]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
11ff2ccba70e8e56bbdb550d96efcada86671b58
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <linux/magic.h>
34 #include <poll.h>
35 #include <ctype.h>
36 #include <dirent.h>
37 #include <signal.h>
38 #include <dlfcn.h>
39
40
41 /*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46 #define BLKPG _IO(0x12,105)
47
48 /* The argument structure */
49 struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54 };
55
56 /* The subfunctions (for the op field) */
57 #define BLKPG_ADD_PARTITION 1
58 #define BLKPG_DEL_PARTITION 2
59
60 /* Sizes of name fields. Unused at present. */
61 #define BLKPG_DEVNAMELTH 64
62 #define BLKPG_VOLNAMELTH 64
63
64 /* The data structure for ADD_PARTITION and DEL_PARTITION */
65 struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72 };
73
74 #include "part.h"
75
76 /* Force a compilation error if condition is true */
77 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79 /* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85 static int is_dlm_hooks_ready = 0;
86
87 int dlm_funs_ready(void)
88 {
89 return is_dlm_hooks_ready ? 1 : 0;
90 }
91
92 static struct dlm_hooks *dlm_hooks = NULL;
93 struct dlm_lock_resource *dlm_lock_res = NULL;
94 static int ast_called = 0;
95
96 struct dlm_lock_resource {
97 dlm_lshandle_t *ls;
98 struct dlm_lksb lksb;
99 };
100
101 /* Using poll(2) to wait for and dispatch ASTs */
102 static int poll_for_ast(dlm_lshandle_t ls)
103 {
104 struct pollfd pfd;
105
106 pfd.fd = dlm_hooks->ls_get_fd(ls);
107 pfd.events = POLLIN;
108
109 while (!ast_called)
110 {
111 if (poll(&pfd, 1, 0) < 0)
112 {
113 perror("poll");
114 return -1;
115 }
116 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
117 }
118 ast_called = 0;
119
120 return 0;
121 }
122
123 static void dlm_ast(void *arg)
124 {
125 ast_called = 1;
126 }
127
128 static char *cluster_name = NULL;
129 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
130 int cluster_get_dlmlock(int *lockid)
131 {
132 int ret = -1;
133 char str[64];
134 int flags = LKF_NOQUEUE;
135
136 ret = get_cluster_name(&cluster_name);
137 if (ret) {
138 pr_err("The md can't get cluster name\n");
139 return -1;
140 }
141
142 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
143 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
144 if (!dlm_lock_res->ls) {
145 pr_err("%s failed to create lockspace\n", cluster_name);
146 return -ENOMEM;
147 }
148
149 snprintf(str, 64, "bitmap%s", cluster_name);
150 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE, &dlm_lock_res->lksb,
151 flags, str, strlen(str), 0, dlm_ast,
152 dlm_lock_res, NULL, NULL);
153 if (ret) {
154 pr_err("error %d when get PW mode on lock %s\n", errno, str);
155 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
156 return ret;
157 }
158
159 /* Wait for it to complete */
160 poll_for_ast(dlm_lock_res->ls);
161 *lockid = dlm_lock_res->lksb.sb_lkid;
162
163 return dlm_lock_res->lksb.sb_status;
164 }
165
166 int cluster_release_dlmlock(int lockid)
167 {
168 int ret = -1;
169
170 if (!cluster_name)
171 return -1;
172
173 ret = dlm_hooks->ls_unlock(dlm_lock_res->ls, lockid, 0,
174 &dlm_lock_res->lksb, dlm_lock_res);
175 if (ret) {
176 pr_err("error %d happened when unlock\n", errno);
177 /* XXX make sure the lock is unlocked eventually */
178 goto out;
179 }
180
181 /* Wait for it to complete */
182 poll_for_ast(dlm_lock_res->ls);
183
184 errno = dlm_lock_res->lksb.sb_status;
185 if (errno != EUNLOCK) {
186 pr_err("error %d happened in ast when unlock lockspace\n", errno);
187 /* XXX make sure the lockspace is unlocked eventually */
188 goto out;
189 }
190
191 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
192 if (ret) {
193 pr_err("error %d happened when release lockspace\n", errno);
194 /* XXX make sure the lockspace is released eventually */
195 goto out;
196 }
197 free(dlm_lock_res);
198
199 out:
200 return ret;
201 }
202
203 int md_array_valid(int fd)
204 {
205 struct mdinfo *sra;
206 int ret;
207
208 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
209 if (sra) {
210 if (sra->array_state != ARRAY_UNKNOWN_STATE)
211 ret = 0;
212 else
213 ret = -ENODEV;
214
215 free(sra);
216 } else {
217 /*
218 * GET_ARRAY_INFO doesn't provide access to the proper state
219 * information, so fallback to a basic check for raid_disks != 0
220 */
221 ret = ioctl(fd, RAID_VERSION);
222 }
223
224 return !ret;
225 }
226
227 int md_array_active(int fd)
228 {
229 struct mdinfo *sra;
230 struct mdu_array_info_s array;
231 int ret;
232
233 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
234 if (sra) {
235 if (sra->array_state != ARRAY_CLEAR &&
236 sra->array_state != ARRAY_INACTIVE &&
237 sra->array_state != ARRAY_UNKNOWN_STATE)
238 ret = 0;
239 else
240 ret = -ENODEV;
241
242 free(sra);
243 } else {
244 /*
245 * GET_ARRAY_INFO doesn't provide access to the proper state
246 * information, so fallback to a basic check for raid_disks != 0
247 */
248 ret = ioctl(fd, GET_ARRAY_INFO, &array);
249 }
250
251 return !ret;
252 }
253
254 /*
255 * Get array info from the kernel. Longer term we want to deprecate the
256 * ioctl and get it from sysfs.
257 */
258 int md_get_array_info(int fd, struct mdu_array_info_s *array)
259 {
260 return ioctl(fd, GET_ARRAY_INFO, array);
261 }
262
263 /*
264 * Set array info
265 */
266 int md_set_array_info(int fd, struct mdu_array_info_s *array)
267 {
268 return ioctl(fd, SET_ARRAY_INFO, array);
269 }
270
271 /*
272 * Get disk info from the kernel.
273 */
274 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
275 {
276 return ioctl(fd, GET_DISK_INFO, disk);
277 }
278
279 /*
280 * Parse a 128 bit uuid in 4 integers
281 * format is 32 hexx nibbles with options :.<space> separator
282 * If not exactly 32 hex digits are found, return 0
283 * else return 1
284 */
285 int parse_uuid(char *str, int uuid[4])
286 {
287 int hit = 0; /* number of Hex digIT */
288 int i;
289 char c;
290 for (i = 0; i < 4; i++)
291 uuid[i] = 0;
292
293 while ((c = *str++) != 0) {
294 int n;
295 if (c >= '0' && c <= '9')
296 n = c-'0';
297 else if (c >= 'a' && c <= 'f')
298 n = 10 + c - 'a';
299 else if (c >= 'A' && c <= 'F')
300 n = 10 + c - 'A';
301 else if (strchr(":. -", c))
302 continue;
303 else return 0;
304
305 if (hit<32) {
306 uuid[hit/8] <<= 4;
307 uuid[hit/8] += n;
308 }
309 hit++;
310 }
311 if (hit == 32)
312 return 1;
313 return 0;
314 }
315
316 int get_linux_version()
317 {
318 struct utsname name;
319 char *cp;
320 int a = 0, b = 0,c = 0;
321 if (uname(&name) <0)
322 return -1;
323
324 cp = name.release;
325 a = strtoul(cp, &cp, 10);
326 if (*cp == '.')
327 b = strtoul(cp+1, &cp, 10);
328 if (*cp == '.')
329 c = strtoul(cp+1, &cp, 10);
330
331 return (a*1000000)+(b*1000)+c;
332 }
333
334 int mdadm_version(char *version)
335 {
336 int a, b, c;
337 char *cp;
338
339 if (!version)
340 version = Version;
341
342 cp = strchr(version, '-');
343 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
344 return -1;
345 cp += 3;
346 a = strtoul(cp, &cp, 10);
347 if (*cp != '.')
348 return -1;
349 b = strtoul(cp+1, &cp, 10);
350 if (*cp == '.')
351 c = strtoul(cp+1, &cp, 10);
352 else
353 c = 0;
354 if (*cp != ' ' && *cp != '-')
355 return -1;
356 return (a*1000000)+(b*1000)+c;
357 }
358
359 unsigned long long parse_size(char *size)
360 {
361 /* parse 'size' which should be a number optionally
362 * followed by 'K', 'M', or 'G'.
363 * Without a suffix, K is assumed.
364 * Number returned is in sectors (half-K)
365 * INVALID_SECTORS returned on error.
366 */
367 char *c;
368 long long s = strtoll(size, &c, 10);
369 if (s > 0) {
370 switch (*c) {
371 case 'K':
372 c++;
373 default:
374 s *= 2;
375 break;
376 case 'M':
377 c++;
378 s *= 1024 * 2;
379 break;
380 case 'G':
381 c++;
382 s *= 1024 * 1024 * 2;
383 break;
384 case 's': /* sectors */
385 c++;
386 break;
387 }
388 } else
389 s = INVALID_SECTORS;
390 if (*c)
391 s = INVALID_SECTORS;
392 return s;
393 }
394
395 int parse_layout_10(char *layout)
396 {
397 int copies, rv;
398 char *cp;
399 /* Parse the layout string for raid10 */
400 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
401 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
402 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
403 copies > 200 ||
404 *cp)
405 return -1;
406 if (layout[0] == 'n')
407 rv = 256 + copies;
408 else if (layout[0] == 'o')
409 rv = 0x10000 + (copies<<8) + 1;
410 else
411 rv = 1 + (copies<<8);
412 return rv;
413 }
414
415 int parse_layout_faulty(char *layout)
416 {
417 /* Parse the layout string for 'faulty' */
418 int ln = strcspn(layout, "0123456789");
419 char *m = xstrdup(layout);
420 int mode;
421 m[ln] = 0;
422 mode = map_name(faultylayout, m);
423 if (mode == UnSet)
424 return -1;
425
426 return mode | (atoi(layout+ln)<< ModeShift);
427 }
428
429 long parse_num(char *num)
430 {
431 /* Either return a valid number, or -1 */
432 char *c;
433 long rv = strtol(num, &c, 10);
434 if (rv < 0 || *c || !num[0])
435 return -1;
436 else
437 return rv;
438 }
439
440 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
441 {
442 char *dev;
443 *slot = strtoul(input, &dev, 10);
444 if (dev == input || dev[0] != ':')
445 return -1;
446 *devname = dev+1;
447 return 0;
448 }
449
450 void remove_partitions(int fd)
451 {
452 /* remove partitions from this block devices.
453 * This is used for components added to an array
454 */
455 #ifdef BLKPG_DEL_PARTITION
456 struct blkpg_ioctl_arg a;
457 struct blkpg_partition p;
458
459 a.op = BLKPG_DEL_PARTITION;
460 a.data = (void*)&p;
461 a.datalen = sizeof(p);
462 a.flags = 0;
463 memset(a.data, 0, a.datalen);
464 for (p.pno = 0; p.pno < 16; p.pno++)
465 ioctl(fd, BLKPG, &a);
466 #endif
467 }
468
469 int test_partition(int fd)
470 {
471 /* Check if fd is a whole-disk or a partition.
472 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
473 * will return ENXIO on an invalid partition number.
474 */
475 struct blkpg_ioctl_arg a;
476 struct blkpg_partition p;
477 a.op = BLKPG_DEL_PARTITION;
478 a.data = (void*)&p;
479 a.datalen = sizeof(p);
480 a.flags = 0;
481 memset(a.data, 0, a.datalen);
482 p.pno = 1<<30;
483 if (ioctl(fd, BLKPG, &a) == 0)
484 /* Very unlikely, but not a partition */
485 return 0;
486 if (errno == ENXIO || errno == ENOTTY)
487 /* not a partition */
488 return 0;
489
490 return 1;
491 }
492
493 int test_partition_from_id(dev_t id)
494 {
495 char buf[20];
496 int fd, rv;
497
498 sprintf(buf, "%d:%d", major(id), minor(id));
499 fd = dev_open(buf, O_RDONLY);
500 if (fd < 0)
501 return -1;
502 rv = test_partition(fd);
503 close(fd);
504 return rv;
505 }
506
507 int enough(int level, int raid_disks, int layout, int clean, char *avail)
508 {
509 int copies, first;
510 int i;
511 int avail_disks = 0;
512
513 for (i = 0; i < raid_disks; i++)
514 avail_disks += !!avail[i];
515
516 switch (level) {
517 case 10:
518 /* This is the tricky one - we need to check
519 * which actual disks are present.
520 */
521 copies = (layout&255)* ((layout>>8) & 255);
522 first = 0;
523 do {
524 /* there must be one of the 'copies' form 'first' */
525 int n = copies;
526 int cnt = 0;
527 int this = first;
528 while (n--) {
529 if (avail[this])
530 cnt++;
531 this = (this+1) % raid_disks;
532 }
533 if (cnt == 0)
534 return 0;
535 first = (first+(layout&255)) % raid_disks;
536 } while (first != 0);
537 return 1;
538
539 case LEVEL_MULTIPATH:
540 return avail_disks>= 1;
541 case LEVEL_LINEAR:
542 case 0:
543 return avail_disks == raid_disks;
544 case 1:
545 return avail_disks >= 1;
546 case 4:
547 if (avail_disks == raid_disks - 1 &&
548 !avail[raid_disks - 1])
549 /* If just the parity device is missing, then we
550 * have enough, even if not clean
551 */
552 return 1;
553 /* FALL THROUGH */
554 case 5:
555 if (clean)
556 return avail_disks >= raid_disks-1;
557 else
558 return avail_disks >= raid_disks;
559 case 6:
560 if (clean)
561 return avail_disks >= raid_disks-2;
562 else
563 return avail_disks >= raid_disks;
564 default:
565 return 0;
566 }
567 }
568
569 const int uuid_zero[4] = { 0, 0, 0, 0 };
570
571 int same_uuid(int a[4], int b[4], int swapuuid)
572 {
573 if (swapuuid) {
574 /* parse uuids are hostendian.
575 * uuid's from some superblocks are big-ending
576 * if there is a difference, we need to swap..
577 */
578 unsigned char *ac = (unsigned char *)a;
579 unsigned char *bc = (unsigned char *)b;
580 int i;
581 for (i = 0; i < 16; i += 4) {
582 if (ac[i+0] != bc[i+3] ||
583 ac[i+1] != bc[i+2] ||
584 ac[i+2] != bc[i+1] ||
585 ac[i+3] != bc[i+0])
586 return 0;
587 }
588 return 1;
589 } else {
590 if (a[0]==b[0] &&
591 a[1]==b[1] &&
592 a[2]==b[2] &&
593 a[3]==b[3])
594 return 1;
595 return 0;
596 }
597 }
598
599 void copy_uuid(void *a, int b[4], int swapuuid)
600 {
601 if (swapuuid) {
602 /* parse uuids are hostendian.
603 * uuid's from some superblocks are big-ending
604 * if there is a difference, we need to swap..
605 */
606 unsigned char *ac = (unsigned char *)a;
607 unsigned char *bc = (unsigned char *)b;
608 int i;
609 for (i = 0; i < 16; i += 4) {
610 ac[i+0] = bc[i+3];
611 ac[i+1] = bc[i+2];
612 ac[i+2] = bc[i+1];
613 ac[i+3] = bc[i+0];
614 }
615 } else
616 memcpy(a, b, 16);
617 }
618
619 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
620 {
621 int i, j;
622 char uuid[16];
623 char *c = buf;
624 strcpy(c, "UUID-");
625 c += strlen(c);
626 copy_uuid(uuid, id, swap);
627 for (i = 0; i < 4; i++) {
628 if (i)
629 *c++ = sep;
630 for (j = 3; j >= 0; j--) {
631 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
632 c+= 2;
633 }
634 }
635 return buf;
636
637 }
638
639 char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep)
640 {
641 // dirty hack to work around an issue with super1 superblocks...
642 // super1 superblocks need swapuuid set in order for assembly to
643 // work, but can't have it set if we want this printout to match
644 // all the other uuid printouts in super1.c, so we force swapuuid
645 // to 1 to make our printout match the rest of super1
646 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 : st->ss->swapuuid, buf, sep);
647 }
648
649 int check_ext2(int fd, char *name)
650 {
651 /*
652 * Check for an ext2fs file system.
653 * Superblock is always 1K at 1K offset
654 *
655 * s_magic is le16 at 56 == 0xEF53
656 * report mtime - le32 at 44
657 * blocks - le32 at 4
658 * logblksize - le32 at 24
659 */
660 unsigned char sb[1024];
661 time_t mtime;
662 unsigned long long size;
663 int bsize;
664 if (lseek(fd, 1024,0)!= 1024)
665 return 0;
666 if (read(fd, sb, 1024)!= 1024)
667 return 0;
668 if (sb[56] != 0x53 || sb[57] != 0xef)
669 return 0;
670
671 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
672 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
673 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
674 size <<= bsize;
675 pr_err("%s appears to contain an ext2fs file system\n",
676 name);
677 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
678 return 1;
679 }
680
681 int check_reiser(int fd, char *name)
682 {
683 /*
684 * superblock is at 64K
685 * size is 1024;
686 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
687 *
688 */
689 unsigned char sb[1024];
690 unsigned long long size;
691 if (lseek(fd, 64*1024, 0) != 64*1024)
692 return 0;
693 if (read(fd, sb, 1024) != 1024)
694 return 0;
695 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
696 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
697 return 0;
698 pr_err("%s appears to contain a reiserfs file system\n",name);
699 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
700 cont_err("size = %lluK\n", size*4);
701
702 return 1;
703 }
704
705 int check_raid(int fd, char *name)
706 {
707 struct mdinfo info;
708 time_t crtime;
709 char *level;
710 struct supertype *st = guess_super(fd);
711
712 if (!st)
713 return 0;
714 if (st->ss->add_to_super != NULL) {
715 st->ss->load_super(st, fd, name);
716 /* Looks like a raid array .. */
717 pr_err("%s appears to be part of a raid array:\n", name);
718 st->ss->getinfo_super(st, &info, NULL);
719 st->ss->free_super(st);
720 crtime = info.array.ctime;
721 level = map_num(pers, info.array.level);
722 if (!level)
723 level = "-unknown-";
724 cont_err("level=%s devices=%d ctime=%s",
725 level, info.array.raid_disks, ctime(&crtime));
726 } else {
727 /* Looks like GPT or MBR */
728 pr_err("partition table exists on %s\n", name);
729 }
730 return 1;
731 }
732
733 int fstat_is_blkdev(int fd, char *devname, dev_t *rdev)
734 {
735 struct stat stb;
736
737 if (fstat(fd, &stb) != 0) {
738 pr_err("fstat failed for %s: %s\n", devname, strerror(errno));
739 return 0;
740 }
741 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
742 pr_err("%s is not a block device.\n", devname);
743 return 0;
744 }
745 if (rdev)
746 *rdev = stb.st_rdev;
747 return 1;
748 }
749
750 int stat_is_blkdev(char *devname, dev_t *rdev)
751 {
752 struct stat stb;
753
754 if (stat(devname, &stb) != 0) {
755 pr_err("stat failed for %s: %s\n", devname, strerror(errno));
756 return 0;
757 }
758 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
759 pr_err("%s is not a block device.\n", devname);
760 return 0;
761 }
762 if (rdev)
763 *rdev = stb.st_rdev;
764 return 1;
765 }
766
767 int ask(char *mesg)
768 {
769 char *add = "";
770 int i;
771 for (i = 0; i < 5; i++) {
772 char buf[100];
773 fprintf(stderr, "%s%s", mesg, add);
774 fflush(stderr);
775 if (fgets(buf, 100, stdin)==NULL)
776 return 0;
777 if (buf[0]=='y' || buf[0]=='Y')
778 return 1;
779 if (buf[0]=='n' || buf[0]=='N')
780 return 0;
781 add = "(y/n) ";
782 }
783 pr_err("assuming 'no'\n");
784 return 0;
785 }
786
787 int is_standard(char *dev, int *nump)
788 {
789 /* tests if dev is a "standard" md dev name.
790 * i.e if the last component is "/dNN" or "/mdNN",
791 * where NN is a string of digits
792 * Returns 1 if a partitionable standard,
793 * -1 if non-partitonable,
794 * 0 if not a standard name.
795 */
796 char *d = strrchr(dev, '/');
797 int type = 0;
798 int num;
799 if (!d)
800 return 0;
801 if (strncmp(d, "/d",2) == 0)
802 d += 2, type = 1; /* /dev/md/dN{pM} */
803 else if (strncmp(d, "/md_d", 5) == 0)
804 d += 5, type = 1; /* /dev/md_dN{pM} */
805 else if (strncmp(d, "/md", 3) == 0)
806 d += 3, type = -1; /* /dev/mdN */
807 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
808 d += 1, type = -1; /* /dev/md/N */
809 else
810 return 0;
811 if (!*d)
812 return 0;
813 num = atoi(d);
814 while (isdigit(*d))
815 d++;
816 if (*d)
817 return 0;
818 if (nump) *nump = num;
819
820 return type;
821 }
822
823 unsigned long calc_csum(void *super, int bytes)
824 {
825 unsigned long long newcsum = 0;
826 int i;
827 unsigned int csum;
828 unsigned int *superc = (unsigned int*) super;
829
830 for(i = 0; i < bytes/4; i++)
831 newcsum += superc[i];
832 csum = (newcsum& 0xffffffff) + (newcsum>>32);
833 #ifdef __alpha__
834 /* The in-kernel checksum calculation is always 16bit on
835 * the alpha, though it is 32 bit on i386...
836 * I wonder what it is elsewhere... (it uses an API in
837 * a way that it shouldn't).
838 */
839 csum = (csum & 0xffff) + (csum >> 16);
840 csum = (csum & 0xffff) + (csum >> 16);
841 #endif
842 return csum;
843 }
844
845 char *human_size(long long bytes)
846 {
847 static char buf[47];
848
849 /* We convert bytes to either centi-M{ega,ibi}bytes or
850 * centi-G{igi,ibi}bytes, with appropriate rounding,
851 * and then print 1/100th of those as a decimal.
852 * We allow upto 2048Megabytes before converting to
853 * gigabytes, as that shows more precision and isn't
854 * too large a number.
855 * Terabytes are not yet handled.
856 */
857
858 if (bytes < 5000*1024)
859 buf[0] = 0;
860 else if (bytes < 2*1024LL*1024LL*1024LL) {
861 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
862 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
863 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
864 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
865 } else {
866 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
867 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
868 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
869 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
870 }
871 return buf;
872 }
873
874 char *human_size_brief(long long bytes, int prefix)
875 {
876 static char buf[30];
877
878 /* We convert bytes to either centi-M{ega,ibi}bytes or
879 * centi-G{igi,ibi}bytes, with appropriate rounding,
880 * and then print 1/100th of those as a decimal.
881 * We allow upto 2048Megabytes before converting to
882 * gigabytes, as that shows more precision and isn't
883 * too large a number.
884 * Terabytes are not yet handled.
885 *
886 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
887 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
888 */
889
890 if (bytes < 5000*1024)
891 buf[0] = 0;
892 else if (prefix == IEC) {
893 if (bytes < 2*1024LL*1024LL*1024LL) {
894 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
895 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
896 cMiB/100, cMiB % 100);
897 } else {
898 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
899 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
900 cGiB/100, cGiB % 100);
901 }
902 }
903 else if (prefix == JEDEC) {
904 if (bytes < 2*1024LL*1024LL*1024LL) {
905 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
906 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
907 cMB/100, cMB % 100);
908 } else {
909 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
910 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
911 cGB/100, cGB % 100);
912 }
913 }
914 else
915 buf[0] = 0;
916
917 return buf;
918 }
919
920 void print_r10_layout(int layout)
921 {
922 int near = layout & 255;
923 int far = (layout >> 8) & 255;
924 int offset = (layout&0x10000);
925 char *sep = "";
926
927 if (near != 1) {
928 printf("%s near=%d", sep, near);
929 sep = ",";
930 }
931 if (far != 1)
932 printf("%s %s=%d", sep, offset?"offset":"far", far);
933 if (near*far == 1)
934 printf("NO REDUNDANCY");
935 }
936
937 unsigned long long calc_array_size(int level, int raid_disks, int layout,
938 int chunksize, unsigned long long devsize)
939 {
940 if (level == 1)
941 return devsize;
942 devsize &= ~(unsigned long long)((chunksize>>9)-1);
943 return get_data_disks(level, layout, raid_disks) * devsize;
944 }
945
946 int get_data_disks(int level, int layout, int raid_disks)
947 {
948 int data_disks = 0;
949 switch (level) {
950 case 0: data_disks = raid_disks;
951 break;
952 case 1: data_disks = 1;
953 break;
954 case 4:
955 case 5: data_disks = raid_disks - 1;
956 break;
957 case 6: data_disks = raid_disks - 2;
958 break;
959 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
960 break;
961 }
962
963 return data_disks;
964 }
965
966 dev_t devnm2devid(char *devnm)
967 {
968 /* First look in /sys/block/$DEVNM/dev for %d:%d
969 * If that fails, try parsing out a number
970 */
971 char path[100];
972 char *ep;
973 int fd;
974 int mjr,mnr;
975
976 sprintf(path, "/sys/block/%s/dev", devnm);
977 fd = open(path, O_RDONLY);
978 if (fd >= 0) {
979 char buf[20];
980 int n = read(fd, buf, sizeof(buf));
981 close(fd);
982 if (n > 0)
983 buf[n] = 0;
984 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
985 return makedev(mjr, mnr);
986 }
987 if (strncmp(devnm, "md_d", 4) == 0 &&
988 isdigit(devnm[4]) &&
989 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
990 ep > devnm && *ep == 0)
991 return makedev(get_mdp_major(), mnr << MdpMinorShift);
992
993 if (strncmp(devnm, "md", 2) == 0 &&
994 isdigit(devnm[2]) &&
995 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
996 ep > devnm && *ep == 0)
997 return makedev(MD_MAJOR, mnr);
998
999 return 0;
1000 }
1001
1002 char *get_md_name(char *devnm)
1003 {
1004 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
1005 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
1006
1007 static char devname[50];
1008 struct stat stb;
1009 dev_t rdev = devnm2devid(devnm);
1010 char *dn;
1011
1012 if (rdev == 0)
1013 return 0;
1014 if (strncmp(devnm, "md_", 3) == 0) {
1015 snprintf(devname, sizeof(devname), "/dev/md/%s",
1016 devnm + 3);
1017 if (stat(devname, &stb) == 0
1018 && (S_IFMT&stb.st_mode) == S_IFBLK
1019 && (stb.st_rdev == rdev))
1020 return devname;
1021 }
1022 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
1023 if (stat(devname, &stb) == 0
1024 && (S_IFMT&stb.st_mode) == S_IFBLK
1025 && (stb.st_rdev == rdev))
1026 return devname;
1027
1028 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
1029 if (stat(devname, &stb) == 0
1030 && (S_IFMT&stb.st_mode) == S_IFBLK
1031 && (stb.st_rdev == rdev))
1032 return devname;
1033
1034 dn = map_dev(major(rdev), minor(rdev), 0);
1035 if (dn)
1036 return dn;
1037 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
1038 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
1039 if (errno != EEXIST)
1040 return NULL;
1041
1042 if (stat(devname, &stb) == 0
1043 && (S_IFMT&stb.st_mode) == S_IFBLK
1044 && (stb.st_rdev == rdev))
1045 return devname;
1046 unlink(devname);
1047 return NULL;
1048 }
1049
1050 void put_md_name(char *name)
1051 {
1052 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1053 unlink(name);
1054 }
1055
1056 int get_maj_min(char *dev, int *major, int *minor)
1057 {
1058 char *e;
1059 *major = strtoul(dev, &e, 0);
1060 return (e > dev && *e == ':' && e[1] &&
1061 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1062 *e == 0);
1063 }
1064
1065 int dev_open(char *dev, int flags)
1066 {
1067 /* like 'open', but if 'dev' matches %d:%d, create a temp
1068 * block device and open that
1069 */
1070 int fd = -1;
1071 char devname[32];
1072 int major;
1073 int minor;
1074
1075 if (!dev)
1076 return -1;
1077 flags |= O_DIRECT;
1078
1079 if (get_maj_min(dev, &major, &minor)) {
1080 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1081 (int)getpid(), major, minor);
1082 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1083 fd = open(devname, flags);
1084 unlink(devname);
1085 }
1086 if (fd < 0) {
1087 /* Try /tmp as /dev appear to be read-only */
1088 snprintf(devname, sizeof(devname), "/tmp/.tmp.md.%d:%d:%d",
1089 (int)getpid(), major, minor);
1090 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1091 fd = open(devname, flags);
1092 unlink(devname);
1093 }
1094 }
1095 } else
1096 fd = open(dev, flags);
1097 return fd;
1098 }
1099
1100 int open_dev_flags(char *devnm, int flags)
1101 {
1102 dev_t devid;
1103 char buf[20];
1104
1105 devid = devnm2devid(devnm);
1106 sprintf(buf, "%d:%d", major(devid), minor(devid));
1107 return dev_open(buf, flags);
1108 }
1109
1110 int open_dev(char *devnm)
1111 {
1112 return open_dev_flags(devnm, O_RDONLY);
1113 }
1114
1115 int open_dev_excl(char *devnm)
1116 {
1117 char buf[20];
1118 int i;
1119 int flags = O_RDWR;
1120 dev_t devid = devnm2devid(devnm);
1121 long delay = 1000;
1122
1123 sprintf(buf, "%d:%d", major(devid), minor(devid));
1124 for (i = 0; i < 25; i++) {
1125 int fd = dev_open(buf, flags|O_EXCL);
1126 if (fd >= 0)
1127 return fd;
1128 if (errno == EACCES && flags == O_RDWR) {
1129 flags = O_RDONLY;
1130 continue;
1131 }
1132 if (errno != EBUSY)
1133 return fd;
1134 usleep(delay);
1135 if (delay < 200000)
1136 delay *= 2;
1137 }
1138 return -1;
1139 }
1140
1141 int same_dev(char *one, char *two)
1142 {
1143 struct stat st1, st2;
1144 if (stat(one, &st1) != 0)
1145 return 0;
1146 if (stat(two, &st2) != 0)
1147 return 0;
1148 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1149 return 0;
1150 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1151 return 0;
1152 return st1.st_rdev == st2.st_rdev;
1153 }
1154
1155 void wait_for(char *dev, int fd)
1156 {
1157 int i;
1158 struct stat stb_want;
1159 long delay = 1000;
1160
1161 if (fstat(fd, &stb_want) != 0 ||
1162 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1163 return;
1164
1165 for (i = 0; i < 25; i++) {
1166 struct stat stb;
1167 if (stat(dev, &stb) == 0 &&
1168 (stb.st_mode & S_IFMT) == S_IFBLK &&
1169 (stb.st_rdev == stb_want.st_rdev))
1170 return;
1171 usleep(delay);
1172 if (delay < 200000)
1173 delay *= 2;
1174 }
1175 if (i == 25)
1176 dprintf("timeout waiting for %s\n", dev);
1177 }
1178
1179 struct superswitch *superlist[] =
1180 {
1181 &super0, &super1,
1182 &super_ddf, &super_imsm,
1183 &mbr, &gpt,
1184 NULL
1185 };
1186
1187 struct supertype *super_by_fd(int fd, char **subarrayp)
1188 {
1189 mdu_array_info_t array;
1190 int vers;
1191 int minor;
1192 struct supertype *st = NULL;
1193 struct mdinfo *sra;
1194 char *verstr;
1195 char version[20];
1196 int i;
1197 char *subarray = NULL;
1198 char container[32] = "";
1199
1200 sra = sysfs_read(fd, NULL, GET_VERSION);
1201
1202 if (sra) {
1203 vers = sra->array.major_version;
1204 minor = sra->array.minor_version;
1205 verstr = sra->text_version;
1206 } else {
1207 if (md_get_array_info(fd, &array))
1208 array.major_version = array.minor_version = 0;
1209 vers = array.major_version;
1210 minor = array.minor_version;
1211 verstr = "";
1212 }
1213
1214 if (vers != -1) {
1215 sprintf(version, "%d.%d", vers, minor);
1216 verstr = version;
1217 }
1218 if (minor == -2 && is_subarray(verstr)) {
1219 char *dev = verstr+1;
1220
1221 subarray = strchr(dev, '/');
1222 if (subarray) {
1223 *subarray++ = '\0';
1224 subarray = xstrdup(subarray);
1225 }
1226 strcpy(container, dev);
1227 sysfs_free(sra);
1228 sra = sysfs_read(-1, container, GET_VERSION);
1229 if (sra && sra->text_version[0])
1230 verstr = sra->text_version;
1231 else
1232 verstr = "-no-metadata-";
1233 }
1234
1235 for (i = 0; st == NULL && superlist[i]; i++)
1236 st = superlist[i]->match_metadata_desc(verstr);
1237
1238 sysfs_free(sra);
1239 if (st) {
1240 st->sb = NULL;
1241 if (subarrayp)
1242 *subarrayp = subarray;
1243 strcpy(st->container_devnm, container);
1244 strcpy(st->devnm, fd2devnm(fd));
1245 } else
1246 free(subarray);
1247
1248 return st;
1249 }
1250
1251 int dev_size_from_id(dev_t id, unsigned long long *size)
1252 {
1253 char buf[20];
1254 int fd;
1255
1256 sprintf(buf, "%d:%d", major(id), minor(id));
1257 fd = dev_open(buf, O_RDONLY);
1258 if (fd < 0)
1259 return 0;
1260 if (get_dev_size(fd, NULL, size)) {
1261 close(fd);
1262 return 1;
1263 }
1264 close(fd);
1265 return 0;
1266 }
1267
1268 struct supertype *dup_super(struct supertype *orig)
1269 {
1270 struct supertype *st;
1271
1272 if (!orig)
1273 return orig;
1274 st = xcalloc(1, sizeof(*st));
1275 st->ss = orig->ss;
1276 st->max_devs = orig->max_devs;
1277 st->minor_version = orig->minor_version;
1278 st->ignore_hw_compat = orig->ignore_hw_compat;
1279 st->data_offset = orig->data_offset;
1280 st->sb = NULL;
1281 st->info = NULL;
1282 return st;
1283 }
1284
1285 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1286 {
1287 /* try each load_super to find the best match,
1288 * and return the best superswitch
1289 */
1290 struct superswitch *ss;
1291 struct supertype *st;
1292 unsigned int besttime = 0;
1293 int bestsuper = -1;
1294 int i;
1295
1296 st = xcalloc(1, sizeof(*st));
1297 st->container_devnm[0] = 0;
1298
1299 for (i = 0; superlist[i]; i++) {
1300 int rv;
1301 ss = superlist[i];
1302 if (guess_type == guess_array && ss->add_to_super == NULL)
1303 continue;
1304 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1305 continue;
1306 memset(st, 0, sizeof(*st));
1307 st->ignore_hw_compat = 1;
1308 rv = ss->load_super(st, fd, NULL);
1309 if (rv == 0) {
1310 struct mdinfo info;
1311 st->ss->getinfo_super(st, &info, NULL);
1312 if (bestsuper == -1 ||
1313 besttime < info.array.ctime) {
1314 bestsuper = i;
1315 besttime = info.array.ctime;
1316 }
1317 ss->free_super(st);
1318 }
1319 }
1320 if (bestsuper != -1) {
1321 int rv;
1322 memset(st, 0, sizeof(*st));
1323 st->ignore_hw_compat = 1;
1324 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1325 if (rv == 0) {
1326 superlist[bestsuper]->free_super(st);
1327 return st;
1328 }
1329 }
1330 free(st);
1331 return NULL;
1332 }
1333
1334 /* Return size of device in bytes */
1335 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1336 {
1337 unsigned long long ldsize;
1338 struct stat st;
1339
1340 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1341 ldsize = (unsigned long long)st.st_size;
1342 else
1343 #ifdef BLKGETSIZE64
1344 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1345 #endif
1346 {
1347 unsigned long dsize;
1348 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1349 ldsize = dsize;
1350 ldsize <<= 9;
1351 } else {
1352 if (dname)
1353 pr_err("Cannot get size of %s: %s\n",
1354 dname, strerror(errno));
1355 return 0;
1356 }
1357 }
1358 *sizep = ldsize;
1359 return 1;
1360 }
1361
1362 /* Return sector size of device in bytes */
1363 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1364 {
1365 unsigned int sectsize;
1366
1367 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1368 if (dname)
1369 pr_err("Cannot get sector size of %s: %s\n",
1370 dname, strerror(errno));
1371 return 0;
1372 }
1373
1374 *sectsizep = sectsize;
1375 return 1;
1376 }
1377
1378 /* Return true if this can only be a container, not a member device.
1379 * i.e. is and md device and size is zero
1380 */
1381 int must_be_container(int fd)
1382 {
1383 struct mdinfo *mdi;
1384 unsigned long long size;
1385
1386 mdi = sysfs_read(fd, NULL, GET_VERSION);
1387 if (!mdi)
1388 return 0;
1389 sysfs_free(mdi);
1390
1391 if (get_dev_size(fd, NULL, &size) == 0)
1392 return 1;
1393 if (size == 0)
1394 return 1;
1395 return 0;
1396 }
1397
1398 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1399 * Returns: 1 if successful
1400 * -1 for unknown partition type
1401 * 0 for other errors
1402 */
1403 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1404 {
1405 struct GPT gpt;
1406 unsigned char empty_gpt_entry[16]= {0};
1407 struct GPT_part_entry *part;
1408 char buf[512];
1409 unsigned long long curr_part_end;
1410 unsigned all_partitions, entry_size;
1411 unsigned part_nr;
1412 unsigned int sector_size = 0;
1413
1414 *endofpart = 0;
1415
1416 BUILD_BUG_ON(sizeof(gpt) != 512);
1417 /* skip protective MBR */
1418 if (!get_dev_sector_size(fd, NULL, &sector_size))
1419 return 0;
1420 lseek(fd, sector_size, SEEK_SET);
1421 /* read GPT header */
1422 if (read(fd, &gpt, 512) != 512)
1423 return 0;
1424
1425 /* get the number of partition entries and the entry size */
1426 all_partitions = __le32_to_cpu(gpt.part_cnt);
1427 entry_size = __le32_to_cpu(gpt.part_size);
1428
1429 /* Check GPT signature*/
1430 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1431 return -1;
1432
1433 /* sanity checks */
1434 if (all_partitions > 1024 ||
1435 entry_size > sizeof(buf))
1436 return -1;
1437
1438 part = (struct GPT_part_entry *)buf;
1439
1440 /* set offset to third block (GPT entries) */
1441 lseek(fd, sector_size*2, SEEK_SET);
1442 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1443 /* read partition entry */
1444 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1445 return 0;
1446
1447 /* is this valid partition? */
1448 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1449 /* check the last lba for the current partition */
1450 curr_part_end = __le64_to_cpu(part->ending_lba);
1451 if (curr_part_end > *endofpart)
1452 *endofpart = curr_part_end;
1453 }
1454
1455 }
1456 return 1;
1457 }
1458
1459 /* Sets endofpart parameter to the last block used by the last partition on the device.
1460 * Returns: 1 if successful
1461 * -1 for unknown partition type
1462 * 0 for other errors
1463 */
1464 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1465 {
1466 struct MBR boot_sect;
1467 unsigned long long curr_part_end;
1468 unsigned part_nr;
1469 unsigned int sector_size;
1470 int retval = 0;
1471
1472 *endofpart = 0;
1473
1474 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1475 /* read MBR */
1476 lseek(fd, 0, 0);
1477 if (read(fd, &boot_sect, 512) != 512)
1478 goto abort;
1479
1480 /* check MBP signature */
1481 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1482 retval = 1;
1483 /* found the correct signature */
1484
1485 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1486 /*
1487 * Have to make every access through boot_sect rather
1488 * than using a pointer to the partition table (or an
1489 * entry), since the entries are not properly aligned.
1490 */
1491
1492 /* check for GPT type */
1493 if (boot_sect.parts[part_nr].part_type ==
1494 MBR_GPT_PARTITION_TYPE) {
1495 retval = get_gpt_last_partition_end(fd, endofpart);
1496 break;
1497 }
1498 /* check the last used lba for the current partition */
1499 curr_part_end =
1500 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1501 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1502 if (curr_part_end > *endofpart)
1503 *endofpart = curr_part_end;
1504 }
1505 } else {
1506 /* Unknown partition table */
1507 retval = -1;
1508 }
1509 /* calculate number of 512-byte blocks */
1510 if (get_dev_sector_size(fd, NULL, &sector_size))
1511 *endofpart *= (sector_size / 512);
1512 abort:
1513 return retval;
1514 }
1515
1516 int check_partitions(int fd, char *dname, unsigned long long freesize,
1517 unsigned long long size)
1518 {
1519 /*
1520 * Check where the last partition ends
1521 */
1522 unsigned long long endofpart;
1523
1524 if (get_last_partition_end(fd, &endofpart) > 0) {
1525 /* There appears to be a partition table here */
1526 if (freesize == 0) {
1527 /* partitions will not be visible in new device */
1528 pr_err("partition table exists on %s but will be lost or\n"
1529 " meaningless after creating array\n",
1530 dname);
1531 return 1;
1532 } else if (endofpart > freesize) {
1533 /* last partition overlaps metadata */
1534 pr_err("metadata will over-write last partition on %s.\n",
1535 dname);
1536 return 1;
1537 } else if (size && endofpart > size) {
1538 /* partitions will be truncated in new device */
1539 pr_err("array size is too small to cover all partitions on %s.\n",
1540 dname);
1541 return 1;
1542 }
1543 }
1544 return 0;
1545 }
1546
1547 int open_container(int fd)
1548 {
1549 /* 'fd' is a block device. Find out if it is in use
1550 * by a container, and return an open fd on that container.
1551 */
1552 char path[256];
1553 char *e;
1554 DIR *dir;
1555 struct dirent *de;
1556 int dfd, n;
1557 char buf[200];
1558 int major, minor;
1559 struct stat st;
1560
1561 if (fstat(fd, &st) != 0)
1562 return -1;
1563 sprintf(path, "/sys/dev/block/%d:%d/holders",
1564 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1565 e = path + strlen(path);
1566
1567 dir = opendir(path);
1568 if (!dir)
1569 return -1;
1570 while ((de = readdir(dir))) {
1571 if (de->d_ino == 0)
1572 continue;
1573 if (de->d_name[0] == '.')
1574 continue;
1575 /* Need to make sure it is a container and not a volume */
1576 sprintf(e, "/%s/md/metadata_version", de->d_name);
1577 dfd = open(path, O_RDONLY);
1578 if (dfd < 0)
1579 continue;
1580 n = read(dfd, buf, sizeof(buf));
1581 close(dfd);
1582 if (n <= 0 || (unsigned)n >= sizeof(buf))
1583 continue;
1584 buf[n] = 0;
1585 if (strncmp(buf, "external", 8) != 0 ||
1586 n < 10 ||
1587 buf[9] == '/')
1588 continue;
1589 sprintf(e, "/%s/dev", de->d_name);
1590 dfd = open(path, O_RDONLY);
1591 if (dfd < 0)
1592 continue;
1593 n = read(dfd, buf, sizeof(buf));
1594 close(dfd);
1595 if (n <= 0 || (unsigned)n >= sizeof(buf))
1596 continue;
1597 buf[n] = 0;
1598 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1599 continue;
1600 sprintf(buf, "%d:%d", major, minor);
1601 dfd = dev_open(buf, O_RDONLY);
1602 if (dfd >= 0) {
1603 closedir(dir);
1604 return dfd;
1605 }
1606 }
1607 closedir(dir);
1608 return -1;
1609 }
1610
1611 struct superswitch *version_to_superswitch(char *vers)
1612 {
1613 int i;
1614
1615 for (i = 0; superlist[i]; i++) {
1616 struct superswitch *ss = superlist[i];
1617
1618 if (strcmp(vers, ss->name) == 0)
1619 return ss;
1620 }
1621
1622 return NULL;
1623 }
1624
1625 int metadata_container_matches(char *metadata, char *devnm)
1626 {
1627 /* Check if 'devnm' is the container named in 'metadata'
1628 * which is
1629 * /containername/componentname or
1630 * -containername/componentname
1631 */
1632 int l;
1633 if (*metadata != '/' && *metadata != '-')
1634 return 0;
1635 l = strlen(devnm);
1636 if (strncmp(metadata+1, devnm, l) != 0)
1637 return 0;
1638 if (metadata[l+1] != '/')
1639 return 0;
1640 return 1;
1641 }
1642
1643 int metadata_subdev_matches(char *metadata, char *devnm)
1644 {
1645 /* Check if 'devnm' is the subdev named in 'metadata'
1646 * which is
1647 * /containername/subdev or
1648 * -containername/subdev
1649 */
1650 char *sl;
1651 if (*metadata != '/' && *metadata != '-')
1652 return 0;
1653 sl = strchr(metadata+1, '/');
1654 if (!sl)
1655 return 0;
1656 if (strcmp(sl+1, devnm) == 0)
1657 return 1;
1658 return 0;
1659 }
1660
1661 int is_container_member(struct mdstat_ent *mdstat, char *container)
1662 {
1663 if (mdstat->metadata_version == NULL ||
1664 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1665 !metadata_container_matches(mdstat->metadata_version+9, container))
1666 return 0;
1667
1668 return 1;
1669 }
1670
1671 int is_subarray_active(char *subarray, char *container)
1672 {
1673 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1674 struct mdstat_ent *ent;
1675
1676 for (ent = mdstat; ent; ent = ent->next)
1677 if (is_container_member(ent, container))
1678 if (strcmp(to_subarray(ent, container), subarray) == 0)
1679 break;
1680
1681 free_mdstat(mdstat);
1682
1683 return ent != NULL;
1684 }
1685
1686 /* open_subarray - opens a subarray in a container
1687 * @dev: container device name
1688 * @st: empty supertype
1689 * @quiet: block reporting errors flag
1690 *
1691 * On success returns an fd to a container and fills in *st
1692 */
1693 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1694 {
1695 struct mdinfo *mdi;
1696 struct mdinfo *info;
1697 int fd, err = 1;
1698 char *_devnm;
1699
1700 fd = open(dev, O_RDWR|O_EXCL);
1701 if (fd < 0) {
1702 if (!quiet)
1703 pr_err("Couldn't open %s, aborting\n",
1704 dev);
1705 return -1;
1706 }
1707
1708 _devnm = fd2devnm(fd);
1709 if (_devnm == NULL) {
1710 if (!quiet)
1711 pr_err("Failed to determine device number for %s\n",
1712 dev);
1713 goto close_fd;
1714 }
1715 strcpy(st->devnm, _devnm);
1716
1717 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1718 if (!mdi) {
1719 if (!quiet)
1720 pr_err("Failed to read sysfs for %s\n",
1721 dev);
1722 goto close_fd;
1723 }
1724
1725 if (mdi->array.level != UnSet) {
1726 if (!quiet)
1727 pr_err("%s is not a container\n", dev);
1728 goto free_sysfs;
1729 }
1730
1731 st->ss = version_to_superswitch(mdi->text_version);
1732 if (!st->ss) {
1733 if (!quiet)
1734 pr_err("Operation not supported for %s metadata\n",
1735 mdi->text_version);
1736 goto free_sysfs;
1737 }
1738
1739 if (st->devnm[0] == 0) {
1740 if (!quiet)
1741 pr_err("Failed to allocate device name\n");
1742 goto free_sysfs;
1743 }
1744
1745 if (!st->ss->load_container) {
1746 if (!quiet)
1747 pr_err("%s is not a container\n", dev);
1748 goto free_sysfs;
1749 }
1750
1751 if (st->ss->load_container(st, fd, NULL)) {
1752 if (!quiet)
1753 pr_err("Failed to load metadata for %s\n",
1754 dev);
1755 goto free_sysfs;
1756 }
1757
1758 info = st->ss->container_content(st, subarray);
1759 if (!info) {
1760 if (!quiet)
1761 pr_err("Failed to find subarray-%s in %s\n",
1762 subarray, dev);
1763 goto free_super;
1764 }
1765 free(info);
1766
1767 err = 0;
1768
1769 free_super:
1770 if (err)
1771 st->ss->free_super(st);
1772 free_sysfs:
1773 sysfs_free(mdi);
1774 close_fd:
1775 if (err)
1776 close(fd);
1777
1778 if (err)
1779 return -1;
1780 else
1781 return fd;
1782 }
1783
1784 int add_disk(int mdfd, struct supertype *st,
1785 struct mdinfo *sra, struct mdinfo *info)
1786 {
1787 /* Add a device to an array, in one of 2 ways. */
1788 int rv;
1789
1790 if (st->ss->external) {
1791 if (info->disk.state & (1<<MD_DISK_SYNC))
1792 info->recovery_start = MaxSector;
1793 else
1794 info->recovery_start = 0;
1795 rv = sysfs_add_disk(sra, info, 0);
1796 if (! rv) {
1797 struct mdinfo *sd2;
1798 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1799 if (sd2 == info)
1800 break;
1801 if (sd2 == NULL) {
1802 sd2 = xmalloc(sizeof(*sd2));
1803 *sd2 = *info;
1804 sd2->next = sra->devs;
1805 sra->devs = sd2;
1806 }
1807 }
1808 } else
1809 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1810 return rv;
1811 }
1812
1813 int remove_disk(int mdfd, struct supertype *st,
1814 struct mdinfo *sra, struct mdinfo *info)
1815 {
1816 int rv;
1817
1818 /* Remove the disk given by 'info' from the array */
1819 if (st->ss->external)
1820 rv = sysfs_set_str(sra, info, "slot", "none");
1821 else
1822 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1823 info->disk.minor));
1824 return rv;
1825 }
1826
1827 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1828 {
1829 int cnt = force ? 500 : 5;
1830 int ret;
1831
1832 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1833 * outstanding IO requests to the device.
1834 * In this case, it can be helpful to wait a little while,
1835 * up to 5 seconds if 'force' is set, or 50 msec if not.
1836 */
1837 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1838 errno == EBUSY &&
1839 cnt-- > 0)
1840 usleep(10000);
1841
1842 return ret;
1843 }
1844
1845 int sys_hot_remove_disk(int statefd, int force)
1846 {
1847 int cnt = force ? 500 : 5;
1848 int ret;
1849
1850 while ((ret = write(statefd, "remove", 6)) == -1 &&
1851 errno == EBUSY &&
1852 cnt-- > 0)
1853 usleep(10000);
1854 return ret == 6 ? 0 : -1;
1855 }
1856
1857 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1858 {
1859 /* Initialise kernel's knowledge of array.
1860 * This varies between externally managed arrays
1861 * and older kernels
1862 */
1863 mdu_array_info_t inf;
1864 int rv;
1865
1866 if (st->ss->external)
1867 return sysfs_set_array(info, 9003);
1868
1869 memset(&inf, 0, sizeof(inf));
1870 inf.major_version = info->array.major_version;
1871 inf.minor_version = info->array.minor_version;
1872 rv = md_set_array_info(mdfd, &inf);
1873
1874 return rv;
1875 }
1876
1877 unsigned long long min_recovery_start(struct mdinfo *array)
1878 {
1879 /* find the minimum recovery_start in an array for metadata
1880 * formats that only record per-array recovery progress instead
1881 * of per-device
1882 */
1883 unsigned long long recovery_start = MaxSector;
1884 struct mdinfo *d;
1885
1886 for (d = array->devs; d; d = d->next)
1887 recovery_start = min(recovery_start, d->recovery_start);
1888
1889 return recovery_start;
1890 }
1891
1892 int mdmon_pid(char *devnm)
1893 {
1894 char path[100];
1895 char pid[10];
1896 int fd;
1897 int n;
1898
1899 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1900
1901 fd = open(path, O_RDONLY | O_NOATIME, 0);
1902
1903 if (fd < 0)
1904 return -1;
1905 n = read(fd, pid, 9);
1906 close(fd);
1907 if (n <= 0)
1908 return -1;
1909 return atoi(pid);
1910 }
1911
1912 int mdmon_running(char *devnm)
1913 {
1914 int pid = mdmon_pid(devnm);
1915 if (pid <= 0)
1916 return 0;
1917 if (kill(pid, 0) == 0)
1918 return 1;
1919 return 0;
1920 }
1921
1922 int start_mdmon(char *devnm)
1923 {
1924 int i, skipped;
1925 int len;
1926 pid_t pid;
1927 int status;
1928 char pathbuf[1024];
1929 char *paths[4] = {
1930 pathbuf,
1931 BINDIR "/mdmon",
1932 "./mdmon",
1933 NULL
1934 };
1935
1936 if (check_env("MDADM_NO_MDMON"))
1937 return 0;
1938
1939 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1940 if (len > 0) {
1941 char *sl;
1942 pathbuf[len] = 0;
1943 sl = strrchr(pathbuf, '/');
1944 if (sl)
1945 sl++;
1946 else
1947 sl = pathbuf;
1948 strcpy(sl, "mdmon");
1949 } else
1950 pathbuf[0] = '\0';
1951
1952 /* First try to run systemctl */
1953 if (!check_env("MDADM_NO_SYSTEMCTL"))
1954 switch(fork()) {
1955 case 0:
1956 /* FIXME yuk. CLOSE_EXEC?? */
1957 skipped = 0;
1958 for (i = 3; skipped < 20; i++)
1959 if (close(i) < 0)
1960 skipped++;
1961 else
1962 skipped = 0;
1963
1964 /* Don't want to see error messages from
1965 * systemctl. If the service doesn't exist,
1966 * we start mdmon ourselves.
1967 */
1968 close(2);
1969 open("/dev/null", O_WRONLY);
1970 snprintf(pathbuf, sizeof(pathbuf), "mdmon@%s.service",
1971 devnm);
1972 status = execl("/usr/bin/systemctl", "systemctl",
1973 "start",
1974 pathbuf, NULL);
1975 status = execl("/bin/systemctl", "systemctl", "start",
1976 pathbuf, NULL);
1977 exit(1);
1978 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1979 return -1;
1980 default: /* parent - good */
1981 pid = wait(&status);
1982 if (pid >= 0 && status == 0)
1983 return 0;
1984 }
1985
1986 /* That failed, try running mdmon directly */
1987 switch(fork()) {
1988 case 0:
1989 /* FIXME yuk. CLOSE_EXEC?? */
1990 skipped = 0;
1991 for (i = 3; skipped < 20; i++)
1992 if (close(i) < 0)
1993 skipped++;
1994 else
1995 skipped = 0;
1996
1997 for (i = 0; paths[i]; i++)
1998 if (paths[i][0]) {
1999 execl(paths[i], paths[i],
2000 devnm, NULL);
2001 }
2002 exit(1);
2003 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
2004 return -1;
2005 default: /* parent - good */
2006 pid = wait(&status);
2007 if (pid < 0 || status != 0) {
2008 pr_err("failed to launch mdmon. Array remains readonly\n");
2009 return -1;
2010 }
2011 }
2012 return 0;
2013 }
2014
2015 __u32 random32(void)
2016 {
2017 __u32 rv;
2018 int rfd = open("/dev/urandom", O_RDONLY);
2019 if (rfd < 0 || read(rfd, &rv, 4) != 4)
2020 rv = random();
2021 if (rfd >= 0)
2022 close(rfd);
2023 return rv;
2024 }
2025
2026 void random_uuid(__u8 *buf)
2027 {
2028 int fd, i, len;
2029 __u32 r[4];
2030
2031 fd = open("/dev/urandom", O_RDONLY);
2032 if (fd < 0)
2033 goto use_random;
2034 len = read(fd, buf, 16);
2035 close(fd);
2036 if (len != 16)
2037 goto use_random;
2038
2039 return;
2040
2041 use_random:
2042 for (i = 0; i < 4; i++)
2043 r[i] = random();
2044 memcpy(buf, r, 16);
2045 }
2046
2047 int flush_metadata_updates(struct supertype *st)
2048 {
2049 int sfd;
2050 if (!st->updates) {
2051 st->update_tail = NULL;
2052 return -1;
2053 }
2054
2055 sfd = connect_monitor(st->container_devnm);
2056 if (sfd < 0)
2057 return -1;
2058
2059 while (st->updates) {
2060 struct metadata_update *mu = st->updates;
2061 st->updates = mu->next;
2062
2063 send_message(sfd, mu, 0);
2064 wait_reply(sfd, 0);
2065 free(mu->buf);
2066 free(mu);
2067 }
2068 ack(sfd, 0);
2069 wait_reply(sfd, 0);
2070 close(sfd);
2071 st->update_tail = NULL;
2072 return 0;
2073 }
2074
2075 void append_metadata_update(struct supertype *st, void *buf, int len)
2076 {
2077
2078 struct metadata_update *mu = xmalloc(sizeof(*mu));
2079
2080 mu->buf = buf;
2081 mu->len = len;
2082 mu->space = NULL;
2083 mu->space_list = NULL;
2084 mu->next = NULL;
2085 *st->update_tail = mu;
2086 st->update_tail = &mu->next;
2087 }
2088
2089 #ifdef __TINYC__
2090 /* tinyc doesn't optimize this check in ioctl.h out ... */
2091 unsigned int __invalid_size_argument_for_IOC = 0;
2092 #endif
2093
2094 int experimental(void)
2095 {
2096 if (check_env("MDADM_EXPERIMENTAL"))
2097 return 1;
2098 else {
2099 pr_err("To use this feature MDADM_EXPERIMENTAL environment variable has to be defined.\n");
2100 return 0;
2101 }
2102 }
2103
2104 /* Pick all spares matching given criteria from a container
2105 * if min_size == 0 do not check size
2106 * if domlist == NULL do not check domains
2107 * if spare_group given add it to domains of each spare
2108 * metadata allows to test domains using metadata of destination array */
2109 struct mdinfo *container_choose_spares(struct supertype *st,
2110 unsigned long long min_size,
2111 struct domainlist *domlist,
2112 char *spare_group,
2113 const char *metadata, int get_one)
2114 {
2115 struct mdinfo *d, **dp, *disks = NULL;
2116
2117 /* get list of all disks in container */
2118 if (st->ss->getinfo_super_disks)
2119 disks = st->ss->getinfo_super_disks(st);
2120
2121 if (!disks)
2122 return disks;
2123 /* find spare devices on the list */
2124 dp = &disks->devs;
2125 disks->array.spare_disks = 0;
2126 while (*dp) {
2127 int found = 0;
2128 d = *dp;
2129 if (d->disk.state == 0) {
2130 /* check if size is acceptable */
2131 unsigned long long dev_size;
2132 dev_t dev = makedev(d->disk.major,d->disk.minor);
2133
2134 if (!min_size ||
2135 (dev_size_from_id(dev, &dev_size) &&
2136 dev_size >= min_size))
2137 found = 1;
2138 /* check if domain matches */
2139 if (found && domlist) {
2140 struct dev_policy *pol = devid_policy(dev);
2141 if (spare_group)
2142 pol_add(&pol, pol_domain,
2143 spare_group, NULL);
2144 if (domain_test(domlist, pol, metadata) != 1)
2145 found = 0;
2146 dev_policy_free(pol);
2147 }
2148 }
2149 if (found) {
2150 dp = &d->next;
2151 disks->array.spare_disks++;
2152 if (get_one) {
2153 sysfs_free(*dp);
2154 d->next = NULL;
2155 }
2156 } else {
2157 *dp = d->next;
2158 d->next = NULL;
2159 sysfs_free(d);
2160 }
2161 }
2162 return disks;
2163 }
2164
2165 /* Checks if paths point to the same device
2166 * Returns 0 if they do.
2167 * Returns 1 if they don't.
2168 * Returns -1 if something went wrong,
2169 * e.g. paths are empty or the files
2170 * they point to don't exist */
2171 int compare_paths (char* path1, char* path2)
2172 {
2173 struct stat st1,st2;
2174
2175 if (path1 == NULL || path2 == NULL)
2176 return -1;
2177 if (stat(path1,&st1) != 0)
2178 return -1;
2179 if (stat(path2,&st2) != 0)
2180 return -1;
2181 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2182 return 0;
2183 return 1;
2184 }
2185
2186 /* Make sure we can open as many devices as needed */
2187 void enable_fds(int devices)
2188 {
2189 unsigned int fds = 20 + devices;
2190 struct rlimit lim;
2191 if (getrlimit(RLIMIT_NOFILE, &lim) != 0
2192 || lim.rlim_cur >= fds)
2193 return;
2194 if (lim.rlim_max < fds)
2195 lim.rlim_max = fds;
2196 lim.rlim_cur = fds;
2197 setrlimit(RLIMIT_NOFILE, &lim);
2198 }
2199
2200 int in_initrd(void)
2201 {
2202 /* This is based on similar function in systemd. */
2203 struct statfs s;
2204 /* statfs.f_type is signed long on s390x and MIPS, causing all
2205 sorts of sign extension problems with RAMFS_MAGIC being
2206 defined as 0x858458f6 */
2207 return statfs("/", &s) >= 0 &&
2208 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2209 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2210 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2211 }
2212
2213 void reopen_mddev(int mdfd)
2214 {
2215 /* Re-open without any O_EXCL, but keep
2216 * the same fd
2217 */
2218 char *devnm;
2219 int fd;
2220 devnm = fd2devnm(mdfd);
2221 close(mdfd);
2222 fd = open_dev(devnm);
2223 if (fd >= 0 && fd != mdfd)
2224 dup2(fd, mdfd);
2225 }
2226
2227 static struct cmap_hooks *cmap_hooks = NULL;
2228 static int is_cmap_hooks_ready = 0;
2229
2230 void set_cmap_hooks(void)
2231 {
2232 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2233 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2234 if (!cmap_hooks->cmap_handle)
2235 return;
2236
2237 cmap_hooks->initialize = dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2238 cmap_hooks->get_string = dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2239 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2240
2241 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2242 !cmap_hooks->finalize)
2243 dlclose(cmap_hooks->cmap_handle);
2244 else
2245 is_cmap_hooks_ready = 1;
2246 }
2247
2248 int get_cluster_name(char **cluster_name)
2249 {
2250 int rv = -1;
2251 cmap_handle_t handle;
2252
2253 if (!is_cmap_hooks_ready)
2254 return rv;
2255
2256 rv = cmap_hooks->initialize(&handle);
2257 if (rv != CS_OK)
2258 goto out;
2259
2260 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2261 if (rv != CS_OK) {
2262 free(*cluster_name);
2263 rv = -1;
2264 goto name_err;
2265 }
2266
2267 rv = 0;
2268 name_err:
2269 cmap_hooks->finalize(handle);
2270 out:
2271 return rv;
2272 }
2273
2274 void set_dlm_hooks(void)
2275 {
2276 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2277 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2278 if (!dlm_hooks->dlm_handle)
2279 return;
2280
2281 dlm_hooks->create_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2282 dlm_hooks->release_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2283 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2284 dlm_hooks->ls_unlock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock");
2285 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2286 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2287
2288 if (!dlm_hooks->create_lockspace || !dlm_hooks->ls_lock ||
2289 !dlm_hooks->ls_unlock || !dlm_hooks->release_lockspace ||
2290 !dlm_hooks->ls_get_fd || !dlm_hooks->dispatch)
2291 dlclose(dlm_hooks->dlm_handle);
2292 else
2293 is_dlm_hooks_ready = 1;
2294 }
2295
2296 void set_hooks(void)
2297 {
2298 set_dlm_hooks();
2299 set_cmap_hooks();
2300 }