]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
sysfs: Use the presence of /sys/block/<dev>/md as indicator of valid device
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <linux/magic.h>
34 #include <poll.h>
35 #include <ctype.h>
36 #include <dirent.h>
37 #include <signal.h>
38 #include <dlfcn.h>
39
40
41 /*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46 #define BLKPG _IO(0x12,105)
47
48 /* The argument structure */
49 struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54 };
55
56 /* The subfunctions (for the op field) */
57 #define BLKPG_ADD_PARTITION 1
58 #define BLKPG_DEL_PARTITION 2
59
60 /* Sizes of name fields. Unused at present. */
61 #define BLKPG_DEVNAMELTH 64
62 #define BLKPG_VOLNAMELTH 64
63
64 /* The data structure for ADD_PARTITION and DEL_PARTITION */
65 struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72 };
73
74 #include "part.h"
75
76 /* Force a compilation error if condition is true */
77 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79 /* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85 static int is_dlm_hooks_ready = 0;
86
87 int dlm_funs_ready(void)
88 {
89 return is_dlm_hooks_ready ? 1 : 0;
90 }
91
92 #ifndef MDASSEMBLE
93 static struct dlm_hooks *dlm_hooks = NULL;
94 struct dlm_lock_resource *dlm_lock_res = NULL;
95 static int ast_called = 0;
96
97 struct dlm_lock_resource {
98 dlm_lshandle_t *ls;
99 struct dlm_lksb lksb;
100 };
101
102 /* Using poll(2) to wait for and dispatch ASTs */
103 static int poll_for_ast(dlm_lshandle_t ls)
104 {
105 struct pollfd pfd;
106
107 pfd.fd = dlm_hooks->ls_get_fd(ls);
108 pfd.events = POLLIN;
109
110 while (!ast_called)
111 {
112 if (poll(&pfd, 1, 0) < 0)
113 {
114 perror("poll");
115 return -1;
116 }
117 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
118 }
119 ast_called = 0;
120
121 return 0;
122 }
123
124 static void dlm_ast(void *arg)
125 {
126 ast_called = 1;
127 }
128
129 static char *cluster_name = NULL;
130 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
131 int cluster_get_dlmlock(int *lockid)
132 {
133 int ret = -1;
134 char str[64];
135 int flags = LKF_NOQUEUE;
136
137 ret = get_cluster_name(&cluster_name);
138 if (ret) {
139 pr_err("The md can't get cluster name\n");
140 return -1;
141 }
142
143 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
144 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
145 if (!dlm_lock_res->ls) {
146 pr_err("%s failed to create lockspace\n", cluster_name);
147 return -ENOMEM;
148 }
149
150 snprintf(str, 64, "bitmap%s", cluster_name);
151 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE, &dlm_lock_res->lksb,
152 flags, str, strlen(str), 0, dlm_ast,
153 dlm_lock_res, NULL, NULL);
154 if (ret) {
155 pr_err("error %d when get PW mode on lock %s\n", errno, str);
156 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
157 return ret;
158 }
159
160 /* Wait for it to complete */
161 poll_for_ast(dlm_lock_res->ls);
162 *lockid = dlm_lock_res->lksb.sb_lkid;
163
164 return dlm_lock_res->lksb.sb_status;
165 }
166
167 int cluster_release_dlmlock(int lockid)
168 {
169 int ret = -1;
170
171 if (!cluster_name)
172 return -1;
173
174 ret = dlm_hooks->ls_unlock(dlm_lock_res->ls, lockid, 0,
175 &dlm_lock_res->lksb, dlm_lock_res);
176 if (ret) {
177 pr_err("error %d happened when unlock\n", errno);
178 /* XXX make sure the lock is unlocked eventually */
179 goto out;
180 }
181
182 /* Wait for it to complete */
183 poll_for_ast(dlm_lock_res->ls);
184
185 errno = dlm_lock_res->lksb.sb_status;
186 if (errno != EUNLOCK) {
187 pr_err("error %d happened in ast when unlock lockspace\n", errno);
188 /* XXX make sure the lockspace is unlocked eventually */
189 goto out;
190 }
191
192 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
193 if (ret) {
194 pr_err("error %d happened when release lockspace\n", errno);
195 /* XXX make sure the lockspace is released eventually */
196 goto out;
197 }
198 free(dlm_lock_res);
199
200 out:
201 return ret;
202 }
203 #else
204 int cluster_get_dlmlock(int *lockid)
205 {
206 return -1;
207 }
208 int cluster_release_dlmlock(int lockid)
209 {
210 return -1;
211 }
212 #endif
213
214 /*
215 * Get array info from the kernel. Longer term we want to deprecate the
216 * ioctl and get it from sysfs.
217 */
218 int md_get_array_info(int fd, struct mdu_array_info_s *array)
219 {
220 return ioctl(fd, GET_ARRAY_INFO, array);
221 }
222
223 /*
224 * Set array info
225 */
226 int md_set_array_info(int fd, struct mdu_array_info_s *array)
227 {
228 return ioctl(fd, SET_ARRAY_INFO, array);
229 }
230
231 /*
232 * Get disk info from the kernel.
233 */
234 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
235 {
236 return ioctl(fd, GET_DISK_INFO, disk);
237 }
238
239 /*
240 * Parse a 128 bit uuid in 4 integers
241 * format is 32 hexx nibbles with options :.<space> separator
242 * If not exactly 32 hex digits are found, return 0
243 * else return 1
244 */
245 int parse_uuid(char *str, int uuid[4])
246 {
247 int hit = 0; /* number of Hex digIT */
248 int i;
249 char c;
250 for (i = 0; i < 4; i++)
251 uuid[i] = 0;
252
253 while ((c = *str++) != 0) {
254 int n;
255 if (c >= '0' && c <= '9')
256 n = c-'0';
257 else if (c >= 'a' && c <= 'f')
258 n = 10 + c - 'a';
259 else if (c >= 'A' && c <= 'F')
260 n = 10 + c - 'A';
261 else if (strchr(":. -", c))
262 continue;
263 else return 0;
264
265 if (hit<32) {
266 uuid[hit/8] <<= 4;
267 uuid[hit/8] += n;
268 }
269 hit++;
270 }
271 if (hit == 32)
272 return 1;
273 return 0;
274 }
275
276 /*
277 * Get the md version number.
278 * We use the RAID_VERSION ioctl if it is supported
279 * If not, but we have a block device with major '9', we assume
280 * 0.36.0
281 *
282 * Return version number as 24 but number - assume version parts
283 * always < 255
284 */
285
286 int md_get_version(int fd)
287 {
288 struct stat stb;
289 mdu_version_t vers;
290
291 if (fstat(fd, &stb)<0)
292 return -1;
293 if ((S_IFMT&stb.st_mode) != S_IFBLK)
294 return -1;
295
296 if (ioctl(fd, RAID_VERSION, &vers) == 0)
297 return (vers.major*10000) + (vers.minor*100) + vers.patchlevel;
298 if (errno == EACCES)
299 return -1;
300 if (major(stb.st_rdev) == MD_MAJOR)
301 return (3600);
302 return -1;
303 }
304
305 int get_linux_version()
306 {
307 struct utsname name;
308 char *cp;
309 int a = 0, b = 0,c = 0;
310 if (uname(&name) <0)
311 return -1;
312
313 cp = name.release;
314 a = strtoul(cp, &cp, 10);
315 if (*cp == '.')
316 b = strtoul(cp+1, &cp, 10);
317 if (*cp == '.')
318 c = strtoul(cp+1, &cp, 10);
319
320 return (a*1000000)+(b*1000)+c;
321 }
322
323 #ifndef MDASSEMBLE
324 int mdadm_version(char *version)
325 {
326 int a, b, c;
327 char *cp;
328
329 if (!version)
330 version = Version;
331
332 cp = strchr(version, '-');
333 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
334 return -1;
335 cp += 3;
336 a = strtoul(cp, &cp, 10);
337 if (*cp != '.')
338 return -1;
339 b = strtoul(cp+1, &cp, 10);
340 if (*cp == '.')
341 c = strtoul(cp+1, &cp, 10);
342 else
343 c = 0;
344 if (*cp != ' ' && *cp != '-')
345 return -1;
346 return (a*1000000)+(b*1000)+c;
347 }
348
349 unsigned long long parse_size(char *size)
350 {
351 /* parse 'size' which should be a number optionally
352 * followed by 'K', 'M', or 'G'.
353 * Without a suffix, K is assumed.
354 * Number returned is in sectors (half-K)
355 * INVALID_SECTORS returned on error.
356 */
357 char *c;
358 long long s = strtoll(size, &c, 10);
359 if (s > 0) {
360 switch (*c) {
361 case 'K':
362 c++;
363 default:
364 s *= 2;
365 break;
366 case 'M':
367 c++;
368 s *= 1024 * 2;
369 break;
370 case 'G':
371 c++;
372 s *= 1024 * 1024 * 2;
373 break;
374 case 's': /* sectors */
375 c++;
376 break;
377 }
378 } else
379 s = INVALID_SECTORS;
380 if (*c)
381 s = INVALID_SECTORS;
382 return s;
383 }
384
385 int parse_layout_10(char *layout)
386 {
387 int copies, rv;
388 char *cp;
389 /* Parse the layout string for raid10 */
390 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
391 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
392 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
393 copies > 200 ||
394 *cp)
395 return -1;
396 if (layout[0] == 'n')
397 rv = 256 + copies;
398 else if (layout[0] == 'o')
399 rv = 0x10000 + (copies<<8) + 1;
400 else
401 rv = 1 + (copies<<8);
402 return rv;
403 }
404
405 int parse_layout_faulty(char *layout)
406 {
407 /* Parse the layout string for 'faulty' */
408 int ln = strcspn(layout, "0123456789");
409 char *m = xstrdup(layout);
410 int mode;
411 m[ln] = 0;
412 mode = map_name(faultylayout, m);
413 if (mode == UnSet)
414 return -1;
415
416 return mode | (atoi(layout+ln)<< ModeShift);
417 }
418
419 long parse_num(char *num)
420 {
421 /* Either return a valid number, or -1 */
422 char *c;
423 long rv = strtol(num, &c, 10);
424 if (rv < 0 || *c || !num[0])
425 return -1;
426 else
427 return rv;
428 }
429 #endif
430
431 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
432 {
433 char *dev;
434 *slot = strtoul(input, &dev, 10);
435 if (dev == input || dev[0] != ':')
436 return -1;
437 *devname = dev+1;
438 return 0;
439 }
440
441 void remove_partitions(int fd)
442 {
443 /* remove partitions from this block devices.
444 * This is used for components added to an array
445 */
446 #ifdef BLKPG_DEL_PARTITION
447 struct blkpg_ioctl_arg a;
448 struct blkpg_partition p;
449
450 a.op = BLKPG_DEL_PARTITION;
451 a.data = (void*)&p;
452 a.datalen = sizeof(p);
453 a.flags = 0;
454 memset(a.data, 0, a.datalen);
455 for (p.pno = 0; p.pno < 16; p.pno++)
456 ioctl(fd, BLKPG, &a);
457 #endif
458 }
459
460 int test_partition(int fd)
461 {
462 /* Check if fd is a whole-disk or a partition.
463 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
464 * will return ENXIO on an invalid partition number.
465 */
466 struct blkpg_ioctl_arg a;
467 struct blkpg_partition p;
468 a.op = BLKPG_DEL_PARTITION;
469 a.data = (void*)&p;
470 a.datalen = sizeof(p);
471 a.flags = 0;
472 memset(a.data, 0, a.datalen);
473 p.pno = 1<<30;
474 if (ioctl(fd, BLKPG, &a) == 0)
475 /* Very unlikely, but not a partition */
476 return 0;
477 if (errno == ENXIO || errno == ENOTTY)
478 /* not a partition */
479 return 0;
480
481 return 1;
482 }
483
484 int test_partition_from_id(dev_t id)
485 {
486 char buf[20];
487 int fd, rv;
488
489 sprintf(buf, "%d:%d", major(id), minor(id));
490 fd = dev_open(buf, O_RDONLY);
491 if (fd < 0)
492 return -1;
493 rv = test_partition(fd);
494 close(fd);
495 return rv;
496 }
497
498 int enough(int level, int raid_disks, int layout, int clean, char *avail)
499 {
500 int copies, first;
501 int i;
502 int avail_disks = 0;
503
504 for (i = 0; i < raid_disks; i++)
505 avail_disks += !!avail[i];
506
507 switch (level) {
508 case 10:
509 /* This is the tricky one - we need to check
510 * which actual disks are present.
511 */
512 copies = (layout&255)* ((layout>>8) & 255);
513 first = 0;
514 do {
515 /* there must be one of the 'copies' form 'first' */
516 int n = copies;
517 int cnt = 0;
518 int this = first;
519 while (n--) {
520 if (avail[this])
521 cnt++;
522 this = (this+1) % raid_disks;
523 }
524 if (cnt == 0)
525 return 0;
526 first = (first+(layout&255)) % raid_disks;
527 } while (first != 0);
528 return 1;
529
530 case LEVEL_MULTIPATH:
531 return avail_disks>= 1;
532 case LEVEL_LINEAR:
533 case 0:
534 return avail_disks == raid_disks;
535 case 1:
536 return avail_disks >= 1;
537 case 4:
538 if (avail_disks == raid_disks - 1 &&
539 !avail[raid_disks - 1])
540 /* If just the parity device is missing, then we
541 * have enough, even if not clean
542 */
543 return 1;
544 /* FALL THROUGH */
545 case 5:
546 if (clean)
547 return avail_disks >= raid_disks-1;
548 else
549 return avail_disks >= raid_disks;
550 case 6:
551 if (clean)
552 return avail_disks >= raid_disks-2;
553 else
554 return avail_disks >= raid_disks;
555 default:
556 return 0;
557 }
558 }
559
560 int enough_fd(int fd)
561 {
562 struct mdu_array_info_s array;
563 struct mdu_disk_info_s disk;
564 int i, rv;
565 char *avail;
566
567 if (md_get_array_info(fd, &array) != 0 || array.raid_disks <= 0)
568 return 0;
569 avail = xcalloc(array.raid_disks, 1);
570 for (i = 0; i < MAX_DISKS && array.nr_disks > 0; i++) {
571 disk.number = i;
572 if (md_get_disk_info(fd, &disk) != 0)
573 continue;
574 if (disk.major == 0 && disk.minor == 0)
575 continue;
576 array.nr_disks--;
577
578 if (! (disk.state & (1<<MD_DISK_SYNC)))
579 continue;
580 if (disk.raid_disk < 0 || disk.raid_disk >= array.raid_disks)
581 continue;
582 avail[disk.raid_disk] = 1;
583 }
584 /* This is used on an active array, so assume it is clean */
585 rv = enough(array.level, array.raid_disks, array.layout,
586 1, avail);
587 free(avail);
588 return rv;
589 }
590
591 const int uuid_zero[4] = { 0, 0, 0, 0 };
592
593 int same_uuid(int a[4], int b[4], int swapuuid)
594 {
595 if (swapuuid) {
596 /* parse uuids are hostendian.
597 * uuid's from some superblocks are big-ending
598 * if there is a difference, we need to swap..
599 */
600 unsigned char *ac = (unsigned char *)a;
601 unsigned char *bc = (unsigned char *)b;
602 int i;
603 for (i = 0; i < 16; i += 4) {
604 if (ac[i+0] != bc[i+3] ||
605 ac[i+1] != bc[i+2] ||
606 ac[i+2] != bc[i+1] ||
607 ac[i+3] != bc[i+0])
608 return 0;
609 }
610 return 1;
611 } else {
612 if (a[0]==b[0] &&
613 a[1]==b[1] &&
614 a[2]==b[2] &&
615 a[3]==b[3])
616 return 1;
617 return 0;
618 }
619 }
620
621 void copy_uuid(void *a, int b[4], int swapuuid)
622 {
623 if (swapuuid) {
624 /* parse uuids are hostendian.
625 * uuid's from some superblocks are big-ending
626 * if there is a difference, we need to swap..
627 */
628 unsigned char *ac = (unsigned char *)a;
629 unsigned char *bc = (unsigned char *)b;
630 int i;
631 for (i = 0; i < 16; i += 4) {
632 ac[i+0] = bc[i+3];
633 ac[i+1] = bc[i+2];
634 ac[i+2] = bc[i+1];
635 ac[i+3] = bc[i+0];
636 }
637 } else
638 memcpy(a, b, 16);
639 }
640
641 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
642 {
643 int i, j;
644 char uuid[16];
645 char *c = buf;
646 strcpy(c, "UUID-");
647 c += strlen(c);
648 copy_uuid(uuid, id, swap);
649 for (i = 0; i < 4; i++) {
650 if (i)
651 *c++ = sep;
652 for (j = 3; j >= 0; j--) {
653 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
654 c+= 2;
655 }
656 }
657 return buf;
658
659 }
660
661 char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep)
662 {
663 // dirty hack to work around an issue with super1 superblocks...
664 // super1 superblocks need swapuuid set in order for assembly to
665 // work, but can't have it set if we want this printout to match
666 // all the other uuid printouts in super1.c, so we force swapuuid
667 // to 1 to make our printout match the rest of super1
668 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 : st->ss->swapuuid, buf, sep);
669 }
670
671 #ifndef MDASSEMBLE
672 int check_ext2(int fd, char *name)
673 {
674 /*
675 * Check for an ext2fs file system.
676 * Superblock is always 1K at 1K offset
677 *
678 * s_magic is le16 at 56 == 0xEF53
679 * report mtime - le32 at 44
680 * blocks - le32 at 4
681 * logblksize - le32 at 24
682 */
683 unsigned char sb[1024];
684 time_t mtime;
685 unsigned long long size;
686 int bsize;
687 if (lseek(fd, 1024,0)!= 1024)
688 return 0;
689 if (read(fd, sb, 1024)!= 1024)
690 return 0;
691 if (sb[56] != 0x53 || sb[57] != 0xef)
692 return 0;
693
694 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
695 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
696 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
697 size <<= bsize;
698 pr_err("%s appears to contain an ext2fs file system\n",
699 name);
700 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
701 return 1;
702 }
703
704 int check_reiser(int fd, char *name)
705 {
706 /*
707 * superblock is at 64K
708 * size is 1024;
709 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
710 *
711 */
712 unsigned char sb[1024];
713 unsigned long long size;
714 if (lseek(fd, 64*1024, 0) != 64*1024)
715 return 0;
716 if (read(fd, sb, 1024) != 1024)
717 return 0;
718 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
719 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
720 return 0;
721 pr_err("%s appears to contain a reiserfs file system\n",name);
722 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
723 cont_err("size = %lluK\n", size*4);
724
725 return 1;
726 }
727
728 int check_raid(int fd, char *name)
729 {
730 struct mdinfo info;
731 time_t crtime;
732 char *level;
733 struct supertype *st = guess_super(fd);
734
735 if (!st)
736 return 0;
737 if (st->ss->add_to_super != NULL) {
738 st->ss->load_super(st, fd, name);
739 /* Looks like a raid array .. */
740 pr_err("%s appears to be part of a raid array:\n", name);
741 st->ss->getinfo_super(st, &info, NULL);
742 st->ss->free_super(st);
743 crtime = info.array.ctime;
744 level = map_num(pers, info.array.level);
745 if (!level)
746 level = "-unknown-";
747 cont_err("level=%s devices=%d ctime=%s",
748 level, info.array.raid_disks, ctime(&crtime));
749 } else {
750 /* Looks like GPT or MBR */
751 pr_err("partition table exists on %s\n", name);
752 }
753 return 1;
754 }
755
756 int ask(char *mesg)
757 {
758 char *add = "";
759 int i;
760 for (i = 0; i < 5; i++) {
761 char buf[100];
762 fprintf(stderr, "%s%s", mesg, add);
763 fflush(stderr);
764 if (fgets(buf, 100, stdin)==NULL)
765 return 0;
766 if (buf[0]=='y' || buf[0]=='Y')
767 return 1;
768 if (buf[0]=='n' || buf[0]=='N')
769 return 0;
770 add = "(y/n) ";
771 }
772 pr_err("assuming 'no'\n");
773 return 0;
774 }
775 #endif /* MDASSEMBLE */
776
777 int is_standard(char *dev, int *nump)
778 {
779 /* tests if dev is a "standard" md dev name.
780 * i.e if the last component is "/dNN" or "/mdNN",
781 * where NN is a string of digits
782 * Returns 1 if a partitionable standard,
783 * -1 if non-partitonable,
784 * 0 if not a standard name.
785 */
786 char *d = strrchr(dev, '/');
787 int type = 0;
788 int num;
789 if (!d)
790 return 0;
791 if (strncmp(d, "/d",2) == 0)
792 d += 2, type = 1; /* /dev/md/dN{pM} */
793 else if (strncmp(d, "/md_d", 5) == 0)
794 d += 5, type = 1; /* /dev/md_dN{pM} */
795 else if (strncmp(d, "/md", 3) == 0)
796 d += 3, type = -1; /* /dev/mdN */
797 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
798 d += 1, type = -1; /* /dev/md/N */
799 else
800 return 0;
801 if (!*d)
802 return 0;
803 num = atoi(d);
804 while (isdigit(*d))
805 d++;
806 if (*d)
807 return 0;
808 if (nump) *nump = num;
809
810 return type;
811 }
812
813 unsigned long calc_csum(void *super, int bytes)
814 {
815 unsigned long long newcsum = 0;
816 int i;
817 unsigned int csum;
818 unsigned int *superc = (unsigned int*) super;
819
820 for(i = 0; i < bytes/4; i++)
821 newcsum += superc[i];
822 csum = (newcsum& 0xffffffff) + (newcsum>>32);
823 #ifdef __alpha__
824 /* The in-kernel checksum calculation is always 16bit on
825 * the alpha, though it is 32 bit on i386...
826 * I wonder what it is elsewhere... (it uses an API in
827 * a way that it shouldn't).
828 */
829 csum = (csum & 0xffff) + (csum >> 16);
830 csum = (csum & 0xffff) + (csum >> 16);
831 #endif
832 return csum;
833 }
834
835 #ifndef MDASSEMBLE
836 char *human_size(long long bytes)
837 {
838 static char buf[47];
839
840 /* We convert bytes to either centi-M{ega,ibi}bytes or
841 * centi-G{igi,ibi}bytes, with appropriate rounding,
842 * and then print 1/100th of those as a decimal.
843 * We allow upto 2048Megabytes before converting to
844 * gigabytes, as that shows more precision and isn't
845 * too large a number.
846 * Terabytes are not yet handled.
847 */
848
849 if (bytes < 5000*1024)
850 buf[0] = 0;
851 else if (bytes < 2*1024LL*1024LL*1024LL) {
852 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
853 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
854 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
855 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
856 } else {
857 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
858 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
859 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
860 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
861 }
862 return buf;
863 }
864
865 char *human_size_brief(long long bytes, int prefix)
866 {
867 static char buf[30];
868
869 /* We convert bytes to either centi-M{ega,ibi}bytes or
870 * centi-G{igi,ibi}bytes, with appropriate rounding,
871 * and then print 1/100th of those as a decimal.
872 * We allow upto 2048Megabytes before converting to
873 * gigabytes, as that shows more precision and isn't
874 * too large a number.
875 * Terabytes are not yet handled.
876 *
877 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
878 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
879 */
880
881 if (bytes < 5000*1024)
882 buf[0] = 0;
883 else if (prefix == IEC) {
884 if (bytes < 2*1024LL*1024LL*1024LL) {
885 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
886 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
887 cMiB/100, cMiB % 100);
888 } else {
889 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
890 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
891 cGiB/100, cGiB % 100);
892 }
893 }
894 else if (prefix == JEDEC) {
895 if (bytes < 2*1024LL*1024LL*1024LL) {
896 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
897 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
898 cMB/100, cMB % 100);
899 } else {
900 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
901 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
902 cGB/100, cGB % 100);
903 }
904 }
905 else
906 buf[0] = 0;
907
908 return buf;
909 }
910
911 void print_r10_layout(int layout)
912 {
913 int near = layout & 255;
914 int far = (layout >> 8) & 255;
915 int offset = (layout&0x10000);
916 char *sep = "";
917
918 if (near != 1) {
919 printf("%s near=%d", sep, near);
920 sep = ",";
921 }
922 if (far != 1)
923 printf("%s %s=%d", sep, offset?"offset":"far", far);
924 if (near*far == 1)
925 printf("NO REDUNDANCY");
926 }
927 #endif
928
929 unsigned long long calc_array_size(int level, int raid_disks, int layout,
930 int chunksize, unsigned long long devsize)
931 {
932 if (level == 1)
933 return devsize;
934 devsize &= ~(unsigned long long)((chunksize>>9)-1);
935 return get_data_disks(level, layout, raid_disks) * devsize;
936 }
937
938 int get_data_disks(int level, int layout, int raid_disks)
939 {
940 int data_disks = 0;
941 switch (level) {
942 case 0: data_disks = raid_disks;
943 break;
944 case 1: data_disks = 1;
945 break;
946 case 4:
947 case 5: data_disks = raid_disks - 1;
948 break;
949 case 6: data_disks = raid_disks - 2;
950 break;
951 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
952 break;
953 }
954
955 return data_disks;
956 }
957
958 dev_t devnm2devid(char *devnm)
959 {
960 /* First look in /sys/block/$DEVNM/dev for %d:%d
961 * If that fails, try parsing out a number
962 */
963 char path[100];
964 char *ep;
965 int fd;
966 int mjr,mnr;
967
968 sprintf(path, "/sys/block/%s/dev", devnm);
969 fd = open(path, O_RDONLY);
970 if (fd >= 0) {
971 char buf[20];
972 int n = read(fd, buf, sizeof(buf));
973 close(fd);
974 if (n > 0)
975 buf[n] = 0;
976 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
977 return makedev(mjr, mnr);
978 }
979 if (strncmp(devnm, "md_d", 4) == 0 &&
980 isdigit(devnm[4]) &&
981 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
982 ep > devnm && *ep == 0)
983 return makedev(get_mdp_major(), mnr << MdpMinorShift);
984
985 if (strncmp(devnm, "md", 2) == 0 &&
986 isdigit(devnm[2]) &&
987 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
988 ep > devnm && *ep == 0)
989 return makedev(MD_MAJOR, mnr);
990
991 return 0;
992 }
993
994 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
995 char *get_md_name(char *devnm)
996 {
997 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
998 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
999
1000 static char devname[50];
1001 struct stat stb;
1002 dev_t rdev = devnm2devid(devnm);
1003 char *dn;
1004
1005 if (rdev == 0)
1006 return 0;
1007 if (strncmp(devnm, "md_", 3) == 0) {
1008 snprintf(devname, sizeof(devname), "/dev/md/%s",
1009 devnm + 3);
1010 if (stat(devname, &stb) == 0
1011 && (S_IFMT&stb.st_mode) == S_IFBLK
1012 && (stb.st_rdev == rdev))
1013 return devname;
1014 }
1015 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
1016 if (stat(devname, &stb) == 0
1017 && (S_IFMT&stb.st_mode) == S_IFBLK
1018 && (stb.st_rdev == rdev))
1019 return devname;
1020
1021 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
1022 if (stat(devname, &stb) == 0
1023 && (S_IFMT&stb.st_mode) == S_IFBLK
1024 && (stb.st_rdev == rdev))
1025 return devname;
1026
1027 dn = map_dev(major(rdev), minor(rdev), 0);
1028 if (dn)
1029 return dn;
1030 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
1031 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
1032 if (errno != EEXIST)
1033 return NULL;
1034
1035 if (stat(devname, &stb) == 0
1036 && (S_IFMT&stb.st_mode) == S_IFBLK
1037 && (stb.st_rdev == rdev))
1038 return devname;
1039 unlink(devname);
1040 return NULL;
1041 }
1042
1043 void put_md_name(char *name)
1044 {
1045 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1046 unlink(name);
1047 }
1048 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
1049
1050 int get_maj_min(char *dev, int *major, int *minor)
1051 {
1052 char *e;
1053 *major = strtoul(dev, &e, 0);
1054 return (e > dev && *e == ':' && e[1] &&
1055 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1056 *e == 0);
1057 }
1058
1059 int dev_open(char *dev, int flags)
1060 {
1061 /* like 'open', but if 'dev' matches %d:%d, create a temp
1062 * block device and open that
1063 */
1064 int fd = -1;
1065 char devname[32];
1066 int major;
1067 int minor;
1068
1069 if (!dev)
1070 return -1;
1071 flags |= O_DIRECT;
1072
1073 if (get_maj_min(dev, &major, &minor)) {
1074 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1075 (int)getpid(), major, minor);
1076 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1077 fd = open(devname, flags);
1078 unlink(devname);
1079 }
1080 if (fd < 0) {
1081 /* Try /tmp as /dev appear to be read-only */
1082 snprintf(devname, sizeof(devname), "/tmp/.tmp.md.%d:%d:%d",
1083 (int)getpid(), major, minor);
1084 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1085 fd = open(devname, flags);
1086 unlink(devname);
1087 }
1088 }
1089 } else
1090 fd = open(dev, flags);
1091 return fd;
1092 }
1093
1094 int open_dev_flags(char *devnm, int flags)
1095 {
1096 dev_t devid;
1097 char buf[20];
1098
1099 devid = devnm2devid(devnm);
1100 sprintf(buf, "%d:%d", major(devid), minor(devid));
1101 return dev_open(buf, flags);
1102 }
1103
1104 int open_dev(char *devnm)
1105 {
1106 return open_dev_flags(devnm, O_RDONLY);
1107 }
1108
1109 int open_dev_excl(char *devnm)
1110 {
1111 char buf[20];
1112 int i;
1113 int flags = O_RDWR;
1114 dev_t devid = devnm2devid(devnm);
1115 long delay = 1000;
1116
1117 sprintf(buf, "%d:%d", major(devid), minor(devid));
1118 for (i = 0; i < 25; i++) {
1119 int fd = dev_open(buf, flags|O_EXCL);
1120 if (fd >= 0)
1121 return fd;
1122 if (errno == EACCES && flags == O_RDWR) {
1123 flags = O_RDONLY;
1124 continue;
1125 }
1126 if (errno != EBUSY)
1127 return fd;
1128 usleep(delay);
1129 if (delay < 200000)
1130 delay *= 2;
1131 }
1132 return -1;
1133 }
1134
1135 int same_dev(char *one, char *two)
1136 {
1137 struct stat st1, st2;
1138 if (stat(one, &st1) != 0)
1139 return 0;
1140 if (stat(two, &st2) != 0)
1141 return 0;
1142 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1143 return 0;
1144 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1145 return 0;
1146 return st1.st_rdev == st2.st_rdev;
1147 }
1148
1149 void wait_for(char *dev, int fd)
1150 {
1151 int i;
1152 struct stat stb_want;
1153 long delay = 1000;
1154
1155 if (fstat(fd, &stb_want) != 0 ||
1156 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1157 return;
1158
1159 for (i = 0; i < 25; i++) {
1160 struct stat stb;
1161 if (stat(dev, &stb) == 0 &&
1162 (stb.st_mode & S_IFMT) == S_IFBLK &&
1163 (stb.st_rdev == stb_want.st_rdev))
1164 return;
1165 usleep(delay);
1166 if (delay < 200000)
1167 delay *= 2;
1168 }
1169 if (i == 25)
1170 dprintf("timeout waiting for %s\n", dev);
1171 }
1172
1173 struct superswitch *superlist[] =
1174 {
1175 &super0, &super1,
1176 &super_ddf, &super_imsm,
1177 &mbr, &gpt,
1178 NULL };
1179
1180 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
1181
1182 struct supertype *super_by_fd(int fd, char **subarrayp)
1183 {
1184 mdu_array_info_t array;
1185 int vers;
1186 int minor;
1187 struct supertype *st = NULL;
1188 struct mdinfo *sra;
1189 char *verstr;
1190 char version[20];
1191 int i;
1192 char *subarray = NULL;
1193 char container[32] = "";
1194
1195 sra = sysfs_read(fd, NULL, GET_VERSION);
1196
1197 if (sra) {
1198 vers = sra->array.major_version;
1199 minor = sra->array.minor_version;
1200 verstr = sra->text_version;
1201 } else {
1202 if (md_get_array_info(fd, &array))
1203 array.major_version = array.minor_version = 0;
1204 vers = array.major_version;
1205 minor = array.minor_version;
1206 verstr = "";
1207 }
1208
1209 if (vers != -1) {
1210 sprintf(version, "%d.%d", vers, minor);
1211 verstr = version;
1212 }
1213 if (minor == -2 && is_subarray(verstr)) {
1214 char *dev = verstr+1;
1215
1216 subarray = strchr(dev, '/');
1217 if (subarray) {
1218 *subarray++ = '\0';
1219 subarray = xstrdup(subarray);
1220 }
1221 strcpy(container, dev);
1222 sysfs_free(sra);
1223 sra = sysfs_read(-1, container, GET_VERSION);
1224 if (sra && sra->text_version[0])
1225 verstr = sra->text_version;
1226 else
1227 verstr = "-no-metadata-";
1228 }
1229
1230 for (i = 0; st == NULL && superlist[i]; i++)
1231 st = superlist[i]->match_metadata_desc(verstr);
1232
1233 sysfs_free(sra);
1234 if (st) {
1235 st->sb = NULL;
1236 if (subarrayp)
1237 *subarrayp = subarray;
1238 strcpy(st->container_devnm, container);
1239 strcpy(st->devnm, fd2devnm(fd));
1240 } else
1241 free(subarray);
1242
1243 return st;
1244 }
1245 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
1246
1247 int dev_size_from_id(dev_t id, unsigned long long *size)
1248 {
1249 char buf[20];
1250 int fd;
1251
1252 sprintf(buf, "%d:%d", major(id), minor(id));
1253 fd = dev_open(buf, O_RDONLY);
1254 if (fd < 0)
1255 return 0;
1256 if (get_dev_size(fd, NULL, size)) {
1257 close(fd);
1258 return 1;
1259 }
1260 close(fd);
1261 return 0;
1262 }
1263
1264 struct supertype *dup_super(struct supertype *orig)
1265 {
1266 struct supertype *st;
1267
1268 if (!orig)
1269 return orig;
1270 st = xcalloc(1, sizeof(*st));
1271 st->ss = orig->ss;
1272 st->max_devs = orig->max_devs;
1273 st->minor_version = orig->minor_version;
1274 st->ignore_hw_compat = orig->ignore_hw_compat;
1275 st->data_offset = orig->data_offset;
1276 st->sb = NULL;
1277 st->info = NULL;
1278 return st;
1279 }
1280
1281 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1282 {
1283 /* try each load_super to find the best match,
1284 * and return the best superswitch
1285 */
1286 struct superswitch *ss;
1287 struct supertype *st;
1288 unsigned int besttime = 0;
1289 int bestsuper = -1;
1290 int i;
1291
1292 st = xcalloc(1, sizeof(*st));
1293 st->container_devnm[0] = 0;
1294
1295 for (i = 0; superlist[i]; i++) {
1296 int rv;
1297 ss = superlist[i];
1298 if (guess_type == guess_array && ss->add_to_super == NULL)
1299 continue;
1300 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1301 continue;
1302 memset(st, 0, sizeof(*st));
1303 st->ignore_hw_compat = 1;
1304 rv = ss->load_super(st, fd, NULL);
1305 if (rv == 0) {
1306 struct mdinfo info;
1307 st->ss->getinfo_super(st, &info, NULL);
1308 if (bestsuper == -1 ||
1309 besttime < info.array.ctime) {
1310 bestsuper = i;
1311 besttime = info.array.ctime;
1312 }
1313 ss->free_super(st);
1314 }
1315 }
1316 if (bestsuper != -1) {
1317 int rv;
1318 memset(st, 0, sizeof(*st));
1319 st->ignore_hw_compat = 1;
1320 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1321 if (rv == 0) {
1322 superlist[bestsuper]->free_super(st);
1323 return st;
1324 }
1325 }
1326 free(st);
1327 return NULL;
1328 }
1329
1330 /* Return size of device in bytes */
1331 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1332 {
1333 unsigned long long ldsize;
1334 struct stat st;
1335
1336 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1337 ldsize = (unsigned long long)st.st_size;
1338 else
1339 #ifdef BLKGETSIZE64
1340 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1341 #endif
1342 {
1343 unsigned long dsize;
1344 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1345 ldsize = dsize;
1346 ldsize <<= 9;
1347 } else {
1348 if (dname)
1349 pr_err("Cannot get size of %s: %s\n",
1350 dname, strerror(errno));
1351 return 0;
1352 }
1353 }
1354 *sizep = ldsize;
1355 return 1;
1356 }
1357
1358 /* Return sector size of device in bytes */
1359 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1360 {
1361 unsigned int sectsize;
1362
1363 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1364 if (dname)
1365 pr_err("Cannot get sector size of %s: %s\n",
1366 dname, strerror(errno));
1367 return 0;
1368 }
1369
1370 *sectsizep = sectsize;
1371 return 1;
1372 }
1373
1374 /* Return true if this can only be a container, not a member device.
1375 * i.e. is and md device and size is zero
1376 */
1377 int must_be_container(int fd)
1378 {
1379 unsigned long long size;
1380 if (md_get_version(fd) < 0)
1381 return 0;
1382 if (get_dev_size(fd, NULL, &size) == 0)
1383 return 1;
1384 if (size == 0)
1385 return 1;
1386 return 0;
1387 }
1388
1389 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1390 * Returns: 1 if successful
1391 * -1 for unknown partition type
1392 * 0 for other errors
1393 */
1394 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1395 {
1396 struct GPT gpt;
1397 unsigned char empty_gpt_entry[16]= {0};
1398 struct GPT_part_entry *part;
1399 char buf[512];
1400 unsigned long long curr_part_end;
1401 unsigned all_partitions, entry_size;
1402 unsigned part_nr;
1403 unsigned int sector_size = 0;
1404
1405 *endofpart = 0;
1406
1407 BUILD_BUG_ON(sizeof(gpt) != 512);
1408 /* skip protective MBR */
1409 if (!get_dev_sector_size(fd, NULL, &sector_size))
1410 return 0;
1411 lseek(fd, sector_size, SEEK_SET);
1412 /* read GPT header */
1413 if (read(fd, &gpt, 512) != 512)
1414 return 0;
1415
1416 /* get the number of partition entries and the entry size */
1417 all_partitions = __le32_to_cpu(gpt.part_cnt);
1418 entry_size = __le32_to_cpu(gpt.part_size);
1419
1420 /* Check GPT signature*/
1421 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1422 return -1;
1423
1424 /* sanity checks */
1425 if (all_partitions > 1024 ||
1426 entry_size > sizeof(buf))
1427 return -1;
1428
1429 part = (struct GPT_part_entry *)buf;
1430
1431 /* set offset to third block (GPT entries) */
1432 lseek(fd, sector_size*2, SEEK_SET);
1433 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1434 /* read partition entry */
1435 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1436 return 0;
1437
1438 /* is this valid partition? */
1439 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1440 /* check the last lba for the current partition */
1441 curr_part_end = __le64_to_cpu(part->ending_lba);
1442 if (curr_part_end > *endofpart)
1443 *endofpart = curr_part_end;
1444 }
1445
1446 }
1447 return 1;
1448 }
1449
1450 /* Sets endofpart parameter to the last block used by the last partition on the device.
1451 * Returns: 1 if successful
1452 * -1 for unknown partition type
1453 * 0 for other errors
1454 */
1455 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1456 {
1457 struct MBR boot_sect;
1458 unsigned long long curr_part_end;
1459 unsigned part_nr;
1460 unsigned int sector_size;
1461 int retval = 0;
1462
1463 *endofpart = 0;
1464
1465 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1466 /* read MBR */
1467 lseek(fd, 0, 0);
1468 if (read(fd, &boot_sect, 512) != 512)
1469 goto abort;
1470
1471 /* check MBP signature */
1472 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1473 retval = 1;
1474 /* found the correct signature */
1475
1476 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1477 /*
1478 * Have to make every access through boot_sect rather
1479 * than using a pointer to the partition table (or an
1480 * entry), since the entries are not properly aligned.
1481 */
1482
1483 /* check for GPT type */
1484 if (boot_sect.parts[part_nr].part_type ==
1485 MBR_GPT_PARTITION_TYPE) {
1486 retval = get_gpt_last_partition_end(fd, endofpart);
1487 break;
1488 }
1489 /* check the last used lba for the current partition */
1490 curr_part_end =
1491 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1492 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1493 if (curr_part_end > *endofpart)
1494 *endofpart = curr_part_end;
1495 }
1496 } else {
1497 /* Unknown partition table */
1498 retval = -1;
1499 }
1500 /* calculate number of 512-byte blocks */
1501 if (get_dev_sector_size(fd, NULL, &sector_size))
1502 *endofpart *= (sector_size / 512);
1503 abort:
1504 return retval;
1505 }
1506
1507 int check_partitions(int fd, char *dname, unsigned long long freesize,
1508 unsigned long long size)
1509 {
1510 /*
1511 * Check where the last partition ends
1512 */
1513 unsigned long long endofpart;
1514
1515 if (get_last_partition_end(fd, &endofpart) > 0) {
1516 /* There appears to be a partition table here */
1517 if (freesize == 0) {
1518 /* partitions will not be visible in new device */
1519 pr_err("partition table exists on %s but will be lost or\n"
1520 " meaningless after creating array\n",
1521 dname);
1522 return 1;
1523 } else if (endofpart > freesize) {
1524 /* last partition overlaps metadata */
1525 pr_err("metadata will over-write last partition on %s.\n",
1526 dname);
1527 return 1;
1528 } else if (size && endofpart > size) {
1529 /* partitions will be truncated in new device */
1530 pr_err("array size is too small to cover all partitions on %s.\n",
1531 dname);
1532 return 1;
1533 }
1534 }
1535 return 0;
1536 }
1537
1538 int open_container(int fd)
1539 {
1540 /* 'fd' is a block device. Find out if it is in use
1541 * by a container, and return an open fd on that container.
1542 */
1543 char path[256];
1544 char *e;
1545 DIR *dir;
1546 struct dirent *de;
1547 int dfd, n;
1548 char buf[200];
1549 int major, minor;
1550 struct stat st;
1551
1552 if (fstat(fd, &st) != 0)
1553 return -1;
1554 sprintf(path, "/sys/dev/block/%d:%d/holders",
1555 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1556 e = path + strlen(path);
1557
1558 dir = opendir(path);
1559 if (!dir)
1560 return -1;
1561 while ((de = readdir(dir))) {
1562 if (de->d_ino == 0)
1563 continue;
1564 if (de->d_name[0] == '.')
1565 continue;
1566 /* Need to make sure it is a container and not a volume */
1567 sprintf(e, "/%s/md/metadata_version", de->d_name);
1568 dfd = open(path, O_RDONLY);
1569 if (dfd < 0)
1570 continue;
1571 n = read(dfd, buf, sizeof(buf));
1572 close(dfd);
1573 if (n <= 0 || (unsigned)n >= sizeof(buf))
1574 continue;
1575 buf[n] = 0;
1576 if (strncmp(buf, "external", 8) != 0 ||
1577 n < 10 ||
1578 buf[9] == '/')
1579 continue;
1580 sprintf(e, "/%s/dev", de->d_name);
1581 dfd = open(path, O_RDONLY);
1582 if (dfd < 0)
1583 continue;
1584 n = read(dfd, buf, sizeof(buf));
1585 close(dfd);
1586 if (n <= 0 || (unsigned)n >= sizeof(buf))
1587 continue;
1588 buf[n] = 0;
1589 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1590 continue;
1591 sprintf(buf, "%d:%d", major, minor);
1592 dfd = dev_open(buf, O_RDONLY);
1593 if (dfd >= 0) {
1594 closedir(dir);
1595 return dfd;
1596 }
1597 }
1598 closedir(dir);
1599 return -1;
1600 }
1601
1602 struct superswitch *version_to_superswitch(char *vers)
1603 {
1604 int i;
1605
1606 for (i = 0; superlist[i]; i++) {
1607 struct superswitch *ss = superlist[i];
1608
1609 if (strcmp(vers, ss->name) == 0)
1610 return ss;
1611 }
1612
1613 return NULL;
1614 }
1615
1616 int metadata_container_matches(char *metadata, char *devnm)
1617 {
1618 /* Check if 'devnm' is the container named in 'metadata'
1619 * which is
1620 * /containername/componentname or
1621 * -containername/componentname
1622 */
1623 int l;
1624 if (*metadata != '/' && *metadata != '-')
1625 return 0;
1626 l = strlen(devnm);
1627 if (strncmp(metadata+1, devnm, l) != 0)
1628 return 0;
1629 if (metadata[l+1] != '/')
1630 return 0;
1631 return 1;
1632 }
1633
1634 int metadata_subdev_matches(char *metadata, char *devnm)
1635 {
1636 /* Check if 'devnm' is the subdev named in 'metadata'
1637 * which is
1638 * /containername/subdev or
1639 * -containername/subdev
1640 */
1641 char *sl;
1642 if (*metadata != '/' && *metadata != '-')
1643 return 0;
1644 sl = strchr(metadata+1, '/');
1645 if (!sl)
1646 return 0;
1647 if (strcmp(sl+1, devnm) == 0)
1648 return 1;
1649 return 0;
1650 }
1651
1652 int is_container_member(struct mdstat_ent *mdstat, char *container)
1653 {
1654 if (mdstat->metadata_version == NULL ||
1655 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1656 !metadata_container_matches(mdstat->metadata_version+9, container))
1657 return 0;
1658
1659 return 1;
1660 }
1661
1662 int is_subarray_active(char *subarray, char *container)
1663 {
1664 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1665 struct mdstat_ent *ent;
1666
1667 for (ent = mdstat; ent; ent = ent->next)
1668 if (is_container_member(ent, container))
1669 if (strcmp(to_subarray(ent, container), subarray) == 0)
1670 break;
1671
1672 free_mdstat(mdstat);
1673
1674 return ent != NULL;
1675 }
1676
1677 /* open_subarray - opens a subarray in a container
1678 * @dev: container device name
1679 * @st: empty supertype
1680 * @quiet: block reporting errors flag
1681 *
1682 * On success returns an fd to a container and fills in *st
1683 */
1684 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1685 {
1686 struct mdinfo *mdi;
1687 struct mdinfo *info;
1688 int fd, err = 1;
1689 char *_devnm;
1690
1691 fd = open(dev, O_RDWR|O_EXCL);
1692 if (fd < 0) {
1693 if (!quiet)
1694 pr_err("Couldn't open %s, aborting\n",
1695 dev);
1696 return -1;
1697 }
1698
1699 _devnm = fd2devnm(fd);
1700 if (_devnm == NULL) {
1701 if (!quiet)
1702 pr_err("Failed to determine device number for %s\n",
1703 dev);
1704 goto close_fd;
1705 }
1706 strcpy(st->devnm, _devnm);
1707
1708 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1709 if (!mdi) {
1710 if (!quiet)
1711 pr_err("Failed to read sysfs for %s\n",
1712 dev);
1713 goto close_fd;
1714 }
1715
1716 if (mdi->array.level != UnSet) {
1717 if (!quiet)
1718 pr_err("%s is not a container\n", dev);
1719 goto free_sysfs;
1720 }
1721
1722 st->ss = version_to_superswitch(mdi->text_version);
1723 if (!st->ss) {
1724 if (!quiet)
1725 pr_err("Operation not supported for %s metadata\n",
1726 mdi->text_version);
1727 goto free_sysfs;
1728 }
1729
1730 if (st->devnm[0] == 0) {
1731 if (!quiet)
1732 pr_err("Failed to allocate device name\n");
1733 goto free_sysfs;
1734 }
1735
1736 if (!st->ss->load_container) {
1737 if (!quiet)
1738 pr_err("%s is not a container\n", dev);
1739 goto free_sysfs;
1740 }
1741
1742 if (st->ss->load_container(st, fd, NULL)) {
1743 if (!quiet)
1744 pr_err("Failed to load metadata for %s\n",
1745 dev);
1746 goto free_sysfs;
1747 }
1748
1749 info = st->ss->container_content(st, subarray);
1750 if (!info) {
1751 if (!quiet)
1752 pr_err("Failed to find subarray-%s in %s\n",
1753 subarray, dev);
1754 goto free_super;
1755 }
1756 free(info);
1757
1758 err = 0;
1759
1760 free_super:
1761 if (err)
1762 st->ss->free_super(st);
1763 free_sysfs:
1764 sysfs_free(mdi);
1765 close_fd:
1766 if (err)
1767 close(fd);
1768
1769 if (err)
1770 return -1;
1771 else
1772 return fd;
1773 }
1774
1775 int add_disk(int mdfd, struct supertype *st,
1776 struct mdinfo *sra, struct mdinfo *info)
1777 {
1778 /* Add a device to an array, in one of 2 ways. */
1779 int rv;
1780 #ifndef MDASSEMBLE
1781 if (st->ss->external) {
1782 if (info->disk.state & (1<<MD_DISK_SYNC))
1783 info->recovery_start = MaxSector;
1784 else
1785 info->recovery_start = 0;
1786 rv = sysfs_add_disk(sra, info, 0);
1787 if (! rv) {
1788 struct mdinfo *sd2;
1789 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1790 if (sd2 == info)
1791 break;
1792 if (sd2 == NULL) {
1793 sd2 = xmalloc(sizeof(*sd2));
1794 *sd2 = *info;
1795 sd2->next = sra->devs;
1796 sra->devs = sd2;
1797 }
1798 }
1799 } else
1800 #endif
1801 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1802 return rv;
1803 }
1804
1805 int remove_disk(int mdfd, struct supertype *st,
1806 struct mdinfo *sra, struct mdinfo *info)
1807 {
1808 int rv;
1809 /* Remove the disk given by 'info' from the array */
1810 #ifndef MDASSEMBLE
1811 if (st->ss->external)
1812 rv = sysfs_set_str(sra, info, "slot", "none");
1813 else
1814 #endif
1815 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1816 info->disk.minor));
1817 return rv;
1818 }
1819
1820 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1821 {
1822 int cnt = force ? 500 : 5;
1823 int ret;
1824
1825 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1826 * outstanding IO requests to the device.
1827 * In this case, it can be helpful to wait a little while,
1828 * up to 5 seconds if 'force' is set, or 50 msec if not.
1829 */
1830 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1831 errno == EBUSY &&
1832 cnt-- > 0)
1833 usleep(10000);
1834
1835 return ret;
1836 }
1837
1838 int sys_hot_remove_disk(int statefd, int force)
1839 {
1840 int cnt = force ? 500 : 5;
1841 int ret;
1842
1843 while ((ret = write(statefd, "remove", 6)) == -1 &&
1844 errno == EBUSY &&
1845 cnt-- > 0)
1846 usleep(10000);
1847 return ret == 6 ? 0 : -1;
1848 }
1849
1850 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1851 {
1852 /* Initialise kernel's knowledge of array.
1853 * This varies between externally managed arrays
1854 * and older kernels
1855 */
1856 int vers = md_get_version(mdfd);
1857 int rv;
1858
1859 #ifndef MDASSEMBLE
1860 if (st->ss->external)
1861 rv = sysfs_set_array(info, vers);
1862 else
1863 #endif
1864 if ((vers % 100) >= 1) { /* can use different versions */
1865 mdu_array_info_t inf;
1866 memset(&inf, 0, sizeof(inf));
1867 inf.major_version = info->array.major_version;
1868 inf.minor_version = info->array.minor_version;
1869 rv = md_set_array_info(mdfd, &inf);
1870 } else
1871 rv = md_set_array_info(mdfd, NULL);
1872 return rv;
1873 }
1874
1875 unsigned long long min_recovery_start(struct mdinfo *array)
1876 {
1877 /* find the minimum recovery_start in an array for metadata
1878 * formats that only record per-array recovery progress instead
1879 * of per-device
1880 */
1881 unsigned long long recovery_start = MaxSector;
1882 struct mdinfo *d;
1883
1884 for (d = array->devs; d; d = d->next)
1885 recovery_start = min(recovery_start, d->recovery_start);
1886
1887 return recovery_start;
1888 }
1889
1890 int mdmon_pid(char *devnm)
1891 {
1892 char path[100];
1893 char pid[10];
1894 int fd;
1895 int n;
1896
1897 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1898
1899 fd = open(path, O_RDONLY | O_NOATIME, 0);
1900
1901 if (fd < 0)
1902 return -1;
1903 n = read(fd, pid, 9);
1904 close(fd);
1905 if (n <= 0)
1906 return -1;
1907 return atoi(pid);
1908 }
1909
1910 int mdmon_running(char *devnm)
1911 {
1912 int pid = mdmon_pid(devnm);
1913 if (pid <= 0)
1914 return 0;
1915 if (kill(pid, 0) == 0)
1916 return 1;
1917 return 0;
1918 }
1919
1920 int start_mdmon(char *devnm)
1921 {
1922 int i, skipped;
1923 int len;
1924 pid_t pid;
1925 int status;
1926 char pathbuf[1024];
1927 char *paths[4] = {
1928 pathbuf,
1929 BINDIR "/mdmon",
1930 "./mdmon",
1931 NULL
1932 };
1933
1934 if (check_env("MDADM_NO_MDMON"))
1935 return 0;
1936
1937 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1938 if (len > 0) {
1939 char *sl;
1940 pathbuf[len] = 0;
1941 sl = strrchr(pathbuf, '/');
1942 if (sl)
1943 sl++;
1944 else
1945 sl = pathbuf;
1946 strcpy(sl, "mdmon");
1947 } else
1948 pathbuf[0] = '\0';
1949
1950 /* First try to run systemctl */
1951 if (!check_env("MDADM_NO_SYSTEMCTL"))
1952 switch(fork()) {
1953 case 0:
1954 /* FIXME yuk. CLOSE_EXEC?? */
1955 skipped = 0;
1956 for (i = 3; skipped < 20; i++)
1957 if (close(i) < 0)
1958 skipped++;
1959 else
1960 skipped = 0;
1961
1962 /* Don't want to see error messages from
1963 * systemctl. If the service doesn't exist,
1964 * we start mdmon ourselves.
1965 */
1966 close(2);
1967 open("/dev/null", O_WRONLY);
1968 snprintf(pathbuf, sizeof(pathbuf), "mdmon@%s.service",
1969 devnm);
1970 status = execl("/usr/bin/systemctl", "systemctl",
1971 "start",
1972 pathbuf, NULL);
1973 status = execl("/bin/systemctl", "systemctl", "start",
1974 pathbuf, NULL);
1975 exit(1);
1976 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1977 return -1;
1978 default: /* parent - good */
1979 pid = wait(&status);
1980 if (pid >= 0 && status == 0)
1981 return 0;
1982 }
1983
1984 /* That failed, try running mdmon directly */
1985 switch(fork()) {
1986 case 0:
1987 /* FIXME yuk. CLOSE_EXEC?? */
1988 skipped = 0;
1989 for (i = 3; skipped < 20; i++)
1990 if (close(i) < 0)
1991 skipped++;
1992 else
1993 skipped = 0;
1994
1995 for (i = 0; paths[i]; i++)
1996 if (paths[i][0]) {
1997 execl(paths[i], paths[i],
1998 devnm, NULL);
1999 }
2000 exit(1);
2001 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
2002 return -1;
2003 default: /* parent - good */
2004 pid = wait(&status);
2005 if (pid < 0 || status != 0) {
2006 pr_err("failed to launch mdmon. Array remains readonly\n");
2007 return -1;
2008 }
2009 }
2010 return 0;
2011 }
2012
2013 __u32 random32(void)
2014 {
2015 __u32 rv;
2016 int rfd = open("/dev/urandom", O_RDONLY);
2017 if (rfd < 0 || read(rfd, &rv, 4) != 4)
2018 rv = random();
2019 if (rfd >= 0)
2020 close(rfd);
2021 return rv;
2022 }
2023
2024 void random_uuid(__u8 *buf)
2025 {
2026 int fd, i, len;
2027 __u32 r[4];
2028
2029 fd = open("/dev/urandom", O_RDONLY);
2030 if (fd < 0)
2031 goto use_random;
2032 len = read(fd, buf, 16);
2033 close(fd);
2034 if (len != 16)
2035 goto use_random;
2036
2037 return;
2038
2039 use_random:
2040 for (i = 0; i < 4; i++)
2041 r[i] = random();
2042 memcpy(buf, r, 16);
2043 }
2044
2045 #ifndef MDASSEMBLE
2046 int flush_metadata_updates(struct supertype *st)
2047 {
2048 int sfd;
2049 if (!st->updates) {
2050 st->update_tail = NULL;
2051 return -1;
2052 }
2053
2054 sfd = connect_monitor(st->container_devnm);
2055 if (sfd < 0)
2056 return -1;
2057
2058 while (st->updates) {
2059 struct metadata_update *mu = st->updates;
2060 st->updates = mu->next;
2061
2062 send_message(sfd, mu, 0);
2063 wait_reply(sfd, 0);
2064 free(mu->buf);
2065 free(mu);
2066 }
2067 ack(sfd, 0);
2068 wait_reply(sfd, 0);
2069 close(sfd);
2070 st->update_tail = NULL;
2071 return 0;
2072 }
2073
2074 void append_metadata_update(struct supertype *st, void *buf, int len)
2075 {
2076
2077 struct metadata_update *mu = xmalloc(sizeof(*mu));
2078
2079 mu->buf = buf;
2080 mu->len = len;
2081 mu->space = NULL;
2082 mu->space_list = NULL;
2083 mu->next = NULL;
2084 *st->update_tail = mu;
2085 st->update_tail = &mu->next;
2086 }
2087 #endif /* MDASSEMBLE */
2088
2089 #ifdef __TINYC__
2090 /* tinyc doesn't optimize this check in ioctl.h out ... */
2091 unsigned int __invalid_size_argument_for_IOC = 0;
2092 #endif
2093
2094 int experimental(void)
2095 {
2096 if (check_env("MDADM_EXPERIMENTAL"))
2097 return 1;
2098 else {
2099 pr_err("To use this feature MDADM_EXPERIMENTAL environment variable has to be defined.\n");
2100 return 0;
2101 }
2102 }
2103
2104 /* Pick all spares matching given criteria from a container
2105 * if min_size == 0 do not check size
2106 * if domlist == NULL do not check domains
2107 * if spare_group given add it to domains of each spare
2108 * metadata allows to test domains using metadata of destination array */
2109 struct mdinfo *container_choose_spares(struct supertype *st,
2110 unsigned long long min_size,
2111 struct domainlist *domlist,
2112 char *spare_group,
2113 const char *metadata, int get_one)
2114 {
2115 struct mdinfo *d, **dp, *disks = NULL;
2116
2117 /* get list of all disks in container */
2118 if (st->ss->getinfo_super_disks)
2119 disks = st->ss->getinfo_super_disks(st);
2120
2121 if (!disks)
2122 return disks;
2123 /* find spare devices on the list */
2124 dp = &disks->devs;
2125 disks->array.spare_disks = 0;
2126 while (*dp) {
2127 int found = 0;
2128 d = *dp;
2129 if (d->disk.state == 0) {
2130 /* check if size is acceptable */
2131 unsigned long long dev_size;
2132 dev_t dev = makedev(d->disk.major,d->disk.minor);
2133
2134 if (!min_size ||
2135 (dev_size_from_id(dev, &dev_size) &&
2136 dev_size >= min_size))
2137 found = 1;
2138 /* check if domain matches */
2139 if (found && domlist) {
2140 struct dev_policy *pol = devid_policy(dev);
2141 if (spare_group)
2142 pol_add(&pol, pol_domain,
2143 spare_group, NULL);
2144 if (domain_test(domlist, pol, metadata) != 1)
2145 found = 0;
2146 dev_policy_free(pol);
2147 }
2148 }
2149 if (found) {
2150 dp = &d->next;
2151 disks->array.spare_disks++;
2152 if (get_one) {
2153 sysfs_free(*dp);
2154 d->next = NULL;
2155 }
2156 } else {
2157 *dp = d->next;
2158 d->next = NULL;
2159 sysfs_free(d);
2160 }
2161 }
2162 return disks;
2163 }
2164
2165 /* Checks if paths point to the same device
2166 * Returns 0 if they do.
2167 * Returns 1 if they don't.
2168 * Returns -1 if something went wrong,
2169 * e.g. paths are empty or the files
2170 * they point to don't exist */
2171 int compare_paths (char* path1, char* path2)
2172 {
2173 struct stat st1,st2;
2174
2175 if (path1 == NULL || path2 == NULL)
2176 return -1;
2177 if (stat(path1,&st1) != 0)
2178 return -1;
2179 if (stat(path2,&st2) != 0)
2180 return -1;
2181 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2182 return 0;
2183 return 1;
2184 }
2185
2186 /* Make sure we can open as many devices as needed */
2187 void enable_fds(int devices)
2188 {
2189 unsigned int fds = 20 + devices;
2190 struct rlimit lim;
2191 if (getrlimit(RLIMIT_NOFILE, &lim) != 0
2192 || lim.rlim_cur >= fds)
2193 return;
2194 if (lim.rlim_max < fds)
2195 lim.rlim_max = fds;
2196 lim.rlim_cur = fds;
2197 setrlimit(RLIMIT_NOFILE, &lim);
2198 }
2199
2200 int in_initrd(void)
2201 {
2202 /* This is based on similar function in systemd. */
2203 struct statfs s;
2204 /* statfs.f_type is signed long on s390x and MIPS, causing all
2205 sorts of sign extension problems with RAMFS_MAGIC being
2206 defined as 0x858458f6 */
2207 return statfs("/", &s) >= 0 &&
2208 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2209 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2210 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2211 }
2212
2213 void reopen_mddev(int mdfd)
2214 {
2215 /* Re-open without any O_EXCL, but keep
2216 * the same fd
2217 */
2218 char *devnm;
2219 int fd;
2220 devnm = fd2devnm(mdfd);
2221 close(mdfd);
2222 fd = open_dev(devnm);
2223 if (fd >= 0 && fd != mdfd)
2224 dup2(fd, mdfd);
2225 }
2226
2227 #ifndef MDASSEMBLE
2228 static struct cmap_hooks *cmap_hooks = NULL;
2229 static int is_cmap_hooks_ready = 0;
2230
2231 void set_cmap_hooks(void)
2232 {
2233 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2234 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2235 if (!cmap_hooks->cmap_handle)
2236 return;
2237
2238 cmap_hooks->initialize = dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2239 cmap_hooks->get_string = dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2240 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2241
2242 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2243 !cmap_hooks->finalize)
2244 dlclose(cmap_hooks->cmap_handle);
2245 else
2246 is_cmap_hooks_ready = 1;
2247 }
2248
2249 int get_cluster_name(char **cluster_name)
2250 {
2251 int rv = -1;
2252 cmap_handle_t handle;
2253
2254 if (!is_cmap_hooks_ready)
2255 return rv;
2256
2257 rv = cmap_hooks->initialize(&handle);
2258 if (rv != CS_OK)
2259 goto out;
2260
2261 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2262 if (rv != CS_OK) {
2263 free(*cluster_name);
2264 rv = -1;
2265 goto name_err;
2266 }
2267
2268 rv = 0;
2269 name_err:
2270 cmap_hooks->finalize(handle);
2271 out:
2272 return rv;
2273 }
2274
2275 void set_dlm_hooks(void)
2276 {
2277 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2278 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2279 if (!dlm_hooks->dlm_handle)
2280 return;
2281
2282 dlm_hooks->create_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2283 dlm_hooks->release_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2284 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2285 dlm_hooks->ls_unlock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock");
2286 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2287 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2288
2289 if (!dlm_hooks->create_lockspace || !dlm_hooks->ls_lock ||
2290 !dlm_hooks->ls_unlock || !dlm_hooks->release_lockspace ||
2291 !dlm_hooks->ls_get_fd || !dlm_hooks->dispatch)
2292 dlclose(dlm_hooks->dlm_handle);
2293 else
2294 is_dlm_hooks_ready = 1;
2295 }
2296
2297 void set_hooks(void)
2298 {
2299 set_dlm_hooks();
2300 set_cmap_hooks();
2301 }
2302 #endif