]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: FIX: Support metadata changes rollback
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
106 #define IMSM_DISK_FILLERS 3
107 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
108 };
109
110 /* map selector for map managment
111 */
112 #define MAP_0 0
113 #define MAP_1 1
114 #define MAP_X -1
115
116 /* RAID map configuration infos. */
117 struct imsm_map {
118 __u32 pba_of_lba0_lo; /* start address of partition */
119 __u32 blocks_per_member_lo;/* blocks per member */
120 __u32 num_data_stripes_lo; /* number of data stripes */
121 __u16 blocks_per_strip;
122 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
123 #define IMSM_T_STATE_NORMAL 0
124 #define IMSM_T_STATE_UNINITIALIZED 1
125 #define IMSM_T_STATE_DEGRADED 2
126 #define IMSM_T_STATE_FAILED 3
127 __u8 raid_level;
128 #define IMSM_T_RAID0 0
129 #define IMSM_T_RAID1 1
130 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
131 __u8 num_members; /* number of member disks */
132 __u8 num_domains; /* number of parity domains */
133 __u8 failed_disk_num; /* valid only when state is degraded */
134 __u8 ddf;
135 __u32 pba_of_lba0_hi;
136 __u32 blocks_per_member_hi;
137 __u32 num_data_stripes_hi;
138 __u32 filler[4]; /* expansion area */
139 #define IMSM_ORD_REBUILD (1 << 24)
140 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
141 * top byte contains some flags
142 */
143 } __attribute__ ((packed));
144
145 struct imsm_vol {
146 __u32 curr_migr_unit;
147 __u32 checkpoint_id; /* id to access curr_migr_unit */
148 __u8 migr_state; /* Normal or Migrating */
149 #define MIGR_INIT 0
150 #define MIGR_REBUILD 1
151 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
152 #define MIGR_GEN_MIGR 3
153 #define MIGR_STATE_CHANGE 4
154 #define MIGR_REPAIR 5
155 __u8 migr_type; /* Initializing, Rebuilding, ... */
156 __u8 dirty;
157 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
158 __u16 verify_errors; /* number of mismatches */
159 __u16 bad_blocks; /* number of bad blocks during verify */
160 __u32 filler[4];
161 struct imsm_map map[1];
162 /* here comes another one if migr_state */
163 } __attribute__ ((packed));
164
165 struct imsm_dev {
166 __u8 volume[MAX_RAID_SERIAL_LEN];
167 __u32 size_low;
168 __u32 size_high;
169 #define DEV_BOOTABLE __cpu_to_le32(0x01)
170 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
171 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
172 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
173 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
174 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
175 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
176 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
177 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
178 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
179 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
180 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
181 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
182 __u32 status; /* Persistent RaidDev status */
183 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
184 __u8 migr_priority;
185 __u8 num_sub_vols;
186 __u8 tid;
187 __u8 cng_master_disk;
188 __u16 cache_policy;
189 __u8 cng_state;
190 __u8 cng_sub_state;
191 #define IMSM_DEV_FILLERS 10
192 __u32 filler[IMSM_DEV_FILLERS];
193 struct imsm_vol vol;
194 } __attribute__ ((packed));
195
196 struct imsm_super {
197 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
198 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
199 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
200 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
201 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
202 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
203 __u32 attributes; /* 0x34 - 0x37 */
204 __u8 num_disks; /* 0x38 Number of configured disks */
205 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
206 __u8 error_log_pos; /* 0x3A */
207 __u8 fill[1]; /* 0x3B */
208 __u32 cache_size; /* 0x3c - 0x40 in mb */
209 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
210 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
211 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
212 #define IMSM_FILLERS 35
213 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
214 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
215 /* here comes imsm_dev[num_raid_devs] */
216 /* here comes BBM logs */
217 } __attribute__ ((packed));
218
219 #define BBM_LOG_MAX_ENTRIES 254
220
221 struct bbm_log_entry {
222 __u64 defective_block_start;
223 #define UNREADABLE 0xFFFFFFFF
224 __u32 spare_block_offset;
225 __u16 remapped_marked_count;
226 __u16 disk_ordinal;
227 } __attribute__ ((__packed__));
228
229 struct bbm_log {
230 __u32 signature; /* 0xABADB10C */
231 __u32 entry_count;
232 __u32 reserved_spare_block_count; /* 0 */
233 __u32 reserved; /* 0xFFFF */
234 __u64 first_spare_lba;
235 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
236 } __attribute__ ((__packed__));
237
238
239 #ifndef MDASSEMBLE
240 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
241 #endif
242
243 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
244
245 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
246
247 #define MIGR_REC_BUF_SIZE 512 /* size of migr_record i/o buffer */
248 #define MIGR_REC_POSITION 512 /* migr_record position offset on disk,
249 * MIGR_REC_BUF_SIZE <= MIGR_REC_POSITION
250 */
251
252
253 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
254 * be recovered using srcMap */
255 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
256 * already been migrated and must
257 * be recovered from checkpoint area */
258 struct migr_record {
259 __u32 rec_status; /* Status used to determine how to restart
260 * migration in case it aborts
261 * in some fashion */
262 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
263 __u32 family_num; /* Family number of MPB
264 * containing the RaidDev
265 * that is migrating */
266 __u32 ascending_migr; /* True if migrating in increasing
267 * order of lbas */
268 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
269 __u32 dest_depth_per_unit; /* Num member blocks each destMap
270 * member disk
271 * advances per unit-of-operation */
272 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
273 __u32 dest_1st_member_lba; /* First member lba on first
274 * stripe of destination */
275 __u32 num_migr_units; /* Total num migration units-of-op */
276 __u32 post_migr_vol_cap; /* Size of volume after
277 * migration completes */
278 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
279 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
280 * migration ckpt record was read from
281 * (for recovered migrations) */
282 } __attribute__ ((__packed__));
283
284 struct md_list {
285 /* usage marker:
286 * 1: load metadata
287 * 2: metadata does not match
288 * 4: already checked
289 */
290 int used;
291 char *devname;
292 int found;
293 int container;
294 dev_t st_rdev;
295 struct md_list *next;
296 };
297
298 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
299
300 static __u8 migr_type(struct imsm_dev *dev)
301 {
302 if (dev->vol.migr_type == MIGR_VERIFY &&
303 dev->status & DEV_VERIFY_AND_FIX)
304 return MIGR_REPAIR;
305 else
306 return dev->vol.migr_type;
307 }
308
309 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
310 {
311 /* for compatibility with older oroms convert MIGR_REPAIR, into
312 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
313 */
314 if (migr_type == MIGR_REPAIR) {
315 dev->vol.migr_type = MIGR_VERIFY;
316 dev->status |= DEV_VERIFY_AND_FIX;
317 } else {
318 dev->vol.migr_type = migr_type;
319 dev->status &= ~DEV_VERIFY_AND_FIX;
320 }
321 }
322
323 static unsigned int sector_count(__u32 bytes)
324 {
325 return ROUND_UP(bytes, 512) / 512;
326 }
327
328 static unsigned int mpb_sectors(struct imsm_super *mpb)
329 {
330 return sector_count(__le32_to_cpu(mpb->mpb_size));
331 }
332
333 struct intel_dev {
334 struct imsm_dev *dev;
335 struct intel_dev *next;
336 unsigned index;
337 };
338
339 struct intel_hba {
340 enum sys_dev_type type;
341 char *path;
342 char *pci_id;
343 struct intel_hba *next;
344 };
345
346 enum action {
347 DISK_REMOVE = 1,
348 DISK_ADD
349 };
350 /* internal representation of IMSM metadata */
351 struct intel_super {
352 union {
353 void *buf; /* O_DIRECT buffer for reading/writing metadata */
354 struct imsm_super *anchor; /* immovable parameters */
355 };
356 union {
357 void *migr_rec_buf; /* buffer for I/O operations */
358 struct migr_record *migr_rec; /* migration record */
359 };
360 int clean_migration_record_by_mdmon; /* when reshape is switched to next
361 array, it indicates that mdmon is allowed to clean migration
362 record */
363 size_t len; /* size of the 'buf' allocation */
364 void *next_buf; /* for realloc'ing buf from the manager */
365 size_t next_len;
366 int updates_pending; /* count of pending updates for mdmon */
367 int current_vol; /* index of raid device undergoing creation */
368 unsigned long long create_offset; /* common start for 'current_vol' */
369 __u32 random; /* random data for seeding new family numbers */
370 struct intel_dev *devlist;
371 struct dl {
372 struct dl *next;
373 int index;
374 __u8 serial[MAX_RAID_SERIAL_LEN];
375 int major, minor;
376 char *devname;
377 struct imsm_disk disk;
378 int fd;
379 int extent_cnt;
380 struct extent *e; /* for determining freespace @ create */
381 int raiddisk; /* slot to fill in autolayout */
382 enum action action;
383 } *disks, *current_disk;
384 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
385 active */
386 struct dl *missing; /* disks removed while we weren't looking */
387 struct bbm_log *bbm_log;
388 struct intel_hba *hba; /* device path of the raid controller for this metadata */
389 const struct imsm_orom *orom; /* platform firmware support */
390 struct intel_super *next; /* (temp) list for disambiguating family_num */
391 };
392
393 struct intel_disk {
394 struct imsm_disk disk;
395 #define IMSM_UNKNOWN_OWNER (-1)
396 int owner;
397 struct intel_disk *next;
398 };
399
400 struct extent {
401 unsigned long long start, size;
402 };
403
404 /* definitions of reshape process types */
405 enum imsm_reshape_type {
406 CH_TAKEOVER,
407 CH_MIGRATION,
408 CH_ARRAY_SIZE,
409 };
410
411 /* definition of messages passed to imsm_process_update */
412 enum imsm_update_type {
413 update_activate_spare,
414 update_create_array,
415 update_kill_array,
416 update_rename_array,
417 update_add_remove_disk,
418 update_reshape_container_disks,
419 update_reshape_migration,
420 update_takeover,
421 update_general_migration_checkpoint,
422 update_size_change,
423 };
424
425 struct imsm_update_activate_spare {
426 enum imsm_update_type type;
427 struct dl *dl;
428 int slot;
429 int array;
430 struct imsm_update_activate_spare *next;
431 };
432
433 struct geo_params {
434 int dev_id;
435 char *dev_name;
436 long long size;
437 int level;
438 int layout;
439 int chunksize;
440 int raid_disks;
441 };
442
443 enum takeover_direction {
444 R10_TO_R0,
445 R0_TO_R10
446 };
447 struct imsm_update_takeover {
448 enum imsm_update_type type;
449 int subarray;
450 enum takeover_direction direction;
451 };
452
453 struct imsm_update_reshape {
454 enum imsm_update_type type;
455 int old_raid_disks;
456 int new_raid_disks;
457
458 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
459 };
460
461 struct imsm_update_reshape_migration {
462 enum imsm_update_type type;
463 int old_raid_disks;
464 int new_raid_disks;
465 /* fields for array migration changes
466 */
467 int subdev;
468 int new_level;
469 int new_layout;
470 int new_chunksize;
471
472 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
473 };
474
475 struct imsm_update_size_change {
476 enum imsm_update_type type;
477 int subdev;
478 long long new_size;
479 };
480
481 struct imsm_update_general_migration_checkpoint {
482 enum imsm_update_type type;
483 __u32 curr_migr_unit;
484 };
485
486 struct disk_info {
487 __u8 serial[MAX_RAID_SERIAL_LEN];
488 };
489
490 struct imsm_update_create_array {
491 enum imsm_update_type type;
492 int dev_idx;
493 struct imsm_dev dev;
494 };
495
496 struct imsm_update_kill_array {
497 enum imsm_update_type type;
498 int dev_idx;
499 };
500
501 struct imsm_update_rename_array {
502 enum imsm_update_type type;
503 __u8 name[MAX_RAID_SERIAL_LEN];
504 int dev_idx;
505 };
506
507 struct imsm_update_add_remove_disk {
508 enum imsm_update_type type;
509 };
510
511
512 static const char *_sys_dev_type[] = {
513 [SYS_DEV_UNKNOWN] = "Unknown",
514 [SYS_DEV_SAS] = "SAS",
515 [SYS_DEV_SATA] = "SATA"
516 };
517
518 const char *get_sys_dev_type(enum sys_dev_type type)
519 {
520 if (type >= SYS_DEV_MAX)
521 type = SYS_DEV_UNKNOWN;
522
523 return _sys_dev_type[type];
524 }
525
526 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
527 {
528 struct intel_hba *result = malloc(sizeof(*result));
529 if (result) {
530 result->type = device->type;
531 result->path = strdup(device->path);
532 result->next = NULL;
533 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
534 result->pci_id++;
535 }
536 return result;
537 }
538
539 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
540 {
541 struct intel_hba *result=NULL;
542 for (result = hba; result; result = result->next) {
543 if (result->type == device->type && strcmp(result->path, device->path) == 0)
544 break;
545 }
546 return result;
547 }
548
549 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
550 {
551 struct intel_hba *hba;
552
553 /* check if disk attached to Intel HBA */
554 hba = find_intel_hba(super->hba, device);
555 if (hba != NULL)
556 return 1;
557 /* Check if HBA is already attached to super */
558 if (super->hba == NULL) {
559 super->hba = alloc_intel_hba(device);
560 return 1;
561 }
562
563 hba = super->hba;
564 /* Intel metadata allows for all disks attached to the same type HBA.
565 * Do not sypport odf HBA types mixing
566 */
567 if (device->type != hba->type)
568 return 2;
569
570 while (hba->next)
571 hba = hba->next;
572
573 hba->next = alloc_intel_hba(device);
574 return 1;
575 }
576
577 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
578 {
579 struct sys_dev *list, *elem, *prev;
580 char *disk_path;
581
582 if ((list = find_intel_devices()) == NULL)
583 return 0;
584
585 if (fd < 0)
586 disk_path = (char *) devname;
587 else
588 disk_path = diskfd_to_devpath(fd);
589
590 if (!disk_path) {
591 free_sys_dev(&list);
592 return 0;
593 }
594
595 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
596 if (path_attached_to_hba(disk_path, elem->path)) {
597 if (prev == NULL)
598 list = list->next;
599 else
600 prev->next = elem->next;
601 elem->next = NULL;
602 if (disk_path != devname)
603 free(disk_path);
604 free_sys_dev(&list);
605 return elem;
606 }
607 }
608 if (disk_path != devname)
609 free(disk_path);
610 free_sys_dev(&list);
611
612 return NULL;
613 }
614
615
616 static int find_intel_hba_capability(int fd, struct intel_super *super,
617 char *devname);
618
619 static struct supertype *match_metadata_desc_imsm(char *arg)
620 {
621 struct supertype *st;
622
623 if (strcmp(arg, "imsm") != 0 &&
624 strcmp(arg, "default") != 0
625 )
626 return NULL;
627
628 st = malloc(sizeof(*st));
629 if (!st)
630 return NULL;
631 memset(st, 0, sizeof(*st));
632 st->container_dev = NoMdDev;
633 st->ss = &super_imsm;
634 st->max_devs = IMSM_MAX_DEVICES;
635 st->minor_version = 0;
636 st->sb = NULL;
637 return st;
638 }
639
640 #ifndef MDASSEMBLE
641 static __u8 *get_imsm_version(struct imsm_super *mpb)
642 {
643 return &mpb->sig[MPB_SIG_LEN];
644 }
645 #endif
646
647 /* retrieve a disk directly from the anchor when the anchor is known to be
648 * up-to-date, currently only at load time
649 */
650 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
651 {
652 if (index >= mpb->num_disks)
653 return NULL;
654 return &mpb->disk[index];
655 }
656
657 /* retrieve the disk description based on a index of the disk
658 * in the sub-array
659 */
660 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
661 {
662 struct dl *d;
663
664 for (d = super->disks; d; d = d->next)
665 if (d->index == index)
666 return d;
667
668 return NULL;
669 }
670 /* retrieve a disk from the parsed metadata */
671 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
672 {
673 struct dl *dl;
674
675 dl = get_imsm_dl_disk(super, index);
676 if (dl)
677 return &dl->disk;
678
679 return NULL;
680 }
681
682 /* generate a checksum directly from the anchor when the anchor is known to be
683 * up-to-date, currently only at load or write_super after coalescing
684 */
685 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
686 {
687 __u32 end = mpb->mpb_size / sizeof(end);
688 __u32 *p = (__u32 *) mpb;
689 __u32 sum = 0;
690
691 while (end--) {
692 sum += __le32_to_cpu(*p);
693 p++;
694 }
695
696 return sum - __le32_to_cpu(mpb->check_sum);
697 }
698
699 static size_t sizeof_imsm_map(struct imsm_map *map)
700 {
701 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
702 }
703
704 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
705 {
706 /* A device can have 2 maps if it is in the middle of a migration.
707 * If second_map is:
708 * MAP_0 - we return the first map
709 * MAP_1 - we return the second map if it exists, else NULL
710 * MAP_X - we return the second map if it exists, else the first
711 */
712 struct imsm_map *map = &dev->vol.map[0];
713 struct imsm_map *map2 = NULL;
714
715 if (dev->vol.migr_state)
716 map2 = (void *)map + sizeof_imsm_map(map);
717
718 switch (second_map) {
719 case MAP_0:
720 break;
721 case MAP_1:
722 map = map2;
723 break;
724 case MAP_X:
725 if (map2)
726 map = map2;
727 break;
728 default:
729 map = NULL;
730 }
731 return map;
732
733 }
734
735 /* return the size of the device.
736 * migr_state increases the returned size if map[0] were to be duplicated
737 */
738 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
739 {
740 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
741 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
742
743 /* migrating means an additional map */
744 if (dev->vol.migr_state)
745 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
746 else if (migr_state)
747 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
748
749 return size;
750 }
751
752 #ifndef MDASSEMBLE
753 /* retrieve disk serial number list from a metadata update */
754 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
755 {
756 void *u = update;
757 struct disk_info *inf;
758
759 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
760 sizeof_imsm_dev(&update->dev, 0);
761
762 return inf;
763 }
764 #endif
765
766 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
767 {
768 int offset;
769 int i;
770 void *_mpb = mpb;
771
772 if (index >= mpb->num_raid_devs)
773 return NULL;
774
775 /* devices start after all disks */
776 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
777
778 for (i = 0; i <= index; i++)
779 if (i == index)
780 return _mpb + offset;
781 else
782 offset += sizeof_imsm_dev(_mpb + offset, 0);
783
784 return NULL;
785 }
786
787 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
788 {
789 struct intel_dev *dv;
790
791 if (index >= super->anchor->num_raid_devs)
792 return NULL;
793 for (dv = super->devlist; dv; dv = dv->next)
794 if (dv->index == index)
795 return dv->dev;
796 return NULL;
797 }
798
799 /*
800 * for second_map:
801 * == MAP_0 get first map
802 * == MAP_1 get second map
803 * == MAP_X than get map according to the current migr_state
804 */
805 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
806 int slot,
807 int second_map)
808 {
809 struct imsm_map *map;
810
811 map = get_imsm_map(dev, second_map);
812
813 /* top byte identifies disk under rebuild */
814 return __le32_to_cpu(map->disk_ord_tbl[slot]);
815 }
816
817 #define ord_to_idx(ord) (((ord) << 8) >> 8)
818 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
819 {
820 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
821
822 return ord_to_idx(ord);
823 }
824
825 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
826 {
827 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
828 }
829
830 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
831 {
832 int slot;
833 __u32 ord;
834
835 for (slot = 0; slot < map->num_members; slot++) {
836 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
837 if (ord_to_idx(ord) == idx)
838 return slot;
839 }
840
841 return -1;
842 }
843
844 static int get_imsm_raid_level(struct imsm_map *map)
845 {
846 if (map->raid_level == 1) {
847 if (map->num_members == 2)
848 return 1;
849 else
850 return 10;
851 }
852
853 return map->raid_level;
854 }
855
856 static int cmp_extent(const void *av, const void *bv)
857 {
858 const struct extent *a = av;
859 const struct extent *b = bv;
860 if (a->start < b->start)
861 return -1;
862 if (a->start > b->start)
863 return 1;
864 return 0;
865 }
866
867 static int count_memberships(struct dl *dl, struct intel_super *super)
868 {
869 int memberships = 0;
870 int i;
871
872 for (i = 0; i < super->anchor->num_raid_devs; i++) {
873 struct imsm_dev *dev = get_imsm_dev(super, i);
874 struct imsm_map *map = get_imsm_map(dev, MAP_0);
875
876 if (get_imsm_disk_slot(map, dl->index) >= 0)
877 memberships++;
878 }
879
880 return memberships;
881 }
882
883 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
884
885 static int split_ull(unsigned long long n, __u32 *lo, __u32 *hi)
886 {
887 if (lo == 0 || hi == 0)
888 return 1;
889 *lo = __le32_to_cpu((unsigned)n);
890 *hi = __le32_to_cpu((unsigned)(n >> 32));
891 return 0;
892 }
893
894 static unsigned long long join_u32(__u32 lo, __u32 hi)
895 {
896 return (unsigned long long)__le32_to_cpu(lo) |
897 (((unsigned long long)__le32_to_cpu(hi)) << 32);
898 }
899
900 static unsigned long long total_blocks(struct imsm_disk *disk)
901 {
902 if (disk == NULL)
903 return 0;
904 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
905 }
906
907 static unsigned long long pba_of_lba0(struct imsm_map *map)
908 {
909 if (map == NULL)
910 return 0;
911 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
912 }
913
914 static unsigned long long blocks_per_member(struct imsm_map *map)
915 {
916 if (map == NULL)
917 return 0;
918 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
919 }
920
921 static unsigned long long num_data_stripes(struct imsm_map *map)
922 {
923 if (map == NULL)
924 return 0;
925 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
926 }
927
928 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
929 {
930 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
931 }
932
933 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
934 {
935 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
936 }
937
938 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
939 {
940 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
941 }
942
943 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
944 {
945 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
946 }
947
948 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
949 {
950 /* find a list of used extents on the given physical device */
951 struct extent *rv, *e;
952 int i;
953 int memberships = count_memberships(dl, super);
954 __u32 reservation;
955
956 /* trim the reserved area for spares, so they can join any array
957 * regardless of whether the OROM has assigned sectors from the
958 * IMSM_RESERVED_SECTORS region
959 */
960 if (dl->index == -1)
961 reservation = imsm_min_reserved_sectors(super);
962 else
963 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
964
965 rv = malloc(sizeof(struct extent) * (memberships + 1));
966 if (!rv)
967 return NULL;
968 e = rv;
969
970 for (i = 0; i < super->anchor->num_raid_devs; i++) {
971 struct imsm_dev *dev = get_imsm_dev(super, i);
972 struct imsm_map *map = get_imsm_map(dev, MAP_0);
973
974 if (get_imsm_disk_slot(map, dl->index) >= 0) {
975 e->start = pba_of_lba0(map);
976 e->size = blocks_per_member(map);
977 e++;
978 }
979 }
980 qsort(rv, memberships, sizeof(*rv), cmp_extent);
981
982 /* determine the start of the metadata
983 * when no raid devices are defined use the default
984 * ...otherwise allow the metadata to truncate the value
985 * as is the case with older versions of imsm
986 */
987 if (memberships) {
988 struct extent *last = &rv[memberships - 1];
989 unsigned long long remainder;
990
991 remainder = total_blocks(&dl->disk) - (last->start + last->size);
992 /* round down to 1k block to satisfy precision of the kernel
993 * 'size' interface
994 */
995 remainder &= ~1UL;
996 /* make sure remainder is still sane */
997 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
998 remainder = ROUND_UP(super->len, 512) >> 9;
999 if (reservation > remainder)
1000 reservation = remainder;
1001 }
1002 e->start = total_blocks(&dl->disk) - reservation;
1003 e->size = 0;
1004 return rv;
1005 }
1006
1007 /* try to determine how much space is reserved for metadata from
1008 * the last get_extents() entry, otherwise fallback to the
1009 * default
1010 */
1011 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1012 {
1013 struct extent *e;
1014 int i;
1015 __u32 rv;
1016
1017 /* for spares just return a minimal reservation which will grow
1018 * once the spare is picked up by an array
1019 */
1020 if (dl->index == -1)
1021 return MPB_SECTOR_CNT;
1022
1023 e = get_extents(super, dl);
1024 if (!e)
1025 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1026
1027 /* scroll to last entry */
1028 for (i = 0; e[i].size; i++)
1029 continue;
1030
1031 rv = total_blocks(&dl->disk) - e[i].start;
1032
1033 free(e);
1034
1035 return rv;
1036 }
1037
1038 static int is_spare(struct imsm_disk *disk)
1039 {
1040 return (disk->status & SPARE_DISK) == SPARE_DISK;
1041 }
1042
1043 static int is_configured(struct imsm_disk *disk)
1044 {
1045 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1046 }
1047
1048 static int is_failed(struct imsm_disk *disk)
1049 {
1050 return (disk->status & FAILED_DISK) == FAILED_DISK;
1051 }
1052
1053 /* try to determine how much space is reserved for metadata from
1054 * the last get_extents() entry on the smallest active disk,
1055 * otherwise fallback to the default
1056 */
1057 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1058 {
1059 struct extent *e;
1060 int i;
1061 unsigned long long min_active;
1062 __u32 remainder;
1063 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1064 struct dl *dl, *dl_min = NULL;
1065
1066 if (!super)
1067 return rv;
1068
1069 min_active = 0;
1070 for (dl = super->disks; dl; dl = dl->next) {
1071 if (dl->index < 0)
1072 continue;
1073 unsigned long long blocks = total_blocks(&dl->disk);
1074 if (blocks < min_active || min_active == 0) {
1075 dl_min = dl;
1076 min_active = blocks;
1077 }
1078 }
1079 if (!dl_min)
1080 return rv;
1081
1082 /* find last lba used by subarrays on the smallest active disk */
1083 e = get_extents(super, dl_min);
1084 if (!e)
1085 return rv;
1086 for (i = 0; e[i].size; i++)
1087 continue;
1088
1089 remainder = min_active - e[i].start;
1090 free(e);
1091
1092 /* to give priority to recovery we should not require full
1093 IMSM_RESERVED_SECTORS from the spare */
1094 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1095
1096 /* if real reservation is smaller use that value */
1097 return (remainder < rv) ? remainder : rv;
1098 }
1099
1100 /* Return minimum size of a spare that can be used in this array*/
1101 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1102 {
1103 struct intel_super *super = st->sb;
1104 struct dl *dl;
1105 struct extent *e;
1106 int i;
1107 unsigned long long rv = 0;
1108
1109 if (!super)
1110 return rv;
1111 /* find first active disk in array */
1112 dl = super->disks;
1113 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1114 dl = dl->next;
1115 if (!dl)
1116 return rv;
1117 /* find last lba used by subarrays */
1118 e = get_extents(super, dl);
1119 if (!e)
1120 return rv;
1121 for (i = 0; e[i].size; i++)
1122 continue;
1123 if (i > 0)
1124 rv = e[i-1].start + e[i-1].size;
1125 free(e);
1126
1127 /* add the amount of space needed for metadata */
1128 rv = rv + imsm_min_reserved_sectors(super);
1129
1130 return rv * 512;
1131 }
1132
1133 static int is_gen_migration(struct imsm_dev *dev);
1134
1135 #ifndef MDASSEMBLE
1136 static __u64 blocks_per_migr_unit(struct intel_super *super,
1137 struct imsm_dev *dev);
1138
1139 static void print_imsm_dev(struct intel_super *super,
1140 struct imsm_dev *dev,
1141 char *uuid,
1142 int disk_idx)
1143 {
1144 __u64 sz;
1145 int slot, i;
1146 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1147 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1148 __u32 ord;
1149
1150 printf("\n");
1151 printf("[%.16s]:\n", dev->volume);
1152 printf(" UUID : %s\n", uuid);
1153 printf(" RAID Level : %d", get_imsm_raid_level(map));
1154 if (map2)
1155 printf(" <-- %d", get_imsm_raid_level(map2));
1156 printf("\n");
1157 printf(" Members : %d", map->num_members);
1158 if (map2)
1159 printf(" <-- %d", map2->num_members);
1160 printf("\n");
1161 printf(" Slots : [");
1162 for (i = 0; i < map->num_members; i++) {
1163 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1164 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1165 }
1166 printf("]");
1167 if (map2) {
1168 printf(" <-- [");
1169 for (i = 0; i < map2->num_members; i++) {
1170 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1171 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1172 }
1173 printf("]");
1174 }
1175 printf("\n");
1176 printf(" Failed disk : ");
1177 if (map->failed_disk_num == 0xff)
1178 printf("none");
1179 else
1180 printf("%i", map->failed_disk_num);
1181 printf("\n");
1182 slot = get_imsm_disk_slot(map, disk_idx);
1183 if (slot >= 0) {
1184 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1185 printf(" This Slot : %d%s\n", slot,
1186 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1187 } else
1188 printf(" This Slot : ?\n");
1189 sz = __le32_to_cpu(dev->size_high);
1190 sz <<= 32;
1191 sz += __le32_to_cpu(dev->size_low);
1192 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1193 human_size(sz * 512));
1194 sz = blocks_per_member(map);
1195 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1196 human_size(sz * 512));
1197 printf(" Sector Offset : %llu\n",
1198 pba_of_lba0(map));
1199 printf(" Num Stripes : %llu\n",
1200 num_data_stripes(map));
1201 printf(" Chunk Size : %u KiB",
1202 __le16_to_cpu(map->blocks_per_strip) / 2);
1203 if (map2)
1204 printf(" <-- %u KiB",
1205 __le16_to_cpu(map2->blocks_per_strip) / 2);
1206 printf("\n");
1207 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1208 printf(" Migrate State : ");
1209 if (dev->vol.migr_state) {
1210 if (migr_type(dev) == MIGR_INIT)
1211 printf("initialize\n");
1212 else if (migr_type(dev) == MIGR_REBUILD)
1213 printf("rebuild\n");
1214 else if (migr_type(dev) == MIGR_VERIFY)
1215 printf("check\n");
1216 else if (migr_type(dev) == MIGR_GEN_MIGR)
1217 printf("general migration\n");
1218 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1219 printf("state change\n");
1220 else if (migr_type(dev) == MIGR_REPAIR)
1221 printf("repair\n");
1222 else
1223 printf("<unknown:%d>\n", migr_type(dev));
1224 } else
1225 printf("idle\n");
1226 printf(" Map State : %s", map_state_str[map->map_state]);
1227 if (dev->vol.migr_state) {
1228 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1229
1230 printf(" <-- %s", map_state_str[map->map_state]);
1231 printf("\n Checkpoint : %u ",
1232 __le32_to_cpu(dev->vol.curr_migr_unit));
1233 if ((is_gen_migration(dev)) && ((slot > 1) || (slot < 0)))
1234 printf("(N/A)");
1235 else
1236 printf("(%llu)", (unsigned long long)
1237 blocks_per_migr_unit(super, dev));
1238 }
1239 printf("\n");
1240 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1241 }
1242
1243 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1244 {
1245 char str[MAX_RAID_SERIAL_LEN + 1];
1246 __u64 sz;
1247
1248 if (index < -1 || !disk)
1249 return;
1250
1251 printf("\n");
1252 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1253 if (index >= 0)
1254 printf(" Disk%02d Serial : %s\n", index, str);
1255 else
1256 printf(" Disk Serial : %s\n", str);
1257 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1258 is_configured(disk) ? " active" : "",
1259 is_failed(disk) ? " failed" : "");
1260 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1261 sz = total_blocks(disk) - reserved;
1262 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1263 human_size(sz * 512));
1264 }
1265
1266 void examine_migr_rec_imsm(struct intel_super *super)
1267 {
1268 struct migr_record *migr_rec = super->migr_rec;
1269 struct imsm_super *mpb = super->anchor;
1270 int i;
1271
1272 for (i = 0; i < mpb->num_raid_devs; i++) {
1273 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1274 struct imsm_map *map;
1275 int slot = -1;
1276
1277 if (is_gen_migration(dev) == 0)
1278 continue;
1279
1280 printf("\nMigration Record Information:");
1281
1282 /* first map under migration */
1283 map = get_imsm_map(dev, MAP_0);
1284 if (map)
1285 slot = get_imsm_disk_slot(map, super->disks->index);
1286 if ((map == NULL) || (slot > 1) || (slot < 0)) {
1287 printf(" Empty\n ");
1288 printf("Examine one of first two disks in array\n");
1289 break;
1290 }
1291 printf("\n Status : ");
1292 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1293 printf("Normal\n");
1294 else
1295 printf("Contains Data\n");
1296 printf(" Current Unit : %u\n",
1297 __le32_to_cpu(migr_rec->curr_migr_unit));
1298 printf(" Family : %u\n",
1299 __le32_to_cpu(migr_rec->family_num));
1300 printf(" Ascending : %u\n",
1301 __le32_to_cpu(migr_rec->ascending_migr));
1302 printf(" Blocks Per Unit : %u\n",
1303 __le32_to_cpu(migr_rec->blocks_per_unit));
1304 printf(" Dest. Depth Per Unit : %u\n",
1305 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1306 printf(" Checkpoint Area pba : %u\n",
1307 __le32_to_cpu(migr_rec->ckpt_area_pba));
1308 printf(" First member lba : %u\n",
1309 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1310 printf(" Total Number of Units : %u\n",
1311 __le32_to_cpu(migr_rec->num_migr_units));
1312 printf(" Size of volume : %u\n",
1313 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1314 printf(" Expansion space for LBA64 : %u\n",
1315 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1316 printf(" Record was read from : %u\n",
1317 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1318
1319 break;
1320 }
1321 }
1322 #endif /* MDASSEMBLE */
1323 /*******************************************************************************
1324 * function: imsm_check_attributes
1325 * Description: Function checks if features represented by attributes flags
1326 * are supported by mdadm.
1327 * Parameters:
1328 * attributes - Attributes read from metadata
1329 * Returns:
1330 * 0 - passed attributes contains unsupported features flags
1331 * 1 - all features are supported
1332 ******************************************************************************/
1333 static int imsm_check_attributes(__u32 attributes)
1334 {
1335 int ret_val = 1;
1336 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1337
1338 not_supported &= ~MPB_ATTRIB_IGNORED;
1339
1340 not_supported &= attributes;
1341 if (not_supported) {
1342 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1343 (unsigned)__le32_to_cpu(not_supported));
1344 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1345 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1346 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1347 }
1348 if (not_supported & MPB_ATTRIB_2TB) {
1349 dprintf("\t\tMPB_ATTRIB_2TB\n");
1350 not_supported ^= MPB_ATTRIB_2TB;
1351 }
1352 if (not_supported & MPB_ATTRIB_RAID0) {
1353 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1354 not_supported ^= MPB_ATTRIB_RAID0;
1355 }
1356 if (not_supported & MPB_ATTRIB_RAID1) {
1357 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1358 not_supported ^= MPB_ATTRIB_RAID1;
1359 }
1360 if (not_supported & MPB_ATTRIB_RAID10) {
1361 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1362 not_supported ^= MPB_ATTRIB_RAID10;
1363 }
1364 if (not_supported & MPB_ATTRIB_RAID1E) {
1365 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1366 not_supported ^= MPB_ATTRIB_RAID1E;
1367 }
1368 if (not_supported & MPB_ATTRIB_RAID5) {
1369 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1370 not_supported ^= MPB_ATTRIB_RAID5;
1371 }
1372 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1373 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1374 not_supported ^= MPB_ATTRIB_RAIDCNG;
1375 }
1376 if (not_supported & MPB_ATTRIB_BBM) {
1377 dprintf("\t\tMPB_ATTRIB_BBM\n");
1378 not_supported ^= MPB_ATTRIB_BBM;
1379 }
1380 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1381 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1382 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1383 }
1384 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1385 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1386 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1387 }
1388 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1389 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1390 not_supported ^= MPB_ATTRIB_2TB_DISK;
1391 }
1392 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1393 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1394 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1395 }
1396 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1397 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1398 not_supported ^= MPB_ATTRIB_NEVER_USE;
1399 }
1400
1401 if (not_supported)
1402 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1403
1404 ret_val = 0;
1405 }
1406
1407 return ret_val;
1408 }
1409
1410 #ifndef MDASSEMBLE
1411 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1412
1413 static void examine_super_imsm(struct supertype *st, char *homehost)
1414 {
1415 struct intel_super *super = st->sb;
1416 struct imsm_super *mpb = super->anchor;
1417 char str[MAX_SIGNATURE_LENGTH];
1418 int i;
1419 struct mdinfo info;
1420 char nbuf[64];
1421 __u32 sum;
1422 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1423 struct dl *dl;
1424
1425 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1426 printf(" Magic : %s\n", str);
1427 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1428 printf(" Version : %s\n", get_imsm_version(mpb));
1429 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1430 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1431 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1432 printf(" Attributes : ");
1433 if (imsm_check_attributes(mpb->attributes))
1434 printf("All supported\n");
1435 else
1436 printf("not supported\n");
1437 getinfo_super_imsm(st, &info, NULL);
1438 fname_from_uuid(st, &info, nbuf, ':');
1439 printf(" UUID : %s\n", nbuf + 5);
1440 sum = __le32_to_cpu(mpb->check_sum);
1441 printf(" Checksum : %08x %s\n", sum,
1442 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1443 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1444 printf(" Disks : %d\n", mpb->num_disks);
1445 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1446 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1447 if (super->bbm_log) {
1448 struct bbm_log *log = super->bbm_log;
1449
1450 printf("\n");
1451 printf("Bad Block Management Log:\n");
1452 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1453 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1454 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1455 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1456 printf(" First Spare : %llx\n",
1457 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1458 }
1459 for (i = 0; i < mpb->num_raid_devs; i++) {
1460 struct mdinfo info;
1461 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1462
1463 super->current_vol = i;
1464 getinfo_super_imsm(st, &info, NULL);
1465 fname_from_uuid(st, &info, nbuf, ':');
1466 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1467 }
1468 for (i = 0; i < mpb->num_disks; i++) {
1469 if (i == super->disks->index)
1470 continue;
1471 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1472 }
1473
1474 for (dl = super->disks; dl; dl = dl->next)
1475 if (dl->index == -1)
1476 print_imsm_disk(&dl->disk, -1, reserved);
1477
1478 examine_migr_rec_imsm(super);
1479 }
1480
1481 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1482 {
1483 /* We just write a generic IMSM ARRAY entry */
1484 struct mdinfo info;
1485 char nbuf[64];
1486 struct intel_super *super = st->sb;
1487
1488 if (!super->anchor->num_raid_devs) {
1489 printf("ARRAY metadata=imsm\n");
1490 return;
1491 }
1492
1493 getinfo_super_imsm(st, &info, NULL);
1494 fname_from_uuid(st, &info, nbuf, ':');
1495 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1496 }
1497
1498 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1499 {
1500 /* We just write a generic IMSM ARRAY entry */
1501 struct mdinfo info;
1502 char nbuf[64];
1503 char nbuf1[64];
1504 struct intel_super *super = st->sb;
1505 int i;
1506
1507 if (!super->anchor->num_raid_devs)
1508 return;
1509
1510 getinfo_super_imsm(st, &info, NULL);
1511 fname_from_uuid(st, &info, nbuf, ':');
1512 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1513 struct imsm_dev *dev = get_imsm_dev(super, i);
1514
1515 super->current_vol = i;
1516 getinfo_super_imsm(st, &info, NULL);
1517 fname_from_uuid(st, &info, nbuf1, ':');
1518 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1519 dev->volume, nbuf + 5, i, nbuf1 + 5);
1520 }
1521 }
1522
1523 static void export_examine_super_imsm(struct supertype *st)
1524 {
1525 struct intel_super *super = st->sb;
1526 struct imsm_super *mpb = super->anchor;
1527 struct mdinfo info;
1528 char nbuf[64];
1529
1530 getinfo_super_imsm(st, &info, NULL);
1531 fname_from_uuid(st, &info, nbuf, ':');
1532 printf("MD_METADATA=imsm\n");
1533 printf("MD_LEVEL=container\n");
1534 printf("MD_UUID=%s\n", nbuf+5);
1535 printf("MD_DEVICES=%u\n", mpb->num_disks);
1536 }
1537
1538 static void detail_super_imsm(struct supertype *st, char *homehost)
1539 {
1540 struct mdinfo info;
1541 char nbuf[64];
1542
1543 getinfo_super_imsm(st, &info, NULL);
1544 fname_from_uuid(st, &info, nbuf, ':');
1545 printf("\n UUID : %s\n", nbuf + 5);
1546 }
1547
1548 static void brief_detail_super_imsm(struct supertype *st)
1549 {
1550 struct mdinfo info;
1551 char nbuf[64];
1552 getinfo_super_imsm(st, &info, NULL);
1553 fname_from_uuid(st, &info, nbuf, ':');
1554 printf(" UUID=%s", nbuf + 5);
1555 }
1556
1557 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1558 static void fd2devname(int fd, char *name);
1559
1560 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1561 {
1562 /* dump an unsorted list of devices attached to AHCI Intel storage
1563 * controller, as well as non-connected ports
1564 */
1565 int hba_len = strlen(hba_path) + 1;
1566 struct dirent *ent;
1567 DIR *dir;
1568 char *path = NULL;
1569 int err = 0;
1570 unsigned long port_mask = (1 << port_count) - 1;
1571
1572 if (port_count > (int)sizeof(port_mask) * 8) {
1573 if (verbose)
1574 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1575 return 2;
1576 }
1577
1578 /* scroll through /sys/dev/block looking for devices attached to
1579 * this hba
1580 */
1581 dir = opendir("/sys/dev/block");
1582 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1583 int fd;
1584 char model[64];
1585 char vendor[64];
1586 char buf[1024];
1587 int major, minor;
1588 char *device;
1589 char *c;
1590 int port;
1591 int type;
1592
1593 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1594 continue;
1595 path = devt_to_devpath(makedev(major, minor));
1596 if (!path)
1597 continue;
1598 if (!path_attached_to_hba(path, hba_path)) {
1599 free(path);
1600 path = NULL;
1601 continue;
1602 }
1603
1604 /* retrieve the scsi device type */
1605 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1606 if (verbose)
1607 fprintf(stderr, Name ": failed to allocate 'device'\n");
1608 err = 2;
1609 break;
1610 }
1611 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1612 if (load_sys(device, buf) != 0) {
1613 if (verbose)
1614 fprintf(stderr, Name ": failed to read device type for %s\n",
1615 path);
1616 err = 2;
1617 free(device);
1618 break;
1619 }
1620 type = strtoul(buf, NULL, 10);
1621
1622 /* if it's not a disk print the vendor and model */
1623 if (!(type == 0 || type == 7 || type == 14)) {
1624 vendor[0] = '\0';
1625 model[0] = '\0';
1626 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1627 if (load_sys(device, buf) == 0) {
1628 strncpy(vendor, buf, sizeof(vendor));
1629 vendor[sizeof(vendor) - 1] = '\0';
1630 c = (char *) &vendor[sizeof(vendor) - 1];
1631 while (isspace(*c) || *c == '\0')
1632 *c-- = '\0';
1633
1634 }
1635 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1636 if (load_sys(device, buf) == 0) {
1637 strncpy(model, buf, sizeof(model));
1638 model[sizeof(model) - 1] = '\0';
1639 c = (char *) &model[sizeof(model) - 1];
1640 while (isspace(*c) || *c == '\0')
1641 *c-- = '\0';
1642 }
1643
1644 if (vendor[0] && model[0])
1645 sprintf(buf, "%.64s %.64s", vendor, model);
1646 else
1647 switch (type) { /* numbers from hald/linux/device.c */
1648 case 1: sprintf(buf, "tape"); break;
1649 case 2: sprintf(buf, "printer"); break;
1650 case 3: sprintf(buf, "processor"); break;
1651 case 4:
1652 case 5: sprintf(buf, "cdrom"); break;
1653 case 6: sprintf(buf, "scanner"); break;
1654 case 8: sprintf(buf, "media_changer"); break;
1655 case 9: sprintf(buf, "comm"); break;
1656 case 12: sprintf(buf, "raid"); break;
1657 default: sprintf(buf, "unknown");
1658 }
1659 } else
1660 buf[0] = '\0';
1661 free(device);
1662
1663 /* chop device path to 'host%d' and calculate the port number */
1664 c = strchr(&path[hba_len], '/');
1665 if (!c) {
1666 if (verbose)
1667 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1668 err = 2;
1669 break;
1670 }
1671 *c = '\0';
1672 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1673 port -= host_base;
1674 else {
1675 if (verbose) {
1676 *c = '/'; /* repair the full string */
1677 fprintf(stderr, Name ": failed to determine port number for %s\n",
1678 path);
1679 }
1680 err = 2;
1681 break;
1682 }
1683
1684 /* mark this port as used */
1685 port_mask &= ~(1 << port);
1686
1687 /* print out the device information */
1688 if (buf[0]) {
1689 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1690 continue;
1691 }
1692
1693 fd = dev_open(ent->d_name, O_RDONLY);
1694 if (fd < 0)
1695 printf(" Port%d : - disk info unavailable -\n", port);
1696 else {
1697 fd2devname(fd, buf);
1698 printf(" Port%d : %s", port, buf);
1699 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1700 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1701 else
1702 printf(" ()\n");
1703 close(fd);
1704 }
1705 free(path);
1706 path = NULL;
1707 }
1708 if (path)
1709 free(path);
1710 if (dir)
1711 closedir(dir);
1712 if (err == 0) {
1713 int i;
1714
1715 for (i = 0; i < port_count; i++)
1716 if (port_mask & (1 << i))
1717 printf(" Port%d : - no device attached -\n", i);
1718 }
1719
1720 return err;
1721 }
1722
1723 static void print_found_intel_controllers(struct sys_dev *elem)
1724 {
1725 for (; elem; elem = elem->next) {
1726 fprintf(stderr, Name ": found Intel(R) ");
1727 if (elem->type == SYS_DEV_SATA)
1728 fprintf(stderr, "SATA ");
1729 else if (elem->type == SYS_DEV_SAS)
1730 fprintf(stderr, "SAS ");
1731 fprintf(stderr, "RAID controller");
1732 if (elem->pci_id)
1733 fprintf(stderr, " at %s", elem->pci_id);
1734 fprintf(stderr, ".\n");
1735 }
1736 fflush(stderr);
1737 }
1738
1739 static int ahci_get_port_count(const char *hba_path, int *port_count)
1740 {
1741 struct dirent *ent;
1742 DIR *dir;
1743 int host_base = -1;
1744
1745 *port_count = 0;
1746 if ((dir = opendir(hba_path)) == NULL)
1747 return -1;
1748
1749 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1750 int host;
1751
1752 if (sscanf(ent->d_name, "host%d", &host) != 1)
1753 continue;
1754 if (*port_count == 0)
1755 host_base = host;
1756 else if (host < host_base)
1757 host_base = host;
1758
1759 if (host + 1 > *port_count + host_base)
1760 *port_count = host + 1 - host_base;
1761 }
1762 closedir(dir);
1763 return host_base;
1764 }
1765
1766 static void print_imsm_capability(const struct imsm_orom *orom)
1767 {
1768 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1769 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1770 orom->hotfix_ver, orom->build);
1771 printf(" RAID Levels :%s%s%s%s%s\n",
1772 imsm_orom_has_raid0(orom) ? " raid0" : "",
1773 imsm_orom_has_raid1(orom) ? " raid1" : "",
1774 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1775 imsm_orom_has_raid10(orom) ? " raid10" : "",
1776 imsm_orom_has_raid5(orom) ? " raid5" : "");
1777 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1778 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1779 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1780 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1781 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1782 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1783 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1784 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1785 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1786 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1787 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1788 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1789 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1790 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1791 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1792 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1793 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1794 printf(" 2TB volumes :%s supported\n",
1795 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
1796 printf(" 2TB disks :%s supported\n",
1797 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
1798 printf(" Max Disks : %d\n", orom->tds);
1799 printf(" Max Volumes : %d per array, %d per controller\n",
1800 orom->vpa, orom->vphba);
1801 return;
1802 }
1803
1804 static int detail_platform_imsm(int verbose, int enumerate_only)
1805 {
1806 /* There are two components to imsm platform support, the ahci SATA
1807 * controller and the option-rom. To find the SATA controller we
1808 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1809 * controller with the Intel vendor id is present. This approach
1810 * allows mdadm to leverage the kernel's ahci detection logic, with the
1811 * caveat that if ahci.ko is not loaded mdadm will not be able to
1812 * detect platform raid capabilities. The option-rom resides in a
1813 * platform "Adapter ROM". We scan for its signature to retrieve the
1814 * platform capabilities. If raid support is disabled in the BIOS the
1815 * option-rom capability structure will not be available.
1816 */
1817 const struct imsm_orom *orom;
1818 struct sys_dev *list, *hba;
1819 int host_base = 0;
1820 int port_count = 0;
1821 int result=0;
1822
1823 if (enumerate_only) {
1824 if (check_env("IMSM_NO_PLATFORM"))
1825 return 0;
1826 list = find_intel_devices();
1827 if (!list)
1828 return 2;
1829 for (hba = list; hba; hba = hba->next) {
1830 orom = find_imsm_capability(hba->type);
1831 if (!orom) {
1832 result = 2;
1833 break;
1834 }
1835 }
1836 free_sys_dev(&list);
1837 return result;
1838 }
1839
1840 list = find_intel_devices();
1841 if (!list) {
1842 if (verbose)
1843 fprintf(stderr, Name ": no active Intel(R) RAID "
1844 "controller found.\n");
1845 free_sys_dev(&list);
1846 return 2;
1847 } else if (verbose)
1848 print_found_intel_controllers(list);
1849
1850 for (hba = list; hba; hba = hba->next) {
1851 orom = find_imsm_capability(hba->type);
1852 if (!orom)
1853 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1854 hba->path, get_sys_dev_type(hba->type));
1855 else
1856 print_imsm_capability(orom);
1857 }
1858
1859 for (hba = list; hba; hba = hba->next) {
1860 printf(" I/O Controller : %s (%s)\n",
1861 hba->path, get_sys_dev_type(hba->type));
1862
1863 if (hba->type == SYS_DEV_SATA) {
1864 host_base = ahci_get_port_count(hba->path, &port_count);
1865 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1866 if (verbose)
1867 fprintf(stderr, Name ": failed to enumerate "
1868 "ports on SATA controller at %s.", hba->pci_id);
1869 result |= 2;
1870 }
1871 }
1872 }
1873
1874 free_sys_dev(&list);
1875 return result;
1876 }
1877 #endif
1878
1879 static int match_home_imsm(struct supertype *st, char *homehost)
1880 {
1881 /* the imsm metadata format does not specify any host
1882 * identification information. We return -1 since we can never
1883 * confirm nor deny whether a given array is "meant" for this
1884 * host. We rely on compare_super and the 'family_num' fields to
1885 * exclude member disks that do not belong, and we rely on
1886 * mdadm.conf to specify the arrays that should be assembled.
1887 * Auto-assembly may still pick up "foreign" arrays.
1888 */
1889
1890 return -1;
1891 }
1892
1893 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1894 {
1895 /* The uuid returned here is used for:
1896 * uuid to put into bitmap file (Create, Grow)
1897 * uuid for backup header when saving critical section (Grow)
1898 * comparing uuids when re-adding a device into an array
1899 * In these cases the uuid required is that of the data-array,
1900 * not the device-set.
1901 * uuid to recognise same set when adding a missing device back
1902 * to an array. This is a uuid for the device-set.
1903 *
1904 * For each of these we can make do with a truncated
1905 * or hashed uuid rather than the original, as long as
1906 * everyone agrees.
1907 * In each case the uuid required is that of the data-array,
1908 * not the device-set.
1909 */
1910 /* imsm does not track uuid's so we synthesis one using sha1 on
1911 * - The signature (Which is constant for all imsm array, but no matter)
1912 * - the orig_family_num of the container
1913 * - the index number of the volume
1914 * - the 'serial' number of the volume.
1915 * Hopefully these are all constant.
1916 */
1917 struct intel_super *super = st->sb;
1918
1919 char buf[20];
1920 struct sha1_ctx ctx;
1921 struct imsm_dev *dev = NULL;
1922 __u32 family_num;
1923
1924 /* some mdadm versions failed to set ->orig_family_num, in which
1925 * case fall back to ->family_num. orig_family_num will be
1926 * fixed up with the first metadata update.
1927 */
1928 family_num = super->anchor->orig_family_num;
1929 if (family_num == 0)
1930 family_num = super->anchor->family_num;
1931 sha1_init_ctx(&ctx);
1932 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1933 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1934 if (super->current_vol >= 0)
1935 dev = get_imsm_dev(super, super->current_vol);
1936 if (dev) {
1937 __u32 vol = super->current_vol;
1938 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1939 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1940 }
1941 sha1_finish_ctx(&ctx, buf);
1942 memcpy(uuid, buf, 4*4);
1943 }
1944
1945 #if 0
1946 static void
1947 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1948 {
1949 __u8 *v = get_imsm_version(mpb);
1950 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1951 char major[] = { 0, 0, 0 };
1952 char minor[] = { 0 ,0, 0 };
1953 char patch[] = { 0, 0, 0 };
1954 char *ver_parse[] = { major, minor, patch };
1955 int i, j;
1956
1957 i = j = 0;
1958 while (*v != '\0' && v < end) {
1959 if (*v != '.' && j < 2)
1960 ver_parse[i][j++] = *v;
1961 else {
1962 i++;
1963 j = 0;
1964 }
1965 v++;
1966 }
1967
1968 *m = strtol(minor, NULL, 0);
1969 *p = strtol(patch, NULL, 0);
1970 }
1971 #endif
1972
1973 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1974 {
1975 /* migr_strip_size when repairing or initializing parity */
1976 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1977 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1978
1979 switch (get_imsm_raid_level(map)) {
1980 case 5:
1981 case 10:
1982 return chunk;
1983 default:
1984 return 128*1024 >> 9;
1985 }
1986 }
1987
1988 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1989 {
1990 /* migr_strip_size when rebuilding a degraded disk, no idea why
1991 * this is different than migr_strip_size_resync(), but it's good
1992 * to be compatible
1993 */
1994 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1995 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1996
1997 switch (get_imsm_raid_level(map)) {
1998 case 1:
1999 case 10:
2000 if (map->num_members % map->num_domains == 0)
2001 return 128*1024 >> 9;
2002 else
2003 return chunk;
2004 case 5:
2005 return max((__u32) 64*1024 >> 9, chunk);
2006 default:
2007 return 128*1024 >> 9;
2008 }
2009 }
2010
2011 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
2012 {
2013 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2014 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2015 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
2016 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
2017
2018 return max((__u32) 1, hi_chunk / lo_chunk);
2019 }
2020
2021 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
2022 {
2023 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
2024 int level = get_imsm_raid_level(lo);
2025
2026 if (level == 1 || level == 10) {
2027 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
2028
2029 return hi->num_domains;
2030 } else
2031 return num_stripes_per_unit_resync(dev);
2032 }
2033
2034 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
2035 {
2036 /* named 'imsm_' because raid0, raid1 and raid10
2037 * counter-intuitively have the same number of data disks
2038 */
2039 struct imsm_map *map = get_imsm_map(dev, second_map);
2040
2041 switch (get_imsm_raid_level(map)) {
2042 case 0:
2043 return map->num_members;
2044 break;
2045 case 1:
2046 case 10:
2047 return map->num_members/2;
2048 case 5:
2049 return map->num_members - 1;
2050 default:
2051 dprintf("%s: unsupported raid level\n", __func__);
2052 return 0;
2053 }
2054 }
2055
2056 static __u32 parity_segment_depth(struct imsm_dev *dev)
2057 {
2058 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2059 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2060
2061 switch(get_imsm_raid_level(map)) {
2062 case 1:
2063 case 10:
2064 return chunk * map->num_domains;
2065 case 5:
2066 return chunk * map->num_members;
2067 default:
2068 return chunk;
2069 }
2070 }
2071
2072 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
2073 {
2074 struct imsm_map *map = get_imsm_map(dev, MAP_1);
2075 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2076 __u32 strip = block / chunk;
2077
2078 switch (get_imsm_raid_level(map)) {
2079 case 1:
2080 case 10: {
2081 __u32 vol_strip = (strip * map->num_domains) + 1;
2082 __u32 vol_stripe = vol_strip / map->num_members;
2083
2084 return vol_stripe * chunk + block % chunk;
2085 } case 5: {
2086 __u32 stripe = strip / (map->num_members - 1);
2087
2088 return stripe * chunk + block % chunk;
2089 }
2090 default:
2091 return 0;
2092 }
2093 }
2094
2095 static __u64 blocks_per_migr_unit(struct intel_super *super,
2096 struct imsm_dev *dev)
2097 {
2098 /* calculate the conversion factor between per member 'blocks'
2099 * (md/{resync,rebuild}_start) and imsm migration units, return
2100 * 0 for the 'not migrating' and 'unsupported migration' cases
2101 */
2102 if (!dev->vol.migr_state)
2103 return 0;
2104
2105 switch (migr_type(dev)) {
2106 case MIGR_GEN_MIGR: {
2107 struct migr_record *migr_rec = super->migr_rec;
2108 return __le32_to_cpu(migr_rec->blocks_per_unit);
2109 }
2110 case MIGR_VERIFY:
2111 case MIGR_REPAIR:
2112 case MIGR_INIT: {
2113 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2114 __u32 stripes_per_unit;
2115 __u32 blocks_per_unit;
2116 __u32 parity_depth;
2117 __u32 migr_chunk;
2118 __u32 block_map;
2119 __u32 block_rel;
2120 __u32 segment;
2121 __u32 stripe;
2122 __u8 disks;
2123
2124 /* yes, this is really the translation of migr_units to
2125 * per-member blocks in the 'resync' case
2126 */
2127 stripes_per_unit = num_stripes_per_unit_resync(dev);
2128 migr_chunk = migr_strip_blocks_resync(dev);
2129 disks = imsm_num_data_members(dev, MAP_0);
2130 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2131 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2132 segment = blocks_per_unit / stripe;
2133 block_rel = blocks_per_unit - segment * stripe;
2134 parity_depth = parity_segment_depth(dev);
2135 block_map = map_migr_block(dev, block_rel);
2136 return block_map + parity_depth * segment;
2137 }
2138 case MIGR_REBUILD: {
2139 __u32 stripes_per_unit;
2140 __u32 migr_chunk;
2141
2142 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2143 migr_chunk = migr_strip_blocks_rebuild(dev);
2144 return migr_chunk * stripes_per_unit;
2145 }
2146 case MIGR_STATE_CHANGE:
2147 default:
2148 return 0;
2149 }
2150 }
2151
2152 static int imsm_level_to_layout(int level)
2153 {
2154 switch (level) {
2155 case 0:
2156 case 1:
2157 return 0;
2158 case 5:
2159 case 6:
2160 return ALGORITHM_LEFT_ASYMMETRIC;
2161 case 10:
2162 return 0x102;
2163 }
2164 return UnSet;
2165 }
2166
2167 /*******************************************************************************
2168 * Function: read_imsm_migr_rec
2169 * Description: Function reads imsm migration record from last sector of disk
2170 * Parameters:
2171 * fd : disk descriptor
2172 * super : metadata info
2173 * Returns:
2174 * 0 : success,
2175 * -1 : fail
2176 ******************************************************************************/
2177 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2178 {
2179 int ret_val = -1;
2180 unsigned long long dsize;
2181
2182 get_dev_size(fd, NULL, &dsize);
2183 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2184 fprintf(stderr,
2185 Name ": Cannot seek to anchor block: %s\n",
2186 strerror(errno));
2187 goto out;
2188 }
2189 if (read(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2190 MIGR_REC_BUF_SIZE) {
2191 fprintf(stderr,
2192 Name ": Cannot read migr record block: %s\n",
2193 strerror(errno));
2194 goto out;
2195 }
2196 ret_val = 0;
2197
2198 out:
2199 return ret_val;
2200 }
2201
2202 static struct imsm_dev *imsm_get_device_during_migration(
2203 struct intel_super *super)
2204 {
2205
2206 struct intel_dev *dv;
2207
2208 for (dv = super->devlist; dv; dv = dv->next) {
2209 if (is_gen_migration(dv->dev))
2210 return dv->dev;
2211 }
2212 return NULL;
2213 }
2214
2215 /*******************************************************************************
2216 * Function: load_imsm_migr_rec
2217 * Description: Function reads imsm migration record (it is stored at the last
2218 * sector of disk)
2219 * Parameters:
2220 * super : imsm internal array info
2221 * info : general array info
2222 * Returns:
2223 * 0 : success
2224 * -1 : fail
2225 * -2 : no migration in progress
2226 ******************************************************************************/
2227 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2228 {
2229 struct mdinfo *sd;
2230 struct dl *dl = NULL;
2231 char nm[30];
2232 int retval = -1;
2233 int fd = -1;
2234 struct imsm_dev *dev;
2235 struct imsm_map *map = NULL;
2236 int slot = -1;
2237
2238 /* find map under migration */
2239 dev = imsm_get_device_during_migration(super);
2240 /* nothing to load,no migration in progress?
2241 */
2242 if (dev == NULL)
2243 return -2;
2244 map = get_imsm_map(dev, MAP_0);
2245
2246 if (info) {
2247 for (sd = info->devs ; sd ; sd = sd->next) {
2248 /* skip spare and failed disks
2249 */
2250 if (sd->disk.raid_disk < 0)
2251 continue;
2252 /* read only from one of the first two slots */
2253 if (map)
2254 slot = get_imsm_disk_slot(map,
2255 sd->disk.raid_disk);
2256 if ((map == NULL) || (slot > 1) || (slot < 0))
2257 continue;
2258
2259 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2260 fd = dev_open(nm, O_RDONLY);
2261 if (fd >= 0)
2262 break;
2263 }
2264 }
2265 if (fd < 0) {
2266 for (dl = super->disks; dl; dl = dl->next) {
2267 /* skip spare and failed disks
2268 */
2269 if (dl->index < 0)
2270 continue;
2271 /* read only from one of the first two slots */
2272 if (map)
2273 slot = get_imsm_disk_slot(map, dl->index);
2274 if ((map == NULL) || (slot > 1) || (slot < 0))
2275 continue;
2276 sprintf(nm, "%d:%d", dl->major, dl->minor);
2277 fd = dev_open(nm, O_RDONLY);
2278 if (fd >= 0)
2279 break;
2280 }
2281 }
2282 if (fd < 0)
2283 goto out;
2284 retval = read_imsm_migr_rec(fd, super);
2285
2286 out:
2287 if (fd >= 0)
2288 close(fd);
2289 return retval;
2290 }
2291
2292 #ifndef MDASSEMBLE
2293 /*******************************************************************************
2294 * function: imsm_create_metadata_checkpoint_update
2295 * Description: It creates update for checkpoint change.
2296 * Parameters:
2297 * super : imsm internal array info
2298 * u : pointer to prepared update
2299 * Returns:
2300 * Uptate length.
2301 * If length is equal to 0, input pointer u contains no update
2302 ******************************************************************************/
2303 static int imsm_create_metadata_checkpoint_update(
2304 struct intel_super *super,
2305 struct imsm_update_general_migration_checkpoint **u)
2306 {
2307
2308 int update_memory_size = 0;
2309
2310 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2311
2312 if (u == NULL)
2313 return 0;
2314 *u = NULL;
2315
2316 /* size of all update data without anchor */
2317 update_memory_size =
2318 sizeof(struct imsm_update_general_migration_checkpoint);
2319
2320 *u = calloc(1, update_memory_size);
2321 if (*u == NULL) {
2322 dprintf("error: cannot get memory for "
2323 "imsm_create_metadata_checkpoint_update update\n");
2324 return 0;
2325 }
2326 (*u)->type = update_general_migration_checkpoint;
2327 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2328 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2329 (*u)->curr_migr_unit);
2330
2331 return update_memory_size;
2332 }
2333
2334
2335 static void imsm_update_metadata_locally(struct supertype *st,
2336 void *buf, int len);
2337
2338 /*******************************************************************************
2339 * Function: write_imsm_migr_rec
2340 * Description: Function writes imsm migration record
2341 * (at the last sector of disk)
2342 * Parameters:
2343 * super : imsm internal array info
2344 * Returns:
2345 * 0 : success
2346 * -1 : if fail
2347 ******************************************************************************/
2348 static int write_imsm_migr_rec(struct supertype *st)
2349 {
2350 struct intel_super *super = st->sb;
2351 unsigned long long dsize;
2352 char nm[30];
2353 int fd = -1;
2354 int retval = -1;
2355 struct dl *sd;
2356 int len;
2357 struct imsm_update_general_migration_checkpoint *u;
2358 struct imsm_dev *dev;
2359 struct imsm_map *map = NULL;
2360
2361 /* find map under migration */
2362 dev = imsm_get_device_during_migration(super);
2363 /* if no migration, write buffer anyway to clear migr_record
2364 * on disk based on first available device
2365 */
2366 if (dev == NULL)
2367 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
2368 super->current_vol);
2369
2370 map = get_imsm_map(dev, MAP_0);
2371
2372 for (sd = super->disks ; sd ; sd = sd->next) {
2373 int slot = -1;
2374
2375 /* skip failed and spare devices */
2376 if (sd->index < 0)
2377 continue;
2378 /* write to 2 first slots only */
2379 if (map)
2380 slot = get_imsm_disk_slot(map, sd->index);
2381 if ((map == NULL) || (slot > 1) || (slot < 0))
2382 continue;
2383
2384 sprintf(nm, "%d:%d", sd->major, sd->minor);
2385 fd = dev_open(nm, O_RDWR);
2386 if (fd < 0)
2387 continue;
2388 get_dev_size(fd, NULL, &dsize);
2389 if (lseek64(fd, dsize - MIGR_REC_POSITION, SEEK_SET) < 0) {
2390 fprintf(stderr,
2391 Name ": Cannot seek to anchor block: %s\n",
2392 strerror(errno));
2393 goto out;
2394 }
2395 if (write(fd, super->migr_rec_buf, MIGR_REC_BUF_SIZE) !=
2396 MIGR_REC_BUF_SIZE) {
2397 fprintf(stderr,
2398 Name ": Cannot write migr record block: %s\n",
2399 strerror(errno));
2400 goto out;
2401 }
2402 close(fd);
2403 fd = -1;
2404 }
2405 /* update checkpoint information in metadata */
2406 len = imsm_create_metadata_checkpoint_update(super, &u);
2407
2408 if (len <= 0) {
2409 dprintf("imsm: Cannot prepare update\n");
2410 goto out;
2411 }
2412 /* update metadata locally */
2413 imsm_update_metadata_locally(st, u, len);
2414 /* and possibly remotely */
2415 if (st->update_tail) {
2416 append_metadata_update(st, u, len);
2417 /* during reshape we do all work inside metadata handler
2418 * manage_reshape(), so metadata update has to be triggered
2419 * insida it
2420 */
2421 flush_metadata_updates(st);
2422 st->update_tail = &st->updates;
2423 } else
2424 free(u);
2425
2426 retval = 0;
2427 out:
2428 if (fd >= 0)
2429 close(fd);
2430 return retval;
2431 }
2432 #endif /* MDASSEMBLE */
2433
2434 /* spare/missing disks activations are not allowe when
2435 * array/container performs reshape operation, because
2436 * all arrays in container works on the same disks set
2437 */
2438 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2439 {
2440 int rv = 0;
2441 struct intel_dev *i_dev;
2442 struct imsm_dev *dev;
2443
2444 /* check whole container
2445 */
2446 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2447 dev = i_dev->dev;
2448 if (is_gen_migration(dev)) {
2449 /* No repair during any migration in container
2450 */
2451 rv = 1;
2452 break;
2453 }
2454 }
2455 return rv;
2456 }
2457
2458 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2459 {
2460 struct intel_super *super = st->sb;
2461 struct migr_record *migr_rec = super->migr_rec;
2462 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2463 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2464 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
2465 struct imsm_map *map_to_analyse = map;
2466 struct dl *dl;
2467 char *devname;
2468 unsigned int component_size_alligment;
2469 int map_disks = info->array.raid_disks;
2470
2471 memset(info, 0, sizeof(*info));
2472 if (prev_map)
2473 map_to_analyse = prev_map;
2474
2475 dl = super->current_disk;
2476
2477 info->container_member = super->current_vol;
2478 info->array.raid_disks = map->num_members;
2479 info->array.level = get_imsm_raid_level(map_to_analyse);
2480 info->array.layout = imsm_level_to_layout(info->array.level);
2481 info->array.md_minor = -1;
2482 info->array.ctime = 0;
2483 info->array.utime = 0;
2484 info->array.chunk_size =
2485 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2486 info->array.state = !dev->vol.dirty;
2487 info->custom_array_size = __le32_to_cpu(dev->size_high);
2488 info->custom_array_size <<= 32;
2489 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2490 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2491
2492 if (is_gen_migration(dev)) {
2493 info->reshape_active = 1;
2494 info->new_level = get_imsm_raid_level(map);
2495 info->new_layout = imsm_level_to_layout(info->new_level);
2496 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2497 info->delta_disks = map->num_members - prev_map->num_members;
2498 if (info->delta_disks) {
2499 /* this needs to be applied to every array
2500 * in the container.
2501 */
2502 info->reshape_active = CONTAINER_RESHAPE;
2503 }
2504 /* We shape information that we give to md might have to be
2505 * modify to cope with md's requirement for reshaping arrays.
2506 * For example, when reshaping a RAID0, md requires it to be
2507 * presented as a degraded RAID4.
2508 * Also if a RAID0 is migrating to a RAID5 we need to specify
2509 * the array as already being RAID5, but the 'before' layout
2510 * is a RAID4-like layout.
2511 */
2512 switch (info->array.level) {
2513 case 0:
2514 switch(info->new_level) {
2515 case 0:
2516 /* conversion is happening as RAID4 */
2517 info->array.level = 4;
2518 info->array.raid_disks += 1;
2519 break;
2520 case 5:
2521 /* conversion is happening as RAID5 */
2522 info->array.level = 5;
2523 info->array.layout = ALGORITHM_PARITY_N;
2524 info->delta_disks -= 1;
2525 break;
2526 default:
2527 /* FIXME error message */
2528 info->array.level = UnSet;
2529 break;
2530 }
2531 break;
2532 }
2533 } else {
2534 info->new_level = UnSet;
2535 info->new_layout = UnSet;
2536 info->new_chunk = info->array.chunk_size;
2537 info->delta_disks = 0;
2538 }
2539
2540 if (dl) {
2541 info->disk.major = dl->major;
2542 info->disk.minor = dl->minor;
2543 info->disk.number = dl->index;
2544 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2545 dl->index);
2546 }
2547
2548 info->data_offset = pba_of_lba0(map_to_analyse);
2549 info->component_size = blocks_per_member(map_to_analyse);
2550
2551 /* check component size aligment
2552 */
2553 component_size_alligment =
2554 info->component_size % (info->array.chunk_size/512);
2555
2556 if (component_size_alligment &&
2557 (info->array.level != 1) && (info->array.level != UnSet)) {
2558 dprintf("imsm: reported component size alligned from %llu ",
2559 info->component_size);
2560 info->component_size -= component_size_alligment;
2561 dprintf("to %llu (%i).\n",
2562 info->component_size, component_size_alligment);
2563 }
2564
2565 memset(info->uuid, 0, sizeof(info->uuid));
2566 info->recovery_start = MaxSector;
2567
2568 info->reshape_progress = 0;
2569 info->resync_start = MaxSector;
2570 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2571 dev->vol.dirty) &&
2572 imsm_reshape_blocks_arrays_changes(super) == 0) {
2573 info->resync_start = 0;
2574 }
2575 if (dev->vol.migr_state) {
2576 switch (migr_type(dev)) {
2577 case MIGR_REPAIR:
2578 case MIGR_INIT: {
2579 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2580 dev);
2581 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2582
2583 info->resync_start = blocks_per_unit * units;
2584 break;
2585 }
2586 case MIGR_GEN_MIGR: {
2587 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2588 dev);
2589 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2590 unsigned long long array_blocks;
2591 int used_disks;
2592
2593 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2594 (units <
2595 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2596 (super->migr_rec->rec_status ==
2597 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2598 units++;
2599
2600 info->reshape_progress = blocks_per_unit * units;
2601
2602 dprintf("IMSM: General Migration checkpoint : %llu "
2603 "(%llu) -> read reshape progress : %llu\n",
2604 (unsigned long long)units,
2605 (unsigned long long)blocks_per_unit,
2606 info->reshape_progress);
2607
2608 used_disks = imsm_num_data_members(dev, MAP_1);
2609 if (used_disks > 0) {
2610 array_blocks = blocks_per_member(map) *
2611 used_disks;
2612 /* round array size down to closest MB
2613 */
2614 info->custom_array_size = (array_blocks
2615 >> SECT_PER_MB_SHIFT)
2616 << SECT_PER_MB_SHIFT;
2617 }
2618 }
2619 case MIGR_VERIFY:
2620 /* we could emulate the checkpointing of
2621 * 'sync_action=check' migrations, but for now
2622 * we just immediately complete them
2623 */
2624 case MIGR_REBUILD:
2625 /* this is handled by container_content_imsm() */
2626 case MIGR_STATE_CHANGE:
2627 /* FIXME handle other migrations */
2628 default:
2629 /* we are not dirty, so... */
2630 info->resync_start = MaxSector;
2631 }
2632 }
2633
2634 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2635 info->name[MAX_RAID_SERIAL_LEN] = 0;
2636
2637 info->array.major_version = -1;
2638 info->array.minor_version = -2;
2639 devname = devnum2devname(st->container_dev);
2640 *info->text_version = '\0';
2641 if (devname)
2642 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2643 free(devname);
2644 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2645 uuid_from_super_imsm(st, info->uuid);
2646
2647 if (dmap) {
2648 int i, j;
2649 for (i=0; i<map_disks; i++) {
2650 dmap[i] = 0;
2651 if (i < info->array.raid_disks) {
2652 struct imsm_disk *dsk;
2653 j = get_imsm_disk_idx(dev, i, MAP_X);
2654 dsk = get_imsm_disk(super, j);
2655 if (dsk && (dsk->status & CONFIGURED_DISK))
2656 dmap[i] = 1;
2657 }
2658 }
2659 }
2660 }
2661
2662 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2663 int failed, int look_in_map);
2664
2665 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2666 int look_in_map);
2667
2668
2669 #ifndef MDASSEMBLE
2670 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2671 {
2672 if (is_gen_migration(dev)) {
2673 int failed;
2674 __u8 map_state;
2675 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2676
2677 failed = imsm_count_failed(super, dev, MAP_1);
2678 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
2679 if (map2->map_state != map_state) {
2680 map2->map_state = map_state;
2681 super->updates_pending++;
2682 }
2683 }
2684 }
2685 #endif
2686
2687 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2688 {
2689 struct dl *d;
2690
2691 for (d = super->missing; d; d = d->next)
2692 if (d->index == index)
2693 return &d->disk;
2694 return NULL;
2695 }
2696
2697 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2698 {
2699 struct intel_super *super = st->sb;
2700 struct imsm_disk *disk;
2701 int map_disks = info->array.raid_disks;
2702 int max_enough = -1;
2703 int i;
2704 struct imsm_super *mpb;
2705
2706 if (super->current_vol >= 0) {
2707 getinfo_super_imsm_volume(st, info, map);
2708 return;
2709 }
2710 memset(info, 0, sizeof(*info));
2711
2712 /* Set raid_disks to zero so that Assemble will always pull in valid
2713 * spares
2714 */
2715 info->array.raid_disks = 0;
2716 info->array.level = LEVEL_CONTAINER;
2717 info->array.layout = 0;
2718 info->array.md_minor = -1;
2719 info->array.ctime = 0; /* N/A for imsm */
2720 info->array.utime = 0;
2721 info->array.chunk_size = 0;
2722
2723 info->disk.major = 0;
2724 info->disk.minor = 0;
2725 info->disk.raid_disk = -1;
2726 info->reshape_active = 0;
2727 info->array.major_version = -1;
2728 info->array.minor_version = -2;
2729 strcpy(info->text_version, "imsm");
2730 info->safe_mode_delay = 0;
2731 info->disk.number = -1;
2732 info->disk.state = 0;
2733 info->name[0] = 0;
2734 info->recovery_start = MaxSector;
2735 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2736
2737 /* do we have the all the insync disks that we expect? */
2738 mpb = super->anchor;
2739
2740 for (i = 0; i < mpb->num_raid_devs; i++) {
2741 struct imsm_dev *dev = get_imsm_dev(super, i);
2742 int failed, enough, j, missing = 0;
2743 struct imsm_map *map;
2744 __u8 state;
2745
2746 failed = imsm_count_failed(super, dev, MAP_0);
2747 state = imsm_check_degraded(super, dev, failed, MAP_0);
2748 map = get_imsm_map(dev, MAP_0);
2749
2750 /* any newly missing disks?
2751 * (catches single-degraded vs double-degraded)
2752 */
2753 for (j = 0; j < map->num_members; j++) {
2754 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
2755 __u32 idx = ord_to_idx(ord);
2756
2757 if (!(ord & IMSM_ORD_REBUILD) &&
2758 get_imsm_missing(super, idx)) {
2759 missing = 1;
2760 break;
2761 }
2762 }
2763
2764 if (state == IMSM_T_STATE_FAILED)
2765 enough = -1;
2766 else if (state == IMSM_T_STATE_DEGRADED &&
2767 (state != map->map_state || missing))
2768 enough = 0;
2769 else /* we're normal, or already degraded */
2770 enough = 1;
2771 if (is_gen_migration(dev) && missing) {
2772 /* during general migration we need all disks
2773 * that process is running on.
2774 * No new missing disk is allowed.
2775 */
2776 max_enough = -1;
2777 enough = -1;
2778 /* no more checks necessary
2779 */
2780 break;
2781 }
2782 /* in the missing/failed disk case check to see
2783 * if at least one array is runnable
2784 */
2785 max_enough = max(max_enough, enough);
2786 }
2787 dprintf("%s: enough: %d\n", __func__, max_enough);
2788 info->container_enough = max_enough;
2789
2790 if (super->disks) {
2791 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2792
2793 disk = &super->disks->disk;
2794 info->data_offset = total_blocks(&super->disks->disk) - reserved;
2795 info->component_size = reserved;
2796 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2797 /* we don't change info->disk.raid_disk here because
2798 * this state will be finalized in mdmon after we have
2799 * found the 'most fresh' version of the metadata
2800 */
2801 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2802 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2803 }
2804
2805 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2806 * ->compare_super may have updated the 'num_raid_devs' field for spares
2807 */
2808 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2809 uuid_from_super_imsm(st, info->uuid);
2810 else
2811 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2812
2813 /* I don't know how to compute 'map' on imsm, so use safe default */
2814 if (map) {
2815 int i;
2816 for (i = 0; i < map_disks; i++)
2817 map[i] = 1;
2818 }
2819
2820 }
2821
2822 /* allocates memory and fills disk in mdinfo structure
2823 * for each disk in array */
2824 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2825 {
2826 struct mdinfo *mddev = NULL;
2827 struct intel_super *super = st->sb;
2828 struct imsm_disk *disk;
2829 int count = 0;
2830 struct dl *dl;
2831 if (!super || !super->disks)
2832 return NULL;
2833 dl = super->disks;
2834 mddev = malloc(sizeof(*mddev));
2835 if (!mddev) {
2836 fprintf(stderr, Name ": Failed to allocate memory.\n");
2837 return NULL;
2838 }
2839 memset(mddev, 0, sizeof(*mddev));
2840 while (dl) {
2841 struct mdinfo *tmp;
2842 disk = &dl->disk;
2843 tmp = malloc(sizeof(*tmp));
2844 if (!tmp) {
2845 fprintf(stderr, Name ": Failed to allocate memory.\n");
2846 if (mddev)
2847 sysfs_free(mddev);
2848 return NULL;
2849 }
2850 memset(tmp, 0, sizeof(*tmp));
2851 if (mddev->devs)
2852 tmp->next = mddev->devs;
2853 mddev->devs = tmp;
2854 tmp->disk.number = count++;
2855 tmp->disk.major = dl->major;
2856 tmp->disk.minor = dl->minor;
2857 tmp->disk.state = is_configured(disk) ?
2858 (1 << MD_DISK_ACTIVE) : 0;
2859 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2860 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2861 tmp->disk.raid_disk = -1;
2862 dl = dl->next;
2863 }
2864 return mddev;
2865 }
2866
2867 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2868 char *update, char *devname, int verbose,
2869 int uuid_set, char *homehost)
2870 {
2871 /* For 'assemble' and 'force' we need to return non-zero if any
2872 * change was made. For others, the return value is ignored.
2873 * Update options are:
2874 * force-one : This device looks a bit old but needs to be included,
2875 * update age info appropriately.
2876 * assemble: clear any 'faulty' flag to allow this device to
2877 * be assembled.
2878 * force-array: Array is degraded but being forced, mark it clean
2879 * if that will be needed to assemble it.
2880 *
2881 * newdev: not used ????
2882 * grow: Array has gained a new device - this is currently for
2883 * linear only
2884 * resync: mark as dirty so a resync will happen.
2885 * name: update the name - preserving the homehost
2886 * uuid: Change the uuid of the array to match watch is given
2887 *
2888 * Following are not relevant for this imsm:
2889 * sparc2.2 : update from old dodgey metadata
2890 * super-minor: change the preferred_minor number
2891 * summaries: update redundant counters.
2892 * homehost: update the recorded homehost
2893 * _reshape_progress: record new reshape_progress position.
2894 */
2895 int rv = 1;
2896 struct intel_super *super = st->sb;
2897 struct imsm_super *mpb;
2898
2899 /* we can only update container info */
2900 if (!super || super->current_vol >= 0 || !super->anchor)
2901 return 1;
2902
2903 mpb = super->anchor;
2904
2905 if (strcmp(update, "uuid") == 0) {
2906 /* We take this to mean that the family_num should be updated.
2907 * However that is much smaller than the uuid so we cannot really
2908 * allow an explicit uuid to be given. And it is hard to reliably
2909 * know if one was.
2910 * So if !uuid_set we know the current uuid is random and just used
2911 * the first 'int' and copy it to the other 3 positions.
2912 * Otherwise we require the 4 'int's to be the same as would be the
2913 * case if we are using a random uuid. So an explicit uuid will be
2914 * accepted as long as all for ints are the same... which shouldn't hurt
2915 */
2916 if (!uuid_set) {
2917 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
2918 rv = 0;
2919 } else {
2920 if (info->uuid[0] != info->uuid[1] ||
2921 info->uuid[1] != info->uuid[2] ||
2922 info->uuid[2] != info->uuid[3])
2923 rv = -1;
2924 else
2925 rv = 0;
2926 }
2927 if (rv == 0)
2928 mpb->orig_family_num = info->uuid[0];
2929 } else if (strcmp(update, "assemble") == 0)
2930 rv = 0;
2931 else
2932 rv = -1;
2933
2934 /* successful update? recompute checksum */
2935 if (rv == 0)
2936 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2937
2938 return rv;
2939 }
2940
2941 static size_t disks_to_mpb_size(int disks)
2942 {
2943 size_t size;
2944
2945 size = sizeof(struct imsm_super);
2946 size += (disks - 1) * sizeof(struct imsm_disk);
2947 size += 2 * sizeof(struct imsm_dev);
2948 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2949 size += (4 - 2) * sizeof(struct imsm_map);
2950 /* 4 possible disk_ord_tbl's */
2951 size += 4 * (disks - 1) * sizeof(__u32);
2952
2953 return size;
2954 }
2955
2956 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2957 {
2958 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2959 return 0;
2960
2961 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2962 }
2963
2964 static void free_devlist(struct intel_super *super)
2965 {
2966 struct intel_dev *dv;
2967
2968 while (super->devlist) {
2969 dv = super->devlist->next;
2970 free(super->devlist->dev);
2971 free(super->devlist);
2972 super->devlist = dv;
2973 }
2974 }
2975
2976 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2977 {
2978 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2979 }
2980
2981 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2982 {
2983 /*
2984 * return:
2985 * 0 same, or first was empty, and second was copied
2986 * 1 second had wrong number
2987 * 2 wrong uuid
2988 * 3 wrong other info
2989 */
2990 struct intel_super *first = st->sb;
2991 struct intel_super *sec = tst->sb;
2992
2993 if (!first) {
2994 st->sb = tst->sb;
2995 tst->sb = NULL;
2996 return 0;
2997 }
2998 /* in platform dependent environment test if the disks
2999 * use the same Intel hba
3000 */
3001 if (!check_env("IMSM_NO_PLATFORM")) {
3002 if (!first->hba || !sec->hba ||
3003 (first->hba->type != sec->hba->type)) {
3004 fprintf(stderr,
3005 "HBAs of devices does not match %s != %s\n",
3006 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
3007 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
3008 return 3;
3009 }
3010 }
3011
3012 /* if an anchor does not have num_raid_devs set then it is a free
3013 * floating spare
3014 */
3015 if (first->anchor->num_raid_devs > 0 &&
3016 sec->anchor->num_raid_devs > 0) {
3017 /* Determine if these disks might ever have been
3018 * related. Further disambiguation can only take place
3019 * in load_super_imsm_all
3020 */
3021 __u32 first_family = first->anchor->orig_family_num;
3022 __u32 sec_family = sec->anchor->orig_family_num;
3023
3024 if (memcmp(first->anchor->sig, sec->anchor->sig,
3025 MAX_SIGNATURE_LENGTH) != 0)
3026 return 3;
3027
3028 if (first_family == 0)
3029 first_family = first->anchor->family_num;
3030 if (sec_family == 0)
3031 sec_family = sec->anchor->family_num;
3032
3033 if (first_family != sec_family)
3034 return 3;
3035
3036 }
3037
3038
3039 /* if 'first' is a spare promote it to a populated mpb with sec's
3040 * family number
3041 */
3042 if (first->anchor->num_raid_devs == 0 &&
3043 sec->anchor->num_raid_devs > 0) {
3044 int i;
3045 struct intel_dev *dv;
3046 struct imsm_dev *dev;
3047
3048 /* we need to copy raid device info from sec if an allocation
3049 * fails here we don't associate the spare
3050 */
3051 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
3052 dv = malloc(sizeof(*dv));
3053 if (!dv)
3054 break;
3055 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
3056 if (!dev) {
3057 free(dv);
3058 break;
3059 }
3060 dv->dev = dev;
3061 dv->index = i;
3062 dv->next = first->devlist;
3063 first->devlist = dv;
3064 }
3065 if (i < sec->anchor->num_raid_devs) {
3066 /* allocation failure */
3067 free_devlist(first);
3068 fprintf(stderr, "imsm: failed to associate spare\n");
3069 return 3;
3070 }
3071 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
3072 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3073 first->anchor->family_num = sec->anchor->family_num;
3074 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
3075 for (i = 0; i < sec->anchor->num_raid_devs; i++)
3076 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3077 }
3078
3079 return 0;
3080 }
3081
3082 static void fd2devname(int fd, char *name)
3083 {
3084 struct stat st;
3085 char path[256];
3086 char dname[PATH_MAX];
3087 char *nm;
3088 int rv;
3089
3090 name[0] = '\0';
3091 if (fstat(fd, &st) != 0)
3092 return;
3093 sprintf(path, "/sys/dev/block/%d:%d",
3094 major(st.st_rdev), minor(st.st_rdev));
3095
3096 rv = readlink(path, dname, sizeof(dname)-1);
3097 if (rv <= 0)
3098 return;
3099
3100 dname[rv] = '\0';
3101 nm = strrchr(dname, '/');
3102 if (nm) {
3103 nm++;
3104 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
3105 }
3106 }
3107
3108 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
3109
3110 static int imsm_read_serial(int fd, char *devname,
3111 __u8 serial[MAX_RAID_SERIAL_LEN])
3112 {
3113 unsigned char scsi_serial[255];
3114 int rv;
3115 int rsp_len;
3116 int len;
3117 char *dest;
3118 char *src;
3119 char *rsp_buf;
3120 int i;
3121
3122 memset(scsi_serial, 0, sizeof(scsi_serial));
3123
3124 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
3125
3126 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
3127 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3128 fd2devname(fd, (char *) serial);
3129 return 0;
3130 }
3131
3132 if (rv != 0) {
3133 if (devname)
3134 fprintf(stderr,
3135 Name ": Failed to retrieve serial for %s\n",
3136 devname);
3137 return rv;
3138 }
3139
3140 rsp_len = scsi_serial[3];
3141 if (!rsp_len) {
3142 if (devname)
3143 fprintf(stderr,
3144 Name ": Failed to retrieve serial for %s\n",
3145 devname);
3146 return 2;
3147 }
3148 rsp_buf = (char *) &scsi_serial[4];
3149
3150 /* trim all whitespace and non-printable characters and convert
3151 * ':' to ';'
3152 */
3153 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
3154 src = &rsp_buf[i];
3155 if (*src > 0x20) {
3156 /* ':' is reserved for use in placeholder serial
3157 * numbers for missing disks
3158 */
3159 if (*src == ':')
3160 *dest++ = ';';
3161 else
3162 *dest++ = *src;
3163 }
3164 }
3165 len = dest - rsp_buf;
3166 dest = rsp_buf;
3167
3168 /* truncate leading characters */
3169 if (len > MAX_RAID_SERIAL_LEN) {
3170 dest += len - MAX_RAID_SERIAL_LEN;
3171 len = MAX_RAID_SERIAL_LEN;
3172 }
3173
3174 memset(serial, 0, MAX_RAID_SERIAL_LEN);
3175 memcpy(serial, dest, len);
3176
3177 return 0;
3178 }
3179
3180 static int serialcmp(__u8 *s1, __u8 *s2)
3181 {
3182 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3183 }
3184
3185 static void serialcpy(__u8 *dest, __u8 *src)
3186 {
3187 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3188 }
3189
3190 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3191 {
3192 struct dl *dl;
3193
3194 for (dl = super->disks; dl; dl = dl->next)
3195 if (serialcmp(dl->serial, serial) == 0)
3196 break;
3197
3198 return dl;
3199 }
3200
3201 static struct imsm_disk *
3202 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3203 {
3204 int i;
3205
3206 for (i = 0; i < mpb->num_disks; i++) {
3207 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3208
3209 if (serialcmp(disk->serial, serial) == 0) {
3210 if (idx)
3211 *idx = i;
3212 return disk;
3213 }
3214 }
3215
3216 return NULL;
3217 }
3218
3219 static int
3220 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3221 {
3222 struct imsm_disk *disk;
3223 struct dl *dl;
3224 struct stat stb;
3225 int rv;
3226 char name[40];
3227 __u8 serial[MAX_RAID_SERIAL_LEN];
3228
3229 rv = imsm_read_serial(fd, devname, serial);
3230
3231 if (rv != 0)
3232 return 2;
3233
3234 dl = calloc(1, sizeof(*dl));
3235 if (!dl) {
3236 if (devname)
3237 fprintf(stderr,
3238 Name ": failed to allocate disk buffer for %s\n",
3239 devname);
3240 return 2;
3241 }
3242
3243 fstat(fd, &stb);
3244 dl->major = major(stb.st_rdev);
3245 dl->minor = minor(stb.st_rdev);
3246 dl->next = super->disks;
3247 dl->fd = keep_fd ? fd : -1;
3248 assert(super->disks == NULL);
3249 super->disks = dl;
3250 serialcpy(dl->serial, serial);
3251 dl->index = -2;
3252 dl->e = NULL;
3253 fd2devname(fd, name);
3254 if (devname)
3255 dl->devname = strdup(devname);
3256 else
3257 dl->devname = strdup(name);
3258
3259 /* look up this disk's index in the current anchor */
3260 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3261 if (disk) {
3262 dl->disk = *disk;
3263 /* only set index on disks that are a member of a
3264 * populated contianer, i.e. one with raid_devs
3265 */
3266 if (is_failed(&dl->disk))
3267 dl->index = -2;
3268 else if (is_spare(&dl->disk))
3269 dl->index = -1;
3270 }
3271
3272 return 0;
3273 }
3274
3275 #ifndef MDASSEMBLE
3276 /* When migrating map0 contains the 'destination' state while map1
3277 * contains the current state. When not migrating map0 contains the
3278 * current state. This routine assumes that map[0].map_state is set to
3279 * the current array state before being called.
3280 *
3281 * Migration is indicated by one of the following states
3282 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3283 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3284 * map1state=unitialized)
3285 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3286 * map1state=normal)
3287 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3288 * map1state=degraded)
3289 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3290 * map1state=normal)
3291 */
3292 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3293 __u8 to_state, int migr_type)
3294 {
3295 struct imsm_map *dest;
3296 struct imsm_map *src = get_imsm_map(dev, MAP_0);
3297
3298 dev->vol.migr_state = 1;
3299 set_migr_type(dev, migr_type);
3300 dev->vol.curr_migr_unit = 0;
3301 dest = get_imsm_map(dev, MAP_1);
3302
3303 /* duplicate and then set the target end state in map[0] */
3304 memcpy(dest, src, sizeof_imsm_map(src));
3305 if ((migr_type == MIGR_REBUILD) ||
3306 (migr_type == MIGR_GEN_MIGR)) {
3307 __u32 ord;
3308 int i;
3309
3310 for (i = 0; i < src->num_members; i++) {
3311 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3312 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3313 }
3314 }
3315
3316 if (migr_type == MIGR_GEN_MIGR)
3317 /* Clear migration record */
3318 memset(super->migr_rec, 0, sizeof(struct migr_record));
3319
3320 src->map_state = to_state;
3321 }
3322
3323 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
3324 __u8 map_state)
3325 {
3326 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3327 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
3328 MAP_0 : MAP_1);
3329 int i, j;
3330
3331 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3332 * completed in the last migration.
3333 *
3334 * FIXME add support for raid-level-migration
3335 */
3336 if ((map_state != map->map_state) && (is_gen_migration(dev) == 0) &&
3337 (prev->map_state != IMSM_T_STATE_UNINITIALIZED)) {
3338 /* when final map state is other than expected
3339 * merge maps (not for migration)
3340 */
3341 int failed;
3342
3343 for (i = 0; i < prev->num_members; i++)
3344 for (j = 0; j < map->num_members; j++)
3345 /* during online capacity expansion
3346 * disks position can be changed
3347 * if takeover is used
3348 */
3349 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3350 ord_to_idx(prev->disk_ord_tbl[i])) {
3351 map->disk_ord_tbl[j] |=
3352 prev->disk_ord_tbl[i];
3353 break;
3354 }
3355 failed = imsm_count_failed(super, dev, MAP_0);
3356 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
3357 }
3358
3359 dev->vol.migr_state = 0;
3360 set_migr_type(dev, 0);
3361 dev->vol.curr_migr_unit = 0;
3362 map->map_state = map_state;
3363 }
3364 #endif
3365
3366 static int parse_raid_devices(struct intel_super *super)
3367 {
3368 int i;
3369 struct imsm_dev *dev_new;
3370 size_t len, len_migr;
3371 size_t max_len = 0;
3372 size_t space_needed = 0;
3373 struct imsm_super *mpb = super->anchor;
3374
3375 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3376 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3377 struct intel_dev *dv;
3378
3379 len = sizeof_imsm_dev(dev_iter, 0);
3380 len_migr = sizeof_imsm_dev(dev_iter, 1);
3381 if (len_migr > len)
3382 space_needed += len_migr - len;
3383
3384 dv = malloc(sizeof(*dv));
3385 if (!dv)
3386 return 1;
3387 if (max_len < len_migr)
3388 max_len = len_migr;
3389 if (max_len > len_migr)
3390 space_needed += max_len - len_migr;
3391 dev_new = malloc(max_len);
3392 if (!dev_new) {
3393 free(dv);
3394 return 1;
3395 }
3396 imsm_copy_dev(dev_new, dev_iter);
3397 dv->dev = dev_new;
3398 dv->index = i;
3399 dv->next = super->devlist;
3400 super->devlist = dv;
3401 }
3402
3403 /* ensure that super->buf is large enough when all raid devices
3404 * are migrating
3405 */
3406 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3407 void *buf;
3408
3409 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3410 if (posix_memalign(&buf, 512, len) != 0)
3411 return 1;
3412
3413 memcpy(buf, super->buf, super->len);
3414 memset(buf + super->len, 0, len - super->len);
3415 free(super->buf);
3416 super->buf = buf;
3417 super->len = len;
3418 }
3419
3420 return 0;
3421 }
3422
3423 /* retrieve a pointer to the bbm log which starts after all raid devices */
3424 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3425 {
3426 void *ptr = NULL;
3427
3428 if (__le32_to_cpu(mpb->bbm_log_size)) {
3429 ptr = mpb;
3430 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3431 }
3432
3433 return ptr;
3434 }
3435
3436 /*******************************************************************************
3437 * Function: check_mpb_migr_compatibility
3438 * Description: Function checks for unsupported migration features:
3439 * - migration optimization area (pba_of_lba0)
3440 * - descending reshape (ascending_migr)
3441 * Parameters:
3442 * super : imsm metadata information
3443 * Returns:
3444 * 0 : migration is compatible
3445 * -1 : migration is not compatible
3446 ******************************************************************************/
3447 int check_mpb_migr_compatibility(struct intel_super *super)
3448 {
3449 struct imsm_map *map0, *map1;
3450 struct migr_record *migr_rec = super->migr_rec;
3451 int i;
3452
3453 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3454 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3455
3456 if (dev_iter &&
3457 dev_iter->vol.migr_state == 1 &&
3458 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3459 /* This device is migrating */
3460 map0 = get_imsm_map(dev_iter, MAP_0);
3461 map1 = get_imsm_map(dev_iter, MAP_1);
3462 if (pba_of_lba0(map0) != pba_of_lba0(map1))
3463 /* migration optimization area was used */
3464 return -1;
3465 if (migr_rec->ascending_migr == 0
3466 && migr_rec->dest_depth_per_unit > 0)
3467 /* descending reshape not supported yet */
3468 return -1;
3469 }
3470 }
3471 return 0;
3472 }
3473
3474 static void __free_imsm(struct intel_super *super, int free_disks);
3475
3476 /* load_imsm_mpb - read matrix metadata
3477 * allocates super->mpb to be freed by free_imsm
3478 */
3479 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3480 {
3481 unsigned long long dsize;
3482 unsigned long long sectors;
3483 struct stat;
3484 struct imsm_super *anchor;
3485 __u32 check_sum;
3486
3487 get_dev_size(fd, NULL, &dsize);
3488 if (dsize < 1024) {
3489 if (devname)
3490 fprintf(stderr,
3491 Name ": %s: device to small for imsm\n",
3492 devname);
3493 return 1;
3494 }
3495
3496 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3497 if (devname)
3498 fprintf(stderr, Name
3499 ": Cannot seek to anchor block on %s: %s\n",
3500 devname, strerror(errno));
3501 return 1;
3502 }
3503
3504 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3505 if (devname)
3506 fprintf(stderr,
3507 Name ": Failed to allocate imsm anchor buffer"
3508 " on %s\n", devname);
3509 return 1;
3510 }
3511 if (read(fd, anchor, 512) != 512) {
3512 if (devname)
3513 fprintf(stderr,
3514 Name ": Cannot read anchor block on %s: %s\n",
3515 devname, strerror(errno));
3516 free(anchor);
3517 return 1;
3518 }
3519
3520 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3521 if (devname)
3522 fprintf(stderr,
3523 Name ": no IMSM anchor on %s\n", devname);
3524 free(anchor);
3525 return 2;
3526 }
3527
3528 __free_imsm(super, 0);
3529 /* reload capability and hba */
3530
3531 /* capability and hba must be updated with new super allocation */
3532 find_intel_hba_capability(fd, super, devname);
3533 super->len = ROUND_UP(anchor->mpb_size, 512);
3534 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3535 if (devname)
3536 fprintf(stderr,
3537 Name ": unable to allocate %zu byte mpb buffer\n",
3538 super->len);
3539 free(anchor);
3540 return 2;
3541 }
3542 memcpy(super->buf, anchor, 512);
3543
3544 sectors = mpb_sectors(anchor) - 1;
3545 free(anchor);
3546
3547 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
3548 fprintf(stderr, Name
3549 ": %s could not allocate migr_rec buffer\n", __func__);
3550 free(super->buf);
3551 return 2;
3552 }
3553 super->clean_migration_record_by_mdmon = 0;
3554
3555 if (!sectors) {
3556 check_sum = __gen_imsm_checksum(super->anchor);
3557 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3558 if (devname)
3559 fprintf(stderr,
3560 Name ": IMSM checksum %x != %x on %s\n",
3561 check_sum,
3562 __le32_to_cpu(super->anchor->check_sum),
3563 devname);
3564 return 2;
3565 }
3566
3567 return 0;
3568 }
3569
3570 /* read the extended mpb */
3571 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3572 if (devname)
3573 fprintf(stderr,
3574 Name ": Cannot seek to extended mpb on %s: %s\n",
3575 devname, strerror(errno));
3576 return 1;
3577 }
3578
3579 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3580 if (devname)
3581 fprintf(stderr,
3582 Name ": Cannot read extended mpb on %s: %s\n",
3583 devname, strerror(errno));
3584 return 2;
3585 }
3586
3587 check_sum = __gen_imsm_checksum(super->anchor);
3588 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3589 if (devname)
3590 fprintf(stderr,
3591 Name ": IMSM checksum %x != %x on %s\n",
3592 check_sum, __le32_to_cpu(super->anchor->check_sum),
3593 devname);
3594 return 3;
3595 }
3596
3597 /* FIXME the BBM log is disk specific so we cannot use this global
3598 * buffer for all disks. Ok for now since we only look at the global
3599 * bbm_log_size parameter to gate assembly
3600 */
3601 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3602
3603 return 0;
3604 }
3605
3606 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3607
3608 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
3609 static void clear_hi(struct intel_super *super)
3610 {
3611 struct imsm_super *mpb = super->anchor;
3612 int i, n;
3613 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
3614 return;
3615 for (i = 0; i < mpb->num_disks; ++i) {
3616 struct imsm_disk *disk = &mpb->disk[i];
3617 disk->total_blocks_hi = 0;
3618 }
3619 for (i = 0; i < mpb->num_raid_devs; ++i) {
3620 struct imsm_dev *dev = get_imsm_dev(super, i);
3621 if (!dev)
3622 return;
3623 for (n = 0; n < 2; ++n) {
3624 struct imsm_map *map = get_imsm_map(dev, n);
3625 if (!map)
3626 continue;
3627 map->pba_of_lba0_hi = 0;
3628 map->blocks_per_member_hi = 0;
3629 map->num_data_stripes_hi = 0;
3630 }
3631 }
3632 }
3633
3634 static int
3635 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3636 {
3637 int err;
3638
3639 err = load_imsm_mpb(fd, super, devname);
3640 if (err)
3641 return err;
3642 err = load_imsm_disk(fd, super, devname, keep_fd);
3643 if (err)
3644 return err;
3645 err = parse_raid_devices(super);
3646 clear_hi(super);
3647 return err;
3648 }
3649
3650 static void __free_imsm_disk(struct dl *d)
3651 {
3652 if (d->fd >= 0)
3653 close(d->fd);
3654 if (d->devname)
3655 free(d->devname);
3656 if (d->e)
3657 free(d->e);
3658 free(d);
3659
3660 }
3661
3662 static void free_imsm_disks(struct intel_super *super)
3663 {
3664 struct dl *d;
3665
3666 while (super->disks) {
3667 d = super->disks;
3668 super->disks = d->next;
3669 __free_imsm_disk(d);
3670 }
3671 while (super->disk_mgmt_list) {
3672 d = super->disk_mgmt_list;
3673 super->disk_mgmt_list = d->next;
3674 __free_imsm_disk(d);
3675 }
3676 while (super->missing) {
3677 d = super->missing;
3678 super->missing = d->next;
3679 __free_imsm_disk(d);
3680 }
3681
3682 }
3683
3684 /* free all the pieces hanging off of a super pointer */
3685 static void __free_imsm(struct intel_super *super, int free_disks)
3686 {
3687 struct intel_hba *elem, *next;
3688
3689 if (super->buf) {
3690 free(super->buf);
3691 super->buf = NULL;
3692 }
3693 /* unlink capability description */
3694 super->orom = NULL;
3695 if (super->migr_rec_buf) {
3696 free(super->migr_rec_buf);
3697 super->migr_rec_buf = NULL;
3698 }
3699 if (free_disks)
3700 free_imsm_disks(super);
3701 free_devlist(super);
3702 elem = super->hba;
3703 while (elem) {
3704 if (elem->path)
3705 free((void *)elem->path);
3706 next = elem->next;
3707 free(elem);
3708 elem = next;
3709 }
3710 super->hba = NULL;
3711 }
3712
3713 static void free_imsm(struct intel_super *super)
3714 {
3715 __free_imsm(super, 1);
3716 free(super);
3717 }
3718
3719 static void free_super_imsm(struct supertype *st)
3720 {
3721 struct intel_super *super = st->sb;
3722
3723 if (!super)
3724 return;
3725
3726 free_imsm(super);
3727 st->sb = NULL;
3728 }
3729
3730 static struct intel_super *alloc_super(void)
3731 {
3732 struct intel_super *super = malloc(sizeof(*super));
3733
3734 if (super) {
3735 memset(super, 0, sizeof(*super));
3736 super->current_vol = -1;
3737 super->create_offset = ~((unsigned long long) 0);
3738 }
3739 return super;
3740 }
3741
3742 /*
3743 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3744 */
3745 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3746 {
3747 struct sys_dev *hba_name;
3748 int rv = 0;
3749
3750 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3751 super->orom = NULL;
3752 super->hba = NULL;
3753 return 0;
3754 }
3755 hba_name = find_disk_attached_hba(fd, NULL);
3756 if (!hba_name) {
3757 if (devname)
3758 fprintf(stderr,
3759 Name ": %s is not attached to Intel(R) RAID controller.\n",
3760 devname);
3761 return 1;
3762 }
3763 rv = attach_hba_to_super(super, hba_name);
3764 if (rv == 2) {
3765 if (devname) {
3766 struct intel_hba *hba = super->hba;
3767
3768 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3769 "controller (%s),\n"
3770 " but the container is assigned to Intel(R) "
3771 "%s RAID controller (",
3772 devname,
3773 hba_name->path,
3774 hba_name->pci_id ? : "Err!",
3775 get_sys_dev_type(hba_name->type));
3776
3777 while (hba) {
3778 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3779 if (hba->next)
3780 fprintf(stderr, ", ");
3781 hba = hba->next;
3782 }
3783
3784 fprintf(stderr, ").\n"
3785 " Mixing devices attached to different controllers "
3786 "is not allowed.\n");
3787 }
3788 free_sys_dev(&hba_name);
3789 return 2;
3790 }
3791 super->orom = find_imsm_capability(hba_name->type);
3792 free_sys_dev(&hba_name);
3793 if (!super->orom)
3794 return 3;
3795 return 0;
3796 }
3797
3798 /* find_missing - helper routine for load_super_imsm_all that identifies
3799 * disks that have disappeared from the system. This routine relies on
3800 * the mpb being uptodate, which it is at load time.
3801 */
3802 static int find_missing(struct intel_super *super)
3803 {
3804 int i;
3805 struct imsm_super *mpb = super->anchor;
3806 struct dl *dl;
3807 struct imsm_disk *disk;
3808
3809 for (i = 0; i < mpb->num_disks; i++) {
3810 disk = __get_imsm_disk(mpb, i);
3811 dl = serial_to_dl(disk->serial, super);
3812 if (dl)
3813 continue;
3814
3815 dl = malloc(sizeof(*dl));
3816 if (!dl)
3817 return 1;
3818 dl->major = 0;
3819 dl->minor = 0;
3820 dl->fd = -1;
3821 dl->devname = strdup("missing");
3822 dl->index = i;
3823 serialcpy(dl->serial, disk->serial);
3824 dl->disk = *disk;
3825 dl->e = NULL;
3826 dl->next = super->missing;
3827 super->missing = dl;
3828 }
3829
3830 return 0;
3831 }
3832
3833 #ifndef MDASSEMBLE
3834 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3835 {
3836 struct intel_disk *idisk = disk_list;
3837
3838 while (idisk) {
3839 if (serialcmp(idisk->disk.serial, serial) == 0)
3840 break;
3841 idisk = idisk->next;
3842 }
3843
3844 return idisk;
3845 }
3846
3847 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3848 struct intel_super *super,
3849 struct intel_disk **disk_list)
3850 {
3851 struct imsm_disk *d = &super->disks->disk;
3852 struct imsm_super *mpb = super->anchor;
3853 int i, j;
3854
3855 for (i = 0; i < tbl_size; i++) {
3856 struct imsm_super *tbl_mpb = table[i]->anchor;
3857 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3858
3859 if (tbl_mpb->family_num == mpb->family_num) {
3860 if (tbl_mpb->check_sum == mpb->check_sum) {
3861 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3862 __func__, super->disks->major,
3863 super->disks->minor,
3864 table[i]->disks->major,
3865 table[i]->disks->minor);
3866 break;
3867 }
3868
3869 if (((is_configured(d) && !is_configured(tbl_d)) ||
3870 is_configured(d) == is_configured(tbl_d)) &&
3871 tbl_mpb->generation_num < mpb->generation_num) {
3872 /* current version of the mpb is a
3873 * better candidate than the one in
3874 * super_table, but copy over "cross
3875 * generational" status
3876 */
3877 struct intel_disk *idisk;
3878
3879 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3880 __func__, super->disks->major,
3881 super->disks->minor,
3882 table[i]->disks->major,
3883 table[i]->disks->minor);
3884
3885 idisk = disk_list_get(tbl_d->serial, *disk_list);
3886 if (idisk && is_failed(&idisk->disk))
3887 tbl_d->status |= FAILED_DISK;
3888 break;
3889 } else {
3890 struct intel_disk *idisk;
3891 struct imsm_disk *disk;
3892
3893 /* tbl_mpb is more up to date, but copy
3894 * over cross generational status before
3895 * returning
3896 */
3897 disk = __serial_to_disk(d->serial, mpb, NULL);
3898 if (disk && is_failed(disk))
3899 d->status |= FAILED_DISK;
3900
3901 idisk = disk_list_get(d->serial, *disk_list);
3902 if (idisk) {
3903 idisk->owner = i;
3904 if (disk && is_configured(disk))
3905 idisk->disk.status |= CONFIGURED_DISK;
3906 }
3907
3908 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3909 __func__, super->disks->major,
3910 super->disks->minor,
3911 table[i]->disks->major,
3912 table[i]->disks->minor);
3913
3914 return tbl_size;
3915 }
3916 }
3917 }
3918
3919 if (i >= tbl_size)
3920 table[tbl_size++] = super;
3921 else
3922 table[i] = super;
3923
3924 /* update/extend the merged list of imsm_disk records */
3925 for (j = 0; j < mpb->num_disks; j++) {
3926 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3927 struct intel_disk *idisk;
3928
3929 idisk = disk_list_get(disk->serial, *disk_list);
3930 if (idisk) {
3931 idisk->disk.status |= disk->status;
3932 if (is_configured(&idisk->disk) ||
3933 is_failed(&idisk->disk))
3934 idisk->disk.status &= ~(SPARE_DISK);
3935 } else {
3936 idisk = calloc(1, sizeof(*idisk));
3937 if (!idisk)
3938 return -1;
3939 idisk->owner = IMSM_UNKNOWN_OWNER;
3940 idisk->disk = *disk;
3941 idisk->next = *disk_list;
3942 *disk_list = idisk;
3943 }
3944
3945 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3946 idisk->owner = i;
3947 }
3948
3949 return tbl_size;
3950 }
3951
3952 static struct intel_super *
3953 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3954 const int owner)
3955 {
3956 struct imsm_super *mpb = super->anchor;
3957 int ok_count = 0;
3958 int i;
3959
3960 for (i = 0; i < mpb->num_disks; i++) {
3961 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3962 struct intel_disk *idisk;
3963
3964 idisk = disk_list_get(disk->serial, disk_list);
3965 if (idisk) {
3966 if (idisk->owner == owner ||
3967 idisk->owner == IMSM_UNKNOWN_OWNER)
3968 ok_count++;
3969 else
3970 dprintf("%s: '%.16s' owner %d != %d\n",
3971 __func__, disk->serial, idisk->owner,
3972 owner);
3973 } else {
3974 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3975 __func__, __le32_to_cpu(mpb->family_num), i,
3976 disk->serial);
3977 break;
3978 }
3979 }
3980
3981 if (ok_count == mpb->num_disks)
3982 return super;
3983 return NULL;
3984 }
3985
3986 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3987 {
3988 struct intel_super *s;
3989
3990 for (s = super_list; s; s = s->next) {
3991 if (family_num != s->anchor->family_num)
3992 continue;
3993 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3994 __le32_to_cpu(family_num), s->disks->devname);
3995 }
3996 }
3997
3998 static struct intel_super *
3999 imsm_thunderdome(struct intel_super **super_list, int len)
4000 {
4001 struct intel_super *super_table[len];
4002 struct intel_disk *disk_list = NULL;
4003 struct intel_super *champion, *spare;
4004 struct intel_super *s, **del;
4005 int tbl_size = 0;
4006 int conflict;
4007 int i;
4008
4009 memset(super_table, 0, sizeof(super_table));
4010 for (s = *super_list; s; s = s->next)
4011 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4012
4013 for (i = 0; i < tbl_size; i++) {
4014 struct imsm_disk *d;
4015 struct intel_disk *idisk;
4016 struct imsm_super *mpb = super_table[i]->anchor;
4017
4018 s = super_table[i];
4019 d = &s->disks->disk;
4020
4021 /* 'd' must appear in merged disk list for its
4022 * configuration to be valid
4023 */
4024 idisk = disk_list_get(d->serial, disk_list);
4025 if (idisk && idisk->owner == i)
4026 s = validate_members(s, disk_list, i);
4027 else
4028 s = NULL;
4029
4030 if (!s)
4031 dprintf("%s: marking family: %#x from %d:%d offline\n",
4032 __func__, mpb->family_num,
4033 super_table[i]->disks->major,
4034 super_table[i]->disks->minor);
4035 super_table[i] = s;
4036 }
4037
4038 /* This is where the mdadm implementation differs from the Windows
4039 * driver which has no strict concept of a container. We can only
4040 * assemble one family from a container, so when returning a prodigal
4041 * array member to this system the code will not be able to disambiguate
4042 * the container contents that should be assembled ("foreign" versus
4043 * "local"). It requires user intervention to set the orig_family_num
4044 * to a new value to establish a new container. The Windows driver in
4045 * this situation fixes up the volume name in place and manages the
4046 * foreign array as an independent entity.
4047 */
4048 s = NULL;
4049 spare = NULL;
4050 conflict = 0;
4051 for (i = 0; i < tbl_size; i++) {
4052 struct intel_super *tbl_ent = super_table[i];
4053 int is_spare = 0;
4054
4055 if (!tbl_ent)
4056 continue;
4057
4058 if (tbl_ent->anchor->num_raid_devs == 0) {
4059 spare = tbl_ent;
4060 is_spare = 1;
4061 }
4062
4063 if (s && !is_spare) {
4064 show_conflicts(tbl_ent->anchor->family_num, *super_list);
4065 conflict++;
4066 } else if (!s && !is_spare)
4067 s = tbl_ent;
4068 }
4069
4070 if (!s)
4071 s = spare;
4072 if (!s) {
4073 champion = NULL;
4074 goto out;
4075 }
4076 champion = s;
4077
4078 if (conflict)
4079 fprintf(stderr, "Chose family %#x on '%s', "
4080 "assemble conflicts to new container with '--update=uuid'\n",
4081 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
4082
4083 /* collect all dl's onto 'champion', and update them to
4084 * champion's version of the status
4085 */
4086 for (s = *super_list; s; s = s->next) {
4087 struct imsm_super *mpb = champion->anchor;
4088 struct dl *dl = s->disks;
4089
4090 if (s == champion)
4091 continue;
4092
4093 for (i = 0; i < mpb->num_disks; i++) {
4094 struct imsm_disk *disk;
4095
4096 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
4097 if (disk) {
4098 dl->disk = *disk;
4099 /* only set index on disks that are a member of
4100 * a populated contianer, i.e. one with
4101 * raid_devs
4102 */
4103 if (is_failed(&dl->disk))
4104 dl->index = -2;
4105 else if (is_spare(&dl->disk))
4106 dl->index = -1;
4107 break;
4108 }
4109 }
4110
4111 if (i >= mpb->num_disks) {
4112 struct intel_disk *idisk;
4113
4114 idisk = disk_list_get(dl->serial, disk_list);
4115 if (idisk && is_spare(&idisk->disk) &&
4116 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
4117 dl->index = -1;
4118 else {
4119 dl->index = -2;
4120 continue;
4121 }
4122 }
4123
4124 dl->next = champion->disks;
4125 champion->disks = dl;
4126 s->disks = NULL;
4127 }
4128
4129 /* delete 'champion' from super_list */
4130 for (del = super_list; *del; ) {
4131 if (*del == champion) {
4132 *del = (*del)->next;
4133 break;
4134 } else
4135 del = &(*del)->next;
4136 }
4137 champion->next = NULL;
4138
4139 out:
4140 while (disk_list) {
4141 struct intel_disk *idisk = disk_list;
4142
4143 disk_list = disk_list->next;
4144 free(idisk);
4145 }
4146
4147 return champion;
4148 }
4149
4150
4151 static int
4152 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
4153 static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4154 int major, int minor, int keep_fd);
4155 static int
4156 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4157 int *max, int keep_fd);
4158
4159
4160 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
4161 char *devname, struct md_list *devlist,
4162 int keep_fd)
4163 {
4164 struct intel_super *super_list = NULL;
4165 struct intel_super *super = NULL;
4166 int err = 0;
4167 int i = 0;
4168
4169 if (fd >= 0)
4170 /* 'fd' is an opened container */
4171 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
4172 else
4173 /* get super block from devlist devices */
4174 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
4175 if (err)
4176 goto error;
4177 /* all mpbs enter, maybe one leaves */
4178 super = imsm_thunderdome(&super_list, i);
4179 if (!super) {
4180 err = 1;
4181 goto error;
4182 }
4183
4184 if (find_missing(super) != 0) {
4185 free_imsm(super);
4186 err = 2;
4187 goto error;
4188 }
4189
4190 /* load migration record */
4191 err = load_imsm_migr_rec(super, NULL);
4192 if (err == -1) {
4193 /* migration is in progress,
4194 * but migr_rec cannot be loaded,
4195 */
4196 err = 4;
4197 goto error;
4198 }
4199
4200 /* Check migration compatibility */
4201 if ((err == 0) && (check_mpb_migr_compatibility(super) != 0)) {
4202 fprintf(stderr, Name ": Unsupported migration detected");
4203 if (devname)
4204 fprintf(stderr, " on %s\n", devname);
4205 else
4206 fprintf(stderr, " (IMSM).\n");
4207
4208 err = 5;
4209 goto error;
4210 }
4211
4212 err = 0;
4213
4214 error:
4215 while (super_list) {
4216 struct intel_super *s = super_list;
4217
4218 super_list = super_list->next;
4219 free_imsm(s);
4220 }
4221
4222
4223 if (err)
4224 return err;
4225
4226 *sbp = super;
4227 if (fd >= 0)
4228 st->container_dev = fd2devnum(fd);
4229 else
4230 st->container_dev = NoMdDev;
4231 if (err == 0 && st->ss == NULL) {
4232 st->ss = &super_imsm;
4233 st->minor_version = 0;
4234 st->max_devs = IMSM_MAX_DEVICES;
4235 }
4236 return 0;
4237 }
4238
4239
4240 static int
4241 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
4242 int *max, int keep_fd)
4243 {
4244 struct md_list *tmpdev;
4245 int err = 0;
4246 int i = 0;
4247
4248 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
4249 if (tmpdev->used != 1)
4250 continue;
4251 if (tmpdev->container == 1) {
4252 int lmax = 0;
4253 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
4254 if (fd < 0) {
4255 fprintf(stderr, Name ": cannot open device %s: %s\n",
4256 tmpdev->devname, strerror(errno));
4257 err = 8;
4258 goto error;
4259 }
4260 err = get_sra_super_block(fd, super_list,
4261 tmpdev->devname, &lmax,
4262 keep_fd);
4263 i += lmax;
4264 close(fd);
4265 if (err) {
4266 err = 7;
4267 goto error;
4268 }
4269 } else {
4270 int major = major(tmpdev->st_rdev);
4271 int minor = minor(tmpdev->st_rdev);
4272 err = get_super_block(super_list,
4273 -1,
4274 tmpdev->devname,
4275 major, minor,
4276 keep_fd);
4277 i++;
4278 if (err) {
4279 err = 6;
4280 goto error;
4281 }
4282 }
4283 }
4284 error:
4285 *max = i;
4286 return err;
4287 }
4288
4289 static int get_super_block(struct intel_super **super_list, int devnum, char *devname,
4290 int major, int minor, int keep_fd)
4291 {
4292 struct intel_super*s = NULL;
4293 char nm[32];
4294 int dfd = -1;
4295 int rv;
4296 int err = 0;
4297 int retry;
4298
4299 s = alloc_super();
4300 if (!s) {
4301 err = 1;
4302 goto error;
4303 }
4304
4305 sprintf(nm, "%d:%d", major, minor);
4306 dfd = dev_open(nm, O_RDWR);
4307 if (dfd < 0) {
4308 err = 2;
4309 goto error;
4310 }
4311
4312 rv = find_intel_hba_capability(dfd, s, devname);
4313 /* no orom/efi or non-intel hba of the disk */
4314 if (rv != 0) {
4315 err = 4;
4316 goto error;
4317 }
4318
4319 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4320
4321 /* retry the load if we might have raced against mdmon */
4322 if (err == 3 && (devnum != -1) && mdmon_running(devnum))
4323 for (retry = 0; retry < 3; retry++) {
4324 usleep(3000);
4325 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
4326 if (err != 3)
4327 break;
4328 }
4329 error:
4330 if (!err) {
4331 s->next = *super_list;
4332 *super_list = s;
4333 } else {
4334 if (s)
4335 free(s);
4336 if (dfd)
4337 close(dfd);
4338 }
4339 if ((dfd >= 0) && (!keep_fd))
4340 close(dfd);
4341 return err;
4342
4343 }
4344
4345 static int
4346 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
4347 {
4348 struct mdinfo *sra;
4349 int devnum;
4350 struct mdinfo *sd;
4351 int err = 0;
4352 int i = 0;
4353 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
4354 if (!sra)
4355 return 1;
4356
4357 if (sra->array.major_version != -1 ||
4358 sra->array.minor_version != -2 ||
4359 strcmp(sra->text_version, "imsm") != 0) {
4360 err = 1;
4361 goto error;
4362 }
4363 /* load all mpbs */
4364 devnum = fd2devnum(fd);
4365 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
4366 if (get_super_block(super_list, devnum, devname,
4367 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
4368 err = 7;
4369 goto error;
4370 }
4371 }
4372 error:
4373 sysfs_free(sra);
4374 *max = i;
4375 return err;
4376 }
4377
4378 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4379 {
4380 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
4381 }
4382 #endif
4383
4384 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4385 {
4386 struct intel_super *super;
4387 int rv;
4388
4389 if (test_partition(fd))
4390 /* IMSM not allowed on partitions */
4391 return 1;
4392
4393 free_super_imsm(st);
4394
4395 super = alloc_super();
4396 if (!super) {
4397 fprintf(stderr,
4398 Name ": malloc of %zu failed.\n",
4399 sizeof(*super));
4400 return 1;
4401 }
4402 /* Load hba and capabilities if they exist.
4403 * But do not preclude loading metadata in case capabilities or hba are
4404 * non-compliant and ignore_hw_compat is set.
4405 */
4406 rv = find_intel_hba_capability(fd, super, devname);
4407 /* no orom/efi or non-intel hba of the disk */
4408 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4409 if (devname)
4410 fprintf(stderr,
4411 Name ": No OROM/EFI properties for %s\n", devname);
4412 free_imsm(super);
4413 return 2;
4414 }
4415 rv = load_and_parse_mpb(fd, super, devname, 0);
4416
4417 if (rv) {
4418 if (devname)
4419 fprintf(stderr,
4420 Name ": Failed to load all information "
4421 "sections on %s\n", devname);
4422 free_imsm(super);
4423 return rv;
4424 }
4425
4426 st->sb = super;
4427 if (st->ss == NULL) {
4428 st->ss = &super_imsm;
4429 st->minor_version = 0;
4430 st->max_devs = IMSM_MAX_DEVICES;
4431 }
4432
4433 /* load migration record */
4434 if (load_imsm_migr_rec(super, NULL) == 0) {
4435 /* Check for unsupported migration features */
4436 if (check_mpb_migr_compatibility(super) != 0) {
4437 fprintf(stderr,
4438 Name ": Unsupported migration detected");
4439 if (devname)
4440 fprintf(stderr, " on %s\n", devname);
4441 else
4442 fprintf(stderr, " (IMSM).\n");
4443 return 3;
4444 }
4445 }
4446
4447 return 0;
4448 }
4449
4450 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4451 {
4452 if (info->level == 1)
4453 return 128;
4454 return info->chunk_size >> 9;
4455 }
4456
4457 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
4458 unsigned long long size)
4459 {
4460 if (info->level == 1)
4461 return size * 2;
4462 else
4463 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4464 }
4465
4466 static void imsm_update_version_info(struct intel_super *super)
4467 {
4468 /* update the version and attributes */
4469 struct imsm_super *mpb = super->anchor;
4470 char *version;
4471 struct imsm_dev *dev;
4472 struct imsm_map *map;
4473 int i;
4474
4475 for (i = 0; i < mpb->num_raid_devs; i++) {
4476 dev = get_imsm_dev(super, i);
4477 map = get_imsm_map(dev, MAP_0);
4478 if (__le32_to_cpu(dev->size_high) > 0)
4479 mpb->attributes |= MPB_ATTRIB_2TB;
4480
4481 /* FIXME detect when an array spans a port multiplier */
4482 #if 0
4483 mpb->attributes |= MPB_ATTRIB_PM;
4484 #endif
4485
4486 if (mpb->num_raid_devs > 1 ||
4487 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4488 version = MPB_VERSION_ATTRIBS;
4489 switch (get_imsm_raid_level(map)) {
4490 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4491 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4492 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4493 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4494 }
4495 } else {
4496 if (map->num_members >= 5)
4497 version = MPB_VERSION_5OR6_DISK_ARRAY;
4498 else if (dev->status == DEV_CLONE_N_GO)
4499 version = MPB_VERSION_CNG;
4500 else if (get_imsm_raid_level(map) == 5)
4501 version = MPB_VERSION_RAID5;
4502 else if (map->num_members >= 3)
4503 version = MPB_VERSION_3OR4_DISK_ARRAY;
4504 else if (get_imsm_raid_level(map) == 1)
4505 version = MPB_VERSION_RAID1;
4506 else
4507 version = MPB_VERSION_RAID0;
4508 }
4509 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4510 }
4511 }
4512
4513 static int check_name(struct intel_super *super, char *name, int quiet)
4514 {
4515 struct imsm_super *mpb = super->anchor;
4516 char *reason = NULL;
4517 int i;
4518
4519 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4520 reason = "must be 16 characters or less";
4521
4522 for (i = 0; i < mpb->num_raid_devs; i++) {
4523 struct imsm_dev *dev = get_imsm_dev(super, i);
4524
4525 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4526 reason = "already exists";
4527 break;
4528 }
4529 }
4530
4531 if (reason && !quiet)
4532 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4533
4534 return !reason;
4535 }
4536
4537 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4538 unsigned long long size, char *name,
4539 char *homehost, int *uuid)
4540 {
4541 /* We are creating a volume inside a pre-existing container.
4542 * so st->sb is already set.
4543 */
4544 struct intel_super *super = st->sb;
4545 struct imsm_super *mpb = super->anchor;
4546 struct intel_dev *dv;
4547 struct imsm_dev *dev;
4548 struct imsm_vol *vol;
4549 struct imsm_map *map;
4550 int idx = mpb->num_raid_devs;
4551 int i;
4552 unsigned long long array_blocks;
4553 size_t size_old, size_new;
4554 unsigned long long num_data_stripes;
4555
4556 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4557 fprintf(stderr, Name": This imsm-container already has the "
4558 "maximum of %d volumes\n", super->orom->vpa);
4559 return 0;
4560 }
4561
4562 /* ensure the mpb is large enough for the new data */
4563 size_old = __le32_to_cpu(mpb->mpb_size);
4564 size_new = disks_to_mpb_size(info->nr_disks);
4565 if (size_new > size_old) {
4566 void *mpb_new;
4567 size_t size_round = ROUND_UP(size_new, 512);
4568
4569 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4570 fprintf(stderr, Name": could not allocate new mpb\n");
4571 return 0;
4572 }
4573 if (posix_memalign(&super->migr_rec_buf, 512,
4574 MIGR_REC_BUF_SIZE) != 0) {
4575 fprintf(stderr, Name
4576 ": %s could not allocate migr_rec buffer\n",
4577 __func__);
4578 free(super->buf);
4579 free(super);
4580 free(mpb_new);
4581 return 0;
4582 }
4583 memcpy(mpb_new, mpb, size_old);
4584 free(mpb);
4585 mpb = mpb_new;
4586 super->anchor = mpb_new;
4587 mpb->mpb_size = __cpu_to_le32(size_new);
4588 memset(mpb_new + size_old, 0, size_round - size_old);
4589 }
4590 super->current_vol = idx;
4591
4592 /* handle 'failed_disks' by either:
4593 * a) create dummy disk entries in the table if this the first
4594 * volume in the array. We add them here as this is the only
4595 * opportunity to add them. add_to_super_imsm_volume()
4596 * handles the non-failed disks and continues incrementing
4597 * mpb->num_disks.
4598 * b) validate that 'failed_disks' matches the current number
4599 * of missing disks if the container is populated
4600 */
4601 if (super->current_vol == 0) {
4602 mpb->num_disks = 0;
4603 for (i = 0; i < info->failed_disks; i++) {
4604 struct imsm_disk *disk;
4605
4606 mpb->num_disks++;
4607 disk = __get_imsm_disk(mpb, i);
4608 disk->status = CONFIGURED_DISK | FAILED_DISK;
4609 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4610 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4611 "missing:%d", i);
4612 }
4613 find_missing(super);
4614 } else {
4615 int missing = 0;
4616 struct dl *d;
4617
4618 for (d = super->missing; d; d = d->next)
4619 missing++;
4620 if (info->failed_disks > missing) {
4621 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4622 return 0;
4623 }
4624 }
4625
4626 if (!check_name(super, name, 0))
4627 return 0;
4628 dv = malloc(sizeof(*dv));
4629 if (!dv) {
4630 fprintf(stderr, Name ": failed to allocate device list entry\n");
4631 return 0;
4632 }
4633 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4634 if (!dev) {
4635 free(dv);
4636 fprintf(stderr, Name": could not allocate raid device\n");
4637 return 0;
4638 }
4639
4640 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4641 array_blocks = calc_array_size(info->level, info->raid_disks,
4642 info->layout, info->chunk_size,
4643 size * 2);
4644 /* round array size down to closest MB */
4645 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4646
4647 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4648 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4649 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4650 vol = &dev->vol;
4651 vol->migr_state = 0;
4652 set_migr_type(dev, MIGR_INIT);
4653 vol->dirty = !info->state;
4654 vol->curr_migr_unit = 0;
4655 map = get_imsm_map(dev, MAP_0);
4656 set_pba_of_lba0(map, super->create_offset);
4657 set_blocks_per_member(map, info_to_blocks_per_member(info, size));
4658 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4659 map->failed_disk_num = ~0;
4660 if (info->level > 0)
4661 map->map_state = IMSM_T_STATE_UNINITIALIZED;
4662 else
4663 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
4664 IMSM_T_STATE_NORMAL;
4665 map->ddf = 1;
4666
4667 if (info->level == 1 && info->raid_disks > 2) {
4668 free(dev);
4669 free(dv);
4670 fprintf(stderr, Name": imsm does not support more than 2 disks"
4671 "in a raid1 volume\n");
4672 return 0;
4673 }
4674
4675 map->raid_level = info->level;
4676 if (info->level == 10) {
4677 map->raid_level = 1;
4678 map->num_domains = info->raid_disks / 2;
4679 } else if (info->level == 1)
4680 map->num_domains = info->raid_disks;
4681 else
4682 map->num_domains = 1;
4683
4684 /* info->size is only int so use the 'size' parameter instead */
4685 num_data_stripes = (size * 2) / info_to_blocks_per_strip(info);
4686 num_data_stripes /= map->num_domains;
4687 set_num_data_stripes(map, num_data_stripes);
4688
4689 map->num_members = info->raid_disks;
4690 for (i = 0; i < map->num_members; i++) {
4691 /* initialized in add_to_super */
4692 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4693 }
4694 mpb->num_raid_devs++;
4695
4696 dv->dev = dev;
4697 dv->index = super->current_vol;
4698 dv->next = super->devlist;
4699 super->devlist = dv;
4700
4701 imsm_update_version_info(super);
4702
4703 return 1;
4704 }
4705
4706 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4707 unsigned long long size, char *name,
4708 char *homehost, int *uuid)
4709 {
4710 /* This is primarily called by Create when creating a new array.
4711 * We will then get add_to_super called for each component, and then
4712 * write_init_super called to write it out to each device.
4713 * For IMSM, Create can create on fresh devices or on a pre-existing
4714 * array.
4715 * To create on a pre-existing array a different method will be called.
4716 * This one is just for fresh drives.
4717 */
4718 struct intel_super *super;
4719 struct imsm_super *mpb;
4720 size_t mpb_size;
4721 char *version;
4722
4723 if (st->sb)
4724 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4725
4726 if (info)
4727 mpb_size = disks_to_mpb_size(info->nr_disks);
4728 else
4729 mpb_size = 512;
4730
4731 super = alloc_super();
4732 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4733 free(super);
4734 super = NULL;
4735 }
4736 if (!super) {
4737 fprintf(stderr, Name
4738 ": %s could not allocate superblock\n", __func__);
4739 return 0;
4740 }
4741 if (posix_memalign(&super->migr_rec_buf, 512, MIGR_REC_BUF_SIZE) != 0) {
4742 fprintf(stderr, Name
4743 ": %s could not allocate migr_rec buffer\n", __func__);
4744 free(super->buf);
4745 free(super);
4746 return 0;
4747 }
4748 memset(super->buf, 0, mpb_size);
4749 mpb = super->buf;
4750 mpb->mpb_size = __cpu_to_le32(mpb_size);
4751 st->sb = super;
4752
4753 if (info == NULL) {
4754 /* zeroing superblock */
4755 return 0;
4756 }
4757
4758 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4759
4760 version = (char *) mpb->sig;
4761 strcpy(version, MPB_SIGNATURE);
4762 version += strlen(MPB_SIGNATURE);
4763 strcpy(version, MPB_VERSION_RAID0);
4764
4765 return 1;
4766 }
4767
4768 #ifndef MDASSEMBLE
4769 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4770 int fd, char *devname)
4771 {
4772 struct intel_super *super = st->sb;
4773 struct imsm_super *mpb = super->anchor;
4774 struct imsm_disk *_disk;
4775 struct imsm_dev *dev;
4776 struct imsm_map *map;
4777 struct dl *dl, *df;
4778 int slot;
4779
4780 dev = get_imsm_dev(super, super->current_vol);
4781 map = get_imsm_map(dev, MAP_0);
4782
4783 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4784 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4785 devname);
4786 return 1;
4787 }
4788
4789 if (fd == -1) {
4790 /* we're doing autolayout so grab the pre-marked (in
4791 * validate_geometry) raid_disk
4792 */
4793 for (dl = super->disks; dl; dl = dl->next)
4794 if (dl->raiddisk == dk->raid_disk)
4795 break;
4796 } else {
4797 for (dl = super->disks; dl ; dl = dl->next)
4798 if (dl->major == dk->major &&
4799 dl->minor == dk->minor)
4800 break;
4801 }
4802
4803 if (!dl) {
4804 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4805 return 1;
4806 }
4807
4808 /* add a pristine spare to the metadata */
4809 if (dl->index < 0) {
4810 dl->index = super->anchor->num_disks;
4811 super->anchor->num_disks++;
4812 }
4813 /* Check the device has not already been added */
4814 slot = get_imsm_disk_slot(map, dl->index);
4815 if (slot >= 0 &&
4816 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
4817 fprintf(stderr, Name ": %s has been included in this array twice\n",
4818 devname);
4819 return 1;
4820 }
4821 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4822 dl->disk.status = CONFIGURED_DISK;
4823
4824 /* update size of 'missing' disks to be at least as large as the
4825 * largest acitve member (we only have dummy missing disks when
4826 * creating the first volume)
4827 */
4828 if (super->current_vol == 0) {
4829 for (df = super->missing; df; df = df->next) {
4830 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
4831 set_total_blocks(&df->disk, total_blocks(&dl->disk));
4832 _disk = __get_imsm_disk(mpb, df->index);
4833 *_disk = df->disk;
4834 }
4835 }
4836
4837 /* refresh unset/failed slots to point to valid 'missing' entries */
4838 for (df = super->missing; df; df = df->next)
4839 for (slot = 0; slot < mpb->num_disks; slot++) {
4840 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
4841
4842 if ((ord & IMSM_ORD_REBUILD) == 0)
4843 continue;
4844 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4845 if (is_gen_migration(dev)) {
4846 struct imsm_map *map2 = get_imsm_map(dev,
4847 MAP_1);
4848 int slot2 = get_imsm_disk_slot(map2, df->index);
4849 if ((slot2 < map2->num_members) &&
4850 (slot2 >= 0)) {
4851 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4852 slot2,
4853 MAP_1);
4854 if ((unsigned)df->index ==
4855 ord_to_idx(ord2))
4856 set_imsm_ord_tbl_ent(map2,
4857 slot2,
4858 df->index |
4859 IMSM_ORD_REBUILD);
4860 }
4861 }
4862 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4863 break;
4864 }
4865
4866 /* if we are creating the first raid device update the family number */
4867 if (super->current_vol == 0) {
4868 __u32 sum;
4869 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4870
4871 _disk = __get_imsm_disk(mpb, dl->index);
4872 if (!_dev || !_disk) {
4873 fprintf(stderr, Name ": BUG mpb setup error\n");
4874 return 1;
4875 }
4876 *_dev = *dev;
4877 *_disk = dl->disk;
4878 sum = random32();
4879 sum += __gen_imsm_checksum(mpb);
4880 mpb->family_num = __cpu_to_le32(sum);
4881 mpb->orig_family_num = mpb->family_num;
4882 }
4883 super->current_disk = dl;
4884 return 0;
4885 }
4886
4887 /* mark_spare()
4888 * Function marks disk as spare and restores disk serial
4889 * in case it was previously marked as failed by takeover operation
4890 * reruns:
4891 * -1 : critical error
4892 * 0 : disk is marked as spare but serial is not set
4893 * 1 : success
4894 */
4895 int mark_spare(struct dl *disk)
4896 {
4897 __u8 serial[MAX_RAID_SERIAL_LEN];
4898 int ret_val = -1;
4899
4900 if (!disk)
4901 return ret_val;
4902
4903 ret_val = 0;
4904 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4905 /* Restore disk serial number, because takeover marks disk
4906 * as failed and adds to serial ':0' before it becomes
4907 * a spare disk.
4908 */
4909 serialcpy(disk->serial, serial);
4910 serialcpy(disk->disk.serial, serial);
4911 ret_val = 1;
4912 }
4913 disk->disk.status = SPARE_DISK;
4914 disk->index = -1;
4915
4916 return ret_val;
4917 }
4918
4919 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4920 int fd, char *devname)
4921 {
4922 struct intel_super *super = st->sb;
4923 struct dl *dd;
4924 unsigned long long size;
4925 __u32 id;
4926 int rv;
4927 struct stat stb;
4928
4929 /* If we are on an RAID enabled platform check that the disk is
4930 * attached to the raid controller.
4931 * We do not need to test disks attachment for container based additions,
4932 * they shall be already tested when container was created/assembled.
4933 */
4934 rv = find_intel_hba_capability(fd, super, devname);
4935 /* no orom/efi or non-intel hba of the disk */
4936 if (rv != 0) {
4937 dprintf("capability: %p fd: %d ret: %d\n",
4938 super->orom, fd, rv);
4939 return 1;
4940 }
4941
4942 if (super->current_vol >= 0)
4943 return add_to_super_imsm_volume(st, dk, fd, devname);
4944
4945 fstat(fd, &stb);
4946 dd = malloc(sizeof(*dd));
4947 if (!dd) {
4948 fprintf(stderr,
4949 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4950 return 1;
4951 }
4952 memset(dd, 0, sizeof(*dd));
4953 dd->major = major(stb.st_rdev);
4954 dd->minor = minor(stb.st_rdev);
4955 dd->devname = devname ? strdup(devname) : NULL;
4956 dd->fd = fd;
4957 dd->e = NULL;
4958 dd->action = DISK_ADD;
4959 rv = imsm_read_serial(fd, devname, dd->serial);
4960 if (rv) {
4961 fprintf(stderr,
4962 Name ": failed to retrieve scsi serial, aborting\n");
4963 free(dd);
4964 abort();
4965 }
4966
4967 get_dev_size(fd, NULL, &size);
4968 size /= 512;
4969 serialcpy(dd->disk.serial, dd->serial);
4970 set_total_blocks(&dd->disk, size);
4971 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
4972 struct imsm_super *mpb = super->anchor;
4973 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
4974 }
4975 mark_spare(dd);
4976 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4977 dd->disk.scsi_id = __cpu_to_le32(id);
4978 else
4979 dd->disk.scsi_id = __cpu_to_le32(0);
4980
4981 if (st->update_tail) {
4982 dd->next = super->disk_mgmt_list;
4983 super->disk_mgmt_list = dd;
4984 } else {
4985 dd->next = super->disks;
4986 super->disks = dd;
4987 super->updates_pending++;
4988 }
4989
4990 return 0;
4991 }
4992
4993
4994 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4995 {
4996 struct intel_super *super = st->sb;
4997 struct dl *dd;
4998
4999 /* remove from super works only in mdmon - for communication
5000 * manager - monitor. Check if communication memory buffer
5001 * is prepared.
5002 */
5003 if (!st->update_tail) {
5004 fprintf(stderr,
5005 Name ": %s shall be used in mdmon context only"
5006 "(line %d).\n", __func__, __LINE__);
5007 return 1;
5008 }
5009 dd = malloc(sizeof(*dd));
5010 if (!dd) {
5011 fprintf(stderr,
5012 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
5013 return 1;
5014 }
5015 memset(dd, 0, sizeof(*dd));
5016 dd->major = dk->major;
5017 dd->minor = dk->minor;
5018 dd->fd = -1;
5019 mark_spare(dd);
5020 dd->action = DISK_REMOVE;
5021
5022 dd->next = super->disk_mgmt_list;
5023 super->disk_mgmt_list = dd;
5024
5025
5026 return 0;
5027 }
5028
5029 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
5030
5031 static union {
5032 char buf[512];
5033 struct imsm_super anchor;
5034 } spare_record __attribute__ ((aligned(512)));
5035
5036 /* spare records have their own family number and do not have any defined raid
5037 * devices
5038 */
5039 static int write_super_imsm_spares(struct intel_super *super, int doclose)
5040 {
5041 struct imsm_super *mpb = super->anchor;
5042 struct imsm_super *spare = &spare_record.anchor;
5043 __u32 sum;
5044 struct dl *d;
5045
5046 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
5047 spare->generation_num = __cpu_to_le32(1UL),
5048 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5049 spare->num_disks = 1,
5050 spare->num_raid_devs = 0,
5051 spare->cache_size = mpb->cache_size,
5052 spare->pwr_cycle_count = __cpu_to_le32(1),
5053
5054 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
5055 MPB_SIGNATURE MPB_VERSION_RAID0);
5056
5057 for (d = super->disks; d; d = d->next) {
5058 if (d->index != -1)
5059 continue;
5060
5061 spare->disk[0] = d->disk;
5062 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
5063 spare->attributes |= MPB_ATTRIB_2TB_DISK;
5064
5065 sum = __gen_imsm_checksum(spare);
5066 spare->family_num = __cpu_to_le32(sum);
5067 spare->orig_family_num = 0;
5068 sum = __gen_imsm_checksum(spare);
5069 spare->check_sum = __cpu_to_le32(sum);
5070
5071 if (store_imsm_mpb(d->fd, spare)) {
5072 fprintf(stderr, "%s: failed for device %d:%d %s\n",
5073 __func__, d->major, d->minor, strerror(errno));
5074 return 1;
5075 }
5076 if (doclose) {
5077 close(d->fd);
5078 d->fd = -1;
5079 }
5080 }
5081
5082 return 0;
5083 }
5084
5085 static int write_super_imsm(struct supertype *st, int doclose)
5086 {
5087 struct intel_super *super = st->sb;
5088 struct imsm_super *mpb = super->anchor;
5089 struct dl *d;
5090 __u32 generation;
5091 __u32 sum;
5092 int spares = 0;
5093 int i;
5094 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
5095 int num_disks = 0;
5096 int clear_migration_record = 1;
5097
5098 /* 'generation' is incremented everytime the metadata is written */
5099 generation = __le32_to_cpu(mpb->generation_num);
5100 generation++;
5101 mpb->generation_num = __cpu_to_le32(generation);
5102
5103 /* fix up cases where previous mdadm releases failed to set
5104 * orig_family_num
5105 */
5106 if (mpb->orig_family_num == 0)
5107 mpb->orig_family_num = mpb->family_num;
5108
5109 for (d = super->disks; d; d = d->next) {
5110 if (d->index == -1)
5111 spares++;
5112 else {
5113 mpb->disk[d->index] = d->disk;
5114 num_disks++;
5115 }
5116 }
5117 for (d = super->missing; d; d = d->next) {
5118 mpb->disk[d->index] = d->disk;
5119 num_disks++;
5120 }
5121 mpb->num_disks = num_disks;
5122 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
5123
5124 for (i = 0; i < mpb->num_raid_devs; i++) {
5125 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
5126 struct imsm_dev *dev2 = get_imsm_dev(super, i);
5127 if (dev && dev2) {
5128 imsm_copy_dev(dev, dev2);
5129 mpb_size += sizeof_imsm_dev(dev, 0);
5130 }
5131 if (is_gen_migration(dev2))
5132 clear_migration_record = 0;
5133 }
5134 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
5135 mpb->mpb_size = __cpu_to_le32(mpb_size);
5136
5137 /* recalculate checksum */
5138 sum = __gen_imsm_checksum(mpb);
5139 mpb->check_sum = __cpu_to_le32(sum);
5140
5141 if (super->clean_migration_record_by_mdmon) {
5142 clear_migration_record = 1;
5143 super->clean_migration_record_by_mdmon = 0;
5144 }
5145 if (clear_migration_record)
5146 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SIZE);
5147
5148 /* write the mpb for disks that compose raid devices */
5149 for (d = super->disks; d ; d = d->next) {
5150 if (d->index < 0 || is_failed(&d->disk))
5151 continue;
5152
5153 if (clear_migration_record) {
5154 unsigned long long dsize;
5155
5156 get_dev_size(d->fd, NULL, &dsize);
5157 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
5158 if (write(d->fd, super->migr_rec_buf,
5159 MIGR_REC_BUF_SIZE) != MIGR_REC_BUF_SIZE)
5160 perror("Write migr_rec failed");
5161 }
5162 }
5163
5164 if (store_imsm_mpb(d->fd, mpb))
5165 fprintf(stderr,
5166 "%s: failed for device %d:%d (fd: %d)%s\n",
5167 __func__, d->major, d->minor,
5168 d->fd, strerror(errno));
5169
5170 if (doclose) {
5171 close(d->fd);
5172 d->fd = -1;
5173 }
5174 }
5175
5176 if (spares)
5177 return write_super_imsm_spares(super, doclose);
5178
5179 return 0;
5180 }
5181
5182
5183 static int create_array(struct supertype *st, int dev_idx)
5184 {
5185 size_t len;
5186 struct imsm_update_create_array *u;
5187 struct intel_super *super = st->sb;
5188 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
5189 struct imsm_map *map = get_imsm_map(dev, MAP_0);
5190 struct disk_info *inf;
5191 struct imsm_disk *disk;
5192 int i;
5193
5194 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
5195 sizeof(*inf) * map->num_members;
5196 u = malloc(len);
5197 if (!u) {
5198 fprintf(stderr, "%s: failed to allocate update buffer\n",
5199 __func__);
5200 return 1;
5201 }
5202
5203 u->type = update_create_array;
5204 u->dev_idx = dev_idx;
5205 imsm_copy_dev(&u->dev, dev);
5206 inf = get_disk_info(u);
5207 for (i = 0; i < map->num_members; i++) {
5208 int idx = get_imsm_disk_idx(dev, i, MAP_X);
5209
5210 disk = get_imsm_disk(super, idx);
5211 serialcpy(inf[i].serial, disk->serial);
5212 }
5213 append_metadata_update(st, u, len);
5214
5215 return 0;
5216 }
5217
5218 static int mgmt_disk(struct supertype *st)
5219 {
5220 struct intel_super *super = st->sb;
5221 size_t len;
5222 struct imsm_update_add_remove_disk *u;
5223
5224 if (!super->disk_mgmt_list)
5225 return 0;
5226
5227 len = sizeof(*u);
5228 u = malloc(len);
5229 if (!u) {
5230 fprintf(stderr, "%s: failed to allocate update buffer\n",
5231 __func__);
5232 return 1;
5233 }
5234
5235 u->type = update_add_remove_disk;
5236 append_metadata_update(st, u, len);
5237
5238 return 0;
5239 }
5240
5241 static int write_init_super_imsm(struct supertype *st)
5242 {
5243 struct intel_super *super = st->sb;
5244 int current_vol = super->current_vol;
5245
5246 /* we are done with current_vol reset it to point st at the container */
5247 super->current_vol = -1;
5248
5249 if (st->update_tail) {
5250 /* queue the recently created array / added disk
5251 * as a metadata update */
5252 int rv;
5253
5254 /* determine if we are creating a volume or adding a disk */
5255 if (current_vol < 0) {
5256 /* in the mgmt (add/remove) disk case we are running
5257 * in mdmon context, so don't close fd's
5258 */
5259 return mgmt_disk(st);
5260 } else
5261 rv = create_array(st, current_vol);
5262
5263 return rv;
5264 } else {
5265 struct dl *d;
5266 for (d = super->disks; d; d = d->next)
5267 Kill(d->devname, NULL, 0, 1, 1);
5268 return write_super_imsm(st, 1);
5269 }
5270 }
5271 #endif
5272
5273 static int store_super_imsm(struct supertype *st, int fd)
5274 {
5275 struct intel_super *super = st->sb;
5276 struct imsm_super *mpb = super ? super->anchor : NULL;
5277
5278 if (!mpb)
5279 return 1;
5280
5281 #ifndef MDASSEMBLE
5282 return store_imsm_mpb(fd, mpb);
5283 #else
5284 return 1;
5285 #endif
5286 }
5287
5288 static int imsm_bbm_log_size(struct imsm_super *mpb)
5289 {
5290 return __le32_to_cpu(mpb->bbm_log_size);
5291 }
5292
5293 #ifndef MDASSEMBLE
5294 static int validate_geometry_imsm_container(struct supertype *st, int level,
5295 int layout, int raiddisks, int chunk,
5296 unsigned long long size, char *dev,
5297 unsigned long long *freesize,
5298 int verbose)
5299 {
5300 int fd;
5301 unsigned long long ldsize;
5302 struct intel_super *super=NULL;
5303 int rv = 0;
5304
5305 if (level != LEVEL_CONTAINER)
5306 return 0;
5307 if (!dev)
5308 return 1;
5309
5310 fd = open(dev, O_RDONLY|O_EXCL, 0);
5311 if (fd < 0) {
5312 if (verbose)
5313 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
5314 dev, strerror(errno));
5315 return 0;
5316 }
5317 if (!get_dev_size(fd, dev, &ldsize)) {
5318 close(fd);
5319 return 0;
5320 }
5321
5322 /* capabilities retrieve could be possible
5323 * note that there is no fd for the disks in array.
5324 */
5325 super = alloc_super();
5326 if (!super) {
5327 fprintf(stderr,
5328 Name ": malloc of %zu failed.\n",
5329 sizeof(*super));
5330 close(fd);
5331 return 0;
5332 }
5333
5334 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
5335 if (rv != 0) {
5336 #if DEBUG
5337 char str[256];
5338 fd2devname(fd, str);
5339 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
5340 fd, str, super->orom, rv, raiddisks);
5341 #endif
5342 /* no orom/efi or non-intel hba of the disk */
5343 close(fd);
5344 free_imsm(super);
5345 return 0;
5346 }
5347 close(fd);
5348 if (super->orom) {
5349 if (raiddisks > super->orom->tds) {
5350 if (verbose)
5351 fprintf(stderr, Name ": %d exceeds maximum number of"
5352 " platform supported disks: %d\n",
5353 raiddisks, super->orom->tds);
5354 free_imsm(super);
5355 return 0;
5356 }
5357 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
5358 (ldsize >> 9) >> 32 > 0) {
5359 if (verbose)
5360 fprintf(stderr, Name ": %s exceeds maximum platform supported size\n", dev);
5361 free_imsm(super);
5362 return 0;
5363 }
5364 }
5365
5366 *freesize = avail_size_imsm(st, ldsize >> 9);
5367 free_imsm(super);
5368
5369 return 1;
5370 }
5371
5372 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5373 {
5374 const unsigned long long base_start = e[*idx].start;
5375 unsigned long long end = base_start + e[*idx].size;
5376 int i;
5377
5378 if (base_start == end)
5379 return 0;
5380
5381 *idx = *idx + 1;
5382 for (i = *idx; i < num_extents; i++) {
5383 /* extend overlapping extents */
5384 if (e[i].start >= base_start &&
5385 e[i].start <= end) {
5386 if (e[i].size == 0)
5387 return 0;
5388 if (e[i].start + e[i].size > end)
5389 end = e[i].start + e[i].size;
5390 } else if (e[i].start > end) {
5391 *idx = i;
5392 break;
5393 }
5394 }
5395
5396 return end - base_start;
5397 }
5398
5399 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5400 {
5401 /* build a composite disk with all known extents and generate a new
5402 * 'maxsize' given the "all disks in an array must share a common start
5403 * offset" constraint
5404 */
5405 struct extent *e = calloc(sum_extents, sizeof(*e));
5406 struct dl *dl;
5407 int i, j;
5408 int start_extent;
5409 unsigned long long pos;
5410 unsigned long long start = 0;
5411 unsigned long long maxsize;
5412 unsigned long reserve;
5413
5414 if (!e)
5415 return 0;
5416
5417 /* coalesce and sort all extents. also, check to see if we need to
5418 * reserve space between member arrays
5419 */
5420 j = 0;
5421 for (dl = super->disks; dl; dl = dl->next) {
5422 if (!dl->e)
5423 continue;
5424 for (i = 0; i < dl->extent_cnt; i++)
5425 e[j++] = dl->e[i];
5426 }
5427 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5428
5429 /* merge extents */
5430 i = 0;
5431 j = 0;
5432 while (i < sum_extents) {
5433 e[j].start = e[i].start;
5434 e[j].size = find_size(e, &i, sum_extents);
5435 j++;
5436 if (e[j-1].size == 0)
5437 break;
5438 }
5439
5440 pos = 0;
5441 maxsize = 0;
5442 start_extent = 0;
5443 i = 0;
5444 do {
5445 unsigned long long esize;
5446
5447 esize = e[i].start - pos;
5448 if (esize >= maxsize) {
5449 maxsize = esize;
5450 start = pos;
5451 start_extent = i;
5452 }
5453 pos = e[i].start + e[i].size;
5454 i++;
5455 } while (e[i-1].size);
5456 free(e);
5457
5458 if (maxsize == 0)
5459 return 0;
5460
5461 /* FIXME assumes volume at offset 0 is the first volume in a
5462 * container
5463 */
5464 if (start_extent > 0)
5465 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5466 else
5467 reserve = 0;
5468
5469 if (maxsize < reserve)
5470 return 0;
5471
5472 super->create_offset = ~((unsigned long long) 0);
5473 if (start + reserve > super->create_offset)
5474 return 0; /* start overflows create_offset */
5475 super->create_offset = start + reserve;
5476
5477 return maxsize - reserve;
5478 }
5479
5480 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5481 {
5482 if (level < 0 || level == 6 || level == 4)
5483 return 0;
5484
5485 /* if we have an orom prevent invalid raid levels */
5486 if (orom)
5487 switch (level) {
5488 case 0: return imsm_orom_has_raid0(orom);
5489 case 1:
5490 if (raiddisks > 2)
5491 return imsm_orom_has_raid1e(orom);
5492 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5493 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5494 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5495 }
5496 else
5497 return 1; /* not on an Intel RAID platform so anything goes */
5498
5499 return 0;
5500 }
5501
5502
5503 static int
5504 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
5505 int dpa, int verbose)
5506 {
5507 struct mdstat_ent *mdstat = mdstat_read(0, 0);
5508 struct mdstat_ent *memb = NULL;
5509 int count = 0;
5510 int num = 0;
5511 struct md_list *dv = NULL;
5512 int found;
5513
5514 for (memb = mdstat ; memb ; memb = memb->next) {
5515 if (memb->metadata_version &&
5516 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
5517 (strcmp(&memb->metadata_version[9], name) == 0) &&
5518 !is_subarray(memb->metadata_version+9) &&
5519 memb->members) {
5520 struct dev_member *dev = memb->members;
5521 int fd = -1;
5522 while(dev && (fd < 0)) {
5523 char *path = malloc(strlen(dev->name) + strlen("/dev/") + 1);
5524 if (path) {
5525 num = sprintf(path, "%s%s", "/dev/", dev->name);
5526 if (num > 0)
5527 fd = open(path, O_RDONLY, 0);
5528 if ((num <= 0) || (fd < 0)) {
5529 pr_vrb(": Cannot open %s: %s\n",
5530 dev->name, strerror(errno));
5531 }
5532 free(path);
5533 }
5534 dev = dev->next;
5535 }
5536 found = 0;
5537 if ((fd >= 0) && disk_attached_to_hba(fd, hba)) {
5538 struct mdstat_ent *vol;
5539 for (vol = mdstat ; vol ; vol = vol->next) {
5540 if ((vol->active > 0) &&
5541 vol->metadata_version &&
5542 is_container_member(vol, memb->dev)) {
5543 found++;
5544 count++;
5545 }
5546 }
5547 if (*devlist && (found < dpa)) {
5548 dv = calloc(1, sizeof(*dv));
5549 if (dv == NULL)
5550 fprintf(stderr, Name ": calloc failed\n");
5551 else {
5552 dv->devname = malloc(strlen(memb->dev) + strlen("/dev/") + 1);
5553 if (dv->devname != NULL) {
5554 sprintf(dv->devname, "%s%s", "/dev/", memb->dev);
5555 dv->found = found;
5556 dv->used = 0;
5557 dv->next = *devlist;
5558 *devlist = dv;
5559 } else
5560 free(dv);
5561 }
5562 }
5563 }
5564 if (fd >= 0)
5565 close(fd);
5566 }
5567 }
5568 free_mdstat(mdstat);
5569 return count;
5570 }
5571
5572 #ifdef DEBUG_LOOP
5573 static struct md_list*
5574 get_loop_devices(void)
5575 {
5576 int i;
5577 struct md_list *devlist = NULL;
5578 struct md_list *dv = NULL;
5579
5580 for(i = 0; i < 12; i++) {
5581 dv = calloc(1, sizeof(*dv));
5582 if (dv == NULL) {
5583 fprintf(stderr, Name ": calloc failed\n");
5584 break;
5585 }
5586 dv->devname = malloc(40);
5587 if (dv->devname == NULL) {
5588 fprintf(stderr, Name ": malloc failed\n");
5589 free(dv);
5590 break;
5591 }
5592 sprintf(dv->devname, "/dev/loop%d", i);
5593 dv->next = devlist;
5594 devlist = dv;
5595 }
5596 return devlist;
5597 }
5598 #endif
5599
5600 static struct md_list*
5601 get_devices(const char *hba_path)
5602 {
5603 struct md_list *devlist = NULL;
5604 struct md_list *dv = NULL;
5605 struct dirent *ent;
5606 DIR *dir;
5607 int err = 0;
5608
5609 #if DEBUG_LOOP
5610 devlist = get_loop_devices();
5611 return devlist;
5612 #endif
5613 /* scroll through /sys/dev/block looking for devices attached to
5614 * this hba
5615 */
5616 dir = opendir("/sys/dev/block");
5617 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
5618 int fd;
5619 char buf[1024];
5620 int major, minor;
5621 char *path = NULL;
5622 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
5623 continue;
5624 path = devt_to_devpath(makedev(major, minor));
5625 if (!path)
5626 continue;
5627 if (!path_attached_to_hba(path, hba_path)) {
5628 free(path);
5629 path = NULL;
5630 continue;
5631 }
5632 free(path);
5633 path = NULL;
5634 fd = dev_open(ent->d_name, O_RDONLY);
5635 if (fd >= 0) {
5636 fd2devname(fd, buf);
5637 close(fd);
5638 } else {
5639 fprintf(stderr, Name ": cannot open device: %s\n",
5640 ent->d_name);
5641 continue;
5642 }
5643
5644
5645 dv = calloc(1, sizeof(*dv));
5646 if (dv == NULL) {
5647 fprintf(stderr, Name ": malloc failed\n");
5648 err = 1;
5649 break;
5650 }
5651 dv->devname = strdup(buf);
5652 if (dv->devname == NULL) {
5653 fprintf(stderr, Name ": malloc failed\n");
5654 err = 1;
5655 free(dv);
5656 break;
5657 }
5658 dv->next = devlist;
5659 devlist = dv;
5660 }
5661 if (err) {
5662 while(devlist) {
5663 dv = devlist;
5664 devlist = devlist->next;
5665 free(dv->devname);
5666 free(dv);
5667 }
5668 }
5669 return devlist;
5670 }
5671
5672 static int
5673 count_volumes_list(struct md_list *devlist, char *homehost,
5674 int verbose, int *found)
5675 {
5676 struct md_list *tmpdev;
5677 int count = 0;
5678 struct supertype *st = NULL;
5679
5680 /* first walk the list of devices to find a consistent set
5681 * that match the criterea, if that is possible.
5682 * We flag the ones we like with 'used'.
5683 */
5684 *found = 0;
5685 st = match_metadata_desc_imsm("imsm");
5686 if (st == NULL) {
5687 pr_vrb(": cannot allocate memory for imsm supertype\n");
5688 return 0;
5689 }
5690
5691 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5692 char *devname = tmpdev->devname;
5693 struct stat stb;
5694 struct supertype *tst;
5695 int dfd;
5696 if (tmpdev->used > 1)
5697 continue;
5698 tst = dup_super(st);
5699 if (tst == NULL) {
5700 pr_vrb(": cannot allocate memory for imsm supertype\n");
5701 goto err_1;
5702 }
5703 tmpdev->container = 0;
5704 dfd = dev_open(devname, O_RDONLY|O_EXCL);
5705 if (dfd < 0) {
5706 dprintf(": cannot open device %s: %s\n",
5707 devname, strerror(errno));
5708 tmpdev->used = 2;
5709 } else if (fstat(dfd, &stb)< 0) {
5710 /* Impossible! */
5711 dprintf(": fstat failed for %s: %s\n",
5712 devname, strerror(errno));
5713 tmpdev->used = 2;
5714 } else if ((stb.st_mode & S_IFMT) != S_IFBLK) {
5715 dprintf(": %s is not a block device.\n",
5716 devname);
5717 tmpdev->used = 2;
5718 } else if (must_be_container(dfd)) {
5719 struct supertype *cst;
5720 cst = super_by_fd(dfd, NULL);
5721 if (cst == NULL) {
5722 dprintf(": cannot recognize container type %s\n",
5723 devname);
5724 tmpdev->used = 2;
5725 } else if (tst->ss != st->ss) {
5726 dprintf(": non-imsm container - ignore it: %s\n",
5727 devname);
5728 tmpdev->used = 2;
5729 } else if (!tst->ss->load_container ||
5730 tst->ss->load_container(tst, dfd, NULL))
5731 tmpdev->used = 2;
5732 else {
5733 tmpdev->container = 1;
5734 }
5735 if (cst)
5736 cst->ss->free_super(cst);
5737 } else {
5738 tmpdev->st_rdev = stb.st_rdev;
5739 if (tst->ss->load_super(tst,dfd, NULL)) {
5740 dprintf(": no RAID superblock on %s\n",
5741 devname);
5742 tmpdev->used = 2;
5743 } else if (tst->ss->compare_super == NULL) {
5744 dprintf(": Cannot assemble %s metadata on %s\n",
5745 tst->ss->name, devname);
5746 tmpdev->used = 2;
5747 }
5748 }
5749 if (dfd >= 0)
5750 close(dfd);
5751 if (tmpdev->used == 2 || tmpdev->used == 4) {
5752 /* Ignore unrecognised devices during auto-assembly */
5753 goto loop;
5754 }
5755 else {
5756 struct mdinfo info;
5757 tst->ss->getinfo_super(tst, &info, NULL);
5758
5759 if (st->minor_version == -1)
5760 st->minor_version = tst->minor_version;
5761
5762 if (memcmp(info.uuid, uuid_zero,
5763 sizeof(int[4])) == 0) {
5764 /* this is a floating spare. It cannot define
5765 * an array unless there are no more arrays of
5766 * this type to be found. It can be included
5767 * in an array of this type though.
5768 */
5769 tmpdev->used = 3;
5770 goto loop;
5771 }
5772
5773 if (st->ss != tst->ss ||
5774 st->minor_version != tst->minor_version ||
5775 st->ss->compare_super(st, tst) != 0) {
5776 /* Some mismatch. If exactly one array matches this host,
5777 * we can resolve on that one.
5778 * Or, if we are auto assembling, we just ignore the second
5779 * for now.
5780 */
5781 dprintf(": superblock on %s doesn't match others - assembly aborted\n",
5782 devname);
5783 goto loop;
5784 }
5785 tmpdev->used = 1;
5786 *found = 1;
5787 dprintf("found: devname: %s\n", devname);
5788 }
5789 loop:
5790 if (tst)
5791 tst->ss->free_super(tst);
5792 }
5793 if (*found != 0) {
5794 int err;
5795 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
5796 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
5797 for (iter = head; iter; iter = iter->next) {
5798 dprintf("content->text_version: %s vol\n",
5799 iter->text_version);
5800 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
5801 /* do not assemble arrays with unsupported
5802 configurations */
5803 dprintf(": Cannot activate member %s.\n",
5804 iter->text_version);
5805 } else
5806 count++;
5807 }
5808 sysfs_free(head);
5809
5810 } else {
5811 dprintf(" no valid super block on device list: err: %d %p\n",
5812 err, st->sb);
5813 }
5814 } else {
5815 dprintf(" no more devices to examin\n");
5816 }
5817
5818 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5819 if ((tmpdev->used == 1) && (tmpdev->found)) {
5820 if (count) {
5821 if (count < tmpdev->found)
5822 count = 0;
5823 else
5824 count -= tmpdev->found;
5825 }
5826 }
5827 if (tmpdev->used == 1)
5828 tmpdev->used = 4;
5829 }
5830 err_1:
5831 if (st)
5832 st->ss->free_super(st);
5833 return count;
5834 }
5835
5836
5837 static int
5838 count_volumes(char *hba, int dpa, int verbose)
5839 {
5840 struct md_list *devlist = NULL;
5841 int count = 0;
5842 int found = 0;;
5843
5844 devlist = get_devices(hba);
5845 /* if no intel devices return zero volumes */
5846 if (devlist == NULL)
5847 return 0;
5848
5849 count = active_arrays_by_format("imsm", hba, &devlist, dpa, verbose);
5850 dprintf(" path: %s active arrays: %d\n", hba, count);
5851 if (devlist == NULL)
5852 return 0;
5853 do {
5854 found = 0;
5855 count += count_volumes_list(devlist,
5856 NULL,
5857 verbose,
5858 &found);
5859 dprintf("found %d count: %d\n", found, count);
5860 } while (found);
5861
5862 dprintf("path: %s total number of volumes: %d\n", hba, count);
5863
5864 while(devlist) {
5865 struct md_list *dv = devlist;
5866 devlist = devlist->next;
5867 free(dv->devname);
5868 free(dv);
5869 }
5870 return count;
5871 }
5872
5873 static int imsm_default_chunk(const struct imsm_orom *orom)
5874 {
5875 /* up to 512 if the plaform supports it, otherwise the platform max.
5876 * 128 if no platform detected
5877 */
5878 int fs = max(7, orom ? fls(orom->sss) : 0);
5879
5880 return min(512, (1 << fs));
5881 }
5882
5883 static int
5884 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5885 int raiddisks, int *chunk, unsigned long long size, int verbose)
5886 {
5887 /* check/set platform and metadata limits/defaults */
5888 if (super->orom && raiddisks > super->orom->dpa) {
5889 pr_vrb(": platform supports a maximum of %d disks per array\n",
5890 super->orom->dpa);
5891 return 0;
5892 }
5893
5894 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5895 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5896 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5897 level, raiddisks, raiddisks > 1 ? "s" : "");
5898 return 0;
5899 }
5900
5901 if (chunk && (*chunk == 0 || *chunk == UnSet))
5902 *chunk = imsm_default_chunk(super->orom);
5903
5904 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5905 pr_vrb(": platform does not support a chunk size of: "
5906 "%d\n", *chunk);
5907 return 0;
5908 }
5909
5910 if (layout != imsm_level_to_layout(level)) {
5911 if (level == 5)
5912 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5913 else if (level == 10)
5914 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5915 else
5916 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5917 layout, level);
5918 return 0;
5919 }
5920
5921 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 && chunk &&
5922 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
5923 pr_vrb(": platform does not support a volume size over 2TB\n");
5924 return 0;
5925 }
5926 return 1;
5927 }
5928
5929 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5930 * FIX ME add ahci details
5931 */
5932 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5933 int layout, int raiddisks, int *chunk,
5934 unsigned long long size, char *dev,
5935 unsigned long long *freesize,
5936 int verbose)
5937 {
5938 struct stat stb;
5939 struct intel_super *super = st->sb;
5940 struct imsm_super *mpb;
5941 struct dl *dl;
5942 unsigned long long pos = 0;
5943 unsigned long long maxsize;
5944 struct extent *e;
5945 int i;
5946
5947 /* We must have the container info already read in. */
5948 if (!super)
5949 return 0;
5950
5951 mpb = super->anchor;
5952
5953 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
5954 fprintf(stderr, Name ": RAID gemetry validation failed. "
5955 "Cannot proceed with the action(s).\n");
5956 return 0;
5957 }
5958 if (!dev) {
5959 /* General test: make sure there is space for
5960 * 'raiddisks' device extents of size 'size' at a given
5961 * offset
5962 */
5963 unsigned long long minsize = size;
5964 unsigned long long start_offset = MaxSector;
5965 int dcnt = 0;
5966 if (minsize == 0)
5967 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5968 for (dl = super->disks; dl ; dl = dl->next) {
5969 int found = 0;
5970
5971 pos = 0;
5972 i = 0;
5973 e = get_extents(super, dl);
5974 if (!e) continue;
5975 do {
5976 unsigned long long esize;
5977 esize = e[i].start - pos;
5978 if (esize >= minsize)
5979 found = 1;
5980 if (found && start_offset == MaxSector) {
5981 start_offset = pos;
5982 break;
5983 } else if (found && pos != start_offset) {
5984 found = 0;
5985 break;
5986 }
5987 pos = e[i].start + e[i].size;
5988 i++;
5989 } while (e[i-1].size);
5990 if (found)
5991 dcnt++;
5992 free(e);
5993 }
5994 if (dcnt < raiddisks) {
5995 if (verbose)
5996 fprintf(stderr, Name ": imsm: Not enough "
5997 "devices with space for this array "
5998 "(%d < %d)\n",
5999 dcnt, raiddisks);
6000 return 0;
6001 }
6002 return 1;
6003 }
6004
6005 /* This device must be a member of the set */
6006 if (stat(dev, &stb) < 0)
6007 return 0;
6008 if ((S_IFMT & stb.st_mode) != S_IFBLK)
6009 return 0;
6010 for (dl = super->disks ; dl ; dl = dl->next) {
6011 if (dl->major == (int)major(stb.st_rdev) &&
6012 dl->minor == (int)minor(stb.st_rdev))
6013 break;
6014 }
6015 if (!dl) {
6016 if (verbose)
6017 fprintf(stderr, Name ": %s is not in the "
6018 "same imsm set\n", dev);
6019 return 0;
6020 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
6021 /* If a volume is present then the current creation attempt
6022 * cannot incorporate new spares because the orom may not
6023 * understand this configuration (all member disks must be
6024 * members of each array in the container).
6025 */
6026 fprintf(stderr, Name ": %s is a spare and a volume"
6027 " is already defined for this container\n", dev);
6028 fprintf(stderr, Name ": The option-rom requires all member"
6029 " disks to be a member of all volumes\n");
6030 return 0;
6031 } else if (super->orom && mpb->num_raid_devs > 0 &&
6032 mpb->num_disks != raiddisks) {
6033 fprintf(stderr, Name ": The option-rom requires all member"
6034 " disks to be a member of all volumes\n");
6035 return 0;
6036 }
6037
6038 /* retrieve the largest free space block */
6039 e = get_extents(super, dl);
6040 maxsize = 0;
6041 i = 0;
6042 if (e) {
6043 do {
6044 unsigned long long esize;
6045
6046 esize = e[i].start - pos;
6047 if (esize >= maxsize)
6048 maxsize = esize;
6049 pos = e[i].start + e[i].size;
6050 i++;
6051 } while (e[i-1].size);
6052 dl->e = e;
6053 dl->extent_cnt = i;
6054 } else {
6055 if (verbose)
6056 fprintf(stderr, Name ": unable to determine free space for: %s\n",
6057 dev);
6058 return 0;
6059 }
6060 if (maxsize < size) {
6061 if (verbose)
6062 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
6063 dev, maxsize, size);
6064 return 0;
6065 }
6066
6067 /* count total number of extents for merge */
6068 i = 0;
6069 for (dl = super->disks; dl; dl = dl->next)
6070 if (dl->e)
6071 i += dl->extent_cnt;
6072
6073 maxsize = merge_extents(super, i);
6074
6075 if (!check_env("IMSM_NO_PLATFORM") &&
6076 mpb->num_raid_devs > 0 && size && size != maxsize) {
6077 fprintf(stderr, Name ": attempting to create a second "
6078 "volume with size less then remaining space. "
6079 "Aborting...\n");
6080 return 0;
6081 }
6082
6083 if (maxsize < size || maxsize == 0) {
6084 if (verbose) {
6085 if (maxsize == 0)
6086 fprintf(stderr, Name ": no free space"
6087 " left on device. Aborting...\n");
6088 else
6089 fprintf(stderr, Name ": not enough space"
6090 " to create volume of given size"
6091 " (%llu < %llu). Aborting...\n",
6092 maxsize, size);
6093 }
6094 return 0;
6095 }
6096
6097 *freesize = maxsize;
6098
6099 if (super->orom) {
6100 int count = count_volumes(super->hba->path,
6101 super->orom->dpa, verbose);
6102 if (super->orom->vphba <= count) {
6103 pr_vrb(": platform does not support more than %d raid volumes.\n",
6104 super->orom->vphba);
6105 return 0;
6106 }
6107 }
6108 return 1;
6109 }
6110
6111 static int reserve_space(struct supertype *st, int raiddisks,
6112 unsigned long long size, int chunk,
6113 unsigned long long *freesize)
6114 {
6115 struct intel_super *super = st->sb;
6116 struct imsm_super *mpb = super->anchor;
6117 struct dl *dl;
6118 int i;
6119 int extent_cnt;
6120 struct extent *e;
6121 unsigned long long maxsize;
6122 unsigned long long minsize;
6123 int cnt;
6124 int used;
6125
6126 /* find the largest common start free region of the possible disks */
6127 used = 0;
6128 extent_cnt = 0;
6129 cnt = 0;
6130 for (dl = super->disks; dl; dl = dl->next) {
6131 dl->raiddisk = -1;
6132
6133 if (dl->index >= 0)
6134 used++;
6135
6136 /* don't activate new spares if we are orom constrained
6137 * and there is already a volume active in the container
6138 */
6139 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
6140 continue;
6141
6142 e = get_extents(super, dl);
6143 if (!e)
6144 continue;
6145 for (i = 1; e[i-1].size; i++)
6146 ;
6147 dl->e = e;
6148 dl->extent_cnt = i;
6149 extent_cnt += i;
6150 cnt++;
6151 }
6152
6153 maxsize = merge_extents(super, extent_cnt);
6154 minsize = size;
6155 if (size == 0)
6156 /* chunk is in K */
6157 minsize = chunk * 2;
6158
6159 if (cnt < raiddisks ||
6160 (super->orom && used && used != raiddisks) ||
6161 maxsize < minsize ||
6162 maxsize == 0) {
6163 fprintf(stderr, Name ": not enough devices with space to create array.\n");
6164 return 0; /* No enough free spaces large enough */
6165 }
6166
6167 if (size == 0) {
6168 size = maxsize;
6169 if (chunk) {
6170 size /= 2 * chunk;
6171 size *= 2 * chunk;
6172 }
6173 maxsize = size;
6174 }
6175 if (!check_env("IMSM_NO_PLATFORM") &&
6176 mpb->num_raid_devs > 0 && size && size != maxsize) {
6177 fprintf(stderr, Name ": attempting to create a second "
6178 "volume with size less then remaining space. "
6179 "Aborting...\n");
6180 return 0;
6181 }
6182 cnt = 0;
6183 for (dl = super->disks; dl; dl = dl->next)
6184 if (dl->e)
6185 dl->raiddisk = cnt++;
6186
6187 *freesize = size;
6188
6189 return 1;
6190 }
6191
6192 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
6193 int raiddisks, int *chunk, unsigned long long size,
6194 char *dev, unsigned long long *freesize,
6195 int verbose)
6196 {
6197 int fd, cfd;
6198 struct mdinfo *sra;
6199 int is_member = 0;
6200
6201 /* load capability
6202 * if given unused devices create a container
6203 * if given given devices in a container create a member volume
6204 */
6205 if (level == LEVEL_CONTAINER) {
6206 /* Must be a fresh device to add to a container */
6207 return validate_geometry_imsm_container(st, level, layout,
6208 raiddisks,
6209 chunk?*chunk:0, size,
6210 dev, freesize,
6211 verbose);
6212 }
6213
6214 if (!dev) {
6215 if (st->sb) {
6216 struct intel_super *super = st->sb;
6217 if (!validate_geometry_imsm_orom(st->sb, level, layout,
6218 raiddisks, chunk, size,
6219 verbose))
6220 return 0;
6221 /* we are being asked to automatically layout a
6222 * new volume based on the current contents of
6223 * the container. If the the parameters can be
6224 * satisfied reserve_space will record the disks,
6225 * start offset, and size of the volume to be
6226 * created. add_to_super and getinfo_super
6227 * detect when autolayout is in progress.
6228 */
6229 /* assuming that freesize is always given when array is
6230 created */
6231 if (super->orom && freesize) {
6232 int count;
6233 count = count_volumes(super->hba->path,
6234 super->orom->dpa, verbose);
6235 if (super->orom->vphba <= count) {
6236 pr_vrb(": platform does not support more"
6237 " than %d raid volumes.\n",
6238 super->orom->vphba);
6239 return 0;
6240 }
6241 }
6242 if (freesize)
6243 return reserve_space(st, raiddisks, size,
6244 chunk?*chunk:0, freesize);
6245 }
6246 return 1;
6247 }
6248 if (st->sb) {
6249 /* creating in a given container */
6250 return validate_geometry_imsm_volume(st, level, layout,
6251 raiddisks, chunk, size,
6252 dev, freesize, verbose);
6253 }
6254
6255 /* This device needs to be a device in an 'imsm' container */
6256 fd = open(dev, O_RDONLY|O_EXCL, 0);
6257 if (fd >= 0) {
6258 if (verbose)
6259 fprintf(stderr,
6260 Name ": Cannot create this array on device %s\n",
6261 dev);
6262 close(fd);
6263 return 0;
6264 }
6265 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
6266 if (verbose)
6267 fprintf(stderr, Name ": Cannot open %s: %s\n",
6268 dev, strerror(errno));
6269 return 0;
6270 }
6271 /* Well, it is in use by someone, maybe an 'imsm' container. */
6272 cfd = open_container(fd);
6273 close(fd);
6274 if (cfd < 0) {
6275 if (verbose)
6276 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
6277 dev);
6278 return 0;
6279 }
6280 sra = sysfs_read(cfd, 0, GET_VERSION);
6281 if (sra && sra->array.major_version == -1 &&
6282 strcmp(sra->text_version, "imsm") == 0)
6283 is_member = 1;
6284 sysfs_free(sra);
6285 if (is_member) {
6286 /* This is a member of a imsm container. Load the container
6287 * and try to create a volume
6288 */
6289 struct intel_super *super;
6290
6291 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
6292 st->sb = super;
6293 st->container_dev = fd2devnum(cfd);
6294 close(cfd);
6295 return validate_geometry_imsm_volume(st, level, layout,
6296 raiddisks, chunk,
6297 size, dev,
6298 freesize, 1)
6299 ? 1 : -1;
6300 }
6301 }
6302
6303 if (verbose)
6304 fprintf(stderr, Name ": failed container membership check\n");
6305
6306 close(cfd);
6307 return 0;
6308 }
6309
6310 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
6311 {
6312 struct intel_super *super = st->sb;
6313
6314 if (level && *level == UnSet)
6315 *level = LEVEL_CONTAINER;
6316
6317 if (level && layout && *layout == UnSet)
6318 *layout = imsm_level_to_layout(*level);
6319
6320 if (chunk && (*chunk == UnSet || *chunk == 0))
6321 *chunk = imsm_default_chunk(super->orom);
6322 }
6323
6324 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
6325
6326 static int kill_subarray_imsm(struct supertype *st)
6327 {
6328 /* remove the subarray currently referenced by ->current_vol */
6329 __u8 i;
6330 struct intel_dev **dp;
6331 struct intel_super *super = st->sb;
6332 __u8 current_vol = super->current_vol;
6333 struct imsm_super *mpb = super->anchor;
6334
6335 if (super->current_vol < 0)
6336 return 2;
6337 super->current_vol = -1; /* invalidate subarray cursor */
6338
6339 /* block deletions that would change the uuid of active subarrays
6340 *
6341 * FIXME when immutable ids are available, but note that we'll
6342 * also need to fixup the invalidated/active subarray indexes in
6343 * mdstat
6344 */
6345 for (i = 0; i < mpb->num_raid_devs; i++) {
6346 char subarray[4];
6347
6348 if (i < current_vol)
6349 continue;
6350 sprintf(subarray, "%u", i);
6351 if (is_subarray_active(subarray, st->devname)) {
6352 fprintf(stderr,
6353 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
6354 current_vol, i);
6355
6356 return 2;
6357 }
6358 }
6359
6360 if (st->update_tail) {
6361 struct imsm_update_kill_array *u = malloc(sizeof(*u));
6362
6363 if (!u)
6364 return 2;
6365 u->type = update_kill_array;
6366 u->dev_idx = current_vol;
6367 append_metadata_update(st, u, sizeof(*u));
6368
6369 return 0;
6370 }
6371
6372 for (dp = &super->devlist; *dp;)
6373 if ((*dp)->index == current_vol) {
6374 *dp = (*dp)->next;
6375 } else {
6376 handle_missing(super, (*dp)->dev);
6377 if ((*dp)->index > current_vol)
6378 (*dp)->index--;
6379 dp = &(*dp)->next;
6380 }
6381
6382 /* no more raid devices, all active components are now spares,
6383 * but of course failed are still failed
6384 */
6385 if (--mpb->num_raid_devs == 0) {
6386 struct dl *d;
6387
6388 for (d = super->disks; d; d = d->next)
6389 if (d->index > -2)
6390 mark_spare(d);
6391 }
6392
6393 super->updates_pending++;
6394
6395 return 0;
6396 }
6397
6398 static int update_subarray_imsm(struct supertype *st, char *subarray,
6399 char *update, struct mddev_ident *ident)
6400 {
6401 /* update the subarray currently referenced by ->current_vol */
6402 struct intel_super *super = st->sb;
6403 struct imsm_super *mpb = super->anchor;
6404
6405 if (strcmp(update, "name") == 0) {
6406 char *name = ident->name;
6407 char *ep;
6408 int vol;
6409
6410 if (is_subarray_active(subarray, st->devname)) {
6411 fprintf(stderr,
6412 Name ": Unable to update name of active subarray\n");
6413 return 2;
6414 }
6415
6416 if (!check_name(super, name, 0))
6417 return 2;
6418
6419 vol = strtoul(subarray, &ep, 10);
6420 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
6421 return 2;
6422
6423 if (st->update_tail) {
6424 struct imsm_update_rename_array *u = malloc(sizeof(*u));
6425
6426 if (!u)
6427 return 2;
6428 u->type = update_rename_array;
6429 u->dev_idx = vol;
6430 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
6431 append_metadata_update(st, u, sizeof(*u));
6432 } else {
6433 struct imsm_dev *dev;
6434 int i;
6435
6436 dev = get_imsm_dev(super, vol);
6437 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6438 for (i = 0; i < mpb->num_raid_devs; i++) {
6439 dev = get_imsm_dev(super, i);
6440 handle_missing(super, dev);
6441 }
6442 super->updates_pending++;
6443 }
6444 } else
6445 return 2;
6446
6447 return 0;
6448 }
6449 #endif /* MDASSEMBLE */
6450
6451 static int is_gen_migration(struct imsm_dev *dev)
6452 {
6453 if (dev == NULL)
6454 return 0;
6455
6456 if (!dev->vol.migr_state)
6457 return 0;
6458
6459 if (migr_type(dev) == MIGR_GEN_MIGR)
6460 return 1;
6461
6462 return 0;
6463 }
6464
6465 static int is_rebuilding(struct imsm_dev *dev)
6466 {
6467 struct imsm_map *migr_map;
6468
6469 if (!dev->vol.migr_state)
6470 return 0;
6471
6472 if (migr_type(dev) != MIGR_REBUILD)
6473 return 0;
6474
6475 migr_map = get_imsm_map(dev, MAP_1);
6476
6477 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
6478 return 1;
6479 else
6480 return 0;
6481 }
6482
6483 #ifndef MDASSEMBLE
6484 static int is_initializing(struct imsm_dev *dev)
6485 {
6486 struct imsm_map *migr_map;
6487
6488 if (!dev->vol.migr_state)
6489 return 0;
6490
6491 if (migr_type(dev) != MIGR_INIT)
6492 return 0;
6493
6494 migr_map = get_imsm_map(dev, MAP_1);
6495
6496 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
6497 return 1;
6498
6499 return 0;
6500 }
6501 #endif
6502
6503 static void update_recovery_start(struct intel_super *super,
6504 struct imsm_dev *dev,
6505 struct mdinfo *array)
6506 {
6507 struct mdinfo *rebuild = NULL;
6508 struct mdinfo *d;
6509 __u32 units;
6510
6511 if (!is_rebuilding(dev))
6512 return;
6513
6514 /* Find the rebuild target, but punt on the dual rebuild case */
6515 for (d = array->devs; d; d = d->next)
6516 if (d->recovery_start == 0) {
6517 if (rebuild)
6518 return;
6519 rebuild = d;
6520 }
6521
6522 if (!rebuild) {
6523 /* (?) none of the disks are marked with
6524 * IMSM_ORD_REBUILD, so assume they are missing and the
6525 * disk_ord_tbl was not correctly updated
6526 */
6527 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
6528 return;
6529 }
6530
6531 units = __le32_to_cpu(dev->vol.curr_migr_unit);
6532 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
6533 }
6534
6535 #ifndef MDASSEMBLE
6536 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
6537 #endif
6538
6539 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
6540 {
6541 /* Given a container loaded by load_super_imsm_all,
6542 * extract information about all the arrays into
6543 * an mdinfo tree.
6544 * If 'subarray' is given, just extract info about that array.
6545 *
6546 * For each imsm_dev create an mdinfo, fill it in,
6547 * then look for matching devices in super->disks
6548 * and create appropriate device mdinfo.
6549 */
6550 struct intel_super *super = st->sb;
6551 struct imsm_super *mpb = super->anchor;
6552 struct mdinfo *rest = NULL;
6553 unsigned int i;
6554 int sb_errors = 0;
6555 struct dl *d;
6556 int spare_disks = 0;
6557
6558 /* do not assemble arrays when not all attributes are supported */
6559 if (imsm_check_attributes(mpb->attributes) == 0) {
6560 sb_errors = 1;
6561 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
6562 "Arrays activation is blocked.\n");
6563 }
6564
6565 /* check for bad blocks */
6566 if (imsm_bbm_log_size(super->anchor)) {
6567 fprintf(stderr, Name ": BBM log found in IMSM metadata."
6568 "Arrays activation is blocked.\n");
6569 sb_errors = 1;
6570 }
6571
6572
6573 /* count spare devices, not used in maps
6574 */
6575 for (d = super->disks; d; d = d->next)
6576 if (d->index == -1)
6577 spare_disks++;
6578
6579 for (i = 0; i < mpb->num_raid_devs; i++) {
6580 struct imsm_dev *dev;
6581 struct imsm_map *map;
6582 struct imsm_map *map2;
6583 struct mdinfo *this;
6584 int slot;
6585 #ifndef MDASSEMBLE
6586 int chunk;
6587 #endif
6588 char *ep;
6589
6590 if (subarray &&
6591 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
6592 continue;
6593
6594 dev = get_imsm_dev(super, i);
6595 map = get_imsm_map(dev, MAP_0);
6596 map2 = get_imsm_map(dev, MAP_1);
6597
6598 /* do not publish arrays that are in the middle of an
6599 * unsupported migration
6600 */
6601 if (dev->vol.migr_state &&
6602 (migr_type(dev) == MIGR_STATE_CHANGE)) {
6603 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
6604 " unsupported migration in progress\n",
6605 dev->volume);
6606 continue;
6607 }
6608 /* do not publish arrays that are not support by controller's
6609 * OROM/EFI
6610 */
6611
6612 this = malloc(sizeof(*this));
6613 if (!this) {
6614 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
6615 sizeof(*this));
6616 break;
6617 }
6618
6619 super->current_vol = i;
6620 getinfo_super_imsm_volume(st, this, NULL);
6621 this->next = rest;
6622 #ifndef MDASSEMBLE
6623 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
6624 /* mdadm does not support all metadata features- set the bit in all arrays state */
6625 if (!validate_geometry_imsm_orom(super,
6626 get_imsm_raid_level(map), /* RAID level */
6627 imsm_level_to_layout(get_imsm_raid_level(map)),
6628 map->num_members, /* raid disks */
6629 &chunk, join_u32(dev->size_low, dev->size_high),
6630 1 /* verbose */)) {
6631 fprintf(stderr, Name ": IMSM RAID geometry validation"
6632 " failed. Array %s activation is blocked.\n",
6633 dev->volume);
6634 this->array.state |=
6635 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6636 (1<<MD_SB_BLOCK_VOLUME);
6637 }
6638 #endif
6639
6640 /* if array has bad blocks, set suitable bit in all arrays state */
6641 if (sb_errors)
6642 this->array.state |=
6643 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
6644 (1<<MD_SB_BLOCK_VOLUME);
6645
6646 for (slot = 0 ; slot < map->num_members; slot++) {
6647 unsigned long long recovery_start;
6648 struct mdinfo *info_d;
6649 struct dl *d;
6650 int idx;
6651 int skip;
6652 __u32 ord;
6653
6654 skip = 0;
6655 idx = get_imsm_disk_idx(dev, slot, MAP_0);
6656 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
6657 for (d = super->disks; d ; d = d->next)
6658 if (d->index == idx)
6659 break;
6660
6661 recovery_start = MaxSector;
6662 if (d == NULL)
6663 skip = 1;
6664 if (d && is_failed(&d->disk))
6665 skip = 1;
6666 if (ord & IMSM_ORD_REBUILD)
6667 recovery_start = 0;
6668
6669 /*
6670 * if we skip some disks the array will be assmebled degraded;
6671 * reset resync start to avoid a dirty-degraded
6672 * situation when performing the intial sync
6673 *
6674 * FIXME handle dirty degraded
6675 */
6676 if ((skip || recovery_start == 0) && !dev->vol.dirty)
6677 this->resync_start = MaxSector;
6678 if (skip)
6679 continue;
6680
6681 info_d = calloc(1, sizeof(*info_d));
6682 if (!info_d) {
6683 fprintf(stderr, Name ": failed to allocate disk"
6684 " for volume %.16s\n", dev->volume);
6685 info_d = this->devs;
6686 while (info_d) {
6687 struct mdinfo *d = info_d->next;
6688
6689 free(info_d);
6690 info_d = d;
6691 }
6692 free(this);
6693 this = rest;
6694 break;
6695 }
6696 info_d->next = this->devs;
6697 this->devs = info_d;
6698
6699 info_d->disk.number = d->index;
6700 info_d->disk.major = d->major;
6701 info_d->disk.minor = d->minor;
6702 info_d->disk.raid_disk = slot;
6703 info_d->recovery_start = recovery_start;
6704 if (map2) {
6705 if (slot < map2->num_members)
6706 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6707 else
6708 this->array.spare_disks++;
6709 } else {
6710 if (slot < map->num_members)
6711 info_d->disk.state = (1 << MD_DISK_ACTIVE);
6712 else
6713 this->array.spare_disks++;
6714 }
6715 if (info_d->recovery_start == MaxSector)
6716 this->array.working_disks++;
6717
6718 info_d->events = __le32_to_cpu(mpb->generation_num);
6719 info_d->data_offset = pba_of_lba0(map);
6720 info_d->component_size = blocks_per_member(map);
6721 }
6722 /* now that the disk list is up-to-date fixup recovery_start */
6723 update_recovery_start(super, dev, this);
6724 this->array.spare_disks += spare_disks;
6725
6726 #ifndef MDASSEMBLE
6727 /* check for reshape */
6728 if (this->reshape_active == 1)
6729 recover_backup_imsm(st, this);
6730 #endif
6731 rest = this;
6732 }
6733
6734 return rest;
6735 }
6736
6737
6738 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
6739 int failed, int look_in_map)
6740 {
6741 struct imsm_map *map;
6742
6743 map = get_imsm_map(dev, look_in_map);
6744
6745 if (!failed)
6746 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
6747 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
6748
6749 switch (get_imsm_raid_level(map)) {
6750 case 0:
6751 return IMSM_T_STATE_FAILED;
6752 break;
6753 case 1:
6754 if (failed < map->num_members)
6755 return IMSM_T_STATE_DEGRADED;
6756 else
6757 return IMSM_T_STATE_FAILED;
6758 break;
6759 case 10:
6760 {
6761 /**
6762 * check to see if any mirrors have failed, otherwise we
6763 * are degraded. Even numbered slots are mirrored on
6764 * slot+1
6765 */
6766 int i;
6767 /* gcc -Os complains that this is unused */
6768 int insync = insync;
6769
6770 for (i = 0; i < map->num_members; i++) {
6771 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
6772 int idx = ord_to_idx(ord);
6773 struct imsm_disk *disk;
6774
6775 /* reset the potential in-sync count on even-numbered
6776 * slots. num_copies is always 2 for imsm raid10
6777 */
6778 if ((i & 1) == 0)
6779 insync = 2;
6780
6781 disk = get_imsm_disk(super, idx);
6782 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6783 insync--;
6784
6785 /* no in-sync disks left in this mirror the
6786 * array has failed
6787 */
6788 if (insync == 0)
6789 return IMSM_T_STATE_FAILED;
6790 }
6791
6792 return IMSM_T_STATE_DEGRADED;
6793 }
6794 case 5:
6795 if (failed < 2)
6796 return IMSM_T_STATE_DEGRADED;
6797 else
6798 return IMSM_T_STATE_FAILED;
6799 break;
6800 default:
6801 break;
6802 }
6803
6804 return map->map_state;
6805 }
6806
6807 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6808 int look_in_map)
6809 {
6810 int i;
6811 int failed = 0;
6812 struct imsm_disk *disk;
6813 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6814 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6815 struct imsm_map *map_for_loop;
6816 __u32 ord;
6817 int idx;
6818 int idx_1;
6819
6820 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6821 * disks that are being rebuilt. New failures are recorded to
6822 * map[0]. So we look through all the disks we started with and
6823 * see if any failures are still present, or if any new ones
6824 * have arrived
6825 */
6826 map_for_loop = map;
6827 if (prev && (map->num_members < prev->num_members))
6828 map_for_loop = prev;
6829
6830 for (i = 0; i < map_for_loop->num_members; i++) {
6831 idx_1 = -255;
6832 /* when MAP_X is passed both maps failures are counted
6833 */
6834 if (prev &&
6835 ((look_in_map == MAP_1) || (look_in_map == MAP_X)) &&
6836 (i < prev->num_members)) {
6837 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6838 idx_1 = ord_to_idx(ord);
6839
6840 disk = get_imsm_disk(super, idx_1);
6841 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6842 failed++;
6843 }
6844 if (((look_in_map == MAP_0) || (look_in_map == MAP_X)) &&
6845 (i < map->num_members)) {
6846 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6847 idx = ord_to_idx(ord);
6848
6849 if (idx != idx_1) {
6850 disk = get_imsm_disk(super, idx);
6851 if (!disk || is_failed(disk) ||
6852 ord & IMSM_ORD_REBUILD)
6853 failed++;
6854 }
6855 }
6856 }
6857
6858 return failed;
6859 }
6860
6861 #ifndef MDASSEMBLE
6862 static int imsm_open_new(struct supertype *c, struct active_array *a,
6863 char *inst)
6864 {
6865 struct intel_super *super = c->sb;
6866 struct imsm_super *mpb = super->anchor;
6867
6868 if (atoi(inst) >= mpb->num_raid_devs) {
6869 fprintf(stderr, "%s: subarry index %d, out of range\n",
6870 __func__, atoi(inst));
6871 return -ENODEV;
6872 }
6873
6874 dprintf("imsm: open_new %s\n", inst);
6875 a->info.container_member = atoi(inst);
6876 return 0;
6877 }
6878
6879 static int is_resyncing(struct imsm_dev *dev)
6880 {
6881 struct imsm_map *migr_map;
6882
6883 if (!dev->vol.migr_state)
6884 return 0;
6885
6886 if (migr_type(dev) == MIGR_INIT ||
6887 migr_type(dev) == MIGR_REPAIR)
6888 return 1;
6889
6890 if (migr_type(dev) == MIGR_GEN_MIGR)
6891 return 0;
6892
6893 migr_map = get_imsm_map(dev, MAP_1);
6894
6895 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6896 (dev->vol.migr_type != MIGR_GEN_MIGR))
6897 return 1;
6898 else
6899 return 0;
6900 }
6901
6902 /* return true if we recorded new information */
6903 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6904 {
6905 __u32 ord;
6906 int slot;
6907 struct imsm_map *map;
6908 char buf[MAX_RAID_SERIAL_LEN+3];
6909 unsigned int len, shift = 0;
6910
6911 /* new failures are always set in map[0] */
6912 map = get_imsm_map(dev, MAP_0);
6913
6914 slot = get_imsm_disk_slot(map, idx);
6915 if (slot < 0)
6916 return 0;
6917
6918 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6919 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6920 return 0;
6921
6922 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6923 buf[MAX_RAID_SERIAL_LEN] = '\000';
6924 strcat(buf, ":0");
6925 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6926 shift = len - MAX_RAID_SERIAL_LEN + 1;
6927 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6928
6929 disk->status |= FAILED_DISK;
6930 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6931 /* mark failures in second map if second map exists and this disk
6932 * in this slot.
6933 * This is valid for migration, initialization and rebuild
6934 */
6935 if (dev->vol.migr_state) {
6936 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
6937 int slot2 = get_imsm_disk_slot(map2, idx);
6938
6939 if ((slot2 < map2->num_members) &&
6940 (slot2 >= 0))
6941 set_imsm_ord_tbl_ent(map2, slot2,
6942 idx | IMSM_ORD_REBUILD);
6943 }
6944 if (map->failed_disk_num == 0xff)
6945 map->failed_disk_num = slot;
6946 return 1;
6947 }
6948
6949 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6950 {
6951 mark_failure(dev, disk, idx);
6952
6953 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6954 return;
6955
6956 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6957 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6958 }
6959
6960 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6961 {
6962 struct dl *dl;
6963
6964 if (!super->missing)
6965 return;
6966
6967 dprintf("imsm: mark missing\n");
6968 /* end process for initialization and rebuild only
6969 */
6970 if (is_gen_migration(dev) == 0) {
6971 __u8 map_state;
6972 int failed;
6973
6974 failed = imsm_count_failed(super, dev, MAP_0);
6975 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6976
6977 end_migration(dev, super, map_state);
6978 }
6979 for (dl = super->missing; dl; dl = dl->next)
6980 mark_missing(dev, &dl->disk, dl->index);
6981 super->updates_pending++;
6982 }
6983
6984 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
6985 long long new_size)
6986 {
6987 int used_disks = imsm_num_data_members(dev, MAP_0);
6988 unsigned long long array_blocks;
6989 struct imsm_map *map;
6990
6991 if (used_disks == 0) {
6992 /* when problems occures
6993 * return current array_blocks value
6994 */
6995 array_blocks = __le32_to_cpu(dev->size_high);
6996 array_blocks = array_blocks << 32;
6997 array_blocks += __le32_to_cpu(dev->size_low);
6998
6999 return array_blocks;
7000 }
7001
7002 /* set array size in metadata
7003 */
7004 if (new_size <= 0) {
7005 /* OLCE size change is caused by added disks
7006 */
7007 map = get_imsm_map(dev, MAP_0);
7008 array_blocks = blocks_per_member(map) * used_disks;
7009 } else {
7010 /* Online Volume Size Change
7011 * Using available free space
7012 */
7013 array_blocks = new_size;
7014 }
7015
7016 /* round array size down to closest MB
7017 */
7018 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
7019 dev->size_low = __cpu_to_le32((__u32)array_blocks);
7020 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
7021
7022 return array_blocks;
7023 }
7024
7025 static void imsm_set_disk(struct active_array *a, int n, int state);
7026
7027 static void imsm_progress_container_reshape(struct intel_super *super)
7028 {
7029 /* if no device has a migr_state, but some device has a
7030 * different number of members than the previous device, start
7031 * changing the number of devices in this device to match
7032 * previous.
7033 */
7034 struct imsm_super *mpb = super->anchor;
7035 int prev_disks = -1;
7036 int i;
7037 int copy_map_size;
7038
7039 for (i = 0; i < mpb->num_raid_devs; i++) {
7040 struct imsm_dev *dev = get_imsm_dev(super, i);
7041 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7042 struct imsm_map *map2;
7043 int prev_num_members;
7044
7045 if (dev->vol.migr_state)
7046 return;
7047
7048 if (prev_disks == -1)
7049 prev_disks = map->num_members;
7050 if (prev_disks == map->num_members)
7051 continue;
7052
7053 /* OK, this array needs to enter reshape mode.
7054 * i.e it needs a migr_state
7055 */
7056
7057 copy_map_size = sizeof_imsm_map(map);
7058 prev_num_members = map->num_members;
7059 map->num_members = prev_disks;
7060 dev->vol.migr_state = 1;
7061 dev->vol.curr_migr_unit = 0;
7062 set_migr_type(dev, MIGR_GEN_MIGR);
7063 for (i = prev_num_members;
7064 i < map->num_members; i++)
7065 set_imsm_ord_tbl_ent(map, i, i);
7066 map2 = get_imsm_map(dev, MAP_1);
7067 /* Copy the current map */
7068 memcpy(map2, map, copy_map_size);
7069 map2->num_members = prev_num_members;
7070
7071 imsm_set_array_size(dev, -1);
7072 super->clean_migration_record_by_mdmon = 1;
7073 super->updates_pending++;
7074 }
7075 }
7076
7077 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
7078 * states are handled in imsm_set_disk() with one exception, when a
7079 * resync is stopped due to a new failure this routine will set the
7080 * 'degraded' state for the array.
7081 */
7082 static int imsm_set_array_state(struct active_array *a, int consistent)
7083 {
7084 int inst = a->info.container_member;
7085 struct intel_super *super = a->container->sb;
7086 struct imsm_dev *dev = get_imsm_dev(super, inst);
7087 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7088 int failed = imsm_count_failed(super, dev, MAP_0);
7089 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7090 __u32 blocks_per_unit;
7091
7092 if (dev->vol.migr_state &&
7093 dev->vol.migr_type == MIGR_GEN_MIGR) {
7094 /* array state change is blocked due to reshape action
7095 * We might need to
7096 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
7097 * - finish the reshape (if last_checkpoint is big and action != reshape)
7098 * - update curr_migr_unit
7099 */
7100 if (a->curr_action == reshape) {
7101 /* still reshaping, maybe update curr_migr_unit */
7102 goto mark_checkpoint;
7103 } else {
7104 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
7105 /* for some reason we aborted the reshape.
7106 *
7107 * disable automatic metadata rollback
7108 * user action is required to recover process
7109 */
7110 if (0) {
7111 struct imsm_map *map2 =
7112 get_imsm_map(dev, MAP_1);
7113 dev->vol.migr_state = 0;
7114 set_migr_type(dev, 0);
7115 dev->vol.curr_migr_unit = 0;
7116 memcpy(map, map2,
7117 sizeof_imsm_map(map2));
7118 super->updates_pending++;
7119 }
7120 }
7121 if (a->last_checkpoint >= a->info.component_size) {
7122 unsigned long long array_blocks;
7123 int used_disks;
7124 struct mdinfo *mdi;
7125
7126 used_disks = imsm_num_data_members(dev, MAP_0);
7127 if (used_disks > 0) {
7128 array_blocks =
7129 blocks_per_member(map) *
7130 used_disks;
7131 /* round array size down to closest MB
7132 */
7133 array_blocks = (array_blocks
7134 >> SECT_PER_MB_SHIFT)
7135 << SECT_PER_MB_SHIFT;
7136 a->info.custom_array_size = array_blocks;
7137 /* encourage manager to update array
7138 * size
7139 */
7140
7141 a->check_reshape = 1;
7142 }
7143 /* finalize online capacity expansion/reshape */
7144 for (mdi = a->info.devs; mdi; mdi = mdi->next)
7145 imsm_set_disk(a,
7146 mdi->disk.raid_disk,
7147 mdi->curr_state);
7148
7149 imsm_progress_container_reshape(super);
7150 }
7151 }
7152 }
7153
7154 /* before we activate this array handle any missing disks */
7155 if (consistent == 2)
7156 handle_missing(super, dev);
7157
7158 if (consistent == 2 &&
7159 (!is_resync_complete(&a->info) ||
7160 map_state != IMSM_T_STATE_NORMAL ||
7161 dev->vol.migr_state))
7162 consistent = 0;
7163
7164 if (is_resync_complete(&a->info)) {
7165 /* complete intialization / resync,
7166 * recovery and interrupted recovery is completed in
7167 * ->set_disk
7168 */
7169 if (is_resyncing(dev)) {
7170 dprintf("imsm: mark resync done\n");
7171 end_migration(dev, super, map_state);
7172 super->updates_pending++;
7173 a->last_checkpoint = 0;
7174 }
7175 } else if ((!is_resyncing(dev) && !failed) &&
7176 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
7177 /* mark the start of the init process if nothing is failed */
7178 dprintf("imsm: mark resync start\n");
7179 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
7180 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
7181 else
7182 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
7183 super->updates_pending++;
7184 }
7185
7186 mark_checkpoint:
7187 /* skip checkpointing for general migration,
7188 * it is controlled in mdadm
7189 */
7190 if (is_gen_migration(dev))
7191 goto skip_mark_checkpoint;
7192
7193 /* check if we can update curr_migr_unit from resync_start, recovery_start */
7194 blocks_per_unit = blocks_per_migr_unit(super, dev);
7195 if (blocks_per_unit) {
7196 __u32 units32;
7197 __u64 units;
7198
7199 units = a->last_checkpoint / blocks_per_unit;
7200 units32 = units;
7201
7202 /* check that we did not overflow 32-bits, and that
7203 * curr_migr_unit needs updating
7204 */
7205 if (units32 == units &&
7206 units32 != 0 &&
7207 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
7208 dprintf("imsm: mark checkpoint (%u)\n", units32);
7209 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
7210 super->updates_pending++;
7211 }
7212 }
7213
7214 skip_mark_checkpoint:
7215 /* mark dirty / clean */
7216 if (dev->vol.dirty != !consistent) {
7217 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
7218 if (consistent)
7219 dev->vol.dirty = 0;
7220 else
7221 dev->vol.dirty = 1;
7222 super->updates_pending++;
7223 }
7224
7225 return consistent;
7226 }
7227
7228 static void imsm_set_disk(struct active_array *a, int n, int state)
7229 {
7230 int inst = a->info.container_member;
7231 struct intel_super *super = a->container->sb;
7232 struct imsm_dev *dev = get_imsm_dev(super, inst);
7233 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7234 struct imsm_disk *disk;
7235 int failed;
7236 __u32 ord;
7237 __u8 map_state;
7238
7239 if (n > map->num_members)
7240 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
7241 n, map->num_members - 1);
7242
7243 if (n < 0)
7244 return;
7245
7246 dprintf("imsm: set_disk %d:%x\n", n, state);
7247
7248 ord = get_imsm_ord_tbl_ent(dev, n, MAP_0);
7249 disk = get_imsm_disk(super, ord_to_idx(ord));
7250
7251 /* check for new failures */
7252 if (state & DS_FAULTY) {
7253 if (mark_failure(dev, disk, ord_to_idx(ord)))
7254 super->updates_pending++;
7255 }
7256
7257 /* check if in_sync */
7258 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
7259 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7260
7261 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
7262 super->updates_pending++;
7263 }
7264
7265 failed = imsm_count_failed(super, dev, MAP_0);
7266 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
7267
7268 /* check if recovery complete, newly degraded, or failed */
7269 dprintf("imsm: Detected transition to state ");
7270 switch (map_state) {
7271 case IMSM_T_STATE_NORMAL: /* transition to normal state */
7272 dprintf("normal: ");
7273 if (is_rebuilding(dev)) {
7274 dprintf("while rebuilding");
7275 end_migration(dev, super, map_state);
7276 map = get_imsm_map(dev, MAP_0);
7277 map->failed_disk_num = ~0;
7278 super->updates_pending++;
7279 a->last_checkpoint = 0;
7280 break;
7281 }
7282 if (is_gen_migration(dev)) {
7283 dprintf("while general migration");
7284 if (a->last_checkpoint >= a->info.component_size)
7285 end_migration(dev, super, map_state);
7286 else
7287 map->map_state = map_state;
7288 map = get_imsm_map(dev, MAP_0);
7289 map->failed_disk_num = ~0;
7290 super->updates_pending++;
7291 break;
7292 }
7293 break;
7294 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
7295 dprintf("degraded: ");
7296 if ((map->map_state != map_state) &&
7297 !dev->vol.migr_state) {
7298 dprintf("mark degraded");
7299 map->map_state = map_state;
7300 super->updates_pending++;
7301 a->last_checkpoint = 0;
7302 break;
7303 }
7304 if (is_rebuilding(dev)) {
7305 dprintf("while rebuilding.");
7306 if (map->map_state != map_state) {
7307 dprintf(" Map state change");
7308 end_migration(dev, super, map_state);
7309 super->updates_pending++;
7310 }
7311 break;
7312 }
7313 if (is_gen_migration(dev)) {
7314 dprintf("while general migration");
7315 if (a->last_checkpoint >= a->info.component_size)
7316 end_migration(dev, super, map_state);
7317 else {
7318 map->map_state = map_state;
7319 manage_second_map(super, dev);
7320 }
7321 super->updates_pending++;
7322 break;
7323 }
7324 if (is_initializing(dev)) {
7325 dprintf("while initialization.");
7326 map->map_state = map_state;
7327 super->updates_pending++;
7328 break;
7329 }
7330 break;
7331 case IMSM_T_STATE_FAILED: /* transition to failed state */
7332 dprintf("failed: ");
7333 if (is_gen_migration(dev)) {
7334 dprintf("while general migration");
7335 map->map_state = map_state;
7336 super->updates_pending++;
7337 break;
7338 }
7339 if (map->map_state != map_state) {
7340 dprintf("mark failed");
7341 end_migration(dev, super, map_state);
7342 super->updates_pending++;
7343 a->last_checkpoint = 0;
7344 break;
7345 }
7346 break;
7347 default:
7348 dprintf("state %i\n", map_state);
7349 }
7350 dprintf("\n");
7351
7352 }
7353
7354 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
7355 {
7356 void *buf = mpb;
7357 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
7358 unsigned long long dsize;
7359 unsigned long long sectors;
7360
7361 get_dev_size(fd, NULL, &dsize);
7362
7363 if (mpb_size > 512) {
7364 /* -1 to account for anchor */
7365 sectors = mpb_sectors(mpb) - 1;
7366
7367 /* write the extended mpb to the sectors preceeding the anchor */
7368 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
7369 return 1;
7370
7371 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
7372 != 512 * sectors)
7373 return 1;
7374 }
7375
7376 /* first block is stored on second to last sector of the disk */
7377 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
7378 return 1;
7379
7380 if (write(fd, buf, 512) != 512)
7381 return 1;
7382
7383 return 0;
7384 }
7385
7386 static void imsm_sync_metadata(struct supertype *container)
7387 {
7388 struct intel_super *super = container->sb;
7389
7390 dprintf("sync metadata: %d\n", super->updates_pending);
7391 if (!super->updates_pending)
7392 return;
7393
7394 write_super_imsm(container, 0);
7395
7396 super->updates_pending = 0;
7397 }
7398
7399 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
7400 {
7401 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7402 int i = get_imsm_disk_idx(dev, idx, MAP_X);
7403 struct dl *dl;
7404
7405 for (dl = super->disks; dl; dl = dl->next)
7406 if (dl->index == i)
7407 break;
7408
7409 if (dl && is_failed(&dl->disk))
7410 dl = NULL;
7411
7412 if (dl)
7413 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
7414
7415 return dl;
7416 }
7417
7418 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
7419 struct active_array *a, int activate_new,
7420 struct mdinfo *additional_test_list)
7421 {
7422 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
7423 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
7424 struct imsm_super *mpb = super->anchor;
7425 struct imsm_map *map;
7426 unsigned long long pos;
7427 struct mdinfo *d;
7428 struct extent *ex;
7429 int i, j;
7430 int found;
7431 __u32 array_start = 0;
7432 __u32 array_end = 0;
7433 struct dl *dl;
7434 struct mdinfo *test_list;
7435
7436 for (dl = super->disks; dl; dl = dl->next) {
7437 /* If in this array, skip */
7438 for (d = a->info.devs ; d ; d = d->next)
7439 if (d->state_fd >= 0 &&
7440 d->disk.major == dl->major &&
7441 d->disk.minor == dl->minor) {
7442 dprintf("%x:%x already in array\n",
7443 dl->major, dl->minor);
7444 break;
7445 }
7446 if (d)
7447 continue;
7448 test_list = additional_test_list;
7449 while (test_list) {
7450 if (test_list->disk.major == dl->major &&
7451 test_list->disk.minor == dl->minor) {
7452 dprintf("%x:%x already in additional test list\n",
7453 dl->major, dl->minor);
7454 break;
7455 }
7456 test_list = test_list->next;
7457 }
7458 if (test_list)
7459 continue;
7460
7461 /* skip in use or failed drives */
7462 if (is_failed(&dl->disk) || idx == dl->index ||
7463 dl->index == -2) {
7464 dprintf("%x:%x status (failed: %d index: %d)\n",
7465 dl->major, dl->minor, is_failed(&dl->disk), idx);
7466 continue;
7467 }
7468
7469 /* skip pure spares when we are looking for partially
7470 * assimilated drives
7471 */
7472 if (dl->index == -1 && !activate_new)
7473 continue;
7474
7475 /* Does this unused device have the requisite free space?
7476 * It needs to be able to cover all member volumes
7477 */
7478 ex = get_extents(super, dl);
7479 if (!ex) {
7480 dprintf("cannot get extents\n");
7481 continue;
7482 }
7483 for (i = 0; i < mpb->num_raid_devs; i++) {
7484 dev = get_imsm_dev(super, i);
7485 map = get_imsm_map(dev, MAP_0);
7486
7487 /* check if this disk is already a member of
7488 * this array
7489 */
7490 if (get_imsm_disk_slot(map, dl->index) >= 0)
7491 continue;
7492
7493 found = 0;
7494 j = 0;
7495 pos = 0;
7496 array_start = pba_of_lba0(map);
7497 array_end = array_start +
7498 blocks_per_member(map) - 1;
7499
7500 do {
7501 /* check that we can start at pba_of_lba0 with
7502 * blocks_per_member of space
7503 */
7504 if (array_start >= pos && array_end < ex[j].start) {
7505 found = 1;
7506 break;
7507 }
7508 pos = ex[j].start + ex[j].size;
7509 j++;
7510 } while (ex[j-1].size);
7511
7512 if (!found)
7513 break;
7514 }
7515
7516 free(ex);
7517 if (i < mpb->num_raid_devs) {
7518 dprintf("%x:%x does not have %u to %u available\n",
7519 dl->major, dl->minor, array_start, array_end);
7520 /* No room */
7521 continue;
7522 }
7523 return dl;
7524 }
7525
7526 return dl;
7527 }
7528
7529
7530 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
7531 {
7532 struct imsm_dev *dev2;
7533 struct imsm_map *map;
7534 struct dl *idisk;
7535 int slot;
7536 int idx;
7537 __u8 state;
7538
7539 dev2 = get_imsm_dev(cont->sb, dev_idx);
7540 if (dev2) {
7541 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
7542 if (state == IMSM_T_STATE_FAILED) {
7543 map = get_imsm_map(dev2, MAP_0);
7544 if (!map)
7545 return 1;
7546 for (slot = 0; slot < map->num_members; slot++) {
7547 /*
7548 * Check if failed disks are deleted from intel
7549 * disk list or are marked to be deleted
7550 */
7551 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
7552 idisk = get_imsm_dl_disk(cont->sb, idx);
7553 /*
7554 * Do not rebuild the array if failed disks
7555 * from failed sub-array are not removed from
7556 * container.
7557 */
7558 if (idisk &&
7559 is_failed(&idisk->disk) &&
7560 (idisk->action != DISK_REMOVE))
7561 return 0;
7562 }
7563 }
7564 }
7565 return 1;
7566 }
7567
7568 static struct mdinfo *imsm_activate_spare(struct active_array *a,
7569 struct metadata_update **updates)
7570 {
7571 /**
7572 * Find a device with unused free space and use it to replace a
7573 * failed/vacant region in an array. We replace failed regions one a
7574 * array at a time. The result is that a new spare disk will be added
7575 * to the first failed array and after the monitor has finished
7576 * propagating failures the remainder will be consumed.
7577 *
7578 * FIXME add a capability for mdmon to request spares from another
7579 * container.
7580 */
7581
7582 struct intel_super *super = a->container->sb;
7583 int inst = a->info.container_member;
7584 struct imsm_dev *dev = get_imsm_dev(super, inst);
7585 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7586 int failed = a->info.array.raid_disks;
7587 struct mdinfo *rv = NULL;
7588 struct mdinfo *d;
7589 struct mdinfo *di;
7590 struct metadata_update *mu;
7591 struct dl *dl;
7592 struct imsm_update_activate_spare *u;
7593 int num_spares = 0;
7594 int i;
7595 int allowed;
7596
7597 for (d = a->info.devs ; d ; d = d->next) {
7598 if ((d->curr_state & DS_FAULTY) &&
7599 d->state_fd >= 0)
7600 /* wait for Removal to happen */
7601 return NULL;
7602 if (d->state_fd >= 0)
7603 failed--;
7604 }
7605
7606 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
7607 inst, failed, a->info.array.raid_disks, a->info.array.level);
7608
7609 if (imsm_reshape_blocks_arrays_changes(super))
7610 return NULL;
7611
7612 /* Cannot activate another spare if rebuild is in progress already
7613 */
7614 if (is_rebuilding(dev)) {
7615 dprintf("imsm: No spare activation allowed. "
7616 "Rebuild in progress already.\n");
7617 return NULL;
7618 }
7619
7620 if (a->info.array.level == 4)
7621 /* No repair for takeovered array
7622 * imsm doesn't support raid4
7623 */
7624 return NULL;
7625
7626 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
7627 IMSM_T_STATE_DEGRADED)
7628 return NULL;
7629
7630 /*
7631 * If there are any failed disks check state of the other volume.
7632 * Block rebuild if the another one is failed until failed disks
7633 * are removed from container.
7634 */
7635 if (failed) {
7636 dprintf("found failed disks in %.*s, check if there another"
7637 "failed sub-array.\n",
7638 MAX_RAID_SERIAL_LEN, dev->volume);
7639 /* check if states of the other volumes allow for rebuild */
7640 for (i = 0; i < super->anchor->num_raid_devs; i++) {
7641 if (i != inst) {
7642 allowed = imsm_rebuild_allowed(a->container,
7643 i, failed);
7644 if (!allowed)
7645 return NULL;
7646 }
7647 }
7648 }
7649
7650 /* For each slot, if it is not working, find a spare */
7651 for (i = 0; i < a->info.array.raid_disks; i++) {
7652 for (d = a->info.devs ; d ; d = d->next)
7653 if (d->disk.raid_disk == i)
7654 break;
7655 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
7656 if (d && (d->state_fd >= 0))
7657 continue;
7658
7659 /*
7660 * OK, this device needs recovery. Try to re-add the
7661 * previous occupant of this slot, if this fails see if
7662 * we can continue the assimilation of a spare that was
7663 * partially assimilated, finally try to activate a new
7664 * spare.
7665 */
7666 dl = imsm_readd(super, i, a);
7667 if (!dl)
7668 dl = imsm_add_spare(super, i, a, 0, rv);
7669 if (!dl)
7670 dl = imsm_add_spare(super, i, a, 1, rv);
7671 if (!dl)
7672 continue;
7673
7674 /* found a usable disk with enough space */
7675 di = malloc(sizeof(*di));
7676 if (!di)
7677 continue;
7678 memset(di, 0, sizeof(*di));
7679
7680 /* dl->index will be -1 in the case we are activating a
7681 * pristine spare. imsm_process_update() will create a
7682 * new index in this case. Once a disk is found to be
7683 * failed in all member arrays it is kicked from the
7684 * metadata
7685 */
7686 di->disk.number = dl->index;
7687
7688 /* (ab)use di->devs to store a pointer to the device
7689 * we chose
7690 */
7691 di->devs = (struct mdinfo *) dl;
7692
7693 di->disk.raid_disk = i;
7694 di->disk.major = dl->major;
7695 di->disk.minor = dl->minor;
7696 di->disk.state = 0;
7697 di->recovery_start = 0;
7698 di->data_offset = pba_of_lba0(map);
7699 di->component_size = a->info.component_size;
7700 di->container_member = inst;
7701 super->random = random32();
7702 di->next = rv;
7703 rv = di;
7704 num_spares++;
7705 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
7706 i, di->data_offset);
7707 }
7708
7709 if (!rv)
7710 /* No spares found */
7711 return rv;
7712 /* Now 'rv' has a list of devices to return.
7713 * Create a metadata_update record to update the
7714 * disk_ord_tbl for the array
7715 */
7716 mu = malloc(sizeof(*mu));
7717 if (mu) {
7718 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
7719 if (mu->buf == NULL) {
7720 free(mu);
7721 mu = NULL;
7722 }
7723 }
7724 if (!mu) {
7725 while (rv) {
7726 struct mdinfo *n = rv->next;
7727
7728 free(rv);
7729 rv = n;
7730 }
7731 return NULL;
7732 }
7733
7734 mu->space = NULL;
7735 mu->space_list = NULL;
7736 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
7737 mu->next = *updates;
7738 u = (struct imsm_update_activate_spare *) mu->buf;
7739
7740 for (di = rv ; di ; di = di->next) {
7741 u->type = update_activate_spare;
7742 u->dl = (struct dl *) di->devs;
7743 di->devs = NULL;
7744 u->slot = di->disk.raid_disk;
7745 u->array = inst;
7746 u->next = u + 1;
7747 u++;
7748 }
7749 (u-1)->next = NULL;
7750 *updates = mu;
7751
7752 return rv;
7753 }
7754
7755 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
7756 {
7757 struct imsm_dev *dev = get_imsm_dev(super, idx);
7758 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7759 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
7760 struct disk_info *inf = get_disk_info(u);
7761 struct imsm_disk *disk;
7762 int i;
7763 int j;
7764
7765 for (i = 0; i < map->num_members; i++) {
7766 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
7767 for (j = 0; j < new_map->num_members; j++)
7768 if (serialcmp(disk->serial, inf[j].serial) == 0)
7769 return 1;
7770 }
7771
7772 return 0;
7773 }
7774
7775
7776 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
7777 {
7778 struct dl *dl = NULL;
7779 for (dl = super->disks; dl; dl = dl->next)
7780 if ((dl->major == major) && (dl->minor == minor))
7781 return dl;
7782 return NULL;
7783 }
7784
7785 static int remove_disk_super(struct intel_super *super, int major, int minor)
7786 {
7787 struct dl *prev = NULL;
7788 struct dl *dl;
7789
7790 prev = NULL;
7791 for (dl = super->disks; dl; dl = dl->next) {
7792 if ((dl->major == major) && (dl->minor == minor)) {
7793 /* remove */
7794 if (prev)
7795 prev->next = dl->next;
7796 else
7797 super->disks = dl->next;
7798 dl->next = NULL;
7799 __free_imsm_disk(dl);
7800 dprintf("%s: removed %x:%x\n",
7801 __func__, major, minor);
7802 break;
7803 }
7804 prev = dl;
7805 }
7806 return 0;
7807 }
7808
7809 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
7810
7811 static int add_remove_disk_update(struct intel_super *super)
7812 {
7813 int check_degraded = 0;
7814 struct dl *disk = NULL;
7815 /* add/remove some spares to/from the metadata/contrainer */
7816 while (super->disk_mgmt_list) {
7817 struct dl *disk_cfg;
7818
7819 disk_cfg = super->disk_mgmt_list;
7820 super->disk_mgmt_list = disk_cfg->next;
7821 disk_cfg->next = NULL;
7822
7823 if (disk_cfg->action == DISK_ADD) {
7824 disk_cfg->next = super->disks;
7825 super->disks = disk_cfg;
7826 check_degraded = 1;
7827 dprintf("%s: added %x:%x\n",
7828 __func__, disk_cfg->major,
7829 disk_cfg->minor);
7830 } else if (disk_cfg->action == DISK_REMOVE) {
7831 dprintf("Disk remove action processed: %x.%x\n",
7832 disk_cfg->major, disk_cfg->minor);
7833 disk = get_disk_super(super,
7834 disk_cfg->major,
7835 disk_cfg->minor);
7836 if (disk) {
7837 /* store action status */
7838 disk->action = DISK_REMOVE;
7839 /* remove spare disks only */
7840 if (disk->index == -1) {
7841 remove_disk_super(super,
7842 disk_cfg->major,
7843 disk_cfg->minor);
7844 }
7845 }
7846 /* release allocate disk structure */
7847 __free_imsm_disk(disk_cfg);
7848 }
7849 }
7850 return check_degraded;
7851 }
7852
7853
7854 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
7855 struct intel_super *super,
7856 void ***space_list)
7857 {
7858 struct intel_dev *id;
7859 void **tofree = NULL;
7860 int ret_val = 0;
7861
7862 dprintf("apply_reshape_migration_update()\n");
7863 if ((u->subdev < 0) ||
7864 (u->subdev > 1)) {
7865 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7866 return ret_val;
7867 }
7868 if ((space_list == NULL) || (*space_list == NULL)) {
7869 dprintf("imsm: Error: Memory is not allocated\n");
7870 return ret_val;
7871 }
7872
7873 for (id = super->devlist ; id; id = id->next) {
7874 if (id->index == (unsigned)u->subdev) {
7875 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7876 struct imsm_map *map;
7877 struct imsm_dev *new_dev =
7878 (struct imsm_dev *)*space_list;
7879 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
7880 int to_state;
7881 struct dl *new_disk;
7882
7883 if (new_dev == NULL)
7884 return ret_val;
7885 *space_list = **space_list;
7886 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
7887 map = get_imsm_map(new_dev, MAP_0);
7888 if (migr_map) {
7889 dprintf("imsm: Error: migration in progress");
7890 return ret_val;
7891 }
7892
7893 to_state = map->map_state;
7894 if ((u->new_level == 5) && (map->raid_level == 0)) {
7895 map->num_members++;
7896 /* this should not happen */
7897 if (u->new_disks[0] < 0) {
7898 map->failed_disk_num =
7899 map->num_members - 1;
7900 to_state = IMSM_T_STATE_DEGRADED;
7901 } else
7902 to_state = IMSM_T_STATE_NORMAL;
7903 }
7904 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
7905 if (u->new_level > -1)
7906 map->raid_level = u->new_level;
7907 migr_map = get_imsm_map(new_dev, MAP_1);
7908 if ((u->new_level == 5) &&
7909 (migr_map->raid_level == 0)) {
7910 int ord = map->num_members - 1;
7911 migr_map->num_members--;
7912 if (u->new_disks[0] < 0)
7913 ord |= IMSM_ORD_REBUILD;
7914 set_imsm_ord_tbl_ent(map,
7915 map->num_members - 1,
7916 ord);
7917 }
7918 id->dev = new_dev;
7919 tofree = (void **)dev;
7920
7921 /* update chunk size
7922 */
7923 if (u->new_chunksize > 0)
7924 map->blocks_per_strip =
7925 __cpu_to_le16(u->new_chunksize * 2);
7926
7927 /* add disk
7928 */
7929 if ((u->new_level != 5) ||
7930 (migr_map->raid_level != 0) ||
7931 (migr_map->raid_level == map->raid_level))
7932 goto skip_disk_add;
7933
7934 if (u->new_disks[0] >= 0) {
7935 /* use passes spare
7936 */
7937 new_disk = get_disk_super(super,
7938 major(u->new_disks[0]),
7939 minor(u->new_disks[0]));
7940 dprintf("imsm: new disk for reshape is: %i:%i "
7941 "(%p, index = %i)\n",
7942 major(u->new_disks[0]),
7943 minor(u->new_disks[0]),
7944 new_disk, new_disk->index);
7945 if (new_disk == NULL)
7946 goto error_disk_add;
7947
7948 new_disk->index = map->num_members - 1;
7949 /* slot to fill in autolayout
7950 */
7951 new_disk->raiddisk = new_disk->index;
7952 new_disk->disk.status |= CONFIGURED_DISK;
7953 new_disk->disk.status &= ~SPARE_DISK;
7954 } else
7955 goto error_disk_add;
7956
7957 skip_disk_add:
7958 *tofree = *space_list;
7959 /* calculate new size
7960 */
7961 imsm_set_array_size(new_dev, -1);
7962
7963 ret_val = 1;
7964 }
7965 }
7966
7967 if (tofree)
7968 *space_list = tofree;
7969 return ret_val;
7970
7971 error_disk_add:
7972 dprintf("Error: imsm: Cannot find disk.\n");
7973 return ret_val;
7974 }
7975
7976 static int apply_size_change_update(struct imsm_update_size_change *u,
7977 struct intel_super *super)
7978 {
7979 struct intel_dev *id;
7980 int ret_val = 0;
7981
7982 dprintf("apply_size_change_update()\n");
7983 if ((u->subdev < 0) ||
7984 (u->subdev > 1)) {
7985 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
7986 return ret_val;
7987 }
7988
7989 for (id = super->devlist ; id; id = id->next) {
7990 if (id->index == (unsigned)u->subdev) {
7991 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7992 struct imsm_map *map = get_imsm_map(dev, MAP_0);
7993 int used_disks = imsm_num_data_members(dev, MAP_0);
7994 unsigned long long blocks_per_member;
7995
7996 /* calculate new size
7997 */
7998 blocks_per_member = u->new_size / used_disks;
7999 dprintf("imsm: apply_size_change_update(size: %llu, "
8000 "blocks per member: %llu)\n",
8001 u->new_size, blocks_per_member);
8002 set_blocks_per_member(map, blocks_per_member);
8003 imsm_set_array_size(dev, u->new_size);
8004
8005 ret_val = 1;
8006 break;
8007 }
8008 }
8009
8010 return ret_val;
8011 }
8012
8013
8014 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
8015 struct intel_super *super,
8016 struct active_array *active_array)
8017 {
8018 struct imsm_super *mpb = super->anchor;
8019 struct imsm_dev *dev = get_imsm_dev(super, u->array);
8020 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8021 struct imsm_map *migr_map;
8022 struct active_array *a;
8023 struct imsm_disk *disk;
8024 __u8 to_state;
8025 struct dl *dl;
8026 unsigned int found;
8027 int failed;
8028 int victim;
8029 int i;
8030 int second_map_created = 0;
8031
8032 for (; u; u = u->next) {
8033 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
8034
8035 if (victim < 0)
8036 return 0;
8037
8038 for (dl = super->disks; dl; dl = dl->next)
8039 if (dl == u->dl)
8040 break;
8041
8042 if (!dl) {
8043 fprintf(stderr, "error: imsm_activate_spare passed "
8044 "an unknown disk (index: %d)\n",
8045 u->dl->index);
8046 return 0;
8047 }
8048
8049 /* count failures (excluding rebuilds and the victim)
8050 * to determine map[0] state
8051 */
8052 failed = 0;
8053 for (i = 0; i < map->num_members; i++) {
8054 if (i == u->slot)
8055 continue;
8056 disk = get_imsm_disk(super,
8057 get_imsm_disk_idx(dev, i, MAP_X));
8058 if (!disk || is_failed(disk))
8059 failed++;
8060 }
8061
8062 /* adding a pristine spare, assign a new index */
8063 if (dl->index < 0) {
8064 dl->index = super->anchor->num_disks;
8065 super->anchor->num_disks++;
8066 }
8067 disk = &dl->disk;
8068 disk->status |= CONFIGURED_DISK;
8069 disk->status &= ~SPARE_DISK;
8070
8071 /* mark rebuild */
8072 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
8073 if (!second_map_created) {
8074 second_map_created = 1;
8075 map->map_state = IMSM_T_STATE_DEGRADED;
8076 migrate(dev, super, to_state, MIGR_REBUILD);
8077 } else
8078 map->map_state = to_state;
8079 migr_map = get_imsm_map(dev, MAP_1);
8080 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
8081 set_imsm_ord_tbl_ent(migr_map, u->slot,
8082 dl->index | IMSM_ORD_REBUILD);
8083
8084 /* update the family_num to mark a new container
8085 * generation, being careful to record the existing
8086 * family_num in orig_family_num to clean up after
8087 * earlier mdadm versions that neglected to set it.
8088 */
8089 if (mpb->orig_family_num == 0)
8090 mpb->orig_family_num = mpb->family_num;
8091 mpb->family_num += super->random;
8092
8093 /* count arrays using the victim in the metadata */
8094 found = 0;
8095 for (a = active_array; a ; a = a->next) {
8096 dev = get_imsm_dev(super, a->info.container_member);
8097 map = get_imsm_map(dev, MAP_0);
8098
8099 if (get_imsm_disk_slot(map, victim) >= 0)
8100 found++;
8101 }
8102
8103 /* delete the victim if it is no longer being
8104 * utilized anywhere
8105 */
8106 if (!found) {
8107 struct dl **dlp;
8108
8109 /* We know that 'manager' isn't touching anything,
8110 * so it is safe to delete
8111 */
8112 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
8113 if ((*dlp)->index == victim)
8114 break;
8115
8116 /* victim may be on the missing list */
8117 if (!*dlp)
8118 for (dlp = &super->missing; *dlp;
8119 dlp = &(*dlp)->next)
8120 if ((*dlp)->index == victim)
8121 break;
8122 imsm_delete(super, dlp, victim);
8123 }
8124 }
8125
8126 return 1;
8127 }
8128
8129 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
8130 struct intel_super *super,
8131 void ***space_list)
8132 {
8133 struct dl *new_disk;
8134 struct intel_dev *id;
8135 int i;
8136 int delta_disks = u->new_raid_disks - u->old_raid_disks;
8137 int disk_count = u->old_raid_disks;
8138 void **tofree = NULL;
8139 int devices_to_reshape = 1;
8140 struct imsm_super *mpb = super->anchor;
8141 int ret_val = 0;
8142 unsigned int dev_id;
8143
8144 dprintf("imsm: apply_reshape_container_disks_update()\n");
8145
8146 /* enable spares to use in array */
8147 for (i = 0; i < delta_disks; i++) {
8148 new_disk = get_disk_super(super,
8149 major(u->new_disks[i]),
8150 minor(u->new_disks[i]));
8151 dprintf("imsm: new disk for reshape is: %i:%i "
8152 "(%p, index = %i)\n",
8153 major(u->new_disks[i]), minor(u->new_disks[i]),
8154 new_disk, new_disk->index);
8155 if ((new_disk == NULL) ||
8156 ((new_disk->index >= 0) &&
8157 (new_disk->index < u->old_raid_disks)))
8158 goto update_reshape_exit;
8159 new_disk->index = disk_count++;
8160 /* slot to fill in autolayout
8161 */
8162 new_disk->raiddisk = new_disk->index;
8163 new_disk->disk.status |=
8164 CONFIGURED_DISK;
8165 new_disk->disk.status &= ~SPARE_DISK;
8166 }
8167
8168 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
8169 mpb->num_raid_devs);
8170 /* manage changes in volume
8171 */
8172 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
8173 void **sp = *space_list;
8174 struct imsm_dev *newdev;
8175 struct imsm_map *newmap, *oldmap;
8176
8177 for (id = super->devlist ; id; id = id->next) {
8178 if (id->index == dev_id)
8179 break;
8180 }
8181 if (id == NULL)
8182 break;
8183 if (!sp)
8184 continue;
8185 *space_list = *sp;
8186 newdev = (void*)sp;
8187 /* Copy the dev, but not (all of) the map */
8188 memcpy(newdev, id->dev, sizeof(*newdev));
8189 oldmap = get_imsm_map(id->dev, MAP_0);
8190 newmap = get_imsm_map(newdev, MAP_0);
8191 /* Copy the current map */
8192 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8193 /* update one device only
8194 */
8195 if (devices_to_reshape) {
8196 dprintf("imsm: modifying subdev: %i\n",
8197 id->index);
8198 devices_to_reshape--;
8199 newdev->vol.migr_state = 1;
8200 newdev->vol.curr_migr_unit = 0;
8201 set_migr_type(newdev, MIGR_GEN_MIGR);
8202 newmap->num_members = u->new_raid_disks;
8203 for (i = 0; i < delta_disks; i++) {
8204 set_imsm_ord_tbl_ent(newmap,
8205 u->old_raid_disks + i,
8206 u->old_raid_disks + i);
8207 }
8208 /* New map is correct, now need to save old map
8209 */
8210 newmap = get_imsm_map(newdev, MAP_1);
8211 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
8212
8213 imsm_set_array_size(newdev, -1);
8214 }
8215
8216 sp = (void **)id->dev;
8217 id->dev = newdev;
8218 *sp = tofree;
8219 tofree = sp;
8220
8221 /* Clear migration record */
8222 memset(super->migr_rec, 0, sizeof(struct migr_record));
8223 }
8224 if (tofree)
8225 *space_list = tofree;
8226 ret_val = 1;
8227
8228 update_reshape_exit:
8229
8230 return ret_val;
8231 }
8232
8233 static int apply_takeover_update(struct imsm_update_takeover *u,
8234 struct intel_super *super,
8235 void ***space_list)
8236 {
8237 struct imsm_dev *dev = NULL;
8238 struct intel_dev *dv;
8239 struct imsm_dev *dev_new;
8240 struct imsm_map *map;
8241 struct dl *dm, *du;
8242 int i;
8243
8244 for (dv = super->devlist; dv; dv = dv->next)
8245 if (dv->index == (unsigned int)u->subarray) {
8246 dev = dv->dev;
8247 break;
8248 }
8249
8250 if (dev == NULL)
8251 return 0;
8252
8253 map = get_imsm_map(dev, MAP_0);
8254
8255 if (u->direction == R10_TO_R0) {
8256 /* Number of failed disks must be half of initial disk number */
8257 if (imsm_count_failed(super, dev, MAP_0) !=
8258 (map->num_members / 2))
8259 return 0;
8260
8261 /* iterate through devices to mark removed disks as spare */
8262 for (dm = super->disks; dm; dm = dm->next) {
8263 if (dm->disk.status & FAILED_DISK) {
8264 int idx = dm->index;
8265 /* update indexes on the disk list */
8266 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
8267 the index values will end up being correct.... NB */
8268 for (du = super->disks; du; du = du->next)
8269 if (du->index > idx)
8270 du->index--;
8271 /* mark as spare disk */
8272 mark_spare(dm);
8273 }
8274 }
8275 /* update map */
8276 map->num_members = map->num_members / 2;
8277 map->map_state = IMSM_T_STATE_NORMAL;
8278 map->num_domains = 1;
8279 map->raid_level = 0;
8280 map->failed_disk_num = -1;
8281 }
8282
8283 if (u->direction == R0_TO_R10) {
8284 void **space;
8285 /* update slots in current disk list */
8286 for (dm = super->disks; dm; dm = dm->next) {
8287 if (dm->index >= 0)
8288 dm->index *= 2;
8289 }
8290 /* create new *missing* disks */
8291 for (i = 0; i < map->num_members; i++) {
8292 space = *space_list;
8293 if (!space)
8294 continue;
8295 *space_list = *space;
8296 du = (void *)space;
8297 memcpy(du, super->disks, sizeof(*du));
8298 du->fd = -1;
8299 du->minor = 0;
8300 du->major = 0;
8301 du->index = (i * 2) + 1;
8302 sprintf((char *)du->disk.serial,
8303 " MISSING_%d", du->index);
8304 sprintf((char *)du->serial,
8305 "MISSING_%d", du->index);
8306 du->next = super->missing;
8307 super->missing = du;
8308 }
8309 /* create new dev and map */
8310 space = *space_list;
8311 if (!space)
8312 return 0;
8313 *space_list = *space;
8314 dev_new = (void *)space;
8315 memcpy(dev_new, dev, sizeof(*dev));
8316 /* update new map */
8317 map = get_imsm_map(dev_new, MAP_0);
8318 map->num_members = map->num_members * 2;
8319 map->map_state = IMSM_T_STATE_DEGRADED;
8320 map->num_domains = 2;
8321 map->raid_level = 1;
8322 /* replace dev<->dev_new */
8323 dv->dev = dev_new;
8324 }
8325 /* update disk order table */
8326 for (du = super->disks; du; du = du->next)
8327 if (du->index >= 0)
8328 set_imsm_ord_tbl_ent(map, du->index, du->index);
8329 for (du = super->missing; du; du = du->next)
8330 if (du->index >= 0) {
8331 set_imsm_ord_tbl_ent(map, du->index, du->index);
8332 mark_missing(dv->dev, &du->disk, du->index);
8333 }
8334
8335 return 1;
8336 }
8337
8338 static void imsm_process_update(struct supertype *st,
8339 struct metadata_update *update)
8340 {
8341 /**
8342 * crack open the metadata_update envelope to find the update record
8343 * update can be one of:
8344 * update_reshape_container_disks - all the arrays in the container
8345 * are being reshaped to have more devices. We need to mark
8346 * the arrays for general migration and convert selected spares
8347 * into active devices.
8348 * update_activate_spare - a spare device has replaced a failed
8349 * device in an array, update the disk_ord_tbl. If this disk is
8350 * present in all member arrays then also clear the SPARE_DISK
8351 * flag
8352 * update_create_array
8353 * update_kill_array
8354 * update_rename_array
8355 * update_add_remove_disk
8356 */
8357 struct intel_super *super = st->sb;
8358 struct imsm_super *mpb;
8359 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8360
8361 /* update requires a larger buf but the allocation failed */
8362 if (super->next_len && !super->next_buf) {
8363 super->next_len = 0;
8364 return;
8365 }
8366
8367 if (super->next_buf) {
8368 memcpy(super->next_buf, super->buf, super->len);
8369 free(super->buf);
8370 super->len = super->next_len;
8371 super->buf = super->next_buf;
8372
8373 super->next_len = 0;
8374 super->next_buf = NULL;
8375 }
8376
8377 mpb = super->anchor;
8378
8379 switch (type) {
8380 case update_general_migration_checkpoint: {
8381 struct intel_dev *id;
8382 struct imsm_update_general_migration_checkpoint *u =
8383 (void *)update->buf;
8384
8385 dprintf("imsm: process_update() "
8386 "for update_general_migration_checkpoint called\n");
8387
8388 /* find device under general migration */
8389 for (id = super->devlist ; id; id = id->next) {
8390 if (is_gen_migration(id->dev)) {
8391 id->dev->vol.curr_migr_unit =
8392 __cpu_to_le32(u->curr_migr_unit);
8393 super->updates_pending++;
8394 }
8395 }
8396 break;
8397 }
8398 case update_takeover: {
8399 struct imsm_update_takeover *u = (void *)update->buf;
8400 if (apply_takeover_update(u, super, &update->space_list)) {
8401 imsm_update_version_info(super);
8402 super->updates_pending++;
8403 }
8404 break;
8405 }
8406
8407 case update_reshape_container_disks: {
8408 struct imsm_update_reshape *u = (void *)update->buf;
8409 if (apply_reshape_container_disks_update(
8410 u, super, &update->space_list))
8411 super->updates_pending++;
8412 break;
8413 }
8414 case update_reshape_migration: {
8415 struct imsm_update_reshape_migration *u = (void *)update->buf;
8416 if (apply_reshape_migration_update(
8417 u, super, &update->space_list))
8418 super->updates_pending++;
8419 break;
8420 }
8421 case update_size_change: {
8422 struct imsm_update_size_change *u = (void *)update->buf;
8423 if (apply_size_change_update(u, super))
8424 super->updates_pending++;
8425 break;
8426 }
8427 case update_activate_spare: {
8428 struct imsm_update_activate_spare *u = (void *) update->buf;
8429 if (apply_update_activate_spare(u, super, st->arrays))
8430 super->updates_pending++;
8431 break;
8432 }
8433 case update_create_array: {
8434 /* someone wants to create a new array, we need to be aware of
8435 * a few races/collisions:
8436 * 1/ 'Create' called by two separate instances of mdadm
8437 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
8438 * devices that have since been assimilated via
8439 * activate_spare.
8440 * In the event this update can not be carried out mdadm will
8441 * (FIX ME) notice that its update did not take hold.
8442 */
8443 struct imsm_update_create_array *u = (void *) update->buf;
8444 struct intel_dev *dv;
8445 struct imsm_dev *dev;
8446 struct imsm_map *map, *new_map;
8447 unsigned long long start, end;
8448 unsigned long long new_start, new_end;
8449 int i;
8450 struct disk_info *inf;
8451 struct dl *dl;
8452
8453 /* handle racing creates: first come first serve */
8454 if (u->dev_idx < mpb->num_raid_devs) {
8455 dprintf("%s: subarray %d already defined\n",
8456 __func__, u->dev_idx);
8457 goto create_error;
8458 }
8459
8460 /* check update is next in sequence */
8461 if (u->dev_idx != mpb->num_raid_devs) {
8462 dprintf("%s: can not create array %d expected index %d\n",
8463 __func__, u->dev_idx, mpb->num_raid_devs);
8464 goto create_error;
8465 }
8466
8467 new_map = get_imsm_map(&u->dev, MAP_0);
8468 new_start = pba_of_lba0(new_map);
8469 new_end = new_start + blocks_per_member(new_map);
8470 inf = get_disk_info(u);
8471
8472 /* handle activate_spare versus create race:
8473 * check to make sure that overlapping arrays do not include
8474 * overalpping disks
8475 */
8476 for (i = 0; i < mpb->num_raid_devs; i++) {
8477 dev = get_imsm_dev(super, i);
8478 map = get_imsm_map(dev, MAP_0);
8479 start = pba_of_lba0(map);
8480 end = start + blocks_per_member(map);
8481 if ((new_start >= start && new_start <= end) ||
8482 (start >= new_start && start <= new_end))
8483 /* overlap */;
8484 else
8485 continue;
8486
8487 if (disks_overlap(super, i, u)) {
8488 dprintf("%s: arrays overlap\n", __func__);
8489 goto create_error;
8490 }
8491 }
8492
8493 /* check that prepare update was successful */
8494 if (!update->space) {
8495 dprintf("%s: prepare update failed\n", __func__);
8496 goto create_error;
8497 }
8498
8499 /* check that all disks are still active before committing
8500 * changes. FIXME: could we instead handle this by creating a
8501 * degraded array? That's probably not what the user expects,
8502 * so better to drop this update on the floor.
8503 */
8504 for (i = 0; i < new_map->num_members; i++) {
8505 dl = serial_to_dl(inf[i].serial, super);
8506 if (!dl) {
8507 dprintf("%s: disk disappeared\n", __func__);
8508 goto create_error;
8509 }
8510 }
8511
8512 super->updates_pending++;
8513
8514 /* convert spares to members and fixup ord_tbl */
8515 for (i = 0; i < new_map->num_members; i++) {
8516 dl = serial_to_dl(inf[i].serial, super);
8517 if (dl->index == -1) {
8518 dl->index = mpb->num_disks;
8519 mpb->num_disks++;
8520 dl->disk.status |= CONFIGURED_DISK;
8521 dl->disk.status &= ~SPARE_DISK;
8522 }
8523 set_imsm_ord_tbl_ent(new_map, i, dl->index);
8524 }
8525
8526 dv = update->space;
8527 dev = dv->dev;
8528 update->space = NULL;
8529 imsm_copy_dev(dev, &u->dev);
8530 dv->index = u->dev_idx;
8531 dv->next = super->devlist;
8532 super->devlist = dv;
8533 mpb->num_raid_devs++;
8534
8535 imsm_update_version_info(super);
8536 break;
8537 create_error:
8538 /* mdmon knows how to release update->space, but not
8539 * ((struct intel_dev *) update->space)->dev
8540 */
8541 if (update->space) {
8542 dv = update->space;
8543 free(dv->dev);
8544 }
8545 break;
8546 }
8547 case update_kill_array: {
8548 struct imsm_update_kill_array *u = (void *) update->buf;
8549 int victim = u->dev_idx;
8550 struct active_array *a;
8551 struct intel_dev **dp;
8552 struct imsm_dev *dev;
8553
8554 /* sanity check that we are not affecting the uuid of
8555 * active arrays, or deleting an active array
8556 *
8557 * FIXME when immutable ids are available, but note that
8558 * we'll also need to fixup the invalidated/active
8559 * subarray indexes in mdstat
8560 */
8561 for (a = st->arrays; a; a = a->next)
8562 if (a->info.container_member >= victim)
8563 break;
8564 /* by definition if mdmon is running at least one array
8565 * is active in the container, so checking
8566 * mpb->num_raid_devs is just extra paranoia
8567 */
8568 dev = get_imsm_dev(super, victim);
8569 if (a || !dev || mpb->num_raid_devs == 1) {
8570 dprintf("failed to delete subarray-%d\n", victim);
8571 break;
8572 }
8573
8574 for (dp = &super->devlist; *dp;)
8575 if ((*dp)->index == (unsigned)super->current_vol) {
8576 *dp = (*dp)->next;
8577 } else {
8578 if ((*dp)->index > (unsigned)victim)
8579 (*dp)->index--;
8580 dp = &(*dp)->next;
8581 }
8582 mpb->num_raid_devs--;
8583 super->updates_pending++;
8584 break;
8585 }
8586 case update_rename_array: {
8587 struct imsm_update_rename_array *u = (void *) update->buf;
8588 char name[MAX_RAID_SERIAL_LEN+1];
8589 int target = u->dev_idx;
8590 struct active_array *a;
8591 struct imsm_dev *dev;
8592
8593 /* sanity check that we are not affecting the uuid of
8594 * an active array
8595 */
8596 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
8597 name[MAX_RAID_SERIAL_LEN] = '\0';
8598 for (a = st->arrays; a; a = a->next)
8599 if (a->info.container_member == target)
8600 break;
8601 dev = get_imsm_dev(super, u->dev_idx);
8602 if (a || !dev || !check_name(super, name, 1)) {
8603 dprintf("failed to rename subarray-%d\n", target);
8604 break;
8605 }
8606
8607 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
8608 super->updates_pending++;
8609 break;
8610 }
8611 case update_add_remove_disk: {
8612 /* we may be able to repair some arrays if disks are
8613 * being added, check teh status of add_remove_disk
8614 * if discs has been added.
8615 */
8616 if (add_remove_disk_update(super)) {
8617 struct active_array *a;
8618
8619 super->updates_pending++;
8620 for (a = st->arrays; a; a = a->next)
8621 a->check_degraded = 1;
8622 }
8623 break;
8624 }
8625 default:
8626 fprintf(stderr, "error: unsuported process update type:"
8627 "(type: %d)\n", type);
8628 }
8629 }
8630
8631 static struct mdinfo *get_spares_for_grow(struct supertype *st);
8632
8633 static void imsm_prepare_update(struct supertype *st,
8634 struct metadata_update *update)
8635 {
8636 /**
8637 * Allocate space to hold new disk entries, raid-device entries or a new
8638 * mpb if necessary. The manager synchronously waits for updates to
8639 * complete in the monitor, so new mpb buffers allocated here can be
8640 * integrated by the monitor thread without worrying about live pointers
8641 * in the manager thread.
8642 */
8643 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
8644 struct intel_super *super = st->sb;
8645 struct imsm_super *mpb = super->anchor;
8646 size_t buf_len;
8647 size_t len = 0;
8648
8649 switch (type) {
8650 case update_general_migration_checkpoint:
8651 dprintf("imsm: prepare_update() "
8652 "for update_general_migration_checkpoint called\n");
8653 break;
8654 case update_takeover: {
8655 struct imsm_update_takeover *u = (void *)update->buf;
8656 if (u->direction == R0_TO_R10) {
8657 void **tail = (void **)&update->space_list;
8658 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
8659 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8660 int num_members = map->num_members;
8661 void *space;
8662 int size, i;
8663 int err = 0;
8664 /* allocate memory for added disks */
8665 for (i = 0; i < num_members; i++) {
8666 size = sizeof(struct dl);
8667 space = malloc(size);
8668 if (!space) {
8669 err++;
8670 break;
8671 }
8672 *tail = space;
8673 tail = space;
8674 *tail = NULL;
8675 }
8676 /* allocate memory for new device */
8677 size = sizeof_imsm_dev(super->devlist->dev, 0) +
8678 (num_members * sizeof(__u32));
8679 space = malloc(size);
8680 if (!space)
8681 err++;
8682 else {
8683 *tail = space;
8684 tail = space;
8685 *tail = NULL;
8686 }
8687 if (!err) {
8688 len = disks_to_mpb_size(num_members * 2);
8689 } else {
8690 /* if allocation didn't success, free buffer */
8691 while (update->space_list) {
8692 void **sp = update->space_list;
8693 update->space_list = *sp;
8694 free(sp);
8695 }
8696 }
8697 }
8698
8699 break;
8700 }
8701 case update_reshape_container_disks: {
8702 /* Every raid device in the container is about to
8703 * gain some more devices, and we will enter a
8704 * reconfiguration.
8705 * So each 'imsm_map' will be bigger, and the imsm_vol
8706 * will now hold 2 of them.
8707 * Thus we need new 'struct imsm_dev' allocations sized
8708 * as sizeof_imsm_dev but with more devices in both maps.
8709 */
8710 struct imsm_update_reshape *u = (void *)update->buf;
8711 struct intel_dev *dl;
8712 void **space_tail = (void**)&update->space_list;
8713
8714 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8715
8716 for (dl = super->devlist; dl; dl = dl->next) {
8717 int size = sizeof_imsm_dev(dl->dev, 1);
8718 void *s;
8719 if (u->new_raid_disks > u->old_raid_disks)
8720 size += sizeof(__u32)*2*
8721 (u->new_raid_disks - u->old_raid_disks);
8722 s = malloc(size);
8723 if (!s)
8724 break;
8725 *space_tail = s;
8726 space_tail = s;
8727 *space_tail = NULL;
8728 }
8729
8730 len = disks_to_mpb_size(u->new_raid_disks);
8731 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8732 break;
8733 }
8734 case update_reshape_migration: {
8735 /* for migration level 0->5 we need to add disks
8736 * so the same as for container operation we will copy
8737 * device to the bigger location.
8738 * in memory prepared device and new disk area are prepared
8739 * for usage in process update
8740 */
8741 struct imsm_update_reshape_migration *u = (void *)update->buf;
8742 struct intel_dev *id;
8743 void **space_tail = (void **)&update->space_list;
8744 int size;
8745 void *s;
8746 int current_level = -1;
8747
8748 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
8749
8750 /* add space for bigger array in update
8751 */
8752 for (id = super->devlist; id; id = id->next) {
8753 if (id->index == (unsigned)u->subdev) {
8754 size = sizeof_imsm_dev(id->dev, 1);
8755 if (u->new_raid_disks > u->old_raid_disks)
8756 size += sizeof(__u32)*2*
8757 (u->new_raid_disks - u->old_raid_disks);
8758 s = malloc(size);
8759 if (!s)
8760 break;
8761 *space_tail = s;
8762 space_tail = s;
8763 *space_tail = NULL;
8764 break;
8765 }
8766 }
8767 if (update->space_list == NULL)
8768 break;
8769
8770 /* add space for disk in update
8771 */
8772 size = sizeof(struct dl);
8773 s = malloc(size);
8774 if (!s) {
8775 free(update->space_list);
8776 update->space_list = NULL;
8777 break;
8778 }
8779 *space_tail = s;
8780 space_tail = s;
8781 *space_tail = NULL;
8782
8783 /* add spare device to update
8784 */
8785 for (id = super->devlist ; id; id = id->next)
8786 if (id->index == (unsigned)u->subdev) {
8787 struct imsm_dev *dev;
8788 struct imsm_map *map;
8789
8790 dev = get_imsm_dev(super, u->subdev);
8791 map = get_imsm_map(dev, MAP_0);
8792 current_level = map->raid_level;
8793 break;
8794 }
8795 if ((u->new_level == 5) && (u->new_level != current_level)) {
8796 struct mdinfo *spares;
8797
8798 spares = get_spares_for_grow(st);
8799 if (spares) {
8800 struct dl *dl;
8801 struct mdinfo *dev;
8802
8803 dev = spares->devs;
8804 if (dev) {
8805 u->new_disks[0] =
8806 makedev(dev->disk.major,
8807 dev->disk.minor);
8808 dl = get_disk_super(super,
8809 dev->disk.major,
8810 dev->disk.minor);
8811 dl->index = u->old_raid_disks;
8812 dev = dev->next;
8813 }
8814 sysfs_free(spares);
8815 }
8816 }
8817 len = disks_to_mpb_size(u->new_raid_disks);
8818 dprintf("New anchor length is %llu\n", (unsigned long long)len);
8819 break;
8820 }
8821 case update_size_change: {
8822 break;
8823 }
8824 case update_create_array: {
8825 struct imsm_update_create_array *u = (void *) update->buf;
8826 struct intel_dev *dv;
8827 struct imsm_dev *dev = &u->dev;
8828 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8829 struct dl *dl;
8830 struct disk_info *inf;
8831 int i;
8832 int activate = 0;
8833
8834 inf = get_disk_info(u);
8835 len = sizeof_imsm_dev(dev, 1);
8836 /* allocate a new super->devlist entry */
8837 dv = malloc(sizeof(*dv));
8838 if (dv) {
8839 dv->dev = malloc(len);
8840 if (dv->dev)
8841 update->space = dv;
8842 else {
8843 free(dv);
8844 update->space = NULL;
8845 }
8846 }
8847
8848 /* count how many spares will be converted to members */
8849 for (i = 0; i < map->num_members; i++) {
8850 dl = serial_to_dl(inf[i].serial, super);
8851 if (!dl) {
8852 /* hmm maybe it failed?, nothing we can do about
8853 * it here
8854 */
8855 continue;
8856 }
8857 if (count_memberships(dl, super) == 0)
8858 activate++;
8859 }
8860 len += activate * sizeof(struct imsm_disk);
8861 break;
8862 default:
8863 break;
8864 }
8865 }
8866
8867 /* check if we need a larger metadata buffer */
8868 if (super->next_buf)
8869 buf_len = super->next_len;
8870 else
8871 buf_len = super->len;
8872
8873 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
8874 /* ok we need a larger buf than what is currently allocated
8875 * if this allocation fails process_update will notice that
8876 * ->next_len is set and ->next_buf is NULL
8877 */
8878 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
8879 if (super->next_buf)
8880 free(super->next_buf);
8881
8882 super->next_len = buf_len;
8883 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
8884 memset(super->next_buf, 0, buf_len);
8885 else
8886 super->next_buf = NULL;
8887 }
8888 }
8889
8890 /* must be called while manager is quiesced */
8891 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
8892 {
8893 struct imsm_super *mpb = super->anchor;
8894 struct dl *iter;
8895 struct imsm_dev *dev;
8896 struct imsm_map *map;
8897 int i, j, num_members;
8898 __u32 ord;
8899
8900 dprintf("%s: deleting device[%d] from imsm_super\n",
8901 __func__, index);
8902
8903 /* shift all indexes down one */
8904 for (iter = super->disks; iter; iter = iter->next)
8905 if (iter->index > (int)index)
8906 iter->index--;
8907 for (iter = super->missing; iter; iter = iter->next)
8908 if (iter->index > (int)index)
8909 iter->index--;
8910
8911 for (i = 0; i < mpb->num_raid_devs; i++) {
8912 dev = get_imsm_dev(super, i);
8913 map = get_imsm_map(dev, MAP_0);
8914 num_members = map->num_members;
8915 for (j = 0; j < num_members; j++) {
8916 /* update ord entries being careful not to propagate
8917 * ord-flags to the first map
8918 */
8919 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
8920
8921 if (ord_to_idx(ord) <= index)
8922 continue;
8923
8924 map = get_imsm_map(dev, MAP_0);
8925 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
8926 map = get_imsm_map(dev, MAP_1);
8927 if (map)
8928 set_imsm_ord_tbl_ent(map, j, ord - 1);
8929 }
8930 }
8931
8932 mpb->num_disks--;
8933 super->updates_pending++;
8934 if (*dlp) {
8935 struct dl *dl = *dlp;
8936
8937 *dlp = (*dlp)->next;
8938 __free_imsm_disk(dl);
8939 }
8940 }
8941 #endif /* MDASSEMBLE */
8942
8943 static void close_targets(int *targets, int new_disks)
8944 {
8945 int i;
8946
8947 if (!targets)
8948 return;
8949
8950 for (i = 0; i < new_disks; i++) {
8951 if (targets[i] >= 0) {
8952 close(targets[i]);
8953 targets[i] = -1;
8954 }
8955 }
8956 }
8957
8958 static int imsm_get_allowed_degradation(int level, int raid_disks,
8959 struct intel_super *super,
8960 struct imsm_dev *dev)
8961 {
8962 switch (level) {
8963 case 1:
8964 case 10:{
8965 int ret_val = 0;
8966 struct imsm_map *map;
8967 int i;
8968
8969 ret_val = raid_disks/2;
8970 /* check map if all disks pairs not failed
8971 * in both maps
8972 */
8973 map = get_imsm_map(dev, MAP_0);
8974 for (i = 0; i < ret_val; i++) {
8975 int degradation = 0;
8976 if (get_imsm_disk(super, i) == NULL)
8977 degradation++;
8978 if (get_imsm_disk(super, i + 1) == NULL)
8979 degradation++;
8980 if (degradation == 2)
8981 return 0;
8982 }
8983 map = get_imsm_map(dev, MAP_1);
8984 /* if there is no second map
8985 * result can be returned
8986 */
8987 if (map == NULL)
8988 return ret_val;
8989 /* check degradation in second map
8990 */
8991 for (i = 0; i < ret_val; i++) {
8992 int degradation = 0;
8993 if (get_imsm_disk(super, i) == NULL)
8994 degradation++;
8995 if (get_imsm_disk(super, i + 1) == NULL)
8996 degradation++;
8997 if (degradation == 2)
8998 return 0;
8999 }
9000 return ret_val;
9001 }
9002 case 5:
9003 return 1;
9004 case 6:
9005 return 2;
9006 default:
9007 return 0;
9008 }
9009 }
9010
9011
9012 /*******************************************************************************
9013 * Function: open_backup_targets
9014 * Description: Function opens file descriptors for all devices given in
9015 * info->devs
9016 * Parameters:
9017 * info : general array info
9018 * raid_disks : number of disks
9019 * raid_fds : table of device's file descriptors
9020 * super : intel super for raid10 degradation check
9021 * dev : intel device for raid10 degradation check
9022 * Returns:
9023 * 0 : success
9024 * -1 : fail
9025 ******************************************************************************/
9026 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
9027 struct intel_super *super, struct imsm_dev *dev)
9028 {
9029 struct mdinfo *sd;
9030 int i;
9031 int opened = 0;
9032
9033 for (i = 0; i < raid_disks; i++)
9034 raid_fds[i] = -1;
9035
9036 for (sd = info->devs ; sd ; sd = sd->next) {
9037 char *dn;
9038
9039 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
9040 dprintf("disk is faulty!!\n");
9041 continue;
9042 }
9043
9044 if ((sd->disk.raid_disk >= raid_disks) ||
9045 (sd->disk.raid_disk < 0))
9046 continue;
9047
9048 dn = map_dev(sd->disk.major,
9049 sd->disk.minor, 1);
9050 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
9051 if (raid_fds[sd->disk.raid_disk] < 0) {
9052 fprintf(stderr, "cannot open component\n");
9053 continue;
9054 }
9055 opened++;
9056 }
9057 /* check if maximum array degradation level is not exceeded
9058 */
9059 if ((raid_disks - opened) >
9060 imsm_get_allowed_degradation(info->new_level,
9061 raid_disks,
9062 super, dev)) {
9063 fprintf(stderr, "Not enough disks can be opened.\n");
9064 close_targets(raid_fds, raid_disks);
9065 return -2;
9066 }
9067 return 0;
9068 }
9069
9070 #ifndef MDASSEMBLE
9071 /*******************************************************************************
9072 * Function: init_migr_record_imsm
9073 * Description: Function inits imsm migration record
9074 * Parameters:
9075 * super : imsm internal array info
9076 * dev : device under migration
9077 * info : general array info to find the smallest device
9078 * Returns:
9079 * none
9080 ******************************************************************************/
9081 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
9082 struct mdinfo *info)
9083 {
9084 struct intel_super *super = st->sb;
9085 struct migr_record *migr_rec = super->migr_rec;
9086 int new_data_disks;
9087 unsigned long long dsize, dev_sectors;
9088 long long unsigned min_dev_sectors = -1LLU;
9089 struct mdinfo *sd;
9090 char nm[30];
9091 int fd;
9092 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9093 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
9094 unsigned long long num_migr_units;
9095 unsigned long long array_blocks;
9096
9097 memset(migr_rec, 0, sizeof(struct migr_record));
9098 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
9099
9100 /* only ascending reshape supported now */
9101 migr_rec->ascending_migr = __cpu_to_le32(1);
9102
9103 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
9104 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9105 migr_rec->dest_depth_per_unit *=
9106 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
9107 new_data_disks = imsm_num_data_members(dev, MAP_0);
9108 migr_rec->blocks_per_unit =
9109 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
9110 migr_rec->dest_depth_per_unit =
9111 __cpu_to_le32(migr_rec->dest_depth_per_unit);
9112 array_blocks = info->component_size * new_data_disks;
9113 num_migr_units =
9114 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
9115
9116 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
9117 num_migr_units++;
9118 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
9119
9120 migr_rec->post_migr_vol_cap = dev->size_low;
9121 migr_rec->post_migr_vol_cap_hi = dev->size_high;
9122
9123
9124 /* Find the smallest dev */
9125 for (sd = info->devs ; sd ; sd = sd->next) {
9126 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
9127 fd = dev_open(nm, O_RDONLY);
9128 if (fd < 0)
9129 continue;
9130 get_dev_size(fd, NULL, &dsize);
9131 dev_sectors = dsize / 512;
9132 if (dev_sectors < min_dev_sectors)
9133 min_dev_sectors = dev_sectors;
9134 close(fd);
9135 }
9136 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
9137 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
9138
9139 write_imsm_migr_rec(st);
9140
9141 return;
9142 }
9143
9144 /*******************************************************************************
9145 * Function: save_backup_imsm
9146 * Description: Function saves critical data stripes to Migration Copy Area
9147 * and updates the current migration unit status.
9148 * Use restore_stripes() to form a destination stripe,
9149 * and to write it to the Copy Area.
9150 * Parameters:
9151 * st : supertype information
9152 * dev : imsm device that backup is saved for
9153 * info : general array info
9154 * buf : input buffer
9155 * length : length of data to backup (blocks_per_unit)
9156 * Returns:
9157 * 0 : success
9158 *, -1 : fail
9159 ******************************************************************************/
9160 int save_backup_imsm(struct supertype *st,
9161 struct imsm_dev *dev,
9162 struct mdinfo *info,
9163 void *buf,
9164 int length)
9165 {
9166 int rv = -1;
9167 struct intel_super *super = st->sb;
9168 unsigned long long *target_offsets = NULL;
9169 int *targets = NULL;
9170 int i;
9171 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
9172 int new_disks = map_dest->num_members;
9173 int dest_layout = 0;
9174 int dest_chunk;
9175 unsigned long long start;
9176 int data_disks = imsm_num_data_members(dev, MAP_0);
9177
9178 targets = malloc(new_disks * sizeof(int));
9179 if (!targets)
9180 goto abort;
9181
9182 for (i = 0; i < new_disks; i++)
9183 targets[i] = -1;
9184
9185 target_offsets = malloc(new_disks * sizeof(unsigned long long));
9186 if (!target_offsets)
9187 goto abort;
9188
9189 start = info->reshape_progress * 512;
9190 for (i = 0; i < new_disks; i++) {
9191 target_offsets[i] = (unsigned long long)
9192 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
9193 /* move back copy area adderss, it will be moved forward
9194 * in restore_stripes() using start input variable
9195 */
9196 target_offsets[i] -= start/data_disks;
9197 }
9198
9199 if (open_backup_targets(info, new_disks, targets,
9200 super, dev))
9201 goto abort;
9202
9203 dest_layout = imsm_level_to_layout(map_dest->raid_level);
9204 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
9205
9206 if (restore_stripes(targets, /* list of dest devices */
9207 target_offsets, /* migration record offsets */
9208 new_disks,
9209 dest_chunk,
9210 map_dest->raid_level,
9211 dest_layout,
9212 -1, /* source backup file descriptor */
9213 0, /* input buf offset
9214 * always 0 buf is already offseted */
9215 start,
9216 length,
9217 buf) != 0) {
9218 fprintf(stderr, Name ": Error restoring stripes\n");
9219 goto abort;
9220 }
9221
9222 rv = 0;
9223
9224 abort:
9225 if (targets) {
9226 close_targets(targets, new_disks);
9227 free(targets);
9228 }
9229 free(target_offsets);
9230
9231 return rv;
9232 }
9233
9234 /*******************************************************************************
9235 * Function: save_checkpoint_imsm
9236 * Description: Function called for current unit status update
9237 * in the migration record. It writes it to disk.
9238 * Parameters:
9239 * super : imsm internal array info
9240 * info : general array info
9241 * Returns:
9242 * 0: success
9243 * 1: failure
9244 * 2: failure, means no valid migration record
9245 * / no general migration in progress /
9246 ******************************************************************************/
9247 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
9248 {
9249 struct intel_super *super = st->sb;
9250 unsigned long long blocks_per_unit;
9251 unsigned long long curr_migr_unit;
9252
9253 if (load_imsm_migr_rec(super, info) != 0) {
9254 dprintf("imsm: ERROR: Cannot read migration record "
9255 "for checkpoint save.\n");
9256 return 1;
9257 }
9258
9259 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
9260 if (blocks_per_unit == 0) {
9261 dprintf("imsm: no migration in progress.\n");
9262 return 2;
9263 }
9264 curr_migr_unit = info->reshape_progress / blocks_per_unit;
9265 /* check if array is alligned to copy area
9266 * if it is not alligned, add one to current migration unit value
9267 * this can happend on array reshape finish only
9268 */
9269 if (info->reshape_progress % blocks_per_unit)
9270 curr_migr_unit++;
9271
9272 super->migr_rec->curr_migr_unit =
9273 __cpu_to_le32(curr_migr_unit);
9274 super->migr_rec->rec_status = __cpu_to_le32(state);
9275 super->migr_rec->dest_1st_member_lba =
9276 __cpu_to_le32(curr_migr_unit *
9277 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
9278 if (write_imsm_migr_rec(st) < 0) {
9279 dprintf("imsm: Cannot write migration record "
9280 "outside backup area\n");
9281 return 1;
9282 }
9283
9284 return 0;
9285 }
9286
9287 /*******************************************************************************
9288 * Function: recover_backup_imsm
9289 * Description: Function recovers critical data from the Migration Copy Area
9290 * while assembling an array.
9291 * Parameters:
9292 * super : imsm internal array info
9293 * info : general array info
9294 * Returns:
9295 * 0 : success (or there is no data to recover)
9296 * 1 : fail
9297 ******************************************************************************/
9298 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
9299 {
9300 struct intel_super *super = st->sb;
9301 struct migr_record *migr_rec = super->migr_rec;
9302 struct imsm_map *map_dest = NULL;
9303 struct intel_dev *id = NULL;
9304 unsigned long long read_offset;
9305 unsigned long long write_offset;
9306 unsigned unit_len;
9307 int *targets = NULL;
9308 int new_disks, i, err;
9309 char *buf = NULL;
9310 int retval = 1;
9311 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
9312 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
9313 char buffer[20];
9314 int skipped_disks = 0;
9315
9316 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
9317 if (err < 1)
9318 return 1;
9319
9320 /* recover data only during assemblation */
9321 if (strncmp(buffer, "inactive", 8) != 0)
9322 return 0;
9323 /* no data to recover */
9324 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
9325 return 0;
9326 if (curr_migr_unit >= num_migr_units)
9327 return 1;
9328
9329 /* find device during reshape */
9330 for (id = super->devlist; id; id = id->next)
9331 if (is_gen_migration(id->dev))
9332 break;
9333 if (id == NULL)
9334 return 1;
9335
9336 map_dest = get_imsm_map(id->dev, MAP_0);
9337 new_disks = map_dest->num_members;
9338
9339 read_offset = (unsigned long long)
9340 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
9341
9342 write_offset = ((unsigned long long)
9343 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
9344 pba_of_lba0(map_dest)) * 512;
9345
9346 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9347 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
9348 goto abort;
9349 targets = malloc(new_disks * sizeof(int));
9350 if (!targets)
9351 goto abort;
9352
9353 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
9354 fprintf(stderr,
9355 Name ": Cannot open some devices belonging to array.\n");
9356 goto abort;
9357 }
9358
9359 for (i = 0; i < new_disks; i++) {
9360 if (targets[i] < 0) {
9361 skipped_disks++;
9362 continue;
9363 }
9364 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
9365 fprintf(stderr,
9366 Name ": Cannot seek to block: %s\n",
9367 strerror(errno));
9368 skipped_disks++;
9369 continue;
9370 }
9371 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
9372 fprintf(stderr,
9373 Name ": Cannot read copy area block: %s\n",
9374 strerror(errno));
9375 skipped_disks++;
9376 continue;
9377 }
9378 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
9379 fprintf(stderr,
9380 Name ": Cannot seek to block: %s\n",
9381 strerror(errno));
9382 skipped_disks++;
9383 continue;
9384 }
9385 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
9386 fprintf(stderr,
9387 Name ": Cannot restore block: %s\n",
9388 strerror(errno));
9389 skipped_disks++;
9390 continue;
9391 }
9392 }
9393
9394 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
9395 new_disks,
9396 super,
9397 id->dev)) {
9398 fprintf(stderr,
9399 Name ": Cannot restore data from backup."
9400 " Too many failed disks\n");
9401 goto abort;
9402 }
9403
9404 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
9405 /* ignore error == 2, this can mean end of reshape here
9406 */
9407 dprintf("imsm: Cannot write checkpoint to "
9408 "migration record (UNIT_SRC_NORMAL) during restart\n");
9409 } else
9410 retval = 0;
9411
9412 abort:
9413 if (targets) {
9414 for (i = 0; i < new_disks; i++)
9415 if (targets[i])
9416 close(targets[i]);
9417 free(targets);
9418 }
9419 free(buf);
9420 return retval;
9421 }
9422
9423 static char disk_by_path[] = "/dev/disk/by-path/";
9424
9425 static const char *imsm_get_disk_controller_domain(const char *path)
9426 {
9427 char disk_path[PATH_MAX];
9428 char *drv=NULL;
9429 struct stat st;
9430
9431 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
9432 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
9433 if (stat(disk_path, &st) == 0) {
9434 struct sys_dev* hba;
9435 char *path=NULL;
9436
9437 path = devt_to_devpath(st.st_rdev);
9438 if (path == NULL)
9439 return "unknown";
9440 hba = find_disk_attached_hba(-1, path);
9441 if (hba && hba->type == SYS_DEV_SAS)
9442 drv = "isci";
9443 else if (hba && hba->type == SYS_DEV_SATA)
9444 drv = "ahci";
9445 else
9446 drv = "unknown";
9447 dprintf("path: %s hba: %s attached: %s\n",
9448 path, (hba) ? hba->path : "NULL", drv);
9449 free(path);
9450 if (hba)
9451 free_sys_dev(&hba);
9452 }
9453 return drv;
9454 }
9455
9456 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
9457 {
9458 char subdev_name[20];
9459 struct mdstat_ent *mdstat;
9460
9461 sprintf(subdev_name, "%d", subdev);
9462 mdstat = mdstat_by_subdev(subdev_name, container);
9463 if (!mdstat)
9464 return -1;
9465
9466 *minor = mdstat->devnum;
9467 free_mdstat(mdstat);
9468 return 0;
9469 }
9470
9471 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
9472 struct geo_params *geo,
9473 int *old_raid_disks,
9474 int direction)
9475 {
9476 /* currently we only support increasing the number of devices
9477 * for a container. This increases the number of device for each
9478 * member array. They must all be RAID0 or RAID5.
9479 */
9480 int ret_val = 0;
9481 struct mdinfo *info, *member;
9482 int devices_that_can_grow = 0;
9483
9484 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
9485 "st->devnum = (%i)\n",
9486 st->devnum);
9487
9488 if (geo->size != -1 ||
9489 geo->level != UnSet ||
9490 geo->layout != UnSet ||
9491 geo->chunksize != 0 ||
9492 geo->raid_disks == UnSet) {
9493 dprintf("imsm: Container operation is allowed for "
9494 "raid disks number change only.\n");
9495 return ret_val;
9496 }
9497
9498 if (direction == ROLLBACK_METADATA_CHANGES) {
9499 dprintf("imsm: Metadata changes rollback is not supported for "
9500 "container operation.\n");
9501 return ret_val;
9502 }
9503
9504 info = container_content_imsm(st, NULL);
9505 for (member = info; member; member = member->next) {
9506 int result;
9507 int minor;
9508
9509 dprintf("imsm: checking device_num: %i\n",
9510 member->container_member);
9511
9512 if (geo->raid_disks <= member->array.raid_disks) {
9513 /* we work on container for Online Capacity Expansion
9514 * only so raid_disks has to grow
9515 */
9516 dprintf("imsm: for container operation raid disks "
9517 "increase is required\n");
9518 break;
9519 }
9520
9521 if ((info->array.level != 0) &&
9522 (info->array.level != 5)) {
9523 /* we cannot use this container with other raid level
9524 */
9525 dprintf("imsm: for container operation wrong"
9526 " raid level (%i) detected\n",
9527 info->array.level);
9528 break;
9529 } else {
9530 /* check for platform support
9531 * for this raid level configuration
9532 */
9533 struct intel_super *super = st->sb;
9534 if (!is_raid_level_supported(super->orom,
9535 member->array.level,
9536 geo->raid_disks)) {
9537 dprintf("platform does not support raid%d with"
9538 " %d disk%s\n",
9539 info->array.level,
9540 geo->raid_disks,
9541 geo->raid_disks > 1 ? "s" : "");
9542 break;
9543 }
9544 /* check if component size is aligned to chunk size
9545 */
9546 if (info->component_size %
9547 (info->array.chunk_size/512)) {
9548 dprintf("Component size is not aligned to "
9549 "chunk size\n");
9550 break;
9551 }
9552 }
9553
9554 if (*old_raid_disks &&
9555 info->array.raid_disks != *old_raid_disks)
9556 break;
9557 *old_raid_disks = info->array.raid_disks;
9558
9559 /* All raid5 and raid0 volumes in container
9560 * have to be ready for Online Capacity Expansion
9561 * so they need to be assembled. We have already
9562 * checked that no recovery etc is happening.
9563 */
9564 result = imsm_find_array_minor_by_subdev(member->container_member,
9565 st->container_dev,
9566 &minor);
9567 if (result < 0) {
9568 dprintf("imsm: cannot find array\n");
9569 break;
9570 }
9571 devices_that_can_grow++;
9572 }
9573 sysfs_free(info);
9574 if (!member && devices_that_can_grow)
9575 ret_val = 1;
9576
9577 if (ret_val)
9578 dprintf("\tContainer operation allowed\n");
9579 else
9580 dprintf("\tError: %i\n", ret_val);
9581
9582 return ret_val;
9583 }
9584
9585 /* Function: get_spares_for_grow
9586 * Description: Allocates memory and creates list of spare devices
9587 * avaliable in container. Checks if spare drive size is acceptable.
9588 * Parameters: Pointer to the supertype structure
9589 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
9590 * NULL if fail
9591 */
9592 static struct mdinfo *get_spares_for_grow(struct supertype *st)
9593 {
9594 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
9595 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
9596 }
9597
9598 /******************************************************************************
9599 * function: imsm_create_metadata_update_for_reshape
9600 * Function creates update for whole IMSM container.
9601 *
9602 ******************************************************************************/
9603 static int imsm_create_metadata_update_for_reshape(
9604 struct supertype *st,
9605 struct geo_params *geo,
9606 int old_raid_disks,
9607 struct imsm_update_reshape **updatep)
9608 {
9609 struct intel_super *super = st->sb;
9610 struct imsm_super *mpb = super->anchor;
9611 int update_memory_size = 0;
9612 struct imsm_update_reshape *u = NULL;
9613 struct mdinfo *spares = NULL;
9614 int i;
9615 int delta_disks = 0;
9616 struct mdinfo *dev;
9617
9618 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
9619 geo->raid_disks);
9620
9621 delta_disks = geo->raid_disks - old_raid_disks;
9622
9623 /* size of all update data without anchor */
9624 update_memory_size = sizeof(struct imsm_update_reshape);
9625
9626 /* now add space for spare disks that we need to add. */
9627 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
9628
9629 u = calloc(1, update_memory_size);
9630 if (u == NULL) {
9631 dprintf("error: "
9632 "cannot get memory for imsm_update_reshape update\n");
9633 return 0;
9634 }
9635 u->type = update_reshape_container_disks;
9636 u->old_raid_disks = old_raid_disks;
9637 u->new_raid_disks = geo->raid_disks;
9638
9639 /* now get spare disks list
9640 */
9641 spares = get_spares_for_grow(st);
9642
9643 if (spares == NULL
9644 || delta_disks > spares->array.spare_disks) {
9645 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
9646 "for %s.\n", geo->dev_name);
9647 i = -1;
9648 goto abort;
9649 }
9650
9651 /* we have got spares
9652 * update disk list in imsm_disk list table in anchor
9653 */
9654 dprintf("imsm: %i spares are available.\n\n",
9655 spares->array.spare_disks);
9656
9657 dev = spares->devs;
9658 for (i = 0; i < delta_disks; i++) {
9659 struct dl *dl;
9660
9661 if (dev == NULL)
9662 break;
9663 u->new_disks[i] = makedev(dev->disk.major,
9664 dev->disk.minor);
9665 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
9666 dl->index = mpb->num_disks;
9667 mpb->num_disks++;
9668 dev = dev->next;
9669 }
9670
9671 abort:
9672 /* free spares
9673 */
9674 sysfs_free(spares);
9675
9676 dprintf("imsm: reshape update preparation :");
9677 if (i == delta_disks) {
9678 dprintf(" OK\n");
9679 *updatep = u;
9680 return update_memory_size;
9681 }
9682 free(u);
9683 dprintf(" Error\n");
9684
9685 return 0;
9686 }
9687
9688
9689 /******************************************************************************
9690 * function: imsm_create_metadata_update_for_size_change()
9691 * Creates update for IMSM array for array size change.
9692 *
9693 ******************************************************************************/
9694 static int imsm_create_metadata_update_for_size_change(
9695 struct supertype *st,
9696 struct geo_params *geo,
9697 struct imsm_update_size_change **updatep)
9698 {
9699 struct intel_super *super = st->sb;
9700 int update_memory_size = 0;
9701 struct imsm_update_size_change *u = NULL;
9702
9703 dprintf("imsm_create_metadata_update_for_size_change(enter)"
9704 " New size = %llu\n", geo->size);
9705
9706 /* size of all update data without anchor */
9707 update_memory_size = sizeof(struct imsm_update_size_change);
9708
9709 u = calloc(1, update_memory_size);
9710 if (u == NULL) {
9711 dprintf("error: cannot get memory for "
9712 "imsm_create_metadata_update_for_size_change\n");
9713 return 0;
9714 }
9715 u->type = update_size_change;
9716 u->subdev = super->current_vol;
9717 u->new_size = geo->size;
9718
9719 dprintf("imsm: reshape update preparation : OK\n");
9720 *updatep = u;
9721
9722 return update_memory_size;
9723 }
9724
9725 /******************************************************************************
9726 * function: imsm_create_metadata_update_for_migration()
9727 * Creates update for IMSM array.
9728 *
9729 ******************************************************************************/
9730 static int imsm_create_metadata_update_for_migration(
9731 struct supertype *st,
9732 struct geo_params *geo,
9733 struct imsm_update_reshape_migration **updatep)
9734 {
9735 struct intel_super *super = st->sb;
9736 int update_memory_size = 0;
9737 struct imsm_update_reshape_migration *u = NULL;
9738 struct imsm_dev *dev;
9739 int previous_level = -1;
9740
9741 dprintf("imsm_create_metadata_update_for_migration(enter)"
9742 " New Level = %i\n", geo->level);
9743
9744 /* size of all update data without anchor */
9745 update_memory_size = sizeof(struct imsm_update_reshape_migration);
9746
9747 u = calloc(1, update_memory_size);
9748 if (u == NULL) {
9749 dprintf("error: cannot get memory for "
9750 "imsm_create_metadata_update_for_migration\n");
9751 return 0;
9752 }
9753 u->type = update_reshape_migration;
9754 u->subdev = super->current_vol;
9755 u->new_level = geo->level;
9756 u->new_layout = geo->layout;
9757 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
9758 u->new_disks[0] = -1;
9759 u->new_chunksize = -1;
9760
9761 dev = get_imsm_dev(super, u->subdev);
9762 if (dev) {
9763 struct imsm_map *map;
9764
9765 map = get_imsm_map(dev, MAP_0);
9766 if (map) {
9767 int current_chunk_size =
9768 __le16_to_cpu(map->blocks_per_strip) / 2;
9769
9770 if (geo->chunksize != current_chunk_size) {
9771 u->new_chunksize = geo->chunksize / 1024;
9772 dprintf("imsm: "
9773 "chunk size change from %i to %i\n",
9774 current_chunk_size, u->new_chunksize);
9775 }
9776 previous_level = map->raid_level;
9777 }
9778 }
9779 if ((geo->level == 5) && (previous_level == 0)) {
9780 struct mdinfo *spares = NULL;
9781
9782 u->new_raid_disks++;
9783 spares = get_spares_for_grow(st);
9784 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
9785 free(u);
9786 sysfs_free(spares);
9787 update_memory_size = 0;
9788 dprintf("error: cannot get spare device "
9789 "for requested migration");
9790 return 0;
9791 }
9792 sysfs_free(spares);
9793 }
9794 dprintf("imsm: reshape update preparation : OK\n");
9795 *updatep = u;
9796
9797 return update_memory_size;
9798 }
9799
9800 static void imsm_update_metadata_locally(struct supertype *st,
9801 void *buf, int len)
9802 {
9803 struct metadata_update mu;
9804
9805 mu.buf = buf;
9806 mu.len = len;
9807 mu.space = NULL;
9808 mu.space_list = NULL;
9809 mu.next = NULL;
9810 imsm_prepare_update(st, &mu);
9811 imsm_process_update(st, &mu);
9812
9813 while (mu.space_list) {
9814 void **space = mu.space_list;
9815 mu.space_list = *space;
9816 free(space);
9817 }
9818 }
9819
9820 /***************************************************************************
9821 * Function: imsm_analyze_change
9822 * Description: Function analyze change for single volume
9823 * and validate if transition is supported
9824 * Parameters: Geometry parameters, supertype structure,
9825 * metadata change direction (apply/rollback)
9826 * Returns: Operation type code on success, -1 if fail
9827 ****************************************************************************/
9828 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
9829 struct geo_params *geo,
9830 int direction)
9831 {
9832 struct mdinfo info;
9833 int change = -1;
9834 int check_devs = 0;
9835 int chunk;
9836 /* number of added/removed disks in operation result */
9837 int devNumChange = 0;
9838 /* imsm compatible layout value for array geometry verification */
9839 int imsm_layout = -1;
9840 int data_disks;
9841 struct imsm_dev *dev;
9842 struct intel_super *super;
9843 long long current_size;
9844
9845 getinfo_super_imsm_volume(st, &info, NULL);
9846 if ((geo->level != info.array.level) &&
9847 (geo->level >= 0) &&
9848 (geo->level != UnSet)) {
9849 switch (info.array.level) {
9850 case 0:
9851 if (geo->level == 5) {
9852 change = CH_MIGRATION;
9853 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
9854 fprintf(stderr,
9855 Name " Error. Requested Layout "
9856 "not supported (left-asymmetric layout "
9857 "is supported only)!\n");
9858 change = -1;
9859 goto analyse_change_exit;
9860 }
9861 imsm_layout = geo->layout;
9862 check_devs = 1;
9863 devNumChange = 1; /* parity disk added */
9864 } else if (geo->level == 10) {
9865 change = CH_TAKEOVER;
9866 check_devs = 1;
9867 devNumChange = 2; /* two mirrors added */
9868 imsm_layout = 0x102; /* imsm supported layout */
9869 }
9870 break;
9871 case 1:
9872 case 10:
9873 if (geo->level == 0) {
9874 change = CH_TAKEOVER;
9875 check_devs = 1;
9876 devNumChange = -(geo->raid_disks/2);
9877 imsm_layout = 0; /* imsm raid0 layout */
9878 }
9879 break;
9880 }
9881 if (change == -1) {
9882 fprintf(stderr,
9883 Name " Error. Level Migration from %d to %d "
9884 "not supported!\n",
9885 info.array.level, geo->level);
9886 goto analyse_change_exit;
9887 }
9888 } else
9889 geo->level = info.array.level;
9890
9891 if ((geo->layout != info.array.layout)
9892 && ((geo->layout != UnSet) && (geo->layout != -1))) {
9893 change = CH_MIGRATION;
9894 if ((info.array.layout == 0)
9895 && (info.array.level == 5)
9896 && (geo->layout == 5)) {
9897 /* reshape 5 -> 4 */
9898 } else if ((info.array.layout == 5)
9899 && (info.array.level == 5)
9900 && (geo->layout == 0)) {
9901 /* reshape 4 -> 5 */
9902 geo->layout = 0;
9903 geo->level = 5;
9904 } else {
9905 fprintf(stderr,
9906 Name " Error. Layout Migration from %d to %d "
9907 "not supported!\n",
9908 info.array.layout, geo->layout);
9909 change = -1;
9910 goto analyse_change_exit;
9911 }
9912 } else {
9913 geo->layout = info.array.layout;
9914 if (imsm_layout == -1)
9915 imsm_layout = info.array.layout;
9916 }
9917
9918 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
9919 && (geo->chunksize != info.array.chunk_size))
9920 change = CH_MIGRATION;
9921 else
9922 geo->chunksize = info.array.chunk_size;
9923
9924 chunk = geo->chunksize / 1024;
9925
9926 super = st->sb;
9927 dev = get_imsm_dev(super, super->current_vol);
9928 data_disks = imsm_num_data_members(dev , MAP_0);
9929 /* compute current size in K per disk member
9930 */
9931 current_size = info.custom_array_size / 2 / data_disks;
9932
9933 if ((current_size != geo->size) && (geo->size > 0)) {
9934 if (change != -1) {
9935 fprintf(stderr,
9936 Name " Error. Size change should be the only "
9937 "one at a time.\n");
9938 change = -1;
9939 goto analyse_change_exit;
9940 }
9941 if ((super->current_vol + 1) != super->anchor->num_raid_devs) {
9942 fprintf(stderr,
9943 Name " Error. The last volume in container "
9944 "can be expanded only (%i/%i).\n",
9945 super->current_vol, st->devnum);
9946 goto analyse_change_exit;
9947 }
9948 geo->size *= 2;
9949 if ((direction == ROLLBACK_METADATA_CHANGES)) {
9950 /* accept size for rollback only
9951 */
9952 } else {
9953 /* round size due to metadata compatibility
9954 */
9955 geo->size = (geo->size >> SECT_PER_MB_SHIFT)
9956 << SECT_PER_MB_SHIFT;
9957 dprintf("Prepare update for size change to %llu\n",
9958 geo->size );
9959 if (current_size >= geo->size) {
9960 fprintf(stderr,
9961 Name " Error. Size expanssion is "
9962 "supported only (current size is %llu, "
9963 "requested size /rounded/ is %llu).\n",
9964 current_size, geo->size);
9965 goto analyse_change_exit;
9966 }
9967 }
9968 geo->size *= data_disks;
9969 geo->raid_disks = dev->vol.map->num_members;
9970 change = CH_ARRAY_SIZE;
9971 }
9972 if (!validate_geometry_imsm(st,
9973 geo->level,
9974 imsm_layout,
9975 geo->raid_disks + devNumChange,
9976 &chunk,
9977 geo->size,
9978 0, 0, 1))
9979 change = -1;
9980
9981 if (check_devs) {
9982 struct intel_super *super = st->sb;
9983 struct imsm_super *mpb = super->anchor;
9984
9985 if (mpb->num_raid_devs > 1) {
9986 fprintf(stderr,
9987 Name " Error. Cannot perform operation on %s"
9988 "- for this operation it MUST be single "
9989 "array in container\n",
9990 geo->dev_name);
9991 change = -1;
9992 }
9993 }
9994
9995 analyse_change_exit:
9996 if ((direction == ROLLBACK_METADATA_CHANGES) &&
9997 ((change == CH_MIGRATION) || (change == CH_TAKEOVER))) {
9998 dprintf("imsm: Metadata changes rollback is not supported for "
9999 "migration and takeover operations.\n");
10000 change = -1;
10001 }
10002 return change;
10003 }
10004
10005 int imsm_takeover(struct supertype *st, struct geo_params *geo)
10006 {
10007 struct intel_super *super = st->sb;
10008 struct imsm_update_takeover *u;
10009
10010 u = malloc(sizeof(struct imsm_update_takeover));
10011 if (u == NULL)
10012 return 1;
10013
10014 u->type = update_takeover;
10015 u->subarray = super->current_vol;
10016
10017 /* 10->0 transition */
10018 if (geo->level == 0)
10019 u->direction = R10_TO_R0;
10020
10021 /* 0->10 transition */
10022 if (geo->level == 10)
10023 u->direction = R0_TO_R10;
10024
10025 /* update metadata locally */
10026 imsm_update_metadata_locally(st, u,
10027 sizeof(struct imsm_update_takeover));
10028 /* and possibly remotely */
10029 if (st->update_tail)
10030 append_metadata_update(st, u,
10031 sizeof(struct imsm_update_takeover));
10032 else
10033 free(u);
10034
10035 return 0;
10036 }
10037
10038 static int imsm_reshape_super(struct supertype *st, long long size, int level,
10039 int layout, int chunksize, int raid_disks,
10040 int delta_disks, char *backup, char *dev,
10041 int direction, int verbose)
10042 {
10043 int ret_val = 1;
10044 struct geo_params geo;
10045
10046 dprintf("imsm: reshape_super called.\n");
10047
10048 memset(&geo, 0, sizeof(struct geo_params));
10049
10050 geo.dev_name = dev;
10051 geo.dev_id = st->devnum;
10052 geo.size = size;
10053 geo.level = level;
10054 geo.layout = layout;
10055 geo.chunksize = chunksize;
10056 geo.raid_disks = raid_disks;
10057 if (delta_disks != UnSet)
10058 geo.raid_disks += delta_disks;
10059
10060 dprintf("\tfor level : %i\n", geo.level);
10061 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
10062
10063 if (experimental() == 0)
10064 return ret_val;
10065
10066 if (st->container_dev == st->devnum) {
10067 /* On container level we can only increase number of devices. */
10068 dprintf("imsm: info: Container operation\n");
10069 int old_raid_disks = 0;
10070
10071 if (imsm_reshape_is_allowed_on_container(
10072 st, &geo, &old_raid_disks, direction)) {
10073 struct imsm_update_reshape *u = NULL;
10074 int len;
10075
10076 len = imsm_create_metadata_update_for_reshape(
10077 st, &geo, old_raid_disks, &u);
10078
10079 if (len <= 0) {
10080 dprintf("imsm: Cannot prepare update\n");
10081 goto exit_imsm_reshape_super;
10082 }
10083
10084 ret_val = 0;
10085 /* update metadata locally */
10086 imsm_update_metadata_locally(st, u, len);
10087 /* and possibly remotely */
10088 if (st->update_tail)
10089 append_metadata_update(st, u, len);
10090 else
10091 free(u);
10092
10093 } else {
10094 fprintf(stderr, Name ": (imsm) Operation "
10095 "is not allowed on this container\n");
10096 }
10097 } else {
10098 /* On volume level we support following operations
10099 * - takeover: raid10 -> raid0; raid0 -> raid10
10100 * - chunk size migration
10101 * - migration: raid5 -> raid0; raid0 -> raid5
10102 */
10103 struct intel_super *super = st->sb;
10104 struct intel_dev *dev = super->devlist;
10105 int change, devnum;
10106 dprintf("imsm: info: Volume operation\n");
10107 /* find requested device */
10108 while (dev) {
10109 if (imsm_find_array_minor_by_subdev(
10110 dev->index, st->container_dev, &devnum) == 0
10111 && devnum == geo.dev_id)
10112 break;
10113 dev = dev->next;
10114 }
10115 if (dev == NULL) {
10116 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
10117 geo.dev_name, geo.dev_id);
10118 goto exit_imsm_reshape_super;
10119 }
10120 super->current_vol = dev->index;
10121 change = imsm_analyze_change(st, &geo, direction);
10122 switch (change) {
10123 case CH_TAKEOVER:
10124 ret_val = imsm_takeover(st, &geo);
10125 break;
10126 case CH_MIGRATION: {
10127 struct imsm_update_reshape_migration *u = NULL;
10128 int len =
10129 imsm_create_metadata_update_for_migration(
10130 st, &geo, &u);
10131 if (len < 1) {
10132 dprintf("imsm: "
10133 "Cannot prepare update\n");
10134 break;
10135 }
10136 ret_val = 0;
10137 /* update metadata locally */
10138 imsm_update_metadata_locally(st, u, len);
10139 /* and possibly remotely */
10140 if (st->update_tail)
10141 append_metadata_update(st, u, len);
10142 else
10143 free(u);
10144 }
10145 break;
10146 case CH_ARRAY_SIZE: {
10147 struct imsm_update_size_change *u = NULL;
10148 int len =
10149 imsm_create_metadata_update_for_size_change(
10150 st, &geo, &u);
10151 if (len < 1) {
10152 dprintf("imsm: "
10153 "Cannot prepare update\n");
10154 break;
10155 }
10156 ret_val = 0;
10157 /* update metadata locally */
10158 imsm_update_metadata_locally(st, u, len);
10159 /* and possibly remotely */
10160 if (st->update_tail)
10161 append_metadata_update(st, u, len);
10162 else
10163 free(u);
10164 }
10165 break;
10166 default:
10167 ret_val = 1;
10168 }
10169 }
10170
10171 exit_imsm_reshape_super:
10172 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
10173 return ret_val;
10174 }
10175
10176 /*******************************************************************************
10177 * Function: wait_for_reshape_imsm
10178 * Description: Function writes new sync_max value and waits until
10179 * reshape process reach new position
10180 * Parameters:
10181 * sra : general array info
10182 * ndata : number of disks in new array's layout
10183 * Returns:
10184 * 0 : success,
10185 * 1 : there is no reshape in progress,
10186 * -1 : fail
10187 ******************************************************************************/
10188 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
10189 {
10190 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
10191 unsigned long long completed;
10192 /* to_complete : new sync_max position */
10193 unsigned long long to_complete = sra->reshape_progress;
10194 unsigned long long position_to_set = to_complete / ndata;
10195
10196 if (fd < 0) {
10197 dprintf("imsm: wait_for_reshape_imsm() "
10198 "cannot open reshape_position\n");
10199 return 1;
10200 }
10201
10202 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10203 dprintf("imsm: wait_for_reshape_imsm() "
10204 "cannot read reshape_position (no reshape in progres)\n");
10205 close(fd);
10206 return 0;
10207 }
10208
10209 if (completed > to_complete) {
10210 dprintf("imsm: wait_for_reshape_imsm() "
10211 "wrong next position to set %llu (%llu)\n",
10212 to_complete, completed);
10213 close(fd);
10214 return -1;
10215 }
10216 dprintf("Position set: %llu\n", position_to_set);
10217 if (sysfs_set_num(sra, NULL, "sync_max",
10218 position_to_set) != 0) {
10219 dprintf("imsm: wait_for_reshape_imsm() "
10220 "cannot set reshape position to %llu\n",
10221 position_to_set);
10222 close(fd);
10223 return -1;
10224 }
10225
10226 do {
10227 char action[20];
10228 fd_set rfds;
10229 FD_ZERO(&rfds);
10230 FD_SET(fd, &rfds);
10231 select(fd+1, &rfds, NULL, NULL, NULL);
10232 if (sysfs_get_str(sra, NULL, "sync_action",
10233 action, 20) > 0 &&
10234 strncmp(action, "reshape", 7) != 0)
10235 break;
10236 if (sysfs_fd_get_ll(fd, &completed) < 0) {
10237 dprintf("imsm: wait_for_reshape_imsm() "
10238 "cannot read reshape_position (in loop)\n");
10239 close(fd);
10240 return 1;
10241 }
10242 } while (completed < to_complete);
10243 close(fd);
10244 return 0;
10245
10246 }
10247
10248 /*******************************************************************************
10249 * Function: check_degradation_change
10250 * Description: Check that array hasn't become failed.
10251 * Parameters:
10252 * info : for sysfs access
10253 * sources : source disks descriptors
10254 * degraded: previous degradation level
10255 * Returns:
10256 * degradation level
10257 ******************************************************************************/
10258 int check_degradation_change(struct mdinfo *info,
10259 int *sources,
10260 int degraded)
10261 {
10262 unsigned long long new_degraded;
10263 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
10264 if (new_degraded != (unsigned long long)degraded) {
10265 /* check each device to ensure it is still working */
10266 struct mdinfo *sd;
10267 new_degraded = 0;
10268 for (sd = info->devs ; sd ; sd = sd->next) {
10269 if (sd->disk.state & (1<<MD_DISK_FAULTY))
10270 continue;
10271 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
10272 char sbuf[20];
10273 if (sysfs_get_str(info,
10274 sd, "state", sbuf, 20) < 0 ||
10275 strstr(sbuf, "faulty") ||
10276 strstr(sbuf, "in_sync") == NULL) {
10277 /* this device is dead */
10278 sd->disk.state = (1<<MD_DISK_FAULTY);
10279 if (sd->disk.raid_disk >= 0 &&
10280 sources[sd->disk.raid_disk] >= 0) {
10281 close(sources[
10282 sd->disk.raid_disk]);
10283 sources[sd->disk.raid_disk] =
10284 -1;
10285 }
10286 new_degraded++;
10287 }
10288 }
10289 }
10290 }
10291
10292 return new_degraded;
10293 }
10294
10295 /*******************************************************************************
10296 * Function: imsm_manage_reshape
10297 * Description: Function finds array under reshape and it manages reshape
10298 * process. It creates stripes backups (if required) and sets
10299 * checheckpoits.
10300 * Parameters:
10301 * afd : Backup handle (nattive) - not used
10302 * sra : general array info
10303 * reshape : reshape parameters - not used
10304 * st : supertype structure
10305 * blocks : size of critical section [blocks]
10306 * fds : table of source device descriptor
10307 * offsets : start of array (offest per devices)
10308 * dests : not used
10309 * destfd : table of destination device descriptor
10310 * destoffsets : table of destination offsets (per device)
10311 * Returns:
10312 * 1 : success, reshape is done
10313 * 0 : fail
10314 ******************************************************************************/
10315 static int imsm_manage_reshape(
10316 int afd, struct mdinfo *sra, struct reshape *reshape,
10317 struct supertype *st, unsigned long backup_blocks,
10318 int *fds, unsigned long long *offsets,
10319 int dests, int *destfd, unsigned long long *destoffsets)
10320 {
10321 int ret_val = 0;
10322 struct intel_super *super = st->sb;
10323 struct intel_dev *dv = NULL;
10324 struct imsm_dev *dev = NULL;
10325 struct imsm_map *map_src;
10326 int migr_vol_qan = 0;
10327 int ndata, odata; /* [bytes] */
10328 int chunk; /* [bytes] */
10329 struct migr_record *migr_rec;
10330 char *buf = NULL;
10331 unsigned int buf_size; /* [bytes] */
10332 unsigned long long max_position; /* array size [bytes] */
10333 unsigned long long next_step; /* [blocks]/[bytes] */
10334 unsigned long long old_data_stripe_length;
10335 unsigned long long start_src; /* [bytes] */
10336 unsigned long long start; /* [bytes] */
10337 unsigned long long start_buf_shift; /* [bytes] */
10338 int degraded = 0;
10339 int source_layout = 0;
10340
10341 if (!fds || !offsets || !sra)
10342 goto abort;
10343
10344 /* Find volume during the reshape */
10345 for (dv = super->devlist; dv; dv = dv->next) {
10346 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
10347 && dv->dev->vol.migr_state == 1) {
10348 dev = dv->dev;
10349 migr_vol_qan++;
10350 }
10351 }
10352 /* Only one volume can migrate at the same time */
10353 if (migr_vol_qan != 1) {
10354 fprintf(stderr, Name " : %s", migr_vol_qan ?
10355 "Number of migrating volumes greater than 1\n" :
10356 "There is no volume during migrationg\n");
10357 goto abort;
10358 }
10359
10360 map_src = get_imsm_map(dev, MAP_1);
10361 if (map_src == NULL)
10362 goto abort;
10363
10364 ndata = imsm_num_data_members(dev, MAP_0);
10365 odata = imsm_num_data_members(dev, MAP_1);
10366
10367 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
10368 old_data_stripe_length = odata * chunk;
10369
10370 migr_rec = super->migr_rec;
10371
10372 /* initialize migration record for start condition */
10373 if (sra->reshape_progress == 0)
10374 init_migr_record_imsm(st, dev, sra);
10375 else {
10376 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
10377 dprintf("imsm: cannot restart migration when data "
10378 "are present in copy area.\n");
10379 goto abort;
10380 }
10381 /* Save checkpoint to update migration record for current
10382 * reshape position (in md). It can be farther than current
10383 * reshape position in metadata.
10384 */
10385 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10386 /* ignore error == 2, this can mean end of reshape here
10387 */
10388 dprintf("imsm: Cannot write checkpoint to "
10389 "migration record (UNIT_SRC_NORMAL, "
10390 "initial save)\n");
10391 goto abort;
10392 }
10393 }
10394
10395 /* size for data */
10396 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
10397 /* extend buffer size for parity disk */
10398 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
10399 /* add space for stripe aligment */
10400 buf_size += old_data_stripe_length;
10401 if (posix_memalign((void **)&buf, 4096, buf_size)) {
10402 dprintf("imsm: Cannot allocate checpoint buffer\n");
10403 goto abort;
10404 }
10405
10406 max_position = sra->component_size * ndata;
10407 source_layout = imsm_level_to_layout(map_src->raid_level);
10408
10409 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
10410 __le32_to_cpu(migr_rec->num_migr_units)) {
10411 /* current reshape position [blocks] */
10412 unsigned long long current_position =
10413 __le32_to_cpu(migr_rec->blocks_per_unit)
10414 * __le32_to_cpu(migr_rec->curr_migr_unit);
10415 unsigned long long border;
10416
10417 /* Check that array hasn't become failed.
10418 */
10419 degraded = check_degradation_change(sra, fds, degraded);
10420 if (degraded > 1) {
10421 dprintf("imsm: Abort reshape due to degradation"
10422 " level (%i)\n", degraded);
10423 goto abort;
10424 }
10425
10426 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
10427
10428 if ((current_position + next_step) > max_position)
10429 next_step = max_position - current_position;
10430
10431 start = current_position * 512;
10432
10433 /* allign reading start to old geometry */
10434 start_buf_shift = start % old_data_stripe_length;
10435 start_src = start - start_buf_shift;
10436
10437 border = (start_src / odata) - (start / ndata);
10438 border /= 512;
10439 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
10440 /* save critical stripes to buf
10441 * start - start address of current unit
10442 * to backup [bytes]
10443 * start_src - start address of current unit
10444 * to backup alligned to source array
10445 * [bytes]
10446 */
10447 unsigned long long next_step_filler = 0;
10448 unsigned long long copy_length = next_step * 512;
10449
10450 /* allign copy area length to stripe in old geometry */
10451 next_step_filler = ((copy_length + start_buf_shift)
10452 % old_data_stripe_length);
10453 if (next_step_filler)
10454 next_step_filler = (old_data_stripe_length
10455 - next_step_filler);
10456 dprintf("save_stripes() parameters: start = %llu,"
10457 "\tstart_src = %llu,\tnext_step*512 = %llu,"
10458 "\tstart_in_buf_shift = %llu,"
10459 "\tnext_step_filler = %llu\n",
10460 start, start_src, copy_length,
10461 start_buf_shift, next_step_filler);
10462
10463 if (save_stripes(fds, offsets, map_src->num_members,
10464 chunk, map_src->raid_level,
10465 source_layout, 0, NULL, start_src,
10466 copy_length +
10467 next_step_filler + start_buf_shift,
10468 buf)) {
10469 dprintf("imsm: Cannot save stripes"
10470 " to buffer\n");
10471 goto abort;
10472 }
10473 /* Convert data to destination format and store it
10474 * in backup general migration area
10475 */
10476 if (save_backup_imsm(st, dev, sra,
10477 buf + start_buf_shift, copy_length)) {
10478 dprintf("imsm: Cannot save stripes to "
10479 "target devices\n");
10480 goto abort;
10481 }
10482 if (save_checkpoint_imsm(st, sra,
10483 UNIT_SRC_IN_CP_AREA)) {
10484 dprintf("imsm: Cannot write checkpoint to "
10485 "migration record (UNIT_SRC_IN_CP_AREA)\n");
10486 goto abort;
10487 }
10488 } else {
10489 /* set next step to use whole border area */
10490 border /= next_step;
10491 if (border > 1)
10492 next_step *= border;
10493 }
10494 /* When data backed up, checkpoint stored,
10495 * kick the kernel to reshape unit of data
10496 */
10497 next_step = next_step + sra->reshape_progress;
10498 /* limit next step to array max position */
10499 if (next_step > max_position)
10500 next_step = max_position;
10501 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
10502 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
10503 sra->reshape_progress = next_step;
10504
10505 /* wait until reshape finish */
10506 if (wait_for_reshape_imsm(sra, ndata) < 0) {
10507 dprintf("wait_for_reshape_imsm returned error!\n");
10508 goto abort;
10509 }
10510
10511 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
10512 /* ignore error == 2, this can mean end of reshape here
10513 */
10514 dprintf("imsm: Cannot write checkpoint to "
10515 "migration record (UNIT_SRC_NORMAL)\n");
10516 goto abort;
10517 }
10518
10519 }
10520
10521 /* return '1' if done */
10522 ret_val = 1;
10523 abort:
10524 free(buf);
10525 abort_reshape(sra);
10526
10527 return ret_val;
10528 }
10529 #endif /* MDASSEMBLE */
10530
10531 struct superswitch super_imsm = {
10532 #ifndef MDASSEMBLE
10533 .examine_super = examine_super_imsm,
10534 .brief_examine_super = brief_examine_super_imsm,
10535 .brief_examine_subarrays = brief_examine_subarrays_imsm,
10536 .export_examine_super = export_examine_super_imsm,
10537 .detail_super = detail_super_imsm,
10538 .brief_detail_super = brief_detail_super_imsm,
10539 .write_init_super = write_init_super_imsm,
10540 .validate_geometry = validate_geometry_imsm,
10541 .add_to_super = add_to_super_imsm,
10542 .remove_from_super = remove_from_super_imsm,
10543 .detail_platform = detail_platform_imsm,
10544 .kill_subarray = kill_subarray_imsm,
10545 .update_subarray = update_subarray_imsm,
10546 .load_container = load_container_imsm,
10547 .default_geometry = default_geometry_imsm,
10548 .get_disk_controller_domain = imsm_get_disk_controller_domain,
10549 .reshape_super = imsm_reshape_super,
10550 .manage_reshape = imsm_manage_reshape,
10551 .recover_backup = recover_backup_imsm,
10552 #endif
10553 .match_home = match_home_imsm,
10554 .uuid_from_super= uuid_from_super_imsm,
10555 .getinfo_super = getinfo_super_imsm,
10556 .getinfo_super_disks = getinfo_super_disks_imsm,
10557 .update_super = update_super_imsm,
10558
10559 .avail_size = avail_size_imsm,
10560 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
10561
10562 .compare_super = compare_super_imsm,
10563
10564 .load_super = load_super_imsm,
10565 .init_super = init_super_imsm,
10566 .store_super = store_super_imsm,
10567 .free_super = free_super_imsm,
10568 .match_metadata_desc = match_metadata_desc_imsm,
10569 .container_content = container_content_imsm,
10570
10571
10572 .external = 1,
10573 .name = "imsm",
10574
10575 #ifndef MDASSEMBLE
10576 /* for mdmon */
10577 .open_new = imsm_open_new,
10578 .set_array_state= imsm_set_array_state,
10579 .set_disk = imsm_set_disk,
10580 .sync_metadata = imsm_sync_metadata,
10581 .activate_spare = imsm_activate_spare,
10582 .process_update = imsm_process_update,
10583 .prepare_update = imsm_prepare_update,
10584 #endif /* MDASSEMBLE */
10585 };