {
1393 if (devname)
1394 fprintf(stderr,
1395 Name ": Failed to load all information "
1396 "sections on %s\n", devname);
1397 free_imsm(super);
1398 return rv;
1399 }
1400
1401 st->sb = super;
1402 if (st->ss == NULL) {
1403 st->ss = &super_imsm;
1404 st->minor_version = 0;
1405 st->max_devs = IMSM_MAX_DEVICES;
1406 }
1407 st->loaded_container = 0;
1408
1409 return 0;
1410 }
1411
1412 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
1413 {
1414 if (info->level == 1)
1415 return 128;
1416 return info->chunk_size >> 9;
1417 }
1418
1419 static __u32 info_to_num_data_stripes(mdu_array_info_t *info)
1420 {
1421 __u32 num_stripes;
1422
1423 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
1424 if (info->level == 1)
1425 num_stripes /= 2;
1426
1427 return num_stripes;
1428 }
1429
1430 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
1431 {
1432 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
1433 }
1434
1435 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
1436 unsigned long long size, char *name,
1437 char *homehost, int *uuid)
1438 {
1439 /* We are creating a volume inside a pre-existing container.
1440 * so st->sb is already set.
1441 */
1442 struct intel_super *super = st->sb;
1443 struct imsm_super *mpb = super->anchor;
1444 struct imsm_dev *dev;
1445 struct imsm_vol *vol;
1446 struct imsm_map *map;
1447 int idx = mpb->num_raid_devs;
1448 int i;
1449 unsigned long long array_blocks;
1450 __u32 offset = 0;
1451 size_t size_old, size_new;
1452
1453 if (mpb->num_raid_devs >= 2) {
1454 fprintf(stderr, Name": This imsm-container already has the "
1455 "maximum of 2 volumes\n");
1456 return 0;
1457 }
1458
1459 /* ensure the mpb is large enough for the new data */
1460 size_old = __le32_to_cpu(mpb->mpb_size);
1461 size_new = disks_to_mpb_size(info->nr_disks);
1462 if (size_new > size_old) {
1463 void *mpb_new;
1464 size_t size_round = ROUND_UP(size_new, 512);
1465
1466 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
1467 fprintf(stderr, Name": could not allocate new mpb\n");
1468 return 0;
1469 }
1470 memcpy(mpb_new, mpb, size_old);
1471 free(mpb);
1472 mpb = mpb_new;
1473 super->anchor = mpb_new;
1474 mpb->mpb_size = __cpu_to_le32(size_new);
1475 memset(mpb_new + size_old, 0, size_round - size_old);
1476 }
1477 super->current_vol = idx;
1478 /* when creating the first raid device in this container set num_disks
1479 * to zero, i.e. delete this spare and add raid member devices in
1480 * add_to_super_imsm_volume()
1481 */
1482 if (super->current_vol == 0)
1483 mpb->num_disks = 0;
1484 sprintf(st->subarray, "%d", idx);
1485 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
1486 if (!dev) {
1487 fprintf(stderr, Name": could not allocate raid device\n");
1488 return 0;
1489 }
1490 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
1491 array_blocks = calc_array_size(info->level, info->raid_disks,
1492 info->layout, info->chunk_size,
1493 info->size*2);
1494 dev->size_low = __cpu_to_le32((__u32) array_blocks);
1495 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
1496 dev->status = __cpu_to_le32(0);
1497 dev->reserved_blocks = __cpu_to_le32(0);
1498 vol = &dev->vol;
1499 vol->migr_state = 0;
1500 vol->migr_type = 0;
1501 vol->dirty = 0;
1502 for (i = 0; i < idx; i++) {
1503 struct imsm_dev *prev = get_imsm_dev(super, i);
1504 struct imsm_map *pmap = get_imsm_map(prev, 0);
1505
1506 offset += __le32_to_cpu(pmap->blocks_per_member);
1507 offset += IMSM_RESERVED_SECTORS;
1508 }
1509 map = get_imsm_map(dev, 0);
1510 map->pba_of_lba0 = __cpu_to_le32(offset);
1511 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
1512 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
1513 map->num_data_stripes = __cpu_to_le32(info_to_num_data_stripes(info));
1514 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
1515 IMSM_T_STATE_NORMAL;
1516
1517 if (info->level == 1 && info->raid_disks > 2) {
1518 fprintf(stderr, Name": imsm does not support more than 2 disks"
1519 "in a raid1 volume\n");
1520 return 0;
1521 }
1522 if (info->level == 10)
1523 map->raid_level = 1;
1524 else
1525 map->raid_level = info->level;
1526
1527 map->num_members = info->raid_disks;
1528 for (i = 0; i < map->num_members; i++) {
1529 /* initialized in add_to_super */
1530 set_imsm_ord_tbl_ent(map, i, 0);
1531 }
1532 mpb->num_raid_devs++;
1533 super->dev_tbl[super->current_vol] = dev;
1534
1535 return 1;
1536 }
1537
1538 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
1539 unsigned long long size, char *name,
1540 char *homehost, int *uuid)
1541 {
1542 /* This is primarily called by Create when creating a new array.
1543 * We will then get add_to_super called for each component, and then
1544 * write_init_super called to write it out to each device.
1545 * For IMSM, Create can create on fresh devices or on a pre-existing
1546 * array.
1547 * To create on a pre-existing array a different method will be called.
1548 * This one is just for fresh drives.
1549 */
1550 struct intel_super *super;
1551 struct imsm_super *mpb;
1552 size_t mpb_size;
1553
1554 if (!info) {
1555 st->sb = NULL;
1556 return 0;
1557 }
1558 if (st->sb)
1559 return init_super_imsm_volume(st, info, size, name, homehost,
1560 uuid);
1561
1562 super = alloc_super(1);
1563 if (!super)
1564 return 0;
1565 mpb_size = disks_to_mpb_size(info->nr_disks);
1566 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
1567 free(super);
1568 return 0;
1569 }
1570 mpb = super->buf;
1571 memset(mpb, 0, mpb_size);
1572
1573 memcpy(mpb->sig, MPB_SIGNATURE, strlen(MPB_SIGNATURE));
1574 memcpy(mpb->sig + strlen(MPB_SIGNATURE), MPB_VERSION_RAID5,
1575 strlen(MPB_VERSION_RAID5));
1576 mpb->mpb_size = mpb_size;
1577
1578 st->sb = super;
1579 return 1;
1580 }
1581
1582 #ifndef MDASSEMBLE
1583 static void add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
1584 int fd, char *devname)
1585 {
1586 struct intel_super *super = st->sb;
1587 struct imsm_super *mpb = super->anchor;
1588 struct dl *dl;
1589 struct imsm_dev *dev;
1590 struct imsm_map *map;
1591 __u32 status;
1592
1593 dev = get_imsm_dev(super, super->current_vol);
1594 map = get_imsm_map(dev, 0);
1595
1596 for (dl = super->disks; dl ; dl = dl->next)
1597 if (dl->major == dk->major &&
1598 dl->minor == dk->minor)
1599 break;
1600
1601 if (!dl || ! (dk->state & (1<<MD_DISK_SYNC)))
1602 return;
1603
1604 /* add a pristine spare to the metadata */
1605 if (dl->index < 0) {
1606 dl->index = super->anchor->num_disks;
1607 super->anchor->num_disks++;
1608 }
1609 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
1610 status = CONFIGURED_DISK | USABLE_DISK;
1611 dl->disk.status = __cpu_to_le32(status);
1612
1613 /* if we are creating the first raid device update the family number */
1614 if (super->current_vol == 0) {
1615 __u32 sum;
1616 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
1617 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
1618
1619 *_dev = *dev;
1620 *_disk = dl->disk;
1621 sum = __gen_imsm_checksum(mpb);
1622 mpb->family_num = __cpu_to_le32(sum);
1623 }
1624 }
1625
1626 static void add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
1627 int fd, char *devname)
1628 {
1629 struct intel_super *super = st->sb;
1630 struct dl *dd;
1631 unsigned long long size;
1632 __u32 status, id;
1633 int rv;
1634 struct stat stb;
1635
1636 if (super->current_vol >= 0) {
1637 add_to_super_imsm_volume(st, dk, fd, devname);
1638 return;
1639 }
1640
1641 fstat(fd, &stb);
1642 dd = malloc(sizeof(*dd));
1643 if (!dd) {
1644 fprintf(stderr,
1645 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
1646 abort();
1647 }
1648 memset(dd, 0, sizeof(*dd));
1649 dd->major = major(stb.st_rdev);
1650 dd->minor = minor(stb.st_rdev);
1651 dd->index = -1;
1652 dd->devname = devname ? strdup(devname) : NULL;
1653 dd->fd = fd;
1654 rv = imsm_read_serial(fd, devname, dd->serial);
1655 if (rv) {
1656 fprintf(stderr,
1657 Name ": failed to retrieve scsi serial, aborting\n");
1658 free(dd);
1659 abort();
1660 }
1661
1662 get_dev_size(fd, NULL, &size);
1663 size /= 512;
1664 status = USABLE_DISK | SPARE_DISK;
1665 serialcpy(dd->disk.serial, dd->serial);
1666 dd->disk.total_blocks = __cpu_to_le32(size);
1667 dd->disk.status = __cpu_to_le32(status);
1668 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
1669 dd->disk.scsi_id = __cpu_to_le32(id);
1670 else
1671 dd->disk.scsi_id = __cpu_to_le32(0);
1672
1673 if (st->update_tail) {
1674 dd->next = super->add;
1675 super->add = dd;
1676 } else {
1677 dd->next = super->disks;
1678 super->disks = dd;
1679 }
1680 }
1681
1682 static int store_imsm_mpb(int fd, struct intel_super *super);
1683
1684 /* spare records have their own family number and do not have any defined raid
1685 * devices
1686 */
1687 static int write_super_imsm_spares(struct intel_super *super, int doclose)
1688 {
1689 struct imsm_super mpb_save;
1690 struct imsm_super *mpb = super->anchor;
1691 __u32 sum;
1692 struct dl *d;
1693
1694 mpb_save = *mpb;
1695 mpb->num_raid_devs = 0;
1696 mpb->num_disks = 1;
1697 mpb->mpb_size = sizeof(struct imsm_super);
1698 mpb->generation_num = __cpu_to_le32(1UL);
1699
1700 for (d = super->disks; d; d = d->next) {
1701 if (d->index != -1)
1702 continue;
1703
1704 mpb->disk[0] = d->disk;
1705 sum = __gen_imsm_checksum(mpb);
1706 mpb->family_num = __cpu_to_le32(sum);
1707 sum = __gen_imsm_checksum(mpb);
1708 mpb->check_sum = __cpu_to_le32(sum);
1709
1710 if (store_imsm_mpb(d->fd, super)) {
1711 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1712 __func__, d->major, d->minor, strerror(errno));
1713 *mpb = mpb_save;
1714 return 1;
1715 }
1716 if (doclose) {
1717 close(d->fd);
1718 d->fd = -1;
1719 }
1720 }
1721
1722 *mpb = mpb_save;
1723 return 0;
1724 }
1725
1726 static int write_super_imsm(struct intel_super *super, int doclose)
1727 {
1728 struct imsm_super *mpb = super->anchor;
1729 struct dl *d;
1730 __u32 generation;
1731 __u32 sum;
1732 int spares = 0;
1733 int i;
1734 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
1735
1736 /* 'generation' is incremented everytime the metadata is written */
1737 generation = __le32_to_cpu(mpb->generation_num);
1738 generation++;
1739 mpb->generation_num = __cpu_to_le32(generation);
1740
1741 for (d = super->disks; d; d = d->next) {
1742 if (d->index == -1)
1743 spares++;
1744 else {
1745 mpb->disk[d->index] = d->disk;
1746 mpb_size += sizeof(struct imsm_disk);
1747 }
1748 }
1749
1750 for (i = 0; i < mpb->num_raid_devs; i++) {
1751 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1752
1753 imsm_copy_dev(dev, super->dev_tbl[i]);
1754 mpb_size += sizeof_imsm_dev(dev, 0);
1755 }
1756 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
1757 mpb->mpb_size = __cpu_to_le32(mpb_size);
1758
1759 /* recalculate checksum */
1760 sum = __gen_imsm_checksum(mpb);
1761 mpb->check_sum = __cpu_to_le32(sum);
1762
1763 /* write the mpb for disks that compose raid devices */
1764 for (d = super->disks; d ; d = d->next) {
1765 if (d->index < 0)
1766 continue;
1767 if (store_imsm_mpb(d->fd, super))
1768 fprintf(stderr, "%s: failed for device %d:%d %s\n",
1769 __func__, d->major, d->minor, strerror(errno));
1770 if (doclose) {
1771 close(d->fd);
1772 d->fd = -1;
1773 }
1774 }
1775
1776 if (spares)
1777 return write_super_imsm_spares(super, doclose);
1778
1779 return 0;
1780 }
1781
1782
1783 static int create_array(struct supertype *st)
1784 {
1785 size_t len;
1786 struct imsm_update_create_array *u;
1787 struct intel_super *super = st->sb;
1788 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1789
1790 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0);
1791 u = malloc(len);
1792 if (!u) {
1793 fprintf(stderr, "%s: failed to allocate update buffer\n",
1794 __func__);
1795 return 1;
1796 }
1797
1798 u->type = update_create_array;
1799 u->dev_idx = super->current_vol;
1800 imsm_copy_dev(&u->dev, dev);
1801 append_metadata_update(st, u, len);
1802
1803 return 0;
1804 }
1805
1806 static int _add_disk(struct supertype *st)
1807 {
1808 struct intel_super *super = st->sb;
1809 size_t len;
1810 struct imsm_update_add_disk *u;
1811
1812 if (!super->add)
1813 return 0;
1814
1815 len = sizeof(*u);
1816 u = malloc(len);
1817 if (!u) {
1818 fprintf(stderr, "%s: failed to allocate update buffer\n",
1819 __func__);
1820 return 1;
1821 }
1822
1823 u->type = update_add_disk;
1824 append_metadata_update(st, u, len);
1825
1826 return 0;
1827 }
1828
1829 static int write_init_super_imsm(struct supertype *st)
1830 {
1831 if (st->update_tail) {
1832 /* queue the recently created array / added disk
1833 * as a metadata update */
1834 struct intel_super *super = st->sb;
1835 struct dl *d;
1836 int rv;
1837
1838 /* determine if we are creating a volume or adding a disk */
1839 if (super->current_vol < 0) {
1840 /* in the add disk case we are running in mdmon
1841 * context, so don't close fd's
1842 */
1843 return _add_disk(st);
1844 } else
1845 rv = create_array(st);
1846
1847 for (d = super->disks; d ; d = d->next) {
1848 close(d->fd);
1849 d->fd = -1;
1850 }
1851
1852 return rv;
1853 } else
1854 return write_super_imsm(st->sb, 1);
1855 }
1856 #endif
1857
1858 static int store_zero_imsm(struct supertype *st, int fd)
1859 {
1860 unsigned long long dsize;
1861 void *buf;
1862
1863 get_dev_size(fd, NULL, &dsize);
1864
1865 /* first block is stored on second to last sector of the disk */
1866 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
1867 return 1;
1868
1869 if (posix_memalign(&buf, 512, 512) != 0)
1870 return 1;
1871
1872 memset(buf, 0, 512);
1873 if (write(fd, buf, 512) != 512)
1874 return 1;
1875 return 0;
1876 }
1877
1878 static int imsm_bbm_log_size(struct imsm_super *mpb)
1879 {
1880 return __le32_to_cpu(mpb->bbm_log_size);
1881 }
1882
1883 #ifndef MDASSEMBLE
1884 static int validate_geometry_imsm_container(struct supertype *st, int level,
1885 int layout, int raiddisks, int chunk,
1886 unsigned long long size, char *dev,
1887 unsigned long long *freesize,
1888 int verbose)
1889 {
1890 int fd;
1891 unsigned long long ldsize;
1892
1893 if (level != LEVEL_CONTAINER)
1894 return 0;
1895 if (!dev)
1896 return 1;
1897
1898 fd = open(dev, O_RDONLY|O_EXCL, 0);
1899 if (fd < 0) {
1900 if (verbose)
1901 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
1902 dev, strerror(errno));
1903 return 0;
1904 }
1905 if (!get_dev_size(fd, dev, &ldsize)) {
1906 close(fd);
1907 return 0;
1908 }
1909 close(fd);
1910
1911 *freesize = avail_size_imsm(st, ldsize >> 9);
1912
1913 return 1;
1914 }
1915
1916 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
1917 * FIX ME add ahci details
1918 */
1919 static int validate_geometry_imsm_volume(struct supertype *st, int level,
1920 int layout, int raiddisks, int chunk,
1921 unsigned long long size, char *dev,
1922 unsigned long long *freesize,
1923 int verbose)
1924 {
1925 struct stat stb;
1926 struct intel_super *super = st->sb;
1927 struct dl *dl;
1928 unsigned long long pos = 0;
1929 unsigned long long maxsize;
1930 struct extent *e;
1931 int i;
1932
1933 if (level == LEVEL_CONTAINER)
1934 return 0;
1935
1936 if (level == 1 && raiddisks > 2) {
1937 if (verbose)
1938 fprintf(stderr, Name ": imsm does not support more "
1939 "than 2 in a raid1 configuration\n");
1940 return 0;
1941 }
1942
1943 /* We must have the container info already read in. */
1944 if (!super)
1945 return 0;
1946
1947 if (!dev) {
1948 /* General test: make sure there is space for
1949 * 'raiddisks' device extents of size 'size' at a given
1950 * offset
1951 */
1952 unsigned long long minsize = size*2 /* convert to blocks */;
1953 unsigned long long start_offset = ~0ULL;
1954 int dcnt = 0;
1955 if (minsize == 0)
1956 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1957 for (dl = super->disks; dl ; dl = dl->next) {
1958 int found = 0;
1959
1960 pos = 0;
1961 i = 0;
1962 e = get_extents(super, dl);
1963 if (!e) continue;
1964 do {
1965 unsigned long long esize;
1966 esize = e[i].start - pos;
1967 if (esize >= minsize)
1968 found = 1;
1969 if (found && start_offset == ~0ULL) {
1970 start_offset = pos;
1971 break;
1972 } else if (found && pos != start_offset) {
1973 found = 0;
1974 break;
1975 }
1976 pos = e[i].start + e[i].size;
1977 i++;
1978 } while (e[i-1].size);
1979 if (found)
1980 dcnt++;
1981 free(e);
1982 }
1983 if (dcnt < raiddisks) {
1984 if (verbose)
1985 fprintf(stderr, Name ": imsm: Not enough "
1986 "devices with space for this array "
1987 "(%d < %d)\n",
1988 dcnt, raiddisks);
1989 return 0;
1990 }
1991 return 1;
1992 }
1993 /* This device must be a member of the set */
1994 if (stat(dev, &stb) < 0)
1995 return 0;
1996 if ((S_IFMT & stb.st_mode) != S_IFBLK)
1997 return 0;
1998 for (dl = super->disks ; dl ; dl = dl->next) {
1999 if (dl->major == major(stb.st_rdev) &&
2000 dl->minor == minor(stb.st_rdev))
2001 break;
2002 }
2003 if (!dl) {
2004 if (verbose)
2005 fprintf(stderr, Name ": %s is not in the "
2006 "same imsm set\n", dev);
2007 return 0;
2008 }
2009 e = get_extents(super, dl);
2010 maxsize = 0;
2011 i = 0;
2012 if (e) do {
2013 unsigned long long esize;
2014 esize = e[i].start - pos;
2015 if (esize >= maxsize)
2016 maxsize = esize;
2017 pos = e[i].start + e[i].size;
2018 i++;
2019 } while (e[i-1].size);
2020 *freesize = maxsize;
2021
2022 return 1;
2023 }
2024
2025 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
2026 int raiddisks, int chunk, unsigned long long size,
2027 char *dev, unsigned long long *freesize,
2028 int verbose)
2029 {
2030 int fd, cfd;
2031 struct mdinfo *sra;
2032
2033 /* if given unused devices create a container
2034 * if given given devices in a container create a member volume
2035 */
2036 if (level == LEVEL_CONTAINER) {
2037 /* Must be a fresh device to add to a container */
2038 return validate_geometry_imsm_container(st, level, layout,
2039 raiddisks, chunk, size,
2040 dev, freesize,
2041 verbose);
2042 }
2043
2044 if (st->sb) {
2045 /* creating in a given container */
2046 return validate_geometry_imsm_volume(st, level, layout,
2047 raiddisks, chunk, size,
2048 dev, freesize, verbose);
2049 }
2050
2051 /* limit creation to the following levels */
2052 if (!dev)
2053 switch (level) {
2054 case 0:
2055 case 1:
2056 case 10:
2057 case 5:
2058 break;
2059 default:
2060 return 1;
2061 }
2062
2063 /* This device needs to be a device in an 'imsm' container */
2064 fd = open(dev, O_RDONLY|O_EXCL, 0);
2065 if (fd >= 0) {
2066 if (verbose)
2067 fprintf(stderr,
2068 Name ": Cannot create this array on device %s\n",
2069 dev);
2070 close(fd);
2071 return 0;
2072 }
2073 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
2074 if (verbose)
2075 fprintf(stderr, Name ": Cannot open %s: %s\n",
2076 dev, strerror(errno));
2077 return 0;
2078 }
2079 /* Well, it is in use by someone, maybe an 'imsm' container. */
2080 cfd = open_container(fd);
2081 if (cfd < 0) {
2082 close(fd);
2083 if (verbose)
2084 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
2085 dev);
2086 return 0;
2087 }
2088 sra = sysfs_read(cfd, 0, GET_VERSION);
2089 close(fd);
2090 if (sra && sra->array.major_version == -1 &&
2091 strcmp(sra->text_version, "imsm") == 0) {
2092 /* This is a member of a imsm container. Load the container
2093 * and try to create a volume
2094 */
2095 struct intel_super *super;
2096
2097 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
2098 st->sb = super;
2099 st->container_dev = fd2devnum(cfd);
2100 close(cfd);
2101 return validate_geometry_imsm_volume(st, level, layout,
2102 raiddisks, chunk,
2103 size, dev,
2104 freesize, verbose);
2105 }
2106 close(cfd);
2107 } else /* may belong to another container */
2108 return 0;
2109
2110 return 1;
2111 }
2112 #endif /* MDASSEMBLE */
2113
2114 static struct mdinfo *container_content_imsm(struct supertype *st)
2115 {
2116 /* Given a container loaded by load_super_imsm_all,
2117 * extract information about all the arrays into
2118 * an mdinfo tree.
2119 *
2120 * For each imsm_dev create an mdinfo, fill it in,
2121 * then look for matching devices in super->disks
2122 * and create appropriate device mdinfo.
2123 */
2124 struct intel_super *super = st->sb;
2125 struct imsm_super *mpb = super->anchor;
2126 struct mdinfo *rest = NULL;
2127 int i;
2128
2129 /* do not assemble arrays that might have bad blocks */
2130 if (imsm_bbm_log_size(super->anchor)) {
2131 fprintf(stderr, Name ": BBM log found in metadata. "
2132 "Cannot activate array(s).\n");
2133 return NULL;
2134 }
2135
2136 for (i = 0; i < mpb->num_raid_devs; i++) {
2137 struct imsm_dev *dev = get_imsm_dev(super, i);
2138 struct imsm_map *map = get_imsm_map(dev, 0);
2139 struct mdinfo *this;
2140 int slot;
2141
2142 this = malloc(sizeof(*this));
2143 memset(this, 0, sizeof(*this));
2144 this->next = rest;
2145
2146 super->current_vol = i;
2147 getinfo_super_imsm_volume(st, this);
2148 for (slot = 0 ; slot < map->num_members; slot++) {
2149 struct mdinfo *info_d;
2150 struct dl *d;
2151 int idx;
2152 int skip;
2153 __u32 s;
2154 __u32 ord;
2155
2156 skip = 0;
2157 idx = get_imsm_disk_idx(dev, slot);
2158 ord = get_imsm_ord_tbl_ent(dev, slot);
2159 for (d = super->disks; d ; d = d->next)
2160 if (d->index == idx)
2161 break;
2162
2163 if (d == NULL)
2164 skip = 1;
2165
2166 s = d ? __le32_to_cpu(d->disk.status) : 0;
2167 if (s & FAILED_DISK)
2168 skip = 1;
2169 if (!(s & USABLE_DISK))
2170 skip = 1;
2171 if (ord & IMSM_ORD_REBUILD)
2172 skip = 1;
2173
2174 /*
2175 * if we skip some disks the array will be assmebled degraded;
2176 * reset resync start to avoid a dirty-degraded situation
2177 *
2178 * FIXME handle dirty degraded
2179 */
2180 if (skip && !dev->vol.dirty)
2181 this->resync_start = ~0ULL;
2182 if (skip)
2183 continue;
2184
2185 info_d = malloc(sizeof(*info_d));
2186 if (!info_d) {
2187 fprintf(stderr, Name ": failed to allocate disk"
2188 " for volume %s\n", (char *) dev->volume);
2189 free(this);
2190 this = rest;
2191 break;
2192 }
2193 memset(info_d, 0, sizeof(*info_d));
2194 info_d->next = this->devs;
2195 this->devs = info_d;
2196
2197 info_d->disk.number = d->index;
2198 info_d->disk.major = d->major;
2199 info_d->disk.minor = d->minor;
2200 info_d->disk.raid_disk = slot;
2201
2202 this->array.working_disks++;
2203
2204 info_d->events = __le32_to_cpu(mpb->generation_num);
2205 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
2206 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
2207 if (d->devname)
2208 strcpy(info_d->name, d->devname);
2209 }
2210 rest = this;
2211 }
2212
2213 return rest;
2214 }
2215
2216
2217 #ifndef MDASSEMBLE
2218 static int imsm_open_new(struct supertype *c, struct active_array *a,
2219 char *inst)
2220 {
2221 struct intel_super *super = c->sb;
2222 struct imsm_super *mpb = super->anchor;
2223
2224 if (atoi(inst) >= mpb->num_raid_devs) {
2225 fprintf(stderr, "%s: subarry index %d, out of range\n",
2226 __func__, atoi(inst));
2227 return -ENODEV;
2228 }
2229
2230 dprintf("imsm: open_new %s\n", inst);
2231 a->info.container_member = atoi(inst);
2232 return 0;
2233 }
2234
2235 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
2236 {
2237 struct imsm_map *map = get_imsm_map(dev, 0);
2238
2239 if (!failed)
2240 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
2241 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
2242
2243 switch (get_imsm_raid_level(map)) {
2244 case 0:
2245 return IMSM_T_STATE_FAILED;
2246 break;
2247 case 1:
2248 if (failed < map->num_members)
2249 return IMSM_T_STATE_DEGRADED;
2250 else
2251 return IMSM_T_STATE_FAILED;
2252 break;
2253 case 10:
2254 {
2255 /**
2256 * check to see if any mirrors have failed,
2257 * otherwise we are degraded
2258 */
2259 int device_per_mirror = 2; /* FIXME is this always the case?
2260 * and are they always adjacent?
2261 */
2262 int r10fail = 0;
2263 int i;
2264
2265 for (i = 0; i < map->num_members; i++) {
2266 int idx = get_imsm_disk_idx(dev, i);
2267 struct imsm_disk *disk = get_imsm_disk(super, idx);
2268
2269 if (!disk)
2270 r10fail++;
2271 else if (__le32_to_cpu(disk->status) & FAILED_DISK)
2272 r10fail++;
2273
2274 if (r10fail >= device_per_mirror)
2275 return IMSM_T_STATE_FAILED;
2276
2277 /* reset 'r10fail' for next mirror set */
2278 if (!((i + 1) % device_per_mirror))
2279 r10fail = 0;
2280 }
2281
2282 return IMSM_T_STATE_DEGRADED;
2283 }
2284 case 5:
2285 if (failed < 2)
2286 return IMSM_T_STATE_DEGRADED;
2287 else
2288 return IMSM_T_STATE_FAILED;
2289 break;
2290 default:
2291 break;
2292 }
2293
2294 return map->map_state;
2295 }
2296
2297 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
2298 {
2299 int i;
2300 int failed = 0;
2301 struct imsm_disk *disk;
2302 struct imsm_map *map = get_imsm_map(dev, 0);
2303
2304 for (i = 0; i < map->num_members; i++) {
2305 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
2306 int idx = ord_to_idx(ord);
2307
2308 disk = get_imsm_disk(super, idx);
2309 if (!disk ||
2310 __le32_to_cpu(disk->status) & FAILED_DISK ||
2311 ord & IMSM_ORD_REBUILD)
2312 failed++;
2313 }
2314
2315 return failed;
2316 }
2317
2318 static int is_resyncing(struct imsm_dev *dev)
2319 {
2320 struct imsm_map *migr_map;
2321
2322 if (!dev->vol.migr_state)
2323 return 0;
2324
2325 if (dev->vol.migr_type == 0)
2326 return 1;
2327
2328 migr_map = get_imsm_map(dev, 1);
2329
2330 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
2331 return 1;
2332 else
2333 return 0;
2334 }
2335
2336 static int is_rebuilding(struct imsm_dev *dev)
2337 {
2338 struct imsm_map *migr_map;
2339
2340 if (!dev->vol.migr_state)
2341 return 0;
2342
2343 if (dev->vol.migr_type == 0)
2344 return 0;
2345
2346 migr_map = get_imsm_map(dev, 1);
2347
2348 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
2349 return 1;
2350 else
2351 return 0;
2352 }
2353
2354 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
2355 * states are handled in imsm_set_disk() with one exception, when a
2356 * resync is stopped due to a new failure this routine will set the
2357 * 'degraded' state for the array.
2358 */
2359 static int imsm_set_array_state(struct active_array *a, int consistent)
2360 {
2361 int inst = a->info.container_member;
2362 struct intel_super *super = a->container->sb;
2363 struct imsm_dev *dev = get_imsm_dev(super, inst);
2364 struct imsm_map *map = get_imsm_map(dev, 0);
2365 int failed = imsm_count_failed(super, dev);
2366 __u8 map_state = imsm_check_degraded(super, dev, failed);
2367
2368 if (consistent == 2 &&
2369 (a->resync_start != ~0ULL ||
2370 map_state != IMSM_T_STATE_NORMAL ||
2371 dev->vol.migr_state))
2372 consistent = 0;
2373
2374 if (a->resync_start == ~0ULL) {
2375 /* complete intialization / resync,
2376 * recovery is completed in ->set_disk
2377 */
2378 if (is_resyncing(dev)) {
2379 dprintf("imsm: mark resync done\n");
2380 dev->vol.migr_state = 0;
2381 map->map_state = map_state;
2382 super->updates_pending++;
2383 }
2384 } else if (!is_resyncing(dev) && !failed) {
2385 /* mark the start of the init process if nothing is failed */
2386 dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
2387 map->map_state = map_state;
2388 migrate(dev, IMSM_T_STATE_NORMAL,
2389 map->map_state == IMSM_T_STATE_NORMAL);
2390 super->updates_pending++;
2391 }
2392
2393 /* mark dirty / clean */
2394 if (dev->vol.dirty != !consistent) {
2395 dprintf("imsm: mark '%s' (%llu)\n",
2396 consistent ? "clean" : "dirty", a->resync_start);
2397 if (consistent)
2398 dev->vol.dirty = 0;
2399 else
2400 dev->vol.dirty = 1;
2401 super->updates_pending++;
2402 }
2403 return consistent;
2404 }
2405
2406 static void imsm_set_disk(struct active_array *a, int n, int state)
2407 {
2408 int inst = a->info.container_member;
2409 struct intel_super *super = a->container->sb;
2410 struct imsm_dev *dev = get_imsm_dev(super, inst);
2411 struct imsm_map *map = get_imsm_map(dev, 0);
2412 struct imsm_disk *disk;
2413 int failed;
2414 __u32 status;
2415 __u32 ord;
2416 __u8 map_state;
2417
2418 if (n > map->num_members)
2419 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
2420 n, map->num_members - 1);
2421
2422 if (n < 0)
2423 return;
2424
2425 dprintf("imsm: set_disk %d:%x\n", n, state);
2426
2427 ord = get_imsm_ord_tbl_ent(dev, n);
2428 disk = get_imsm_disk(super, ord_to_idx(ord));
2429
2430 /* check for new failures */
2431 status = __le32_to_cpu(disk->status);
2432 if ((state & DS_FAULTY) && !(status & FAILED_DISK)) {
2433 status |= FAILED_DISK;
2434 disk->status = __cpu_to_le32(status);
2435 disk->scsi_id = __cpu_to_le32(~(__u32)0);
2436 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
2437 super->updates_pending++;
2438 }
2439 /* check if in_sync */
2440 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD) {
2441 struct imsm_map *migr_map = get_imsm_map(dev, 1);
2442
2443 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
2444 super->updates_pending++;
2445 }
2446
2447 failed = imsm_count_failed(super, dev);
2448 map_state = imsm_check_degraded(super, dev, failed);
2449
2450 /* check if recovery complete, newly degraded, or failed */
2451 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
2452 map->map_state = map_state;
2453 dev->vol.migr_state = 0;
2454 super->updates_pending++;
2455 } else if (map_state == IMSM_T_STATE_DEGRADED &&
2456 map->map_state != map_state &&
2457 !dev->vol.migr_state) {
2458 dprintf("imsm: mark degraded\n");
2459 map->map_state = map_state;
2460 super->updates_pending++;
2461 } else if (map_state == IMSM_T_STATE_FAILED &&
2462 map->map_state != map_state) {
2463 dprintf("imsm: mark failed\n");
2464 dev->vol.migr_state = 0;
2465 map->map_state = map_state;
2466 super->updates_pending++;
2467 }
2468 }
2469
2470 static int store_imsm_mpb(int fd, struct intel_super *super)
2471 {
2472 struct imsm_super *mpb = super->anchor;
2473 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
2474 unsigned long long dsize;
2475 unsigned long long sectors;
2476
2477 get_dev_size(fd, NULL, &dsize);
2478
2479 if (mpb_size > 512) {
2480 /* -1 to account for anchor */
2481 sectors = mpb_sectors(mpb) - 1;
2482
2483 /* write the extended mpb to the sectors preceeding the anchor */
2484 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
2485 return 1;
2486
2487 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
2488 return 1;
2489 }
2490
2491 /* first block is stored on second to last sector of the disk */
2492 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
2493 return 1;
2494
2495 if (write(fd, super->buf, 512) != 512)
2496 return 1;
2497
2498 return 0;
2499 }
2500
2501 static void imsm_sync_metadata(struct supertype *container)
2502 {
2503 struct intel_super *super = container->sb;
2504
2505 if (!super->updates_pending)
2506 return;
2507
2508 write_super_imsm(super, 0);
2509
2510 super->updates_pending = 0;
2511 }
2512
2513 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
2514 {
2515 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2516 int i = get_imsm_disk_idx(dev, idx);
2517 struct dl *dl;
2518
2519 for (dl = super->disks; dl; dl = dl->next)
2520 if (dl->index == i)
2521 break;
2522
2523 if (dl && __le32_to_cpu(dl->disk.status) & FAILED_DISK)
2524 dl = NULL;
2525
2526 if (dl)
2527 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
2528
2529 return dl;
2530 }
2531
2532 static struct dl *imsm_add_spare(struct intel_super *super, int slot, struct active_array *a)
2533 {
2534 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
2535 int idx = get_imsm_disk_idx(dev, slot);
2536 struct imsm_map *map = get_imsm_map(dev, 0);
2537 unsigned long long esize;
2538 unsigned long long pos;
2539 struct mdinfo *d;
2540 struct extent *ex;
2541 int j;
2542 int found;
2543 __u32 array_start;
2544 __u32 status;
2545 struct dl *dl;
2546
2547 for (dl = super->disks; dl; dl = dl->next) {
2548 /* If in this array, skip */
2549 for (d = a->info.devs ; d ; d = d->next)
2550 if (d->state_fd >= 0 &&
2551 d->disk.major == dl->major &&
2552 d->disk.minor == dl->minor) {
2553 dprintf("%x:%x already in array\n", dl->major, dl->minor);
2554 break;
2555 }
2556 if (d)
2557 continue;
2558
2559 /* skip in use or failed drives */
2560 status = __le32_to_cpu(dl->disk.status);
2561 if (status & FAILED_DISK || idx == dl->index) {
2562 dprintf("%x:%x status ( %s%s)\n",
2563 dl->major, dl->minor,
2564 status & FAILED_DISK ? "failed " : "",
2565 idx == dl->index ? "in use " : "");
2566 continue;
2567 }
2568
2569 /* Does this unused device have the requisite free space?
2570 * We need a->info.component_size sectors
2571 */
2572 ex = get_extents(super, dl);
2573 if (!ex) {
2574 dprintf("cannot get extents\n");
2575 continue;
2576 }
2577 found = 0;
2578 j = 0;
2579 pos = 0;
2580 array_start = __le32_to_cpu(map->pba_of_lba0);
2581
2582 do {
2583 /* check that we can start at pba_of_lba0 with
2584 * a->info.component_size of space
2585 */
2586 esize = ex[j].start - pos;
2587 if (array_start >= pos &&
2588 array_start + a->info.component_size < ex[j].start) {
2589 found = 1;
2590 break;
2591 }
2592 pos = ex[j].start + ex[j].size;
2593 j++;
2594
2595 } while (ex[j-1].size);
2596
2597 free(ex);
2598 if (!found) {
2599 dprintf("%x:%x does not have %llu at %d\n",
2600 dl->major, dl->minor,
2601 a->info.component_size,
2602 __le32_to_cpu(map->pba_of_lba0));
2603 /* No room */
2604 continue;
2605 } else
2606 break;
2607 }
2608
2609 return dl;
2610 }
2611
2612 static struct mdinfo *imsm_activate_spare(struct active_array *a,
2613 struct metadata_update **updates)
2614 {
2615 /**
2616 * Find a device with unused free space and use it to replace a
2617 * failed/vacant region in an array. We replace failed regions one a
2618 * array at a time. The result is that a new spare disk will be added
2619 * to the first failed array and after the monitor has finished
2620 * propagating failures the remainder will be consumed.
2621 *
2622 * FIXME add a capability for mdmon to request spares from another
2623 * container.
2624 */
2625
2626 struct intel_super *super = a->container->sb;
2627 int inst = a->info.container_member;
2628 struct imsm_dev *dev = get_imsm_dev(super, inst);
2629 struct imsm_map *map = get_imsm_map(dev, 0);
2630 int failed = a->info.array.raid_disks;
2631 struct mdinfo *rv = NULL;
2632 struct mdinfo *d;
2633 struct mdinfo *di;
2634 struct metadata_update *mu;
2635 struct dl *dl;
2636 struct imsm_update_activate_spare *u;
2637 int num_spares = 0;
2638 int i;
2639
2640 for (d = a->info.devs ; d ; d = d->next) {
2641 if ((d->curr_state & DS_FAULTY) &&
2642 d->state_fd >= 0)
2643 /* wait for Removal to happen */
2644 return NULL;
2645 if (d->state_fd >= 0)
2646 failed--;
2647 }
2648
2649 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
2650 inst, failed, a->info.array.raid_disks, a->info.array.level);
2651 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
2652 return NULL;
2653
2654 /* For each slot, if it is not working, find a spare */
2655 for (i = 0; i < a->info.array.raid_disks; i++) {
2656 for (d = a->info.devs ; d ; d = d->next)
2657 if (d->disk.raid_disk == i)
2658 break;
2659 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
2660 if (d && (d->state_fd >= 0))
2661 continue;
2662
2663 /*
2664 * OK, this device needs recovery. Try to re-add the previous
2665 * occupant of this slot, if this fails add a new spare
2666 */
2667 dl = imsm_readd(super, i, a);
2668 if (!dl)
2669 dl = imsm_add_spare(super, i, a);
2670 if (!dl)
2671 continue;
2672
2673 /* found a usable disk with enough space */
2674 di = malloc(sizeof(*di));
2675 memset(di, 0, sizeof(*di));
2676
2677 /* dl->index will be -1 in the case we are activating a
2678 * pristine spare. imsm_process_update() will create a
2679 * new index in this case. Once a disk is found to be
2680 * failed in all member arrays it is kicked from the
2681 * metadata
2682 */
2683 di->disk.number = dl->index;
2684
2685 /* (ab)use di->devs to store a pointer to the device
2686 * we chose
2687 */
2688 di->devs = (struct mdinfo *) dl;
2689
2690 di->disk.raid_disk = i;
2691 di->disk.major = dl->major;
2692 di->disk.minor = dl->minor;
2693 di->disk.state = 0;
2694 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
2695 di->component_size = a->info.component_size;
2696 di->container_member = inst;
2697 di->next = rv;
2698 rv = di;
2699 num_spares++;
2700 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
2701 i, di->data_offset);
2702
2703 break;
2704 }
2705
2706 if (!rv)
2707 /* No spares found */
2708 return rv;
2709 /* Now 'rv' has a list of devices to return.
2710 * Create a metadata_update record to update the
2711 * disk_ord_tbl for the array
2712 */
2713 mu = malloc(sizeof(*mu));
2714 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
2715 mu->space = NULL;
2716 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
2717 mu->next = *updates;
2718 u = (struct imsm_update_activate_spare *) mu->buf;
2719
2720 for (di = rv ; di ; di = di->next) {
2721 u->type = update_activate_spare;
2722 u->dl = (struct dl *) di->devs;
2723 di->devs = NULL;
2724 u->slot = di->disk.raid_disk;
2725 u->array = inst;
2726 u->next = u + 1;
2727 u++;
2728 }
2729 (u-1)->next = NULL;
2730 *updates = mu;
2731
2732 return rv;
2733 }
2734
2735 static int disks_overlap(struct imsm_dev *d1, struct imsm_dev *d2)
2736 {
2737 struct imsm_map *m1 = get_imsm_map(d1, 0);
2738 struct imsm_map *m2 = get_imsm_map(d2, 0);
2739 int i;
2740 int j;
2741 int idx;
2742
2743 for (i = 0; i < m1->num_members; i++) {
2744 idx = get_imsm_disk_idx(d1, i);
2745 for (j = 0; j < m2->num_members; j++)
2746 if (idx == get_imsm_disk_idx(d2, j))
2747 return 1;
2748 }
2749
2750 return 0;
2751 }
2752
2753 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
2754
2755 static void imsm_process_update(struct supertype *st,
2756 struct metadata_update *update)
2757 {
2758 /**
2759 * crack open the metadata_update envelope to find the update record
2760 * update can be one of:
2761 * update_activate_spare - a spare device has replaced a failed
2762 * device in an array, update the disk_ord_tbl. If this disk is
2763 * present in all member arrays then also clear the SPARE_DISK
2764 * flag
2765 */
2766 struct intel_super *super = st->sb;
2767 struct imsm_super *mpb;
2768 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2769
2770 /* update requires a larger buf but the allocation failed */
2771 if (super->next_len && !super->next_buf) {
2772 super->next_len = 0;
2773 return;
2774 }
2775
2776 if (super->next_buf) {
2777 memcpy(super->next_buf, super->buf, super->len);
2778 free(super->buf);
2779 super->len = super->next_len;
2780 super->buf = super->next_buf;
2781
2782 super->next_len = 0;
2783 super->next_buf = NULL;
2784 }
2785
2786 mpb = super->anchor;
2787
2788 switch (type) {
2789 case update_activate_spare: {
2790 struct imsm_update_activate_spare *u = (void *) update->buf;
2791 struct imsm_dev *dev = get_imsm_dev(super, u->array);
2792 struct imsm_map *map = get_imsm_map(dev, 0);
2793 struct imsm_map *migr_map;
2794 struct active_array *a;
2795 struct imsm_disk *disk;
2796 __u32 status;
2797 __u8 to_state;
2798 struct dl *dl;
2799 unsigned int found;
2800 int failed;
2801 int victim = get_imsm_disk_idx(dev, u->slot);
2802 int i;
2803
2804 for (dl = super->disks; dl; dl = dl->next)
2805 if (dl == u->dl)
2806 break;
2807
2808 if (!dl) {
2809 fprintf(stderr, "error: imsm_activate_spare passed "
2810 "an unknown disk (index: %d)\n",
2811 u->dl->index);
2812 return;
2813 }
2814
2815 super->updates_pending++;
2816
2817 /* count failures (excluding rebuilds and the victim)
2818 * to determine map[0] state
2819 */
2820 failed = 0;
2821 for (i = 0; i < map->num_members; i++) {
2822 if (i == u->slot)
2823 continue;
2824 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
2825 if (!disk ||
2826 __le32_to_cpu(disk->status) & FAILED_DISK)
2827 failed++;
2828 }
2829
2830 /* adding a pristine spare, assign a new index */
2831 if (dl->index < 0) {
2832 dl->index = super->anchor->num_disks;
2833 super->anchor->num_disks++;
2834 }
2835 disk = &dl->disk;
2836 status = __le32_to_cpu(disk->status);
2837 status |= CONFIGURED_DISK;
2838 status &= ~SPARE_DISK;
2839 disk->status = __cpu_to_le32(status);
2840
2841 /* mark rebuild */
2842 to_state = imsm_check_degraded(super, dev, failed);
2843 map->map_state = IMSM_T_STATE_DEGRADED;
2844 migrate(dev, to_state, 1);
2845 migr_map = get_imsm_map(dev, 1);
2846 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
2847 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
2848
2849 /* count arrays using the victim in the metadata */
2850 found = 0;
2851 for (a = st->arrays; a ; a = a->next) {
2852 dev = get_imsm_dev(super, a->info.container_member);
2853 for (i = 0; i < map->num_members; i++)
2854 if (victim == get_imsm_disk_idx(dev, i))
2855 found++;
2856 }
2857
2858 /* delete the victim if it is no longer being
2859 * utilized anywhere
2860 */
2861 if (!found) {
2862 struct dl **dlp;
2863
2864 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
2865 if ((*dlp)->index == victim)
2866 break;
2867 /* We know that 'manager' isn't touching anything,
2868 * so it is safe to:
2869 */
2870 imsm_delete(super, dlp, victim);
2871 }
2872 break;
2873 }
2874 case update_create_array: {
2875 /* someone wants to create a new array, we need to be aware of
2876 * a few races/collisions:
2877 * 1/ 'Create' called by two separate instances of mdadm
2878 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
2879 * devices that have since been assimilated via
2880 * activate_spare.
2881 * In the event this update can not be carried out mdadm will
2882 * (FIX ME) notice that its update did not take hold.
2883 */
2884 struct imsm_update_create_array *u = (void *) update->buf;
2885 struct imsm_dev *dev;
2886 struct imsm_map *map, *new_map;
2887 unsigned long long start, end;
2888 unsigned long long new_start, new_end;
2889 int i;
2890 int overlap = 0;
2891
2892 /* handle racing creates: first come first serve */
2893 if (u->dev_idx < mpb->num_raid_devs) {
2894 dprintf("%s: subarray %d already defined\n",
2895 __func__, u->dev_idx);
2896 return;
2897 }
2898
2899 /* check update is next in sequence */
2900 if (u->dev_idx != mpb->num_raid_devs) {
2901 dprintf("%s: can not create array %d expected index %d\n",
2902 __func__, u->dev_idx, mpb->num_raid_devs);
2903 return;
2904 }
2905
2906 new_map = get_imsm_map(&u->dev, 0);
2907 new_start = __le32_to_cpu(new_map->pba_of_lba0);
2908 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
2909
2910 /* handle activate_spare versus create race:
2911 * check to make sure that overlapping arrays do not include
2912 * overalpping disks
2913 */
2914 for (i = 0; i < mpb->num_raid_devs; i++) {
2915 dev = get_imsm_dev(super, i);
2916 map = get_imsm_map(dev, 0);
2917 start = __le32_to_cpu(map->pba_of_lba0);
2918 end = start + __le32_to_cpu(map->blocks_per_member);
2919 if ((new_start >= start && new_start <= end) ||
2920 (start >= new_start && start <= new_end))
2921 overlap = 1;
2922 if (overlap && disks_overlap(dev, &u->dev)) {
2923 dprintf("%s: arrays overlap\n", __func__);
2924 return;
2925 }
2926 }
2927 /* check num_members sanity */
2928 if (new_map->num_members > mpb->num_disks) {
2929 dprintf("%s: num_disks out of range\n", __func__);
2930 return;
2931 }
2932
2933 /* check that prepare update was successful */
2934 if (!update->space) {
2935 dprintf("%s: prepare update failed\n", __func__);
2936 return;
2937 }
2938
2939 super->updates_pending++;
2940 dev = update->space;
2941 map = get_imsm_map(dev, 0);
2942 update->space = NULL;
2943 imsm_copy_dev(dev, &u->dev);
2944 map = get_imsm_map(dev, 0);
2945 super->dev_tbl[u->dev_idx] = dev;
2946 mpb->num_raid_devs++;
2947
2948 /* fix up flags */
2949 for (i = 0; i < map->num_members; i++) {
2950 struct imsm_disk *disk;
2951 __u32 status;
2952
2953 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
2954 status = __le32_to_cpu(disk->status);
2955 status |= CONFIGURED_DISK;
2956 status &= ~SPARE_DISK;
2957 disk->status = __cpu_to_le32(status);
2958 }
2959 break;
2960 }
2961 case update_add_disk:
2962
2963 /* we may be able to repair some arrays if disks are
2964 * being added */
2965 if (super->add) {
2966 struct active_array *a;
2967 for (a = st->arrays; a; a = a->next)
2968 a->check_degraded = 1;
2969 }
2970 /* add some spares to the metadata */
2971 while (super->add) {
2972 struct dl *al;
2973
2974 al = super->add;
2975 super->add = al->next;
2976 al->next = super->disks;
2977 super->disks = al;
2978 dprintf("%s: added %x:%x\n",
2979 __func__, al->major, al->minor);
2980 }
2981
2982 break;
2983 }
2984 }
2985
2986 static void imsm_prepare_update(struct supertype *st,
2987 struct metadata_update *update)
2988 {
2989 /**
2990 * Allocate space to hold new disk entries, raid-device entries or a new
2991 * mpb if necessary. The manager synchronously waits for updates to
2992 * complete in the monitor, so new mpb buffers allocated here can be
2993 * integrated by the monitor thread without worrying about live pointers
2994 * in the manager thread.
2995 */
2996 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
2997 struct intel_super *super = st->sb;
2998 struct imsm_super *mpb = super->anchor;
2999 size_t buf_len;
3000 size_t len = 0;
3001
3002 switch (type) {
3003 case update_create_array: {
3004 struct imsm_update_create_array *u = (void *) update->buf;
3005
3006 len = sizeof_imsm_dev(&u->dev, 1);
3007 update->space = malloc(len);
3008 break;
3009 default:
3010 break;
3011 }
3012 }
3013
3014 /* check if we need a larger metadata buffer */
3015 if (super->next_buf)
3016 buf_len = super->next_len;
3017 else
3018 buf_len = super->len;
3019
3020 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
3021 /* ok we need a larger buf than what is currently allocated
3022 * if this allocation fails process_update will notice that
3023 * ->next_len is set and ->next_buf is NULL
3024 */
3025 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
3026 if (super->next_buf)
3027 free(super->next_buf);
3028
3029 super->next_len = buf_len;
3030 if (posix_memalign(&super->next_buf, buf_len, 512) != 0)
3031 super->next_buf = NULL;
3032 }
3033 }
3034
3035 /* must be called while manager is quiesced */
3036 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
3037 {
3038 struct imsm_super *mpb = super->anchor;
3039 struct dl *iter;
3040 struct imsm_dev *dev;
3041 struct imsm_map *map;
3042 int i, j, num_members;
3043 __u32 ord;
3044
3045 dprintf("%s: deleting device[%d] from imsm_super\n",
3046 __func__, index);
3047
3048 /* shift all indexes down one */
3049 for (iter = super->disks; iter; iter = iter->next)
3050 if (iter->index > index)
3051 iter->index--;
3052
3053 for (i = 0; i < mpb->num_raid_devs; i++) {
3054 dev = get_imsm_dev(super, i);
3055 map = get_imsm_map(dev, 0);
3056 num_members = map->num_members;
3057 for (j = 0; j < num_members; j++) {
3058 /* update ord entries being careful not to propagate
3059 * ord-flags to the first map
3060 */
3061 ord = get_imsm_ord_tbl_ent(dev, j);
3062
3063 if (ord_to_idx(ord) <= index)
3064 continue;
3065
3066 map = get_imsm_map(dev, 0);
3067 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
3068 map = get_imsm_map(dev, 1);
3069 if (map)
3070 set_imsm_ord_tbl_ent(map, j, ord - 1);
3071 }
3072 }
3073
3074 mpb->num_disks--;
3075 super->updates_pending++;
3076 if (*dlp) {
3077 struct dl *dl = *dlp;
3078
3079 *dlp = (*dlp)->next;
3080 __free_imsm_disk(dl);
3081 }
3082 }
3083 #endif /* MDASSEMBLE */
3084
3085 struct superswitch super_imsm = {
3086 #ifndef MDASSEMBLE
3087 .examine_super = examine_super_imsm,
3088 .brief_examine_super = brief_examine_super_imsm,
3089 .detail_super = detail_super_imsm,
3090 .brief_detail_super = brief_detail_super_imsm,
3091 .write_init_super = write_init_super_imsm,
3092 .validate_geometry = validate_geometry_imsm,
3093 .add_to_super = add_to_super_imsm,
3094 #endif
3095 .match_home = match_home_imsm,
3096 .uuid_from_super= uuid_from_super_imsm,
3097 .getinfo_super = getinfo_super_imsm,
3098 .update_super = update_super_imsm,
3099
3100 .avail_size = avail_size_imsm,
3101
3102 .compare_super = compare_super_imsm,
3103
3104 .load_super = load_super_imsm,
3105 .init_super = init_super_imsm,
3106 .store_super = store_zero_imsm,
3107 .free_super = free_super_imsm,
3108 .match_metadata_desc = match_metadata_desc_imsm,
3109 .container_content = container_content_imsm,
3110
3111 .external = 1,
3112
3113 #ifndef MDASSEMBLE
3114 /* for mdmon */
3115 .open_new = imsm_open_new,
3116 .load_super = load_super_imsm,
3117 .set_array_state= imsm_set_array_state,
3118 .set_disk = imsm_set_disk,
3119 .sync_metadata = imsm_sync_metadata,
3120 .activate_spare = imsm_activate_spare,
3121 .process_update = imsm_process_update,
3122 .prepare_update = imsm_prepare_update,
3123 #endif /* MDASSEMBLE */
3124 };