]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
mdmon: fix wrong array state when disk fails during mdmon startup
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <sys/mman.h>
34 #include <linux/magic.h>
35 #include <poll.h>
36 #include <ctype.h>
37 #include <dirent.h>
38 #include <signal.h>
39 #include <dlfcn.h>
40
41
42 /*
43 * following taken from linux/blkpg.h because they aren't
44 * anywhere else and it isn't safe to #include linux/ * stuff.
45 */
46
47 #define BLKPG _IO(0x12,105)
48
49 /* The argument structure */
50 struct blkpg_ioctl_arg {
51 int op;
52 int flags;
53 int datalen;
54 void *data;
55 };
56
57 /* The subfunctions (for the op field) */
58 #define BLKPG_ADD_PARTITION 1
59 #define BLKPG_DEL_PARTITION 2
60
61 /* Sizes of name fields. Unused at present. */
62 #define BLKPG_DEVNAMELTH 64
63 #define BLKPG_VOLNAMELTH 64
64
65 /* The data structure for ADD_PARTITION and DEL_PARTITION */
66 struct blkpg_partition {
67 long long start; /* starting offset in bytes */
68 long long length; /* length in bytes */
69 int pno; /* partition number */
70 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
71 to be used in kernel messages */
72 char volname[BLKPG_VOLNAMELTH]; /* volume label */
73 };
74
75 #include "part.h"
76
77 /* Force a compilation error if condition is true */
78 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
79
80 /* Force a compilation error if condition is true, but also produce a
81 result (of value 0 and type size_t), so the expression can be used
82 e.g. in a structure initializer (or where-ever else comma expressions
83 aren't permitted). */
84 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
85
86 static int is_dlm_hooks_ready = 0;
87
88 int dlm_funs_ready(void)
89 {
90 return is_dlm_hooks_ready ? 1 : 0;
91 }
92
93 static struct dlm_hooks *dlm_hooks = NULL;
94 struct dlm_lock_resource *dlm_lock_res = NULL;
95 static int ast_called = 0;
96
97 struct dlm_lock_resource {
98 dlm_lshandle_t *ls;
99 struct dlm_lksb lksb;
100 };
101
102 /* Using poll(2) to wait for and dispatch ASTs */
103 static int poll_for_ast(dlm_lshandle_t ls)
104 {
105 struct pollfd pfd;
106
107 pfd.fd = dlm_hooks->ls_get_fd(ls);
108 pfd.events = POLLIN;
109
110 while (!ast_called)
111 {
112 if (poll(&pfd, 1, 0) < 0)
113 {
114 perror("poll");
115 return -1;
116 }
117 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
118 }
119 ast_called = 0;
120
121 return 0;
122 }
123
124 static void dlm_ast(void *arg)
125 {
126 ast_called = 1;
127 }
128
129 static char *cluster_name = NULL;
130 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
131 int cluster_get_dlmlock(void)
132 {
133 int ret = -1;
134 char str[64];
135 int flags = LKF_NOQUEUE;
136 int retry_count = 0;
137
138 if (!dlm_funs_ready()) {
139 pr_err("Something wrong with dlm library\n");
140 return -1;
141 }
142
143 ret = get_cluster_name(&cluster_name);
144 if (ret) {
145 pr_err("The md can't get cluster name\n");
146 return -1;
147 }
148
149 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
150 dlm_lock_res->ls = dlm_hooks->open_lockspace(cluster_name);
151 if (!dlm_lock_res->ls) {
152 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
153 if (!dlm_lock_res->ls) {
154 pr_err("%s failed to create lockspace\n", cluster_name);
155 return -ENOMEM;
156 }
157 } else {
158 pr_err("open existed %s lockspace\n", cluster_name);
159 }
160
161 snprintf(str, 64, "bitmap%s", cluster_name);
162 retry:
163 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE,
164 &dlm_lock_res->lksb, flags, str, strlen(str),
165 0, dlm_ast, dlm_lock_res, NULL, NULL);
166 if (ret) {
167 pr_err("error %d when get PW mode on lock %s\n", errno, str);
168 /* let's try several times if EAGAIN happened */
169 if (dlm_lock_res->lksb.sb_status == EAGAIN && retry_count < 10) {
170 sleep(10);
171 retry_count++;
172 goto retry;
173 }
174 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
175 return ret;
176 }
177
178 /* Wait for it to complete */
179 poll_for_ast(dlm_lock_res->ls);
180
181 if (dlm_lock_res->lksb.sb_status) {
182 pr_err("failed to lock cluster\n");
183 return -1;
184 }
185 return 1;
186 }
187
188 int cluster_release_dlmlock(void)
189 {
190 int ret = -1;
191
192 if (!cluster_name)
193 goto out;
194
195 if (!dlm_lock_res->lksb.sb_lkid)
196 goto out;
197
198 ret = dlm_hooks->ls_unlock_wait(dlm_lock_res->ls,
199 dlm_lock_res->lksb.sb_lkid, 0,
200 &dlm_lock_res->lksb);
201 if (ret) {
202 pr_err("error %d happened when unlock\n", errno);
203 /* XXX make sure the lock is unlocked eventually */
204 goto out;
205 }
206
207 /* Wait for it to complete */
208 poll_for_ast(dlm_lock_res->ls);
209
210 errno = dlm_lock_res->lksb.sb_status;
211 if (errno != EUNLOCK) {
212 pr_err("error %d happened in ast when unlock lockspace\n",
213 errno);
214 /* XXX make sure the lockspace is unlocked eventually */
215 goto out;
216 }
217
218 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
219 if (ret) {
220 pr_err("error %d happened when release lockspace\n", errno);
221 /* XXX make sure the lockspace is released eventually */
222 goto out;
223 }
224 free(dlm_lock_res);
225
226 out:
227 return ret;
228 }
229
230 int md_array_valid(int fd)
231 {
232 struct mdinfo *sra;
233 int ret;
234
235 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
236 if (sra) {
237 if (sra->array_state != ARRAY_UNKNOWN_STATE)
238 ret = 0;
239 else
240 ret = -ENODEV;
241
242 free(sra);
243 } else {
244 /*
245 * GET_ARRAY_INFO doesn't provide access to the proper state
246 * information, so fallback to a basic check for raid_disks != 0
247 */
248 ret = ioctl(fd, RAID_VERSION);
249 }
250
251 return !ret;
252 }
253
254 int md_array_active(int fd)
255 {
256 struct mdinfo *sra;
257 struct mdu_array_info_s array;
258 int ret = 0;
259
260 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
261 if (sra) {
262 if (!md_array_is_active(sra))
263 ret = -ENODEV;
264
265 free(sra);
266 } else {
267 /*
268 * GET_ARRAY_INFO doesn't provide access to the proper state
269 * information, so fallback to a basic check for raid_disks != 0
270 */
271 ret = ioctl(fd, GET_ARRAY_INFO, &array);
272 }
273
274 return !ret;
275 }
276
277 int md_array_is_active(struct mdinfo *info)
278 {
279 return (info->array_state != ARRAY_CLEAR &&
280 info->array_state != ARRAY_INACTIVE &&
281 info->array_state != ARRAY_UNKNOWN_STATE);
282 }
283
284 /*
285 * Get array info from the kernel. Longer term we want to deprecate the
286 * ioctl and get it from sysfs.
287 */
288 int md_get_array_info(int fd, struct mdu_array_info_s *array)
289 {
290 return ioctl(fd, GET_ARRAY_INFO, array);
291 }
292
293 /*
294 * Set array info
295 */
296 int md_set_array_info(int fd, struct mdu_array_info_s *array)
297 {
298 return ioctl(fd, SET_ARRAY_INFO, array);
299 }
300
301 /*
302 * Get disk info from the kernel.
303 */
304 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
305 {
306 return ioctl(fd, GET_DISK_INFO, disk);
307 }
308
309 /*
310 * Parse a 128 bit uuid in 4 integers
311 * format is 32 hexx nibbles with options :.<space> separator
312 * If not exactly 32 hex digits are found, return 0
313 * else return 1
314 */
315 int parse_uuid(char *str, int uuid[4])
316 {
317 int hit = 0; /* number of Hex digIT */
318 int i;
319 char c;
320 for (i = 0; i < 4; i++)
321 uuid[i] = 0;
322
323 while ((c = *str++) != 0) {
324 int n;
325 if (c >= '0' && c <= '9')
326 n = c-'0';
327 else if (c >= 'a' && c <= 'f')
328 n = 10 + c - 'a';
329 else if (c >= 'A' && c <= 'F')
330 n = 10 + c - 'A';
331 else if (strchr(":. -", c))
332 continue;
333 else return 0;
334
335 if (hit<32) {
336 uuid[hit/8] <<= 4;
337 uuid[hit/8] += n;
338 }
339 hit++;
340 }
341 if (hit == 32)
342 return 1;
343 return 0;
344 }
345
346 int get_linux_version()
347 {
348 struct utsname name;
349 char *cp;
350 int a = 0, b = 0,c = 0;
351 if (uname(&name) <0)
352 return -1;
353
354 cp = name.release;
355 a = strtoul(cp, &cp, 10);
356 if (*cp == '.')
357 b = strtoul(cp+1, &cp, 10);
358 if (*cp == '.')
359 c = strtoul(cp+1, &cp, 10);
360
361 return (a*1000000)+(b*1000)+c;
362 }
363
364 int mdadm_version(char *version)
365 {
366 int a, b, c;
367 char *cp;
368
369 if (!version)
370 version = Version;
371
372 cp = strchr(version, '-');
373 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
374 return -1;
375 cp += 3;
376 a = strtoul(cp, &cp, 10);
377 if (*cp != '.')
378 return -1;
379 b = strtoul(cp+1, &cp, 10);
380 if (*cp == '.')
381 c = strtoul(cp+1, &cp, 10);
382 else
383 c = 0;
384 if (*cp != ' ' && *cp != '-')
385 return -1;
386 return (a*1000000)+(b*1000)+c;
387 }
388
389 unsigned long long parse_size(char *size)
390 {
391 /* parse 'size' which should be a number optionally
392 * followed by 'K', 'M', or 'G'.
393 * Without a suffix, K is assumed.
394 * Number returned is in sectors (half-K)
395 * INVALID_SECTORS returned on error.
396 */
397 char *c;
398 long long s = strtoll(size, &c, 10);
399 if (s > 0) {
400 switch (*c) {
401 case 'K':
402 c++;
403 default:
404 s *= 2;
405 break;
406 case 'M':
407 c++;
408 s *= 1024 * 2;
409 break;
410 case 'G':
411 c++;
412 s *= 1024 * 1024 * 2;
413 break;
414 case 's': /* sectors */
415 c++;
416 break;
417 }
418 } else
419 s = INVALID_SECTORS;
420 if (*c)
421 s = INVALID_SECTORS;
422 return s;
423 }
424
425 int is_near_layout_10(int layout)
426 {
427 int fc, fo;
428
429 fc = (layout >> 8) & 255;
430 fo = layout & (1 << 16);
431 if (fc > 1 || fo > 0)
432 return 0;
433 return 1;
434 }
435
436 int parse_layout_10(char *layout)
437 {
438 int copies, rv;
439 char *cp;
440 /* Parse the layout string for raid10 */
441 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
442 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
443 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
444 copies > 200 ||
445 *cp)
446 return -1;
447 if (layout[0] == 'n')
448 rv = 256 + copies;
449 else if (layout[0] == 'o')
450 rv = 0x10000 + (copies<<8) + 1;
451 else
452 rv = 1 + (copies<<8);
453 return rv;
454 }
455
456 int parse_layout_faulty(char *layout)
457 {
458 /* Parse the layout string for 'faulty' */
459 int ln = strcspn(layout, "0123456789");
460 char *m = xstrdup(layout);
461 int mode;
462 m[ln] = 0;
463 mode = map_name(faultylayout, m);
464 if (mode == UnSet)
465 return -1;
466
467 return mode | (atoi(layout+ln)<< ModeShift);
468 }
469
470 long parse_num(char *num)
471 {
472 /* Either return a valid number, or -1 */
473 char *c;
474 long rv = strtol(num, &c, 10);
475 if (rv < 0 || *c || !num[0])
476 return -1;
477 else
478 return rv;
479 }
480
481 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
482 {
483 char *dev;
484 *slot = strtoul(input, &dev, 10);
485 if (dev == input || dev[0] != ':')
486 return -1;
487 *devname = dev+1;
488 return 0;
489 }
490
491 void remove_partitions(int fd)
492 {
493 /* remove partitions from this block devices.
494 * This is used for components added to an array
495 */
496 #ifdef BLKPG_DEL_PARTITION
497 struct blkpg_ioctl_arg a;
498 struct blkpg_partition p;
499
500 a.op = BLKPG_DEL_PARTITION;
501 a.data = (void*)&p;
502 a.datalen = sizeof(p);
503 a.flags = 0;
504 memset(a.data, 0, a.datalen);
505 for (p.pno = 0; p.pno < 16; p.pno++)
506 ioctl(fd, BLKPG, &a);
507 #endif
508 }
509
510 int test_partition(int fd)
511 {
512 /* Check if fd is a whole-disk or a partition.
513 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
514 * will return ENXIO on an invalid partition number.
515 */
516 struct blkpg_ioctl_arg a;
517 struct blkpg_partition p;
518 a.op = BLKPG_DEL_PARTITION;
519 a.data = (void*)&p;
520 a.datalen = sizeof(p);
521 a.flags = 0;
522 memset(a.data, 0, a.datalen);
523 p.pno = 1<<30;
524 if (ioctl(fd, BLKPG, &a) == 0)
525 /* Very unlikely, but not a partition */
526 return 0;
527 if (errno == ENXIO || errno == ENOTTY)
528 /* not a partition */
529 return 0;
530
531 return 1;
532 }
533
534 int test_partition_from_id(dev_t id)
535 {
536 char buf[20];
537 int fd, rv;
538
539 sprintf(buf, "%d:%d", major(id), minor(id));
540 fd = dev_open(buf, O_RDONLY);
541 if (fd < 0)
542 return -1;
543 rv = test_partition(fd);
544 close(fd);
545 return rv;
546 }
547
548 int enough(int level, int raid_disks, int layout, int clean, char *avail)
549 {
550 int copies, first;
551 int i;
552 int avail_disks = 0;
553
554 for (i = 0; i < raid_disks; i++)
555 avail_disks += !!avail[i];
556
557 switch (level) {
558 case 10:
559 /* This is the tricky one - we need to check
560 * which actual disks are present.
561 */
562 copies = (layout&255)* ((layout>>8) & 255);
563 first = 0;
564 do {
565 /* there must be one of the 'copies' form 'first' */
566 int n = copies;
567 int cnt = 0;
568 int this = first;
569 while (n--) {
570 if (avail[this])
571 cnt++;
572 this = (this+1) % raid_disks;
573 }
574 if (cnt == 0)
575 return 0;
576 first = (first+(layout&255)) % raid_disks;
577 } while (first != 0);
578 return 1;
579
580 case LEVEL_MULTIPATH:
581 return avail_disks>= 1;
582 case LEVEL_LINEAR:
583 case 0:
584 return avail_disks == raid_disks;
585 case 1:
586 return avail_disks >= 1;
587 case 4:
588 if (avail_disks == raid_disks - 1 &&
589 !avail[raid_disks - 1])
590 /* If just the parity device is missing, then we
591 * have enough, even if not clean
592 */
593 return 1;
594 /* FALL THROUGH */
595 case 5:
596 if (clean)
597 return avail_disks >= raid_disks-1;
598 else
599 return avail_disks >= raid_disks;
600 case 6:
601 if (clean)
602 return avail_disks >= raid_disks-2;
603 else
604 return avail_disks >= raid_disks;
605 default:
606 return 0;
607 }
608 }
609
610 const int uuid_zero[4] = { 0, 0, 0, 0 };
611
612 int same_uuid(int a[4], int b[4], int swapuuid)
613 {
614 if (swapuuid) {
615 /* parse uuids are hostendian.
616 * uuid's from some superblocks are big-ending
617 * if there is a difference, we need to swap..
618 */
619 unsigned char *ac = (unsigned char *)a;
620 unsigned char *bc = (unsigned char *)b;
621 int i;
622 for (i = 0; i < 16; i += 4) {
623 if (ac[i+0] != bc[i+3] ||
624 ac[i+1] != bc[i+2] ||
625 ac[i+2] != bc[i+1] ||
626 ac[i+3] != bc[i+0])
627 return 0;
628 }
629 return 1;
630 } else {
631 if (a[0]==b[0] &&
632 a[1]==b[1] &&
633 a[2]==b[2] &&
634 a[3]==b[3])
635 return 1;
636 return 0;
637 }
638 }
639
640 void copy_uuid(void *a, int b[4], int swapuuid)
641 {
642 if (swapuuid) {
643 /* parse uuids are hostendian.
644 * uuid's from some superblocks are big-ending
645 * if there is a difference, we need to swap..
646 */
647 unsigned char *ac = (unsigned char *)a;
648 unsigned char *bc = (unsigned char *)b;
649 int i;
650 for (i = 0; i < 16; i += 4) {
651 ac[i+0] = bc[i+3];
652 ac[i+1] = bc[i+2];
653 ac[i+2] = bc[i+1];
654 ac[i+3] = bc[i+0];
655 }
656 } else
657 memcpy(a, b, 16);
658 }
659
660 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
661 {
662 int i, j;
663 char uuid[16];
664 char *c = buf;
665 strcpy(c, "UUID-");
666 c += strlen(c);
667 copy_uuid(uuid, id, swap);
668 for (i = 0; i < 4; i++) {
669 if (i)
670 *c++ = sep;
671 for (j = 3; j >= 0; j--) {
672 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
673 c+= 2;
674 }
675 }
676 return buf;
677
678 }
679
680 char *fname_from_uuid(struct supertype *st, struct mdinfo *info,
681 char *buf, char sep)
682 {
683 // dirty hack to work around an issue with super1 superblocks...
684 // super1 superblocks need swapuuid set in order for assembly to
685 // work, but can't have it set if we want this printout to match
686 // all the other uuid printouts in super1.c, so we force swapuuid
687 // to 1 to make our printout match the rest of super1
688 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 :
689 st->ss->swapuuid, buf, sep);
690 }
691
692 int check_ext2(int fd, char *name)
693 {
694 /*
695 * Check for an ext2fs file system.
696 * Superblock is always 1K at 1K offset
697 *
698 * s_magic is le16 at 56 == 0xEF53
699 * report mtime - le32 at 44
700 * blocks - le32 at 4
701 * logblksize - le32 at 24
702 */
703 unsigned char sb[1024];
704 time_t mtime;
705 unsigned long long size;
706 int bsize;
707 if (lseek(fd, 1024,0)!= 1024)
708 return 0;
709 if (read(fd, sb, 1024)!= 1024)
710 return 0;
711 if (sb[56] != 0x53 || sb[57] != 0xef)
712 return 0;
713
714 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
715 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
716 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
717 size <<= bsize;
718 pr_err("%s appears to contain an ext2fs file system\n",
719 name);
720 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
721 return 1;
722 }
723
724 int check_reiser(int fd, char *name)
725 {
726 /*
727 * superblock is at 64K
728 * size is 1024;
729 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
730 *
731 */
732 unsigned char sb[1024];
733 unsigned long long size;
734 if (lseek(fd, 64*1024, 0) != 64*1024)
735 return 0;
736 if (read(fd, sb, 1024) != 1024)
737 return 0;
738 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
739 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
740 return 0;
741 pr_err("%s appears to contain a reiserfs file system\n",name);
742 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
743 cont_err("size = %lluK\n", size*4);
744
745 return 1;
746 }
747
748 int check_raid(int fd, char *name)
749 {
750 struct mdinfo info;
751 time_t crtime;
752 char *level;
753 struct supertype *st = guess_super(fd);
754
755 if (!st)
756 return 0;
757 if (st->ss->add_to_super != NULL) {
758 st->ss->load_super(st, fd, name);
759 /* Looks like a raid array .. */
760 pr_err("%s appears to be part of a raid array:\n", name);
761 st->ss->getinfo_super(st, &info, NULL);
762 st->ss->free_super(st);
763 crtime = info.array.ctime;
764 level = map_num(pers, info.array.level);
765 if (!level)
766 level = "-unknown-";
767 cont_err("level=%s devices=%d ctime=%s",
768 level, info.array.raid_disks, ctime(&crtime));
769 } else {
770 /* Looks like GPT or MBR */
771 pr_err("partition table exists on %s\n", name);
772 }
773 return 1;
774 }
775
776 int fstat_is_blkdev(int fd, char *devname, dev_t *rdev)
777 {
778 struct stat stb;
779
780 if (fstat(fd, &stb) != 0) {
781 pr_err("fstat failed for %s: %s\n", devname, strerror(errno));
782 return 0;
783 }
784 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
785 pr_err("%s is not a block device.\n", devname);
786 return 0;
787 }
788 if (rdev)
789 *rdev = stb.st_rdev;
790 return 1;
791 }
792
793 int stat_is_blkdev(char *devname, dev_t *rdev)
794 {
795 struct stat stb;
796
797 if (stat(devname, &stb) != 0) {
798 pr_err("stat failed for %s: %s\n", devname, strerror(errno));
799 return 0;
800 }
801 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
802 pr_err("%s is not a block device.\n", devname);
803 return 0;
804 }
805 if (rdev)
806 *rdev = stb.st_rdev;
807 return 1;
808 }
809
810 int ask(char *mesg)
811 {
812 char *add = "";
813 int i;
814 for (i = 0; i < 5; i++) {
815 char buf[100];
816 fprintf(stderr, "%s%s", mesg, add);
817 fflush(stderr);
818 if (fgets(buf, 100, stdin)==NULL)
819 return 0;
820 if (buf[0]=='y' || buf[0]=='Y')
821 return 1;
822 if (buf[0]=='n' || buf[0]=='N')
823 return 0;
824 add = "(y/n) ";
825 }
826 pr_err("assuming 'no'\n");
827 return 0;
828 }
829
830 int is_standard(char *dev, int *nump)
831 {
832 /* tests if dev is a "standard" md dev name.
833 * i.e if the last component is "/dNN" or "/mdNN",
834 * where NN is a string of digits
835 * Returns 1 if a partitionable standard,
836 * -1 if non-partitonable,
837 * 0 if not a standard name.
838 */
839 char *d = strrchr(dev, '/');
840 int type = 0;
841 int num;
842 if (!d)
843 return 0;
844 if (strncmp(d, "/d",2) == 0)
845 d += 2, type = 1; /* /dev/md/dN{pM} */
846 else if (strncmp(d, "/md_d", 5) == 0)
847 d += 5, type = 1; /* /dev/md_dN{pM} */
848 else if (strncmp(d, "/md", 3) == 0)
849 d += 3, type = -1; /* /dev/mdN */
850 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
851 d += 1, type = -1; /* /dev/md/N */
852 else
853 return 0;
854 if (!*d)
855 return 0;
856 num = atoi(d);
857 while (isdigit(*d))
858 d++;
859 if (*d)
860 return 0;
861 if (nump) *nump = num;
862
863 return type;
864 }
865
866 unsigned long calc_csum(void *super, int bytes)
867 {
868 unsigned long long newcsum = 0;
869 int i;
870 unsigned int csum;
871 unsigned int *superc = (unsigned int*) super;
872
873 for(i = 0; i < bytes/4; i++)
874 newcsum += superc[i];
875 csum = (newcsum& 0xffffffff) + (newcsum>>32);
876 #ifdef __alpha__
877 /* The in-kernel checksum calculation is always 16bit on
878 * the alpha, though it is 32 bit on i386...
879 * I wonder what it is elsewhere... (it uses an API in
880 * a way that it shouldn't).
881 */
882 csum = (csum & 0xffff) + (csum >> 16);
883 csum = (csum & 0xffff) + (csum >> 16);
884 #endif
885 return csum;
886 }
887
888 char *human_size(long long bytes)
889 {
890 static char buf[47];
891
892 /* We convert bytes to either centi-M{ega,ibi}bytes or
893 * centi-G{igi,ibi}bytes, with appropriate rounding,
894 * and then print 1/100th of those as a decimal.
895 * We allow upto 2048Megabytes before converting to
896 * gigabytes, as that shows more precision and isn't
897 * too large a number.
898 * Terabytes are not yet handled.
899 */
900
901 if (bytes < 5000*1024)
902 buf[0] = 0;
903 else if (bytes < 2*1024LL*1024LL*1024LL) {
904 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
905 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
906 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
907 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
908 } else {
909 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
910 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
911 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
912 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
913 }
914 return buf;
915 }
916
917 char *human_size_brief(long long bytes, int prefix)
918 {
919 static char buf[30];
920
921 /* We convert bytes to either centi-M{ega,ibi}bytes or
922 * centi-G{igi,ibi}bytes, with appropriate rounding,
923 * and then print 1/100th of those as a decimal.
924 * We allow upto 2048Megabytes before converting to
925 * gigabytes, as that shows more precision and isn't
926 * too large a number.
927 * Terabytes are not yet handled.
928 *
929 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
930 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
931 */
932
933 if (bytes < 5000*1024)
934 buf[0] = 0;
935 else if (prefix == IEC) {
936 if (bytes < 2*1024LL*1024LL*1024LL) {
937 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
938 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
939 cMiB/100, cMiB % 100);
940 } else {
941 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
942 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
943 cGiB/100, cGiB % 100);
944 }
945 }
946 else if (prefix == JEDEC) {
947 if (bytes < 2*1024LL*1024LL*1024LL) {
948 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
949 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
950 cMB/100, cMB % 100);
951 } else {
952 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
953 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
954 cGB/100, cGB % 100);
955 }
956 }
957 else
958 buf[0] = 0;
959
960 return buf;
961 }
962
963 void print_r10_layout(int layout)
964 {
965 int near = layout & 255;
966 int far = (layout >> 8) & 255;
967 int offset = (layout&0x10000);
968 char *sep = "";
969
970 if (near != 1) {
971 printf("%s near=%d", sep, near);
972 sep = ",";
973 }
974 if (far != 1)
975 printf("%s %s=%d", sep, offset?"offset":"far", far);
976 if (near*far == 1)
977 printf("NO REDUNDANCY");
978 }
979
980 unsigned long long calc_array_size(int level, int raid_disks, int layout,
981 int chunksize, unsigned long long devsize)
982 {
983 if (level == 1)
984 return devsize;
985 devsize &= ~(unsigned long long)((chunksize>>9)-1);
986 return get_data_disks(level, layout, raid_disks) * devsize;
987 }
988
989 int get_data_disks(int level, int layout, int raid_disks)
990 {
991 int data_disks = 0;
992 switch (level) {
993 case 0: data_disks = raid_disks;
994 break;
995 case 1: data_disks = 1;
996 break;
997 case 4:
998 case 5: data_disks = raid_disks - 1;
999 break;
1000 case 6: data_disks = raid_disks - 2;
1001 break;
1002 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
1003 break;
1004 }
1005
1006 return data_disks;
1007 }
1008
1009 dev_t devnm2devid(char *devnm)
1010 {
1011 /* First look in /sys/block/$DEVNM/dev for %d:%d
1012 * If that fails, try parsing out a number
1013 */
1014 char path[100];
1015 char *ep;
1016 int fd;
1017 int mjr,mnr;
1018
1019 sprintf(path, "/sys/block/%s/dev", devnm);
1020 fd = open(path, O_RDONLY);
1021 if (fd >= 0) {
1022 char buf[20];
1023 int n = read(fd, buf, sizeof(buf));
1024 close(fd);
1025 if (n > 0)
1026 buf[n] = 0;
1027 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
1028 return makedev(mjr, mnr);
1029 }
1030 if (strncmp(devnm, "md_d", 4) == 0 &&
1031 isdigit(devnm[4]) &&
1032 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
1033 ep > devnm && *ep == 0)
1034 return makedev(get_mdp_major(), mnr << MdpMinorShift);
1035
1036 if (strncmp(devnm, "md", 2) == 0 &&
1037 isdigit(devnm[2]) &&
1038 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
1039 ep > devnm && *ep == 0)
1040 return makedev(MD_MAJOR, mnr);
1041
1042 return 0;
1043 }
1044
1045 char *get_md_name(char *devnm)
1046 {
1047 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
1048 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
1049
1050 static char devname[50];
1051 struct stat stb;
1052 dev_t rdev = devnm2devid(devnm);
1053 char *dn;
1054
1055 if (rdev == 0)
1056 return 0;
1057 if (strncmp(devnm, "md_", 3) == 0) {
1058 snprintf(devname, sizeof(devname), "/dev/md/%s",
1059 devnm + 3);
1060 if (stat(devname, &stb) == 0 &&
1061 (S_IFMT&stb.st_mode) == S_IFBLK && (stb.st_rdev == rdev))
1062 return devname;
1063 }
1064 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
1065 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
1066 (stb.st_rdev == rdev))
1067 return devname;
1068
1069 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
1070 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
1071 (stb.st_rdev == rdev))
1072 return devname;
1073
1074 dn = map_dev(major(rdev), minor(rdev), 0);
1075 if (dn)
1076 return dn;
1077 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
1078 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
1079 if (errno != EEXIST)
1080 return NULL;
1081
1082 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
1083 (stb.st_rdev == rdev))
1084 return devname;
1085 unlink(devname);
1086 return NULL;
1087 }
1088
1089 void put_md_name(char *name)
1090 {
1091 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1092 unlink(name);
1093 }
1094
1095 int get_maj_min(char *dev, int *major, int *minor)
1096 {
1097 char *e;
1098 *major = strtoul(dev, &e, 0);
1099 return (e > dev && *e == ':' && e[1] &&
1100 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1101 *e == 0);
1102 }
1103
1104 int dev_open(char *dev, int flags)
1105 {
1106 /* like 'open', but if 'dev' matches %d:%d, create a temp
1107 * block device and open that
1108 */
1109 int fd = -1;
1110 char devname[32];
1111 int major;
1112 int minor;
1113
1114 if (!dev)
1115 return -1;
1116 flags |= O_DIRECT;
1117
1118 if (get_maj_min(dev, &major, &minor)) {
1119 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1120 (int)getpid(), major, minor);
1121 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1122 fd = open(devname, flags);
1123 unlink(devname);
1124 }
1125 if (fd < 0) {
1126 /* Try /tmp as /dev appear to be read-only */
1127 snprintf(devname, sizeof(devname),
1128 "/tmp/.tmp.md.%d:%d:%d",
1129 (int)getpid(), major, minor);
1130 if (mknod(devname, S_IFBLK|0600,
1131 makedev(major, minor)) == 0) {
1132 fd = open(devname, flags);
1133 unlink(devname);
1134 }
1135 }
1136 } else
1137 fd = open(dev, flags);
1138 return fd;
1139 }
1140
1141 int open_dev_flags(char *devnm, int flags)
1142 {
1143 dev_t devid;
1144 char buf[20];
1145
1146 devid = devnm2devid(devnm);
1147 sprintf(buf, "%d:%d", major(devid), minor(devid));
1148 return dev_open(buf, flags);
1149 }
1150
1151 int open_dev(char *devnm)
1152 {
1153 return open_dev_flags(devnm, O_RDONLY);
1154 }
1155
1156 int open_dev_excl(char *devnm)
1157 {
1158 char buf[20];
1159 int i;
1160 int flags = O_RDWR;
1161 dev_t devid = devnm2devid(devnm);
1162 long delay = 1000;
1163
1164 sprintf(buf, "%d:%d", major(devid), minor(devid));
1165 for (i = 0; i < 25; i++) {
1166 int fd = dev_open(buf, flags|O_EXCL);
1167 if (fd >= 0)
1168 return fd;
1169 if (errno == EACCES && flags == O_RDWR) {
1170 flags = O_RDONLY;
1171 continue;
1172 }
1173 if (errno != EBUSY)
1174 return fd;
1175 usleep(delay);
1176 if (delay < 200000)
1177 delay *= 2;
1178 }
1179 return -1;
1180 }
1181
1182 int same_dev(char *one, char *two)
1183 {
1184 struct stat st1, st2;
1185 if (stat(one, &st1) != 0)
1186 return 0;
1187 if (stat(two, &st2) != 0)
1188 return 0;
1189 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1190 return 0;
1191 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1192 return 0;
1193 return st1.st_rdev == st2.st_rdev;
1194 }
1195
1196 void wait_for(char *dev, int fd)
1197 {
1198 int i;
1199 struct stat stb_want;
1200 long delay = 1000;
1201
1202 if (fstat(fd, &stb_want) != 0 ||
1203 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1204 return;
1205
1206 for (i = 0; i < 25; i++) {
1207 struct stat stb;
1208 if (stat(dev, &stb) == 0 &&
1209 (stb.st_mode & S_IFMT) == S_IFBLK &&
1210 (stb.st_rdev == stb_want.st_rdev))
1211 return;
1212 usleep(delay);
1213 if (delay < 200000)
1214 delay *= 2;
1215 }
1216 if (i == 25)
1217 pr_err("timeout waiting for %s\n", dev);
1218 }
1219
1220 struct superswitch *superlist[] =
1221 {
1222 &super0, &super1,
1223 &super_ddf, &super_imsm,
1224 &mbr, &gpt,
1225 NULL
1226 };
1227
1228 struct supertype *super_by_fd(int fd, char **subarrayp)
1229 {
1230 mdu_array_info_t array;
1231 int vers;
1232 int minor;
1233 struct supertype *st = NULL;
1234 struct mdinfo *sra;
1235 char *verstr;
1236 char version[20];
1237 int i;
1238 char *subarray = NULL;
1239 char container[32] = "";
1240
1241 sra = sysfs_read(fd, NULL, GET_VERSION);
1242
1243 if (sra) {
1244 vers = sra->array.major_version;
1245 minor = sra->array.minor_version;
1246 verstr = sra->text_version;
1247 } else {
1248 if (md_get_array_info(fd, &array))
1249 array.major_version = array.minor_version = 0;
1250 vers = array.major_version;
1251 minor = array.minor_version;
1252 verstr = "";
1253 }
1254
1255 if (vers != -1) {
1256 sprintf(version, "%d.%d", vers, minor);
1257 verstr = version;
1258 }
1259 if (minor == -2 && is_subarray(verstr)) {
1260 char *dev = verstr+1;
1261
1262 subarray = strchr(dev, '/');
1263 if (subarray) {
1264 *subarray++ = '\0';
1265 subarray = xstrdup(subarray);
1266 }
1267 strcpy(container, dev);
1268 sysfs_free(sra);
1269 sra = sysfs_read(-1, container, GET_VERSION);
1270 if (sra && sra->text_version[0])
1271 verstr = sra->text_version;
1272 else
1273 verstr = "-no-metadata-";
1274 }
1275
1276 for (i = 0; st == NULL && superlist[i]; i++)
1277 st = superlist[i]->match_metadata_desc(verstr);
1278
1279 sysfs_free(sra);
1280 if (st) {
1281 st->sb = NULL;
1282 if (subarrayp)
1283 *subarrayp = subarray;
1284 strcpy(st->container_devnm, container);
1285 strcpy(st->devnm, fd2devnm(fd));
1286 } else
1287 free(subarray);
1288
1289 return st;
1290 }
1291
1292 int dev_size_from_id(dev_t id, unsigned long long *size)
1293 {
1294 char buf[20];
1295 int fd;
1296
1297 sprintf(buf, "%d:%d", major(id), minor(id));
1298 fd = dev_open(buf, O_RDONLY);
1299 if (fd < 0)
1300 return 0;
1301 if (get_dev_size(fd, NULL, size)) {
1302 close(fd);
1303 return 1;
1304 }
1305 close(fd);
1306 return 0;
1307 }
1308
1309 int dev_sector_size_from_id(dev_t id, unsigned int *size)
1310 {
1311 char buf[20];
1312 int fd;
1313
1314 sprintf(buf, "%d:%d", major(id), minor(id));
1315 fd = dev_open(buf, O_RDONLY);
1316 if (fd < 0)
1317 return 0;
1318 if (get_dev_sector_size(fd, NULL, size)) {
1319 close(fd);
1320 return 1;
1321 }
1322 close(fd);
1323 return 0;
1324 }
1325
1326 struct supertype *dup_super(struct supertype *orig)
1327 {
1328 struct supertype *st;
1329
1330 if (!orig)
1331 return orig;
1332 st = xcalloc(1, sizeof(*st));
1333 st->ss = orig->ss;
1334 st->max_devs = orig->max_devs;
1335 st->minor_version = orig->minor_version;
1336 st->ignore_hw_compat = orig->ignore_hw_compat;
1337 st->data_offset = orig->data_offset;
1338 st->sb = NULL;
1339 st->info = NULL;
1340 return st;
1341 }
1342
1343 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1344 {
1345 /* try each load_super to find the best match,
1346 * and return the best superswitch
1347 */
1348 struct superswitch *ss;
1349 struct supertype *st;
1350 unsigned int besttime = 0;
1351 int bestsuper = -1;
1352 int i;
1353
1354 st = xcalloc(1, sizeof(*st));
1355 st->container_devnm[0] = 0;
1356
1357 for (i = 0; superlist[i]; i++) {
1358 int rv;
1359 ss = superlist[i];
1360 if (guess_type == guess_array && ss->add_to_super == NULL)
1361 continue;
1362 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1363 continue;
1364 memset(st, 0, sizeof(*st));
1365 st->ignore_hw_compat = 1;
1366 rv = ss->load_super(st, fd, NULL);
1367 if (rv == 0) {
1368 struct mdinfo info;
1369 st->ss->getinfo_super(st, &info, NULL);
1370 if (bestsuper == -1 ||
1371 besttime < info.array.ctime) {
1372 bestsuper = i;
1373 besttime = info.array.ctime;
1374 }
1375 ss->free_super(st);
1376 }
1377 }
1378 if (bestsuper != -1) {
1379 int rv;
1380 memset(st, 0, sizeof(*st));
1381 st->ignore_hw_compat = 1;
1382 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1383 if (rv == 0) {
1384 superlist[bestsuper]->free_super(st);
1385 return st;
1386 }
1387 }
1388 free(st);
1389 return NULL;
1390 }
1391
1392 /* Return size of device in bytes */
1393 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1394 {
1395 unsigned long long ldsize;
1396 struct stat st;
1397
1398 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1399 ldsize = (unsigned long long)st.st_size;
1400 else
1401 #ifdef BLKGETSIZE64
1402 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1403 #endif
1404 {
1405 unsigned long dsize;
1406 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1407 ldsize = dsize;
1408 ldsize <<= 9;
1409 } else {
1410 if (dname)
1411 pr_err("Cannot get size of %s: %s\n",
1412 dname, strerror(errno));
1413 return 0;
1414 }
1415 }
1416 *sizep = ldsize;
1417 return 1;
1418 }
1419
1420 /* Return sector size of device in bytes */
1421 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1422 {
1423 unsigned int sectsize;
1424
1425 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1426 if (dname)
1427 pr_err("Cannot get sector size of %s: %s\n",
1428 dname, strerror(errno));
1429 return 0;
1430 }
1431
1432 *sectsizep = sectsize;
1433 return 1;
1434 }
1435
1436 /* Return true if this can only be a container, not a member device.
1437 * i.e. is and md device and size is zero
1438 */
1439 int must_be_container(int fd)
1440 {
1441 struct mdinfo *mdi;
1442 unsigned long long size;
1443
1444 mdi = sysfs_read(fd, NULL, GET_VERSION);
1445 if (!mdi)
1446 return 0;
1447 sysfs_free(mdi);
1448
1449 if (get_dev_size(fd, NULL, &size) == 0)
1450 return 1;
1451 if (size == 0)
1452 return 1;
1453 return 0;
1454 }
1455
1456 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1457 * Returns: 1 if successful
1458 * -1 for unknown partition type
1459 * 0 for other errors
1460 */
1461 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1462 {
1463 struct GPT gpt;
1464 unsigned char empty_gpt_entry[16]= {0};
1465 struct GPT_part_entry *part;
1466 char buf[512];
1467 unsigned long long curr_part_end;
1468 unsigned all_partitions, entry_size;
1469 unsigned part_nr;
1470 unsigned int sector_size = 0;
1471
1472 *endofpart = 0;
1473
1474 BUILD_BUG_ON(sizeof(gpt) != 512);
1475 /* skip protective MBR */
1476 if (!get_dev_sector_size(fd, NULL, &sector_size))
1477 return 0;
1478 lseek(fd, sector_size, SEEK_SET);
1479 /* read GPT header */
1480 if (read(fd, &gpt, 512) != 512)
1481 return 0;
1482
1483 /* get the number of partition entries and the entry size */
1484 all_partitions = __le32_to_cpu(gpt.part_cnt);
1485 entry_size = __le32_to_cpu(gpt.part_size);
1486
1487 /* Check GPT signature*/
1488 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1489 return -1;
1490
1491 /* sanity checks */
1492 if (all_partitions > 1024 ||
1493 entry_size > sizeof(buf))
1494 return -1;
1495
1496 part = (struct GPT_part_entry *)buf;
1497
1498 /* set offset to third block (GPT entries) */
1499 lseek(fd, sector_size*2, SEEK_SET);
1500 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1501 /* read partition entry */
1502 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1503 return 0;
1504
1505 /* is this valid partition? */
1506 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1507 /* check the last lba for the current partition */
1508 curr_part_end = __le64_to_cpu(part->ending_lba);
1509 if (curr_part_end > *endofpart)
1510 *endofpart = curr_part_end;
1511 }
1512
1513 }
1514 return 1;
1515 }
1516
1517 /* Sets endofpart parameter to the last block used by the last partition on the device.
1518 * Returns: 1 if successful
1519 * -1 for unknown partition type
1520 * 0 for other errors
1521 */
1522 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1523 {
1524 struct MBR boot_sect;
1525 unsigned long long curr_part_end;
1526 unsigned part_nr;
1527 unsigned int sector_size;
1528 int retval = 0;
1529
1530 *endofpart = 0;
1531
1532 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1533 /* read MBR */
1534 lseek(fd, 0, 0);
1535 if (read(fd, &boot_sect, 512) != 512)
1536 goto abort;
1537
1538 /* check MBP signature */
1539 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1540 retval = 1;
1541 /* found the correct signature */
1542
1543 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1544 /*
1545 * Have to make every access through boot_sect rather
1546 * than using a pointer to the partition table (or an
1547 * entry), since the entries are not properly aligned.
1548 */
1549
1550 /* check for GPT type */
1551 if (boot_sect.parts[part_nr].part_type ==
1552 MBR_GPT_PARTITION_TYPE) {
1553 retval = get_gpt_last_partition_end(fd, endofpart);
1554 break;
1555 }
1556 /* check the last used lba for the current partition */
1557 curr_part_end =
1558 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1559 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1560 if (curr_part_end > *endofpart)
1561 *endofpart = curr_part_end;
1562 }
1563 } else {
1564 /* Unknown partition table */
1565 retval = -1;
1566 }
1567 /* calculate number of 512-byte blocks */
1568 if (get_dev_sector_size(fd, NULL, &sector_size))
1569 *endofpart *= (sector_size / 512);
1570 abort:
1571 return retval;
1572 }
1573
1574 int check_partitions(int fd, char *dname, unsigned long long freesize,
1575 unsigned long long size)
1576 {
1577 /*
1578 * Check where the last partition ends
1579 */
1580 unsigned long long endofpart;
1581
1582 if (get_last_partition_end(fd, &endofpart) > 0) {
1583 /* There appears to be a partition table here */
1584 if (freesize == 0) {
1585 /* partitions will not be visible in new device */
1586 pr_err("partition table exists on %s but will be lost or\n"
1587 " meaningless after creating array\n",
1588 dname);
1589 return 1;
1590 } else if (endofpart > freesize) {
1591 /* last partition overlaps metadata */
1592 pr_err("metadata will over-write last partition on %s.\n",
1593 dname);
1594 return 1;
1595 } else if (size && endofpart > size) {
1596 /* partitions will be truncated in new device */
1597 pr_err("array size is too small to cover all partitions on %s.\n",
1598 dname);
1599 return 1;
1600 }
1601 }
1602 return 0;
1603 }
1604
1605 int open_container(int fd)
1606 {
1607 /* 'fd' is a block device. Find out if it is in use
1608 * by a container, and return an open fd on that container.
1609 */
1610 char path[256];
1611 char *e;
1612 DIR *dir;
1613 struct dirent *de;
1614 int dfd, n;
1615 char buf[200];
1616 int major, minor;
1617 struct stat st;
1618
1619 if (fstat(fd, &st) != 0)
1620 return -1;
1621 sprintf(path, "/sys/dev/block/%d:%d/holders",
1622 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1623 e = path + strlen(path);
1624
1625 dir = opendir(path);
1626 if (!dir)
1627 return -1;
1628 while ((de = readdir(dir))) {
1629 if (de->d_ino == 0)
1630 continue;
1631 if (de->d_name[0] == '.')
1632 continue;
1633 /* Need to make sure it is a container and not a volume */
1634 sprintf(e, "/%s/md/metadata_version", de->d_name);
1635 dfd = open(path, O_RDONLY);
1636 if (dfd < 0)
1637 continue;
1638 n = read(dfd, buf, sizeof(buf));
1639 close(dfd);
1640 if (n <= 0 || (unsigned)n >= sizeof(buf))
1641 continue;
1642 buf[n] = 0;
1643 if (strncmp(buf, "external", 8) != 0 ||
1644 n < 10 ||
1645 buf[9] == '/')
1646 continue;
1647 sprintf(e, "/%s/dev", de->d_name);
1648 dfd = open(path, O_RDONLY);
1649 if (dfd < 0)
1650 continue;
1651 n = read(dfd, buf, sizeof(buf));
1652 close(dfd);
1653 if (n <= 0 || (unsigned)n >= sizeof(buf))
1654 continue;
1655 buf[n] = 0;
1656 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1657 continue;
1658 sprintf(buf, "%d:%d", major, minor);
1659 dfd = dev_open(buf, O_RDONLY);
1660 if (dfd >= 0) {
1661 closedir(dir);
1662 return dfd;
1663 }
1664 }
1665 closedir(dir);
1666 return -1;
1667 }
1668
1669 struct superswitch *version_to_superswitch(char *vers)
1670 {
1671 int i;
1672
1673 for (i = 0; superlist[i]; i++) {
1674 struct superswitch *ss = superlist[i];
1675
1676 if (strcmp(vers, ss->name) == 0)
1677 return ss;
1678 }
1679
1680 return NULL;
1681 }
1682
1683 int metadata_container_matches(char *metadata, char *devnm)
1684 {
1685 /* Check if 'devnm' is the container named in 'metadata'
1686 * which is
1687 * /containername/componentname or
1688 * -containername/componentname
1689 */
1690 int l;
1691 if (*metadata != '/' && *metadata != '-')
1692 return 0;
1693 l = strlen(devnm);
1694 if (strncmp(metadata+1, devnm, l) != 0)
1695 return 0;
1696 if (metadata[l+1] != '/')
1697 return 0;
1698 return 1;
1699 }
1700
1701 int metadata_subdev_matches(char *metadata, char *devnm)
1702 {
1703 /* Check if 'devnm' is the subdev named in 'metadata'
1704 * which is
1705 * /containername/subdev or
1706 * -containername/subdev
1707 */
1708 char *sl;
1709 if (*metadata != '/' && *metadata != '-')
1710 return 0;
1711 sl = strchr(metadata+1, '/');
1712 if (!sl)
1713 return 0;
1714 if (strcmp(sl+1, devnm) == 0)
1715 return 1;
1716 return 0;
1717 }
1718
1719 int is_container_member(struct mdstat_ent *mdstat, char *container)
1720 {
1721 if (mdstat->metadata_version == NULL ||
1722 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1723 !metadata_container_matches(mdstat->metadata_version+9, container))
1724 return 0;
1725
1726 return 1;
1727 }
1728
1729 int is_subarray_active(char *subarray, char *container)
1730 {
1731 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1732 struct mdstat_ent *ent;
1733
1734 for (ent = mdstat; ent; ent = ent->next)
1735 if (is_container_member(ent, container))
1736 if (strcmp(to_subarray(ent, container), subarray) == 0)
1737 break;
1738
1739 free_mdstat(mdstat);
1740
1741 return ent != NULL;
1742 }
1743
1744 /* open_subarray - opens a subarray in a container
1745 * @dev: container device name
1746 * @st: empty supertype
1747 * @quiet: block reporting errors flag
1748 *
1749 * On success returns an fd to a container and fills in *st
1750 */
1751 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1752 {
1753 struct mdinfo *mdi;
1754 struct mdinfo *info;
1755 int fd, err = 1;
1756 char *_devnm;
1757
1758 fd = open(dev, O_RDWR|O_EXCL);
1759 if (fd < 0) {
1760 if (!quiet)
1761 pr_err("Couldn't open %s, aborting\n",
1762 dev);
1763 return -1;
1764 }
1765
1766 _devnm = fd2devnm(fd);
1767 if (_devnm == NULL) {
1768 if (!quiet)
1769 pr_err("Failed to determine device number for %s\n",
1770 dev);
1771 goto close_fd;
1772 }
1773 strcpy(st->devnm, _devnm);
1774
1775 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1776 if (!mdi) {
1777 if (!quiet)
1778 pr_err("Failed to read sysfs for %s\n",
1779 dev);
1780 goto close_fd;
1781 }
1782
1783 if (mdi->array.level != UnSet) {
1784 if (!quiet)
1785 pr_err("%s is not a container\n", dev);
1786 goto free_sysfs;
1787 }
1788
1789 st->ss = version_to_superswitch(mdi->text_version);
1790 if (!st->ss) {
1791 if (!quiet)
1792 pr_err("Operation not supported for %s metadata\n",
1793 mdi->text_version);
1794 goto free_sysfs;
1795 }
1796
1797 if (st->devnm[0] == 0) {
1798 if (!quiet)
1799 pr_err("Failed to allocate device name\n");
1800 goto free_sysfs;
1801 }
1802
1803 if (!st->ss->load_container) {
1804 if (!quiet)
1805 pr_err("%s is not a container\n", dev);
1806 goto free_sysfs;
1807 }
1808
1809 if (st->ss->load_container(st, fd, NULL)) {
1810 if (!quiet)
1811 pr_err("Failed to load metadata for %s\n",
1812 dev);
1813 goto free_sysfs;
1814 }
1815
1816 info = st->ss->container_content(st, subarray);
1817 if (!info) {
1818 if (!quiet)
1819 pr_err("Failed to find subarray-%s in %s\n",
1820 subarray, dev);
1821 goto free_super;
1822 }
1823 free(info);
1824
1825 err = 0;
1826
1827 free_super:
1828 if (err)
1829 st->ss->free_super(st);
1830 free_sysfs:
1831 sysfs_free(mdi);
1832 close_fd:
1833 if (err)
1834 close(fd);
1835
1836 if (err)
1837 return -1;
1838 else
1839 return fd;
1840 }
1841
1842 int add_disk(int mdfd, struct supertype *st,
1843 struct mdinfo *sra, struct mdinfo *info)
1844 {
1845 /* Add a device to an array, in one of 2 ways. */
1846 int rv;
1847
1848 if (st->ss->external) {
1849 if (info->disk.state & (1<<MD_DISK_SYNC))
1850 info->recovery_start = MaxSector;
1851 else
1852 info->recovery_start = 0;
1853 rv = sysfs_add_disk(sra, info, 0);
1854 if (! rv) {
1855 struct mdinfo *sd2;
1856 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1857 if (sd2 == info)
1858 break;
1859 if (sd2 == NULL) {
1860 sd2 = xmalloc(sizeof(*sd2));
1861 *sd2 = *info;
1862 sd2->next = sra->devs;
1863 sra->devs = sd2;
1864 }
1865 }
1866 } else
1867 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1868 return rv;
1869 }
1870
1871 int remove_disk(int mdfd, struct supertype *st,
1872 struct mdinfo *sra, struct mdinfo *info)
1873 {
1874 int rv;
1875
1876 /* Remove the disk given by 'info' from the array */
1877 if (st->ss->external)
1878 rv = sysfs_set_str(sra, info, "slot", "none");
1879 else
1880 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1881 info->disk.minor));
1882 return rv;
1883 }
1884
1885 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1886 {
1887 int cnt = force ? 500 : 5;
1888 int ret;
1889
1890 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1891 * outstanding IO requests to the device.
1892 * In this case, it can be helpful to wait a little while,
1893 * up to 5 seconds if 'force' is set, or 50 msec if not.
1894 */
1895 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1896 errno == EBUSY &&
1897 cnt-- > 0)
1898 usleep(10000);
1899
1900 return ret;
1901 }
1902
1903 int sys_hot_remove_disk(int statefd, int force)
1904 {
1905 int cnt = force ? 500 : 5;
1906 int ret;
1907
1908 while ((ret = write(statefd, "remove", 6)) == -1 &&
1909 errno == EBUSY &&
1910 cnt-- > 0)
1911 usleep(10000);
1912 return ret == 6 ? 0 : -1;
1913 }
1914
1915 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1916 {
1917 /* Initialise kernel's knowledge of array.
1918 * This varies between externally managed arrays
1919 * and older kernels
1920 */
1921 mdu_array_info_t inf;
1922 int rv;
1923
1924 if (st->ss->external)
1925 return sysfs_set_array(info, 9003);
1926
1927 memset(&inf, 0, sizeof(inf));
1928 inf.major_version = info->array.major_version;
1929 inf.minor_version = info->array.minor_version;
1930 rv = md_set_array_info(mdfd, &inf);
1931
1932 return rv;
1933 }
1934
1935 unsigned long long min_recovery_start(struct mdinfo *array)
1936 {
1937 /* find the minimum recovery_start in an array for metadata
1938 * formats that only record per-array recovery progress instead
1939 * of per-device
1940 */
1941 unsigned long long recovery_start = MaxSector;
1942 struct mdinfo *d;
1943
1944 for (d = array->devs; d; d = d->next)
1945 recovery_start = min(recovery_start, d->recovery_start);
1946
1947 return recovery_start;
1948 }
1949
1950 int mdmon_pid(char *devnm)
1951 {
1952 char path[100];
1953 char pid[10];
1954 int fd;
1955 int n;
1956
1957 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1958
1959 fd = open(path, O_RDONLY | O_NOATIME, 0);
1960
1961 if (fd < 0)
1962 return -1;
1963 n = read(fd, pid, 9);
1964 close(fd);
1965 if (n <= 0)
1966 return -1;
1967 return atoi(pid);
1968 }
1969
1970 int mdmon_running(char *devnm)
1971 {
1972 int pid = mdmon_pid(devnm);
1973 if (pid <= 0)
1974 return 0;
1975 if (kill(pid, 0) == 0)
1976 return 1;
1977 return 0;
1978 }
1979
1980 int start_mdmon(char *devnm)
1981 {
1982 int i, skipped;
1983 int len;
1984 pid_t pid;
1985 int status;
1986 char pathbuf[1024];
1987 char *paths[4] = {
1988 pathbuf,
1989 BINDIR "/mdmon",
1990 "./mdmon",
1991 NULL
1992 };
1993
1994 if (check_env("MDADM_NO_MDMON"))
1995 return 0;
1996
1997 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1998 if (len > 0) {
1999 char *sl;
2000 pathbuf[len] = 0;
2001 sl = strrchr(pathbuf, '/');
2002 if (sl)
2003 sl++;
2004 else
2005 sl = pathbuf;
2006 strcpy(sl, "mdmon");
2007 } else
2008 pathbuf[0] = '\0';
2009
2010 /* First try to run systemctl */
2011 if (!check_env("MDADM_NO_SYSTEMCTL"))
2012 switch(fork()) {
2013 case 0:
2014 /* FIXME yuk. CLOSE_EXEC?? */
2015 skipped = 0;
2016 for (i = 3; skipped < 20; i++)
2017 if (close(i) < 0)
2018 skipped++;
2019 else
2020 skipped = 0;
2021
2022 /* Don't want to see error messages from
2023 * systemctl. If the service doesn't exist,
2024 * we start mdmon ourselves.
2025 */
2026 close(2);
2027 open("/dev/null", O_WRONLY);
2028 snprintf(pathbuf, sizeof(pathbuf), "mdmon@%s.service",
2029 devnm);
2030 status = execl("/usr/bin/systemctl", "systemctl",
2031 "start",
2032 pathbuf, NULL);
2033 status = execl("/bin/systemctl", "systemctl", "start",
2034 pathbuf, NULL);
2035 exit(1);
2036 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
2037 return -1;
2038 default: /* parent - good */
2039 pid = wait(&status);
2040 if (pid >= 0 && status == 0)
2041 return 0;
2042 }
2043
2044 /* That failed, try running mdmon directly */
2045 switch(fork()) {
2046 case 0:
2047 /* FIXME yuk. CLOSE_EXEC?? */
2048 skipped = 0;
2049 for (i = 3; skipped < 20; i++)
2050 if (close(i) < 0)
2051 skipped++;
2052 else
2053 skipped = 0;
2054
2055 for (i = 0; paths[i]; i++)
2056 if (paths[i][0]) {
2057 execl(paths[i], paths[i],
2058 devnm, NULL);
2059 }
2060 exit(1);
2061 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
2062 return -1;
2063 default: /* parent - good */
2064 pid = wait(&status);
2065 if (pid < 0 || status != 0) {
2066 pr_err("failed to launch mdmon. Array remains readonly\n");
2067 return -1;
2068 }
2069 }
2070 return 0;
2071 }
2072
2073 __u32 random32(void)
2074 {
2075 __u32 rv;
2076 int rfd = open("/dev/urandom", O_RDONLY);
2077 if (rfd < 0 || read(rfd, &rv, 4) != 4)
2078 rv = random();
2079 if (rfd >= 0)
2080 close(rfd);
2081 return rv;
2082 }
2083
2084 void random_uuid(__u8 *buf)
2085 {
2086 int fd, i, len;
2087 __u32 r[4];
2088
2089 fd = open("/dev/urandom", O_RDONLY);
2090 if (fd < 0)
2091 goto use_random;
2092 len = read(fd, buf, 16);
2093 close(fd);
2094 if (len != 16)
2095 goto use_random;
2096
2097 return;
2098
2099 use_random:
2100 for (i = 0; i < 4; i++)
2101 r[i] = random();
2102 memcpy(buf, r, 16);
2103 }
2104
2105 int flush_metadata_updates(struct supertype *st)
2106 {
2107 int sfd;
2108 if (!st->updates) {
2109 st->update_tail = NULL;
2110 return -1;
2111 }
2112
2113 sfd = connect_monitor(st->container_devnm);
2114 if (sfd < 0)
2115 return -1;
2116
2117 while (st->updates) {
2118 struct metadata_update *mu = st->updates;
2119 st->updates = mu->next;
2120
2121 send_message(sfd, mu, 0);
2122 wait_reply(sfd, 0);
2123 free(mu->buf);
2124 free(mu);
2125 }
2126 ack(sfd, 0);
2127 wait_reply(sfd, 0);
2128 close(sfd);
2129 st->update_tail = NULL;
2130 return 0;
2131 }
2132
2133 void append_metadata_update(struct supertype *st, void *buf, int len)
2134 {
2135
2136 struct metadata_update *mu = xmalloc(sizeof(*mu));
2137
2138 mu->buf = buf;
2139 mu->len = len;
2140 mu->space = NULL;
2141 mu->space_list = NULL;
2142 mu->next = NULL;
2143 *st->update_tail = mu;
2144 st->update_tail = &mu->next;
2145 }
2146
2147 #ifdef __TINYC__
2148 /* tinyc doesn't optimize this check in ioctl.h out ... */
2149 unsigned int __invalid_size_argument_for_IOC = 0;
2150 #endif
2151
2152 /* Pick all spares matching given criteria from a container
2153 * if min_size == 0 do not check size
2154 * if domlist == NULL do not check domains
2155 * if spare_group given add it to domains of each spare
2156 * metadata allows to test domains using metadata of destination array */
2157 struct mdinfo *container_choose_spares(struct supertype *st,
2158 struct spare_criteria *criteria,
2159 struct domainlist *domlist,
2160 char *spare_group,
2161 const char *metadata, int get_one)
2162 {
2163 struct mdinfo *d, **dp, *disks = NULL;
2164
2165 /* get list of all disks in container */
2166 if (st->ss->getinfo_super_disks)
2167 disks = st->ss->getinfo_super_disks(st);
2168
2169 if (!disks)
2170 return disks;
2171 /* find spare devices on the list */
2172 dp = &disks->devs;
2173 disks->array.spare_disks = 0;
2174 while (*dp) {
2175 int found = 0;
2176 d = *dp;
2177 if (d->disk.state == 0) {
2178 /* check if size is acceptable */
2179 unsigned long long dev_size;
2180 unsigned int dev_sector_size;
2181 int size_valid = 0;
2182 int sector_size_valid = 0;
2183
2184 dev_t dev = makedev(d->disk.major,d->disk.minor);
2185
2186 if (!criteria->min_size ||
2187 (dev_size_from_id(dev, &dev_size) &&
2188 dev_size >= criteria->min_size))
2189 size_valid = 1;
2190
2191 if (!criteria->sector_size ||
2192 (dev_sector_size_from_id(dev, &dev_sector_size) &&
2193 criteria->sector_size == dev_sector_size))
2194 sector_size_valid = 1;
2195
2196 found = size_valid && sector_size_valid;
2197
2198 /* check if domain matches */
2199 if (found && domlist) {
2200 struct dev_policy *pol = devid_policy(dev);
2201 if (spare_group)
2202 pol_add(&pol, pol_domain,
2203 spare_group, NULL);
2204 if (domain_test(domlist, pol, metadata) != 1)
2205 found = 0;
2206 dev_policy_free(pol);
2207 }
2208 }
2209 if (found) {
2210 dp = &d->next;
2211 disks->array.spare_disks++;
2212 if (get_one) {
2213 sysfs_free(*dp);
2214 d->next = NULL;
2215 }
2216 } else {
2217 *dp = d->next;
2218 d->next = NULL;
2219 sysfs_free(d);
2220 }
2221 }
2222 return disks;
2223 }
2224
2225 /* Checks if paths point to the same device
2226 * Returns 0 if they do.
2227 * Returns 1 if they don't.
2228 * Returns -1 if something went wrong,
2229 * e.g. paths are empty or the files
2230 * they point to don't exist */
2231 int compare_paths (char* path1, char* path2)
2232 {
2233 struct stat st1,st2;
2234
2235 if (path1 == NULL || path2 == NULL)
2236 return -1;
2237 if (stat(path1,&st1) != 0)
2238 return -1;
2239 if (stat(path2,&st2) != 0)
2240 return -1;
2241 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2242 return 0;
2243 return 1;
2244 }
2245
2246 /* Make sure we can open as many devices as needed */
2247 void enable_fds(int devices)
2248 {
2249 unsigned int fds = 20 + devices;
2250 struct rlimit lim;
2251 if (getrlimit(RLIMIT_NOFILE, &lim) != 0 || lim.rlim_cur >= fds)
2252 return;
2253 if (lim.rlim_max < fds)
2254 lim.rlim_max = fds;
2255 lim.rlim_cur = fds;
2256 setrlimit(RLIMIT_NOFILE, &lim);
2257 }
2258
2259 int in_initrd(void)
2260 {
2261 /* This is based on similar function in systemd. */
2262 struct statfs s;
2263 /* statfs.f_type is signed long on s390x and MIPS, causing all
2264 sorts of sign extension problems with RAMFS_MAGIC being
2265 defined as 0x858458f6 */
2266 return statfs("/", &s) >= 0 &&
2267 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2268 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2269 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2270 }
2271
2272 void reopen_mddev(int mdfd)
2273 {
2274 /* Re-open without any O_EXCL, but keep
2275 * the same fd
2276 */
2277 char *devnm;
2278 int fd;
2279 devnm = fd2devnm(mdfd);
2280 close(mdfd);
2281 fd = open_dev(devnm);
2282 if (fd >= 0 && fd != mdfd)
2283 dup2(fd, mdfd);
2284 }
2285
2286 static struct cmap_hooks *cmap_hooks = NULL;
2287 static int is_cmap_hooks_ready = 0;
2288
2289 void set_cmap_hooks(void)
2290 {
2291 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2292 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2293 if (!cmap_hooks->cmap_handle)
2294 return;
2295
2296 cmap_hooks->initialize =
2297 dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2298 cmap_hooks->get_string =
2299 dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2300 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2301
2302 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2303 !cmap_hooks->finalize)
2304 dlclose(cmap_hooks->cmap_handle);
2305 else
2306 is_cmap_hooks_ready = 1;
2307 }
2308
2309 int get_cluster_name(char **cluster_name)
2310 {
2311 int rv = -1;
2312 cmap_handle_t handle;
2313
2314 if (!is_cmap_hooks_ready)
2315 return rv;
2316
2317 rv = cmap_hooks->initialize(&handle);
2318 if (rv != CS_OK)
2319 goto out;
2320
2321 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2322 if (rv != CS_OK) {
2323 free(*cluster_name);
2324 rv = -1;
2325 goto name_err;
2326 }
2327
2328 rv = 0;
2329 name_err:
2330 cmap_hooks->finalize(handle);
2331 out:
2332 return rv;
2333 }
2334
2335 void set_dlm_hooks(void)
2336 {
2337 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2338 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2339 if (!dlm_hooks->dlm_handle)
2340 return;
2341
2342 dlm_hooks->open_lockspace =
2343 dlsym(dlm_hooks->dlm_handle, "dlm_open_lockspace");
2344 dlm_hooks->create_lockspace =
2345 dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2346 dlm_hooks->release_lockspace =
2347 dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2348 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2349 dlm_hooks->ls_unlock_wait =
2350 dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock_wait");
2351 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2352 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2353
2354 if (!dlm_hooks->open_lockspace || !dlm_hooks->create_lockspace ||
2355 !dlm_hooks->ls_lock || !dlm_hooks->ls_unlock_wait ||
2356 !dlm_hooks->release_lockspace || !dlm_hooks->ls_get_fd ||
2357 !dlm_hooks->dispatch)
2358 dlclose(dlm_hooks->dlm_handle);
2359 else
2360 is_dlm_hooks_ready = 1;
2361 }
2362
2363 void set_hooks(void)
2364 {
2365 set_dlm_hooks();
2366 set_cmap_hooks();
2367 }
2368
2369 int zero_disk_range(int fd, unsigned long long sector, size_t count)
2370 {
2371 int ret = 0;
2372 int fd_zero;
2373 void *addr = NULL;
2374 size_t written = 0;
2375 size_t len = count * 512;
2376 ssize_t n;
2377
2378 fd_zero = open("/dev/zero", O_RDONLY);
2379 if (fd_zero < 0) {
2380 pr_err("Cannot open /dev/zero\n");
2381 return -1;
2382 }
2383
2384 if (lseek64(fd, sector * 512, SEEK_SET) < 0) {
2385 ret = -errno;
2386 pr_err("Failed to seek offset for zeroing\n");
2387 goto out;
2388 }
2389
2390 addr = mmap(NULL, len, PROT_READ, MAP_PRIVATE, fd_zero, 0);
2391
2392 if (addr == MAP_FAILED) {
2393 ret = -errno;
2394 pr_err("Mapping /dev/zero failed\n");
2395 goto out;
2396 }
2397
2398 do {
2399 n = write(fd, addr + written, len - written);
2400 if (n < 0) {
2401 if (errno == EINTR)
2402 continue;
2403 ret = -errno;
2404 pr_err("Zeroing disk range failed\n");
2405 break;
2406 }
2407 written += n;
2408 } while (written != len);
2409
2410 munmap(addr, len);
2411
2412 out:
2413 close(fd_zero);
2414 return ret;
2415 }