]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
Move find_free_devnum to mdopen.c
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2012 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <ctype.h>
33 #include <dirent.h>
34 #include <signal.h>
35
36 /*
37 * following taken from linux/blkpg.h because they aren't
38 * anywhere else and it isn't safe to #include linux/ * stuff.
39 */
40
41 #define BLKPG _IO(0x12,105)
42
43 /* The argument structure */
44 struct blkpg_ioctl_arg {
45 int op;
46 int flags;
47 int datalen;
48 void *data;
49 };
50
51 /* The subfunctions (for the op field) */
52 #define BLKPG_ADD_PARTITION 1
53 #define BLKPG_DEL_PARTITION 2
54
55 /* Sizes of name fields. Unused at present. */
56 #define BLKPG_DEVNAMELTH 64
57 #define BLKPG_VOLNAMELTH 64
58
59 /* The data structure for ADD_PARTITION and DEL_PARTITION */
60 struct blkpg_partition {
61 long long start; /* starting offset in bytes */
62 long long length; /* length in bytes */
63 int pno; /* partition number */
64 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
65 to be used in kernel messages */
66 char volname[BLKPG_VOLNAMELTH]; /* volume label */
67 };
68
69 #include "part.h"
70
71 /* Force a compilation error if condition is true */
72 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
73
74 /* Force a compilation error if condition is true, but also produce a
75 result (of value 0 and type size_t), so the expression can be used
76 e.g. in a structure initializer (or where-ever else comma expressions
77 aren't permitted). */
78 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
79
80 /*
81 * Parse a 128 bit uuid in 4 integers
82 * format is 32 hexx nibbles with options :.<space> separator
83 * If not exactly 32 hex digits are found, return 0
84 * else return 1
85 */
86 int parse_uuid(char *str, int uuid[4])
87 {
88 int hit = 0; /* number of Hex digIT */
89 int i;
90 char c;
91 for (i = 0; i < 4; i++)
92 uuid[i] = 0;
93
94 while ((c = *str++) != 0) {
95 int n;
96 if (c >= '0' && c <= '9')
97 n = c-'0';
98 else if (c >= 'a' && c <= 'f')
99 n = 10 + c - 'a';
100 else if (c >= 'A' && c <= 'F')
101 n = 10 + c - 'A';
102 else if (strchr(":. -", c))
103 continue;
104 else return 0;
105
106 if (hit<32) {
107 uuid[hit/8] <<= 4;
108 uuid[hit/8] += n;
109 }
110 hit++;
111 }
112 if (hit == 32)
113 return 1;
114 return 0;
115 }
116
117 /*
118 * Get the md version number.
119 * We use the RAID_VERSION ioctl if it is supported
120 * If not, but we have a block device with major '9', we assume
121 * 0.36.0
122 *
123 * Return version number as 24 but number - assume version parts
124 * always < 255
125 */
126
127 int md_get_version(int fd)
128 {
129 struct stat stb;
130 mdu_version_t vers;
131
132 if (fstat(fd, &stb)<0)
133 return -1;
134 if ((S_IFMT&stb.st_mode) != S_IFBLK)
135 return -1;
136
137 if (ioctl(fd, RAID_VERSION, &vers) == 0)
138 return (vers.major*10000) + (vers.minor*100) + vers.patchlevel;
139 if (errno == EACCES)
140 return -1;
141 if (major(stb.st_rdev) == MD_MAJOR)
142 return (3600);
143 return -1;
144 }
145
146 int get_linux_version()
147 {
148 struct utsname name;
149 char *cp;
150 int a = 0, b = 0,c = 0;
151 if (uname(&name) <0)
152 return -1;
153
154 cp = name.release;
155 a = strtoul(cp, &cp, 10);
156 if (*cp == '.')
157 b = strtoul(cp+1, &cp, 10);
158 if (*cp == '.')
159 c = strtoul(cp+1, &cp, 10);
160
161 return (a*1000000)+(b*1000)+c;
162 }
163
164 #ifndef MDASSEMBLE
165 int mdadm_version(char *version)
166 {
167 int a, b, c;
168 char *cp;
169
170 if (!version)
171 version = Version;
172
173 cp = strchr(version, '-');
174 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
175 return -1;
176 cp += 3;
177 a = strtoul(cp, &cp, 10);
178 if (*cp != '.')
179 return -1;
180 b = strtoul(cp+1, &cp, 10);
181 if (*cp == '.')
182 c = strtoul(cp+1, &cp, 10);
183 else
184 c = 0;
185 if (*cp != ' ' && *cp != '-')
186 return -1;
187 return (a*1000000)+(b*1000)+c;
188 }
189
190 unsigned long long parse_size(char *size)
191 {
192 /* parse 'size' which should be a number optionally
193 * followed by 'K', 'M', or 'G'.
194 * Without a suffix, K is assumed.
195 * Number returned is in sectors (half-K)
196 * INVALID_SECTORS returned on error.
197 */
198 char *c;
199 long long s = strtoll(size, &c, 10);
200 if (s > 0) {
201 switch (*c) {
202 case 'K':
203 c++;
204 default:
205 s *= 2;
206 break;
207 case 'M':
208 c++;
209 s *= 1024 * 2;
210 break;
211 case 'G':
212 c++;
213 s *= 1024 * 1024 * 2;
214 break;
215 case 's': /* sectors */
216 c++;
217 break;
218 }
219 } else
220 s = INVALID_SECTORS;
221 if (*c)
222 s = INVALID_SECTORS;
223 return s;
224 }
225
226 int parse_layout_10(char *layout)
227 {
228 int copies, rv;
229 char *cp;
230 /* Parse the layout string for raid10 */
231 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
232 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
233 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
234 copies > 200 ||
235 *cp)
236 return -1;
237 if (layout[0] == 'n')
238 rv = 256 + copies;
239 else if (layout[0] == 'o')
240 rv = 0x10000 + (copies<<8) + 1;
241 else
242 rv = 1 + (copies<<8);
243 return rv;
244 }
245
246 int parse_layout_faulty(char *layout)
247 {
248 /* Parse the layout string for 'faulty' */
249 int ln = strcspn(layout, "0123456789");
250 char *m = xstrdup(layout);
251 int mode;
252 m[ln] = 0;
253 mode = map_name(faultylayout, m);
254 if (mode == UnSet)
255 return -1;
256
257 return mode | (atoi(layout+ln)<< ModeShift);
258 }
259
260 long parse_num(char *num)
261 {
262 /* Either return a valid number, or -1 */
263 char *c;
264 long rv = strtol(num, &c, 10);
265 if (rv < 0 || *c || !num[0])
266 return -1;
267 else
268 return rv;
269 }
270 #endif
271
272 void remove_partitions(int fd)
273 {
274 /* remove partitions from this block devices.
275 * This is used for components added to an array
276 */
277 #ifdef BLKPG_DEL_PARTITION
278 struct blkpg_ioctl_arg a;
279 struct blkpg_partition p;
280
281 a.op = BLKPG_DEL_PARTITION;
282 a.data = (void*)&p;
283 a.datalen = sizeof(p);
284 a.flags = 0;
285 memset(a.data, 0, a.datalen);
286 for (p.pno = 0; p.pno < 16; p.pno++)
287 ioctl(fd, BLKPG, &a);
288 #endif
289 }
290
291 int test_partition(int fd)
292 {
293 /* Check if fd is a whole-disk or a partition.
294 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
295 * will return ENXIO on an invalid partition number.
296 */
297 struct blkpg_ioctl_arg a;
298 struct blkpg_partition p;
299 a.op = BLKPG_DEL_PARTITION;
300 a.data = (void*)&p;
301 a.datalen = sizeof(p);
302 a.flags = 0;
303 memset(a.data, 0, a.datalen);
304 p.pno = 1<<30;
305 if (ioctl(fd, BLKPG, &a) == 0)
306 /* Very unlikely, but not a partition */
307 return 0;
308 if (errno == ENXIO)
309 /* not a partition */
310 return 0;
311
312 return 1;
313 }
314
315 int test_partition_from_id(dev_t id)
316 {
317 char buf[20];
318 int fd, rv;
319
320 sprintf(buf, "%d:%d", major(id), minor(id));
321 fd = dev_open(buf, O_RDONLY);
322 if (fd < 0)
323 return -1;
324 rv = test_partition(fd);
325 close(fd);
326 return rv;
327 }
328
329 int enough(int level, int raid_disks, int layout, int clean, char *avail)
330 {
331 int copies, first;
332 int i;
333 int avail_disks = 0;
334
335 for (i = 0; i < raid_disks; i++)
336 avail_disks += !!avail[i];
337
338 switch (level) {
339 case 10:
340 /* This is the tricky one - we need to check
341 * which actual disks are present.
342 */
343 copies = (layout&255)* ((layout>>8) & 255);
344 first = 0;
345 do {
346 /* there must be one of the 'copies' form 'first' */
347 int n = copies;
348 int cnt = 0;
349 int this = first;
350 while (n--) {
351 if (avail[this])
352 cnt++;
353 this = (this+1) % raid_disks;
354 }
355 if (cnt == 0)
356 return 0;
357 first = (first+(layout&255)) % raid_disks;
358 } while (first != 0);
359 return 1;
360
361 case LEVEL_MULTIPATH:
362 return avail_disks>= 1;
363 case LEVEL_LINEAR:
364 case 0:
365 return avail_disks == raid_disks;
366 case 1:
367 return avail_disks >= 1;
368 case 4:
369 case 5:
370 if (clean)
371 return avail_disks >= raid_disks-1;
372 else
373 return avail_disks >= raid_disks;
374 case 6:
375 if (clean)
376 return avail_disks >= raid_disks-2;
377 else
378 return avail_disks >= raid_disks;
379 default:
380 return 0;
381 }
382 }
383
384 int enough_fd(int fd)
385 {
386 struct mdu_array_info_s array;
387 struct mdu_disk_info_s disk;
388 int avail_disks = 0;
389 int i, rv;
390 char *avail;
391
392 if (ioctl(fd, GET_ARRAY_INFO, &array) != 0 ||
393 array.raid_disks <= 0)
394 return 0;
395 avail = xcalloc(array.raid_disks, 1);
396 for (i = 0; i < MAX_DISKS && array.nr_disks > 0; i++) {
397 disk.number = i;
398 if (ioctl(fd, GET_DISK_INFO, &disk) != 0)
399 continue;
400 if (disk.major == 0 && disk.minor == 0)
401 continue;
402 array.nr_disks--;
403
404 if (! (disk.state & (1<<MD_DISK_SYNC)))
405 continue;
406 if (disk.raid_disk < 0 || disk.raid_disk >= array.raid_disks)
407 continue;
408 avail_disks++;
409 avail[disk.raid_disk] = 1;
410 }
411 /* This is used on an active array, so assume it is clean */
412 rv = enough(array.level, array.raid_disks, array.layout,
413 1, avail);
414 free(avail);
415 return rv;
416 }
417
418 const int uuid_zero[4] = { 0, 0, 0, 0 };
419
420 int same_uuid(int a[4], int b[4], int swapuuid)
421 {
422 if (swapuuid) {
423 /* parse uuids are hostendian.
424 * uuid's from some superblocks are big-ending
425 * if there is a difference, we need to swap..
426 */
427 unsigned char *ac = (unsigned char *)a;
428 unsigned char *bc = (unsigned char *)b;
429 int i;
430 for (i = 0; i < 16; i += 4) {
431 if (ac[i+0] != bc[i+3] ||
432 ac[i+1] != bc[i+2] ||
433 ac[i+2] != bc[i+1] ||
434 ac[i+3] != bc[i+0])
435 return 0;
436 }
437 return 1;
438 } else {
439 if (a[0]==b[0] &&
440 a[1]==b[1] &&
441 a[2]==b[2] &&
442 a[3]==b[3])
443 return 1;
444 return 0;
445 }
446 }
447
448 void copy_uuid(void *a, int b[4], int swapuuid)
449 {
450 if (swapuuid) {
451 /* parse uuids are hostendian.
452 * uuid's from some superblocks are big-ending
453 * if there is a difference, we need to swap..
454 */
455 unsigned char *ac = (unsigned char *)a;
456 unsigned char *bc = (unsigned char *)b;
457 int i;
458 for (i = 0; i < 16; i += 4) {
459 ac[i+0] = bc[i+3];
460 ac[i+1] = bc[i+2];
461 ac[i+2] = bc[i+1];
462 ac[i+3] = bc[i+0];
463 }
464 } else
465 memcpy(a, b, 16);
466 }
467
468 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
469 {
470 int i, j;
471 char uuid[16];
472 char *c = buf;
473 strcpy(c, "UUID-");
474 c += strlen(c);
475 copy_uuid(uuid, id, swap);
476 for (i = 0; i < 4; i++) {
477 if (i)
478 *c++ = sep;
479 for (j = 3; j >= 0; j--) {
480 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
481 c+= 2;
482 }
483 }
484 return buf;
485
486 }
487
488 char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep)
489 {
490 // dirty hack to work around an issue with super1 superblocks...
491 // super1 superblocks need swapuuid set in order for assembly to
492 // work, but can't have it set if we want this printout to match
493 // all the other uuid printouts in super1.c, so we force swapuuid
494 // to 1 to make our printout match the rest of super1
495 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 : st->ss->swapuuid, buf, sep);
496 }
497
498 #ifndef MDASSEMBLE
499 int check_ext2(int fd, char *name)
500 {
501 /*
502 * Check for an ext2fs file system.
503 * Superblock is always 1K at 1K offset
504 *
505 * s_magic is le16 at 56 == 0xEF53
506 * report mtime - le32 at 44
507 * blocks - le32 at 4
508 * logblksize - le32 at 24
509 */
510 unsigned char sb[1024];
511 time_t mtime;
512 int size, bsize;
513 if (lseek(fd, 1024,0)!= 1024)
514 return 0;
515 if (read(fd, sb, 1024)!= 1024)
516 return 0;
517 if (sb[56] != 0x53 || sb[57] != 0xef)
518 return 0;
519
520 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
521 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
522 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
523 pr_err("%s appears to contain an ext2fs file system\n",
524 name);
525 cont_err("size=%dK mtime=%s",
526 size*(1<<bsize), ctime(&mtime));
527 return 1;
528 }
529
530 int check_reiser(int fd, char *name)
531 {
532 /*
533 * superblock is at 64K
534 * size is 1024;
535 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
536 *
537 */
538 unsigned char sb[1024];
539 unsigned long size;
540 if (lseek(fd, 64*1024, 0) != 64*1024)
541 return 0;
542 if (read(fd, sb, 1024) != 1024)
543 return 0;
544 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
545 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
546 return 0;
547 pr_err("%s appears to contain a reiserfs file system\n",name);
548 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
549 cont_err("size = %luK\n", size*4);
550
551 return 1;
552 }
553
554 int check_raid(int fd, char *name)
555 {
556 struct mdinfo info;
557 time_t crtime;
558 char *level;
559 struct supertype *st = guess_super(fd);
560
561 if (!st)
562 return 0;
563 st->ss->load_super(st, fd, name);
564 /* Looks like a raid array .. */
565 pr_err("%s appears to be part of a raid array:\n",
566 name);
567 st->ss->getinfo_super(st, &info, NULL);
568 st->ss->free_super(st);
569 crtime = info.array.ctime;
570 level = map_num(pers, info.array.level);
571 if (!level) level = "-unknown-";
572 cont_err("level=%s devices=%d ctime=%s",
573 level, info.array.raid_disks, ctime(&crtime));
574 return 1;
575 }
576
577 int ask(char *mesg)
578 {
579 char *add = "";
580 int i;
581 for (i = 0; i < 5; i++) {
582 char buf[100];
583 fprintf(stderr, "%s%s", mesg, add);
584 fflush(stderr);
585 if (fgets(buf, 100, stdin)==NULL)
586 return 0;
587 if (buf[0]=='y' || buf[0]=='Y')
588 return 1;
589 if (buf[0]=='n' || buf[0]=='N')
590 return 0;
591 add = "(y/n) ";
592 }
593 pr_err("assuming 'no'\n");
594 return 0;
595 }
596 #endif /* MDASSEMBLE */
597
598 int is_standard(char *dev, int *nump)
599 {
600 /* tests if dev is a "standard" md dev name.
601 * i.e if the last component is "/dNN" or "/mdNN",
602 * where NN is a string of digits
603 * Returns 1 if a partitionable standard,
604 * -1 if non-partitonable,
605 * 0 if not a standard name.
606 */
607 char *d = strrchr(dev, '/');
608 int type = 0;
609 int num;
610 if (!d)
611 return 0;
612 if (strncmp(d, "/d",2) == 0)
613 d += 2, type = 1; /* /dev/md/dN{pM} */
614 else if (strncmp(d, "/md_d", 5) == 0)
615 d += 5, type = 1; /* /dev/md_dN{pM} */
616 else if (strncmp(d, "/md", 3) == 0)
617 d += 3, type = -1; /* /dev/mdN */
618 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
619 d += 1, type = -1; /* /dev/md/N */
620 else
621 return 0;
622 if (!*d)
623 return 0;
624 num = atoi(d);
625 while (isdigit(*d))
626 d++;
627 if (*d)
628 return 0;
629 if (nump) *nump = num;
630
631 return type;
632 }
633
634 unsigned long calc_csum(void *super, int bytes)
635 {
636 unsigned long long newcsum = 0;
637 int i;
638 unsigned int csum;
639 unsigned int *superc = (unsigned int*) super;
640
641 for(i = 0; i < bytes/4; i++)
642 newcsum += superc[i];
643 csum = (newcsum& 0xffffffff) + (newcsum>>32);
644 #ifdef __alpha__
645 /* The in-kernel checksum calculation is always 16bit on
646 * the alpha, though it is 32 bit on i386...
647 * I wonder what it is elsewhere... (it uses an API in
648 * a way that it shouldn't).
649 */
650 csum = (csum & 0xffff) + (csum >> 16);
651 csum = (csum & 0xffff) + (csum >> 16);
652 #endif
653 return csum;
654 }
655
656 #ifndef MDASSEMBLE
657 char *human_size(long long bytes)
658 {
659 static char buf[30];
660
661 /* We convert bytes to either centi-M{ega,ibi}bytes or
662 * centi-G{igi,ibi}bytes, with appropriate rounding,
663 * and then print 1/100th of those as a decimal.
664 * We allow upto 2048Megabytes before converting to
665 * gigabytes, as that shows more precision and isn't
666 * too large a number.
667 * Terabytes are not yet handled.
668 */
669
670 if (bytes < 5000*1024)
671 buf[0] = 0;
672 else if (bytes < 2*1024LL*1024LL*1024LL) {
673 long cMiB = (bytes / ( (1LL<<20) / 200LL ) +1) /2;
674 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
675 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
676 cMiB/100 , cMiB % 100,
677 cMB/100, cMB % 100);
678 } else {
679 long cGiB = (bytes / ( (1LL<<30) / 200LL ) +1) /2;
680 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
681 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
682 cGiB/100 , cGiB % 100,
683 cGB/100, cGB % 100);
684 }
685 return buf;
686 }
687
688 char *human_size_brief(long long bytes, int prefix)
689 {
690 static char buf[30];
691
692 /* We convert bytes to either centi-M{ega,ibi}bytes or
693 * centi-G{igi,ibi}bytes, with appropriate rounding,
694 * and then print 1/100th of those as a decimal.
695 * We allow upto 2048Megabytes before converting to
696 * gigabytes, as that shows more precision and isn't
697 * too large a number.
698 * Terabytes are not yet handled.
699 *
700 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
701 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
702 */
703
704 if (bytes < 5000*1024)
705 buf[0] = 0;
706 else if (prefix == IEC) {
707 if (bytes < 2*1024LL*1024LL*1024LL) {
708 long cMiB = (bytes / ( (1LL<<20) / 200LL ) +1) /2;
709 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
710 cMiB/100 , cMiB % 100);
711 } else {
712 long cGiB = (bytes / ( (1LL<<30) / 200LL ) +1) /2;
713 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
714 cGiB/100 , cGiB % 100);
715 }
716 }
717 else if (prefix == JEDEC) {
718 if (bytes < 2*1024LL*1024LL*1024LL) {
719 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
720 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
721 cMB/100, cMB % 100);
722 } else {
723 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
724 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
725 cGB/100 , cGB % 100);
726 }
727 }
728 else
729 buf[0] = 0;
730
731 return buf;
732 }
733
734 void print_r10_layout(int layout)
735 {
736 int near = layout & 255;
737 int far = (layout >> 8) & 255;
738 int offset = (layout&0x10000);
739 char *sep = "";
740
741 if (near != 1) {
742 printf("%s near=%d", sep, near);
743 sep = ",";
744 }
745 if (far != 1)
746 printf("%s %s=%d", sep, offset?"offset":"far", far);
747 if (near*far == 1)
748 printf("NO REDUNDANCY");
749 }
750 #endif
751
752 unsigned long long calc_array_size(int level, int raid_disks, int layout,
753 int chunksize, unsigned long long devsize)
754 {
755 if (level == 1)
756 return devsize;
757 devsize &= ~(unsigned long long)((chunksize>>9)-1);
758 return get_data_disks(level, layout, raid_disks) * devsize;
759 }
760
761 int get_data_disks(int level, int layout, int raid_disks)
762 {
763 int data_disks = 0;
764 switch (level) {
765 case 0: data_disks = raid_disks;
766 break;
767 case 1: data_disks = 1;
768 break;
769 case 4:
770 case 5: data_disks = raid_disks - 1;
771 break;
772 case 6: data_disks = raid_disks - 2;
773 break;
774 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
775 break;
776 }
777
778 return data_disks;
779 }
780
781 int devnm2devid(char *devnm)
782 {
783 /* First look in /sys/block/$DEVNM/dev for %d:%d
784 * If that fails, try parsing out a number
785 */
786 char path[100];
787 char *ep;
788 int fd;
789 int mjr,mnr;
790
791 sprintf(path, "/sys/block/%s/dev", devnm);
792 fd = open(path, O_RDONLY);
793 if (fd >= 0) {
794 char buf[20];
795 int n = read(fd, buf, sizeof(buf));
796 close(fd);
797 if (n > 0)
798 buf[n] = 0;
799 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
800 return makedev(mjr, mnr);
801 }
802 if (strncmp(devnm, "md_d", 4) == 0 &&
803 isdigit(devnm[4]) &&
804 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
805 ep > devnm && *ep == 0)
806 return makedev(get_mdp_major(), mnr << MdpMinorShift);
807
808 if (strncmp(devnm, "md", 2) == 0 &&
809 isdigit(devnm[2]) &&
810 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
811 ep > devnm && *ep == 0)
812 return makedev(MD_MAJOR, mnr);
813
814 return 0;
815 }
816
817 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
818 char *get_md_name(char *devnm)
819 {
820 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
821 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
822
823 static char devname[50];
824 struct stat stb;
825 dev_t rdev = devnm2devid(devnm);
826 char *dn;
827
828 if (rdev == 0)
829 return 0;
830 if (strncmp(devnm, "md_", 3) == 0) {
831 snprintf(devname, sizeof(devname), "/dev/md/%s",
832 devnm + 3);
833 if (stat(devname, &stb) == 0
834 && (S_IFMT&stb.st_mode) == S_IFBLK
835 && (stb.st_rdev == rdev))
836 return devname;
837 }
838 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
839 if (stat(devname, &stb) == 0
840 && (S_IFMT&stb.st_mode) == S_IFBLK
841 && (stb.st_rdev == rdev))
842 return devname;
843
844 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
845 if (stat(devname, &stb) == 0
846 && (S_IFMT&stb.st_mode) == S_IFBLK
847 && (stb.st_rdev == rdev))
848 return devname;
849
850 dn = map_dev(major(rdev), minor(rdev), 0);
851 if (dn)
852 return dn;
853 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
854 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
855 if (errno != EEXIST)
856 return NULL;
857
858 if (stat(devname, &stb) == 0
859 && (S_IFMT&stb.st_mode) == S_IFBLK
860 && (stb.st_rdev == rdev))
861 return devname;
862 unlink(devname);
863 return NULL;
864 }
865
866 void put_md_name(char *name)
867 {
868 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
869 unlink(name);
870 }
871 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
872
873 int dev_open(char *dev, int flags)
874 {
875 /* like 'open', but if 'dev' matches %d:%d, create a temp
876 * block device and open that
877 */
878 char *e;
879 int fd = -1;
880 char devname[32];
881 int major;
882 int minor;
883
884 if (!dev) return -1;
885 flags |= O_DIRECT;
886
887 major = strtoul(dev, &e, 0);
888 if (e > dev && *e == ':' && e[1] &&
889 (minor = strtoul(e+1, &e, 0)) >= 0 &&
890 *e == 0) {
891 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
892 (int)getpid(), major, minor);
893 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
894 fd = open(devname, flags);
895 unlink(devname);
896 }
897 if (fd < 0) {
898 /* Try /tmp as /dev appear to be read-only */
899 snprintf(devname, sizeof(devname), "/tmp/.tmp.md.%d:%d:%d",
900 (int)getpid(), major, minor);
901 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
902 fd = open(devname, flags);
903 unlink(devname);
904 }
905 }
906 } else
907 fd = open(dev, flags);
908 return fd;
909 }
910
911 int open_dev_flags(char *devnm, int flags)
912 {
913 int devid;
914 char buf[20];
915
916 devid = devnm2devid(devnm);
917 sprintf(buf, "%d:%d", major(devid), minor(devid));
918 return dev_open(buf, flags);
919 }
920
921 int open_dev(char *devnm)
922 {
923 return open_dev_flags(devnm, O_RDONLY);
924 }
925
926 int open_dev_excl(char *devnm)
927 {
928 char buf[20];
929 int i;
930 int flags = O_RDWR;
931 int devid = devnm2devid(devnm);
932 long delay = 1000;
933
934 sprintf(buf, "%d:%d", major(devid), minor(devid));
935 for (i = 0 ; i < 25 ; i++) {
936 int fd = dev_open(buf, flags|O_EXCL);
937 if (fd >= 0)
938 return fd;
939 if (errno == EACCES && flags == O_RDWR) {
940 flags = O_RDONLY;
941 continue;
942 }
943 if (errno != EBUSY)
944 return fd;
945 usleep(delay);
946 if (delay < 200000)
947 delay *= 2;
948 }
949 return -1;
950 }
951
952 int same_dev(char *one, char *two)
953 {
954 struct stat st1, st2;
955 if (stat(one, &st1) != 0)
956 return 0;
957 if (stat(two, &st2) != 0)
958 return 0;
959 if ((st1.st_mode & S_IFMT) != S_IFBLK)
960 return 0;
961 if ((st2.st_mode & S_IFMT) != S_IFBLK)
962 return 0;
963 return st1.st_rdev == st2.st_rdev;
964 }
965
966 void wait_for(char *dev, int fd)
967 {
968 int i;
969 struct stat stb_want;
970 long delay = 1000;
971
972 if (fstat(fd, &stb_want) != 0 ||
973 (stb_want.st_mode & S_IFMT) != S_IFBLK)
974 return;
975
976 for (i = 0 ; i < 25 ; i++) {
977 struct stat stb;
978 if (stat(dev, &stb) == 0 &&
979 (stb.st_mode & S_IFMT) == S_IFBLK &&
980 (stb.st_rdev == stb_want.st_rdev))
981 return;
982 usleep(delay);
983 if (delay < 200000)
984 delay *= 2;
985 }
986 if (i == 25)
987 dprintf("%s: timeout waiting for %s\n", __func__, dev);
988 }
989
990 struct superswitch *superlist[] =
991 {
992 &super0, &super1,
993 &super_ddf, &super_imsm,
994 &mbr, &gpt,
995 NULL };
996
997 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
998
999 struct supertype *super_by_fd(int fd, char **subarrayp)
1000 {
1001 mdu_array_info_t array;
1002 int vers;
1003 int minor;
1004 struct supertype *st = NULL;
1005 struct mdinfo *sra;
1006 char *verstr;
1007 char version[20];
1008 int i;
1009 char *subarray = NULL;
1010 char container[32] = "";
1011
1012 sra = sysfs_read(fd, NULL, GET_VERSION);
1013
1014 if (sra) {
1015 vers = sra->array.major_version;
1016 minor = sra->array.minor_version;
1017 verstr = sra->text_version;
1018 } else {
1019 if (ioctl(fd, GET_ARRAY_INFO, &array))
1020 array.major_version = array.minor_version = 0;
1021 vers = array.major_version;
1022 minor = array.minor_version;
1023 verstr = "";
1024 }
1025
1026 if (vers != -1) {
1027 sprintf(version, "%d.%d", vers, minor);
1028 verstr = version;
1029 }
1030 if (minor == -2 && is_subarray(verstr)) {
1031 char *dev = verstr+1;
1032
1033 subarray = strchr(dev, '/');
1034 if (subarray) {
1035 *subarray++ = '\0';
1036 subarray = xstrdup(subarray);
1037 }
1038 strcpy(container, dev);
1039 if (sra)
1040 sysfs_free(sra);
1041 sra = sysfs_read(-1, container, GET_VERSION);
1042 if (sra && sra->text_version[0])
1043 verstr = sra->text_version;
1044 else
1045 verstr = "-no-metadata-";
1046 }
1047
1048 for (i = 0; st == NULL && superlist[i] ; i++)
1049 st = superlist[i]->match_metadata_desc(verstr);
1050
1051 if (sra)
1052 sysfs_free(sra);
1053 if (st) {
1054 st->sb = NULL;
1055 if (subarrayp)
1056 *subarrayp = subarray;
1057 strcpy(st->container_devnm, container);
1058 strcpy(st->devnm, fd2devnm(fd));
1059 } else
1060 free(subarray);
1061
1062 return st;
1063 }
1064 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
1065
1066 int dev_size_from_id(dev_t id, unsigned long long *size)
1067 {
1068 char buf[20];
1069 int fd;
1070
1071 sprintf(buf, "%d:%d", major(id), minor(id));
1072 fd = dev_open(buf, O_RDONLY);
1073 if (fd < 0)
1074 return 0;
1075 if (get_dev_size(fd, NULL, size)) {
1076 close(fd);
1077 return 1;
1078 }
1079 close(fd);
1080 return 0;
1081 }
1082
1083 struct supertype *dup_super(struct supertype *orig)
1084 {
1085 struct supertype *st;
1086
1087 if (!orig)
1088 return orig;
1089 st = xcalloc(1, sizeof(*st));
1090 st->ss = orig->ss;
1091 st->max_devs = orig->max_devs;
1092 st->minor_version = orig->minor_version;
1093 st->ignore_hw_compat = orig->ignore_hw_compat;
1094 st->sb = NULL;
1095 st->info = NULL;
1096 return st;
1097 }
1098
1099 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1100 {
1101 /* try each load_super to find the best match,
1102 * and return the best superswitch
1103 */
1104 struct superswitch *ss;
1105 struct supertype *st;
1106 time_t besttime = 0;
1107 int bestsuper = -1;
1108 int i;
1109
1110 st = xcalloc(1, sizeof(*st));
1111 st->container_devnm[0] = 0;
1112
1113 for (i = 0 ; superlist[i]; i++) {
1114 int rv;
1115 ss = superlist[i];
1116 if (guess_type == guess_array && ss->add_to_super == NULL)
1117 continue;
1118 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1119 continue;
1120 memset(st, 0, sizeof(*st));
1121 st->ignore_hw_compat = 1;
1122 rv = ss->load_super(st, fd, NULL);
1123 if (rv == 0) {
1124 struct mdinfo info;
1125 st->ss->getinfo_super(st, &info, NULL);
1126 if (bestsuper == -1 ||
1127 besttime < info.array.ctime) {
1128 bestsuper = i;
1129 besttime = info.array.ctime;
1130 }
1131 ss->free_super(st);
1132 }
1133 }
1134 if (bestsuper != -1) {
1135 int rv;
1136 memset(st, 0, sizeof(*st));
1137 st->ignore_hw_compat = 1;
1138 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1139 if (rv == 0) {
1140 superlist[bestsuper]->free_super(st);
1141 return st;
1142 }
1143 }
1144 free(st);
1145 return NULL;
1146 }
1147
1148 /* Return size of device in bytes */
1149 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1150 {
1151 unsigned long long ldsize;
1152 struct stat st;
1153
1154 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1155 ldsize = (unsigned long long)st.st_size;
1156 else
1157 #ifdef BLKGETSIZE64
1158 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1159 #endif
1160 {
1161 unsigned long dsize;
1162 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1163 ldsize = dsize;
1164 ldsize <<= 9;
1165 } else {
1166 if (dname)
1167 pr_err("Cannot get size of %s: %s\b",
1168 dname, strerror(errno));
1169 return 0;
1170 }
1171 }
1172 *sizep = ldsize;
1173 return 1;
1174 }
1175
1176 /* Return true if this can only be a container, not a member device.
1177 * i.e. is and md device and size is zero
1178 */
1179 int must_be_container(int fd)
1180 {
1181 unsigned long long size;
1182 if (md_get_version(fd) < 0)
1183 return 0;
1184 if (get_dev_size(fd, NULL, &size) == 0)
1185 return 1;
1186 if (size == 0)
1187 return 1;
1188 return 0;
1189 }
1190
1191 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1192 * Returns: 1 if successful
1193 * -1 for unknown partition type
1194 * 0 for other errors
1195 */
1196 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1197 {
1198 struct GPT gpt;
1199 unsigned char empty_gpt_entry[16]= {0};
1200 struct GPT_part_entry *part;
1201 char buf[512];
1202 unsigned long long curr_part_end;
1203 unsigned all_partitions, entry_size;
1204 unsigned part_nr;
1205
1206 *endofpart = 0;
1207
1208 BUILD_BUG_ON(sizeof(gpt) != 512);
1209 /* skip protective MBR */
1210 lseek(fd, 512, SEEK_SET);
1211 /* read GPT header */
1212 if (read(fd, &gpt, 512) != 512)
1213 return 0;
1214
1215 /* get the number of partition entries and the entry size */
1216 all_partitions = __le32_to_cpu(gpt.part_cnt);
1217 entry_size = __le32_to_cpu(gpt.part_size);
1218
1219 /* Check GPT signature*/
1220 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1221 return -1;
1222
1223 /* sanity checks */
1224 if (all_partitions > 1024 ||
1225 entry_size > sizeof(buf))
1226 return -1;
1227
1228 part = (struct GPT_part_entry *)buf;
1229
1230 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1231 /* read partition entry */
1232 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1233 return 0;
1234
1235 /* is this valid partition? */
1236 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1237 /* check the last lba for the current partition */
1238 curr_part_end = __le64_to_cpu(part->ending_lba);
1239 if (curr_part_end > *endofpart)
1240 *endofpart = curr_part_end;
1241 }
1242
1243 }
1244 return 1;
1245 }
1246
1247 /* Sets endofpart parameter to the last block used by the last partition on the device.
1248 * Returns: 1 if successful
1249 * -1 for unknown partition type
1250 * 0 for other errors
1251 */
1252 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1253 {
1254 struct MBR boot_sect;
1255 struct MBR_part_record *part;
1256 unsigned long long curr_part_end;
1257 unsigned part_nr;
1258 int retval = 0;
1259
1260 *endofpart = 0;
1261
1262 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1263 /* read MBR */
1264 lseek(fd, 0, 0);
1265 if (read(fd, &boot_sect, 512) != 512)
1266 goto abort;
1267
1268 /* check MBP signature */
1269 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1270 retval = 1;
1271 /* found the correct signature */
1272 part = boot_sect.parts;
1273
1274 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1275 /* check for GPT type */
1276 if (part->part_type == MBR_GPT_PARTITION_TYPE) {
1277 retval = get_gpt_last_partition_end(fd, endofpart);
1278 break;
1279 }
1280 /* check the last used lba for the current partition */
1281 curr_part_end = __le32_to_cpu(part->first_sect_lba) +
1282 __le32_to_cpu(part->blocks_num);
1283 if (curr_part_end > *endofpart)
1284 *endofpart = curr_part_end;
1285
1286 part++;
1287 }
1288 } else {
1289 /* Unknown partition table */
1290 retval = -1;
1291 }
1292 abort:
1293 return retval;
1294 }
1295
1296 int check_partitions(int fd, char *dname, unsigned long long freesize,
1297 unsigned long long size)
1298 {
1299 /*
1300 * Check where the last partition ends
1301 */
1302 unsigned long long endofpart;
1303 int ret;
1304
1305 if ((ret = get_last_partition_end(fd, &endofpart)) > 0) {
1306 /* There appears to be a partition table here */
1307 if (freesize == 0) {
1308 /* partitions will not be visible in new device */
1309 pr_err("partition table exists on %s but will be lost or\n"
1310 " meaningless after creating array\n",
1311 dname);
1312 return 1;
1313 } else if (endofpart > freesize) {
1314 /* last partition overlaps metadata */
1315 pr_err("metadata will over-write last partition on %s.\n",
1316 dname);
1317 return 1;
1318 } else if (size && endofpart > size) {
1319 /* partitions will be truncated in new device */
1320 pr_err("array size is too small to cover all partitions on %s.\n",
1321 dname);
1322 return 1;
1323 }
1324 }
1325 return 0;
1326 }
1327
1328 int open_container(int fd)
1329 {
1330 /* 'fd' is a block device. Find out if it is in use
1331 * by a container, and return an open fd on that container.
1332 */
1333 char path[256];
1334 char *e;
1335 DIR *dir;
1336 struct dirent *de;
1337 int dfd, n;
1338 char buf[200];
1339 int major, minor;
1340 struct stat st;
1341
1342 if (fstat(fd, &st) != 0)
1343 return -1;
1344 sprintf(path, "/sys/dev/block/%d:%d/holders",
1345 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1346 e = path + strlen(path);
1347
1348 dir = opendir(path);
1349 if (!dir)
1350 return -1;
1351 while ((de = readdir(dir))) {
1352 if (de->d_ino == 0)
1353 continue;
1354 if (de->d_name[0] == '.')
1355 continue;
1356 /* Need to make sure it is a container and not a volume */
1357 sprintf(e, "/%s/md/metadata_version", de->d_name);
1358 dfd = open(path, O_RDONLY);
1359 if (dfd < 0)
1360 continue;
1361 n = read(dfd, buf, sizeof(buf));
1362 close(dfd);
1363 if (n <= 0 || (unsigned)n >= sizeof(buf))
1364 continue;
1365 buf[n] = 0;
1366 if (strncmp(buf, "external", 8) != 0 ||
1367 n < 10 ||
1368 buf[9] == '/')
1369 continue;
1370 sprintf(e, "/%s/dev", de->d_name);
1371 dfd = open(path, O_RDONLY);
1372 if (dfd < 0)
1373 continue;
1374 n = read(dfd, buf, sizeof(buf));
1375 close(dfd);
1376 if (n <= 0 || (unsigned)n >= sizeof(buf))
1377 continue;
1378 buf[n] = 0;
1379 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1380 continue;
1381 sprintf(buf, "%d:%d", major, minor);
1382 dfd = dev_open(buf, O_RDONLY);
1383 if (dfd >= 0) {
1384 closedir(dir);
1385 return dfd;
1386 }
1387 }
1388 closedir(dir);
1389 return -1;
1390 }
1391
1392 struct superswitch *version_to_superswitch(char *vers)
1393 {
1394 int i;
1395
1396 for (i = 0; superlist[i]; i++) {
1397 struct superswitch *ss = superlist[i];
1398
1399 if (strcmp(vers, ss->name) == 0)
1400 return ss;
1401 }
1402
1403 return NULL;
1404 }
1405
1406 int metadata_container_matches(char *metadata, char *devnm)
1407 {
1408 /* Check if 'devnm' is the container named in 'metadata'
1409 * which is
1410 * /containername/componentname or
1411 * -containername/componentname
1412 */
1413 int l;
1414 if (*metadata != '/' && *metadata != '-')
1415 return 0;
1416 l = strlen(devnm);
1417 if (strncmp(metadata+1, devnm, l) != 0)
1418 return 0;
1419 if (metadata[l+1] != '/')
1420 return 0;
1421 return 1;
1422 }
1423
1424 int metadata_subdev_matches(char *metadata, char *devnm)
1425 {
1426 /* Check if 'devnm' is the subdev named in 'metadata'
1427 * which is
1428 * /containername/subdev or
1429 * -containername/subdev
1430 */
1431 char *sl;
1432 if (*metadata != '/' && *metadata != '-')
1433 return 0;
1434 sl = strchr(metadata+1, '/');
1435 if (!sl)
1436 return 0;
1437 if (strcmp(sl+1, devnm) == 0)
1438 return 1;
1439 return 0;
1440 }
1441
1442 int is_container_member(struct mdstat_ent *mdstat, char *container)
1443 {
1444 if (mdstat->metadata_version == NULL ||
1445 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1446 !metadata_container_matches(mdstat->metadata_version+9, container))
1447 return 0;
1448
1449 return 1;
1450 }
1451
1452 int is_subarray_active(char *subarray, char *container)
1453 {
1454 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1455 struct mdstat_ent *ent;
1456
1457 for (ent = mdstat; ent; ent = ent->next)
1458 if (is_container_member(ent, container))
1459 if (strcmp(to_subarray(ent, container), subarray) == 0)
1460 break;
1461
1462 free_mdstat(mdstat);
1463
1464 return ent != NULL;
1465 }
1466
1467 /* open_subarray - opens a subarray in a container
1468 * @dev: container device name
1469 * @st: empty supertype
1470 * @quiet: block reporting errors flag
1471 *
1472 * On success returns an fd to a container and fills in *st
1473 */
1474 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1475 {
1476 struct mdinfo *mdi;
1477 struct mdinfo *info;
1478 int fd, err = 1;
1479 char *_devnm;
1480
1481 fd = open(dev, O_RDWR|O_EXCL);
1482 if (fd < 0) {
1483 if (!quiet)
1484 pr_err("Couldn't open %s, aborting\n",
1485 dev);
1486 return -1;
1487 }
1488
1489 _devnm = fd2devnm(fd);
1490 if (_devnm == NULL) {
1491 if (!quiet)
1492 pr_err("Failed to determine device number for %s\n",
1493 dev);
1494 goto close_fd;
1495 }
1496 strcpy(st->devnm, _devnm);
1497
1498 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1499 if (!mdi) {
1500 if (!quiet)
1501 pr_err("Failed to read sysfs for %s\n",
1502 dev);
1503 goto close_fd;
1504 }
1505
1506 if (mdi->array.level != UnSet) {
1507 if (!quiet)
1508 pr_err("%s is not a container\n", dev);
1509 goto free_sysfs;
1510 }
1511
1512 st->ss = version_to_superswitch(mdi->text_version);
1513 if (!st->ss) {
1514 if (!quiet)
1515 pr_err("Operation not supported for %s metadata\n",
1516 mdi->text_version);
1517 goto free_sysfs;
1518 }
1519
1520 if (st->devnm[0] == 0) {
1521 if (!quiet)
1522 pr_err("Failed to allocate device name\n");
1523 goto free_sysfs;
1524 }
1525
1526 if (!st->ss->load_container) {
1527 if (!quiet)
1528 pr_err("%s is not a container\n", dev);
1529 goto free_sysfs;
1530 }
1531
1532 if (st->ss->load_container(st, fd, NULL)) {
1533 if (!quiet)
1534 pr_err("Failed to load metadata for %s\n",
1535 dev);
1536 goto free_sysfs;
1537 }
1538
1539 info = st->ss->container_content(st, subarray);
1540 if (!info) {
1541 if (!quiet)
1542 pr_err("Failed to find subarray-%s in %s\n",
1543 subarray, dev);
1544 goto free_super;
1545 }
1546 free(info);
1547
1548 err = 0;
1549
1550 free_super:
1551 if (err)
1552 st->ss->free_super(st);
1553 free_sysfs:
1554 sysfs_free(mdi);
1555 close_fd:
1556 if (err)
1557 close(fd);
1558
1559 if (err)
1560 return -1;
1561 else
1562 return fd;
1563 }
1564
1565 int add_disk(int mdfd, struct supertype *st,
1566 struct mdinfo *sra, struct mdinfo *info)
1567 {
1568 /* Add a device to an array, in one of 2 ways. */
1569 int rv;
1570 #ifndef MDASSEMBLE
1571 if (st->ss->external) {
1572 if (info->disk.state & (1<<MD_DISK_SYNC))
1573 info->recovery_start = MaxSector;
1574 else
1575 info->recovery_start = 0;
1576 rv = sysfs_add_disk(sra, info, 0);
1577 if (! rv) {
1578 struct mdinfo *sd2;
1579 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1580 if (sd2 == info)
1581 break;
1582 if (sd2 == NULL) {
1583 sd2 = xmalloc(sizeof(*sd2));
1584 *sd2 = *info;
1585 sd2->next = sra->devs;
1586 sra->devs = sd2;
1587 }
1588 }
1589 } else
1590 #endif
1591 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1592 return rv;
1593 }
1594
1595 int remove_disk(int mdfd, struct supertype *st,
1596 struct mdinfo *sra, struct mdinfo *info)
1597 {
1598 int rv;
1599 /* Remove the disk given by 'info' from the array */
1600 #ifndef MDASSEMBLE
1601 if (st->ss->external)
1602 rv = sysfs_set_str(sra, info, "slot", "none");
1603 else
1604 #endif
1605 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1606 info->disk.minor));
1607 return rv;
1608 }
1609
1610 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1611 {
1612 /* Initialise kernel's knowledge of array.
1613 * This varies between externally managed arrays
1614 * and older kernels
1615 */
1616 int vers = md_get_version(mdfd);
1617 int rv;
1618
1619 #ifndef MDASSEMBLE
1620 if (st->ss->external)
1621 rv = sysfs_set_array(info, vers);
1622 else
1623 #endif
1624 if ((vers % 100) >= 1) { /* can use different versions */
1625 mdu_array_info_t inf;
1626 memset(&inf, 0, sizeof(inf));
1627 inf.major_version = info->array.major_version;
1628 inf.minor_version = info->array.minor_version;
1629 rv = ioctl(mdfd, SET_ARRAY_INFO, &inf);
1630 } else
1631 rv = ioctl(mdfd, SET_ARRAY_INFO, NULL);
1632 return rv;
1633 }
1634
1635 unsigned long long min_recovery_start(struct mdinfo *array)
1636 {
1637 /* find the minimum recovery_start in an array for metadata
1638 * formats that only record per-array recovery progress instead
1639 * of per-device
1640 */
1641 unsigned long long recovery_start = MaxSector;
1642 struct mdinfo *d;
1643
1644 for (d = array->devs; d; d = d->next)
1645 recovery_start = min(recovery_start, d->recovery_start);
1646
1647 return recovery_start;
1648 }
1649
1650 int mdmon_pid(char *devnm)
1651 {
1652 char path[100];
1653 char pid[10];
1654 int fd;
1655 int n;
1656
1657 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1658
1659 fd = open(path, O_RDONLY | O_NOATIME, 0);
1660
1661 if (fd < 0)
1662 return -1;
1663 n = read(fd, pid, 9);
1664 close(fd);
1665 if (n <= 0)
1666 return -1;
1667 return atoi(pid);
1668 }
1669
1670 int mdmon_running(char *devnm)
1671 {
1672 int pid = mdmon_pid(devnm);
1673 if (pid <= 0)
1674 return 0;
1675 if (kill(pid, 0) == 0)
1676 return 1;
1677 return 0;
1678 }
1679
1680 int start_mdmon(char *devnm)
1681 {
1682 int i, skipped;
1683 int len;
1684 pid_t pid;
1685 int status;
1686 char pathbuf[1024];
1687 char *paths[4] = {
1688 pathbuf,
1689 "/sbin/mdmon",
1690 "mdmon",
1691 NULL
1692 };
1693
1694 if (check_env("MDADM_NO_MDMON"))
1695 return 0;
1696
1697 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1698 if (len > 0) {
1699 char *sl;
1700 pathbuf[len] = 0;
1701 sl = strrchr(pathbuf, '/');
1702 if (sl)
1703 sl++;
1704 else
1705 sl = pathbuf;
1706 strcpy(sl, "mdmon");
1707 } else
1708 pathbuf[0] = '\0';
1709
1710 /* First try to run systemctl */
1711 switch(fork()) {
1712 case 0:
1713 /* FIXME yuk. CLOSE_EXEC?? */
1714 skipped = 0;
1715 for (i = 3; skipped < 20; i++)
1716 if (close(i) < 0)
1717 skipped++;
1718 else
1719 skipped = 0;
1720
1721 /* Don't want to see error messages from systemctl.
1722 * If the service doesn't exist, we start mdmon ourselves.
1723 */
1724 close(2);
1725 open("/dev/null", O_WRONLY);
1726 snprintf(pathbuf, sizeof(pathbuf), "mdmon@%s.service",
1727 devnm);
1728 status = execl("/usr/bin/systemctl", "systemctl", "start",
1729 pathbuf, NULL);
1730 status = execl("/bin/systemctl", "systemctl", "start",
1731 pathbuf, NULL);
1732 exit(1);
1733 case -1: pr_err("cannot run mdmon. "
1734 "Array remains readonly\n");
1735 return -1;
1736 default: /* parent - good */
1737 pid = wait(&status);
1738 if (pid >= 0 && status == 0)
1739 return 0;
1740 }
1741
1742 /* That failed, try running mdmon directly */
1743 switch(fork()) {
1744 case 0:
1745 /* FIXME yuk. CLOSE_EXEC?? */
1746 skipped = 0;
1747 for (i = 3; skipped < 20; i++)
1748 if (close(i) < 0)
1749 skipped++;
1750 else
1751 skipped = 0;
1752
1753 for (i = 0; paths[i]; i++)
1754 if (paths[i][0]) {
1755 execl(paths[i], "mdmon",
1756 devnm, NULL);
1757 }
1758 exit(1);
1759 case -1: pr_err("cannot run mdmon. "
1760 "Array remains readonly\n");
1761 return -1;
1762 default: /* parent - good */
1763 pid = wait(&status);
1764 if (pid < 0 || status != 0) {
1765 pr_err("failed to launch mdmon. "
1766 "Array remains readonly\n");
1767 return -1;
1768 }
1769 }
1770 return 0;
1771 }
1772
1773 __u32 random32(void)
1774 {
1775 __u32 rv;
1776 int rfd = open("/dev/urandom", O_RDONLY);
1777 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1778 rv = random();
1779 if (rfd >= 0)
1780 close(rfd);
1781 return rv;
1782 }
1783
1784 #ifndef MDASSEMBLE
1785 int flush_metadata_updates(struct supertype *st)
1786 {
1787 int sfd;
1788 if (!st->updates) {
1789 st->update_tail = NULL;
1790 return -1;
1791 }
1792
1793 sfd = connect_monitor(st->container_devnm);
1794 if (sfd < 0)
1795 return -1;
1796
1797 while (st->updates) {
1798 struct metadata_update *mu = st->updates;
1799 st->updates = mu->next;
1800
1801 send_message(sfd, mu, 0);
1802 wait_reply(sfd, 0);
1803 free(mu->buf);
1804 free(mu);
1805 }
1806 ack(sfd, 0);
1807 wait_reply(sfd, 0);
1808 close(sfd);
1809 st->update_tail = NULL;
1810 return 0;
1811 }
1812
1813 void append_metadata_update(struct supertype *st, void *buf, int len)
1814 {
1815
1816 struct metadata_update *mu = xmalloc(sizeof(*mu));
1817
1818 mu->buf = buf;
1819 mu->len = len;
1820 mu->space = NULL;
1821 mu->space_list = NULL;
1822 mu->next = NULL;
1823 *st->update_tail = mu;
1824 st->update_tail = &mu->next;
1825 }
1826 #endif /* MDASSEMBLE */
1827
1828 #ifdef __TINYC__
1829 /* tinyc doesn't optimize this check in ioctl.h out ... */
1830 unsigned int __invalid_size_argument_for_IOC = 0;
1831 #endif
1832
1833 int experimental(void)
1834 {
1835 if (check_env("MDADM_EXPERIMENTAL"))
1836 return 1;
1837 else {
1838 pr_err("To use this feature MDADM_EXPERIMENTAL"
1839 " environment variable has to be defined.\n");
1840 return 0;
1841 }
1842 }
1843
1844 /* Pick all spares matching given criteria from a container
1845 * if min_size == 0 do not check size
1846 * if domlist == NULL do not check domains
1847 * if spare_group given add it to domains of each spare
1848 * metadata allows to test domains using metadata of destination array */
1849 struct mdinfo *container_choose_spares(struct supertype *st,
1850 unsigned long long min_size,
1851 struct domainlist *domlist,
1852 char *spare_group,
1853 const char *metadata, int get_one)
1854 {
1855 struct mdinfo *d, **dp, *disks = NULL;
1856
1857 /* get list of all disks in container */
1858 if (st->ss->getinfo_super_disks)
1859 disks = st->ss->getinfo_super_disks(st);
1860
1861 if (!disks)
1862 return disks;
1863 /* find spare devices on the list */
1864 dp = &disks->devs;
1865 disks->array.spare_disks = 0;
1866 while (*dp) {
1867 int found = 0;
1868 d = *dp;
1869 if (d->disk.state == 0) {
1870 /* check if size is acceptable */
1871 unsigned long long dev_size;
1872 dev_t dev = makedev(d->disk.major,d->disk.minor);
1873
1874 if (!min_size ||
1875 (dev_size_from_id(dev, &dev_size) &&
1876 dev_size >= min_size))
1877 found = 1;
1878 /* check if domain matches */
1879 if (found && domlist) {
1880 struct dev_policy *pol = devid_policy(dev);
1881 if (spare_group)
1882 pol_add(&pol, pol_domain,
1883 spare_group, NULL);
1884 if (domain_test(domlist, pol, metadata) != 1)
1885 found = 0;
1886 dev_policy_free(pol);
1887 }
1888 }
1889 if (found) {
1890 dp = &d->next;
1891 disks->array.spare_disks++;
1892 if (get_one) {
1893 sysfs_free(*dp);
1894 d->next = NULL;
1895 }
1896 } else {
1897 *dp = d->next;
1898 d->next = NULL;
1899 sysfs_free(d);
1900 }
1901 }
1902 return disks;
1903 }
1904
1905 /* Checks if paths point to the same device
1906 * Returns 0 if they do.
1907 * Returns 1 if they don't.
1908 * Returns -1 if something went wrong,
1909 * e.g. paths are empty or the files
1910 * they point to don't exist */
1911 int compare_paths (char* path1, char* path2)
1912 {
1913 struct stat st1,st2;
1914
1915 if (path1 == NULL || path2 == NULL)
1916 return -1;
1917 if (stat(path1,&st1) != 0)
1918 return -1;
1919 if (stat(path2,&st2) != 0)
1920 return -1;
1921 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
1922 return 0;
1923 return 1;
1924 }
1925
1926 /* Make sure we can open as many devices as needed */
1927 void enable_fds(int devices)
1928 {
1929 unsigned int fds = 20 + devices;
1930 struct rlimit lim;
1931 if (getrlimit(RLIMIT_NOFILE, &lim) != 0
1932 || lim.rlim_cur >= fds)
1933 return;
1934 if (lim.rlim_max < fds)
1935 lim.rlim_max = fds;
1936 lim.rlim_cur = fds;
1937 setrlimit(RLIMIT_NOFILE, &lim);
1938 }