]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
util: Finally kill off md_get_version()
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <linux/magic.h>
34 #include <poll.h>
35 #include <ctype.h>
36 #include <dirent.h>
37 #include <signal.h>
38 #include <dlfcn.h>
39
40
41 /*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46 #define BLKPG _IO(0x12,105)
47
48 /* The argument structure */
49 struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54 };
55
56 /* The subfunctions (for the op field) */
57 #define BLKPG_ADD_PARTITION 1
58 #define BLKPG_DEL_PARTITION 2
59
60 /* Sizes of name fields. Unused at present. */
61 #define BLKPG_DEVNAMELTH 64
62 #define BLKPG_VOLNAMELTH 64
63
64 /* The data structure for ADD_PARTITION and DEL_PARTITION */
65 struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72 };
73
74 #include "part.h"
75
76 /* Force a compilation error if condition is true */
77 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79 /* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85 static int is_dlm_hooks_ready = 0;
86
87 int dlm_funs_ready(void)
88 {
89 return is_dlm_hooks_ready ? 1 : 0;
90 }
91
92 #ifndef MDASSEMBLE
93 static struct dlm_hooks *dlm_hooks = NULL;
94 struct dlm_lock_resource *dlm_lock_res = NULL;
95 static int ast_called = 0;
96
97 struct dlm_lock_resource {
98 dlm_lshandle_t *ls;
99 struct dlm_lksb lksb;
100 };
101
102 /* Using poll(2) to wait for and dispatch ASTs */
103 static int poll_for_ast(dlm_lshandle_t ls)
104 {
105 struct pollfd pfd;
106
107 pfd.fd = dlm_hooks->ls_get_fd(ls);
108 pfd.events = POLLIN;
109
110 while (!ast_called)
111 {
112 if (poll(&pfd, 1, 0) < 0)
113 {
114 perror("poll");
115 return -1;
116 }
117 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
118 }
119 ast_called = 0;
120
121 return 0;
122 }
123
124 static void dlm_ast(void *arg)
125 {
126 ast_called = 1;
127 }
128
129 static char *cluster_name = NULL;
130 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
131 int cluster_get_dlmlock(int *lockid)
132 {
133 int ret = -1;
134 char str[64];
135 int flags = LKF_NOQUEUE;
136
137 ret = get_cluster_name(&cluster_name);
138 if (ret) {
139 pr_err("The md can't get cluster name\n");
140 return -1;
141 }
142
143 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
144 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
145 if (!dlm_lock_res->ls) {
146 pr_err("%s failed to create lockspace\n", cluster_name);
147 return -ENOMEM;
148 }
149
150 snprintf(str, 64, "bitmap%s", cluster_name);
151 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE, &dlm_lock_res->lksb,
152 flags, str, strlen(str), 0, dlm_ast,
153 dlm_lock_res, NULL, NULL);
154 if (ret) {
155 pr_err("error %d when get PW mode on lock %s\n", errno, str);
156 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
157 return ret;
158 }
159
160 /* Wait for it to complete */
161 poll_for_ast(dlm_lock_res->ls);
162 *lockid = dlm_lock_res->lksb.sb_lkid;
163
164 return dlm_lock_res->lksb.sb_status;
165 }
166
167 int cluster_release_dlmlock(int lockid)
168 {
169 int ret = -1;
170
171 if (!cluster_name)
172 return -1;
173
174 ret = dlm_hooks->ls_unlock(dlm_lock_res->ls, lockid, 0,
175 &dlm_lock_res->lksb, dlm_lock_res);
176 if (ret) {
177 pr_err("error %d happened when unlock\n", errno);
178 /* XXX make sure the lock is unlocked eventually */
179 goto out;
180 }
181
182 /* Wait for it to complete */
183 poll_for_ast(dlm_lock_res->ls);
184
185 errno = dlm_lock_res->lksb.sb_status;
186 if (errno != EUNLOCK) {
187 pr_err("error %d happened in ast when unlock lockspace\n", errno);
188 /* XXX make sure the lockspace is unlocked eventually */
189 goto out;
190 }
191
192 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
193 if (ret) {
194 pr_err("error %d happened when release lockspace\n", errno);
195 /* XXX make sure the lockspace is released eventually */
196 goto out;
197 }
198 free(dlm_lock_res);
199
200 out:
201 return ret;
202 }
203 #else
204 int cluster_get_dlmlock(int *lockid)
205 {
206 return -1;
207 }
208 int cluster_release_dlmlock(int lockid)
209 {
210 return -1;
211 }
212 #endif
213
214 /*
215 * Get array info from the kernel. Longer term we want to deprecate the
216 * ioctl and get it from sysfs.
217 */
218 int md_get_array_info(int fd, struct mdu_array_info_s *array)
219 {
220 return ioctl(fd, GET_ARRAY_INFO, array);
221 }
222
223 /*
224 * Set array info
225 */
226 int md_set_array_info(int fd, struct mdu_array_info_s *array)
227 {
228 return ioctl(fd, SET_ARRAY_INFO, array);
229 }
230
231 /*
232 * Get disk info from the kernel.
233 */
234 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
235 {
236 return ioctl(fd, GET_DISK_INFO, disk);
237 }
238
239 /*
240 * Parse a 128 bit uuid in 4 integers
241 * format is 32 hexx nibbles with options :.<space> separator
242 * If not exactly 32 hex digits are found, return 0
243 * else return 1
244 */
245 int parse_uuid(char *str, int uuid[4])
246 {
247 int hit = 0; /* number of Hex digIT */
248 int i;
249 char c;
250 for (i = 0; i < 4; i++)
251 uuid[i] = 0;
252
253 while ((c = *str++) != 0) {
254 int n;
255 if (c >= '0' && c <= '9')
256 n = c-'0';
257 else if (c >= 'a' && c <= 'f')
258 n = 10 + c - 'a';
259 else if (c >= 'A' && c <= 'F')
260 n = 10 + c - 'A';
261 else if (strchr(":. -", c))
262 continue;
263 else return 0;
264
265 if (hit<32) {
266 uuid[hit/8] <<= 4;
267 uuid[hit/8] += n;
268 }
269 hit++;
270 }
271 if (hit == 32)
272 return 1;
273 return 0;
274 }
275
276 int get_linux_version()
277 {
278 struct utsname name;
279 char *cp;
280 int a = 0, b = 0,c = 0;
281 if (uname(&name) <0)
282 return -1;
283
284 cp = name.release;
285 a = strtoul(cp, &cp, 10);
286 if (*cp == '.')
287 b = strtoul(cp+1, &cp, 10);
288 if (*cp == '.')
289 c = strtoul(cp+1, &cp, 10);
290
291 return (a*1000000)+(b*1000)+c;
292 }
293
294 #ifndef MDASSEMBLE
295 int mdadm_version(char *version)
296 {
297 int a, b, c;
298 char *cp;
299
300 if (!version)
301 version = Version;
302
303 cp = strchr(version, '-');
304 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
305 return -1;
306 cp += 3;
307 a = strtoul(cp, &cp, 10);
308 if (*cp != '.')
309 return -1;
310 b = strtoul(cp+1, &cp, 10);
311 if (*cp == '.')
312 c = strtoul(cp+1, &cp, 10);
313 else
314 c = 0;
315 if (*cp != ' ' && *cp != '-')
316 return -1;
317 return (a*1000000)+(b*1000)+c;
318 }
319
320 unsigned long long parse_size(char *size)
321 {
322 /* parse 'size' which should be a number optionally
323 * followed by 'K', 'M', or 'G'.
324 * Without a suffix, K is assumed.
325 * Number returned is in sectors (half-K)
326 * INVALID_SECTORS returned on error.
327 */
328 char *c;
329 long long s = strtoll(size, &c, 10);
330 if (s > 0) {
331 switch (*c) {
332 case 'K':
333 c++;
334 default:
335 s *= 2;
336 break;
337 case 'M':
338 c++;
339 s *= 1024 * 2;
340 break;
341 case 'G':
342 c++;
343 s *= 1024 * 1024 * 2;
344 break;
345 case 's': /* sectors */
346 c++;
347 break;
348 }
349 } else
350 s = INVALID_SECTORS;
351 if (*c)
352 s = INVALID_SECTORS;
353 return s;
354 }
355
356 int parse_layout_10(char *layout)
357 {
358 int copies, rv;
359 char *cp;
360 /* Parse the layout string for raid10 */
361 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
362 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
363 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
364 copies > 200 ||
365 *cp)
366 return -1;
367 if (layout[0] == 'n')
368 rv = 256 + copies;
369 else if (layout[0] == 'o')
370 rv = 0x10000 + (copies<<8) + 1;
371 else
372 rv = 1 + (copies<<8);
373 return rv;
374 }
375
376 int parse_layout_faulty(char *layout)
377 {
378 /* Parse the layout string for 'faulty' */
379 int ln = strcspn(layout, "0123456789");
380 char *m = xstrdup(layout);
381 int mode;
382 m[ln] = 0;
383 mode = map_name(faultylayout, m);
384 if (mode == UnSet)
385 return -1;
386
387 return mode | (atoi(layout+ln)<< ModeShift);
388 }
389
390 long parse_num(char *num)
391 {
392 /* Either return a valid number, or -1 */
393 char *c;
394 long rv = strtol(num, &c, 10);
395 if (rv < 0 || *c || !num[0])
396 return -1;
397 else
398 return rv;
399 }
400 #endif
401
402 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
403 {
404 char *dev;
405 *slot = strtoul(input, &dev, 10);
406 if (dev == input || dev[0] != ':')
407 return -1;
408 *devname = dev+1;
409 return 0;
410 }
411
412 void remove_partitions(int fd)
413 {
414 /* remove partitions from this block devices.
415 * This is used for components added to an array
416 */
417 #ifdef BLKPG_DEL_PARTITION
418 struct blkpg_ioctl_arg a;
419 struct blkpg_partition p;
420
421 a.op = BLKPG_DEL_PARTITION;
422 a.data = (void*)&p;
423 a.datalen = sizeof(p);
424 a.flags = 0;
425 memset(a.data, 0, a.datalen);
426 for (p.pno = 0; p.pno < 16; p.pno++)
427 ioctl(fd, BLKPG, &a);
428 #endif
429 }
430
431 int test_partition(int fd)
432 {
433 /* Check if fd is a whole-disk or a partition.
434 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
435 * will return ENXIO on an invalid partition number.
436 */
437 struct blkpg_ioctl_arg a;
438 struct blkpg_partition p;
439 a.op = BLKPG_DEL_PARTITION;
440 a.data = (void*)&p;
441 a.datalen = sizeof(p);
442 a.flags = 0;
443 memset(a.data, 0, a.datalen);
444 p.pno = 1<<30;
445 if (ioctl(fd, BLKPG, &a) == 0)
446 /* Very unlikely, but not a partition */
447 return 0;
448 if (errno == ENXIO || errno == ENOTTY)
449 /* not a partition */
450 return 0;
451
452 return 1;
453 }
454
455 int test_partition_from_id(dev_t id)
456 {
457 char buf[20];
458 int fd, rv;
459
460 sprintf(buf, "%d:%d", major(id), minor(id));
461 fd = dev_open(buf, O_RDONLY);
462 if (fd < 0)
463 return -1;
464 rv = test_partition(fd);
465 close(fd);
466 return rv;
467 }
468
469 int enough(int level, int raid_disks, int layout, int clean, char *avail)
470 {
471 int copies, first;
472 int i;
473 int avail_disks = 0;
474
475 for (i = 0; i < raid_disks; i++)
476 avail_disks += !!avail[i];
477
478 switch (level) {
479 case 10:
480 /* This is the tricky one - we need to check
481 * which actual disks are present.
482 */
483 copies = (layout&255)* ((layout>>8) & 255);
484 first = 0;
485 do {
486 /* there must be one of the 'copies' form 'first' */
487 int n = copies;
488 int cnt = 0;
489 int this = first;
490 while (n--) {
491 if (avail[this])
492 cnt++;
493 this = (this+1) % raid_disks;
494 }
495 if (cnt == 0)
496 return 0;
497 first = (first+(layout&255)) % raid_disks;
498 } while (first != 0);
499 return 1;
500
501 case LEVEL_MULTIPATH:
502 return avail_disks>= 1;
503 case LEVEL_LINEAR:
504 case 0:
505 return avail_disks == raid_disks;
506 case 1:
507 return avail_disks >= 1;
508 case 4:
509 if (avail_disks == raid_disks - 1 &&
510 !avail[raid_disks - 1])
511 /* If just the parity device is missing, then we
512 * have enough, even if not clean
513 */
514 return 1;
515 /* FALL THROUGH */
516 case 5:
517 if (clean)
518 return avail_disks >= raid_disks-1;
519 else
520 return avail_disks >= raid_disks;
521 case 6:
522 if (clean)
523 return avail_disks >= raid_disks-2;
524 else
525 return avail_disks >= raid_disks;
526 default:
527 return 0;
528 }
529 }
530
531 int enough_fd(int fd)
532 {
533 struct mdu_array_info_s array;
534 struct mdu_disk_info_s disk;
535 int i, rv;
536 char *avail;
537
538 if (md_get_array_info(fd, &array) != 0 || array.raid_disks <= 0)
539 return 0;
540 avail = xcalloc(array.raid_disks, 1);
541 for (i = 0; i < MAX_DISKS && array.nr_disks > 0; i++) {
542 disk.number = i;
543 if (md_get_disk_info(fd, &disk) != 0)
544 continue;
545 if (disk.major == 0 && disk.minor == 0)
546 continue;
547 array.nr_disks--;
548
549 if (! (disk.state & (1<<MD_DISK_SYNC)))
550 continue;
551 if (disk.raid_disk < 0 || disk.raid_disk >= array.raid_disks)
552 continue;
553 avail[disk.raid_disk] = 1;
554 }
555 /* This is used on an active array, so assume it is clean */
556 rv = enough(array.level, array.raid_disks, array.layout,
557 1, avail);
558 free(avail);
559 return rv;
560 }
561
562 const int uuid_zero[4] = { 0, 0, 0, 0 };
563
564 int same_uuid(int a[4], int b[4], int swapuuid)
565 {
566 if (swapuuid) {
567 /* parse uuids are hostendian.
568 * uuid's from some superblocks are big-ending
569 * if there is a difference, we need to swap..
570 */
571 unsigned char *ac = (unsigned char *)a;
572 unsigned char *bc = (unsigned char *)b;
573 int i;
574 for (i = 0; i < 16; i += 4) {
575 if (ac[i+0] != bc[i+3] ||
576 ac[i+1] != bc[i+2] ||
577 ac[i+2] != bc[i+1] ||
578 ac[i+3] != bc[i+0])
579 return 0;
580 }
581 return 1;
582 } else {
583 if (a[0]==b[0] &&
584 a[1]==b[1] &&
585 a[2]==b[2] &&
586 a[3]==b[3])
587 return 1;
588 return 0;
589 }
590 }
591
592 void copy_uuid(void *a, int b[4], int swapuuid)
593 {
594 if (swapuuid) {
595 /* parse uuids are hostendian.
596 * uuid's from some superblocks are big-ending
597 * if there is a difference, we need to swap..
598 */
599 unsigned char *ac = (unsigned char *)a;
600 unsigned char *bc = (unsigned char *)b;
601 int i;
602 for (i = 0; i < 16; i += 4) {
603 ac[i+0] = bc[i+3];
604 ac[i+1] = bc[i+2];
605 ac[i+2] = bc[i+1];
606 ac[i+3] = bc[i+0];
607 }
608 } else
609 memcpy(a, b, 16);
610 }
611
612 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
613 {
614 int i, j;
615 char uuid[16];
616 char *c = buf;
617 strcpy(c, "UUID-");
618 c += strlen(c);
619 copy_uuid(uuid, id, swap);
620 for (i = 0; i < 4; i++) {
621 if (i)
622 *c++ = sep;
623 for (j = 3; j >= 0; j--) {
624 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
625 c+= 2;
626 }
627 }
628 return buf;
629
630 }
631
632 char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep)
633 {
634 // dirty hack to work around an issue with super1 superblocks...
635 // super1 superblocks need swapuuid set in order for assembly to
636 // work, but can't have it set if we want this printout to match
637 // all the other uuid printouts in super1.c, so we force swapuuid
638 // to 1 to make our printout match the rest of super1
639 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 : st->ss->swapuuid, buf, sep);
640 }
641
642 #ifndef MDASSEMBLE
643 int check_ext2(int fd, char *name)
644 {
645 /*
646 * Check for an ext2fs file system.
647 * Superblock is always 1K at 1K offset
648 *
649 * s_magic is le16 at 56 == 0xEF53
650 * report mtime - le32 at 44
651 * blocks - le32 at 4
652 * logblksize - le32 at 24
653 */
654 unsigned char sb[1024];
655 time_t mtime;
656 unsigned long long size;
657 int bsize;
658 if (lseek(fd, 1024,0)!= 1024)
659 return 0;
660 if (read(fd, sb, 1024)!= 1024)
661 return 0;
662 if (sb[56] != 0x53 || sb[57] != 0xef)
663 return 0;
664
665 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
666 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
667 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
668 size <<= bsize;
669 pr_err("%s appears to contain an ext2fs file system\n",
670 name);
671 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
672 return 1;
673 }
674
675 int check_reiser(int fd, char *name)
676 {
677 /*
678 * superblock is at 64K
679 * size is 1024;
680 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
681 *
682 */
683 unsigned char sb[1024];
684 unsigned long long size;
685 if (lseek(fd, 64*1024, 0) != 64*1024)
686 return 0;
687 if (read(fd, sb, 1024) != 1024)
688 return 0;
689 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
690 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
691 return 0;
692 pr_err("%s appears to contain a reiserfs file system\n",name);
693 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
694 cont_err("size = %lluK\n", size*4);
695
696 return 1;
697 }
698
699 int check_raid(int fd, char *name)
700 {
701 struct mdinfo info;
702 time_t crtime;
703 char *level;
704 struct supertype *st = guess_super(fd);
705
706 if (!st)
707 return 0;
708 if (st->ss->add_to_super != NULL) {
709 st->ss->load_super(st, fd, name);
710 /* Looks like a raid array .. */
711 pr_err("%s appears to be part of a raid array:\n", name);
712 st->ss->getinfo_super(st, &info, NULL);
713 st->ss->free_super(st);
714 crtime = info.array.ctime;
715 level = map_num(pers, info.array.level);
716 if (!level)
717 level = "-unknown-";
718 cont_err("level=%s devices=%d ctime=%s",
719 level, info.array.raid_disks, ctime(&crtime));
720 } else {
721 /* Looks like GPT or MBR */
722 pr_err("partition table exists on %s\n", name);
723 }
724 return 1;
725 }
726
727 int ask(char *mesg)
728 {
729 char *add = "";
730 int i;
731 for (i = 0; i < 5; i++) {
732 char buf[100];
733 fprintf(stderr, "%s%s", mesg, add);
734 fflush(stderr);
735 if (fgets(buf, 100, stdin)==NULL)
736 return 0;
737 if (buf[0]=='y' || buf[0]=='Y')
738 return 1;
739 if (buf[0]=='n' || buf[0]=='N')
740 return 0;
741 add = "(y/n) ";
742 }
743 pr_err("assuming 'no'\n");
744 return 0;
745 }
746 #endif /* MDASSEMBLE */
747
748 int is_standard(char *dev, int *nump)
749 {
750 /* tests if dev is a "standard" md dev name.
751 * i.e if the last component is "/dNN" or "/mdNN",
752 * where NN is a string of digits
753 * Returns 1 if a partitionable standard,
754 * -1 if non-partitonable,
755 * 0 if not a standard name.
756 */
757 char *d = strrchr(dev, '/');
758 int type = 0;
759 int num;
760 if (!d)
761 return 0;
762 if (strncmp(d, "/d",2) == 0)
763 d += 2, type = 1; /* /dev/md/dN{pM} */
764 else if (strncmp(d, "/md_d", 5) == 0)
765 d += 5, type = 1; /* /dev/md_dN{pM} */
766 else if (strncmp(d, "/md", 3) == 0)
767 d += 3, type = -1; /* /dev/mdN */
768 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
769 d += 1, type = -1; /* /dev/md/N */
770 else
771 return 0;
772 if (!*d)
773 return 0;
774 num = atoi(d);
775 while (isdigit(*d))
776 d++;
777 if (*d)
778 return 0;
779 if (nump) *nump = num;
780
781 return type;
782 }
783
784 unsigned long calc_csum(void *super, int bytes)
785 {
786 unsigned long long newcsum = 0;
787 int i;
788 unsigned int csum;
789 unsigned int *superc = (unsigned int*) super;
790
791 for(i = 0; i < bytes/4; i++)
792 newcsum += superc[i];
793 csum = (newcsum& 0xffffffff) + (newcsum>>32);
794 #ifdef __alpha__
795 /* The in-kernel checksum calculation is always 16bit on
796 * the alpha, though it is 32 bit on i386...
797 * I wonder what it is elsewhere... (it uses an API in
798 * a way that it shouldn't).
799 */
800 csum = (csum & 0xffff) + (csum >> 16);
801 csum = (csum & 0xffff) + (csum >> 16);
802 #endif
803 return csum;
804 }
805
806 #ifndef MDASSEMBLE
807 char *human_size(long long bytes)
808 {
809 static char buf[47];
810
811 /* We convert bytes to either centi-M{ega,ibi}bytes or
812 * centi-G{igi,ibi}bytes, with appropriate rounding,
813 * and then print 1/100th of those as a decimal.
814 * We allow upto 2048Megabytes before converting to
815 * gigabytes, as that shows more precision and isn't
816 * too large a number.
817 * Terabytes are not yet handled.
818 */
819
820 if (bytes < 5000*1024)
821 buf[0] = 0;
822 else if (bytes < 2*1024LL*1024LL*1024LL) {
823 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
824 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
825 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
826 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
827 } else {
828 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
829 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
830 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
831 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
832 }
833 return buf;
834 }
835
836 char *human_size_brief(long long bytes, int prefix)
837 {
838 static char buf[30];
839
840 /* We convert bytes to either centi-M{ega,ibi}bytes or
841 * centi-G{igi,ibi}bytes, with appropriate rounding,
842 * and then print 1/100th of those as a decimal.
843 * We allow upto 2048Megabytes before converting to
844 * gigabytes, as that shows more precision and isn't
845 * too large a number.
846 * Terabytes are not yet handled.
847 *
848 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
849 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
850 */
851
852 if (bytes < 5000*1024)
853 buf[0] = 0;
854 else if (prefix == IEC) {
855 if (bytes < 2*1024LL*1024LL*1024LL) {
856 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
857 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
858 cMiB/100, cMiB % 100);
859 } else {
860 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
861 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
862 cGiB/100, cGiB % 100);
863 }
864 }
865 else if (prefix == JEDEC) {
866 if (bytes < 2*1024LL*1024LL*1024LL) {
867 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
868 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
869 cMB/100, cMB % 100);
870 } else {
871 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
872 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
873 cGB/100, cGB % 100);
874 }
875 }
876 else
877 buf[0] = 0;
878
879 return buf;
880 }
881
882 void print_r10_layout(int layout)
883 {
884 int near = layout & 255;
885 int far = (layout >> 8) & 255;
886 int offset = (layout&0x10000);
887 char *sep = "";
888
889 if (near != 1) {
890 printf("%s near=%d", sep, near);
891 sep = ",";
892 }
893 if (far != 1)
894 printf("%s %s=%d", sep, offset?"offset":"far", far);
895 if (near*far == 1)
896 printf("NO REDUNDANCY");
897 }
898 #endif
899
900 unsigned long long calc_array_size(int level, int raid_disks, int layout,
901 int chunksize, unsigned long long devsize)
902 {
903 if (level == 1)
904 return devsize;
905 devsize &= ~(unsigned long long)((chunksize>>9)-1);
906 return get_data_disks(level, layout, raid_disks) * devsize;
907 }
908
909 int get_data_disks(int level, int layout, int raid_disks)
910 {
911 int data_disks = 0;
912 switch (level) {
913 case 0: data_disks = raid_disks;
914 break;
915 case 1: data_disks = 1;
916 break;
917 case 4:
918 case 5: data_disks = raid_disks - 1;
919 break;
920 case 6: data_disks = raid_disks - 2;
921 break;
922 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
923 break;
924 }
925
926 return data_disks;
927 }
928
929 dev_t devnm2devid(char *devnm)
930 {
931 /* First look in /sys/block/$DEVNM/dev for %d:%d
932 * If that fails, try parsing out a number
933 */
934 char path[100];
935 char *ep;
936 int fd;
937 int mjr,mnr;
938
939 sprintf(path, "/sys/block/%s/dev", devnm);
940 fd = open(path, O_RDONLY);
941 if (fd >= 0) {
942 char buf[20];
943 int n = read(fd, buf, sizeof(buf));
944 close(fd);
945 if (n > 0)
946 buf[n] = 0;
947 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
948 return makedev(mjr, mnr);
949 }
950 if (strncmp(devnm, "md_d", 4) == 0 &&
951 isdigit(devnm[4]) &&
952 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
953 ep > devnm && *ep == 0)
954 return makedev(get_mdp_major(), mnr << MdpMinorShift);
955
956 if (strncmp(devnm, "md", 2) == 0 &&
957 isdigit(devnm[2]) &&
958 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
959 ep > devnm && *ep == 0)
960 return makedev(MD_MAJOR, mnr);
961
962 return 0;
963 }
964
965 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
966 char *get_md_name(char *devnm)
967 {
968 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
969 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
970
971 static char devname[50];
972 struct stat stb;
973 dev_t rdev = devnm2devid(devnm);
974 char *dn;
975
976 if (rdev == 0)
977 return 0;
978 if (strncmp(devnm, "md_", 3) == 0) {
979 snprintf(devname, sizeof(devname), "/dev/md/%s",
980 devnm + 3);
981 if (stat(devname, &stb) == 0
982 && (S_IFMT&stb.st_mode) == S_IFBLK
983 && (stb.st_rdev == rdev))
984 return devname;
985 }
986 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
987 if (stat(devname, &stb) == 0
988 && (S_IFMT&stb.st_mode) == S_IFBLK
989 && (stb.st_rdev == rdev))
990 return devname;
991
992 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
993 if (stat(devname, &stb) == 0
994 && (S_IFMT&stb.st_mode) == S_IFBLK
995 && (stb.st_rdev == rdev))
996 return devname;
997
998 dn = map_dev(major(rdev), minor(rdev), 0);
999 if (dn)
1000 return dn;
1001 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
1002 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
1003 if (errno != EEXIST)
1004 return NULL;
1005
1006 if (stat(devname, &stb) == 0
1007 && (S_IFMT&stb.st_mode) == S_IFBLK
1008 && (stb.st_rdev == rdev))
1009 return devname;
1010 unlink(devname);
1011 return NULL;
1012 }
1013
1014 void put_md_name(char *name)
1015 {
1016 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1017 unlink(name);
1018 }
1019 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
1020
1021 int get_maj_min(char *dev, int *major, int *minor)
1022 {
1023 char *e;
1024 *major = strtoul(dev, &e, 0);
1025 return (e > dev && *e == ':' && e[1] &&
1026 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1027 *e == 0);
1028 }
1029
1030 int dev_open(char *dev, int flags)
1031 {
1032 /* like 'open', but if 'dev' matches %d:%d, create a temp
1033 * block device and open that
1034 */
1035 int fd = -1;
1036 char devname[32];
1037 int major;
1038 int minor;
1039
1040 if (!dev)
1041 return -1;
1042 flags |= O_DIRECT;
1043
1044 if (get_maj_min(dev, &major, &minor)) {
1045 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1046 (int)getpid(), major, minor);
1047 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1048 fd = open(devname, flags);
1049 unlink(devname);
1050 }
1051 if (fd < 0) {
1052 /* Try /tmp as /dev appear to be read-only */
1053 snprintf(devname, sizeof(devname), "/tmp/.tmp.md.%d:%d:%d",
1054 (int)getpid(), major, minor);
1055 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1056 fd = open(devname, flags);
1057 unlink(devname);
1058 }
1059 }
1060 } else
1061 fd = open(dev, flags);
1062 return fd;
1063 }
1064
1065 int open_dev_flags(char *devnm, int flags)
1066 {
1067 dev_t devid;
1068 char buf[20];
1069
1070 devid = devnm2devid(devnm);
1071 sprintf(buf, "%d:%d", major(devid), minor(devid));
1072 return dev_open(buf, flags);
1073 }
1074
1075 int open_dev(char *devnm)
1076 {
1077 return open_dev_flags(devnm, O_RDONLY);
1078 }
1079
1080 int open_dev_excl(char *devnm)
1081 {
1082 char buf[20];
1083 int i;
1084 int flags = O_RDWR;
1085 dev_t devid = devnm2devid(devnm);
1086 long delay = 1000;
1087
1088 sprintf(buf, "%d:%d", major(devid), minor(devid));
1089 for (i = 0; i < 25; i++) {
1090 int fd = dev_open(buf, flags|O_EXCL);
1091 if (fd >= 0)
1092 return fd;
1093 if (errno == EACCES && flags == O_RDWR) {
1094 flags = O_RDONLY;
1095 continue;
1096 }
1097 if (errno != EBUSY)
1098 return fd;
1099 usleep(delay);
1100 if (delay < 200000)
1101 delay *= 2;
1102 }
1103 return -1;
1104 }
1105
1106 int same_dev(char *one, char *two)
1107 {
1108 struct stat st1, st2;
1109 if (stat(one, &st1) != 0)
1110 return 0;
1111 if (stat(two, &st2) != 0)
1112 return 0;
1113 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1114 return 0;
1115 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1116 return 0;
1117 return st1.st_rdev == st2.st_rdev;
1118 }
1119
1120 void wait_for(char *dev, int fd)
1121 {
1122 int i;
1123 struct stat stb_want;
1124 long delay = 1000;
1125
1126 if (fstat(fd, &stb_want) != 0 ||
1127 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1128 return;
1129
1130 for (i = 0; i < 25; i++) {
1131 struct stat stb;
1132 if (stat(dev, &stb) == 0 &&
1133 (stb.st_mode & S_IFMT) == S_IFBLK &&
1134 (stb.st_rdev == stb_want.st_rdev))
1135 return;
1136 usleep(delay);
1137 if (delay < 200000)
1138 delay *= 2;
1139 }
1140 if (i == 25)
1141 dprintf("timeout waiting for %s\n", dev);
1142 }
1143
1144 struct superswitch *superlist[] =
1145 {
1146 &super0, &super1,
1147 &super_ddf, &super_imsm,
1148 &mbr, &gpt,
1149 NULL };
1150
1151 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
1152
1153 struct supertype *super_by_fd(int fd, char **subarrayp)
1154 {
1155 mdu_array_info_t array;
1156 int vers;
1157 int minor;
1158 struct supertype *st = NULL;
1159 struct mdinfo *sra;
1160 char *verstr;
1161 char version[20];
1162 int i;
1163 char *subarray = NULL;
1164 char container[32] = "";
1165
1166 sra = sysfs_read(fd, NULL, GET_VERSION);
1167
1168 if (sra) {
1169 vers = sra->array.major_version;
1170 minor = sra->array.minor_version;
1171 verstr = sra->text_version;
1172 } else {
1173 if (md_get_array_info(fd, &array))
1174 array.major_version = array.minor_version = 0;
1175 vers = array.major_version;
1176 minor = array.minor_version;
1177 verstr = "";
1178 }
1179
1180 if (vers != -1) {
1181 sprintf(version, "%d.%d", vers, minor);
1182 verstr = version;
1183 }
1184 if (minor == -2 && is_subarray(verstr)) {
1185 char *dev = verstr+1;
1186
1187 subarray = strchr(dev, '/');
1188 if (subarray) {
1189 *subarray++ = '\0';
1190 subarray = xstrdup(subarray);
1191 }
1192 strcpy(container, dev);
1193 sysfs_free(sra);
1194 sra = sysfs_read(-1, container, GET_VERSION);
1195 if (sra && sra->text_version[0])
1196 verstr = sra->text_version;
1197 else
1198 verstr = "-no-metadata-";
1199 }
1200
1201 for (i = 0; st == NULL && superlist[i]; i++)
1202 st = superlist[i]->match_metadata_desc(verstr);
1203
1204 sysfs_free(sra);
1205 if (st) {
1206 st->sb = NULL;
1207 if (subarrayp)
1208 *subarrayp = subarray;
1209 strcpy(st->container_devnm, container);
1210 strcpy(st->devnm, fd2devnm(fd));
1211 } else
1212 free(subarray);
1213
1214 return st;
1215 }
1216 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
1217
1218 int dev_size_from_id(dev_t id, unsigned long long *size)
1219 {
1220 char buf[20];
1221 int fd;
1222
1223 sprintf(buf, "%d:%d", major(id), minor(id));
1224 fd = dev_open(buf, O_RDONLY);
1225 if (fd < 0)
1226 return 0;
1227 if (get_dev_size(fd, NULL, size)) {
1228 close(fd);
1229 return 1;
1230 }
1231 close(fd);
1232 return 0;
1233 }
1234
1235 struct supertype *dup_super(struct supertype *orig)
1236 {
1237 struct supertype *st;
1238
1239 if (!orig)
1240 return orig;
1241 st = xcalloc(1, sizeof(*st));
1242 st->ss = orig->ss;
1243 st->max_devs = orig->max_devs;
1244 st->minor_version = orig->minor_version;
1245 st->ignore_hw_compat = orig->ignore_hw_compat;
1246 st->data_offset = orig->data_offset;
1247 st->sb = NULL;
1248 st->info = NULL;
1249 return st;
1250 }
1251
1252 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1253 {
1254 /* try each load_super to find the best match,
1255 * and return the best superswitch
1256 */
1257 struct superswitch *ss;
1258 struct supertype *st;
1259 unsigned int besttime = 0;
1260 int bestsuper = -1;
1261 int i;
1262
1263 st = xcalloc(1, sizeof(*st));
1264 st->container_devnm[0] = 0;
1265
1266 for (i = 0; superlist[i]; i++) {
1267 int rv;
1268 ss = superlist[i];
1269 if (guess_type == guess_array && ss->add_to_super == NULL)
1270 continue;
1271 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1272 continue;
1273 memset(st, 0, sizeof(*st));
1274 st->ignore_hw_compat = 1;
1275 rv = ss->load_super(st, fd, NULL);
1276 if (rv == 0) {
1277 struct mdinfo info;
1278 st->ss->getinfo_super(st, &info, NULL);
1279 if (bestsuper == -1 ||
1280 besttime < info.array.ctime) {
1281 bestsuper = i;
1282 besttime = info.array.ctime;
1283 }
1284 ss->free_super(st);
1285 }
1286 }
1287 if (bestsuper != -1) {
1288 int rv;
1289 memset(st, 0, sizeof(*st));
1290 st->ignore_hw_compat = 1;
1291 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1292 if (rv == 0) {
1293 superlist[bestsuper]->free_super(st);
1294 return st;
1295 }
1296 }
1297 free(st);
1298 return NULL;
1299 }
1300
1301 /* Return size of device in bytes */
1302 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1303 {
1304 unsigned long long ldsize;
1305 struct stat st;
1306
1307 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1308 ldsize = (unsigned long long)st.st_size;
1309 else
1310 #ifdef BLKGETSIZE64
1311 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1312 #endif
1313 {
1314 unsigned long dsize;
1315 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1316 ldsize = dsize;
1317 ldsize <<= 9;
1318 } else {
1319 if (dname)
1320 pr_err("Cannot get size of %s: %s\n",
1321 dname, strerror(errno));
1322 return 0;
1323 }
1324 }
1325 *sizep = ldsize;
1326 return 1;
1327 }
1328
1329 /* Return sector size of device in bytes */
1330 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1331 {
1332 unsigned int sectsize;
1333
1334 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1335 if (dname)
1336 pr_err("Cannot get sector size of %s: %s\n",
1337 dname, strerror(errno));
1338 return 0;
1339 }
1340
1341 *sectsizep = sectsize;
1342 return 1;
1343 }
1344
1345 /* Return true if this can only be a container, not a member device.
1346 * i.e. is and md device and size is zero
1347 */
1348 int must_be_container(int fd)
1349 {
1350 struct mdinfo *mdi;
1351 unsigned long long size;
1352
1353 mdi = sysfs_read(fd, NULL, GET_VERSION);
1354 if (!mdi)
1355 return 0;
1356 sysfs_free(mdi);
1357
1358 if (get_dev_size(fd, NULL, &size) == 0)
1359 return 1;
1360 if (size == 0)
1361 return 1;
1362 return 0;
1363 }
1364
1365 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1366 * Returns: 1 if successful
1367 * -1 for unknown partition type
1368 * 0 for other errors
1369 */
1370 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1371 {
1372 struct GPT gpt;
1373 unsigned char empty_gpt_entry[16]= {0};
1374 struct GPT_part_entry *part;
1375 char buf[512];
1376 unsigned long long curr_part_end;
1377 unsigned all_partitions, entry_size;
1378 unsigned part_nr;
1379 unsigned int sector_size = 0;
1380
1381 *endofpart = 0;
1382
1383 BUILD_BUG_ON(sizeof(gpt) != 512);
1384 /* skip protective MBR */
1385 if (!get_dev_sector_size(fd, NULL, &sector_size))
1386 return 0;
1387 lseek(fd, sector_size, SEEK_SET);
1388 /* read GPT header */
1389 if (read(fd, &gpt, 512) != 512)
1390 return 0;
1391
1392 /* get the number of partition entries and the entry size */
1393 all_partitions = __le32_to_cpu(gpt.part_cnt);
1394 entry_size = __le32_to_cpu(gpt.part_size);
1395
1396 /* Check GPT signature*/
1397 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1398 return -1;
1399
1400 /* sanity checks */
1401 if (all_partitions > 1024 ||
1402 entry_size > sizeof(buf))
1403 return -1;
1404
1405 part = (struct GPT_part_entry *)buf;
1406
1407 /* set offset to third block (GPT entries) */
1408 lseek(fd, sector_size*2, SEEK_SET);
1409 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1410 /* read partition entry */
1411 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1412 return 0;
1413
1414 /* is this valid partition? */
1415 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1416 /* check the last lba for the current partition */
1417 curr_part_end = __le64_to_cpu(part->ending_lba);
1418 if (curr_part_end > *endofpart)
1419 *endofpart = curr_part_end;
1420 }
1421
1422 }
1423 return 1;
1424 }
1425
1426 /* Sets endofpart parameter to the last block used by the last partition on the device.
1427 * Returns: 1 if successful
1428 * -1 for unknown partition type
1429 * 0 for other errors
1430 */
1431 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1432 {
1433 struct MBR boot_sect;
1434 unsigned long long curr_part_end;
1435 unsigned part_nr;
1436 unsigned int sector_size;
1437 int retval = 0;
1438
1439 *endofpart = 0;
1440
1441 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1442 /* read MBR */
1443 lseek(fd, 0, 0);
1444 if (read(fd, &boot_sect, 512) != 512)
1445 goto abort;
1446
1447 /* check MBP signature */
1448 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1449 retval = 1;
1450 /* found the correct signature */
1451
1452 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1453 /*
1454 * Have to make every access through boot_sect rather
1455 * than using a pointer to the partition table (or an
1456 * entry), since the entries are not properly aligned.
1457 */
1458
1459 /* check for GPT type */
1460 if (boot_sect.parts[part_nr].part_type ==
1461 MBR_GPT_PARTITION_TYPE) {
1462 retval = get_gpt_last_partition_end(fd, endofpart);
1463 break;
1464 }
1465 /* check the last used lba for the current partition */
1466 curr_part_end =
1467 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1468 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1469 if (curr_part_end > *endofpart)
1470 *endofpart = curr_part_end;
1471 }
1472 } else {
1473 /* Unknown partition table */
1474 retval = -1;
1475 }
1476 /* calculate number of 512-byte blocks */
1477 if (get_dev_sector_size(fd, NULL, &sector_size))
1478 *endofpart *= (sector_size / 512);
1479 abort:
1480 return retval;
1481 }
1482
1483 int check_partitions(int fd, char *dname, unsigned long long freesize,
1484 unsigned long long size)
1485 {
1486 /*
1487 * Check where the last partition ends
1488 */
1489 unsigned long long endofpart;
1490
1491 if (get_last_partition_end(fd, &endofpart) > 0) {
1492 /* There appears to be a partition table here */
1493 if (freesize == 0) {
1494 /* partitions will not be visible in new device */
1495 pr_err("partition table exists on %s but will be lost or\n"
1496 " meaningless after creating array\n",
1497 dname);
1498 return 1;
1499 } else if (endofpart > freesize) {
1500 /* last partition overlaps metadata */
1501 pr_err("metadata will over-write last partition on %s.\n",
1502 dname);
1503 return 1;
1504 } else if (size && endofpart > size) {
1505 /* partitions will be truncated in new device */
1506 pr_err("array size is too small to cover all partitions on %s.\n",
1507 dname);
1508 return 1;
1509 }
1510 }
1511 return 0;
1512 }
1513
1514 int open_container(int fd)
1515 {
1516 /* 'fd' is a block device. Find out if it is in use
1517 * by a container, and return an open fd on that container.
1518 */
1519 char path[256];
1520 char *e;
1521 DIR *dir;
1522 struct dirent *de;
1523 int dfd, n;
1524 char buf[200];
1525 int major, minor;
1526 struct stat st;
1527
1528 if (fstat(fd, &st) != 0)
1529 return -1;
1530 sprintf(path, "/sys/dev/block/%d:%d/holders",
1531 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1532 e = path + strlen(path);
1533
1534 dir = opendir(path);
1535 if (!dir)
1536 return -1;
1537 while ((de = readdir(dir))) {
1538 if (de->d_ino == 0)
1539 continue;
1540 if (de->d_name[0] == '.')
1541 continue;
1542 /* Need to make sure it is a container and not a volume */
1543 sprintf(e, "/%s/md/metadata_version", de->d_name);
1544 dfd = open(path, O_RDONLY);
1545 if (dfd < 0)
1546 continue;
1547 n = read(dfd, buf, sizeof(buf));
1548 close(dfd);
1549 if (n <= 0 || (unsigned)n >= sizeof(buf))
1550 continue;
1551 buf[n] = 0;
1552 if (strncmp(buf, "external", 8) != 0 ||
1553 n < 10 ||
1554 buf[9] == '/')
1555 continue;
1556 sprintf(e, "/%s/dev", de->d_name);
1557 dfd = open(path, O_RDONLY);
1558 if (dfd < 0)
1559 continue;
1560 n = read(dfd, buf, sizeof(buf));
1561 close(dfd);
1562 if (n <= 0 || (unsigned)n >= sizeof(buf))
1563 continue;
1564 buf[n] = 0;
1565 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1566 continue;
1567 sprintf(buf, "%d:%d", major, minor);
1568 dfd = dev_open(buf, O_RDONLY);
1569 if (dfd >= 0) {
1570 closedir(dir);
1571 return dfd;
1572 }
1573 }
1574 closedir(dir);
1575 return -1;
1576 }
1577
1578 struct superswitch *version_to_superswitch(char *vers)
1579 {
1580 int i;
1581
1582 for (i = 0; superlist[i]; i++) {
1583 struct superswitch *ss = superlist[i];
1584
1585 if (strcmp(vers, ss->name) == 0)
1586 return ss;
1587 }
1588
1589 return NULL;
1590 }
1591
1592 int metadata_container_matches(char *metadata, char *devnm)
1593 {
1594 /* Check if 'devnm' is the container named in 'metadata'
1595 * which is
1596 * /containername/componentname or
1597 * -containername/componentname
1598 */
1599 int l;
1600 if (*metadata != '/' && *metadata != '-')
1601 return 0;
1602 l = strlen(devnm);
1603 if (strncmp(metadata+1, devnm, l) != 0)
1604 return 0;
1605 if (metadata[l+1] != '/')
1606 return 0;
1607 return 1;
1608 }
1609
1610 int metadata_subdev_matches(char *metadata, char *devnm)
1611 {
1612 /* Check if 'devnm' is the subdev named in 'metadata'
1613 * which is
1614 * /containername/subdev or
1615 * -containername/subdev
1616 */
1617 char *sl;
1618 if (*metadata != '/' && *metadata != '-')
1619 return 0;
1620 sl = strchr(metadata+1, '/');
1621 if (!sl)
1622 return 0;
1623 if (strcmp(sl+1, devnm) == 0)
1624 return 1;
1625 return 0;
1626 }
1627
1628 int is_container_member(struct mdstat_ent *mdstat, char *container)
1629 {
1630 if (mdstat->metadata_version == NULL ||
1631 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1632 !metadata_container_matches(mdstat->metadata_version+9, container))
1633 return 0;
1634
1635 return 1;
1636 }
1637
1638 int is_subarray_active(char *subarray, char *container)
1639 {
1640 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1641 struct mdstat_ent *ent;
1642
1643 for (ent = mdstat; ent; ent = ent->next)
1644 if (is_container_member(ent, container))
1645 if (strcmp(to_subarray(ent, container), subarray) == 0)
1646 break;
1647
1648 free_mdstat(mdstat);
1649
1650 return ent != NULL;
1651 }
1652
1653 /* open_subarray - opens a subarray in a container
1654 * @dev: container device name
1655 * @st: empty supertype
1656 * @quiet: block reporting errors flag
1657 *
1658 * On success returns an fd to a container and fills in *st
1659 */
1660 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1661 {
1662 struct mdinfo *mdi;
1663 struct mdinfo *info;
1664 int fd, err = 1;
1665 char *_devnm;
1666
1667 fd = open(dev, O_RDWR|O_EXCL);
1668 if (fd < 0) {
1669 if (!quiet)
1670 pr_err("Couldn't open %s, aborting\n",
1671 dev);
1672 return -1;
1673 }
1674
1675 _devnm = fd2devnm(fd);
1676 if (_devnm == NULL) {
1677 if (!quiet)
1678 pr_err("Failed to determine device number for %s\n",
1679 dev);
1680 goto close_fd;
1681 }
1682 strcpy(st->devnm, _devnm);
1683
1684 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1685 if (!mdi) {
1686 if (!quiet)
1687 pr_err("Failed to read sysfs for %s\n",
1688 dev);
1689 goto close_fd;
1690 }
1691
1692 if (mdi->array.level != UnSet) {
1693 if (!quiet)
1694 pr_err("%s is not a container\n", dev);
1695 goto free_sysfs;
1696 }
1697
1698 st->ss = version_to_superswitch(mdi->text_version);
1699 if (!st->ss) {
1700 if (!quiet)
1701 pr_err("Operation not supported for %s metadata\n",
1702 mdi->text_version);
1703 goto free_sysfs;
1704 }
1705
1706 if (st->devnm[0] == 0) {
1707 if (!quiet)
1708 pr_err("Failed to allocate device name\n");
1709 goto free_sysfs;
1710 }
1711
1712 if (!st->ss->load_container) {
1713 if (!quiet)
1714 pr_err("%s is not a container\n", dev);
1715 goto free_sysfs;
1716 }
1717
1718 if (st->ss->load_container(st, fd, NULL)) {
1719 if (!quiet)
1720 pr_err("Failed to load metadata for %s\n",
1721 dev);
1722 goto free_sysfs;
1723 }
1724
1725 info = st->ss->container_content(st, subarray);
1726 if (!info) {
1727 if (!quiet)
1728 pr_err("Failed to find subarray-%s in %s\n",
1729 subarray, dev);
1730 goto free_super;
1731 }
1732 free(info);
1733
1734 err = 0;
1735
1736 free_super:
1737 if (err)
1738 st->ss->free_super(st);
1739 free_sysfs:
1740 sysfs_free(mdi);
1741 close_fd:
1742 if (err)
1743 close(fd);
1744
1745 if (err)
1746 return -1;
1747 else
1748 return fd;
1749 }
1750
1751 int add_disk(int mdfd, struct supertype *st,
1752 struct mdinfo *sra, struct mdinfo *info)
1753 {
1754 /* Add a device to an array, in one of 2 ways. */
1755 int rv;
1756 #ifndef MDASSEMBLE
1757 if (st->ss->external) {
1758 if (info->disk.state & (1<<MD_DISK_SYNC))
1759 info->recovery_start = MaxSector;
1760 else
1761 info->recovery_start = 0;
1762 rv = sysfs_add_disk(sra, info, 0);
1763 if (! rv) {
1764 struct mdinfo *sd2;
1765 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1766 if (sd2 == info)
1767 break;
1768 if (sd2 == NULL) {
1769 sd2 = xmalloc(sizeof(*sd2));
1770 *sd2 = *info;
1771 sd2->next = sra->devs;
1772 sra->devs = sd2;
1773 }
1774 }
1775 } else
1776 #endif
1777 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1778 return rv;
1779 }
1780
1781 int remove_disk(int mdfd, struct supertype *st,
1782 struct mdinfo *sra, struct mdinfo *info)
1783 {
1784 int rv;
1785 /* Remove the disk given by 'info' from the array */
1786 #ifndef MDASSEMBLE
1787 if (st->ss->external)
1788 rv = sysfs_set_str(sra, info, "slot", "none");
1789 else
1790 #endif
1791 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1792 info->disk.minor));
1793 return rv;
1794 }
1795
1796 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1797 {
1798 int cnt = force ? 500 : 5;
1799 int ret;
1800
1801 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1802 * outstanding IO requests to the device.
1803 * In this case, it can be helpful to wait a little while,
1804 * up to 5 seconds if 'force' is set, or 50 msec if not.
1805 */
1806 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1807 errno == EBUSY &&
1808 cnt-- > 0)
1809 usleep(10000);
1810
1811 return ret;
1812 }
1813
1814 int sys_hot_remove_disk(int statefd, int force)
1815 {
1816 int cnt = force ? 500 : 5;
1817 int ret;
1818
1819 while ((ret = write(statefd, "remove", 6)) == -1 &&
1820 errno == EBUSY &&
1821 cnt-- > 0)
1822 usleep(10000);
1823 return ret == 6 ? 0 : -1;
1824 }
1825
1826 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1827 {
1828 /* Initialise kernel's knowledge of array.
1829 * This varies between externally managed arrays
1830 * and older kernels
1831 */
1832 mdu_array_info_t inf;
1833 int rv;
1834
1835 #ifndef MDASSEMBLE
1836 if (st->ss->external)
1837 return sysfs_set_array(info, 9003);
1838 #endif
1839
1840 memset(&inf, 0, sizeof(inf));
1841 inf.major_version = info->array.major_version;
1842 inf.minor_version = info->array.minor_version;
1843 rv = md_set_array_info(mdfd, &inf);
1844
1845 return rv;
1846 }
1847
1848 unsigned long long min_recovery_start(struct mdinfo *array)
1849 {
1850 /* find the minimum recovery_start in an array for metadata
1851 * formats that only record per-array recovery progress instead
1852 * of per-device
1853 */
1854 unsigned long long recovery_start = MaxSector;
1855 struct mdinfo *d;
1856
1857 for (d = array->devs; d; d = d->next)
1858 recovery_start = min(recovery_start, d->recovery_start);
1859
1860 return recovery_start;
1861 }
1862
1863 int mdmon_pid(char *devnm)
1864 {
1865 char path[100];
1866 char pid[10];
1867 int fd;
1868 int n;
1869
1870 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1871
1872 fd = open(path, O_RDONLY | O_NOATIME, 0);
1873
1874 if (fd < 0)
1875 return -1;
1876 n = read(fd, pid, 9);
1877 close(fd);
1878 if (n <= 0)
1879 return -1;
1880 return atoi(pid);
1881 }
1882
1883 int mdmon_running(char *devnm)
1884 {
1885 int pid = mdmon_pid(devnm);
1886 if (pid <= 0)
1887 return 0;
1888 if (kill(pid, 0) == 0)
1889 return 1;
1890 return 0;
1891 }
1892
1893 int start_mdmon(char *devnm)
1894 {
1895 int i, skipped;
1896 int len;
1897 pid_t pid;
1898 int status;
1899 char pathbuf[1024];
1900 char *paths[4] = {
1901 pathbuf,
1902 BINDIR "/mdmon",
1903 "./mdmon",
1904 NULL
1905 };
1906
1907 if (check_env("MDADM_NO_MDMON"))
1908 return 0;
1909
1910 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1911 if (len > 0) {
1912 char *sl;
1913 pathbuf[len] = 0;
1914 sl = strrchr(pathbuf, '/');
1915 if (sl)
1916 sl++;
1917 else
1918 sl = pathbuf;
1919 strcpy(sl, "mdmon");
1920 } else
1921 pathbuf[0] = '\0';
1922
1923 /* First try to run systemctl */
1924 if (!check_env("MDADM_NO_SYSTEMCTL"))
1925 switch(fork()) {
1926 case 0:
1927 /* FIXME yuk. CLOSE_EXEC?? */
1928 skipped = 0;
1929 for (i = 3; skipped < 20; i++)
1930 if (close(i) < 0)
1931 skipped++;
1932 else
1933 skipped = 0;
1934
1935 /* Don't want to see error messages from
1936 * systemctl. If the service doesn't exist,
1937 * we start mdmon ourselves.
1938 */
1939 close(2);
1940 open("/dev/null", O_WRONLY);
1941 snprintf(pathbuf, sizeof(pathbuf), "mdmon@%s.service",
1942 devnm);
1943 status = execl("/usr/bin/systemctl", "systemctl",
1944 "start",
1945 pathbuf, NULL);
1946 status = execl("/bin/systemctl", "systemctl", "start",
1947 pathbuf, NULL);
1948 exit(1);
1949 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1950 return -1;
1951 default: /* parent - good */
1952 pid = wait(&status);
1953 if (pid >= 0 && status == 0)
1954 return 0;
1955 }
1956
1957 /* That failed, try running mdmon directly */
1958 switch(fork()) {
1959 case 0:
1960 /* FIXME yuk. CLOSE_EXEC?? */
1961 skipped = 0;
1962 for (i = 3; skipped < 20; i++)
1963 if (close(i) < 0)
1964 skipped++;
1965 else
1966 skipped = 0;
1967
1968 for (i = 0; paths[i]; i++)
1969 if (paths[i][0]) {
1970 execl(paths[i], paths[i],
1971 devnm, NULL);
1972 }
1973 exit(1);
1974 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1975 return -1;
1976 default: /* parent - good */
1977 pid = wait(&status);
1978 if (pid < 0 || status != 0) {
1979 pr_err("failed to launch mdmon. Array remains readonly\n");
1980 return -1;
1981 }
1982 }
1983 return 0;
1984 }
1985
1986 __u32 random32(void)
1987 {
1988 __u32 rv;
1989 int rfd = open("/dev/urandom", O_RDONLY);
1990 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1991 rv = random();
1992 if (rfd >= 0)
1993 close(rfd);
1994 return rv;
1995 }
1996
1997 void random_uuid(__u8 *buf)
1998 {
1999 int fd, i, len;
2000 __u32 r[4];
2001
2002 fd = open("/dev/urandom", O_RDONLY);
2003 if (fd < 0)
2004 goto use_random;
2005 len = read(fd, buf, 16);
2006 close(fd);
2007 if (len != 16)
2008 goto use_random;
2009
2010 return;
2011
2012 use_random:
2013 for (i = 0; i < 4; i++)
2014 r[i] = random();
2015 memcpy(buf, r, 16);
2016 }
2017
2018 #ifndef MDASSEMBLE
2019 int flush_metadata_updates(struct supertype *st)
2020 {
2021 int sfd;
2022 if (!st->updates) {
2023 st->update_tail = NULL;
2024 return -1;
2025 }
2026
2027 sfd = connect_monitor(st->container_devnm);
2028 if (sfd < 0)
2029 return -1;
2030
2031 while (st->updates) {
2032 struct metadata_update *mu = st->updates;
2033 st->updates = mu->next;
2034
2035 send_message(sfd, mu, 0);
2036 wait_reply(sfd, 0);
2037 free(mu->buf);
2038 free(mu);
2039 }
2040 ack(sfd, 0);
2041 wait_reply(sfd, 0);
2042 close(sfd);
2043 st->update_tail = NULL;
2044 return 0;
2045 }
2046
2047 void append_metadata_update(struct supertype *st, void *buf, int len)
2048 {
2049
2050 struct metadata_update *mu = xmalloc(sizeof(*mu));
2051
2052 mu->buf = buf;
2053 mu->len = len;
2054 mu->space = NULL;
2055 mu->space_list = NULL;
2056 mu->next = NULL;
2057 *st->update_tail = mu;
2058 st->update_tail = &mu->next;
2059 }
2060 #endif /* MDASSEMBLE */
2061
2062 #ifdef __TINYC__
2063 /* tinyc doesn't optimize this check in ioctl.h out ... */
2064 unsigned int __invalid_size_argument_for_IOC = 0;
2065 #endif
2066
2067 int experimental(void)
2068 {
2069 if (check_env("MDADM_EXPERIMENTAL"))
2070 return 1;
2071 else {
2072 pr_err("To use this feature MDADM_EXPERIMENTAL environment variable has to be defined.\n");
2073 return 0;
2074 }
2075 }
2076
2077 /* Pick all spares matching given criteria from a container
2078 * if min_size == 0 do not check size
2079 * if domlist == NULL do not check domains
2080 * if spare_group given add it to domains of each spare
2081 * metadata allows to test domains using metadata of destination array */
2082 struct mdinfo *container_choose_spares(struct supertype *st,
2083 unsigned long long min_size,
2084 struct domainlist *domlist,
2085 char *spare_group,
2086 const char *metadata, int get_one)
2087 {
2088 struct mdinfo *d, **dp, *disks = NULL;
2089
2090 /* get list of all disks in container */
2091 if (st->ss->getinfo_super_disks)
2092 disks = st->ss->getinfo_super_disks(st);
2093
2094 if (!disks)
2095 return disks;
2096 /* find spare devices on the list */
2097 dp = &disks->devs;
2098 disks->array.spare_disks = 0;
2099 while (*dp) {
2100 int found = 0;
2101 d = *dp;
2102 if (d->disk.state == 0) {
2103 /* check if size is acceptable */
2104 unsigned long long dev_size;
2105 dev_t dev = makedev(d->disk.major,d->disk.minor);
2106
2107 if (!min_size ||
2108 (dev_size_from_id(dev, &dev_size) &&
2109 dev_size >= min_size))
2110 found = 1;
2111 /* check if domain matches */
2112 if (found && domlist) {
2113 struct dev_policy *pol = devid_policy(dev);
2114 if (spare_group)
2115 pol_add(&pol, pol_domain,
2116 spare_group, NULL);
2117 if (domain_test(domlist, pol, metadata) != 1)
2118 found = 0;
2119 dev_policy_free(pol);
2120 }
2121 }
2122 if (found) {
2123 dp = &d->next;
2124 disks->array.spare_disks++;
2125 if (get_one) {
2126 sysfs_free(*dp);
2127 d->next = NULL;
2128 }
2129 } else {
2130 *dp = d->next;
2131 d->next = NULL;
2132 sysfs_free(d);
2133 }
2134 }
2135 return disks;
2136 }
2137
2138 /* Checks if paths point to the same device
2139 * Returns 0 if they do.
2140 * Returns 1 if they don't.
2141 * Returns -1 if something went wrong,
2142 * e.g. paths are empty or the files
2143 * they point to don't exist */
2144 int compare_paths (char* path1, char* path2)
2145 {
2146 struct stat st1,st2;
2147
2148 if (path1 == NULL || path2 == NULL)
2149 return -1;
2150 if (stat(path1,&st1) != 0)
2151 return -1;
2152 if (stat(path2,&st2) != 0)
2153 return -1;
2154 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2155 return 0;
2156 return 1;
2157 }
2158
2159 /* Make sure we can open as many devices as needed */
2160 void enable_fds(int devices)
2161 {
2162 unsigned int fds = 20 + devices;
2163 struct rlimit lim;
2164 if (getrlimit(RLIMIT_NOFILE, &lim) != 0
2165 || lim.rlim_cur >= fds)
2166 return;
2167 if (lim.rlim_max < fds)
2168 lim.rlim_max = fds;
2169 lim.rlim_cur = fds;
2170 setrlimit(RLIMIT_NOFILE, &lim);
2171 }
2172
2173 int in_initrd(void)
2174 {
2175 /* This is based on similar function in systemd. */
2176 struct statfs s;
2177 /* statfs.f_type is signed long on s390x and MIPS, causing all
2178 sorts of sign extension problems with RAMFS_MAGIC being
2179 defined as 0x858458f6 */
2180 return statfs("/", &s) >= 0 &&
2181 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2182 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2183 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2184 }
2185
2186 void reopen_mddev(int mdfd)
2187 {
2188 /* Re-open without any O_EXCL, but keep
2189 * the same fd
2190 */
2191 char *devnm;
2192 int fd;
2193 devnm = fd2devnm(mdfd);
2194 close(mdfd);
2195 fd = open_dev(devnm);
2196 if (fd >= 0 && fd != mdfd)
2197 dup2(fd, mdfd);
2198 }
2199
2200 #ifndef MDASSEMBLE
2201 static struct cmap_hooks *cmap_hooks = NULL;
2202 static int is_cmap_hooks_ready = 0;
2203
2204 void set_cmap_hooks(void)
2205 {
2206 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2207 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2208 if (!cmap_hooks->cmap_handle)
2209 return;
2210
2211 cmap_hooks->initialize = dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2212 cmap_hooks->get_string = dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2213 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2214
2215 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2216 !cmap_hooks->finalize)
2217 dlclose(cmap_hooks->cmap_handle);
2218 else
2219 is_cmap_hooks_ready = 1;
2220 }
2221
2222 int get_cluster_name(char **cluster_name)
2223 {
2224 int rv = -1;
2225 cmap_handle_t handle;
2226
2227 if (!is_cmap_hooks_ready)
2228 return rv;
2229
2230 rv = cmap_hooks->initialize(&handle);
2231 if (rv != CS_OK)
2232 goto out;
2233
2234 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2235 if (rv != CS_OK) {
2236 free(*cluster_name);
2237 rv = -1;
2238 goto name_err;
2239 }
2240
2241 rv = 0;
2242 name_err:
2243 cmap_hooks->finalize(handle);
2244 out:
2245 return rv;
2246 }
2247
2248 void set_dlm_hooks(void)
2249 {
2250 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2251 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2252 if (!dlm_hooks->dlm_handle)
2253 return;
2254
2255 dlm_hooks->create_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2256 dlm_hooks->release_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2257 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2258 dlm_hooks->ls_unlock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock");
2259 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2260 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2261
2262 if (!dlm_hooks->create_lockspace || !dlm_hooks->ls_lock ||
2263 !dlm_hooks->ls_unlock || !dlm_hooks->release_lockspace ||
2264 !dlm_hooks->ls_get_fd || !dlm_hooks->dispatch)
2265 dlclose(dlm_hooks->dlm_handle);
2266 else
2267 is_dlm_hooks_ready = 1;
2268 }
2269
2270 void set_hooks(void)
2271 {
2272 set_dlm_hooks();
2273 set_cmap_hooks();
2274 }
2275 #endif