]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
examine: allows to examine a disk metadata on non-metadata compliant systems
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2009 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <ctype.h>
32 #include <dirent.h>
33 #include <signal.h>
34
35 /*
36 * following taken from linux/blkpg.h because they aren't
37 * anywhere else and it isn't safe to #include linux/ * stuff.
38 */
39
40 #define BLKPG _IO(0x12,105)
41
42 /* The argument structure */
43 struct blkpg_ioctl_arg {
44 int op;
45 int flags;
46 int datalen;
47 void *data;
48 };
49
50 /* The subfunctions (for the op field) */
51 #define BLKPG_ADD_PARTITION 1
52 #define BLKPG_DEL_PARTITION 2
53
54 /* Sizes of name fields. Unused at present. */
55 #define BLKPG_DEVNAMELTH 64
56 #define BLKPG_VOLNAMELTH 64
57
58 /* The data structure for ADD_PARTITION and DEL_PARTITION */
59 struct blkpg_partition {
60 long long start; /* starting offset in bytes */
61 long long length; /* length in bytes */
62 int pno; /* partition number */
63 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
64 to be used in kernel messages */
65 char volname[BLKPG_VOLNAMELTH]; /* volume label */
66 };
67
68 #include "part.h"
69
70 /* Force a compilation error if condition is true */
71 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
72
73 /* Force a compilation error if condition is true, but also produce a
74 result (of value 0 and type size_t), so the expression can be used
75 e.g. in a structure initializer (or where-ever else comma expressions
76 aren't permitted). */
77 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
78
79 /*
80 * Parse a 128 bit uuid in 4 integers
81 * format is 32 hexx nibbles with options :.<space> separator
82 * If not exactly 32 hex digits are found, return 0
83 * else return 1
84 */
85 int parse_uuid(char *str, int uuid[4])
86 {
87 int hit = 0; /* number of Hex digIT */
88 int i;
89 char c;
90 for (i=0; i<4; i++) uuid[i]=0;
91
92 while ((c= *str++)) {
93 int n;
94 if (c>='0' && c<='9')
95 n = c-'0';
96 else if (c>='a' && c <= 'f')
97 n = 10 + c - 'a';
98 else if (c>='A' && c <= 'F')
99 n = 10 + c - 'A';
100 else if (strchr(":. -", c))
101 continue;
102 else return 0;
103
104 if (hit<32) {
105 uuid[hit/8] <<= 4;
106 uuid[hit/8] += n;
107 }
108 hit++;
109 }
110 if (hit == 32)
111 return 1;
112 return 0;
113 }
114
115
116 /*
117 * Get the md version number.
118 * We use the RAID_VERSION ioctl if it is supported
119 * If not, but we have a block device with major '9', we assume
120 * 0.36.0
121 *
122 * Return version number as 24 but number - assume version parts
123 * always < 255
124 */
125
126 int md_get_version(int fd)
127 {
128 struct stat stb;
129 mdu_version_t vers;
130
131 if (fstat(fd, &stb)<0)
132 return -1;
133 if ((S_IFMT&stb.st_mode) != S_IFBLK)
134 return -1;
135
136 if (ioctl(fd, RAID_VERSION, &vers) == 0)
137 return (vers.major*10000) + (vers.minor*100) + vers.patchlevel;
138 if (errno == EACCES)
139 return -1;
140 if (major(stb.st_rdev) == MD_MAJOR)
141 return (3600);
142 return -1;
143 }
144
145 int get_linux_version()
146 {
147 struct utsname name;
148 char *cp;
149 int a,b,c;
150 if (uname(&name) <0)
151 return -1;
152
153 cp = name.release;
154 a = strtoul(cp, &cp, 10);
155 if (*cp != '.') return -1;
156 b = strtoul(cp+1, &cp, 10);
157 if (*cp != '.') return -1;
158 c = strtoul(cp+1, NULL, 10);
159
160 return (a*1000000)+(b*1000)+c;
161 }
162
163 #ifndef MDASSEMBLE
164 int mdadm_version(char *version)
165 {
166 int a, b, c;
167 char *cp;
168
169 if (!version)
170 version = Version;
171
172 cp = strchr(version, '-');
173 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
174 return -1;
175 cp += 3;
176 a = strtoul(cp, &cp, 10);
177 if (*cp != '.')
178 return -1;
179 b = strtoul(cp+1, &cp, 10);
180 if (*cp == '.')
181 c = strtoul(cp+1, &cp, 10);
182 else
183 c = 0;
184 if (*cp != ' ' && *cp != '-')
185 return -1;
186 return (a*1000000)+(b*1000)+c;
187 }
188
189 long long parse_size(char *size)
190 {
191 /* parse 'size' which should be a number optionally
192 * followed by 'K', 'M', or 'G'.
193 * Without a suffix, K is assumed.
194 * Number returned is in sectors (half-K)
195 */
196 char *c;
197 long long s = strtoll(size, &c, 10);
198 if (s > 0) {
199 switch (*c) {
200 case 'K':
201 c++;
202 default:
203 s *= 2;
204 break;
205 case 'M':
206 c++;
207 s *= 1024 * 2;
208 break;
209 case 'G':
210 c++;
211 s *= 1024 * 1024 * 2;
212 break;
213 }
214 }
215 if (*c)
216 s = 0;
217 return s;
218 }
219
220 int parse_layout_10(char *layout)
221 {
222 int copies, rv;
223 char *cp;
224 /* Parse the layout string for raid10 */
225 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
226 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
227 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
228 copies > 200 ||
229 *cp)
230 return -1;
231 if (layout[0] == 'n')
232 rv = 256 + copies;
233 else if (layout[0] == 'o')
234 rv = 0x10000 + (copies<<8) + 1;
235 else
236 rv = 1 + (copies<<8);
237 return rv;
238 }
239
240 int parse_layout_faulty(char *layout)
241 {
242 /* Parse the layout string for 'faulty' */
243 int ln = strcspn(layout, "0123456789");
244 char *m = strdup(layout);
245 int mode;
246 m[ln] = 0;
247 mode = map_name(faultylayout, m);
248 if (mode == UnSet)
249 return -1;
250
251 return mode | (atoi(layout+ln)<< ModeShift);
252 }
253 #endif
254
255 void remove_partitions(int fd)
256 {
257 /* remove partitions from this block devices.
258 * This is used for components added to an array
259 */
260 #ifdef BLKPG_DEL_PARTITION
261 struct blkpg_ioctl_arg a;
262 struct blkpg_partition p;
263
264 a.op = BLKPG_DEL_PARTITION;
265 a.data = (void*)&p;
266 a.datalen = sizeof(p);
267 a.flags = 0;
268 memset(a.data, 0, a.datalen);
269 for (p.pno=0; p.pno < 16; p.pno++)
270 ioctl(fd, BLKPG, &a);
271 #endif
272 }
273
274 int test_partition(int fd)
275 {
276 /* Check if fd is a whole-disk or a partition.
277 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
278 * will return ENXIO on an invalid partition number.
279 */
280 struct blkpg_ioctl_arg a;
281 struct blkpg_partition p;
282 a.op = BLKPG_DEL_PARTITION;
283 a.data = (void*)&p;
284 a.datalen = sizeof(p);
285 a.flags = 0;
286 memset(a.data, 0, a.datalen);
287 p.pno = 1<<30;
288 if (ioctl(fd, BLKPG, &a) == 0)
289 /* Very unlikely, but not a partition */
290 return 0;
291 if (errno == ENXIO)
292 /* not a partition */
293 return 0;
294
295 return 1;
296 }
297
298 int test_partition_from_id(dev_t id)
299 {
300 char buf[20];
301 int fd, rv;
302
303 sprintf(buf, "%d:%d", major(id), minor(id));
304 fd = dev_open(buf, O_RDONLY);
305 if (fd < 0)
306 return -1;
307 rv = test_partition(fd);
308 close(fd);
309 return rv;
310 }
311
312 int enough(int level, int raid_disks, int layout, int clean,
313 char *avail, int avail_disks)
314 {
315 int copies, first;
316 switch (level) {
317 case 10:
318 /* This is the tricky one - we need to check
319 * which actual disks are present.
320 */
321 copies = (layout&255)* ((layout>>8) & 255);
322 first=0;
323 do {
324 /* there must be one of the 'copies' form 'first' */
325 int n = copies;
326 int cnt=0;
327 while (n--) {
328 if (avail[first])
329 cnt++;
330 first = (first+1) % raid_disks;
331 }
332 if (cnt == 0)
333 return 0;
334
335 } while (first != 0);
336 return 1;
337
338 case LEVEL_MULTIPATH:
339 return avail_disks>= 1;
340 case LEVEL_LINEAR:
341 case 0:
342 return avail_disks == raid_disks;
343 case 1:
344 return avail_disks >= 1;
345 case 4:
346 case 5:
347 if (clean)
348 return avail_disks >= raid_disks-1;
349 else
350 return avail_disks >= raid_disks;
351 case 6:
352 if (clean)
353 return avail_disks >= raid_disks-2;
354 else
355 return avail_disks >= raid_disks;
356 default:
357 return 0;
358 }
359 }
360
361 int enough_fd(int fd)
362 {
363 struct mdu_array_info_s array;
364 struct mdu_disk_info_s disk;
365 int avail_disks = 0;
366 int i;
367 char *avail;
368
369 if (ioctl(fd, GET_ARRAY_INFO, &array) != 0 ||
370 array.raid_disks <= 0)
371 return 0;
372 avail = calloc(array.raid_disks, 1);
373 for (i=0; i<array.raid_disks + array.nr_disks; i++) {
374 disk.number = i;
375 if (ioctl(fd, GET_DISK_INFO, &disk) != 0)
376 continue;
377 if (! (disk.state & (1<<MD_DISK_SYNC)))
378 continue;
379 if (disk.raid_disk < 0 || disk.raid_disk >= array.raid_disks)
380 continue;
381 avail_disks++;
382 avail[disk.raid_disk] = 1;
383 }
384 /* This is used on an active array, so assume it is clean */
385 return enough(array.level, array.raid_disks, array.layout,
386 1,
387 avail, avail_disks);
388 }
389
390
391 const int uuid_zero[4] = { 0, 0, 0, 0 };
392
393 int same_uuid(int a[4], int b[4], int swapuuid)
394 {
395 if (swapuuid) {
396 /* parse uuids are hostendian.
397 * uuid's from some superblocks are big-ending
398 * if there is a difference, we need to swap..
399 */
400 unsigned char *ac = (unsigned char *)a;
401 unsigned char *bc = (unsigned char *)b;
402 int i;
403 for (i=0; i<16; i+= 4) {
404 if (ac[i+0] != bc[i+3] ||
405 ac[i+1] != bc[i+2] ||
406 ac[i+2] != bc[i+1] ||
407 ac[i+3] != bc[i+0])
408 return 0;
409 }
410 return 1;
411 } else {
412 if (a[0]==b[0] &&
413 a[1]==b[1] &&
414 a[2]==b[2] &&
415 a[3]==b[3])
416 return 1;
417 return 0;
418 }
419 }
420 void copy_uuid(void *a, int b[4], int swapuuid)
421 {
422 if (swapuuid) {
423 /* parse uuids are hostendian.
424 * uuid's from some superblocks are big-ending
425 * if there is a difference, we need to swap..
426 */
427 unsigned char *ac = (unsigned char *)a;
428 unsigned char *bc = (unsigned char *)b;
429 int i;
430 for (i=0; i<16; i+= 4) {
431 ac[i+0] = bc[i+3];
432 ac[i+1] = bc[i+2];
433 ac[i+2] = bc[i+1];
434 ac[i+3] = bc[i+0];
435 }
436 } else
437 memcpy(a, b, 16);
438 }
439
440 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
441 {
442 int i, j;
443 char uuid[16];
444 char *c = buf;
445 strcpy(c, "UUID-");
446 c += strlen(c);
447 copy_uuid(uuid, id, swap);
448 for (i = 0; i < 4; i++) {
449 if (i)
450 *c++ = sep;
451 for (j = 3; j >= 0; j--) {
452 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
453 c+= 2;
454 }
455 }
456 return buf;
457
458 }
459
460 char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep)
461 {
462 // dirty hack to work around an issue with super1 superblocks...
463 // super1 superblocks need swapuuid set in order for assembly to
464 // work, but can't have it set if we want this printout to match
465 // all the other uuid printouts in super1.c, so we force swapuuid
466 // to 1 to make our printout match the rest of super1
467 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 : st->ss->swapuuid, buf, sep);
468 }
469
470 #ifndef MDASSEMBLE
471 int check_ext2(int fd, char *name)
472 {
473 /*
474 * Check for an ext2fs file system.
475 * Superblock is always 1K at 1K offset
476 *
477 * s_magic is le16 at 56 == 0xEF53
478 * report mtime - le32 at 44
479 * blocks - le32 at 4
480 * logblksize - le32 at 24
481 */
482 unsigned char sb[1024];
483 time_t mtime;
484 int size, bsize;
485 if (lseek(fd, 1024,0)!= 1024)
486 return 0;
487 if (read(fd, sb, 1024)!= 1024)
488 return 0;
489 if (sb[56] != 0x53 || sb[57] != 0xef)
490 return 0;
491
492 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
493 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
494 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
495 fprintf(stderr, Name ": %s appears to contain an ext2fs file system\n",
496 name);
497 fprintf(stderr," size=%dK mtime=%s",
498 size*(1<<bsize), ctime(&mtime));
499 return 1;
500 }
501
502 int check_reiser(int fd, char *name)
503 {
504 /*
505 * superblock is at 64K
506 * size is 1024;
507 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
508 *
509 */
510 unsigned char sb[1024];
511 unsigned long size;
512 if (lseek(fd, 64*1024, 0) != 64*1024)
513 return 0;
514 if (read(fd, sb, 1024) != 1024)
515 return 0;
516 if (strncmp((char*)sb+52, "ReIsErFs",8)!=0 &&
517 strncmp((char*)sb+52, "ReIsEr2Fs",9)!=0)
518 return 0;
519 fprintf(stderr, Name ": %s appears to contain a reiserfs file system\n",name);
520 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
521 fprintf(stderr, " size = %luK\n", size*4);
522
523 return 1;
524 }
525
526 int check_raid(int fd, char *name)
527 {
528 struct mdinfo info;
529 time_t crtime;
530 char *level;
531 struct supertype *st = guess_super(fd);
532
533 if (!st) return 0;
534 st->ss->load_super(st, fd, name);
535 /* Looks like a raid array .. */
536 fprintf(stderr, Name ": %s appears to be part of a raid array:\n",
537 name);
538 st->ss->getinfo_super(st, &info, NULL);
539 st->ss->free_super(st);
540 crtime = info.array.ctime;
541 level = map_num(pers, info.array.level);
542 if (!level) level = "-unknown-";
543 fprintf(stderr, " level=%s devices=%d ctime=%s",
544 level, info.array.raid_disks, ctime(&crtime));
545 return 1;
546 }
547
548 int ask(char *mesg)
549 {
550 char *add = "";
551 int i;
552 for (i=0; i<5; i++) {
553 char buf[100];
554 fprintf(stderr, "%s%s", mesg, add);
555 fflush(stderr);
556 if (fgets(buf, 100, stdin)==NULL)
557 return 0;
558 if (buf[0]=='y' || buf[0]=='Y')
559 return 1;
560 if (buf[0]=='n' || buf[0]=='N')
561 return 0;
562 add = "(y/n) ";
563 }
564 fprintf(stderr, Name ": assuming 'no'\n");
565 return 0;
566 }
567 #endif /* MDASSEMBLE */
568
569 char *map_num(mapping_t *map, int num)
570 {
571 while (map->name) {
572 if (map->num == num)
573 return map->name;
574 map++;
575 }
576 return NULL;
577 }
578
579 int map_name(mapping_t *map, char *name)
580 {
581 while (map->name) {
582 if (strcmp(map->name, name)==0)
583 return map->num;
584 map++;
585 }
586 return UnSet;
587 }
588
589
590 int is_standard(char *dev, int *nump)
591 {
592 /* tests if dev is a "standard" md dev name.
593 * i.e if the last component is "/dNN" or "/mdNN",
594 * where NN is a string of digits
595 * Returns 1 if a partitionable standard,
596 * -1 if non-partitonable,
597 * 0 if not a standard name.
598 */
599 char *d = strrchr(dev, '/');
600 int type=0;
601 int num;
602 if (!d)
603 return 0;
604 if (strncmp(d, "/d",2)==0)
605 d += 2, type=1; /* /dev/md/dN{pM} */
606 else if (strncmp(d, "/md_d", 5)==0)
607 d += 5, type=1; /* /dev/md_dN{pM} */
608 else if (strncmp(d, "/md", 3)==0)
609 d += 3, type=-1; /* /dev/mdN */
610 else if (d-dev > 3 && strncmp(d-2, "md/", 3)==0)
611 d += 1, type=-1; /* /dev/md/N */
612 else
613 return 0;
614 if (!*d)
615 return 0;
616 num = atoi(d);
617 while (isdigit(*d))
618 d++;
619 if (*d)
620 return 0;
621 if (nump) *nump = num;
622
623 return type;
624 }
625
626
627 /*
628 * convert a major/minor pair for a block device into a name in /dev, if possible.
629 * On the first call, walk /dev collecting name.
630 * Put them in a simple linked listfor now.
631 */
632 struct devmap {
633 int major, minor;
634 char *name;
635 struct devmap *next;
636 } *devlist = NULL;
637 int devlist_ready = 0;
638
639 int add_dev(const char *name, const struct stat *stb, int flag, struct FTW *s)
640 {
641 struct stat st;
642
643 if (S_ISLNK(stb->st_mode)) {
644 if (stat(name, &st) != 0)
645 return 0;
646 stb = &st;
647 }
648
649 if ((stb->st_mode&S_IFMT)== S_IFBLK) {
650 char *n = strdup(name);
651 struct devmap *dm = malloc(sizeof(*dm));
652 if (strncmp(n, "/dev/./", 7)==0)
653 strcpy(n+4, name+6);
654 if (dm) {
655 dm->major = major(stb->st_rdev);
656 dm->minor = minor(stb->st_rdev);
657 dm->name = n;
658 dm->next = devlist;
659 devlist = dm;
660 }
661 }
662 return 0;
663 }
664
665 #ifndef HAVE_NFTW
666 #ifdef HAVE_FTW
667 int add_dev_1(const char *name, const struct stat *stb, int flag)
668 {
669 return add_dev(name, stb, flag, NULL);
670 }
671 int nftw(const char *path, int (*han)(const char *name, const struct stat *stb, int flag, struct FTW *s), int nopenfd, int flags)
672 {
673 return ftw(path, add_dev_1, nopenfd);
674 }
675 #else
676 int nftw(const char *path, int (*han)(const char *name, const struct stat *stb, int flag, struct FTW *s), int nopenfd, int flags)
677 {
678 return 0;
679 }
680 #endif /* HAVE_FTW */
681 #endif /* HAVE_NFTW */
682
683 /*
684 * Find a block device with the right major/minor number.
685 * If we find multiple names, choose the shortest.
686 * If we find a name in /dev/md/, we prefer that.
687 * This applies only to names for MD devices.
688 */
689 char *map_dev(int major, int minor, int create)
690 {
691 struct devmap *p;
692 char *regular = NULL, *preferred=NULL;
693 int did_check = 0;
694
695 if (major == 0 && minor == 0)
696 return NULL;
697
698 retry:
699 if (!devlist_ready) {
700 char *dev = "/dev";
701 struct stat stb;
702 while(devlist) {
703 struct devmap *d = devlist;
704 devlist = d->next;
705 free(d->name);
706 free(d);
707 }
708 if (lstat(dev, &stb)==0 &&
709 S_ISLNK(stb.st_mode))
710 dev = "/dev/.";
711 nftw(dev, add_dev, 10, FTW_PHYS);
712 devlist_ready=1;
713 did_check = 1;
714 }
715
716 for (p=devlist; p; p=p->next)
717 if (p->major == major &&
718 p->minor == minor) {
719 if (strncmp(p->name, "/dev/md/",8) == 0) {
720 if (preferred == NULL ||
721 strlen(p->name) < strlen(preferred))
722 preferred = p->name;
723 } else {
724 if (regular == NULL ||
725 strlen(p->name) < strlen(regular))
726 regular = p->name;
727 }
728 }
729 if (!regular && !preferred && !did_check) {
730 devlist_ready = 0;
731 goto retry;
732 }
733 if (create && !regular && !preferred) {
734 static char buf[30];
735 snprintf(buf, sizeof(buf), "%d:%d", major, minor);
736 regular = buf;
737 }
738
739 return preferred ? preferred : regular;
740 }
741
742 unsigned long calc_csum(void *super, int bytes)
743 {
744 unsigned long long newcsum = 0;
745 int i;
746 unsigned int csum;
747 unsigned int *superc = (unsigned int*) super;
748
749 for(i=0; i<bytes/4; i++)
750 newcsum+= superc[i];
751 csum = (newcsum& 0xffffffff) + (newcsum>>32);
752 #ifdef __alpha__
753 /* The in-kernel checksum calculation is always 16bit on
754 * the alpha, though it is 32 bit on i386...
755 * I wonder what it is elsewhere... (it uses and API in
756 * a way that it shouldn't).
757 */
758 csum = (csum & 0xffff) + (csum >> 16);
759 csum = (csum & 0xffff) + (csum >> 16);
760 #endif
761 return csum;
762 }
763
764 #ifndef MDASSEMBLE
765 char *human_size(long long bytes)
766 {
767 static char buf[30];
768
769 /* We convert bytes to either centi-M{ega,ibi}bytes or
770 * centi-G{igi,ibi}bytes, with appropriate rounding,
771 * and then print 1/100th of those as a decimal.
772 * We allow upto 2048Megabytes before converting to
773 * gigabytes, as that shows more precision and isn't
774 * too large a number.
775 * Terrabytes are not yet handled.
776 */
777
778 if (bytes < 5000*1024)
779 buf[0]=0;
780 else if (bytes < 2*1024LL*1024LL*1024LL) {
781 long cMiB = (bytes / ( (1LL<<20) / 200LL ) +1) /2;
782 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
783 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
784 cMiB/100 , cMiB % 100,
785 cMB/100, cMB % 100);
786 } else {
787 long cGiB = (bytes / ( (1LL<<30) / 200LL ) +1) /2;
788 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
789 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
790 cGiB/100 , cGiB % 100,
791 cGB/100, cGB % 100);
792 }
793 return buf;
794 }
795
796 char *human_size_brief(long long bytes)
797 {
798 static char buf[30];
799
800 if (bytes < 5000*1024)
801 snprintf(buf, sizeof(buf), "%ld.%02ldKiB",
802 (long)(bytes>>10), (long)(((bytes&1023)*100+512)/1024)
803 );
804 else if (bytes < 2*1024LL*1024LL*1024LL)
805 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
806 (long)(bytes>>20),
807 (long)((bytes&0xfffff)+0x100000/200)/(0x100000/100)
808 );
809 else
810 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
811 (long)(bytes>>30),
812 (long)(((bytes>>10)&0xfffff)+0x100000/200)/(0x100000/100)
813 );
814 return buf;
815 }
816
817 void print_r10_layout(int layout)
818 {
819 int near = layout & 255;
820 int far = (layout >> 8) & 255;
821 int offset = (layout&0x10000);
822 char *sep = "";
823
824 if (near != 1) {
825 printf("%s near=%d", sep, near);
826 sep = ",";
827 }
828 if (far != 1)
829 printf("%s %s=%d", sep, offset?"offset":"far", far);
830 if (near*far == 1)
831 printf("NO REDUNDANCY");
832 }
833 #endif
834
835 unsigned long long calc_array_size(int level, int raid_disks, int layout,
836 int chunksize, unsigned long long devsize)
837 {
838 int data_disks = 0;
839 switch (level) {
840 case 0: data_disks = raid_disks; break;
841 case 1: data_disks = 1; break;
842 case 4:
843 case 5: data_disks = raid_disks - 1; break;
844 case 6: data_disks = raid_disks - 2; break;
845 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
846 break;
847 }
848 devsize &= ~(unsigned long long)((chunksize>>9)-1);
849 return data_disks * devsize;
850 }
851
852 int get_mdp_major(void)
853 {
854 static int mdp_major = -1;
855 FILE *fl;
856 char *w;
857 int have_block = 0;
858 int have_devices = 0;
859 int last_num = -1;
860
861 if (mdp_major != -1)
862 return mdp_major;
863 fl = fopen("/proc/devices", "r");
864 if (!fl)
865 return -1;
866 while ((w = conf_word(fl, 1))) {
867 if (have_block && strcmp(w, "devices:")==0)
868 have_devices = 1;
869 have_block = (strcmp(w, "Block")==0);
870 if (isdigit(w[0]))
871 last_num = atoi(w);
872 if (have_devices && strcmp(w, "mdp")==0)
873 mdp_major = last_num;
874 free(w);
875 }
876 fclose(fl);
877 return mdp_major;
878 }
879
880 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
881 char *get_md_name(int dev)
882 {
883 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
884 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
885 static char devname[50];
886 struct stat stb;
887 dev_t rdev;
888 char *dn;
889
890 if (dev < 0) {
891 int mdp = get_mdp_major();
892 if (mdp < 0) return NULL;
893 rdev = makedev(mdp, (-1-dev)<<6);
894 snprintf(devname, sizeof(devname), "/dev/md/d%d", -1-dev);
895 if (stat(devname, &stb) == 0
896 && (S_IFMT&stb.st_mode) == S_IFBLK
897 && (stb.st_rdev == rdev))
898 return devname;
899 } else {
900 rdev = makedev(MD_MAJOR, dev);
901 snprintf(devname, sizeof(devname), "/dev/md%d", dev);
902 if (stat(devname, &stb) == 0
903 && (S_IFMT&stb.st_mode) == S_IFBLK
904 && (stb.st_rdev == rdev))
905 return devname;
906
907 snprintf(devname, sizeof(devname), "/dev/md/%d", dev);
908 if (stat(devname, &stb) == 0
909 && (S_IFMT&stb.st_mode) == S_IFBLK
910 && (stb.st_rdev == rdev))
911 return devname;
912 }
913 dn = map_dev(major(rdev), minor(rdev), 0);
914 if (dn)
915 return dn;
916 snprintf(devname, sizeof(devname), "/dev/.tmp.md%d", dev);
917 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
918 if (errno != EEXIST)
919 return NULL;
920
921 if (stat(devname, &stb) == 0
922 && (S_IFMT&stb.st_mode) == S_IFBLK
923 && (stb.st_rdev == rdev))
924 return devname;
925 unlink(devname);
926 return NULL;
927 }
928
929 void put_md_name(char *name)
930 {
931 if (strncmp(name, "/dev/.tmp.md", 12)==0)
932 unlink(name);
933 }
934
935 int find_free_devnum(int use_partitions)
936 {
937 int devnum;
938 for (devnum = 127; devnum != 128;
939 devnum = devnum ? devnum-1 : (1<<20)-1) {
940 char *dn;
941 int _devnum;
942
943 _devnum = use_partitions ? (-1-devnum) : devnum;
944 if (mddev_busy(_devnum))
945 continue;
946 /* make sure it is new to /dev too, at least as a
947 * non-standard */
948 dn = map_dev(dev2major(_devnum), dev2minor(_devnum), 0);
949 if (dn && ! is_standard(dn, NULL))
950 continue;
951 break;
952 }
953 if (devnum == 128)
954 return NoMdDev;
955 return use_partitions ? (-1-devnum) : devnum;
956 }
957 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
958
959 int dev_open(char *dev, int flags)
960 {
961 /* like 'open', but if 'dev' matches %d:%d, create a temp
962 * block device and open that
963 */
964 char *e;
965 int fd = -1;
966 char devname[32];
967 int major;
968 int minor;
969
970 if (!dev) return -1;
971 flags |= O_DIRECT;
972
973 major = strtoul(dev, &e, 0);
974 if (e > dev && *e == ':' && e[1] &&
975 (minor = strtoul(e+1, &e, 0)) >= 0 &&
976 *e == 0) {
977 char *path = map_dev(major, minor, 0);
978 if (path)
979 fd = open(path, flags);
980 if (fd < 0) {
981 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
982 (int)getpid(), major, minor);
983 if (mknod(devname, S_IFBLK|0600, makedev(major, minor))==0) {
984 fd = open(devname, flags);
985 unlink(devname);
986 }
987 }
988 if (fd < 0) {
989 snprintf(devname, sizeof(devname), "/tmp/.tmp.md.%d:%d:%d",
990 (int)getpid(), major, minor);
991 if (mknod(devname, S_IFBLK|0600, makedev(major, minor))==0) {
992 fd = open(devname, flags);
993 unlink(devname);
994 }
995 }
996 } else
997 fd = open(dev, flags);
998 return fd;
999 }
1000
1001 int open_dev_flags(int devnum, int flags)
1002 {
1003 char buf[20];
1004
1005 sprintf(buf, "%d:%d", dev2major(devnum), dev2minor(devnum));
1006 return dev_open(buf, flags);
1007 }
1008
1009 int open_dev(int devnum)
1010 {
1011 return open_dev_flags(devnum, O_RDONLY);
1012 }
1013
1014 int open_dev_excl(int devnum)
1015 {
1016 char buf[20];
1017 int i;
1018
1019 sprintf(buf, "%d:%d", dev2major(devnum), dev2minor(devnum));
1020 for (i=0 ; i<25 ; i++) {
1021 int fd = dev_open(buf, O_RDWR|O_EXCL);
1022 if (fd >= 0)
1023 return fd;
1024 if (errno != EBUSY)
1025 return fd;
1026 usleep(200000);
1027 }
1028 return -1;
1029 }
1030
1031 int same_dev(char *one, char *two)
1032 {
1033 struct stat st1, st2;
1034 if (stat(one, &st1) != 0)
1035 return 0;
1036 if (stat(two, &st2) != 0)
1037 return 0;
1038 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1039 return 0;
1040 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1041 return 0;
1042 return st1.st_rdev == st2.st_rdev;
1043 }
1044
1045 void wait_for(char *dev, int fd)
1046 {
1047 int i;
1048 struct stat stb_want;
1049
1050 if (fstat(fd, &stb_want) != 0 ||
1051 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1052 return;
1053
1054 for (i=0 ; i<25 ; i++) {
1055 struct stat stb;
1056 if (stat(dev, &stb) == 0 &&
1057 (stb.st_mode & S_IFMT) == S_IFBLK &&
1058 (stb.st_rdev == stb_want.st_rdev))
1059 return;
1060 usleep(200000);
1061 }
1062 if (i == 25)
1063 dprintf("%s: timeout waiting for %s\n", __func__, dev);
1064 }
1065
1066 struct superswitch *superlist[] =
1067 {
1068 &super0, &super1,
1069 &super_ddf, &super_imsm,
1070 &mbr, &gpt,
1071 NULL };
1072
1073 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
1074
1075 struct supertype *super_by_fd(int fd, char **subarrayp)
1076 {
1077 mdu_array_info_t array;
1078 int vers;
1079 int minor;
1080 struct supertype *st = NULL;
1081 struct mdinfo *sra;
1082 char *verstr;
1083 char version[20];
1084 int i;
1085 char *subarray = NULL;
1086 int container = NoMdDev;
1087
1088 sra = sysfs_read(fd, 0, GET_VERSION);
1089
1090 if (sra) {
1091 vers = sra->array.major_version;
1092 minor = sra->array.minor_version;
1093 verstr = sra->text_version;
1094 } else {
1095 if (ioctl(fd, GET_ARRAY_INFO, &array))
1096 array.major_version = array.minor_version = 0;
1097 vers = array.major_version;
1098 minor = array.minor_version;
1099 verstr = "";
1100 }
1101
1102 if (vers != -1) {
1103 sprintf(version, "%d.%d", vers, minor);
1104 verstr = version;
1105 }
1106 if (minor == -2 && is_subarray(verstr)) {
1107 char *dev = verstr+1;
1108
1109 subarray = strchr(dev, '/');
1110 if (subarray)
1111 *subarray++ = '\0';
1112 subarray = strdup(subarray);
1113 container = devname2devnum(dev);
1114 if (sra)
1115 sysfs_free(sra);
1116 sra = sysfs_read(-1, container, GET_VERSION);
1117 if (sra && sra->text_version[0])
1118 verstr = sra->text_version;
1119 else
1120 verstr = "-no-metadata-";
1121 }
1122
1123 for (i = 0; st == NULL && superlist[i] ; i++)
1124 st = superlist[i]->match_metadata_desc(verstr);
1125
1126 if (sra)
1127 sysfs_free(sra);
1128 if (st) {
1129 st->sb = NULL;
1130 if (subarrayp)
1131 *subarrayp = subarray;
1132 st->container_dev = container;
1133 st->devnum = fd2devnum(fd);
1134 } else
1135 free(subarray);
1136
1137 return st;
1138 }
1139 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
1140
1141 int dev_size_from_id(dev_t id, unsigned long long *size)
1142 {
1143 char buf[20];
1144 int fd;
1145
1146 sprintf(buf, "%d:%d", major(id), minor(id));
1147 fd = dev_open(buf, O_RDONLY);
1148 if (fd < 0)
1149 return 0;
1150 if (get_dev_size(fd, NULL, size)) {
1151 close(fd);
1152 return 1;
1153 }
1154 close(fd);
1155 return 0;
1156 }
1157
1158 struct supertype *dup_super(struct supertype *orig)
1159 {
1160 struct supertype *st;
1161
1162 if (!orig)
1163 return orig;
1164 st = malloc(sizeof(*st));
1165 if (!st)
1166 return st;
1167 memset(st, 0, sizeof(*st));
1168 st->ss = orig->ss;
1169 st->max_devs = orig->max_devs;
1170 st->minor_version = orig->minor_version;
1171 st->sb = NULL;
1172 st->info = NULL;
1173 return st;
1174 }
1175
1176 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1177 {
1178 /* try each load_super to find the best match,
1179 * and return the best superswitch
1180 */
1181 struct superswitch *ss;
1182 struct supertype *st;
1183 time_t besttime = 0;
1184 int bestsuper = -1;
1185 int i;
1186
1187 st = malloc(sizeof(*st));
1188 memset(st, 0, sizeof(*st));
1189 st->container_dev = NoMdDev;
1190
1191 for (i=0 ; superlist[i]; i++) {
1192 int rv;
1193 ss = superlist[i];
1194 if (guess_type == guess_array && ss->add_to_super == NULL)
1195 continue;
1196 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1197 continue;
1198 memset(st, 0, sizeof(*st));
1199 st->ignore_hw_compat = 1;
1200 rv = ss->load_super(st, fd, NULL);
1201 if (rv == 0) {
1202 struct mdinfo info;
1203 st->ss->getinfo_super(st, &info, NULL);
1204 if (bestsuper == -1 ||
1205 besttime < info.array.ctime) {
1206 bestsuper = i;
1207 besttime = info.array.ctime;
1208 }
1209 ss->free_super(st);
1210 }
1211 }
1212 if (bestsuper != -1) {
1213 int rv;
1214 memset(st, 0, sizeof(*st));
1215 st->ignore_hw_compat = 1;
1216 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1217 if (rv == 0) {
1218 superlist[bestsuper]->free_super(st);
1219 st->ignore_hw_compat = 0;
1220 return st;
1221 }
1222 }
1223 free(st);
1224 return NULL;
1225 }
1226
1227 /* Return size of device in bytes */
1228 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1229 {
1230 unsigned long long ldsize;
1231 struct stat st;
1232
1233 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1234 ldsize = (unsigned long long)st.st_size;
1235 else
1236 #ifdef BLKGETSIZE64
1237 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1238 #endif
1239 {
1240 unsigned long dsize;
1241 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1242 ldsize = dsize;
1243 ldsize <<= 9;
1244 } else {
1245 if (dname)
1246 fprintf(stderr, Name ": Cannot get size of %s: %s\b",
1247 dname, strerror(errno));
1248 return 0;
1249 }
1250 }
1251 *sizep = ldsize;
1252 return 1;
1253 }
1254
1255 /* Return true if this can only be a container, not a member device.
1256 * i.e. is and md device and size is zero
1257 */
1258 int must_be_container(int fd)
1259 {
1260 unsigned long long size;
1261 if (md_get_version(fd) < 0)
1262 return 0;
1263 if (get_dev_size(fd, NULL, &size) == 0)
1264 return 1;
1265 if (size == 0)
1266 return 1;
1267 return 0;
1268 }
1269
1270 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1271 * Returns: 1 if successful
1272 * -1 for unknown partition type
1273 * 0 for other errors
1274 */
1275 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1276 {
1277 struct GPT gpt;
1278 unsigned char buf[512];
1279 unsigned char empty_gpt_entry[16]= {0};
1280 struct GPT_part_entry *part;
1281 unsigned long long curr_part_end;
1282 unsigned all_partitions, entry_size;
1283 unsigned part_nr;
1284
1285 *endofpart = 0;
1286
1287 BUILD_BUG_ON(sizeof(gpt) != 512);
1288 /* read GPT header */
1289 lseek(fd, 512, SEEK_SET);
1290 if (read(fd, &gpt, 512) != 512)
1291 return 0;
1292
1293 /* get the number of partition entries and the entry size */
1294 all_partitions = __le32_to_cpu(gpt.part_cnt);
1295 entry_size = __le32_to_cpu(gpt.part_size);
1296
1297 /* Check GPT signature*/
1298 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1299 return -1;
1300
1301 /* sanity checks */
1302 if (all_partitions > 1024 ||
1303 entry_size > 512)
1304 return -1;
1305
1306 /* read first GPT partition entries */
1307 if (read(fd, buf, 512) != 512)
1308 return 0;
1309
1310 part = (struct GPT_part_entry*)buf;
1311
1312 for (part_nr=0; part_nr < all_partitions; part_nr++) {
1313 /* is this valid partition? */
1314 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1315 /* check the last lba for the current partition */
1316 curr_part_end = __le64_to_cpu(part->ending_lba);
1317 if (curr_part_end > *endofpart)
1318 *endofpart = curr_part_end;
1319 }
1320
1321 part = (struct GPT_part_entry*)((unsigned char*)part + entry_size);
1322
1323 if ((unsigned char *)part >= buf + 512) {
1324 if (read(fd, buf, 512) != 512)
1325 return 0;
1326 part = (struct GPT_part_entry*)buf;
1327 }
1328 }
1329 return 1;
1330 }
1331
1332 /* Sets endofpart parameter to the last block used by the last partition on the device.
1333 * Returns: 1 if successful
1334 * -1 for unknown partition type
1335 * 0 for other errors
1336 */
1337 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1338 {
1339 struct MBR boot_sect;
1340 struct MBR_part_record *part;
1341 unsigned long long curr_part_end;
1342 unsigned part_nr;
1343 int retval = 0;
1344
1345 *endofpart = 0;
1346
1347 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1348 /* read MBR */
1349 lseek(fd, 0, 0);
1350 if (read(fd, &boot_sect, 512) != 512)
1351 goto abort;
1352
1353 /* check MBP signature */
1354 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1355 retval = 1;
1356 /* found the correct signature */
1357 part = boot_sect.parts;
1358
1359 for (part_nr=0; part_nr < MBR_PARTITIONS; part_nr++) {
1360 /* check for GPT type */
1361 if (part->part_type == MBR_GPT_PARTITION_TYPE) {
1362 retval = get_gpt_last_partition_end(fd, endofpart);
1363 break;
1364 }
1365 /* check the last used lba for the current partition */
1366 curr_part_end = __le32_to_cpu(part->first_sect_lba) +
1367 __le32_to_cpu(part->blocks_num);
1368 if (curr_part_end > *endofpart)
1369 *endofpart = curr_part_end;
1370
1371 part++;
1372 }
1373 } else {
1374 /* Unknown partition table */
1375 retval = -1;
1376 }
1377 abort:
1378 return retval;
1379 }
1380
1381 int check_partitions(int fd, char *dname, unsigned long long freesize,
1382 unsigned long long size)
1383 {
1384 /*
1385 * Check where the last partition ends
1386 */
1387 unsigned long long endofpart;
1388 int ret;
1389
1390 if ((ret = get_last_partition_end(fd, &endofpart)) > 0) {
1391 /* There appears to be a partition table here */
1392 if (freesize == 0) {
1393 /* partitions will not be visible in new device */
1394 fprintf(stderr,
1395 Name ": partition table exists on %s but will be lost or\n"
1396 " meaningless after creating array\n",
1397 dname);
1398 return 1;
1399 } else if (endofpart > freesize) {
1400 /* last partition overlaps metadata */
1401 fprintf(stderr,
1402 Name ": metadata will over-write last partition on %s.\n",
1403 dname);
1404 return 1;
1405 } else if (size && endofpart > size) {
1406 /* partitions will be truncated in new device */
1407 fprintf(stderr,
1408 Name ": array size is too small to cover all partitions on %s.\n",
1409 dname);
1410 return 1;
1411 }
1412 }
1413 return 0;
1414 }
1415
1416 void get_one_disk(int mdfd, mdu_array_info_t *ainf, mdu_disk_info_t *disk)
1417 {
1418 int d;
1419 ioctl(mdfd, GET_ARRAY_INFO, ainf);
1420 for (d = 0 ; d < ainf->raid_disks + ainf->nr_disks ; d++)
1421 if (ioctl(mdfd, GET_DISK_INFO, disk) == 0)
1422 return;
1423 }
1424
1425 int open_container(int fd)
1426 {
1427 /* 'fd' is a block device. Find out if it is in use
1428 * by a container, and return an open fd on that container.
1429 */
1430 char path[256];
1431 char *e;
1432 DIR *dir;
1433 struct dirent *de;
1434 int dfd, n;
1435 char buf[200];
1436 int major, minor;
1437 struct stat st;
1438
1439 if (fstat(fd, &st) != 0)
1440 return -1;
1441 sprintf(path, "/sys/dev/block/%d:%d/holders",
1442 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1443 e = path + strlen(path);
1444
1445 dir = opendir(path);
1446 if (!dir)
1447 return -1;
1448 while ((de = readdir(dir))) {
1449 if (de->d_ino == 0)
1450 continue;
1451 if (de->d_name[0] == '.')
1452 continue;
1453 sprintf(e, "/%s/dev", de->d_name);
1454 dfd = open(path, O_RDONLY);
1455 if (dfd < 0)
1456 continue;
1457 n = read(dfd, buf, sizeof(buf));
1458 close(dfd);
1459 if (n <= 0 || (unsigned)n >= sizeof(buf))
1460 continue;
1461 buf[n] = 0;
1462 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1463 continue;
1464 sprintf(buf, "%d:%d", major, minor);
1465 dfd = dev_open(buf, O_RDONLY);
1466 if (dfd >= 0) {
1467 closedir(dir);
1468 return dfd;
1469 }
1470 }
1471 closedir(dir);
1472 return -1;
1473 }
1474
1475 struct superswitch *version_to_superswitch(char *vers)
1476 {
1477 int i;
1478
1479 for (i = 0; superlist[i]; i++) {
1480 struct superswitch *ss = superlist[i];
1481
1482 if (strcmp(vers, ss->name) == 0)
1483 return ss;
1484 }
1485
1486 return NULL;
1487 }
1488
1489 int is_container_member(struct mdstat_ent *mdstat, char *container)
1490 {
1491 if (mdstat->metadata_version == NULL ||
1492 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1493 !is_subarray(mdstat->metadata_version+9) ||
1494 strncmp(mdstat->metadata_version+10, container, strlen(container)) != 0 ||
1495 mdstat->metadata_version[10+strlen(container)] != '/')
1496 return 0;
1497
1498 return 1;
1499 }
1500
1501 int is_subarray_active(char *subarray, char *container)
1502 {
1503 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1504 struct mdstat_ent *ent;
1505
1506 for (ent = mdstat; ent; ent = ent->next)
1507 if (is_container_member(ent, container))
1508 if (strcmp(to_subarray(ent, container), subarray) == 0)
1509 break;
1510
1511 free_mdstat(mdstat);
1512
1513 return ent != NULL;
1514 }
1515
1516 /* open_subarray - opens a subarray in a container
1517 * @dev: container device name
1518 * @st: empty supertype
1519 * @quiet: block reporting errors flag
1520 *
1521 * On success returns an fd to a container and fills in *st
1522 */
1523 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1524 {
1525 struct mdinfo *mdi;
1526 struct mdinfo *info;
1527 int fd, err = 1;
1528
1529 fd = open(dev, O_RDWR|O_EXCL);
1530 if (fd < 0) {
1531 if (!quiet)
1532 fprintf(stderr, Name ": Couldn't open %s, aborting\n",
1533 dev);
1534 return 2;
1535 }
1536
1537 st->devnum = fd2devnum(fd);
1538 if (st->devnum == NoMdDev) {
1539 if (!quiet)
1540 fprintf(stderr,
1541 Name ": Failed to determine device number for %s\n",
1542 dev);
1543 goto close_fd;
1544 }
1545
1546 mdi = sysfs_read(fd, st->devnum, GET_VERSION|GET_LEVEL);
1547 if (!mdi) {
1548 if (!quiet)
1549 fprintf(stderr, Name ": Failed to read sysfs for %s\n",
1550 dev);
1551 goto close_fd;
1552 }
1553
1554 if (mdi->array.level != UnSet) {
1555 if (!quiet)
1556 fprintf(stderr, Name ": %s is not a container\n", dev);
1557 goto free_sysfs;
1558 }
1559
1560 st->ss = version_to_superswitch(mdi->text_version);
1561 if (!st->ss) {
1562 if (!quiet)
1563 fprintf(stderr,
1564 Name ": Operation not supported for %s metadata\n",
1565 mdi->text_version);
1566 goto free_sysfs;
1567 }
1568
1569 st->devname = devnum2devname(st->devnum);
1570 if (!st->devname) {
1571 if (!quiet)
1572 fprintf(stderr, Name ": Failed to allocate device name\n");
1573 goto free_sysfs;
1574 }
1575
1576 if (!st->ss->load_container) {
1577 if (!quiet)
1578 fprintf(stderr, Name ": %s is not a container\n", dev);
1579 goto free_name;
1580 }
1581
1582 if (st->ss->load_container(st, fd, NULL)) {
1583 if (!quiet)
1584 fprintf(stderr, Name ": Failed to load metadata for %s\n",
1585 dev);
1586 goto free_name;
1587 }
1588
1589 info = st->ss->container_content(st, subarray);
1590 if (!info) {
1591 if (!quiet)
1592 fprintf(stderr, Name ": Failed to find subarray-%s in %s\n",
1593 subarray, dev);
1594 goto free_super;
1595 }
1596 free(info);
1597
1598 err = 0;
1599
1600 free_super:
1601 if (err)
1602 st->ss->free_super(st);
1603 free_name:
1604 if (err)
1605 free(st->devname);
1606 free_sysfs:
1607 sysfs_free(mdi);
1608 close_fd:
1609 if (err)
1610 close(fd);
1611
1612 if (err)
1613 return -1;
1614 else
1615 return fd;
1616 }
1617
1618 int add_disk(int mdfd, struct supertype *st,
1619 struct mdinfo *sra, struct mdinfo *info)
1620 {
1621 /* Add a device to an array, in one of 2 ways. */
1622 int rv;
1623 #ifndef MDASSEMBLE
1624 if (st->ss->external) {
1625 if (info->disk.state & (1<<MD_DISK_SYNC))
1626 info->recovery_start = MaxSector;
1627 else
1628 info->recovery_start = 0;
1629 rv = sysfs_add_disk(sra, info, 0);
1630 if (! rv) {
1631 struct mdinfo *sd2;
1632 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1633 if (sd2 == info)
1634 break;
1635 if (sd2 == NULL) {
1636 sd2 = malloc(sizeof(*sd2));
1637 *sd2 = *info;
1638 sd2->next = sra->devs;
1639 sra->devs = sd2;
1640 }
1641 }
1642 } else
1643 #endif
1644 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1645 return rv;
1646 }
1647
1648 int remove_disk(int mdfd, struct supertype *st,
1649 struct mdinfo *sra, struct mdinfo *info)
1650 {
1651 int rv;
1652 /* Remove the disk given by 'info' from the array */
1653 #ifndef MDASSEMBLE
1654 if (st->ss->external)
1655 rv = sysfs_set_str(sra, info, "slot", "none");
1656 else
1657 #endif
1658 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1659 info->disk.minor));
1660 return rv;
1661 }
1662
1663 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1664 {
1665 /* Initialise kernel's knowledge of array.
1666 * This varies between externally managed arrays
1667 * and older kernels
1668 */
1669 int vers = md_get_version(mdfd);
1670 int rv;
1671
1672 #ifndef MDASSEMBLE
1673 if (st->ss->external)
1674 rv = sysfs_set_array(info, vers);
1675 else
1676 #endif
1677 if ((vers % 100) >= 1) { /* can use different versions */
1678 mdu_array_info_t inf;
1679 memset(&inf, 0, sizeof(inf));
1680 inf.major_version = info->array.major_version;
1681 inf.minor_version = info->array.minor_version;
1682 rv = ioctl(mdfd, SET_ARRAY_INFO, &inf);
1683 } else
1684 rv = ioctl(mdfd, SET_ARRAY_INFO, NULL);
1685 return rv;
1686 }
1687
1688 unsigned long long min_recovery_start(struct mdinfo *array)
1689 {
1690 /* find the minimum recovery_start in an array for metadata
1691 * formats that only record per-array recovery progress instead
1692 * of per-device
1693 */
1694 unsigned long long recovery_start = MaxSector;
1695 struct mdinfo *d;
1696
1697 for (d = array->devs; d; d = d->next)
1698 recovery_start = min(recovery_start, d->recovery_start);
1699
1700 return recovery_start;
1701 }
1702
1703 void fmt_devname(char *name, int num)
1704 {
1705 if (num >= 0)
1706 sprintf(name, "md%d", num);
1707 else
1708 sprintf(name, "md_d%d", -1-num);
1709 }
1710
1711 char *devnum2devname(int num)
1712 {
1713 char name[100];
1714 fmt_devname(name,num);
1715 return strdup(name);
1716 }
1717
1718 int devname2devnum(char *name)
1719 {
1720 char *ep;
1721 int num;
1722 if (strncmp(name, "md_d", 4)==0)
1723 num = -1-strtoul(name+4, &ep, 10);
1724 else
1725 num = strtoul(name+2, &ep, 10);
1726 return num;
1727 }
1728
1729 int stat2devnum(struct stat *st)
1730 {
1731 char path[30];
1732 char link[200];
1733 char *cp;
1734 int n;
1735
1736 if ((S_IFMT & st->st_mode) == S_IFBLK) {
1737 if (major(st->st_rdev) == MD_MAJOR)
1738 return minor(st->st_rdev);
1739 else if (major(st->st_rdev) == (unsigned)get_mdp_major())
1740 return -1- (minor(st->st_rdev)>>MdpMinorShift);
1741
1742 /* must be an extended-minor partition. Look at the
1743 * /sys/dev/block/%d:%d link which must look like
1744 * ../../block/mdXXX/mdXXXpYY
1745 */
1746 sprintf(path, "/sys/dev/block/%d:%d", major(st->st_rdev),
1747 minor(st->st_rdev));
1748 n = readlink(path, link, sizeof(link)-1);
1749 if (n <= 0)
1750 return NoMdDev;
1751 link[n] = 0;
1752 cp = strrchr(link, '/');
1753 if (cp) *cp = 0;
1754 cp = strrchr(link, '/');
1755 if (cp && strncmp(cp, "/md", 3) == 0)
1756 return devname2devnum(cp+1);
1757 }
1758 return NoMdDev;
1759
1760 }
1761
1762 int fd2devnum(int fd)
1763 {
1764 struct stat stb;
1765 if (fstat(fd, &stb) == 0)
1766 return stat2devnum(&stb);
1767 return NoMdDev;
1768 }
1769
1770 int mdmon_pid(int devnum)
1771 {
1772 char path[100];
1773 char pid[10];
1774 int fd;
1775 int n;
1776 char *devname = devnum2devname(devnum);
1777
1778 sprintf(path, "%s/%s.pid", MDMON_DIR, devname);
1779 free(devname);
1780
1781 fd = open(path, O_RDONLY | O_NOATIME, 0);
1782
1783 if (fd < 0)
1784 return -1;
1785 n = read(fd, pid, 9);
1786 close(fd);
1787 if (n <= 0)
1788 return -1;
1789 return atoi(pid);
1790 }
1791
1792 int mdmon_running(int devnum)
1793 {
1794 int pid = mdmon_pid(devnum);
1795 if (pid <= 0)
1796 return 0;
1797 if (kill(pid, 0) == 0)
1798 return 1;
1799 return 0;
1800 }
1801
1802 int start_mdmon(int devnum)
1803 {
1804 int i;
1805 int len;
1806 pid_t pid;
1807 int status;
1808 char pathbuf[1024];
1809 char *paths[4] = {
1810 pathbuf,
1811 "/sbin/mdmon",
1812 "mdmon",
1813 NULL
1814 };
1815
1816 if (check_env("MDADM_NO_MDMON"))
1817 return 0;
1818
1819 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf));
1820 if (len > 0) {
1821 char *sl;
1822 pathbuf[len] = 0;
1823 sl = strrchr(pathbuf, '/');
1824 if (sl)
1825 sl++;
1826 else
1827 sl = pathbuf;
1828 strcpy(sl, "mdmon");
1829 } else
1830 pathbuf[0] = '\0';
1831
1832 switch(fork()) {
1833 case 0:
1834 /* FIXME yuk. CLOSE_EXEC?? */
1835 for (i=3; i < 100; i++)
1836 close(i);
1837 for (i=0; paths[i]; i++)
1838 if (paths[i][0])
1839 execl(paths[i], "mdmon",
1840 devnum2devname(devnum),
1841 NULL);
1842 exit(1);
1843 case -1: fprintf(stderr, Name ": cannot run mdmon. "
1844 "Array remains readonly\n");
1845 return -1;
1846 default: /* parent - good */
1847 pid = wait(&status);
1848 if (pid < 0 || status != 0)
1849 return -1;
1850 }
1851 return 0;
1852 }
1853
1854 int check_env(char *name)
1855 {
1856 char *val = getenv(name);
1857
1858 if (val && atoi(val) == 1)
1859 return 1;
1860
1861 return 0;
1862 }
1863
1864 __u32 random32(void)
1865 {
1866 __u32 rv;
1867 int rfd = open("/dev/urandom", O_RDONLY);
1868 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1869 rv = random();
1870 if (rfd >= 0)
1871 close(rfd);
1872 return rv;
1873 }
1874
1875 #ifndef MDASSEMBLE
1876 int flush_metadata_updates(struct supertype *st)
1877 {
1878 int sfd;
1879 if (!st->updates) {
1880 st->update_tail = NULL;
1881 return -1;
1882 }
1883
1884 sfd = connect_monitor(devnum2devname(st->container_dev));
1885 if (sfd < 0)
1886 return -1;
1887
1888 while (st->updates) {
1889 struct metadata_update *mu = st->updates;
1890 st->updates = mu->next;
1891
1892 send_message(sfd, mu, 0);
1893 wait_reply(sfd, 0);
1894 free(mu->buf);
1895 free(mu);
1896 }
1897 ack(sfd, 0);
1898 wait_reply(sfd, 0);
1899 close(sfd);
1900 st->update_tail = NULL;
1901 return 0;
1902 }
1903
1904 void append_metadata_update(struct supertype *st, void *buf, int len)
1905 {
1906
1907 struct metadata_update *mu = malloc(sizeof(*mu));
1908
1909 mu->buf = buf;
1910 mu->len = len;
1911 mu->space = NULL;
1912 mu->space_list = NULL;
1913 mu->next = NULL;
1914 *st->update_tail = mu;
1915 st->update_tail = &mu->next;
1916 }
1917 #endif /* MDASSEMBLE */
1918
1919 #ifdef __TINYC__
1920 /* tinyc doesn't optimize this check in ioctl.h out ... */
1921 unsigned int __invalid_size_argument_for_IOC = 0;
1922 #endif
1923
1924 int experimental(void)
1925 {
1926 if (check_env("MDADM_EXPERIMENTAL"))
1927 return 1;
1928 else {
1929 fprintf(stderr, Name ": To use this feature MDADM_EXPERIMENTAL enviroment variable has to defined.\n");
1930 return 0;
1931 }
1932 }
1933
1934 /* Pick all spares matching given criteria from a container
1935 * if min_size == 0 do not check size
1936 * if domlist == NULL do not check domains
1937 * if spare_group given add it to domains of each spare
1938 * metadata allows to test domains using metadata of destination array */
1939 struct mdinfo *container_choose_spares(struct supertype *st,
1940 unsigned long long min_size,
1941 struct domainlist *domlist,
1942 char *spare_group,
1943 const char *metadata, int get_one)
1944 {
1945 struct mdinfo *d, **dp, *disks = NULL;
1946
1947 /* get list of all disks in container */
1948 if (st->ss->getinfo_super_disks)
1949 disks = st->ss->getinfo_super_disks(st);
1950
1951 if (!disks)
1952 return disks;
1953 /* find spare devices on the list */
1954 dp = &disks->devs;
1955 disks->array.spare_disks = 0;
1956 while (*dp) {
1957 int found = 0;
1958 d = *dp;
1959 if (d->disk.state == 0) {
1960 /* check if size is acceptable */
1961 unsigned long long dev_size;
1962 dev_t dev = makedev(d->disk.major,d->disk.minor);
1963
1964 if (!min_size ||
1965 (dev_size_from_id(dev, &dev_size) &&
1966 dev_size >= min_size))
1967 found = 1;
1968 /* check if domain matches */
1969 if (found && domlist) {
1970 struct dev_policy *pol = devnum_policy(dev);
1971 if (spare_group)
1972 pol_add(&pol, pol_domain,
1973 spare_group, NULL);
1974 if (domain_test(domlist, pol, metadata) != 1)
1975 found = 0;
1976 dev_policy_free(pol);
1977 }
1978 }
1979 if (found) {
1980 dp = &d->next;
1981 disks->array.spare_disks++;
1982 if (get_one) {
1983 sysfs_free(*dp);
1984 d->next = NULL;
1985 }
1986 } else {
1987 *dp = d->next;
1988 d->next = NULL;
1989 sysfs_free(d);
1990 }
1991 }
1992 return disks;
1993 }