]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
0564c0be66299c991be6eef5b492cc6349865ab1
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <linux/magic.h>
34 #include <poll.h>
35 #include <ctype.h>
36 #include <dirent.h>
37 #include <signal.h>
38 #include <dlfcn.h>
39
40
41 /*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46 #define BLKPG _IO(0x12,105)
47
48 /* The argument structure */
49 struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54 };
55
56 /* The subfunctions (for the op field) */
57 #define BLKPG_ADD_PARTITION 1
58 #define BLKPG_DEL_PARTITION 2
59
60 /* Sizes of name fields. Unused at present. */
61 #define BLKPG_DEVNAMELTH 64
62 #define BLKPG_VOLNAMELTH 64
63
64 /* The data structure for ADD_PARTITION and DEL_PARTITION */
65 struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72 };
73
74 #include "part.h"
75
76 /* Force a compilation error if condition is true */
77 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79 /* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85 static int is_dlm_hooks_ready = 0;
86
87 int dlm_funs_ready(void)
88 {
89 return is_dlm_hooks_ready ? 1 : 0;
90 }
91
92 static struct dlm_hooks *dlm_hooks = NULL;
93 struct dlm_lock_resource *dlm_lock_res = NULL;
94 static int ast_called = 0;
95
96 struct dlm_lock_resource {
97 dlm_lshandle_t *ls;
98 struct dlm_lksb lksb;
99 };
100
101 /* Using poll(2) to wait for and dispatch ASTs */
102 static int poll_for_ast(dlm_lshandle_t ls)
103 {
104 struct pollfd pfd;
105
106 pfd.fd = dlm_hooks->ls_get_fd(ls);
107 pfd.events = POLLIN;
108
109 while (!ast_called)
110 {
111 if (poll(&pfd, 1, 0) < 0)
112 {
113 perror("poll");
114 return -1;
115 }
116 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
117 }
118 ast_called = 0;
119
120 return 0;
121 }
122
123 static void dlm_ast(void *arg)
124 {
125 ast_called = 1;
126 }
127
128 static char *cluster_name = NULL;
129 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
130 int cluster_get_dlmlock(int *lockid)
131 {
132 int ret = -1;
133 char str[64];
134 int flags = LKF_NOQUEUE;
135
136 ret = get_cluster_name(&cluster_name);
137 if (ret) {
138 pr_err("The md can't get cluster name\n");
139 return -1;
140 }
141
142 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
143 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
144 if (!dlm_lock_res->ls) {
145 pr_err("%s failed to create lockspace\n", cluster_name);
146 return -ENOMEM;
147 }
148
149 snprintf(str, 64, "bitmap%s", cluster_name);
150 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE, &dlm_lock_res->lksb,
151 flags, str, strlen(str), 0, dlm_ast,
152 dlm_lock_res, NULL, NULL);
153 if (ret) {
154 pr_err("error %d when get PW mode on lock %s\n", errno, str);
155 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
156 return ret;
157 }
158
159 /* Wait for it to complete */
160 poll_for_ast(dlm_lock_res->ls);
161 *lockid = dlm_lock_res->lksb.sb_lkid;
162
163 return dlm_lock_res->lksb.sb_status;
164 }
165
166 int cluster_release_dlmlock(int lockid)
167 {
168 int ret = -1;
169
170 if (!cluster_name)
171 return -1;
172
173 ret = dlm_hooks->ls_unlock(dlm_lock_res->ls, lockid, 0,
174 &dlm_lock_res->lksb, dlm_lock_res);
175 if (ret) {
176 pr_err("error %d happened when unlock\n", errno);
177 /* XXX make sure the lock is unlocked eventually */
178 goto out;
179 }
180
181 /* Wait for it to complete */
182 poll_for_ast(dlm_lock_res->ls);
183
184 errno = dlm_lock_res->lksb.sb_status;
185 if (errno != EUNLOCK) {
186 pr_err("error %d happened in ast when unlock lockspace\n", errno);
187 /* XXX make sure the lockspace is unlocked eventually */
188 goto out;
189 }
190
191 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
192 if (ret) {
193 pr_err("error %d happened when release lockspace\n", errno);
194 /* XXX make sure the lockspace is released eventually */
195 goto out;
196 }
197 free(dlm_lock_res);
198
199 out:
200 return ret;
201 }
202
203 int md_array_valid(int fd)
204 {
205 struct mdinfo *sra;
206 int ret;
207
208 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
209 if (sra) {
210 if (sra->array_state != ARRAY_UNKNOWN_STATE)
211 ret = 0;
212 else
213 ret = -ENODEV;
214
215 free(sra);
216 } else {
217 /*
218 * GET_ARRAY_INFO doesn't provide access to the proper state
219 * information, so fallback to a basic check for raid_disks != 0
220 */
221 ret = ioctl(fd, RAID_VERSION);
222 }
223
224 return !ret;
225 }
226
227 int md_array_active(int fd)
228 {
229 struct mdinfo *sra;
230 struct mdu_array_info_s array;
231 int ret;
232
233 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
234 if (sra) {
235 if (sra->array_state != ARRAY_CLEAR &&
236 sra->array_state != ARRAY_INACTIVE &&
237 sra->array_state != ARRAY_UNKNOWN_STATE)
238 ret = 0;
239 else
240 ret = -ENODEV;
241
242 free(sra);
243 } else {
244 /*
245 * GET_ARRAY_INFO doesn't provide access to the proper state
246 * information, so fallback to a basic check for raid_disks != 0
247 */
248 ret = ioctl(fd, GET_ARRAY_INFO, &array);
249 }
250
251 return !ret;
252 }
253
254 /*
255 * Get array info from the kernel. Longer term we want to deprecate the
256 * ioctl and get it from sysfs.
257 */
258 int md_get_array_info(int fd, struct mdu_array_info_s *array)
259 {
260 return ioctl(fd, GET_ARRAY_INFO, array);
261 }
262
263 /*
264 * Set array info
265 */
266 int md_set_array_info(int fd, struct mdu_array_info_s *array)
267 {
268 return ioctl(fd, SET_ARRAY_INFO, array);
269 }
270
271 /*
272 * Get disk info from the kernel.
273 */
274 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
275 {
276 return ioctl(fd, GET_DISK_INFO, disk);
277 }
278
279 /*
280 * Parse a 128 bit uuid in 4 integers
281 * format is 32 hexx nibbles with options :.<space> separator
282 * If not exactly 32 hex digits are found, return 0
283 * else return 1
284 */
285 int parse_uuid(char *str, int uuid[4])
286 {
287 int hit = 0; /* number of Hex digIT */
288 int i;
289 char c;
290 for (i = 0; i < 4; i++)
291 uuid[i] = 0;
292
293 while ((c = *str++) != 0) {
294 int n;
295 if (c >= '0' && c <= '9')
296 n = c-'0';
297 else if (c >= 'a' && c <= 'f')
298 n = 10 + c - 'a';
299 else if (c >= 'A' && c <= 'F')
300 n = 10 + c - 'A';
301 else if (strchr(":. -", c))
302 continue;
303 else return 0;
304
305 if (hit<32) {
306 uuid[hit/8] <<= 4;
307 uuid[hit/8] += n;
308 }
309 hit++;
310 }
311 if (hit == 32)
312 return 1;
313 return 0;
314 }
315
316 int get_linux_version()
317 {
318 struct utsname name;
319 char *cp;
320 int a = 0, b = 0,c = 0;
321 if (uname(&name) <0)
322 return -1;
323
324 cp = name.release;
325 a = strtoul(cp, &cp, 10);
326 if (*cp == '.')
327 b = strtoul(cp+1, &cp, 10);
328 if (*cp == '.')
329 c = strtoul(cp+1, &cp, 10);
330
331 return (a*1000000)+(b*1000)+c;
332 }
333
334 int mdadm_version(char *version)
335 {
336 int a, b, c;
337 char *cp;
338
339 if (!version)
340 version = Version;
341
342 cp = strchr(version, '-');
343 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
344 return -1;
345 cp += 3;
346 a = strtoul(cp, &cp, 10);
347 if (*cp != '.')
348 return -1;
349 b = strtoul(cp+1, &cp, 10);
350 if (*cp == '.')
351 c = strtoul(cp+1, &cp, 10);
352 else
353 c = 0;
354 if (*cp != ' ' && *cp != '-')
355 return -1;
356 return (a*1000000)+(b*1000)+c;
357 }
358
359 unsigned long long parse_size(char *size)
360 {
361 /* parse 'size' which should be a number optionally
362 * followed by 'K', 'M', or 'G'.
363 * Without a suffix, K is assumed.
364 * Number returned is in sectors (half-K)
365 * INVALID_SECTORS returned on error.
366 */
367 char *c;
368 long long s = strtoll(size, &c, 10);
369 if (s > 0) {
370 switch (*c) {
371 case 'K':
372 c++;
373 default:
374 s *= 2;
375 break;
376 case 'M':
377 c++;
378 s *= 1024 * 2;
379 break;
380 case 'G':
381 c++;
382 s *= 1024 * 1024 * 2;
383 break;
384 case 's': /* sectors */
385 c++;
386 break;
387 }
388 } else
389 s = INVALID_SECTORS;
390 if (*c)
391 s = INVALID_SECTORS;
392 return s;
393 }
394
395 int parse_layout_10(char *layout)
396 {
397 int copies, rv;
398 char *cp;
399 /* Parse the layout string for raid10 */
400 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
401 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
402 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
403 copies > 200 ||
404 *cp)
405 return -1;
406 if (layout[0] == 'n')
407 rv = 256 + copies;
408 else if (layout[0] == 'o')
409 rv = 0x10000 + (copies<<8) + 1;
410 else
411 rv = 1 + (copies<<8);
412 return rv;
413 }
414
415 int parse_layout_faulty(char *layout)
416 {
417 /* Parse the layout string for 'faulty' */
418 int ln = strcspn(layout, "0123456789");
419 char *m = xstrdup(layout);
420 int mode;
421 m[ln] = 0;
422 mode = map_name(faultylayout, m);
423 if (mode == UnSet)
424 return -1;
425
426 return mode | (atoi(layout+ln)<< ModeShift);
427 }
428
429 long parse_num(char *num)
430 {
431 /* Either return a valid number, or -1 */
432 char *c;
433 long rv = strtol(num, &c, 10);
434 if (rv < 0 || *c || !num[0])
435 return -1;
436 else
437 return rv;
438 }
439
440 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
441 {
442 char *dev;
443 *slot = strtoul(input, &dev, 10);
444 if (dev == input || dev[0] != ':')
445 return -1;
446 *devname = dev+1;
447 return 0;
448 }
449
450 void remove_partitions(int fd)
451 {
452 /* remove partitions from this block devices.
453 * This is used for components added to an array
454 */
455 #ifdef BLKPG_DEL_PARTITION
456 struct blkpg_ioctl_arg a;
457 struct blkpg_partition p;
458
459 a.op = BLKPG_DEL_PARTITION;
460 a.data = (void*)&p;
461 a.datalen = sizeof(p);
462 a.flags = 0;
463 memset(a.data, 0, a.datalen);
464 for (p.pno = 0; p.pno < 16; p.pno++)
465 ioctl(fd, BLKPG, &a);
466 #endif
467 }
468
469 int test_partition(int fd)
470 {
471 /* Check if fd is a whole-disk or a partition.
472 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
473 * will return ENXIO on an invalid partition number.
474 */
475 struct blkpg_ioctl_arg a;
476 struct blkpg_partition p;
477 a.op = BLKPG_DEL_PARTITION;
478 a.data = (void*)&p;
479 a.datalen = sizeof(p);
480 a.flags = 0;
481 memset(a.data, 0, a.datalen);
482 p.pno = 1<<30;
483 if (ioctl(fd, BLKPG, &a) == 0)
484 /* Very unlikely, but not a partition */
485 return 0;
486 if (errno == ENXIO || errno == ENOTTY)
487 /* not a partition */
488 return 0;
489
490 return 1;
491 }
492
493 int test_partition_from_id(dev_t id)
494 {
495 char buf[20];
496 int fd, rv;
497
498 sprintf(buf, "%d:%d", major(id), minor(id));
499 fd = dev_open(buf, O_RDONLY);
500 if (fd < 0)
501 return -1;
502 rv = test_partition(fd);
503 close(fd);
504 return rv;
505 }
506
507 int enough(int level, int raid_disks, int layout, int clean, char *avail)
508 {
509 int copies, first;
510 int i;
511 int avail_disks = 0;
512
513 for (i = 0; i < raid_disks; i++)
514 avail_disks += !!avail[i];
515
516 switch (level) {
517 case 10:
518 /* This is the tricky one - we need to check
519 * which actual disks are present.
520 */
521 copies = (layout&255)* ((layout>>8) & 255);
522 first = 0;
523 do {
524 /* there must be one of the 'copies' form 'first' */
525 int n = copies;
526 int cnt = 0;
527 int this = first;
528 while (n--) {
529 if (avail[this])
530 cnt++;
531 this = (this+1) % raid_disks;
532 }
533 if (cnt == 0)
534 return 0;
535 first = (first+(layout&255)) % raid_disks;
536 } while (first != 0);
537 return 1;
538
539 case LEVEL_MULTIPATH:
540 return avail_disks>= 1;
541 case LEVEL_LINEAR:
542 case 0:
543 return avail_disks == raid_disks;
544 case 1:
545 return avail_disks >= 1;
546 case 4:
547 if (avail_disks == raid_disks - 1 &&
548 !avail[raid_disks - 1])
549 /* If just the parity device is missing, then we
550 * have enough, even if not clean
551 */
552 return 1;
553 /* FALL THROUGH */
554 case 5:
555 if (clean)
556 return avail_disks >= raid_disks-1;
557 else
558 return avail_disks >= raid_disks;
559 case 6:
560 if (clean)
561 return avail_disks >= raid_disks-2;
562 else
563 return avail_disks >= raid_disks;
564 default:
565 return 0;
566 }
567 }
568
569 const int uuid_zero[4] = { 0, 0, 0, 0 };
570
571 int same_uuid(int a[4], int b[4], int swapuuid)
572 {
573 if (swapuuid) {
574 /* parse uuids are hostendian.
575 * uuid's from some superblocks are big-ending
576 * if there is a difference, we need to swap..
577 */
578 unsigned char *ac = (unsigned char *)a;
579 unsigned char *bc = (unsigned char *)b;
580 int i;
581 for (i = 0; i < 16; i += 4) {
582 if (ac[i+0] != bc[i+3] ||
583 ac[i+1] != bc[i+2] ||
584 ac[i+2] != bc[i+1] ||
585 ac[i+3] != bc[i+0])
586 return 0;
587 }
588 return 1;
589 } else {
590 if (a[0]==b[0] &&
591 a[1]==b[1] &&
592 a[2]==b[2] &&
593 a[3]==b[3])
594 return 1;
595 return 0;
596 }
597 }
598
599 void copy_uuid(void *a, int b[4], int swapuuid)
600 {
601 if (swapuuid) {
602 /* parse uuids are hostendian.
603 * uuid's from some superblocks are big-ending
604 * if there is a difference, we need to swap..
605 */
606 unsigned char *ac = (unsigned char *)a;
607 unsigned char *bc = (unsigned char *)b;
608 int i;
609 for (i = 0; i < 16; i += 4) {
610 ac[i+0] = bc[i+3];
611 ac[i+1] = bc[i+2];
612 ac[i+2] = bc[i+1];
613 ac[i+3] = bc[i+0];
614 }
615 } else
616 memcpy(a, b, 16);
617 }
618
619 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
620 {
621 int i, j;
622 char uuid[16];
623 char *c = buf;
624 strcpy(c, "UUID-");
625 c += strlen(c);
626 copy_uuid(uuid, id, swap);
627 for (i = 0; i < 4; i++) {
628 if (i)
629 *c++ = sep;
630 for (j = 3; j >= 0; j--) {
631 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
632 c+= 2;
633 }
634 }
635 return buf;
636
637 }
638
639 char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep)
640 {
641 // dirty hack to work around an issue with super1 superblocks...
642 // super1 superblocks need swapuuid set in order for assembly to
643 // work, but can't have it set if we want this printout to match
644 // all the other uuid printouts in super1.c, so we force swapuuid
645 // to 1 to make our printout match the rest of super1
646 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 : st->ss->swapuuid, buf, sep);
647 }
648
649 int check_ext2(int fd, char *name)
650 {
651 /*
652 * Check for an ext2fs file system.
653 * Superblock is always 1K at 1K offset
654 *
655 * s_magic is le16 at 56 == 0xEF53
656 * report mtime - le32 at 44
657 * blocks - le32 at 4
658 * logblksize - le32 at 24
659 */
660 unsigned char sb[1024];
661 time_t mtime;
662 unsigned long long size;
663 int bsize;
664 if (lseek(fd, 1024,0)!= 1024)
665 return 0;
666 if (read(fd, sb, 1024)!= 1024)
667 return 0;
668 if (sb[56] != 0x53 || sb[57] != 0xef)
669 return 0;
670
671 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
672 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
673 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
674 size <<= bsize;
675 pr_err("%s appears to contain an ext2fs file system\n",
676 name);
677 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
678 return 1;
679 }
680
681 int check_reiser(int fd, char *name)
682 {
683 /*
684 * superblock is at 64K
685 * size is 1024;
686 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
687 *
688 */
689 unsigned char sb[1024];
690 unsigned long long size;
691 if (lseek(fd, 64*1024, 0) != 64*1024)
692 return 0;
693 if (read(fd, sb, 1024) != 1024)
694 return 0;
695 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
696 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
697 return 0;
698 pr_err("%s appears to contain a reiserfs file system\n",name);
699 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
700 cont_err("size = %lluK\n", size*4);
701
702 return 1;
703 }
704
705 int check_raid(int fd, char *name)
706 {
707 struct mdinfo info;
708 time_t crtime;
709 char *level;
710 struct supertype *st = guess_super(fd);
711
712 if (!st)
713 return 0;
714 if (st->ss->add_to_super != NULL) {
715 st->ss->load_super(st, fd, name);
716 /* Looks like a raid array .. */
717 pr_err("%s appears to be part of a raid array:\n", name);
718 st->ss->getinfo_super(st, &info, NULL);
719 st->ss->free_super(st);
720 crtime = info.array.ctime;
721 level = map_num(pers, info.array.level);
722 if (!level)
723 level = "-unknown-";
724 cont_err("level=%s devices=%d ctime=%s",
725 level, info.array.raid_disks, ctime(&crtime));
726 } else {
727 /* Looks like GPT or MBR */
728 pr_err("partition table exists on %s\n", name);
729 }
730 return 1;
731 }
732
733 int fstat_is_blkdev(int fd, char *devname, dev_t *rdev)
734 {
735 struct stat stb;
736
737 if (fstat(fd, &stb) != 0) {
738 pr_err("fstat failed for %s: %s\n", devname, strerror(errno));
739 return 0;
740 }
741 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
742 pr_err("%s is not a block device.\n", devname);
743 return 0;
744 }
745 if (rdev)
746 *rdev = stb.st_rdev;
747 return 1;
748 }
749
750 int stat_is_blkdev(char *devname, dev_t *rdev)
751 {
752 struct stat stb;
753
754 if (stat(devname, &stb) != 0) {
755 pr_err("stat failed for %s: %s\n", devname, strerror(errno));
756 return 0;
757 }
758 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
759 pr_err("%s is not a block device.\n", devname);
760 return 0;
761 }
762 if (rdev)
763 *rdev = stb.st_rdev;
764 return 1;
765 }
766
767 int ask(char *mesg)
768 {
769 char *add = "";
770 int i;
771 for (i = 0; i < 5; i++) {
772 char buf[100];
773 fprintf(stderr, "%s%s", mesg, add);
774 fflush(stderr);
775 if (fgets(buf, 100, stdin)==NULL)
776 return 0;
777 if (buf[0]=='y' || buf[0]=='Y')
778 return 1;
779 if (buf[0]=='n' || buf[0]=='N')
780 return 0;
781 add = "(y/n) ";
782 }
783 pr_err("assuming 'no'\n");
784 return 0;
785 }
786
787 int is_standard(char *dev, int *nump)
788 {
789 /* tests if dev is a "standard" md dev name.
790 * i.e if the last component is "/dNN" or "/mdNN",
791 * where NN is a string of digits
792 * Returns 1 if a partitionable standard,
793 * -1 if non-partitonable,
794 * 0 if not a standard name.
795 */
796 char *d = strrchr(dev, '/');
797 int type = 0;
798 int num;
799 if (!d)
800 return 0;
801 if (strncmp(d, "/d",2) == 0)
802 d += 2, type = 1; /* /dev/md/dN{pM} */
803 else if (strncmp(d, "/md_d", 5) == 0)
804 d += 5, type = 1; /* /dev/md_dN{pM} */
805 else if (strncmp(d, "/md", 3) == 0)
806 d += 3, type = -1; /* /dev/mdN */
807 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
808 d += 1, type = -1; /* /dev/md/N */
809 else
810 return 0;
811 if (!*d)
812 return 0;
813 num = atoi(d);
814 while (isdigit(*d))
815 d++;
816 if (*d)
817 return 0;
818 if (nump) *nump = num;
819
820 return type;
821 }
822
823 unsigned long calc_csum(void *super, int bytes)
824 {
825 unsigned long long newcsum = 0;
826 int i;
827 unsigned int csum;
828 unsigned int *superc = (unsigned int*) super;
829
830 for(i = 0; i < bytes/4; i++)
831 newcsum += superc[i];
832 csum = (newcsum& 0xffffffff) + (newcsum>>32);
833 #ifdef __alpha__
834 /* The in-kernel checksum calculation is always 16bit on
835 * the alpha, though it is 32 bit on i386...
836 * I wonder what it is elsewhere... (it uses an API in
837 * a way that it shouldn't).
838 */
839 csum = (csum & 0xffff) + (csum >> 16);
840 csum = (csum & 0xffff) + (csum >> 16);
841 #endif
842 return csum;
843 }
844
845 char *human_size(long long bytes)
846 {
847 static char buf[47];
848
849 /* We convert bytes to either centi-M{ega,ibi}bytes or
850 * centi-G{igi,ibi}bytes, with appropriate rounding,
851 * and then print 1/100th of those as a decimal.
852 * We allow upto 2048Megabytes before converting to
853 * gigabytes, as that shows more precision and isn't
854 * too large a number.
855 * Terabytes are not yet handled.
856 */
857
858 if (bytes < 5000*1024)
859 buf[0] = 0;
860 else if (bytes < 2*1024LL*1024LL*1024LL) {
861 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
862 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
863 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
864 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
865 } else {
866 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
867 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
868 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
869 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
870 }
871 return buf;
872 }
873
874 char *human_size_brief(long long bytes, int prefix)
875 {
876 static char buf[30];
877
878 /* We convert bytes to either centi-M{ega,ibi}bytes or
879 * centi-G{igi,ibi}bytes, with appropriate rounding,
880 * and then print 1/100th of those as a decimal.
881 * We allow upto 2048Megabytes before converting to
882 * gigabytes, as that shows more precision and isn't
883 * too large a number.
884 * Terabytes are not yet handled.
885 *
886 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
887 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
888 */
889
890 if (bytes < 5000*1024)
891 buf[0] = 0;
892 else if (prefix == IEC) {
893 if (bytes < 2*1024LL*1024LL*1024LL) {
894 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
895 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
896 cMiB/100, cMiB % 100);
897 } else {
898 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
899 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
900 cGiB/100, cGiB % 100);
901 }
902 }
903 else if (prefix == JEDEC) {
904 if (bytes < 2*1024LL*1024LL*1024LL) {
905 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
906 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
907 cMB/100, cMB % 100);
908 } else {
909 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
910 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
911 cGB/100, cGB % 100);
912 }
913 }
914 else
915 buf[0] = 0;
916
917 return buf;
918 }
919
920 void print_r10_layout(int layout)
921 {
922 int near = layout & 255;
923 int far = (layout >> 8) & 255;
924 int offset = (layout&0x10000);
925 char *sep = "";
926
927 if (near != 1) {
928 printf("%s near=%d", sep, near);
929 sep = ",";
930 }
931 if (far != 1)
932 printf("%s %s=%d", sep, offset?"offset":"far", far);
933 if (near*far == 1)
934 printf("NO REDUNDANCY");
935 }
936
937 unsigned long long calc_array_size(int level, int raid_disks, int layout,
938 int chunksize, unsigned long long devsize)
939 {
940 if (level == 1)
941 return devsize;
942 devsize &= ~(unsigned long long)((chunksize>>9)-1);
943 return get_data_disks(level, layout, raid_disks) * devsize;
944 }
945
946 int get_data_disks(int level, int layout, int raid_disks)
947 {
948 int data_disks = 0;
949 switch (level) {
950 case 0: data_disks = raid_disks;
951 break;
952 case 1: data_disks = 1;
953 break;
954 case 4:
955 case 5: data_disks = raid_disks - 1;
956 break;
957 case 6: data_disks = raid_disks - 2;
958 break;
959 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
960 break;
961 }
962
963 return data_disks;
964 }
965
966 dev_t devnm2devid(char *devnm)
967 {
968 /* First look in /sys/block/$DEVNM/dev for %d:%d
969 * If that fails, try parsing out a number
970 */
971 char path[100];
972 char *ep;
973 int fd;
974 int mjr,mnr;
975
976 sprintf(path, "/sys/block/%s/dev", devnm);
977 fd = open(path, O_RDONLY);
978 if (fd >= 0) {
979 char buf[20];
980 int n = read(fd, buf, sizeof(buf));
981 close(fd);
982 if (n > 0)
983 buf[n] = 0;
984 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
985 return makedev(mjr, mnr);
986 }
987 if (strncmp(devnm, "md_d", 4) == 0 &&
988 isdigit(devnm[4]) &&
989 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
990 ep > devnm && *ep == 0)
991 return makedev(get_mdp_major(), mnr << MdpMinorShift);
992
993 if (strncmp(devnm, "md", 2) == 0 &&
994 isdigit(devnm[2]) &&
995 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
996 ep > devnm && *ep == 0)
997 return makedev(MD_MAJOR, mnr);
998
999 return 0;
1000 }
1001
1002 char *get_md_name(char *devnm)
1003 {
1004 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
1005 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
1006
1007 static char devname[50];
1008 struct stat stb;
1009 dev_t rdev = devnm2devid(devnm);
1010 char *dn;
1011
1012 if (rdev == 0)
1013 return 0;
1014 if (strncmp(devnm, "md_", 3) == 0) {
1015 snprintf(devname, sizeof(devname), "/dev/md/%s",
1016 devnm + 3);
1017 if (stat(devname, &stb) == 0 &&
1018 (S_IFMT&stb.st_mode) == S_IFBLK && (stb.st_rdev == rdev))
1019 return devname;
1020 }
1021 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
1022 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
1023 (stb.st_rdev == rdev))
1024 return devname;
1025
1026 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
1027 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
1028 (stb.st_rdev == rdev))
1029 return devname;
1030
1031 dn = map_dev(major(rdev), minor(rdev), 0);
1032 if (dn)
1033 return dn;
1034 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
1035 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
1036 if (errno != EEXIST)
1037 return NULL;
1038
1039 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
1040 (stb.st_rdev == rdev))
1041 return devname;
1042 unlink(devname);
1043 return NULL;
1044 }
1045
1046 void put_md_name(char *name)
1047 {
1048 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1049 unlink(name);
1050 }
1051
1052 int get_maj_min(char *dev, int *major, int *minor)
1053 {
1054 char *e;
1055 *major = strtoul(dev, &e, 0);
1056 return (e > dev && *e == ':' && e[1] &&
1057 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1058 *e == 0);
1059 }
1060
1061 int dev_open(char *dev, int flags)
1062 {
1063 /* like 'open', but if 'dev' matches %d:%d, create a temp
1064 * block device and open that
1065 */
1066 int fd = -1;
1067 char devname[32];
1068 int major;
1069 int minor;
1070
1071 if (!dev)
1072 return -1;
1073 flags |= O_DIRECT;
1074
1075 if (get_maj_min(dev, &major, &minor)) {
1076 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1077 (int)getpid(), major, minor);
1078 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1079 fd = open(devname, flags);
1080 unlink(devname);
1081 }
1082 if (fd < 0) {
1083 /* Try /tmp as /dev appear to be read-only */
1084 snprintf(devname, sizeof(devname), "/tmp/.tmp.md.%d:%d:%d",
1085 (int)getpid(), major, minor);
1086 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1087 fd = open(devname, flags);
1088 unlink(devname);
1089 }
1090 }
1091 } else
1092 fd = open(dev, flags);
1093 return fd;
1094 }
1095
1096 int open_dev_flags(char *devnm, int flags)
1097 {
1098 dev_t devid;
1099 char buf[20];
1100
1101 devid = devnm2devid(devnm);
1102 sprintf(buf, "%d:%d", major(devid), minor(devid));
1103 return dev_open(buf, flags);
1104 }
1105
1106 int open_dev(char *devnm)
1107 {
1108 return open_dev_flags(devnm, O_RDONLY);
1109 }
1110
1111 int open_dev_excl(char *devnm)
1112 {
1113 char buf[20];
1114 int i;
1115 int flags = O_RDWR;
1116 dev_t devid = devnm2devid(devnm);
1117 long delay = 1000;
1118
1119 sprintf(buf, "%d:%d", major(devid), minor(devid));
1120 for (i = 0; i < 25; i++) {
1121 int fd = dev_open(buf, flags|O_EXCL);
1122 if (fd >= 0)
1123 return fd;
1124 if (errno == EACCES && flags == O_RDWR) {
1125 flags = O_RDONLY;
1126 continue;
1127 }
1128 if (errno != EBUSY)
1129 return fd;
1130 usleep(delay);
1131 if (delay < 200000)
1132 delay *= 2;
1133 }
1134 return -1;
1135 }
1136
1137 int same_dev(char *one, char *two)
1138 {
1139 struct stat st1, st2;
1140 if (stat(one, &st1) != 0)
1141 return 0;
1142 if (stat(two, &st2) != 0)
1143 return 0;
1144 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1145 return 0;
1146 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1147 return 0;
1148 return st1.st_rdev == st2.st_rdev;
1149 }
1150
1151 void wait_for(char *dev, int fd)
1152 {
1153 int i;
1154 struct stat stb_want;
1155 long delay = 1000;
1156
1157 if (fstat(fd, &stb_want) != 0 ||
1158 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1159 return;
1160
1161 for (i = 0; i < 25; i++) {
1162 struct stat stb;
1163 if (stat(dev, &stb) == 0 &&
1164 (stb.st_mode & S_IFMT) == S_IFBLK &&
1165 (stb.st_rdev == stb_want.st_rdev))
1166 return;
1167 usleep(delay);
1168 if (delay < 200000)
1169 delay *= 2;
1170 }
1171 if (i == 25)
1172 dprintf("timeout waiting for %s\n", dev);
1173 }
1174
1175 struct superswitch *superlist[] =
1176 {
1177 &super0, &super1,
1178 &super_ddf, &super_imsm,
1179 &mbr, &gpt,
1180 NULL
1181 };
1182
1183 struct supertype *super_by_fd(int fd, char **subarrayp)
1184 {
1185 mdu_array_info_t array;
1186 int vers;
1187 int minor;
1188 struct supertype *st = NULL;
1189 struct mdinfo *sra;
1190 char *verstr;
1191 char version[20];
1192 int i;
1193 char *subarray = NULL;
1194 char container[32] = "";
1195
1196 sra = sysfs_read(fd, NULL, GET_VERSION);
1197
1198 if (sra) {
1199 vers = sra->array.major_version;
1200 minor = sra->array.minor_version;
1201 verstr = sra->text_version;
1202 } else {
1203 if (md_get_array_info(fd, &array))
1204 array.major_version = array.minor_version = 0;
1205 vers = array.major_version;
1206 minor = array.minor_version;
1207 verstr = "";
1208 }
1209
1210 if (vers != -1) {
1211 sprintf(version, "%d.%d", vers, minor);
1212 verstr = version;
1213 }
1214 if (minor == -2 && is_subarray(verstr)) {
1215 char *dev = verstr+1;
1216
1217 subarray = strchr(dev, '/');
1218 if (subarray) {
1219 *subarray++ = '\0';
1220 subarray = xstrdup(subarray);
1221 }
1222 strcpy(container, dev);
1223 sysfs_free(sra);
1224 sra = sysfs_read(-1, container, GET_VERSION);
1225 if (sra && sra->text_version[0])
1226 verstr = sra->text_version;
1227 else
1228 verstr = "-no-metadata-";
1229 }
1230
1231 for (i = 0; st == NULL && superlist[i]; i++)
1232 st = superlist[i]->match_metadata_desc(verstr);
1233
1234 sysfs_free(sra);
1235 if (st) {
1236 st->sb = NULL;
1237 if (subarrayp)
1238 *subarrayp = subarray;
1239 strcpy(st->container_devnm, container);
1240 strcpy(st->devnm, fd2devnm(fd));
1241 } else
1242 free(subarray);
1243
1244 return st;
1245 }
1246
1247 int dev_size_from_id(dev_t id, unsigned long long *size)
1248 {
1249 char buf[20];
1250 int fd;
1251
1252 sprintf(buf, "%d:%d", major(id), minor(id));
1253 fd = dev_open(buf, O_RDONLY);
1254 if (fd < 0)
1255 return 0;
1256 if (get_dev_size(fd, NULL, size)) {
1257 close(fd);
1258 return 1;
1259 }
1260 close(fd);
1261 return 0;
1262 }
1263
1264 int dev_sector_size_from_id(dev_t id, unsigned int *size)
1265 {
1266 char buf[20];
1267 int fd;
1268
1269 sprintf(buf, "%d:%d", major(id), minor(id));
1270 fd = dev_open(buf, O_RDONLY);
1271 if (fd < 0)
1272 return 0;
1273 if (get_dev_sector_size(fd, NULL, size)) {
1274 close(fd);
1275 return 1;
1276 }
1277 close(fd);
1278 return 0;
1279 }
1280
1281 struct supertype *dup_super(struct supertype *orig)
1282 {
1283 struct supertype *st;
1284
1285 if (!orig)
1286 return orig;
1287 st = xcalloc(1, sizeof(*st));
1288 st->ss = orig->ss;
1289 st->max_devs = orig->max_devs;
1290 st->minor_version = orig->minor_version;
1291 st->ignore_hw_compat = orig->ignore_hw_compat;
1292 st->data_offset = orig->data_offset;
1293 st->sb = NULL;
1294 st->info = NULL;
1295 return st;
1296 }
1297
1298 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1299 {
1300 /* try each load_super to find the best match,
1301 * and return the best superswitch
1302 */
1303 struct superswitch *ss;
1304 struct supertype *st;
1305 unsigned int besttime = 0;
1306 int bestsuper = -1;
1307 int i;
1308
1309 st = xcalloc(1, sizeof(*st));
1310 st->container_devnm[0] = 0;
1311
1312 for (i = 0; superlist[i]; i++) {
1313 int rv;
1314 ss = superlist[i];
1315 if (guess_type == guess_array && ss->add_to_super == NULL)
1316 continue;
1317 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1318 continue;
1319 memset(st, 0, sizeof(*st));
1320 st->ignore_hw_compat = 1;
1321 rv = ss->load_super(st, fd, NULL);
1322 if (rv == 0) {
1323 struct mdinfo info;
1324 st->ss->getinfo_super(st, &info, NULL);
1325 if (bestsuper == -1 ||
1326 besttime < info.array.ctime) {
1327 bestsuper = i;
1328 besttime = info.array.ctime;
1329 }
1330 ss->free_super(st);
1331 }
1332 }
1333 if (bestsuper != -1) {
1334 int rv;
1335 memset(st, 0, sizeof(*st));
1336 st->ignore_hw_compat = 1;
1337 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1338 if (rv == 0) {
1339 superlist[bestsuper]->free_super(st);
1340 return st;
1341 }
1342 }
1343 free(st);
1344 return NULL;
1345 }
1346
1347 /* Return size of device in bytes */
1348 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1349 {
1350 unsigned long long ldsize;
1351 struct stat st;
1352
1353 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1354 ldsize = (unsigned long long)st.st_size;
1355 else
1356 #ifdef BLKGETSIZE64
1357 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1358 #endif
1359 {
1360 unsigned long dsize;
1361 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1362 ldsize = dsize;
1363 ldsize <<= 9;
1364 } else {
1365 if (dname)
1366 pr_err("Cannot get size of %s: %s\n",
1367 dname, strerror(errno));
1368 return 0;
1369 }
1370 }
1371 *sizep = ldsize;
1372 return 1;
1373 }
1374
1375 /* Return sector size of device in bytes */
1376 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1377 {
1378 unsigned int sectsize;
1379
1380 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1381 if (dname)
1382 pr_err("Cannot get sector size of %s: %s\n",
1383 dname, strerror(errno));
1384 return 0;
1385 }
1386
1387 *sectsizep = sectsize;
1388 return 1;
1389 }
1390
1391 /* Return true if this can only be a container, not a member device.
1392 * i.e. is and md device and size is zero
1393 */
1394 int must_be_container(int fd)
1395 {
1396 struct mdinfo *mdi;
1397 unsigned long long size;
1398
1399 mdi = sysfs_read(fd, NULL, GET_VERSION);
1400 if (!mdi)
1401 return 0;
1402 sysfs_free(mdi);
1403
1404 if (get_dev_size(fd, NULL, &size) == 0)
1405 return 1;
1406 if (size == 0)
1407 return 1;
1408 return 0;
1409 }
1410
1411 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1412 * Returns: 1 if successful
1413 * -1 for unknown partition type
1414 * 0 for other errors
1415 */
1416 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1417 {
1418 struct GPT gpt;
1419 unsigned char empty_gpt_entry[16]= {0};
1420 struct GPT_part_entry *part;
1421 char buf[512];
1422 unsigned long long curr_part_end;
1423 unsigned all_partitions, entry_size;
1424 unsigned part_nr;
1425 unsigned int sector_size = 0;
1426
1427 *endofpart = 0;
1428
1429 BUILD_BUG_ON(sizeof(gpt) != 512);
1430 /* skip protective MBR */
1431 if (!get_dev_sector_size(fd, NULL, &sector_size))
1432 return 0;
1433 lseek(fd, sector_size, SEEK_SET);
1434 /* read GPT header */
1435 if (read(fd, &gpt, 512) != 512)
1436 return 0;
1437
1438 /* get the number of partition entries and the entry size */
1439 all_partitions = __le32_to_cpu(gpt.part_cnt);
1440 entry_size = __le32_to_cpu(gpt.part_size);
1441
1442 /* Check GPT signature*/
1443 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1444 return -1;
1445
1446 /* sanity checks */
1447 if (all_partitions > 1024 ||
1448 entry_size > sizeof(buf))
1449 return -1;
1450
1451 part = (struct GPT_part_entry *)buf;
1452
1453 /* set offset to third block (GPT entries) */
1454 lseek(fd, sector_size*2, SEEK_SET);
1455 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1456 /* read partition entry */
1457 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1458 return 0;
1459
1460 /* is this valid partition? */
1461 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1462 /* check the last lba for the current partition */
1463 curr_part_end = __le64_to_cpu(part->ending_lba);
1464 if (curr_part_end > *endofpart)
1465 *endofpart = curr_part_end;
1466 }
1467
1468 }
1469 return 1;
1470 }
1471
1472 /* Sets endofpart parameter to the last block used by the last partition on the device.
1473 * Returns: 1 if successful
1474 * -1 for unknown partition type
1475 * 0 for other errors
1476 */
1477 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1478 {
1479 struct MBR boot_sect;
1480 unsigned long long curr_part_end;
1481 unsigned part_nr;
1482 unsigned int sector_size;
1483 int retval = 0;
1484
1485 *endofpart = 0;
1486
1487 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1488 /* read MBR */
1489 lseek(fd, 0, 0);
1490 if (read(fd, &boot_sect, 512) != 512)
1491 goto abort;
1492
1493 /* check MBP signature */
1494 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1495 retval = 1;
1496 /* found the correct signature */
1497
1498 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1499 /*
1500 * Have to make every access through boot_sect rather
1501 * than using a pointer to the partition table (or an
1502 * entry), since the entries are not properly aligned.
1503 */
1504
1505 /* check for GPT type */
1506 if (boot_sect.parts[part_nr].part_type ==
1507 MBR_GPT_PARTITION_TYPE) {
1508 retval = get_gpt_last_partition_end(fd, endofpart);
1509 break;
1510 }
1511 /* check the last used lba for the current partition */
1512 curr_part_end =
1513 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1514 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1515 if (curr_part_end > *endofpart)
1516 *endofpart = curr_part_end;
1517 }
1518 } else {
1519 /* Unknown partition table */
1520 retval = -1;
1521 }
1522 /* calculate number of 512-byte blocks */
1523 if (get_dev_sector_size(fd, NULL, &sector_size))
1524 *endofpart *= (sector_size / 512);
1525 abort:
1526 return retval;
1527 }
1528
1529 int check_partitions(int fd, char *dname, unsigned long long freesize,
1530 unsigned long long size)
1531 {
1532 /*
1533 * Check where the last partition ends
1534 */
1535 unsigned long long endofpart;
1536
1537 if (get_last_partition_end(fd, &endofpart) > 0) {
1538 /* There appears to be a partition table here */
1539 if (freesize == 0) {
1540 /* partitions will not be visible in new device */
1541 pr_err("partition table exists on %s but will be lost or\n"
1542 " meaningless after creating array\n",
1543 dname);
1544 return 1;
1545 } else if (endofpart > freesize) {
1546 /* last partition overlaps metadata */
1547 pr_err("metadata will over-write last partition on %s.\n",
1548 dname);
1549 return 1;
1550 } else if (size && endofpart > size) {
1551 /* partitions will be truncated in new device */
1552 pr_err("array size is too small to cover all partitions on %s.\n",
1553 dname);
1554 return 1;
1555 }
1556 }
1557 return 0;
1558 }
1559
1560 int open_container(int fd)
1561 {
1562 /* 'fd' is a block device. Find out if it is in use
1563 * by a container, and return an open fd on that container.
1564 */
1565 char path[256];
1566 char *e;
1567 DIR *dir;
1568 struct dirent *de;
1569 int dfd, n;
1570 char buf[200];
1571 int major, minor;
1572 struct stat st;
1573
1574 if (fstat(fd, &st) != 0)
1575 return -1;
1576 sprintf(path, "/sys/dev/block/%d:%d/holders",
1577 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1578 e = path + strlen(path);
1579
1580 dir = opendir(path);
1581 if (!dir)
1582 return -1;
1583 while ((de = readdir(dir))) {
1584 if (de->d_ino == 0)
1585 continue;
1586 if (de->d_name[0] == '.')
1587 continue;
1588 /* Need to make sure it is a container and not a volume */
1589 sprintf(e, "/%s/md/metadata_version", de->d_name);
1590 dfd = open(path, O_RDONLY);
1591 if (dfd < 0)
1592 continue;
1593 n = read(dfd, buf, sizeof(buf));
1594 close(dfd);
1595 if (n <= 0 || (unsigned)n >= sizeof(buf))
1596 continue;
1597 buf[n] = 0;
1598 if (strncmp(buf, "external", 8) != 0 ||
1599 n < 10 ||
1600 buf[9] == '/')
1601 continue;
1602 sprintf(e, "/%s/dev", de->d_name);
1603 dfd = open(path, O_RDONLY);
1604 if (dfd < 0)
1605 continue;
1606 n = read(dfd, buf, sizeof(buf));
1607 close(dfd);
1608 if (n <= 0 || (unsigned)n >= sizeof(buf))
1609 continue;
1610 buf[n] = 0;
1611 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1612 continue;
1613 sprintf(buf, "%d:%d", major, minor);
1614 dfd = dev_open(buf, O_RDONLY);
1615 if (dfd >= 0) {
1616 closedir(dir);
1617 return dfd;
1618 }
1619 }
1620 closedir(dir);
1621 return -1;
1622 }
1623
1624 struct superswitch *version_to_superswitch(char *vers)
1625 {
1626 int i;
1627
1628 for (i = 0; superlist[i]; i++) {
1629 struct superswitch *ss = superlist[i];
1630
1631 if (strcmp(vers, ss->name) == 0)
1632 return ss;
1633 }
1634
1635 return NULL;
1636 }
1637
1638 int metadata_container_matches(char *metadata, char *devnm)
1639 {
1640 /* Check if 'devnm' is the container named in 'metadata'
1641 * which is
1642 * /containername/componentname or
1643 * -containername/componentname
1644 */
1645 int l;
1646 if (*metadata != '/' && *metadata != '-')
1647 return 0;
1648 l = strlen(devnm);
1649 if (strncmp(metadata+1, devnm, l) != 0)
1650 return 0;
1651 if (metadata[l+1] != '/')
1652 return 0;
1653 return 1;
1654 }
1655
1656 int metadata_subdev_matches(char *metadata, char *devnm)
1657 {
1658 /* Check if 'devnm' is the subdev named in 'metadata'
1659 * which is
1660 * /containername/subdev or
1661 * -containername/subdev
1662 */
1663 char *sl;
1664 if (*metadata != '/' && *metadata != '-')
1665 return 0;
1666 sl = strchr(metadata+1, '/');
1667 if (!sl)
1668 return 0;
1669 if (strcmp(sl+1, devnm) == 0)
1670 return 1;
1671 return 0;
1672 }
1673
1674 int is_container_member(struct mdstat_ent *mdstat, char *container)
1675 {
1676 if (mdstat->metadata_version == NULL ||
1677 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1678 !metadata_container_matches(mdstat->metadata_version+9, container))
1679 return 0;
1680
1681 return 1;
1682 }
1683
1684 int is_subarray_active(char *subarray, char *container)
1685 {
1686 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1687 struct mdstat_ent *ent;
1688
1689 for (ent = mdstat; ent; ent = ent->next)
1690 if (is_container_member(ent, container))
1691 if (strcmp(to_subarray(ent, container), subarray) == 0)
1692 break;
1693
1694 free_mdstat(mdstat);
1695
1696 return ent != NULL;
1697 }
1698
1699 /* open_subarray - opens a subarray in a container
1700 * @dev: container device name
1701 * @st: empty supertype
1702 * @quiet: block reporting errors flag
1703 *
1704 * On success returns an fd to a container and fills in *st
1705 */
1706 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1707 {
1708 struct mdinfo *mdi;
1709 struct mdinfo *info;
1710 int fd, err = 1;
1711 char *_devnm;
1712
1713 fd = open(dev, O_RDWR|O_EXCL);
1714 if (fd < 0) {
1715 if (!quiet)
1716 pr_err("Couldn't open %s, aborting\n",
1717 dev);
1718 return -1;
1719 }
1720
1721 _devnm = fd2devnm(fd);
1722 if (_devnm == NULL) {
1723 if (!quiet)
1724 pr_err("Failed to determine device number for %s\n",
1725 dev);
1726 goto close_fd;
1727 }
1728 strcpy(st->devnm, _devnm);
1729
1730 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1731 if (!mdi) {
1732 if (!quiet)
1733 pr_err("Failed to read sysfs for %s\n",
1734 dev);
1735 goto close_fd;
1736 }
1737
1738 if (mdi->array.level != UnSet) {
1739 if (!quiet)
1740 pr_err("%s is not a container\n", dev);
1741 goto free_sysfs;
1742 }
1743
1744 st->ss = version_to_superswitch(mdi->text_version);
1745 if (!st->ss) {
1746 if (!quiet)
1747 pr_err("Operation not supported for %s metadata\n",
1748 mdi->text_version);
1749 goto free_sysfs;
1750 }
1751
1752 if (st->devnm[0] == 0) {
1753 if (!quiet)
1754 pr_err("Failed to allocate device name\n");
1755 goto free_sysfs;
1756 }
1757
1758 if (!st->ss->load_container) {
1759 if (!quiet)
1760 pr_err("%s is not a container\n", dev);
1761 goto free_sysfs;
1762 }
1763
1764 if (st->ss->load_container(st, fd, NULL)) {
1765 if (!quiet)
1766 pr_err("Failed to load metadata for %s\n",
1767 dev);
1768 goto free_sysfs;
1769 }
1770
1771 info = st->ss->container_content(st, subarray);
1772 if (!info) {
1773 if (!quiet)
1774 pr_err("Failed to find subarray-%s in %s\n",
1775 subarray, dev);
1776 goto free_super;
1777 }
1778 free(info);
1779
1780 err = 0;
1781
1782 free_super:
1783 if (err)
1784 st->ss->free_super(st);
1785 free_sysfs:
1786 sysfs_free(mdi);
1787 close_fd:
1788 if (err)
1789 close(fd);
1790
1791 if (err)
1792 return -1;
1793 else
1794 return fd;
1795 }
1796
1797 int add_disk(int mdfd, struct supertype *st,
1798 struct mdinfo *sra, struct mdinfo *info)
1799 {
1800 /* Add a device to an array, in one of 2 ways. */
1801 int rv;
1802
1803 if (st->ss->external) {
1804 if (info->disk.state & (1<<MD_DISK_SYNC))
1805 info->recovery_start = MaxSector;
1806 else
1807 info->recovery_start = 0;
1808 rv = sysfs_add_disk(sra, info, 0);
1809 if (! rv) {
1810 struct mdinfo *sd2;
1811 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1812 if (sd2 == info)
1813 break;
1814 if (sd2 == NULL) {
1815 sd2 = xmalloc(sizeof(*sd2));
1816 *sd2 = *info;
1817 sd2->next = sra->devs;
1818 sra->devs = sd2;
1819 }
1820 }
1821 } else
1822 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1823 return rv;
1824 }
1825
1826 int remove_disk(int mdfd, struct supertype *st,
1827 struct mdinfo *sra, struct mdinfo *info)
1828 {
1829 int rv;
1830
1831 /* Remove the disk given by 'info' from the array */
1832 if (st->ss->external)
1833 rv = sysfs_set_str(sra, info, "slot", "none");
1834 else
1835 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1836 info->disk.minor));
1837 return rv;
1838 }
1839
1840 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1841 {
1842 int cnt = force ? 500 : 5;
1843 int ret;
1844
1845 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1846 * outstanding IO requests to the device.
1847 * In this case, it can be helpful to wait a little while,
1848 * up to 5 seconds if 'force' is set, or 50 msec if not.
1849 */
1850 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1851 errno == EBUSY &&
1852 cnt-- > 0)
1853 usleep(10000);
1854
1855 return ret;
1856 }
1857
1858 int sys_hot_remove_disk(int statefd, int force)
1859 {
1860 int cnt = force ? 500 : 5;
1861 int ret;
1862
1863 while ((ret = write(statefd, "remove", 6)) == -1 &&
1864 errno == EBUSY &&
1865 cnt-- > 0)
1866 usleep(10000);
1867 return ret == 6 ? 0 : -1;
1868 }
1869
1870 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1871 {
1872 /* Initialise kernel's knowledge of array.
1873 * This varies between externally managed arrays
1874 * and older kernels
1875 */
1876 mdu_array_info_t inf;
1877 int rv;
1878
1879 if (st->ss->external)
1880 return sysfs_set_array(info, 9003);
1881
1882 memset(&inf, 0, sizeof(inf));
1883 inf.major_version = info->array.major_version;
1884 inf.minor_version = info->array.minor_version;
1885 rv = md_set_array_info(mdfd, &inf);
1886
1887 return rv;
1888 }
1889
1890 unsigned long long min_recovery_start(struct mdinfo *array)
1891 {
1892 /* find the minimum recovery_start in an array for metadata
1893 * formats that only record per-array recovery progress instead
1894 * of per-device
1895 */
1896 unsigned long long recovery_start = MaxSector;
1897 struct mdinfo *d;
1898
1899 for (d = array->devs; d; d = d->next)
1900 recovery_start = min(recovery_start, d->recovery_start);
1901
1902 return recovery_start;
1903 }
1904
1905 int mdmon_pid(char *devnm)
1906 {
1907 char path[100];
1908 char pid[10];
1909 int fd;
1910 int n;
1911
1912 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1913
1914 fd = open(path, O_RDONLY | O_NOATIME, 0);
1915
1916 if (fd < 0)
1917 return -1;
1918 n = read(fd, pid, 9);
1919 close(fd);
1920 if (n <= 0)
1921 return -1;
1922 return atoi(pid);
1923 }
1924
1925 int mdmon_running(char *devnm)
1926 {
1927 int pid = mdmon_pid(devnm);
1928 if (pid <= 0)
1929 return 0;
1930 if (kill(pid, 0) == 0)
1931 return 1;
1932 return 0;
1933 }
1934
1935 int start_mdmon(char *devnm)
1936 {
1937 int i, skipped;
1938 int len;
1939 pid_t pid;
1940 int status;
1941 char pathbuf[1024];
1942 char *paths[4] = {
1943 pathbuf,
1944 BINDIR "/mdmon",
1945 "./mdmon",
1946 NULL
1947 };
1948
1949 if (check_env("MDADM_NO_MDMON"))
1950 return 0;
1951
1952 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1953 if (len > 0) {
1954 char *sl;
1955 pathbuf[len] = 0;
1956 sl = strrchr(pathbuf, '/');
1957 if (sl)
1958 sl++;
1959 else
1960 sl = pathbuf;
1961 strcpy(sl, "mdmon");
1962 } else
1963 pathbuf[0] = '\0';
1964
1965 /* First try to run systemctl */
1966 if (!check_env("MDADM_NO_SYSTEMCTL"))
1967 switch(fork()) {
1968 case 0:
1969 /* FIXME yuk. CLOSE_EXEC?? */
1970 skipped = 0;
1971 for (i = 3; skipped < 20; i++)
1972 if (close(i) < 0)
1973 skipped++;
1974 else
1975 skipped = 0;
1976
1977 /* Don't want to see error messages from
1978 * systemctl. If the service doesn't exist,
1979 * we start mdmon ourselves.
1980 */
1981 close(2);
1982 open("/dev/null", O_WRONLY);
1983 snprintf(pathbuf, sizeof(pathbuf), "mdmon@%s.service",
1984 devnm);
1985 status = execl("/usr/bin/systemctl", "systemctl",
1986 "start",
1987 pathbuf, NULL);
1988 status = execl("/bin/systemctl", "systemctl", "start",
1989 pathbuf, NULL);
1990 exit(1);
1991 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1992 return -1;
1993 default: /* parent - good */
1994 pid = wait(&status);
1995 if (pid >= 0 && status == 0)
1996 return 0;
1997 }
1998
1999 /* That failed, try running mdmon directly */
2000 switch(fork()) {
2001 case 0:
2002 /* FIXME yuk. CLOSE_EXEC?? */
2003 skipped = 0;
2004 for (i = 3; skipped < 20; i++)
2005 if (close(i) < 0)
2006 skipped++;
2007 else
2008 skipped = 0;
2009
2010 for (i = 0; paths[i]; i++)
2011 if (paths[i][0]) {
2012 execl(paths[i], paths[i],
2013 devnm, NULL);
2014 }
2015 exit(1);
2016 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
2017 return -1;
2018 default: /* parent - good */
2019 pid = wait(&status);
2020 if (pid < 0 || status != 0) {
2021 pr_err("failed to launch mdmon. Array remains readonly\n");
2022 return -1;
2023 }
2024 }
2025 return 0;
2026 }
2027
2028 __u32 random32(void)
2029 {
2030 __u32 rv;
2031 int rfd = open("/dev/urandom", O_RDONLY);
2032 if (rfd < 0 || read(rfd, &rv, 4) != 4)
2033 rv = random();
2034 if (rfd >= 0)
2035 close(rfd);
2036 return rv;
2037 }
2038
2039 void random_uuid(__u8 *buf)
2040 {
2041 int fd, i, len;
2042 __u32 r[4];
2043
2044 fd = open("/dev/urandom", O_RDONLY);
2045 if (fd < 0)
2046 goto use_random;
2047 len = read(fd, buf, 16);
2048 close(fd);
2049 if (len != 16)
2050 goto use_random;
2051
2052 return;
2053
2054 use_random:
2055 for (i = 0; i < 4; i++)
2056 r[i] = random();
2057 memcpy(buf, r, 16);
2058 }
2059
2060 int flush_metadata_updates(struct supertype *st)
2061 {
2062 int sfd;
2063 if (!st->updates) {
2064 st->update_tail = NULL;
2065 return -1;
2066 }
2067
2068 sfd = connect_monitor(st->container_devnm);
2069 if (sfd < 0)
2070 return -1;
2071
2072 while (st->updates) {
2073 struct metadata_update *mu = st->updates;
2074 st->updates = mu->next;
2075
2076 send_message(sfd, mu, 0);
2077 wait_reply(sfd, 0);
2078 free(mu->buf);
2079 free(mu);
2080 }
2081 ack(sfd, 0);
2082 wait_reply(sfd, 0);
2083 close(sfd);
2084 st->update_tail = NULL;
2085 return 0;
2086 }
2087
2088 void append_metadata_update(struct supertype *st, void *buf, int len)
2089 {
2090
2091 struct metadata_update *mu = xmalloc(sizeof(*mu));
2092
2093 mu->buf = buf;
2094 mu->len = len;
2095 mu->space = NULL;
2096 mu->space_list = NULL;
2097 mu->next = NULL;
2098 *st->update_tail = mu;
2099 st->update_tail = &mu->next;
2100 }
2101
2102 #ifdef __TINYC__
2103 /* tinyc doesn't optimize this check in ioctl.h out ... */
2104 unsigned int __invalid_size_argument_for_IOC = 0;
2105 #endif
2106
2107 int experimental(void)
2108 {
2109 if (check_env("MDADM_EXPERIMENTAL"))
2110 return 1;
2111 else {
2112 pr_err("To use this feature MDADM_EXPERIMENTAL environment variable has to be defined.\n");
2113 return 0;
2114 }
2115 }
2116
2117 /* Pick all spares matching given criteria from a container
2118 * if min_size == 0 do not check size
2119 * if domlist == NULL do not check domains
2120 * if spare_group given add it to domains of each spare
2121 * metadata allows to test domains using metadata of destination array */
2122 struct mdinfo *container_choose_spares(struct supertype *st,
2123 struct spare_criteria *criteria,
2124 struct domainlist *domlist,
2125 char *spare_group,
2126 const char *metadata, int get_one)
2127 {
2128 struct mdinfo *d, **dp, *disks = NULL;
2129
2130 /* get list of all disks in container */
2131 if (st->ss->getinfo_super_disks)
2132 disks = st->ss->getinfo_super_disks(st);
2133
2134 if (!disks)
2135 return disks;
2136 /* find spare devices on the list */
2137 dp = &disks->devs;
2138 disks->array.spare_disks = 0;
2139 while (*dp) {
2140 int found = 0;
2141 d = *dp;
2142 if (d->disk.state == 0) {
2143 /* check if size is acceptable */
2144 unsigned long long dev_size;
2145 unsigned int dev_sector_size;
2146 int size_valid = 0;
2147 int sector_size_valid = 0;
2148
2149 dev_t dev = makedev(d->disk.major,d->disk.minor);
2150
2151 if (!criteria->min_size ||
2152 (dev_size_from_id(dev, &dev_size) &&
2153 dev_size >= criteria->min_size))
2154 size_valid = 1;
2155
2156 if (!criteria->sector_size ||
2157 (dev_sector_size_from_id(dev, &dev_sector_size) &&
2158 criteria->sector_size == dev_sector_size))
2159 sector_size_valid = 1;
2160
2161 found = size_valid && sector_size_valid;
2162
2163 /* check if domain matches */
2164 if (found && domlist) {
2165 struct dev_policy *pol = devid_policy(dev);
2166 if (spare_group)
2167 pol_add(&pol, pol_domain,
2168 spare_group, NULL);
2169 if (domain_test(domlist, pol, metadata) != 1)
2170 found = 0;
2171 dev_policy_free(pol);
2172 }
2173 }
2174 if (found) {
2175 dp = &d->next;
2176 disks->array.spare_disks++;
2177 if (get_one) {
2178 sysfs_free(*dp);
2179 d->next = NULL;
2180 }
2181 } else {
2182 *dp = d->next;
2183 d->next = NULL;
2184 sysfs_free(d);
2185 }
2186 }
2187 return disks;
2188 }
2189
2190 /* Checks if paths point to the same device
2191 * Returns 0 if they do.
2192 * Returns 1 if they don't.
2193 * Returns -1 if something went wrong,
2194 * e.g. paths are empty or the files
2195 * they point to don't exist */
2196 int compare_paths (char* path1, char* path2)
2197 {
2198 struct stat st1,st2;
2199
2200 if (path1 == NULL || path2 == NULL)
2201 return -1;
2202 if (stat(path1,&st1) != 0)
2203 return -1;
2204 if (stat(path2,&st2) != 0)
2205 return -1;
2206 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2207 return 0;
2208 return 1;
2209 }
2210
2211 /* Make sure we can open as many devices as needed */
2212 void enable_fds(int devices)
2213 {
2214 unsigned int fds = 20 + devices;
2215 struct rlimit lim;
2216 if (getrlimit(RLIMIT_NOFILE, &lim) != 0
2217 || lim.rlim_cur >= fds)
2218 return;
2219 if (lim.rlim_max < fds)
2220 lim.rlim_max = fds;
2221 lim.rlim_cur = fds;
2222 setrlimit(RLIMIT_NOFILE, &lim);
2223 }
2224
2225 int in_initrd(void)
2226 {
2227 /* This is based on similar function in systemd. */
2228 struct statfs s;
2229 /* statfs.f_type is signed long on s390x and MIPS, causing all
2230 sorts of sign extension problems with RAMFS_MAGIC being
2231 defined as 0x858458f6 */
2232 return statfs("/", &s) >= 0 &&
2233 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2234 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2235 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2236 }
2237
2238 void reopen_mddev(int mdfd)
2239 {
2240 /* Re-open without any O_EXCL, but keep
2241 * the same fd
2242 */
2243 char *devnm;
2244 int fd;
2245 devnm = fd2devnm(mdfd);
2246 close(mdfd);
2247 fd = open_dev(devnm);
2248 if (fd >= 0 && fd != mdfd)
2249 dup2(fd, mdfd);
2250 }
2251
2252 static struct cmap_hooks *cmap_hooks = NULL;
2253 static int is_cmap_hooks_ready = 0;
2254
2255 void set_cmap_hooks(void)
2256 {
2257 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2258 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2259 if (!cmap_hooks->cmap_handle)
2260 return;
2261
2262 cmap_hooks->initialize = dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2263 cmap_hooks->get_string = dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2264 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2265
2266 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2267 !cmap_hooks->finalize)
2268 dlclose(cmap_hooks->cmap_handle);
2269 else
2270 is_cmap_hooks_ready = 1;
2271 }
2272
2273 int get_cluster_name(char **cluster_name)
2274 {
2275 int rv = -1;
2276 cmap_handle_t handle;
2277
2278 if (!is_cmap_hooks_ready)
2279 return rv;
2280
2281 rv = cmap_hooks->initialize(&handle);
2282 if (rv != CS_OK)
2283 goto out;
2284
2285 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2286 if (rv != CS_OK) {
2287 free(*cluster_name);
2288 rv = -1;
2289 goto name_err;
2290 }
2291
2292 rv = 0;
2293 name_err:
2294 cmap_hooks->finalize(handle);
2295 out:
2296 return rv;
2297 }
2298
2299 void set_dlm_hooks(void)
2300 {
2301 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2302 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2303 if (!dlm_hooks->dlm_handle)
2304 return;
2305
2306 dlm_hooks->create_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2307 dlm_hooks->release_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2308 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2309 dlm_hooks->ls_unlock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock");
2310 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2311 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2312
2313 if (!dlm_hooks->create_lockspace || !dlm_hooks->ls_lock ||
2314 !dlm_hooks->ls_unlock || !dlm_hooks->release_lockspace ||
2315 !dlm_hooks->ls_get_fd || !dlm_hooks->dispatch)
2316 dlclose(dlm_hooks->dlm_handle);
2317 else
2318 is_dlm_hooks_ready = 1;
2319 }
2320
2321 void set_hooks(void)
2322 {
2323 set_dlm_hooks();
2324 set_cmap_hooks();
2325 }