]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
Teach sysfs_add_disk() callers to use ->recovery_start versus 'insync' parameter
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54 #define MPB_SECTOR_CNT 418
55 #define IMSM_RESERVED_SECTORS 4096
56 #define SECT_PER_MB_SHIFT 11
57
58 /* Disk configuration info. */
59 #define IMSM_MAX_DEVICES 255
60 struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67 __u32 status; /* 0xF0 - 0xF3 */
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69 #define IMSM_DISK_FILLERS 4
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71 };
72
73 /* RAID map configuration infos. */
74 struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80 #define IMSM_T_STATE_NORMAL 0
81 #define IMSM_T_STATE_UNINITIALIZED 1
82 #define IMSM_T_STATE_DEGRADED 2
83 #define IMSM_T_STATE_FAILED 3
84 __u8 raid_level;
85 #define IMSM_T_RAID0 0
86 #define IMSM_T_RAID1 1
87 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
91 __u8 ddf;
92 __u32 filler[7]; /* expansion area */
93 #define IMSM_ORD_REBUILD (1 << 24)
94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
95 * top byte contains some flags
96 */
97 } __attribute__ ((packed));
98
99 struct imsm_vol {
100 __u32 curr_migr_unit;
101 __u32 checkpoint_id; /* id to access curr_migr_unit */
102 __u8 migr_state; /* Normal or Migrating */
103 #define MIGR_INIT 0
104 #define MIGR_REBUILD 1
105 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106 #define MIGR_GEN_MIGR 3
107 #define MIGR_STATE_CHANGE 4
108 #define MIGR_REPAIR 5
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117 } __attribute__ ((packed));
118
119 struct imsm_dev {
120 __u8 volume[MAX_RAID_SERIAL_LEN];
121 __u32 size_low;
122 __u32 size_high;
123 #define DEV_BOOTABLE __cpu_to_le32(0x01)
124 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
126 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145 #define IMSM_DEV_FILLERS 10
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148 } __attribute__ ((packed));
149
150 struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166 #define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
170 /* here comes BBM logs */
171 } __attribute__ ((packed));
172
173 #define BBM_LOG_MAX_ENTRIES 254
174
175 struct bbm_log_entry {
176 __u64 defective_block_start;
177 #define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181 } __attribute__ ((__packed__));
182
183 struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190 } __attribute__ ((__packed__));
191
192
193 #ifndef MDASSEMBLE
194 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195 #endif
196
197 static __u8 migr_type(struct imsm_dev *dev)
198 {
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204 }
205
206 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207 {
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218 }
219
220 static unsigned int sector_count(__u32 bytes)
221 {
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223 }
224
225 static unsigned int mpb_sectors(struct imsm_super *mpb)
226 {
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
228 }
229
230 struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 int index;
234 };
235
236 /* internal representation of IMSM metadata */
237 struct intel_super {
238 union {
239 void *buf; /* O_DIRECT buffer for reading/writing metadata */
240 struct imsm_super *anchor; /* immovable parameters */
241 };
242 size_t len; /* size of the 'buf' allocation */
243 void *next_buf; /* for realloc'ing buf from the manager */
244 size_t next_len;
245 int updates_pending; /* count of pending updates for mdmon */
246 int creating_imsm; /* flag to indicate container creation */
247 int current_vol; /* index of raid device undergoing creation */
248 __u32 create_offset; /* common start for 'current_vol' */
249 __u32 random; /* random data for seeding new family numbers */
250 struct intel_dev *devlist;
251 struct dl {
252 struct dl *next;
253 int index;
254 __u8 serial[MAX_RAID_SERIAL_LEN];
255 int major, minor;
256 char *devname;
257 struct imsm_disk disk;
258 int fd;
259 int extent_cnt;
260 struct extent *e; /* for determining freespace @ create */
261 int raiddisk; /* slot to fill in autolayout */
262 } *disks;
263 struct dl *add; /* list of disks to add while mdmon active */
264 struct dl *missing; /* disks removed while we weren't looking */
265 struct bbm_log *bbm_log;
266 const char *hba; /* device path of the raid controller for this metadata */
267 const struct imsm_orom *orom; /* platform firmware support */
268 struct intel_super *next; /* (temp) list for disambiguating family_num */
269 };
270
271 struct intel_disk {
272 struct imsm_disk disk;
273 #define IMSM_UNKNOWN_OWNER (-1)
274 int owner;
275 struct intel_disk *next;
276 };
277
278 struct extent {
279 unsigned long long start, size;
280 };
281
282 /* definition of messages passed to imsm_process_update */
283 enum imsm_update_type {
284 update_activate_spare,
285 update_create_array,
286 update_add_disk,
287 };
288
289 struct imsm_update_activate_spare {
290 enum imsm_update_type type;
291 struct dl *dl;
292 int slot;
293 int array;
294 struct imsm_update_activate_spare *next;
295 };
296
297 struct disk_info {
298 __u8 serial[MAX_RAID_SERIAL_LEN];
299 };
300
301 struct imsm_update_create_array {
302 enum imsm_update_type type;
303 int dev_idx;
304 struct imsm_dev dev;
305 };
306
307 struct imsm_update_add_disk {
308 enum imsm_update_type type;
309 };
310
311 static struct supertype *match_metadata_desc_imsm(char *arg)
312 {
313 struct supertype *st;
314
315 if (strcmp(arg, "imsm") != 0 &&
316 strcmp(arg, "default") != 0
317 )
318 return NULL;
319
320 st = malloc(sizeof(*st));
321 memset(st, 0, sizeof(*st));
322 st->ss = &super_imsm;
323 st->max_devs = IMSM_MAX_DEVICES;
324 st->minor_version = 0;
325 st->sb = NULL;
326 return st;
327 }
328
329 #ifndef MDASSEMBLE
330 static __u8 *get_imsm_version(struct imsm_super *mpb)
331 {
332 return &mpb->sig[MPB_SIG_LEN];
333 }
334 #endif
335
336 /* retrieve a disk directly from the anchor when the anchor is known to be
337 * up-to-date, currently only at load time
338 */
339 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
340 {
341 if (index >= mpb->num_disks)
342 return NULL;
343 return &mpb->disk[index];
344 }
345
346 #ifndef MDASSEMBLE
347 /* retrieve a disk from the parsed metadata */
348 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
349 {
350 struct dl *d;
351
352 for (d = super->disks; d; d = d->next)
353 if (d->index == index)
354 return &d->disk;
355
356 return NULL;
357 }
358 #endif
359
360 /* generate a checksum directly from the anchor when the anchor is known to be
361 * up-to-date, currently only at load or write_super after coalescing
362 */
363 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
364 {
365 __u32 end = mpb->mpb_size / sizeof(end);
366 __u32 *p = (__u32 *) mpb;
367 __u32 sum = 0;
368
369 while (end--) {
370 sum += __le32_to_cpu(*p);
371 p++;
372 }
373
374 return sum - __le32_to_cpu(mpb->check_sum);
375 }
376
377 static size_t sizeof_imsm_map(struct imsm_map *map)
378 {
379 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
380 }
381
382 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
383 {
384 struct imsm_map *map = &dev->vol.map[0];
385
386 if (second_map && !dev->vol.migr_state)
387 return NULL;
388 else if (second_map) {
389 void *ptr = map;
390
391 return ptr + sizeof_imsm_map(map);
392 } else
393 return map;
394
395 }
396
397 /* return the size of the device.
398 * migr_state increases the returned size if map[0] were to be duplicated
399 */
400 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
401 {
402 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
403 sizeof_imsm_map(get_imsm_map(dev, 0));
404
405 /* migrating means an additional map */
406 if (dev->vol.migr_state)
407 size += sizeof_imsm_map(get_imsm_map(dev, 1));
408 else if (migr_state)
409 size += sizeof_imsm_map(get_imsm_map(dev, 0));
410
411 return size;
412 }
413
414 #ifndef MDASSEMBLE
415 /* retrieve disk serial number list from a metadata update */
416 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
417 {
418 void *u = update;
419 struct disk_info *inf;
420
421 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
422 sizeof_imsm_dev(&update->dev, 0);
423
424 return inf;
425 }
426 #endif
427
428 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
429 {
430 int offset;
431 int i;
432 void *_mpb = mpb;
433
434 if (index >= mpb->num_raid_devs)
435 return NULL;
436
437 /* devices start after all disks */
438 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
439
440 for (i = 0; i <= index; i++)
441 if (i == index)
442 return _mpb + offset;
443 else
444 offset += sizeof_imsm_dev(_mpb + offset, 0);
445
446 return NULL;
447 }
448
449 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
450 {
451 struct intel_dev *dv;
452
453 if (index >= super->anchor->num_raid_devs)
454 return NULL;
455 for (dv = super->devlist; dv; dv = dv->next)
456 if (dv->index == index)
457 return dv->dev;
458 return NULL;
459 }
460
461 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
462 {
463 struct imsm_map *map;
464
465 if (dev->vol.migr_state)
466 map = get_imsm_map(dev, 1);
467 else
468 map = get_imsm_map(dev, 0);
469
470 /* top byte identifies disk under rebuild */
471 return __le32_to_cpu(map->disk_ord_tbl[slot]);
472 }
473
474 #define ord_to_idx(ord) (((ord) << 8) >> 8)
475 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
476 {
477 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
478
479 return ord_to_idx(ord);
480 }
481
482 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
483 {
484 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
485 }
486
487 static int get_imsm_disk_slot(struct imsm_map *map, int idx)
488 {
489 int slot;
490 __u32 ord;
491
492 for (slot = 0; slot < map->num_members; slot++) {
493 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
494 if (ord_to_idx(ord) == idx)
495 return slot;
496 }
497
498 return -1;
499 }
500
501 static int get_imsm_raid_level(struct imsm_map *map)
502 {
503 if (map->raid_level == 1) {
504 if (map->num_members == 2)
505 return 1;
506 else
507 return 10;
508 }
509
510 return map->raid_level;
511 }
512
513 static int cmp_extent(const void *av, const void *bv)
514 {
515 const struct extent *a = av;
516 const struct extent *b = bv;
517 if (a->start < b->start)
518 return -1;
519 if (a->start > b->start)
520 return 1;
521 return 0;
522 }
523
524 static int count_memberships(struct dl *dl, struct intel_super *super)
525 {
526 int memberships = 0;
527 int i;
528
529 for (i = 0; i < super->anchor->num_raid_devs; i++) {
530 struct imsm_dev *dev = get_imsm_dev(super, i);
531 struct imsm_map *map = get_imsm_map(dev, 0);
532
533 if (get_imsm_disk_slot(map, dl->index) >= 0)
534 memberships++;
535 }
536
537 return memberships;
538 }
539
540 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
541 {
542 /* find a list of used extents on the given physical device */
543 struct extent *rv, *e;
544 int i;
545 int memberships = count_memberships(dl, super);
546 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
547
548 rv = malloc(sizeof(struct extent) * (memberships + 1));
549 if (!rv)
550 return NULL;
551 e = rv;
552
553 for (i = 0; i < super->anchor->num_raid_devs; i++) {
554 struct imsm_dev *dev = get_imsm_dev(super, i);
555 struct imsm_map *map = get_imsm_map(dev, 0);
556
557 if (get_imsm_disk_slot(map, dl->index) >= 0) {
558 e->start = __le32_to_cpu(map->pba_of_lba0);
559 e->size = __le32_to_cpu(map->blocks_per_member);
560 e++;
561 }
562 }
563 qsort(rv, memberships, sizeof(*rv), cmp_extent);
564
565 /* determine the start of the metadata
566 * when no raid devices are defined use the default
567 * ...otherwise allow the metadata to truncate the value
568 * as is the case with older versions of imsm
569 */
570 if (memberships) {
571 struct extent *last = &rv[memberships - 1];
572 __u32 remainder;
573
574 remainder = __le32_to_cpu(dl->disk.total_blocks) -
575 (last->start + last->size);
576 /* round down to 1k block to satisfy precision of the kernel
577 * 'size' interface
578 */
579 remainder &= ~1UL;
580 /* make sure remainder is still sane */
581 if (remainder < ROUND_UP(super->len, 512) >> 9)
582 remainder = ROUND_UP(super->len, 512) >> 9;
583 if (reservation > remainder)
584 reservation = remainder;
585 }
586 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
587 e->size = 0;
588 return rv;
589 }
590
591 /* try to determine how much space is reserved for metadata from
592 * the last get_extents() entry, otherwise fallback to the
593 * default
594 */
595 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
596 {
597 struct extent *e;
598 int i;
599 __u32 rv;
600
601 /* for spares just return a minimal reservation which will grow
602 * once the spare is picked up by an array
603 */
604 if (dl->index == -1)
605 return MPB_SECTOR_CNT;
606
607 e = get_extents(super, dl);
608 if (!e)
609 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
610
611 /* scroll to last entry */
612 for (i = 0; e[i].size; i++)
613 continue;
614
615 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
616
617 free(e);
618
619 return rv;
620 }
621
622 static int is_spare(struct imsm_disk *disk)
623 {
624 return (disk->status & SPARE_DISK) == SPARE_DISK;
625 }
626
627 static int is_configured(struct imsm_disk *disk)
628 {
629 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
630 }
631
632 static int is_failed(struct imsm_disk *disk)
633 {
634 return (disk->status & FAILED_DISK) == FAILED_DISK;
635 }
636
637 #ifndef MDASSEMBLE
638 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
639 {
640 __u64 sz;
641 int slot;
642 struct imsm_map *map = get_imsm_map(dev, 0);
643 __u32 ord;
644
645 printf("\n");
646 printf("[%.16s]:\n", dev->volume);
647 printf(" UUID : %s\n", uuid);
648 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
649 printf(" Members : %d\n", map->num_members);
650 slot = get_imsm_disk_slot(map, disk_idx);
651 if (slot >= 0) {
652 ord = get_imsm_ord_tbl_ent(dev, slot);
653 printf(" This Slot : %d%s\n", slot,
654 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
655 } else
656 printf(" This Slot : ?\n");
657 sz = __le32_to_cpu(dev->size_high);
658 sz <<= 32;
659 sz += __le32_to_cpu(dev->size_low);
660 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
661 human_size(sz * 512));
662 sz = __le32_to_cpu(map->blocks_per_member);
663 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
664 human_size(sz * 512));
665 printf(" Sector Offset : %u\n",
666 __le32_to_cpu(map->pba_of_lba0));
667 printf(" Num Stripes : %u\n",
668 __le32_to_cpu(map->num_data_stripes));
669 printf(" Chunk Size : %u KiB\n",
670 __le16_to_cpu(map->blocks_per_strip) / 2);
671 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
672 printf(" Migrate State : ");
673 if (dev->vol.migr_state) {
674 if (migr_type(dev) == MIGR_INIT)
675 printf("initialize\n");
676 else if (migr_type(dev) == MIGR_REBUILD)
677 printf("rebuild\n");
678 else if (migr_type(dev) == MIGR_VERIFY)
679 printf("check\n");
680 else if (migr_type(dev) == MIGR_GEN_MIGR)
681 printf("general migration\n");
682 else if (migr_type(dev) == MIGR_STATE_CHANGE)
683 printf("state change\n");
684 else if (migr_type(dev) == MIGR_REPAIR)
685 printf("repair\n");
686 else
687 printf("<unknown:%d>\n", migr_type(dev));
688 } else
689 printf("idle\n");
690 printf(" Map State : %s", map_state_str[map->map_state]);
691 if (dev->vol.migr_state) {
692 struct imsm_map *map = get_imsm_map(dev, 1);
693 printf(" <-- %s", map_state_str[map->map_state]);
694 }
695 printf("\n");
696 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
697 }
698
699 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
700 {
701 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
702 char str[MAX_RAID_SERIAL_LEN + 1];
703 __u64 sz;
704
705 if (index < 0)
706 return;
707
708 printf("\n");
709 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
710 printf(" Disk%02d Serial : %s\n", index, str);
711 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
712 is_configured(disk) ? " active" : "",
713 is_failed(disk) ? " failed" : "");
714 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
715 sz = __le32_to_cpu(disk->total_blocks) - reserved;
716 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
717 human_size(sz * 512));
718 }
719
720 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
721
722 static void examine_super_imsm(struct supertype *st, char *homehost)
723 {
724 struct intel_super *super = st->sb;
725 struct imsm_super *mpb = super->anchor;
726 char str[MAX_SIGNATURE_LENGTH];
727 int i;
728 struct mdinfo info;
729 char nbuf[64];
730 __u32 sum;
731 __u32 reserved = imsm_reserved_sectors(super, super->disks);
732
733
734 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
735 printf(" Magic : %s\n", str);
736 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
737 printf(" Version : %s\n", get_imsm_version(mpb));
738 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
739 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
740 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
741 getinfo_super_imsm(st, &info);
742 fname_from_uuid(st, &info, nbuf, ':');
743 printf(" UUID : %s\n", nbuf + 5);
744 sum = __le32_to_cpu(mpb->check_sum);
745 printf(" Checksum : %08x %s\n", sum,
746 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
747 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
748 printf(" Disks : %d\n", mpb->num_disks);
749 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
750 print_imsm_disk(mpb, super->disks->index, reserved);
751 if (super->bbm_log) {
752 struct bbm_log *log = super->bbm_log;
753
754 printf("\n");
755 printf("Bad Block Management Log:\n");
756 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
757 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
758 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
759 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
760 printf(" First Spare : %llx\n",
761 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
762 }
763 for (i = 0; i < mpb->num_raid_devs; i++) {
764 struct mdinfo info;
765 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
766
767 super->current_vol = i;
768 getinfo_super_imsm(st, &info);
769 fname_from_uuid(st, &info, nbuf, ':');
770 print_imsm_dev(dev, nbuf + 5, super->disks->index);
771 }
772 for (i = 0; i < mpb->num_disks; i++) {
773 if (i == super->disks->index)
774 continue;
775 print_imsm_disk(mpb, i, reserved);
776 }
777 }
778
779 static void brief_examine_super_imsm(struct supertype *st, int verbose)
780 {
781 /* We just write a generic IMSM ARRAY entry */
782 struct mdinfo info;
783 char nbuf[64];
784 struct intel_super *super = st->sb;
785
786 if (!super->anchor->num_raid_devs) {
787 printf("ARRAY metadata=imsm\n");
788 return;
789 }
790
791 getinfo_super_imsm(st, &info);
792 fname_from_uuid(st, &info, nbuf, ':');
793 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
794 }
795
796 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
797 {
798 /* We just write a generic IMSM ARRAY entry */
799 struct mdinfo info;
800 char nbuf[64];
801 char nbuf1[64];
802 struct intel_super *super = st->sb;
803 int i;
804
805 if (!super->anchor->num_raid_devs)
806 return;
807
808 getinfo_super_imsm(st, &info);
809 fname_from_uuid(st, &info, nbuf, ':');
810 for (i = 0; i < super->anchor->num_raid_devs; i++) {
811 struct imsm_dev *dev = get_imsm_dev(super, i);
812
813 super->current_vol = i;
814 getinfo_super_imsm(st, &info);
815 fname_from_uuid(st, &info, nbuf1, ':');
816 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
817 dev->volume, nbuf + 5, i, nbuf1 + 5);
818 }
819 }
820
821 static void export_examine_super_imsm(struct supertype *st)
822 {
823 struct intel_super *super = st->sb;
824 struct imsm_super *mpb = super->anchor;
825 struct mdinfo info;
826 char nbuf[64];
827
828 getinfo_super_imsm(st, &info);
829 fname_from_uuid(st, &info, nbuf, ':');
830 printf("MD_METADATA=imsm\n");
831 printf("MD_LEVEL=container\n");
832 printf("MD_UUID=%s\n", nbuf+5);
833 printf("MD_DEVICES=%u\n", mpb->num_disks);
834 }
835
836 static void detail_super_imsm(struct supertype *st, char *homehost)
837 {
838 struct mdinfo info;
839 char nbuf[64];
840
841 getinfo_super_imsm(st, &info);
842 fname_from_uuid(st, &info, nbuf, ':');
843 printf("\n UUID : %s\n", nbuf + 5);
844 }
845
846 static void brief_detail_super_imsm(struct supertype *st)
847 {
848 struct mdinfo info;
849 char nbuf[64];
850 getinfo_super_imsm(st, &info);
851 fname_from_uuid(st, &info, nbuf, ':');
852 printf(" UUID=%s", nbuf + 5);
853 }
854
855 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
856 static void fd2devname(int fd, char *name);
857
858 static int imsm_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
859 {
860 /* dump an unsorted list of devices attached to ahci, as well as
861 * non-connected ports
862 */
863 int hba_len = strlen(hba_path) + 1;
864 struct dirent *ent;
865 DIR *dir;
866 char *path = NULL;
867 int err = 0;
868 unsigned long port_mask = (1 << port_count) - 1;
869
870 if (port_count > sizeof(port_mask) * 8) {
871 if (verbose)
872 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
873 return 2;
874 }
875
876 /* scroll through /sys/dev/block looking for devices attached to
877 * this hba
878 */
879 dir = opendir("/sys/dev/block");
880 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
881 int fd;
882 char model[64];
883 char vendor[64];
884 char buf[1024];
885 int major, minor;
886 char *device;
887 char *c;
888 int port;
889 int type;
890
891 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
892 continue;
893 path = devt_to_devpath(makedev(major, minor));
894 if (!path)
895 continue;
896 if (!path_attached_to_hba(path, hba_path)) {
897 free(path);
898 path = NULL;
899 continue;
900 }
901
902 /* retrieve the scsi device type */
903 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
904 if (verbose)
905 fprintf(stderr, Name ": failed to allocate 'device'\n");
906 err = 2;
907 break;
908 }
909 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
910 if (load_sys(device, buf) != 0) {
911 if (verbose)
912 fprintf(stderr, Name ": failed to read device type for %s\n",
913 path);
914 err = 2;
915 free(device);
916 break;
917 }
918 type = strtoul(buf, NULL, 10);
919
920 /* if it's not a disk print the vendor and model */
921 if (!(type == 0 || type == 7 || type == 14)) {
922 vendor[0] = '\0';
923 model[0] = '\0';
924 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
925 if (load_sys(device, buf) == 0) {
926 strncpy(vendor, buf, sizeof(vendor));
927 vendor[sizeof(vendor) - 1] = '\0';
928 c = (char *) &vendor[sizeof(vendor) - 1];
929 while (isspace(*c) || *c == '\0')
930 *c-- = '\0';
931
932 }
933 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
934 if (load_sys(device, buf) == 0) {
935 strncpy(model, buf, sizeof(model));
936 model[sizeof(model) - 1] = '\0';
937 c = (char *) &model[sizeof(model) - 1];
938 while (isspace(*c) || *c == '\0')
939 *c-- = '\0';
940 }
941
942 if (vendor[0] && model[0])
943 sprintf(buf, "%.64s %.64s", vendor, model);
944 else
945 switch (type) { /* numbers from hald/linux/device.c */
946 case 1: sprintf(buf, "tape"); break;
947 case 2: sprintf(buf, "printer"); break;
948 case 3: sprintf(buf, "processor"); break;
949 case 4:
950 case 5: sprintf(buf, "cdrom"); break;
951 case 6: sprintf(buf, "scanner"); break;
952 case 8: sprintf(buf, "media_changer"); break;
953 case 9: sprintf(buf, "comm"); break;
954 case 12: sprintf(buf, "raid"); break;
955 default: sprintf(buf, "unknown");
956 }
957 } else
958 buf[0] = '\0';
959 free(device);
960
961 /* chop device path to 'host%d' and calculate the port number */
962 c = strchr(&path[hba_len], '/');
963 *c = '\0';
964 if (sscanf(&path[hba_len], "host%d", &port) == 1)
965 port -= host_base;
966 else {
967 if (verbose) {
968 *c = '/'; /* repair the full string */
969 fprintf(stderr, Name ": failed to determine port number for %s\n",
970 path);
971 }
972 err = 2;
973 break;
974 }
975
976 /* mark this port as used */
977 port_mask &= ~(1 << port);
978
979 /* print out the device information */
980 if (buf[0]) {
981 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
982 continue;
983 }
984
985 fd = dev_open(ent->d_name, O_RDONLY);
986 if (fd < 0)
987 printf(" Port%d : - disk info unavailable -\n", port);
988 else {
989 fd2devname(fd, buf);
990 printf(" Port%d : %s", port, buf);
991 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
992 printf(" (%s)\n", buf);
993 else
994 printf("()\n");
995 }
996 close(fd);
997 free(path);
998 path = NULL;
999 }
1000 if (path)
1001 free(path);
1002 if (dir)
1003 closedir(dir);
1004 if (err == 0) {
1005 int i;
1006
1007 for (i = 0; i < port_count; i++)
1008 if (port_mask & (1 << i))
1009 printf(" Port%d : - no device attached -\n", i);
1010 }
1011
1012 return err;
1013 }
1014
1015 static int detail_platform_imsm(int verbose, int enumerate_only)
1016 {
1017 /* There are two components to imsm platform support, the ahci SATA
1018 * controller and the option-rom. To find the SATA controller we
1019 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1020 * controller with the Intel vendor id is present. This approach
1021 * allows mdadm to leverage the kernel's ahci detection logic, with the
1022 * caveat that if ahci.ko is not loaded mdadm will not be able to
1023 * detect platform raid capabilities. The option-rom resides in a
1024 * platform "Adapter ROM". We scan for its signature to retrieve the
1025 * platform capabilities. If raid support is disabled in the BIOS the
1026 * option-rom capability structure will not be available.
1027 */
1028 const struct imsm_orom *orom;
1029 struct sys_dev *list, *hba;
1030 DIR *dir;
1031 struct dirent *ent;
1032 const char *hba_path;
1033 int host_base = 0;
1034 int port_count = 0;
1035
1036 if (enumerate_only) {
1037 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1038 return 0;
1039 return 2;
1040 }
1041
1042 list = find_driver_devices("pci", "ahci");
1043 for (hba = list; hba; hba = hba->next)
1044 if (devpath_to_vendor(hba->path) == 0x8086)
1045 break;
1046
1047 if (!hba) {
1048 if (verbose)
1049 fprintf(stderr, Name ": unable to find active ahci controller\n");
1050 free_sys_dev(&list);
1051 return 2;
1052 } else if (verbose)
1053 fprintf(stderr, Name ": found Intel SATA AHCI Controller\n");
1054 hba_path = hba->path;
1055 hba->path = NULL;
1056 free_sys_dev(&list);
1057
1058 orom = find_imsm_orom();
1059 if (!orom) {
1060 if (verbose)
1061 fprintf(stderr, Name ": imsm option-rom not found\n");
1062 return 2;
1063 }
1064
1065 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1066 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1067 orom->hotfix_ver, orom->build);
1068 printf(" RAID Levels :%s%s%s%s%s\n",
1069 imsm_orom_has_raid0(orom) ? " raid0" : "",
1070 imsm_orom_has_raid1(orom) ? " raid1" : "",
1071 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1072 imsm_orom_has_raid10(orom) ? " raid10" : "",
1073 imsm_orom_has_raid5(orom) ? " raid5" : "");
1074 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1075 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1076 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1077 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1078 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1079 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1080 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1081 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1082 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1083 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1084 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1085 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1086 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1087 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1088 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1089 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1090 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1091 printf(" Max Disks : %d\n", orom->tds);
1092 printf(" Max Volumes : %d\n", orom->vpa);
1093 printf(" I/O Controller : %s\n", hba_path);
1094
1095 /* find the smallest scsi host number to determine a port number base */
1096 dir = opendir(hba_path);
1097 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1098 int host;
1099
1100 if (sscanf(ent->d_name, "host%d", &host) != 1)
1101 continue;
1102 if (port_count == 0)
1103 host_base = host;
1104 else if (host < host_base)
1105 host_base = host;
1106
1107 if (host + 1 > port_count + host_base)
1108 port_count = host + 1 - host_base;
1109
1110 }
1111 if (dir)
1112 closedir(dir);
1113
1114 if (!port_count || imsm_enumerate_ports(hba_path, port_count,
1115 host_base, verbose) != 0) {
1116 if (verbose)
1117 fprintf(stderr, Name ": failed to enumerate ports\n");
1118 return 2;
1119 }
1120
1121 return 0;
1122 }
1123 #endif
1124
1125 static int match_home_imsm(struct supertype *st, char *homehost)
1126 {
1127 /* the imsm metadata format does not specify any host
1128 * identification information. We return -1 since we can never
1129 * confirm nor deny whether a given array is "meant" for this
1130 * host. We rely on compare_super and the 'family_num' fields to
1131 * exclude member disks that do not belong, and we rely on
1132 * mdadm.conf to specify the arrays that should be assembled.
1133 * Auto-assembly may still pick up "foreign" arrays.
1134 */
1135
1136 return -1;
1137 }
1138
1139 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1140 {
1141 /* The uuid returned here is used for:
1142 * uuid to put into bitmap file (Create, Grow)
1143 * uuid for backup header when saving critical section (Grow)
1144 * comparing uuids when re-adding a device into an array
1145 * In these cases the uuid required is that of the data-array,
1146 * not the device-set.
1147 * uuid to recognise same set when adding a missing device back
1148 * to an array. This is a uuid for the device-set.
1149 *
1150 * For each of these we can make do with a truncated
1151 * or hashed uuid rather than the original, as long as
1152 * everyone agrees.
1153 * In each case the uuid required is that of the data-array,
1154 * not the device-set.
1155 */
1156 /* imsm does not track uuid's so we synthesis one using sha1 on
1157 * - The signature (Which is constant for all imsm array, but no matter)
1158 * - the orig_family_num of the container
1159 * - the index number of the volume
1160 * - the 'serial' number of the volume.
1161 * Hopefully these are all constant.
1162 */
1163 struct intel_super *super = st->sb;
1164
1165 char buf[20];
1166 struct sha1_ctx ctx;
1167 struct imsm_dev *dev = NULL;
1168 __u32 family_num;
1169
1170 /* some mdadm versions failed to set ->orig_family_num, in which
1171 * case fall back to ->family_num. orig_family_num will be
1172 * fixed up with the first metadata update.
1173 */
1174 family_num = super->anchor->orig_family_num;
1175 if (family_num == 0)
1176 family_num = super->anchor->family_num;
1177 sha1_init_ctx(&ctx);
1178 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1179 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1180 if (super->current_vol >= 0)
1181 dev = get_imsm_dev(super, super->current_vol);
1182 if (dev) {
1183 __u32 vol = super->current_vol;
1184 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1185 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1186 }
1187 sha1_finish_ctx(&ctx, buf);
1188 memcpy(uuid, buf, 4*4);
1189 }
1190
1191 #if 0
1192 static void
1193 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1194 {
1195 __u8 *v = get_imsm_version(mpb);
1196 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1197 char major[] = { 0, 0, 0 };
1198 char minor[] = { 0 ,0, 0 };
1199 char patch[] = { 0, 0, 0 };
1200 char *ver_parse[] = { major, minor, patch };
1201 int i, j;
1202
1203 i = j = 0;
1204 while (*v != '\0' && v < end) {
1205 if (*v != '.' && j < 2)
1206 ver_parse[i][j++] = *v;
1207 else {
1208 i++;
1209 j = 0;
1210 }
1211 v++;
1212 }
1213
1214 *m = strtol(minor, NULL, 0);
1215 *p = strtol(patch, NULL, 0);
1216 }
1217 #endif
1218
1219 static int imsm_level_to_layout(int level)
1220 {
1221 switch (level) {
1222 case 0:
1223 case 1:
1224 return 0;
1225 case 5:
1226 case 6:
1227 return ALGORITHM_LEFT_ASYMMETRIC;
1228 case 10:
1229 return 0x102;
1230 }
1231 return UnSet;
1232 }
1233
1234 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
1235 {
1236 struct intel_super *super = st->sb;
1237 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1238 struct imsm_map *map = get_imsm_map(dev, 0);
1239 struct dl *dl;
1240
1241 for (dl = super->disks; dl; dl = dl->next)
1242 if (dl->raiddisk == info->disk.raid_disk)
1243 break;
1244 info->container_member = super->current_vol;
1245 info->array.raid_disks = map->num_members;
1246 info->array.level = get_imsm_raid_level(map);
1247 info->array.layout = imsm_level_to_layout(info->array.level);
1248 info->array.md_minor = -1;
1249 info->array.ctime = 0;
1250 info->array.utime = 0;
1251 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1252 info->array.state = !dev->vol.dirty;
1253 info->custom_array_size = __le32_to_cpu(dev->size_high);
1254 info->custom_array_size <<= 32;
1255 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1256
1257 info->disk.major = 0;
1258 info->disk.minor = 0;
1259 if (dl) {
1260 info->disk.major = dl->major;
1261 info->disk.minor = dl->minor;
1262 }
1263
1264 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
1265 info->component_size = __le32_to_cpu(map->blocks_per_member);
1266 memset(info->uuid, 0, sizeof(info->uuid));
1267
1268 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
1269 info->resync_start = 0;
1270 else if (dev->vol.migr_state)
1271 /* FIXME add curr_migr_unit to resync_start conversion */
1272 info->resync_start = 0;
1273 else
1274 info->resync_start = MaxSector;
1275
1276 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1277 info->name[MAX_RAID_SERIAL_LEN] = 0;
1278
1279 info->array.major_version = -1;
1280 info->array.minor_version = -2;
1281 sprintf(info->text_version, "/%s/%d",
1282 devnum2devname(st->container_dev),
1283 info->container_member);
1284 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1285 uuid_from_super_imsm(st, info->uuid);
1286 }
1287
1288 /* check the config file to see if we can return a real uuid for this spare */
1289 static void fixup_container_spare_uuid(struct mdinfo *inf)
1290 {
1291 struct mddev_ident_s *array_list;
1292
1293 if (inf->array.level != LEVEL_CONTAINER ||
1294 memcmp(inf->uuid, uuid_match_any, sizeof(int[4])) != 0)
1295 return;
1296
1297 array_list = conf_get_ident(NULL);
1298
1299 for (; array_list; array_list = array_list->next) {
1300 if (array_list->uuid_set) {
1301 struct supertype *_sst; /* spare supertype */
1302 struct supertype *_cst; /* container supertype */
1303
1304 _cst = array_list->st;
1305 if (_cst)
1306 _sst = _cst->ss->match_metadata_desc(inf->text_version);
1307 else
1308 _sst = NULL;
1309
1310 if (_sst) {
1311 memcpy(inf->uuid, array_list->uuid, sizeof(int[4]));
1312 free(_sst);
1313 break;
1314 }
1315 }
1316 }
1317 }
1318
1319 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
1320 {
1321 struct intel_super *super = st->sb;
1322 struct imsm_disk *disk;
1323
1324 if (super->current_vol >= 0) {
1325 getinfo_super_imsm_volume(st, info);
1326 return;
1327 }
1328
1329 /* Set raid_disks to zero so that Assemble will always pull in valid
1330 * spares
1331 */
1332 info->array.raid_disks = 0;
1333 info->array.level = LEVEL_CONTAINER;
1334 info->array.layout = 0;
1335 info->array.md_minor = -1;
1336 info->array.ctime = 0; /* N/A for imsm */
1337 info->array.utime = 0;
1338 info->array.chunk_size = 0;
1339
1340 info->disk.major = 0;
1341 info->disk.minor = 0;
1342 info->disk.raid_disk = -1;
1343 info->reshape_active = 0;
1344 info->array.major_version = -1;
1345 info->array.minor_version = -2;
1346 strcpy(info->text_version, "imsm");
1347 info->safe_mode_delay = 0;
1348 info->disk.number = -1;
1349 info->disk.state = 0;
1350 info->name[0] = 0;
1351
1352 if (super->disks) {
1353 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1354
1355 disk = &super->disks->disk;
1356 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1357 info->component_size = reserved;
1358 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
1359 /* we don't change info->disk.raid_disk here because
1360 * this state will be finalized in mdmon after we have
1361 * found the 'most fresh' version of the metadata
1362 */
1363 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
1364 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
1365 }
1366
1367 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1368 * ->compare_super may have updated the 'num_raid_devs' field for spares
1369 */
1370 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
1371 uuid_from_super_imsm(st, info->uuid);
1372 else {
1373 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
1374 fixup_container_spare_uuid(info);
1375 }
1376 }
1377
1378 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
1379 char *update, char *devname, int verbose,
1380 int uuid_set, char *homehost)
1381 {
1382 /* For 'assemble' and 'force' we need to return non-zero if any
1383 * change was made. For others, the return value is ignored.
1384 * Update options are:
1385 * force-one : This device looks a bit old but needs to be included,
1386 * update age info appropriately.
1387 * assemble: clear any 'faulty' flag to allow this device to
1388 * be assembled.
1389 * force-array: Array is degraded but being forced, mark it clean
1390 * if that will be needed to assemble it.
1391 *
1392 * newdev: not used ????
1393 * grow: Array has gained a new device - this is currently for
1394 * linear only
1395 * resync: mark as dirty so a resync will happen.
1396 * name: update the name - preserving the homehost
1397 * uuid: Change the uuid of the array to match watch is given
1398 *
1399 * Following are not relevant for this imsm:
1400 * sparc2.2 : update from old dodgey metadata
1401 * super-minor: change the preferred_minor number
1402 * summaries: update redundant counters.
1403 * homehost: update the recorded homehost
1404 * _reshape_progress: record new reshape_progress position.
1405 */
1406 int rv = 1;
1407 struct intel_super *super = st->sb;
1408 struct imsm_super *mpb;
1409
1410 /* we can only update container info */
1411 if (!super || super->current_vol >= 0 || !super->anchor)
1412 return 1;
1413
1414 mpb = super->anchor;
1415
1416 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
1417 fprintf(stderr,
1418 Name ": '--uuid' not supported for imsm metadata\n");
1419 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
1420 mpb->orig_family_num = *((__u32 *) info->update_private);
1421 rv = 0;
1422 } else if (strcmp(update, "uuid") == 0) {
1423 __u32 *new_family = malloc(sizeof(*new_family));
1424
1425 /* update orig_family_number with the incoming random
1426 * data, report the new effective uuid, and store the
1427 * new orig_family_num for future updates.
1428 */
1429 if (new_family) {
1430 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
1431 uuid_from_super_imsm(st, info->uuid);
1432 *new_family = mpb->orig_family_num;
1433 info->update_private = new_family;
1434 rv = 0;
1435 }
1436 } else if (strcmp(update, "assemble") == 0)
1437 rv = 0;
1438 else
1439 fprintf(stderr,
1440 Name ": '--update=%s' not supported for imsm metadata\n",
1441 update);
1442
1443 /* successful update? recompute checksum */
1444 if (rv == 0)
1445 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
1446
1447 return rv;
1448 }
1449
1450 static size_t disks_to_mpb_size(int disks)
1451 {
1452 size_t size;
1453
1454 size = sizeof(struct imsm_super);
1455 size += (disks - 1) * sizeof(struct imsm_disk);
1456 size += 2 * sizeof(struct imsm_dev);
1457 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
1458 size += (4 - 2) * sizeof(struct imsm_map);
1459 /* 4 possible disk_ord_tbl's */
1460 size += 4 * (disks - 1) * sizeof(__u32);
1461
1462 return size;
1463 }
1464
1465 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
1466 {
1467 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
1468 return 0;
1469
1470 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
1471 }
1472
1473 static void free_devlist(struct intel_super *super)
1474 {
1475 struct intel_dev *dv;
1476
1477 while (super->devlist) {
1478 dv = super->devlist->next;
1479 free(super->devlist->dev);
1480 free(super->devlist);
1481 super->devlist = dv;
1482 }
1483 }
1484
1485 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1486 {
1487 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1488 }
1489
1490 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
1491 {
1492 /*
1493 * return:
1494 * 0 same, or first was empty, and second was copied
1495 * 1 second had wrong number
1496 * 2 wrong uuid
1497 * 3 wrong other info
1498 */
1499 struct intel_super *first = st->sb;
1500 struct intel_super *sec = tst->sb;
1501
1502 if (!first) {
1503 st->sb = tst->sb;
1504 tst->sb = NULL;
1505 return 0;
1506 }
1507
1508 /* if an anchor does not have num_raid_devs set then it is a free
1509 * floating spare
1510 */
1511 if (first->anchor->num_raid_devs > 0 &&
1512 sec->anchor->num_raid_devs > 0) {
1513 /* Determine if these disks might ever have been
1514 * related. Further disambiguation can only take place
1515 * in load_super_imsm_all
1516 */
1517 __u32 first_family = first->anchor->orig_family_num;
1518 __u32 sec_family = sec->anchor->orig_family_num;
1519
1520 if (memcmp(first->anchor->sig, sec->anchor->sig,
1521 MAX_SIGNATURE_LENGTH) != 0)
1522 return 3;
1523
1524 if (first_family == 0)
1525 first_family = first->anchor->family_num;
1526 if (sec_family == 0)
1527 sec_family = sec->anchor->family_num;
1528
1529 if (first_family != sec_family)
1530 return 3;
1531
1532 }
1533
1534
1535 /* if 'first' is a spare promote it to a populated mpb with sec's
1536 * family number
1537 */
1538 if (first->anchor->num_raid_devs == 0 &&
1539 sec->anchor->num_raid_devs > 0) {
1540 int i;
1541 struct intel_dev *dv;
1542 struct imsm_dev *dev;
1543
1544 /* we need to copy raid device info from sec if an allocation
1545 * fails here we don't associate the spare
1546 */
1547 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
1548 dv = malloc(sizeof(*dv));
1549 if (!dv)
1550 break;
1551 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
1552 if (!dev) {
1553 free(dv);
1554 break;
1555 }
1556 dv->dev = dev;
1557 dv->index = i;
1558 dv->next = first->devlist;
1559 first->devlist = dv;
1560 }
1561 if (i < sec->anchor->num_raid_devs) {
1562 /* allocation failure */
1563 free_devlist(first);
1564 fprintf(stderr, "imsm: failed to associate spare\n");
1565 return 3;
1566 }
1567 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
1568 first->anchor->orig_family_num = sec->anchor->orig_family_num;
1569 first->anchor->family_num = sec->anchor->family_num;
1570 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
1571 for (i = 0; i < sec->anchor->num_raid_devs; i++)
1572 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
1573 }
1574
1575 return 0;
1576 }
1577
1578 static void fd2devname(int fd, char *name)
1579 {
1580 struct stat st;
1581 char path[256];
1582 char dname[100];
1583 char *nm;
1584 int rv;
1585
1586 name[0] = '\0';
1587 if (fstat(fd, &st) != 0)
1588 return;
1589 sprintf(path, "/sys/dev/block/%d:%d",
1590 major(st.st_rdev), minor(st.st_rdev));
1591
1592 rv = readlink(path, dname, sizeof(dname));
1593 if (rv <= 0)
1594 return;
1595
1596 dname[rv] = '\0';
1597 nm = strrchr(dname, '/');
1598 nm++;
1599 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1600 }
1601
1602 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1603
1604 static int imsm_read_serial(int fd, char *devname,
1605 __u8 serial[MAX_RAID_SERIAL_LEN])
1606 {
1607 unsigned char scsi_serial[255];
1608 int rv;
1609 int rsp_len;
1610 int len;
1611 char *dest;
1612 char *src;
1613 char *rsp_buf;
1614 int i;
1615
1616 memset(scsi_serial, 0, sizeof(scsi_serial));
1617
1618 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1619
1620 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
1621 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1622 fd2devname(fd, (char *) serial);
1623 return 0;
1624 }
1625
1626 if (rv != 0) {
1627 if (devname)
1628 fprintf(stderr,
1629 Name ": Failed to retrieve serial for %s\n",
1630 devname);
1631 return rv;
1632 }
1633
1634 rsp_len = scsi_serial[3];
1635 if (!rsp_len) {
1636 if (devname)
1637 fprintf(stderr,
1638 Name ": Failed to retrieve serial for %s\n",
1639 devname);
1640 return 2;
1641 }
1642 rsp_buf = (char *) &scsi_serial[4];
1643
1644 /* trim all whitespace and non-printable characters and convert
1645 * ':' to ';'
1646 */
1647 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
1648 src = &rsp_buf[i];
1649 if (*src > 0x20) {
1650 /* ':' is reserved for use in placeholder serial
1651 * numbers for missing disks
1652 */
1653 if (*src == ':')
1654 *dest++ = ';';
1655 else
1656 *dest++ = *src;
1657 }
1658 }
1659 len = dest - rsp_buf;
1660 dest = rsp_buf;
1661
1662 /* truncate leading characters */
1663 if (len > MAX_RAID_SERIAL_LEN) {
1664 dest += len - MAX_RAID_SERIAL_LEN;
1665 len = MAX_RAID_SERIAL_LEN;
1666 }
1667
1668 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1669 memcpy(serial, dest, len);
1670
1671 return 0;
1672 }
1673
1674 static int serialcmp(__u8 *s1, __u8 *s2)
1675 {
1676 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1677 }
1678
1679 static void serialcpy(__u8 *dest, __u8 *src)
1680 {
1681 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1682 }
1683
1684 #ifndef MDASSEMBLE
1685 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
1686 {
1687 struct dl *dl;
1688
1689 for (dl = super->disks; dl; dl = dl->next)
1690 if (serialcmp(dl->serial, serial) == 0)
1691 break;
1692
1693 return dl;
1694 }
1695 #endif
1696
1697 static struct imsm_disk *
1698 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
1699 {
1700 int i;
1701
1702 for (i = 0; i < mpb->num_disks; i++) {
1703 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
1704
1705 if (serialcmp(disk->serial, serial) == 0) {
1706 if (idx)
1707 *idx = i;
1708 return disk;
1709 }
1710 }
1711
1712 return NULL;
1713 }
1714
1715 static int
1716 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1717 {
1718 struct imsm_disk *disk;
1719 struct dl *dl;
1720 struct stat stb;
1721 int rv;
1722 char name[40];
1723 __u8 serial[MAX_RAID_SERIAL_LEN];
1724
1725 rv = imsm_read_serial(fd, devname, serial);
1726
1727 if (rv != 0)
1728 return 2;
1729
1730 dl = calloc(1, sizeof(*dl));
1731 if (!dl) {
1732 if (devname)
1733 fprintf(stderr,
1734 Name ": failed to allocate disk buffer for %s\n",
1735 devname);
1736 return 2;
1737 }
1738
1739 fstat(fd, &stb);
1740 dl->major = major(stb.st_rdev);
1741 dl->minor = minor(stb.st_rdev);
1742 dl->next = super->disks;
1743 dl->fd = keep_fd ? fd : -1;
1744 assert(super->disks == NULL);
1745 super->disks = dl;
1746 serialcpy(dl->serial, serial);
1747 dl->index = -2;
1748 dl->e = NULL;
1749 fd2devname(fd, name);
1750 if (devname)
1751 dl->devname = strdup(devname);
1752 else
1753 dl->devname = strdup(name);
1754
1755 /* look up this disk's index in the current anchor */
1756 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
1757 if (disk) {
1758 dl->disk = *disk;
1759 /* only set index on disks that are a member of a
1760 * populated contianer, i.e. one with raid_devs
1761 */
1762 if (is_failed(&dl->disk))
1763 dl->index = -2;
1764 else if (is_spare(&dl->disk))
1765 dl->index = -1;
1766 }
1767
1768 return 0;
1769 }
1770
1771 #ifndef MDASSEMBLE
1772 /* When migrating map0 contains the 'destination' state while map1
1773 * contains the current state. When not migrating map0 contains the
1774 * current state. This routine assumes that map[0].map_state is set to
1775 * the current array state before being called.
1776 *
1777 * Migration is indicated by one of the following states
1778 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
1779 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
1780 * map1state=unitialized)
1781 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
1782 * map1state=normal)
1783 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
1784 * map1state=degraded)
1785 */
1786 static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
1787 {
1788 struct imsm_map *dest;
1789 struct imsm_map *src = get_imsm_map(dev, 0);
1790
1791 dev->vol.migr_state = 1;
1792 set_migr_type(dev, migr_type);
1793 dev->vol.curr_migr_unit = 0;
1794 dest = get_imsm_map(dev, 1);
1795
1796 /* duplicate and then set the target end state in map[0] */
1797 memcpy(dest, src, sizeof_imsm_map(src));
1798 if (migr_type == MIGR_REBUILD) {
1799 __u32 ord;
1800 int i;
1801
1802 for (i = 0; i < src->num_members; i++) {
1803 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
1804 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
1805 }
1806 }
1807
1808 src->map_state = to_state;
1809 }
1810
1811 static void end_migration(struct imsm_dev *dev, __u8 map_state)
1812 {
1813 struct imsm_map *map = get_imsm_map(dev, 0);
1814 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
1815 int i;
1816
1817 /* merge any IMSM_ORD_REBUILD bits that were not successfully
1818 * completed in the last migration.
1819 *
1820 * FIXME add support for online capacity expansion and
1821 * raid-level-migration
1822 */
1823 for (i = 0; i < prev->num_members; i++)
1824 map->disk_ord_tbl[i] |= prev->disk_ord_tbl[i];
1825
1826 dev->vol.migr_state = 0;
1827 dev->vol.curr_migr_unit = 0;
1828 map->map_state = map_state;
1829 }
1830 #endif
1831
1832 static int parse_raid_devices(struct intel_super *super)
1833 {
1834 int i;
1835 struct imsm_dev *dev_new;
1836 size_t len, len_migr;
1837 size_t space_needed = 0;
1838 struct imsm_super *mpb = super->anchor;
1839
1840 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1841 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
1842 struct intel_dev *dv;
1843
1844 len = sizeof_imsm_dev(dev_iter, 0);
1845 len_migr = sizeof_imsm_dev(dev_iter, 1);
1846 if (len_migr > len)
1847 space_needed += len_migr - len;
1848
1849 dv = malloc(sizeof(*dv));
1850 if (!dv)
1851 return 1;
1852 dev_new = malloc(len_migr);
1853 if (!dev_new) {
1854 free(dv);
1855 return 1;
1856 }
1857 imsm_copy_dev(dev_new, dev_iter);
1858 dv->dev = dev_new;
1859 dv->index = i;
1860 dv->next = super->devlist;
1861 super->devlist = dv;
1862 }
1863
1864 /* ensure that super->buf is large enough when all raid devices
1865 * are migrating
1866 */
1867 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1868 void *buf;
1869
1870 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1871 if (posix_memalign(&buf, 512, len) != 0)
1872 return 1;
1873
1874 memcpy(buf, super->buf, super->len);
1875 memset(buf + super->len, 0, len - super->len);
1876 free(super->buf);
1877 super->buf = buf;
1878 super->len = len;
1879 }
1880
1881 return 0;
1882 }
1883
1884 /* retrieve a pointer to the bbm log which starts after all raid devices */
1885 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1886 {
1887 void *ptr = NULL;
1888
1889 if (__le32_to_cpu(mpb->bbm_log_size)) {
1890 ptr = mpb;
1891 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1892 }
1893
1894 return ptr;
1895 }
1896
1897 static void __free_imsm(struct intel_super *super, int free_disks);
1898
1899 /* load_imsm_mpb - read matrix metadata
1900 * allocates super->mpb to be freed by free_super
1901 */
1902 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1903 {
1904 unsigned long long dsize;
1905 unsigned long long sectors;
1906 struct stat;
1907 struct imsm_super *anchor;
1908 __u32 check_sum;
1909
1910 get_dev_size(fd, NULL, &dsize);
1911
1912 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1913 if (devname)
1914 fprintf(stderr,
1915 Name ": Cannot seek to anchor block on %s: %s\n",
1916 devname, strerror(errno));
1917 return 1;
1918 }
1919
1920 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
1921 if (devname)
1922 fprintf(stderr,
1923 Name ": Failed to allocate imsm anchor buffer"
1924 " on %s\n", devname);
1925 return 1;
1926 }
1927 if (read(fd, anchor, 512) != 512) {
1928 if (devname)
1929 fprintf(stderr,
1930 Name ": Cannot read anchor block on %s: %s\n",
1931 devname, strerror(errno));
1932 free(anchor);
1933 return 1;
1934 }
1935
1936 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
1937 if (devname)
1938 fprintf(stderr,
1939 Name ": no IMSM anchor on %s\n", devname);
1940 free(anchor);
1941 return 2;
1942 }
1943
1944 __free_imsm(super, 0);
1945 super->len = ROUND_UP(anchor->mpb_size, 512);
1946 if (posix_memalign(&super->buf, 512, super->len) != 0) {
1947 if (devname)
1948 fprintf(stderr,
1949 Name ": unable to allocate %zu byte mpb buffer\n",
1950 super->len);
1951 free(anchor);
1952 return 2;
1953 }
1954 memcpy(super->buf, anchor, 512);
1955
1956 sectors = mpb_sectors(anchor) - 1;
1957 free(anchor);
1958 if (!sectors) {
1959 check_sum = __gen_imsm_checksum(super->anchor);
1960 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1961 if (devname)
1962 fprintf(stderr,
1963 Name ": IMSM checksum %x != %x on %s\n",
1964 check_sum,
1965 __le32_to_cpu(super->anchor->check_sum),
1966 devname);
1967 return 2;
1968 }
1969
1970 return 0;
1971 }
1972
1973 /* read the extended mpb */
1974 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1975 if (devname)
1976 fprintf(stderr,
1977 Name ": Cannot seek to extended mpb on %s: %s\n",
1978 devname, strerror(errno));
1979 return 1;
1980 }
1981
1982 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
1983 if (devname)
1984 fprintf(stderr,
1985 Name ": Cannot read extended mpb on %s: %s\n",
1986 devname, strerror(errno));
1987 return 2;
1988 }
1989
1990 check_sum = __gen_imsm_checksum(super->anchor);
1991 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1992 if (devname)
1993 fprintf(stderr,
1994 Name ": IMSM checksum %x != %x on %s\n",
1995 check_sum, __le32_to_cpu(super->anchor->check_sum),
1996 devname);
1997 return 3;
1998 }
1999
2000 /* FIXME the BBM log is disk specific so we cannot use this global
2001 * buffer for all disks. Ok for now since we only look at the global
2002 * bbm_log_size parameter to gate assembly
2003 */
2004 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2005
2006 return 0;
2007 }
2008
2009 static int
2010 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2011 {
2012 int err;
2013
2014 err = load_imsm_mpb(fd, super, devname);
2015 if (err)
2016 return err;
2017 err = load_imsm_disk(fd, super, devname, keep_fd);
2018 if (err)
2019 return err;
2020 err = parse_raid_devices(super);
2021
2022 return err;
2023 }
2024
2025 static void __free_imsm_disk(struct dl *d)
2026 {
2027 if (d->fd >= 0)
2028 close(d->fd);
2029 if (d->devname)
2030 free(d->devname);
2031 if (d->e)
2032 free(d->e);
2033 free(d);
2034
2035 }
2036 static void free_imsm_disks(struct intel_super *super)
2037 {
2038 struct dl *d;
2039
2040 while (super->disks) {
2041 d = super->disks;
2042 super->disks = d->next;
2043 __free_imsm_disk(d);
2044 }
2045 while (super->missing) {
2046 d = super->missing;
2047 super->missing = d->next;
2048 __free_imsm_disk(d);
2049 }
2050
2051 }
2052
2053 /* free all the pieces hanging off of a super pointer */
2054 static void __free_imsm(struct intel_super *super, int free_disks)
2055 {
2056 if (super->buf) {
2057 free(super->buf);
2058 super->buf = NULL;
2059 }
2060 if (free_disks)
2061 free_imsm_disks(super);
2062 free_devlist(super);
2063 if (super->hba) {
2064 free((void *) super->hba);
2065 super->hba = NULL;
2066 }
2067 }
2068
2069 static void free_imsm(struct intel_super *super)
2070 {
2071 __free_imsm(super, 1);
2072 free(super);
2073 }
2074
2075 static void free_super_imsm(struct supertype *st)
2076 {
2077 struct intel_super *super = st->sb;
2078
2079 if (!super)
2080 return;
2081
2082 free_imsm(super);
2083 st->sb = NULL;
2084 }
2085
2086 static struct intel_super *alloc_super(int creating_imsm)
2087 {
2088 struct intel_super *super = malloc(sizeof(*super));
2089
2090 if (super) {
2091 memset(super, 0, sizeof(*super));
2092 super->creating_imsm = creating_imsm;
2093 super->current_vol = -1;
2094 super->create_offset = ~((__u32 ) 0);
2095 if (!check_env("IMSM_NO_PLATFORM"))
2096 super->orom = find_imsm_orom();
2097 if (super->orom && !check_env("IMSM_TEST_OROM")) {
2098 struct sys_dev *list, *ent;
2099
2100 /* find the first intel ahci controller */
2101 list = find_driver_devices("pci", "ahci");
2102 for (ent = list; ent; ent = ent->next)
2103 if (devpath_to_vendor(ent->path) == 0x8086)
2104 break;
2105 if (ent) {
2106 super->hba = ent->path;
2107 ent->path = NULL;
2108 }
2109 free_sys_dev(&list);
2110 }
2111 }
2112
2113 return super;
2114 }
2115
2116 #ifndef MDASSEMBLE
2117 /* find_missing - helper routine for load_super_imsm_all that identifies
2118 * disks that have disappeared from the system. This routine relies on
2119 * the mpb being uptodate, which it is at load time.
2120 */
2121 static int find_missing(struct intel_super *super)
2122 {
2123 int i;
2124 struct imsm_super *mpb = super->anchor;
2125 struct dl *dl;
2126 struct imsm_disk *disk;
2127
2128 for (i = 0; i < mpb->num_disks; i++) {
2129 disk = __get_imsm_disk(mpb, i);
2130 dl = serial_to_dl(disk->serial, super);
2131 if (dl)
2132 continue;
2133
2134 dl = malloc(sizeof(*dl));
2135 if (!dl)
2136 return 1;
2137 dl->major = 0;
2138 dl->minor = 0;
2139 dl->fd = -1;
2140 dl->devname = strdup("missing");
2141 dl->index = i;
2142 serialcpy(dl->serial, disk->serial);
2143 dl->disk = *disk;
2144 dl->e = NULL;
2145 dl->next = super->missing;
2146 super->missing = dl;
2147 }
2148
2149 return 0;
2150 }
2151
2152 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2153 {
2154 struct intel_disk *idisk = disk_list;
2155
2156 while (idisk) {
2157 if (serialcmp(idisk->disk.serial, serial) == 0)
2158 break;
2159 idisk = idisk->next;
2160 }
2161
2162 return idisk;
2163 }
2164
2165 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2166 struct intel_super *super,
2167 struct intel_disk **disk_list)
2168 {
2169 struct imsm_disk *d = &super->disks->disk;
2170 struct imsm_super *mpb = super->anchor;
2171 int i, j;
2172
2173 for (i = 0; i < tbl_size; i++) {
2174 struct imsm_super *tbl_mpb = table[i]->anchor;
2175 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2176
2177 if (tbl_mpb->family_num == mpb->family_num) {
2178 if (tbl_mpb->check_sum == mpb->check_sum) {
2179 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2180 __func__, super->disks->major,
2181 super->disks->minor,
2182 table[i]->disks->major,
2183 table[i]->disks->minor);
2184 break;
2185 }
2186
2187 if (((is_configured(d) && !is_configured(tbl_d)) ||
2188 is_configured(d) == is_configured(tbl_d)) &&
2189 tbl_mpb->generation_num < mpb->generation_num) {
2190 /* current version of the mpb is a
2191 * better candidate than the one in
2192 * super_table, but copy over "cross
2193 * generational" status
2194 */
2195 struct intel_disk *idisk;
2196
2197 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2198 __func__, super->disks->major,
2199 super->disks->minor,
2200 table[i]->disks->major,
2201 table[i]->disks->minor);
2202
2203 idisk = disk_list_get(tbl_d->serial, *disk_list);
2204 if (idisk && is_failed(&idisk->disk))
2205 tbl_d->status |= FAILED_DISK;
2206 break;
2207 } else {
2208 struct intel_disk *idisk;
2209 struct imsm_disk *disk;
2210
2211 /* tbl_mpb is more up to date, but copy
2212 * over cross generational status before
2213 * returning
2214 */
2215 disk = __serial_to_disk(d->serial, mpb, NULL);
2216 if (disk && is_failed(disk))
2217 d->status |= FAILED_DISK;
2218
2219 idisk = disk_list_get(d->serial, *disk_list);
2220 if (idisk) {
2221 idisk->owner = i;
2222 if (disk && is_configured(disk))
2223 idisk->disk.status |= CONFIGURED_DISK;
2224 }
2225
2226 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
2227 __func__, super->disks->major,
2228 super->disks->minor,
2229 table[i]->disks->major,
2230 table[i]->disks->minor);
2231
2232 return tbl_size;
2233 }
2234 }
2235 }
2236
2237 if (i >= tbl_size)
2238 table[tbl_size++] = super;
2239 else
2240 table[i] = super;
2241
2242 /* update/extend the merged list of imsm_disk records */
2243 for (j = 0; j < mpb->num_disks; j++) {
2244 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
2245 struct intel_disk *idisk;
2246
2247 idisk = disk_list_get(disk->serial, *disk_list);
2248 if (idisk) {
2249 idisk->disk.status |= disk->status;
2250 if (is_configured(&idisk->disk) ||
2251 is_failed(&idisk->disk))
2252 idisk->disk.status &= ~(SPARE_DISK);
2253 } else {
2254 idisk = calloc(1, sizeof(*idisk));
2255 if (!idisk)
2256 return -1;
2257 idisk->owner = IMSM_UNKNOWN_OWNER;
2258 idisk->disk = *disk;
2259 idisk->next = *disk_list;
2260 *disk_list = idisk;
2261 }
2262
2263 if (serialcmp(idisk->disk.serial, d->serial) == 0)
2264 idisk->owner = i;
2265 }
2266
2267 return tbl_size;
2268 }
2269
2270 static struct intel_super *
2271 validate_members(struct intel_super *super, struct intel_disk *disk_list,
2272 const int owner)
2273 {
2274 struct imsm_super *mpb = super->anchor;
2275 int ok_count = 0;
2276 int i;
2277
2278 for (i = 0; i < mpb->num_disks; i++) {
2279 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2280 struct intel_disk *idisk;
2281
2282 idisk = disk_list_get(disk->serial, disk_list);
2283 if (idisk) {
2284 if (idisk->owner == owner ||
2285 idisk->owner == IMSM_UNKNOWN_OWNER)
2286 ok_count++;
2287 else
2288 dprintf("%s: '%.16s' owner %d != %d\n",
2289 __func__, disk->serial, idisk->owner,
2290 owner);
2291 } else {
2292 dprintf("%s: unknown disk %x [%d]: %.16s\n",
2293 __func__, __le32_to_cpu(mpb->family_num), i,
2294 disk->serial);
2295 break;
2296 }
2297 }
2298
2299 if (ok_count == mpb->num_disks)
2300 return super;
2301 return NULL;
2302 }
2303
2304 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
2305 {
2306 struct intel_super *s;
2307
2308 for (s = super_list; s; s = s->next) {
2309 if (family_num != s->anchor->family_num)
2310 continue;
2311 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
2312 __le32_to_cpu(family_num), s->disks->devname);
2313 }
2314 }
2315
2316 static struct intel_super *
2317 imsm_thunderdome(struct intel_super **super_list, int len)
2318 {
2319 struct intel_super *super_table[len];
2320 struct intel_disk *disk_list = NULL;
2321 struct intel_super *champion, *spare;
2322 struct intel_super *s, **del;
2323 int tbl_size = 0;
2324 int conflict;
2325 int i;
2326
2327 memset(super_table, 0, sizeof(super_table));
2328 for (s = *super_list; s; s = s->next)
2329 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
2330
2331 for (i = 0; i < tbl_size; i++) {
2332 struct imsm_disk *d;
2333 struct intel_disk *idisk;
2334 struct imsm_super *mpb = super_table[i]->anchor;
2335
2336 s = super_table[i];
2337 d = &s->disks->disk;
2338
2339 /* 'd' must appear in merged disk list for its
2340 * configuration to be valid
2341 */
2342 idisk = disk_list_get(d->serial, disk_list);
2343 if (idisk && idisk->owner == i)
2344 s = validate_members(s, disk_list, i);
2345 else
2346 s = NULL;
2347
2348 if (!s)
2349 dprintf("%s: marking family: %#x from %d:%d offline\n",
2350 __func__, mpb->family_num,
2351 super_table[i]->disks->major,
2352 super_table[i]->disks->minor);
2353 super_table[i] = s;
2354 }
2355
2356 /* This is where the mdadm implementation differs from the Windows
2357 * driver which has no strict concept of a container. We can only
2358 * assemble one family from a container, so when returning a prodigal
2359 * array member to this system the code will not be able to disambiguate
2360 * the container contents that should be assembled ("foreign" versus
2361 * "local"). It requires user intervention to set the orig_family_num
2362 * to a new value to establish a new container. The Windows driver in
2363 * this situation fixes up the volume name in place and manages the
2364 * foreign array as an independent entity.
2365 */
2366 s = NULL;
2367 spare = NULL;
2368 conflict = 0;
2369 for (i = 0; i < tbl_size; i++) {
2370 struct intel_super *tbl_ent = super_table[i];
2371 int is_spare = 0;
2372
2373 if (!tbl_ent)
2374 continue;
2375
2376 if (tbl_ent->anchor->num_raid_devs == 0) {
2377 spare = tbl_ent;
2378 is_spare = 1;
2379 }
2380
2381 if (s && !is_spare) {
2382 show_conflicts(tbl_ent->anchor->family_num, *super_list);
2383 conflict++;
2384 } else if (!s && !is_spare)
2385 s = tbl_ent;
2386 }
2387
2388 if (!s)
2389 s = spare;
2390 if (!s) {
2391 champion = NULL;
2392 goto out;
2393 }
2394 champion = s;
2395
2396 if (conflict)
2397 fprintf(stderr, "Chose family %#x on '%s', "
2398 "assemble conflicts to new container with '--update=uuid'\n",
2399 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
2400
2401 /* collect all dl's onto 'champion', and update them to
2402 * champion's version of the status
2403 */
2404 for (s = *super_list; s; s = s->next) {
2405 struct imsm_super *mpb = champion->anchor;
2406 struct dl *dl = s->disks;
2407
2408 if (s == champion)
2409 continue;
2410
2411 for (i = 0; i < mpb->num_disks; i++) {
2412 struct imsm_disk *disk;
2413
2414 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
2415 if (disk) {
2416 dl->disk = *disk;
2417 /* only set index on disks that are a member of
2418 * a populated contianer, i.e. one with
2419 * raid_devs
2420 */
2421 if (is_failed(&dl->disk))
2422 dl->index = -2;
2423 else if (is_spare(&dl->disk))
2424 dl->index = -1;
2425 break;
2426 }
2427 }
2428
2429 if (i >= mpb->num_disks) {
2430 struct intel_disk *idisk;
2431
2432 idisk = disk_list_get(dl->serial, disk_list);
2433 if (idisk && is_spare(&idisk->disk) &&
2434 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
2435 dl->index = -1;
2436 else {
2437 dl->index = -2;
2438 continue;
2439 }
2440 }
2441
2442 dl->next = champion->disks;
2443 champion->disks = dl;
2444 s->disks = NULL;
2445 }
2446
2447 /* delete 'champion' from super_list */
2448 for (del = super_list; *del; ) {
2449 if (*del == champion) {
2450 *del = (*del)->next;
2451 break;
2452 } else
2453 del = &(*del)->next;
2454 }
2455 champion->next = NULL;
2456
2457 out:
2458 while (disk_list) {
2459 struct intel_disk *idisk = disk_list;
2460
2461 disk_list = disk_list->next;
2462 free(idisk);
2463 }
2464
2465 return champion;
2466 }
2467
2468 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
2469 char *devname, int keep_fd)
2470 {
2471 struct mdinfo *sra;
2472 struct intel_super *super_list = NULL;
2473 struct intel_super *super = NULL;
2474 int devnum = fd2devnum(fd);
2475 struct mdinfo *sd;
2476 int retry;
2477 int err = 0;
2478 int i;
2479 enum sysfs_read_flags flags;
2480
2481 flags = GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE;
2482 if (mdmon_running(devnum))
2483 flags |= SKIP_GONE_DEVS;
2484
2485 /* check if 'fd' an opened container */
2486 sra = sysfs_read(fd, 0, flags);
2487 if (!sra)
2488 return 1;
2489
2490 if (sra->array.major_version != -1 ||
2491 sra->array.minor_version != -2 ||
2492 strcmp(sra->text_version, "imsm") != 0)
2493 return 1;
2494
2495 /* load all mpbs */
2496 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
2497 struct intel_super *s = alloc_super(0);
2498 char nm[20];
2499 int dfd;
2500
2501 err = 1;
2502 if (!s)
2503 goto error;
2504 s->next = super_list;
2505 super_list = s;
2506
2507 err = 2;
2508 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2509 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
2510 if (dfd < 0)
2511 goto error;
2512
2513 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
2514
2515 /* retry the load if we might have raced against mdmon */
2516 if (err == 3 && mdmon_running(devnum))
2517 for (retry = 0; retry < 3; retry++) {
2518 usleep(3000);
2519 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
2520 if (err != 3)
2521 break;
2522 }
2523 if (!keep_fd)
2524 close(dfd);
2525 if (err)
2526 goto error;
2527 }
2528
2529 /* all mpbs enter, maybe one leaves */
2530 super = imsm_thunderdome(&super_list, i);
2531 if (!super) {
2532 err = 1;
2533 goto error;
2534 }
2535
2536 if (find_missing(super) != 0) {
2537 free_imsm(super);
2538 err = 2;
2539 goto error;
2540 }
2541
2542 if (st->subarray[0]) {
2543 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2544 super->current_vol = atoi(st->subarray);
2545 else {
2546 free_imsm(super);
2547 err = 1;
2548 goto error;
2549 }
2550 }
2551 err = 0;
2552
2553 error:
2554 while (super_list) {
2555 struct intel_super *s = super_list;
2556
2557 super_list = super_list->next;
2558 free_imsm(s);
2559 }
2560
2561 if (err)
2562 return err;
2563
2564 *sbp = super;
2565 st->container_dev = devnum;
2566 if (err == 0 && st->ss == NULL) {
2567 st->ss = &super_imsm;
2568 st->minor_version = 0;
2569 st->max_devs = IMSM_MAX_DEVICES;
2570 }
2571 st->loaded_container = 1;
2572
2573 return 0;
2574 }
2575 #endif
2576
2577 static int load_super_imsm(struct supertype *st, int fd, char *devname)
2578 {
2579 struct intel_super *super;
2580 int rv;
2581
2582 #ifndef MDASSEMBLE
2583 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
2584 return 0;
2585 #endif
2586
2587 free_super_imsm(st);
2588
2589 super = alloc_super(0);
2590 if (!super) {
2591 fprintf(stderr,
2592 Name ": malloc of %zu failed.\n",
2593 sizeof(*super));
2594 return 1;
2595 }
2596
2597 rv = load_and_parse_mpb(fd, super, devname, 0);
2598
2599 if (rv) {
2600 if (devname)
2601 fprintf(stderr,
2602 Name ": Failed to load all information "
2603 "sections on %s\n", devname);
2604 free_imsm(super);
2605 return rv;
2606 }
2607
2608 if (st->subarray[0]) {
2609 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2610 super->current_vol = atoi(st->subarray);
2611 else {
2612 free_imsm(super);
2613 return 1;
2614 }
2615 }
2616
2617 st->sb = super;
2618 if (st->ss == NULL) {
2619 st->ss = &super_imsm;
2620 st->minor_version = 0;
2621 st->max_devs = IMSM_MAX_DEVICES;
2622 }
2623 st->loaded_container = 0;
2624
2625 return 0;
2626 }
2627
2628 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
2629 {
2630 if (info->level == 1)
2631 return 128;
2632 return info->chunk_size >> 9;
2633 }
2634
2635 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
2636 {
2637 __u32 num_stripes;
2638
2639 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
2640 num_stripes /= num_domains;
2641
2642 return num_stripes;
2643 }
2644
2645 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
2646 {
2647 if (info->level == 1)
2648 return info->size * 2;
2649 else
2650 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
2651 }
2652
2653 static void imsm_update_version_info(struct intel_super *super)
2654 {
2655 /* update the version and attributes */
2656 struct imsm_super *mpb = super->anchor;
2657 char *version;
2658 struct imsm_dev *dev;
2659 struct imsm_map *map;
2660 int i;
2661
2662 for (i = 0; i < mpb->num_raid_devs; i++) {
2663 dev = get_imsm_dev(super, i);
2664 map = get_imsm_map(dev, 0);
2665 if (__le32_to_cpu(dev->size_high) > 0)
2666 mpb->attributes |= MPB_ATTRIB_2TB;
2667
2668 /* FIXME detect when an array spans a port multiplier */
2669 #if 0
2670 mpb->attributes |= MPB_ATTRIB_PM;
2671 #endif
2672
2673 if (mpb->num_raid_devs > 1 ||
2674 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
2675 version = MPB_VERSION_ATTRIBS;
2676 switch (get_imsm_raid_level(map)) {
2677 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
2678 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
2679 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
2680 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
2681 }
2682 } else {
2683 if (map->num_members >= 5)
2684 version = MPB_VERSION_5OR6_DISK_ARRAY;
2685 else if (dev->status == DEV_CLONE_N_GO)
2686 version = MPB_VERSION_CNG;
2687 else if (get_imsm_raid_level(map) == 5)
2688 version = MPB_VERSION_RAID5;
2689 else if (map->num_members >= 3)
2690 version = MPB_VERSION_3OR4_DISK_ARRAY;
2691 else if (get_imsm_raid_level(map) == 1)
2692 version = MPB_VERSION_RAID1;
2693 else
2694 version = MPB_VERSION_RAID0;
2695 }
2696 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
2697 }
2698 }
2699
2700 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
2701 unsigned long long size, char *name,
2702 char *homehost, int *uuid)
2703 {
2704 /* We are creating a volume inside a pre-existing container.
2705 * so st->sb is already set.
2706 */
2707 struct intel_super *super = st->sb;
2708 struct imsm_super *mpb = super->anchor;
2709 struct intel_dev *dv;
2710 struct imsm_dev *dev;
2711 struct imsm_vol *vol;
2712 struct imsm_map *map;
2713 int idx = mpb->num_raid_devs;
2714 int i;
2715 unsigned long long array_blocks;
2716 size_t size_old, size_new;
2717 __u32 num_data_stripes;
2718
2719 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
2720 fprintf(stderr, Name": This imsm-container already has the "
2721 "maximum of %d volumes\n", super->orom->vpa);
2722 return 0;
2723 }
2724
2725 /* ensure the mpb is large enough for the new data */
2726 size_old = __le32_to_cpu(mpb->mpb_size);
2727 size_new = disks_to_mpb_size(info->nr_disks);
2728 if (size_new > size_old) {
2729 void *mpb_new;
2730 size_t size_round = ROUND_UP(size_new, 512);
2731
2732 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
2733 fprintf(stderr, Name": could not allocate new mpb\n");
2734 return 0;
2735 }
2736 memcpy(mpb_new, mpb, size_old);
2737 free(mpb);
2738 mpb = mpb_new;
2739 super->anchor = mpb_new;
2740 mpb->mpb_size = __cpu_to_le32(size_new);
2741 memset(mpb_new + size_old, 0, size_round - size_old);
2742 }
2743 super->current_vol = idx;
2744 /* when creating the first raid device in this container set num_disks
2745 * to zero, i.e. delete this spare and add raid member devices in
2746 * add_to_super_imsm_volume()
2747 */
2748 if (super->current_vol == 0)
2749 mpb->num_disks = 0;
2750
2751 for (i = 0; i < super->current_vol; i++) {
2752 dev = get_imsm_dev(super, i);
2753 if (strncmp((char *) dev->volume, name,
2754 MAX_RAID_SERIAL_LEN) == 0) {
2755 fprintf(stderr, Name": '%s' is already defined for this container\n",
2756 name);
2757 return 0;
2758 }
2759 }
2760
2761 sprintf(st->subarray, "%d", idx);
2762 dv = malloc(sizeof(*dv));
2763 if (!dv) {
2764 fprintf(stderr, Name ": failed to allocate device list entry\n");
2765 return 0;
2766 }
2767 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
2768 if (!dev) {
2769 free(dv);
2770 fprintf(stderr, Name": could not allocate raid device\n");
2771 return 0;
2772 }
2773 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
2774 if (info->level == 1)
2775 array_blocks = info_to_blocks_per_member(info);
2776 else
2777 array_blocks = calc_array_size(info->level, info->raid_disks,
2778 info->layout, info->chunk_size,
2779 info->size*2);
2780 /* round array size down to closest MB */
2781 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
2782
2783 dev->size_low = __cpu_to_le32((__u32) array_blocks);
2784 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
2785 dev->status = __cpu_to_le32(0);
2786 dev->reserved_blocks = __cpu_to_le32(0);
2787 vol = &dev->vol;
2788 vol->migr_state = 0;
2789 set_migr_type(dev, MIGR_INIT);
2790 vol->dirty = 0;
2791 vol->curr_migr_unit = 0;
2792 map = get_imsm_map(dev, 0);
2793 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
2794 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
2795 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
2796 map->failed_disk_num = ~0;
2797 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
2798 IMSM_T_STATE_NORMAL;
2799 map->ddf = 1;
2800
2801 if (info->level == 1 && info->raid_disks > 2) {
2802 fprintf(stderr, Name": imsm does not support more than 2 disks"
2803 "in a raid1 volume\n");
2804 return 0;
2805 }
2806
2807 map->raid_level = info->level;
2808 if (info->level == 10) {
2809 map->raid_level = 1;
2810 map->num_domains = info->raid_disks / 2;
2811 } else if (info->level == 1)
2812 map->num_domains = info->raid_disks;
2813 else
2814 map->num_domains = 1;
2815
2816 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
2817 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
2818
2819 map->num_members = info->raid_disks;
2820 for (i = 0; i < map->num_members; i++) {
2821 /* initialized in add_to_super */
2822 set_imsm_ord_tbl_ent(map, i, 0);
2823 }
2824 mpb->num_raid_devs++;
2825
2826 dv->dev = dev;
2827 dv->index = super->current_vol;
2828 dv->next = super->devlist;
2829 super->devlist = dv;
2830
2831 imsm_update_version_info(super);
2832
2833 return 1;
2834 }
2835
2836 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
2837 unsigned long long size, char *name,
2838 char *homehost, int *uuid)
2839 {
2840 /* This is primarily called by Create when creating a new array.
2841 * We will then get add_to_super called for each component, and then
2842 * write_init_super called to write it out to each device.
2843 * For IMSM, Create can create on fresh devices or on a pre-existing
2844 * array.
2845 * To create on a pre-existing array a different method will be called.
2846 * This one is just for fresh drives.
2847 */
2848 struct intel_super *super;
2849 struct imsm_super *mpb;
2850 size_t mpb_size;
2851 char *version;
2852
2853 if (st->sb)
2854 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
2855
2856 if (info)
2857 mpb_size = disks_to_mpb_size(info->nr_disks);
2858 else
2859 mpb_size = 512;
2860
2861 super = alloc_super(1);
2862 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
2863 free(super);
2864 super = NULL;
2865 }
2866 if (!super) {
2867 fprintf(stderr, Name
2868 ": %s could not allocate superblock\n", __func__);
2869 return 0;
2870 }
2871 memset(super->buf, 0, mpb_size);
2872 mpb = super->buf;
2873 mpb->mpb_size = __cpu_to_le32(mpb_size);
2874 st->sb = super;
2875
2876 if (info == NULL) {
2877 /* zeroing superblock */
2878 return 0;
2879 }
2880
2881 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
2882
2883 version = (char *) mpb->sig;
2884 strcpy(version, MPB_SIGNATURE);
2885 version += strlen(MPB_SIGNATURE);
2886 strcpy(version, MPB_VERSION_RAID0);
2887
2888 return 1;
2889 }
2890
2891 #ifndef MDASSEMBLE
2892 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
2893 int fd, char *devname)
2894 {
2895 struct intel_super *super = st->sb;
2896 struct imsm_super *mpb = super->anchor;
2897 struct dl *dl;
2898 struct imsm_dev *dev;
2899 struct imsm_map *map;
2900
2901 dev = get_imsm_dev(super, super->current_vol);
2902 map = get_imsm_map(dev, 0);
2903
2904 if (! (dk->state & (1<<MD_DISK_SYNC))) {
2905 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
2906 devname);
2907 return 1;
2908 }
2909
2910 if (fd == -1) {
2911 /* we're doing autolayout so grab the pre-marked (in
2912 * validate_geometry) raid_disk
2913 */
2914 for (dl = super->disks; dl; dl = dl->next)
2915 if (dl->raiddisk == dk->raid_disk)
2916 break;
2917 } else {
2918 for (dl = super->disks; dl ; dl = dl->next)
2919 if (dl->major == dk->major &&
2920 dl->minor == dk->minor)
2921 break;
2922 }
2923
2924 if (!dl) {
2925 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
2926 return 1;
2927 }
2928
2929 /* add a pristine spare to the metadata */
2930 if (dl->index < 0) {
2931 dl->index = super->anchor->num_disks;
2932 super->anchor->num_disks++;
2933 }
2934 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
2935 dl->disk.status = CONFIGURED_DISK;
2936
2937 /* if we are creating the first raid device update the family number */
2938 if (super->current_vol == 0) {
2939 __u32 sum;
2940 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
2941 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
2942
2943 *_dev = *dev;
2944 *_disk = dl->disk;
2945 sum = random32();
2946 sum += __gen_imsm_checksum(mpb);
2947 mpb->family_num = __cpu_to_le32(sum);
2948 mpb->orig_family_num = mpb->family_num;
2949 }
2950
2951 return 0;
2952 }
2953
2954 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
2955 int fd, char *devname)
2956 {
2957 struct intel_super *super = st->sb;
2958 struct dl *dd;
2959 unsigned long long size;
2960 __u32 id;
2961 int rv;
2962 struct stat stb;
2963
2964 /* if we are on an RAID enabled platform check that the disk is
2965 * attached to the raid controller
2966 */
2967 if (super->hba && !disk_attached_to_hba(fd, super->hba)) {
2968 fprintf(stderr,
2969 Name ": %s is not attached to the raid controller: %s\n",
2970 devname ? : "disk", super->hba);
2971 return 1;
2972 }
2973
2974 if (super->current_vol >= 0)
2975 return add_to_super_imsm_volume(st, dk, fd, devname);
2976
2977 fstat(fd, &stb);
2978 dd = malloc(sizeof(*dd));
2979 if (!dd) {
2980 fprintf(stderr,
2981 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
2982 return 1;
2983 }
2984 memset(dd, 0, sizeof(*dd));
2985 dd->major = major(stb.st_rdev);
2986 dd->minor = minor(stb.st_rdev);
2987 dd->index = -1;
2988 dd->devname = devname ? strdup(devname) : NULL;
2989 dd->fd = fd;
2990 dd->e = NULL;
2991 rv = imsm_read_serial(fd, devname, dd->serial);
2992 if (rv) {
2993 fprintf(stderr,
2994 Name ": failed to retrieve scsi serial, aborting\n");
2995 free(dd);
2996 abort();
2997 }
2998
2999 get_dev_size(fd, NULL, &size);
3000 size /= 512;
3001 serialcpy(dd->disk.serial, dd->serial);
3002 dd->disk.total_blocks = __cpu_to_le32(size);
3003 dd->disk.status = SPARE_DISK;
3004 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
3005 dd->disk.scsi_id = __cpu_to_le32(id);
3006 else
3007 dd->disk.scsi_id = __cpu_to_le32(0);
3008
3009 if (st->update_tail) {
3010 dd->next = super->add;
3011 super->add = dd;
3012 } else {
3013 dd->next = super->disks;
3014 super->disks = dd;
3015 }
3016
3017 return 0;
3018 }
3019
3020 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3021
3022 static union {
3023 char buf[512];
3024 struct imsm_super anchor;
3025 } spare_record __attribute__ ((aligned(512)));
3026
3027 /* spare records have their own family number and do not have any defined raid
3028 * devices
3029 */
3030 static int write_super_imsm_spares(struct intel_super *super, int doclose)
3031 {
3032 struct imsm_super *mpb = super->anchor;
3033 struct imsm_super *spare = &spare_record.anchor;
3034 __u32 sum;
3035 struct dl *d;
3036
3037 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3038 spare->generation_num = __cpu_to_le32(1UL),
3039 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3040 spare->num_disks = 1,
3041 spare->num_raid_devs = 0,
3042 spare->cache_size = mpb->cache_size,
3043 spare->pwr_cycle_count = __cpu_to_le32(1),
3044
3045 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3046 MPB_SIGNATURE MPB_VERSION_RAID0);
3047
3048 for (d = super->disks; d; d = d->next) {
3049 if (d->index != -1)
3050 continue;
3051
3052 spare->disk[0] = d->disk;
3053 sum = __gen_imsm_checksum(spare);
3054 spare->family_num = __cpu_to_le32(sum);
3055 spare->orig_family_num = 0;
3056 sum = __gen_imsm_checksum(spare);
3057 spare->check_sum = __cpu_to_le32(sum);
3058
3059 if (store_imsm_mpb(d->fd, spare)) {
3060 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3061 __func__, d->major, d->minor, strerror(errno));
3062 return 1;
3063 }
3064 if (doclose) {
3065 close(d->fd);
3066 d->fd = -1;
3067 }
3068 }
3069
3070 return 0;
3071 }
3072
3073 static int write_super_imsm(struct intel_super *super, int doclose)
3074 {
3075 struct imsm_super *mpb = super->anchor;
3076 struct dl *d;
3077 __u32 generation;
3078 __u32 sum;
3079 int spares = 0;
3080 int i;
3081 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
3082
3083 /* 'generation' is incremented everytime the metadata is written */
3084 generation = __le32_to_cpu(mpb->generation_num);
3085 generation++;
3086 mpb->generation_num = __cpu_to_le32(generation);
3087
3088 /* fix up cases where previous mdadm releases failed to set
3089 * orig_family_num
3090 */
3091 if (mpb->orig_family_num == 0)
3092 mpb->orig_family_num = mpb->family_num;
3093
3094 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
3095 for (d = super->disks; d; d = d->next) {
3096 if (d->index == -1)
3097 spares++;
3098 else
3099 mpb->disk[d->index] = d->disk;
3100 }
3101 for (d = super->missing; d; d = d->next)
3102 mpb->disk[d->index] = d->disk;
3103
3104 for (i = 0; i < mpb->num_raid_devs; i++) {
3105 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3106
3107 imsm_copy_dev(dev, get_imsm_dev(super, i));
3108 mpb_size += sizeof_imsm_dev(dev, 0);
3109 }
3110 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3111 mpb->mpb_size = __cpu_to_le32(mpb_size);
3112
3113 /* recalculate checksum */
3114 sum = __gen_imsm_checksum(mpb);
3115 mpb->check_sum = __cpu_to_le32(sum);
3116
3117 /* write the mpb for disks that compose raid devices */
3118 for (d = super->disks; d ; d = d->next) {
3119 if (d->index < 0)
3120 continue;
3121 if (store_imsm_mpb(d->fd, mpb))
3122 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3123 __func__, d->major, d->minor, strerror(errno));
3124 if (doclose) {
3125 close(d->fd);
3126 d->fd = -1;
3127 }
3128 }
3129
3130 if (spares)
3131 return write_super_imsm_spares(super, doclose);
3132
3133 return 0;
3134 }
3135
3136
3137 static int create_array(struct supertype *st, int dev_idx)
3138 {
3139 size_t len;
3140 struct imsm_update_create_array *u;
3141 struct intel_super *super = st->sb;
3142 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3143 struct imsm_map *map = get_imsm_map(dev, 0);
3144 struct disk_info *inf;
3145 struct imsm_disk *disk;
3146 int i;
3147
3148 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
3149 sizeof(*inf) * map->num_members;
3150 u = malloc(len);
3151 if (!u) {
3152 fprintf(stderr, "%s: failed to allocate update buffer\n",
3153 __func__);
3154 return 1;
3155 }
3156
3157 u->type = update_create_array;
3158 u->dev_idx = dev_idx;
3159 imsm_copy_dev(&u->dev, dev);
3160 inf = get_disk_info(u);
3161 for (i = 0; i < map->num_members; i++) {
3162 int idx = get_imsm_disk_idx(dev, i);
3163
3164 disk = get_imsm_disk(super, idx);
3165 serialcpy(inf[i].serial, disk->serial);
3166 }
3167 append_metadata_update(st, u, len);
3168
3169 return 0;
3170 }
3171
3172 static int _add_disk(struct supertype *st)
3173 {
3174 struct intel_super *super = st->sb;
3175 size_t len;
3176 struct imsm_update_add_disk *u;
3177
3178 if (!super->add)
3179 return 0;
3180
3181 len = sizeof(*u);
3182 u = malloc(len);
3183 if (!u) {
3184 fprintf(stderr, "%s: failed to allocate update buffer\n",
3185 __func__);
3186 return 1;
3187 }
3188
3189 u->type = update_add_disk;
3190 append_metadata_update(st, u, len);
3191
3192 return 0;
3193 }
3194
3195 static int write_init_super_imsm(struct supertype *st)
3196 {
3197 struct intel_super *super = st->sb;
3198 int current_vol = super->current_vol;
3199
3200 /* we are done with current_vol reset it to point st at the container */
3201 super->current_vol = -1;
3202
3203 if (st->update_tail) {
3204 /* queue the recently created array / added disk
3205 * as a metadata update */
3206 struct dl *d;
3207 int rv;
3208
3209 /* determine if we are creating a volume or adding a disk */
3210 if (current_vol < 0) {
3211 /* in the add disk case we are running in mdmon
3212 * context, so don't close fd's
3213 */
3214 return _add_disk(st);
3215 } else
3216 rv = create_array(st, current_vol);
3217
3218 for (d = super->disks; d ; d = d->next) {
3219 close(d->fd);
3220 d->fd = -1;
3221 }
3222
3223 return rv;
3224 } else
3225 return write_super_imsm(st->sb, 1);
3226 }
3227 #endif
3228
3229 static int store_super_imsm(struct supertype *st, int fd)
3230 {
3231 struct intel_super *super = st->sb;
3232 struct imsm_super *mpb = super ? super->anchor : NULL;
3233
3234 if (!mpb)
3235 return 1;
3236
3237 #ifndef MDASSEMBLE
3238 return store_imsm_mpb(fd, mpb);
3239 #else
3240 return 1;
3241 #endif
3242 }
3243
3244 static int imsm_bbm_log_size(struct imsm_super *mpb)
3245 {
3246 return __le32_to_cpu(mpb->bbm_log_size);
3247 }
3248
3249 #ifndef MDASSEMBLE
3250 static int validate_geometry_imsm_container(struct supertype *st, int level,
3251 int layout, int raiddisks, int chunk,
3252 unsigned long long size, char *dev,
3253 unsigned long long *freesize,
3254 int verbose)
3255 {
3256 int fd;
3257 unsigned long long ldsize;
3258 const struct imsm_orom *orom;
3259
3260 if (level != LEVEL_CONTAINER)
3261 return 0;
3262 if (!dev)
3263 return 1;
3264
3265 if (check_env("IMSM_NO_PLATFORM"))
3266 orom = NULL;
3267 else
3268 orom = find_imsm_orom();
3269 if (orom && raiddisks > orom->tds) {
3270 if (verbose)
3271 fprintf(stderr, Name ": %d exceeds maximum number of"
3272 " platform supported disks: %d\n",
3273 raiddisks, orom->tds);
3274 return 0;
3275 }
3276
3277 fd = open(dev, O_RDONLY|O_EXCL, 0);
3278 if (fd < 0) {
3279 if (verbose)
3280 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
3281 dev, strerror(errno));
3282 return 0;
3283 }
3284 if (!get_dev_size(fd, dev, &ldsize)) {
3285 close(fd);
3286 return 0;
3287 }
3288 close(fd);
3289
3290 *freesize = avail_size_imsm(st, ldsize >> 9);
3291
3292 return 1;
3293 }
3294
3295 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
3296 {
3297 const unsigned long long base_start = e[*idx].start;
3298 unsigned long long end = base_start + e[*idx].size;
3299 int i;
3300
3301 if (base_start == end)
3302 return 0;
3303
3304 *idx = *idx + 1;
3305 for (i = *idx; i < num_extents; i++) {
3306 /* extend overlapping extents */
3307 if (e[i].start >= base_start &&
3308 e[i].start <= end) {
3309 if (e[i].size == 0)
3310 return 0;
3311 if (e[i].start + e[i].size > end)
3312 end = e[i].start + e[i].size;
3313 } else if (e[i].start > end) {
3314 *idx = i;
3315 break;
3316 }
3317 }
3318
3319 return end - base_start;
3320 }
3321
3322 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
3323 {
3324 /* build a composite disk with all known extents and generate a new
3325 * 'maxsize' given the "all disks in an array must share a common start
3326 * offset" constraint
3327 */
3328 struct extent *e = calloc(sum_extents, sizeof(*e));
3329 struct dl *dl;
3330 int i, j;
3331 int start_extent;
3332 unsigned long long pos;
3333 unsigned long long start = 0;
3334 unsigned long long maxsize;
3335 unsigned long reserve;
3336
3337 if (!e)
3338 return 0;
3339
3340 /* coalesce and sort all extents. also, check to see if we need to
3341 * reserve space between member arrays
3342 */
3343 j = 0;
3344 for (dl = super->disks; dl; dl = dl->next) {
3345 if (!dl->e)
3346 continue;
3347 for (i = 0; i < dl->extent_cnt; i++)
3348 e[j++] = dl->e[i];
3349 }
3350 qsort(e, sum_extents, sizeof(*e), cmp_extent);
3351
3352 /* merge extents */
3353 i = 0;
3354 j = 0;
3355 while (i < sum_extents) {
3356 e[j].start = e[i].start;
3357 e[j].size = find_size(e, &i, sum_extents);
3358 j++;
3359 if (e[j-1].size == 0)
3360 break;
3361 }
3362
3363 pos = 0;
3364 maxsize = 0;
3365 start_extent = 0;
3366 i = 0;
3367 do {
3368 unsigned long long esize;
3369
3370 esize = e[i].start - pos;
3371 if (esize >= maxsize) {
3372 maxsize = esize;
3373 start = pos;
3374 start_extent = i;
3375 }
3376 pos = e[i].start + e[i].size;
3377 i++;
3378 } while (e[i-1].size);
3379 free(e);
3380
3381 if (maxsize == 0)
3382 return 0;
3383
3384 /* FIXME assumes volume at offset 0 is the first volume in a
3385 * container
3386 */
3387 if (start_extent > 0)
3388 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
3389 else
3390 reserve = 0;
3391
3392 if (maxsize < reserve)
3393 return 0;
3394
3395 super->create_offset = ~((__u32) 0);
3396 if (start + reserve > super->create_offset)
3397 return 0; /* start overflows create_offset */
3398 super->create_offset = start + reserve;
3399
3400 return maxsize - reserve;
3401 }
3402
3403 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
3404 {
3405 if (level < 0 || level == 6 || level == 4)
3406 return 0;
3407
3408 /* if we have an orom prevent invalid raid levels */
3409 if (orom)
3410 switch (level) {
3411 case 0: return imsm_orom_has_raid0(orom);
3412 case 1:
3413 if (raiddisks > 2)
3414 return imsm_orom_has_raid1e(orom);
3415 return imsm_orom_has_raid1(orom) && raiddisks == 2;
3416 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
3417 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
3418 }
3419 else
3420 return 1; /* not on an Intel RAID platform so anything goes */
3421
3422 return 0;
3423 }
3424
3425 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
3426 static int
3427 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
3428 int raiddisks, int chunk, int verbose)
3429 {
3430 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
3431 pr_vrb(": platform does not support raid%d with %d disk%s\n",
3432 level, raiddisks, raiddisks > 1 ? "s" : "");
3433 return 0;
3434 }
3435 if (super->orom && level != 1 &&
3436 !imsm_orom_has_chunk(super->orom, chunk)) {
3437 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
3438 return 0;
3439 }
3440 if (layout != imsm_level_to_layout(level)) {
3441 if (level == 5)
3442 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
3443 else if (level == 10)
3444 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
3445 else
3446 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
3447 layout, level);
3448 return 0;
3449 }
3450
3451 return 1;
3452 }
3453
3454 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
3455 * FIX ME add ahci details
3456 */
3457 static int validate_geometry_imsm_volume(struct supertype *st, int level,
3458 int layout, int raiddisks, int chunk,
3459 unsigned long long size, char *dev,
3460 unsigned long long *freesize,
3461 int verbose)
3462 {
3463 struct stat stb;
3464 struct intel_super *super = st->sb;
3465 struct imsm_super *mpb = super->anchor;
3466 struct dl *dl;
3467 unsigned long long pos = 0;
3468 unsigned long long maxsize;
3469 struct extent *e;
3470 int i;
3471
3472 /* We must have the container info already read in. */
3473 if (!super)
3474 return 0;
3475
3476 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose))
3477 return 0;
3478
3479 if (!dev) {
3480 /* General test: make sure there is space for
3481 * 'raiddisks' device extents of size 'size' at a given
3482 * offset
3483 */
3484 unsigned long long minsize = size;
3485 unsigned long long start_offset = MaxSector;
3486 int dcnt = 0;
3487 if (minsize == 0)
3488 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
3489 for (dl = super->disks; dl ; dl = dl->next) {
3490 int found = 0;
3491
3492 pos = 0;
3493 i = 0;
3494 e = get_extents(super, dl);
3495 if (!e) continue;
3496 do {
3497 unsigned long long esize;
3498 esize = e[i].start - pos;
3499 if (esize >= minsize)
3500 found = 1;
3501 if (found && start_offset == MaxSector) {
3502 start_offset = pos;
3503 break;
3504 } else if (found && pos != start_offset) {
3505 found = 0;
3506 break;
3507 }
3508 pos = e[i].start + e[i].size;
3509 i++;
3510 } while (e[i-1].size);
3511 if (found)
3512 dcnt++;
3513 free(e);
3514 }
3515 if (dcnt < raiddisks) {
3516 if (verbose)
3517 fprintf(stderr, Name ": imsm: Not enough "
3518 "devices with space for this array "
3519 "(%d < %d)\n",
3520 dcnt, raiddisks);
3521 return 0;
3522 }
3523 return 1;
3524 }
3525
3526 /* This device must be a member of the set */
3527 if (stat(dev, &stb) < 0)
3528 return 0;
3529 if ((S_IFMT & stb.st_mode) != S_IFBLK)
3530 return 0;
3531 for (dl = super->disks ; dl ; dl = dl->next) {
3532 if (dl->major == major(stb.st_rdev) &&
3533 dl->minor == minor(stb.st_rdev))
3534 break;
3535 }
3536 if (!dl) {
3537 if (verbose)
3538 fprintf(stderr, Name ": %s is not in the "
3539 "same imsm set\n", dev);
3540 return 0;
3541 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
3542 /* If a volume is present then the current creation attempt
3543 * cannot incorporate new spares because the orom may not
3544 * understand this configuration (all member disks must be
3545 * members of each array in the container).
3546 */
3547 fprintf(stderr, Name ": %s is a spare and a volume"
3548 " is already defined for this container\n", dev);
3549 fprintf(stderr, Name ": The option-rom requires all member"
3550 " disks to be a member of all volumes\n");
3551 return 0;
3552 }
3553
3554 /* retrieve the largest free space block */
3555 e = get_extents(super, dl);
3556 maxsize = 0;
3557 i = 0;
3558 if (e) {
3559 do {
3560 unsigned long long esize;
3561
3562 esize = e[i].start - pos;
3563 if (esize >= maxsize)
3564 maxsize = esize;
3565 pos = e[i].start + e[i].size;
3566 i++;
3567 } while (e[i-1].size);
3568 dl->e = e;
3569 dl->extent_cnt = i;
3570 } else {
3571 if (verbose)
3572 fprintf(stderr, Name ": unable to determine free space for: %s\n",
3573 dev);
3574 return 0;
3575 }
3576 if (maxsize < size) {
3577 if (verbose)
3578 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
3579 dev, maxsize, size);
3580 return 0;
3581 }
3582
3583 /* count total number of extents for merge */
3584 i = 0;
3585 for (dl = super->disks; dl; dl = dl->next)
3586 if (dl->e)
3587 i += dl->extent_cnt;
3588
3589 maxsize = merge_extents(super, i);
3590 if (maxsize < size || maxsize == 0) {
3591 if (verbose)
3592 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
3593 maxsize, size);
3594 return 0;
3595 }
3596
3597 *freesize = maxsize;
3598
3599 return 1;
3600 }
3601
3602 static int reserve_space(struct supertype *st, int raiddisks,
3603 unsigned long long size, int chunk,
3604 unsigned long long *freesize)
3605 {
3606 struct intel_super *super = st->sb;
3607 struct imsm_super *mpb = super->anchor;
3608 struct dl *dl;
3609 int i;
3610 int extent_cnt;
3611 struct extent *e;
3612 unsigned long long maxsize;
3613 unsigned long long minsize;
3614 int cnt;
3615 int used;
3616
3617 /* find the largest common start free region of the possible disks */
3618 used = 0;
3619 extent_cnt = 0;
3620 cnt = 0;
3621 for (dl = super->disks; dl; dl = dl->next) {
3622 dl->raiddisk = -1;
3623
3624 if (dl->index >= 0)
3625 used++;
3626
3627 /* don't activate new spares if we are orom constrained
3628 * and there is already a volume active in the container
3629 */
3630 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
3631 continue;
3632
3633 e = get_extents(super, dl);
3634 if (!e)
3635 continue;
3636 for (i = 1; e[i-1].size; i++)
3637 ;
3638 dl->e = e;
3639 dl->extent_cnt = i;
3640 extent_cnt += i;
3641 cnt++;
3642 }
3643
3644 maxsize = merge_extents(super, extent_cnt);
3645 minsize = size;
3646 if (size == 0)
3647 minsize = chunk;
3648
3649 if (cnt < raiddisks ||
3650 (super->orom && used && used != raiddisks) ||
3651 maxsize < minsize ||
3652 maxsize == 0) {
3653 fprintf(stderr, Name ": not enough devices with space to create array.\n");
3654 return 0; /* No enough free spaces large enough */
3655 }
3656
3657 if (size == 0) {
3658 size = maxsize;
3659 if (chunk) {
3660 size /= chunk;
3661 size *= chunk;
3662 }
3663 }
3664
3665 cnt = 0;
3666 for (dl = super->disks; dl; dl = dl->next)
3667 if (dl->e)
3668 dl->raiddisk = cnt++;
3669
3670 *freesize = size;
3671
3672 return 1;
3673 }
3674
3675 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
3676 int raiddisks, int chunk, unsigned long long size,
3677 char *dev, unsigned long long *freesize,
3678 int verbose)
3679 {
3680 int fd, cfd;
3681 struct mdinfo *sra;
3682
3683 /* if given unused devices create a container
3684 * if given given devices in a container create a member volume
3685 */
3686 if (level == LEVEL_CONTAINER) {
3687 /* Must be a fresh device to add to a container */
3688 return validate_geometry_imsm_container(st, level, layout,
3689 raiddisks, chunk, size,
3690 dev, freesize,
3691 verbose);
3692 }
3693
3694 if (!dev) {
3695 if (st->sb && freesize) {
3696 /* we are being asked to automatically layout a
3697 * new volume based on the current contents of
3698 * the container. If the the parameters can be
3699 * satisfied reserve_space will record the disks,
3700 * start offset, and size of the volume to be
3701 * created. add_to_super and getinfo_super
3702 * detect when autolayout is in progress.
3703 */
3704 if (!validate_geometry_imsm_orom(st->sb, level, layout,
3705 raiddisks, chunk,
3706 verbose))
3707 return 0;
3708 return reserve_space(st, raiddisks, size, chunk, freesize);
3709 }
3710 return 1;
3711 }
3712 if (st->sb) {
3713 /* creating in a given container */
3714 return validate_geometry_imsm_volume(st, level, layout,
3715 raiddisks, chunk, size,
3716 dev, freesize, verbose);
3717 }
3718
3719 /* limit creation to the following levels */
3720 if (!dev)
3721 switch (level) {
3722 case 0:
3723 case 1:
3724 case 10:
3725 case 5:
3726 return 0;
3727 default:
3728 if (verbose)
3729 fprintf(stderr, Name
3730 ": IMSM only supports levels 0,1,5,10\n");
3731 return 1;
3732 }
3733
3734 /* This device needs to be a device in an 'imsm' container */
3735 fd = open(dev, O_RDONLY|O_EXCL, 0);
3736 if (fd >= 0) {
3737 if (verbose)
3738 fprintf(stderr,
3739 Name ": Cannot create this array on device %s\n",
3740 dev);
3741 close(fd);
3742 return 0;
3743 }
3744 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
3745 if (verbose)
3746 fprintf(stderr, Name ": Cannot open %s: %s\n",
3747 dev, strerror(errno));
3748 return 0;
3749 }
3750 /* Well, it is in use by someone, maybe an 'imsm' container. */
3751 cfd = open_container(fd);
3752 if (cfd < 0) {
3753 close(fd);
3754 if (verbose)
3755 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
3756 dev);
3757 return 0;
3758 }
3759 sra = sysfs_read(cfd, 0, GET_VERSION);
3760 close(fd);
3761 if (sra && sra->array.major_version == -1 &&
3762 strcmp(sra->text_version, "imsm") == 0) {
3763 /* This is a member of a imsm container. Load the container
3764 * and try to create a volume
3765 */
3766 struct intel_super *super;
3767
3768 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
3769 st->sb = super;
3770 st->container_dev = fd2devnum(cfd);
3771 close(cfd);
3772 return validate_geometry_imsm_volume(st, level, layout,
3773 raiddisks, chunk,
3774 size, dev,
3775 freesize, verbose);
3776 }
3777 close(cfd);
3778 } else /* may belong to another container */
3779 return 0;
3780
3781 return 1;
3782 }
3783 #endif /* MDASSEMBLE */
3784
3785 static struct mdinfo *container_content_imsm(struct supertype *st)
3786 {
3787 /* Given a container loaded by load_super_imsm_all,
3788 * extract information about all the arrays into
3789 * an mdinfo tree.
3790 *
3791 * For each imsm_dev create an mdinfo, fill it in,
3792 * then look for matching devices in super->disks
3793 * and create appropriate device mdinfo.
3794 */
3795 struct intel_super *super = st->sb;
3796 struct imsm_super *mpb = super->anchor;
3797 struct mdinfo *rest = NULL;
3798 int i;
3799
3800 /* do not assemble arrays that might have bad blocks */
3801 if (imsm_bbm_log_size(super->anchor)) {
3802 fprintf(stderr, Name ": BBM log found in metadata. "
3803 "Cannot activate array(s).\n");
3804 return NULL;
3805 }
3806
3807 for (i = 0; i < mpb->num_raid_devs; i++) {
3808 struct imsm_dev *dev = get_imsm_dev(super, i);
3809 struct imsm_map *map = get_imsm_map(dev, 0);
3810 struct mdinfo *this;
3811 int slot;
3812
3813 /* do not publish arrays that are in the middle of an
3814 * unsupported migration
3815 */
3816 if (dev->vol.migr_state &&
3817 (migr_type(dev) == MIGR_GEN_MIGR ||
3818 migr_type(dev) == MIGR_STATE_CHANGE)) {
3819 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
3820 " unsupported migration in progress\n",
3821 dev->volume);
3822 continue;
3823 }
3824
3825 this = malloc(sizeof(*this));
3826 memset(this, 0, sizeof(*this));
3827 this->next = rest;
3828
3829 super->current_vol = i;
3830 getinfo_super_imsm_volume(st, this);
3831 for (slot = 0 ; slot < map->num_members; slot++) {
3832 struct mdinfo *info_d;
3833 struct dl *d;
3834 int idx;
3835 int skip;
3836 __u32 ord;
3837
3838 skip = 0;
3839 idx = get_imsm_disk_idx(dev, slot);
3840 ord = get_imsm_ord_tbl_ent(dev, slot);
3841 for (d = super->disks; d ; d = d->next)
3842 if (d->index == idx)
3843 break;
3844
3845 if (d == NULL)
3846 skip = 1;
3847 if (d && is_failed(&d->disk))
3848 skip = 1;
3849 if (ord & IMSM_ORD_REBUILD)
3850 skip = 1;
3851
3852 /*
3853 * if we skip some disks the array will be assmebled degraded;
3854 * reset resync start to avoid a dirty-degraded situation
3855 *
3856 * FIXME handle dirty degraded
3857 */
3858 if (skip && !dev->vol.dirty)
3859 this->resync_start = MaxSector;
3860 if (skip)
3861 continue;
3862
3863 info_d = malloc(sizeof(*info_d));
3864 if (!info_d) {
3865 fprintf(stderr, Name ": failed to allocate disk"
3866 " for volume %.16s\n", dev->volume);
3867 free(this);
3868 this = rest;
3869 break;
3870 }
3871 memset(info_d, 0, sizeof(*info_d));
3872 info_d->next = this->devs;
3873 this->devs = info_d;
3874
3875 info_d->disk.number = d->index;
3876 info_d->disk.major = d->major;
3877 info_d->disk.minor = d->minor;
3878 info_d->disk.raid_disk = slot;
3879 info_d->recovery_start = MaxSector;
3880
3881 this->array.working_disks++;
3882
3883 info_d->events = __le32_to_cpu(mpb->generation_num);
3884 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
3885 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
3886 if (d->devname)
3887 strcpy(info_d->name, d->devname);
3888 }
3889 rest = this;
3890 }
3891
3892 return rest;
3893 }
3894
3895
3896 #ifndef MDASSEMBLE
3897 static int imsm_open_new(struct supertype *c, struct active_array *a,
3898 char *inst)
3899 {
3900 struct intel_super *super = c->sb;
3901 struct imsm_super *mpb = super->anchor;
3902
3903 if (atoi(inst) >= mpb->num_raid_devs) {
3904 fprintf(stderr, "%s: subarry index %d, out of range\n",
3905 __func__, atoi(inst));
3906 return -ENODEV;
3907 }
3908
3909 dprintf("imsm: open_new %s\n", inst);
3910 a->info.container_member = atoi(inst);
3911 return 0;
3912 }
3913
3914 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
3915 {
3916 struct imsm_map *map = get_imsm_map(dev, 0);
3917
3918 if (!failed)
3919 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3920 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
3921
3922 switch (get_imsm_raid_level(map)) {
3923 case 0:
3924 return IMSM_T_STATE_FAILED;
3925 break;
3926 case 1:
3927 if (failed < map->num_members)
3928 return IMSM_T_STATE_DEGRADED;
3929 else
3930 return IMSM_T_STATE_FAILED;
3931 break;
3932 case 10:
3933 {
3934 /**
3935 * check to see if any mirrors have failed, otherwise we
3936 * are degraded. Even numbered slots are mirrored on
3937 * slot+1
3938 */
3939 int i;
3940 /* gcc -Os complains that this is unused */
3941 int insync = insync;
3942
3943 for (i = 0; i < map->num_members; i++) {
3944 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
3945 int idx = ord_to_idx(ord);
3946 struct imsm_disk *disk;
3947
3948 /* reset the potential in-sync count on even-numbered
3949 * slots. num_copies is always 2 for imsm raid10
3950 */
3951 if ((i & 1) == 0)
3952 insync = 2;
3953
3954 disk = get_imsm_disk(super, idx);
3955 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
3956 insync--;
3957
3958 /* no in-sync disks left in this mirror the
3959 * array has failed
3960 */
3961 if (insync == 0)
3962 return IMSM_T_STATE_FAILED;
3963 }
3964
3965 return IMSM_T_STATE_DEGRADED;
3966 }
3967 case 5:
3968 if (failed < 2)
3969 return IMSM_T_STATE_DEGRADED;
3970 else
3971 return IMSM_T_STATE_FAILED;
3972 break;
3973 default:
3974 break;
3975 }
3976
3977 return map->map_state;
3978 }
3979
3980 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
3981 {
3982 int i;
3983 int failed = 0;
3984 struct imsm_disk *disk;
3985 struct imsm_map *map = get_imsm_map(dev, 0);
3986 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3987 __u32 ord;
3988 int idx;
3989
3990 /* at the beginning of migration we set IMSM_ORD_REBUILD on
3991 * disks that are being rebuilt. New failures are recorded to
3992 * map[0]. So we look through all the disks we started with and
3993 * see if any failures are still present, or if any new ones
3994 * have arrived
3995 *
3996 * FIXME add support for online capacity expansion and
3997 * raid-level-migration
3998 */
3999 for (i = 0; i < prev->num_members; i++) {
4000 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
4001 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
4002 idx = ord_to_idx(ord);
4003
4004 disk = get_imsm_disk(super, idx);
4005 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4006 failed++;
4007 }
4008
4009 return failed;
4010 }
4011
4012 static int is_resyncing(struct imsm_dev *dev)
4013 {
4014 struct imsm_map *migr_map;
4015
4016 if (!dev->vol.migr_state)
4017 return 0;
4018
4019 if (migr_type(dev) == MIGR_INIT ||
4020 migr_type(dev) == MIGR_REPAIR)
4021 return 1;
4022
4023 migr_map = get_imsm_map(dev, 1);
4024
4025 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
4026 return 1;
4027 else
4028 return 0;
4029 }
4030
4031 static int is_rebuilding(struct imsm_dev *dev)
4032 {
4033 struct imsm_map *migr_map;
4034
4035 if (!dev->vol.migr_state)
4036 return 0;
4037
4038 if (migr_type(dev) != MIGR_REBUILD)
4039 return 0;
4040
4041 migr_map = get_imsm_map(dev, 1);
4042
4043 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
4044 return 1;
4045 else
4046 return 0;
4047 }
4048
4049 /* return true if we recorded new information */
4050 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
4051 {
4052 __u32 ord;
4053 int slot;
4054 struct imsm_map *map;
4055
4056 /* new failures are always set in map[0] */
4057 map = get_imsm_map(dev, 0);
4058
4059 slot = get_imsm_disk_slot(map, idx);
4060 if (slot < 0)
4061 return 0;
4062
4063 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
4064 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
4065 return 0;
4066
4067 disk->status |= FAILED_DISK;
4068 disk->status &= ~CONFIGURED_DISK;
4069 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
4070 if (~map->failed_disk_num == 0)
4071 map->failed_disk_num = slot;
4072 return 1;
4073 }
4074
4075 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
4076 {
4077 mark_failure(dev, disk, idx);
4078
4079 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
4080 return;
4081
4082 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4083 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
4084 }
4085
4086 /* Handle dirty -> clean transititions and resync. Degraded and rebuild
4087 * states are handled in imsm_set_disk() with one exception, when a
4088 * resync is stopped due to a new failure this routine will set the
4089 * 'degraded' state for the array.
4090 */
4091 static int imsm_set_array_state(struct active_array *a, int consistent)
4092 {
4093 int inst = a->info.container_member;
4094 struct intel_super *super = a->container->sb;
4095 struct imsm_dev *dev = get_imsm_dev(super, inst);
4096 struct imsm_map *map = get_imsm_map(dev, 0);
4097 int failed = imsm_count_failed(super, dev);
4098 __u8 map_state = imsm_check_degraded(super, dev, failed);
4099
4100 /* before we activate this array handle any missing disks */
4101 if (consistent == 2 && super->missing) {
4102 struct dl *dl;
4103
4104 dprintf("imsm: mark missing\n");
4105 end_migration(dev, map_state);
4106 for (dl = super->missing; dl; dl = dl->next)
4107 mark_missing(dev, &dl->disk, dl->index);
4108 super->updates_pending++;
4109 }
4110
4111 if (consistent == 2 &&
4112 (!is_resync_complete(&a->info) ||
4113 map_state != IMSM_T_STATE_NORMAL ||
4114 dev->vol.migr_state))
4115 consistent = 0;
4116
4117 if (is_resync_complete(&a->info)) {
4118 /* complete intialization / resync,
4119 * recovery and interrupted recovery is completed in
4120 * ->set_disk
4121 */
4122 if (is_resyncing(dev)) {
4123 dprintf("imsm: mark resync done\n");
4124 end_migration(dev, map_state);
4125 super->updates_pending++;
4126 }
4127 } else if (!is_resyncing(dev) && !failed) {
4128 /* mark the start of the init process if nothing is failed */
4129 dprintf("imsm: mark resync start\n");
4130 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
4131 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
4132 else
4133 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
4134 super->updates_pending++;
4135 }
4136
4137 /* FIXME check if we can update curr_migr_unit from resync_start */
4138
4139 /* mark dirty / clean */
4140 if (dev->vol.dirty != !consistent) {
4141 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
4142 if (consistent)
4143 dev->vol.dirty = 0;
4144 else
4145 dev->vol.dirty = 1;
4146 super->updates_pending++;
4147 }
4148 return consistent;
4149 }
4150
4151 static void imsm_set_disk(struct active_array *a, int n, int state)
4152 {
4153 int inst = a->info.container_member;
4154 struct intel_super *super = a->container->sb;
4155 struct imsm_dev *dev = get_imsm_dev(super, inst);
4156 struct imsm_map *map = get_imsm_map(dev, 0);
4157 struct imsm_disk *disk;
4158 int failed;
4159 __u32 ord;
4160 __u8 map_state;
4161
4162 if (n > map->num_members)
4163 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
4164 n, map->num_members - 1);
4165
4166 if (n < 0)
4167 return;
4168
4169 dprintf("imsm: set_disk %d:%x\n", n, state);
4170
4171 ord = get_imsm_ord_tbl_ent(dev, n);
4172 disk = get_imsm_disk(super, ord_to_idx(ord));
4173
4174 /* check for new failures */
4175 if (state & DS_FAULTY) {
4176 if (mark_failure(dev, disk, ord_to_idx(ord)))
4177 super->updates_pending++;
4178 }
4179
4180 /* check if in_sync */
4181 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
4182 struct imsm_map *migr_map = get_imsm_map(dev, 1);
4183
4184 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
4185 super->updates_pending++;
4186 }
4187
4188 failed = imsm_count_failed(super, dev);
4189 map_state = imsm_check_degraded(super, dev, failed);
4190
4191 /* check if recovery complete, newly degraded, or failed */
4192 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
4193 end_migration(dev, map_state);
4194 map = get_imsm_map(dev, 0);
4195 map->failed_disk_num = ~0;
4196 super->updates_pending++;
4197 } else if (map_state == IMSM_T_STATE_DEGRADED &&
4198 map->map_state != map_state &&
4199 !dev->vol.migr_state) {
4200 dprintf("imsm: mark degraded\n");
4201 map->map_state = map_state;
4202 super->updates_pending++;
4203 } else if (map_state == IMSM_T_STATE_FAILED &&
4204 map->map_state != map_state) {
4205 dprintf("imsm: mark failed\n");
4206 end_migration(dev, map_state);
4207 super->updates_pending++;
4208 }
4209 }
4210
4211 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
4212 {
4213 void *buf = mpb;
4214 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
4215 unsigned long long dsize;
4216 unsigned long long sectors;
4217
4218 get_dev_size(fd, NULL, &dsize);
4219
4220 if (mpb_size > 512) {
4221 /* -1 to account for anchor */
4222 sectors = mpb_sectors(mpb) - 1;
4223
4224 /* write the extended mpb to the sectors preceeding the anchor */
4225 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
4226 return 1;
4227
4228 if (write(fd, buf + 512, 512 * sectors) != 512 * sectors)
4229 return 1;
4230 }
4231
4232 /* first block is stored on second to last sector of the disk */
4233 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
4234 return 1;
4235
4236 if (write(fd, buf, 512) != 512)
4237 return 1;
4238
4239 return 0;
4240 }
4241
4242 static void imsm_sync_metadata(struct supertype *container)
4243 {
4244 struct intel_super *super = container->sb;
4245
4246 if (!super->updates_pending)
4247 return;
4248
4249 write_super_imsm(super, 0);
4250
4251 super->updates_pending = 0;
4252 }
4253
4254 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
4255 {
4256 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
4257 int i = get_imsm_disk_idx(dev, idx);
4258 struct dl *dl;
4259
4260 for (dl = super->disks; dl; dl = dl->next)
4261 if (dl->index == i)
4262 break;
4263
4264 if (dl && is_failed(&dl->disk))
4265 dl = NULL;
4266
4267 if (dl)
4268 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
4269
4270 return dl;
4271 }
4272
4273 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
4274 struct active_array *a, int activate_new)
4275 {
4276 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
4277 int idx = get_imsm_disk_idx(dev, slot);
4278 struct imsm_super *mpb = super->anchor;
4279 struct imsm_map *map;
4280 unsigned long long pos;
4281 struct mdinfo *d;
4282 struct extent *ex;
4283 int i, j;
4284 int found;
4285 __u32 array_start;
4286 __u32 array_end;
4287 struct dl *dl;
4288
4289 for (dl = super->disks; dl; dl = dl->next) {
4290 /* If in this array, skip */
4291 for (d = a->info.devs ; d ; d = d->next)
4292 if (d->state_fd >= 0 &&
4293 d->disk.major == dl->major &&
4294 d->disk.minor == dl->minor) {
4295 dprintf("%x:%x already in array\n", dl->major, dl->minor);
4296 break;
4297 }
4298 if (d)
4299 continue;
4300
4301 /* skip in use or failed drives */
4302 if (is_failed(&dl->disk) || idx == dl->index ||
4303 dl->index == -2) {
4304 dprintf("%x:%x status (failed: %d index: %d)\n",
4305 dl->major, dl->minor, is_failed(&dl->disk), idx);
4306 continue;
4307 }
4308
4309 /* skip pure spares when we are looking for partially
4310 * assimilated drives
4311 */
4312 if (dl->index == -1 && !activate_new)
4313 continue;
4314
4315 /* Does this unused device have the requisite free space?
4316 * It needs to be able to cover all member volumes
4317 */
4318 ex = get_extents(super, dl);
4319 if (!ex) {
4320 dprintf("cannot get extents\n");
4321 continue;
4322 }
4323 for (i = 0; i < mpb->num_raid_devs; i++) {
4324 dev = get_imsm_dev(super, i);
4325 map = get_imsm_map(dev, 0);
4326
4327 /* check if this disk is already a member of
4328 * this array
4329 */
4330 if (get_imsm_disk_slot(map, dl->index) >= 0)
4331 continue;
4332
4333 found = 0;
4334 j = 0;
4335 pos = 0;
4336 array_start = __le32_to_cpu(map->pba_of_lba0);
4337 array_end = array_start +
4338 __le32_to_cpu(map->blocks_per_member) - 1;
4339
4340 do {
4341 /* check that we can start at pba_of_lba0 with
4342 * blocks_per_member of space
4343 */
4344 if (array_start >= pos && array_end < ex[j].start) {
4345 found = 1;
4346 break;
4347 }
4348 pos = ex[j].start + ex[j].size;
4349 j++;
4350 } while (ex[j-1].size);
4351
4352 if (!found)
4353 break;
4354 }
4355
4356 free(ex);
4357 if (i < mpb->num_raid_devs) {
4358 dprintf("%x:%x does not have %u to %u available\n",
4359 dl->major, dl->minor, array_start, array_end);
4360 /* No room */
4361 continue;
4362 }
4363 return dl;
4364 }
4365
4366 return dl;
4367 }
4368
4369 static struct mdinfo *imsm_activate_spare(struct active_array *a,
4370 struct metadata_update **updates)
4371 {
4372 /**
4373 * Find a device with unused free space and use it to replace a
4374 * failed/vacant region in an array. We replace failed regions one a
4375 * array at a time. The result is that a new spare disk will be added
4376 * to the first failed array and after the monitor has finished
4377 * propagating failures the remainder will be consumed.
4378 *
4379 * FIXME add a capability for mdmon to request spares from another
4380 * container.
4381 */
4382
4383 struct intel_super *super = a->container->sb;
4384 int inst = a->info.container_member;
4385 struct imsm_dev *dev = get_imsm_dev(super, inst);
4386 struct imsm_map *map = get_imsm_map(dev, 0);
4387 int failed = a->info.array.raid_disks;
4388 struct mdinfo *rv = NULL;
4389 struct mdinfo *d;
4390 struct mdinfo *di;
4391 struct metadata_update *mu;
4392 struct dl *dl;
4393 struct imsm_update_activate_spare *u;
4394 int num_spares = 0;
4395 int i;
4396
4397 for (d = a->info.devs ; d ; d = d->next) {
4398 if ((d->curr_state & DS_FAULTY) &&
4399 d->state_fd >= 0)
4400 /* wait for Removal to happen */
4401 return NULL;
4402 if (d->state_fd >= 0)
4403 failed--;
4404 }
4405
4406 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
4407 inst, failed, a->info.array.raid_disks, a->info.array.level);
4408 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
4409 return NULL;
4410
4411 /* For each slot, if it is not working, find a spare */
4412 for (i = 0; i < a->info.array.raid_disks; i++) {
4413 for (d = a->info.devs ; d ; d = d->next)
4414 if (d->disk.raid_disk == i)
4415 break;
4416 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4417 if (d && (d->state_fd >= 0))
4418 continue;
4419
4420 /*
4421 * OK, this device needs recovery. Try to re-add the
4422 * previous occupant of this slot, if this fails see if
4423 * we can continue the assimilation of a spare that was
4424 * partially assimilated, finally try to activate a new
4425 * spare.
4426 */
4427 dl = imsm_readd(super, i, a);
4428 if (!dl)
4429 dl = imsm_add_spare(super, i, a, 0);
4430 if (!dl)
4431 dl = imsm_add_spare(super, i, a, 1);
4432 if (!dl)
4433 continue;
4434
4435 /* found a usable disk with enough space */
4436 di = malloc(sizeof(*di));
4437 if (!di)
4438 continue;
4439 memset(di, 0, sizeof(*di));
4440
4441 /* dl->index will be -1 in the case we are activating a
4442 * pristine spare. imsm_process_update() will create a
4443 * new index in this case. Once a disk is found to be
4444 * failed in all member arrays it is kicked from the
4445 * metadata
4446 */
4447 di->disk.number = dl->index;
4448
4449 /* (ab)use di->devs to store a pointer to the device
4450 * we chose
4451 */
4452 di->devs = (struct mdinfo *) dl;
4453
4454 di->disk.raid_disk = i;
4455 di->disk.major = dl->major;
4456 di->disk.minor = dl->minor;
4457 di->disk.state = 0;
4458 di->recovery_start = 0;
4459 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
4460 di->component_size = a->info.component_size;
4461 di->container_member = inst;
4462 super->random = random32();
4463 di->next = rv;
4464 rv = di;
4465 num_spares++;
4466 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
4467 i, di->data_offset);
4468
4469 break;
4470 }
4471
4472 if (!rv)
4473 /* No spares found */
4474 return rv;
4475 /* Now 'rv' has a list of devices to return.
4476 * Create a metadata_update record to update the
4477 * disk_ord_tbl for the array
4478 */
4479 mu = malloc(sizeof(*mu));
4480 if (mu) {
4481 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
4482 if (mu->buf == NULL) {
4483 free(mu);
4484 mu = NULL;
4485 }
4486 }
4487 if (!mu) {
4488 while (rv) {
4489 struct mdinfo *n = rv->next;
4490
4491 free(rv);
4492 rv = n;
4493 }
4494 return NULL;
4495 }
4496
4497 mu->space = NULL;
4498 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
4499 mu->next = *updates;
4500 u = (struct imsm_update_activate_spare *) mu->buf;
4501
4502 for (di = rv ; di ; di = di->next) {
4503 u->type = update_activate_spare;
4504 u->dl = (struct dl *) di->devs;
4505 di->devs = NULL;
4506 u->slot = di->disk.raid_disk;
4507 u->array = inst;
4508 u->next = u + 1;
4509 u++;
4510 }
4511 (u-1)->next = NULL;
4512 *updates = mu;
4513
4514 return rv;
4515 }
4516
4517 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
4518 {
4519 struct imsm_dev *dev = get_imsm_dev(super, idx);
4520 struct imsm_map *map = get_imsm_map(dev, 0);
4521 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
4522 struct disk_info *inf = get_disk_info(u);
4523 struct imsm_disk *disk;
4524 int i;
4525 int j;
4526
4527 for (i = 0; i < map->num_members; i++) {
4528 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4529 for (j = 0; j < new_map->num_members; j++)
4530 if (serialcmp(disk->serial, inf[j].serial) == 0)
4531 return 1;
4532 }
4533
4534 return 0;
4535 }
4536
4537 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
4538
4539 static void imsm_process_update(struct supertype *st,
4540 struct metadata_update *update)
4541 {
4542 /**
4543 * crack open the metadata_update envelope to find the update record
4544 * update can be one of:
4545 * update_activate_spare - a spare device has replaced a failed
4546 * device in an array, update the disk_ord_tbl. If this disk is
4547 * present in all member arrays then also clear the SPARE_DISK
4548 * flag
4549 */
4550 struct intel_super *super = st->sb;
4551 struct imsm_super *mpb;
4552 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4553
4554 /* update requires a larger buf but the allocation failed */
4555 if (super->next_len && !super->next_buf) {
4556 super->next_len = 0;
4557 return;
4558 }
4559
4560 if (super->next_buf) {
4561 memcpy(super->next_buf, super->buf, super->len);
4562 free(super->buf);
4563 super->len = super->next_len;
4564 super->buf = super->next_buf;
4565
4566 super->next_len = 0;
4567 super->next_buf = NULL;
4568 }
4569
4570 mpb = super->anchor;
4571
4572 switch (type) {
4573 case update_activate_spare: {
4574 struct imsm_update_activate_spare *u = (void *) update->buf;
4575 struct imsm_dev *dev = get_imsm_dev(super, u->array);
4576 struct imsm_map *map = get_imsm_map(dev, 0);
4577 struct imsm_map *migr_map;
4578 struct active_array *a;
4579 struct imsm_disk *disk;
4580 __u8 to_state;
4581 struct dl *dl;
4582 unsigned int found;
4583 int failed;
4584 int victim = get_imsm_disk_idx(dev, u->slot);
4585 int i;
4586
4587 for (dl = super->disks; dl; dl = dl->next)
4588 if (dl == u->dl)
4589 break;
4590
4591 if (!dl) {
4592 fprintf(stderr, "error: imsm_activate_spare passed "
4593 "an unknown disk (index: %d)\n",
4594 u->dl->index);
4595 return;
4596 }
4597
4598 super->updates_pending++;
4599
4600 /* count failures (excluding rebuilds and the victim)
4601 * to determine map[0] state
4602 */
4603 failed = 0;
4604 for (i = 0; i < map->num_members; i++) {
4605 if (i == u->slot)
4606 continue;
4607 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4608 if (!disk || is_failed(disk))
4609 failed++;
4610 }
4611
4612 /* adding a pristine spare, assign a new index */
4613 if (dl->index < 0) {
4614 dl->index = super->anchor->num_disks;
4615 super->anchor->num_disks++;
4616 }
4617 disk = &dl->disk;
4618 disk->status |= CONFIGURED_DISK;
4619 disk->status &= ~SPARE_DISK;
4620
4621 /* mark rebuild */
4622 to_state = imsm_check_degraded(super, dev, failed);
4623 map->map_state = IMSM_T_STATE_DEGRADED;
4624 migrate(dev, to_state, MIGR_REBUILD);
4625 migr_map = get_imsm_map(dev, 1);
4626 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
4627 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
4628
4629 /* update the family_num to mark a new container
4630 * generation, being careful to record the existing
4631 * family_num in orig_family_num to clean up after
4632 * earlier mdadm versions that neglected to set it.
4633 */
4634 if (mpb->orig_family_num == 0)
4635 mpb->orig_family_num = mpb->family_num;
4636 mpb->family_num += super->random;
4637
4638 /* count arrays using the victim in the metadata */
4639 found = 0;
4640 for (a = st->arrays; a ; a = a->next) {
4641 dev = get_imsm_dev(super, a->info.container_member);
4642 map = get_imsm_map(dev, 0);
4643
4644 if (get_imsm_disk_slot(map, victim) >= 0)
4645 found++;
4646 }
4647
4648 /* delete the victim if it is no longer being
4649 * utilized anywhere
4650 */
4651 if (!found) {
4652 struct dl **dlp;
4653
4654 /* We know that 'manager' isn't touching anything,
4655 * so it is safe to delete
4656 */
4657 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
4658 if ((*dlp)->index == victim)
4659 break;
4660
4661 /* victim may be on the missing list */
4662 if (!*dlp)
4663 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
4664 if ((*dlp)->index == victim)
4665 break;
4666 imsm_delete(super, dlp, victim);
4667 }
4668 break;
4669 }
4670 case update_create_array: {
4671 /* someone wants to create a new array, we need to be aware of
4672 * a few races/collisions:
4673 * 1/ 'Create' called by two separate instances of mdadm
4674 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
4675 * devices that have since been assimilated via
4676 * activate_spare.
4677 * In the event this update can not be carried out mdadm will
4678 * (FIX ME) notice that its update did not take hold.
4679 */
4680 struct imsm_update_create_array *u = (void *) update->buf;
4681 struct intel_dev *dv;
4682 struct imsm_dev *dev;
4683 struct imsm_map *map, *new_map;
4684 unsigned long long start, end;
4685 unsigned long long new_start, new_end;
4686 int i;
4687 struct disk_info *inf;
4688 struct dl *dl;
4689
4690 /* handle racing creates: first come first serve */
4691 if (u->dev_idx < mpb->num_raid_devs) {
4692 dprintf("%s: subarray %d already defined\n",
4693 __func__, u->dev_idx);
4694 goto create_error;
4695 }
4696
4697 /* check update is next in sequence */
4698 if (u->dev_idx != mpb->num_raid_devs) {
4699 dprintf("%s: can not create array %d expected index %d\n",
4700 __func__, u->dev_idx, mpb->num_raid_devs);
4701 goto create_error;
4702 }
4703
4704 new_map = get_imsm_map(&u->dev, 0);
4705 new_start = __le32_to_cpu(new_map->pba_of_lba0);
4706 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
4707 inf = get_disk_info(u);
4708
4709 /* handle activate_spare versus create race:
4710 * check to make sure that overlapping arrays do not include
4711 * overalpping disks
4712 */
4713 for (i = 0; i < mpb->num_raid_devs; i++) {
4714 dev = get_imsm_dev(super, i);
4715 map = get_imsm_map(dev, 0);
4716 start = __le32_to_cpu(map->pba_of_lba0);
4717 end = start + __le32_to_cpu(map->blocks_per_member);
4718 if ((new_start >= start && new_start <= end) ||
4719 (start >= new_start && start <= new_end))
4720 /* overlap */;
4721 else
4722 continue;
4723
4724 if (disks_overlap(super, i, u)) {
4725 dprintf("%s: arrays overlap\n", __func__);
4726 goto create_error;
4727 }
4728 }
4729
4730 /* check that prepare update was successful */
4731 if (!update->space) {
4732 dprintf("%s: prepare update failed\n", __func__);
4733 goto create_error;
4734 }
4735
4736 /* check that all disks are still active before committing
4737 * changes. FIXME: could we instead handle this by creating a
4738 * degraded array? That's probably not what the user expects,
4739 * so better to drop this update on the floor.
4740 */
4741 for (i = 0; i < new_map->num_members; i++) {
4742 dl = serial_to_dl(inf[i].serial, super);
4743 if (!dl) {
4744 dprintf("%s: disk disappeared\n", __func__);
4745 goto create_error;
4746 }
4747 }
4748
4749 super->updates_pending++;
4750
4751 /* convert spares to members and fixup ord_tbl */
4752 for (i = 0; i < new_map->num_members; i++) {
4753 dl = serial_to_dl(inf[i].serial, super);
4754 if (dl->index == -1) {
4755 dl->index = mpb->num_disks;
4756 mpb->num_disks++;
4757 dl->disk.status |= CONFIGURED_DISK;
4758 dl->disk.status &= ~SPARE_DISK;
4759 }
4760 set_imsm_ord_tbl_ent(new_map, i, dl->index);
4761 }
4762
4763 dv = update->space;
4764 dev = dv->dev;
4765 update->space = NULL;
4766 imsm_copy_dev(dev, &u->dev);
4767 dv->index = u->dev_idx;
4768 dv->next = super->devlist;
4769 super->devlist = dv;
4770 mpb->num_raid_devs++;
4771
4772 imsm_update_version_info(super);
4773 break;
4774 create_error:
4775 /* mdmon knows how to release update->space, but not
4776 * ((struct intel_dev *) update->space)->dev
4777 */
4778 if (update->space) {
4779 dv = update->space;
4780 free(dv->dev);
4781 }
4782 break;
4783 }
4784 case update_add_disk:
4785
4786 /* we may be able to repair some arrays if disks are
4787 * being added */
4788 if (super->add) {
4789 struct active_array *a;
4790
4791 super->updates_pending++;
4792 for (a = st->arrays; a; a = a->next)
4793 a->check_degraded = 1;
4794 }
4795 /* add some spares to the metadata */
4796 while (super->add) {
4797 struct dl *al;
4798
4799 al = super->add;
4800 super->add = al->next;
4801 al->next = super->disks;
4802 super->disks = al;
4803 dprintf("%s: added %x:%x\n",
4804 __func__, al->major, al->minor);
4805 }
4806
4807 break;
4808 }
4809 }
4810
4811 static void imsm_prepare_update(struct supertype *st,
4812 struct metadata_update *update)
4813 {
4814 /**
4815 * Allocate space to hold new disk entries, raid-device entries or a new
4816 * mpb if necessary. The manager synchronously waits for updates to
4817 * complete in the monitor, so new mpb buffers allocated here can be
4818 * integrated by the monitor thread without worrying about live pointers
4819 * in the manager thread.
4820 */
4821 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4822 struct intel_super *super = st->sb;
4823 struct imsm_super *mpb = super->anchor;
4824 size_t buf_len;
4825 size_t len = 0;
4826
4827 switch (type) {
4828 case update_create_array: {
4829 struct imsm_update_create_array *u = (void *) update->buf;
4830 struct intel_dev *dv;
4831 struct imsm_dev *dev = &u->dev;
4832 struct imsm_map *map = get_imsm_map(dev, 0);
4833 struct dl *dl;
4834 struct disk_info *inf;
4835 int i;
4836 int activate = 0;
4837
4838 inf = get_disk_info(u);
4839 len = sizeof_imsm_dev(dev, 1);
4840 /* allocate a new super->devlist entry */
4841 dv = malloc(sizeof(*dv));
4842 if (dv) {
4843 dv->dev = malloc(len);
4844 if (dv->dev)
4845 update->space = dv;
4846 else {
4847 free(dv);
4848 update->space = NULL;
4849 }
4850 }
4851
4852 /* count how many spares will be converted to members */
4853 for (i = 0; i < map->num_members; i++) {
4854 dl = serial_to_dl(inf[i].serial, super);
4855 if (!dl) {
4856 /* hmm maybe it failed?, nothing we can do about
4857 * it here
4858 */
4859 continue;
4860 }
4861 if (count_memberships(dl, super) == 0)
4862 activate++;
4863 }
4864 len += activate * sizeof(struct imsm_disk);
4865 break;
4866 default:
4867 break;
4868 }
4869 }
4870
4871 /* check if we need a larger metadata buffer */
4872 if (super->next_buf)
4873 buf_len = super->next_len;
4874 else
4875 buf_len = super->len;
4876
4877 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
4878 /* ok we need a larger buf than what is currently allocated
4879 * if this allocation fails process_update will notice that
4880 * ->next_len is set and ->next_buf is NULL
4881 */
4882 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
4883 if (super->next_buf)
4884 free(super->next_buf);
4885
4886 super->next_len = buf_len;
4887 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
4888 memset(super->next_buf, 0, buf_len);
4889 else
4890 super->next_buf = NULL;
4891 }
4892 }
4893
4894 /* must be called while manager is quiesced */
4895 static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
4896 {
4897 struct imsm_super *mpb = super->anchor;
4898 struct dl *iter;
4899 struct imsm_dev *dev;
4900 struct imsm_map *map;
4901 int i, j, num_members;
4902 __u32 ord;
4903
4904 dprintf("%s: deleting device[%d] from imsm_super\n",
4905 __func__, index);
4906
4907 /* shift all indexes down one */
4908 for (iter = super->disks; iter; iter = iter->next)
4909 if (iter->index > index)
4910 iter->index--;
4911 for (iter = super->missing; iter; iter = iter->next)
4912 if (iter->index > index)
4913 iter->index--;
4914
4915 for (i = 0; i < mpb->num_raid_devs; i++) {
4916 dev = get_imsm_dev(super, i);
4917 map = get_imsm_map(dev, 0);
4918 num_members = map->num_members;
4919 for (j = 0; j < num_members; j++) {
4920 /* update ord entries being careful not to propagate
4921 * ord-flags to the first map
4922 */
4923 ord = get_imsm_ord_tbl_ent(dev, j);
4924
4925 if (ord_to_idx(ord) <= index)
4926 continue;
4927
4928 map = get_imsm_map(dev, 0);
4929 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
4930 map = get_imsm_map(dev, 1);
4931 if (map)
4932 set_imsm_ord_tbl_ent(map, j, ord - 1);
4933 }
4934 }
4935
4936 mpb->num_disks--;
4937 super->updates_pending++;
4938 if (*dlp) {
4939 struct dl *dl = *dlp;
4940
4941 *dlp = (*dlp)->next;
4942 __free_imsm_disk(dl);
4943 }
4944 }
4945 #endif /* MDASSEMBLE */
4946
4947 struct superswitch super_imsm = {
4948 #ifndef MDASSEMBLE
4949 .examine_super = examine_super_imsm,
4950 .brief_examine_super = brief_examine_super_imsm,
4951 .brief_examine_subarrays = brief_examine_subarrays_imsm,
4952 .export_examine_super = export_examine_super_imsm,
4953 .detail_super = detail_super_imsm,
4954 .brief_detail_super = brief_detail_super_imsm,
4955 .write_init_super = write_init_super_imsm,
4956 .validate_geometry = validate_geometry_imsm,
4957 .add_to_super = add_to_super_imsm,
4958 .detail_platform = detail_platform_imsm,
4959 #endif
4960 .match_home = match_home_imsm,
4961 .uuid_from_super= uuid_from_super_imsm,
4962 .getinfo_super = getinfo_super_imsm,
4963 .update_super = update_super_imsm,
4964
4965 .avail_size = avail_size_imsm,
4966
4967 .compare_super = compare_super_imsm,
4968
4969 .load_super = load_super_imsm,
4970 .init_super = init_super_imsm,
4971 .store_super = store_super_imsm,
4972 .free_super = free_super_imsm,
4973 .match_metadata_desc = match_metadata_desc_imsm,
4974 .container_content = container_content_imsm,
4975 .default_layout = imsm_level_to_layout,
4976
4977 .external = 1,
4978 .name = "imsm",
4979
4980 #ifndef MDASSEMBLE
4981 /* for mdmon */
4982 .open_new = imsm_open_new,
4983 .load_super = load_super_imsm,
4984 .set_array_state= imsm_set_array_state,
4985 .set_disk = imsm_set_disk,
4986 .sync_metadata = imsm_sync_metadata,
4987 .activate_spare = imsm_activate_spare,
4988 .process_update = imsm_process_update,
4989 .prepare_update = imsm_prepare_update,
4990 #endif /* MDASSEMBLE */
4991 };