]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
IMSM metadata really should be ignored when found on partitions.
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <linux/magic.h>
34 #include <ctype.h>
35 #include <dirent.h>
36 #include <signal.h>
37
38 /*
39 * following taken from linux/blkpg.h because they aren't
40 * anywhere else and it isn't safe to #include linux/ * stuff.
41 */
42
43 #define BLKPG _IO(0x12,105)
44
45 /* The argument structure */
46 struct blkpg_ioctl_arg {
47 int op;
48 int flags;
49 int datalen;
50 void *data;
51 };
52
53 /* The subfunctions (for the op field) */
54 #define BLKPG_ADD_PARTITION 1
55 #define BLKPG_DEL_PARTITION 2
56
57 /* Sizes of name fields. Unused at present. */
58 #define BLKPG_DEVNAMELTH 64
59 #define BLKPG_VOLNAMELTH 64
60
61 /* The data structure for ADD_PARTITION and DEL_PARTITION */
62 struct blkpg_partition {
63 long long start; /* starting offset in bytes */
64 long long length; /* length in bytes */
65 int pno; /* partition number */
66 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
67 to be used in kernel messages */
68 char volname[BLKPG_VOLNAMELTH]; /* volume label */
69 };
70
71 #include "part.h"
72
73 /* Force a compilation error if condition is true */
74 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
75
76 /* Force a compilation error if condition is true, but also produce a
77 result (of value 0 and type size_t), so the expression can be used
78 e.g. in a structure initializer (or where-ever else comma expressions
79 aren't permitted). */
80 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
81
82 /*
83 * Parse a 128 bit uuid in 4 integers
84 * format is 32 hexx nibbles with options :.<space> separator
85 * If not exactly 32 hex digits are found, return 0
86 * else return 1
87 */
88 int parse_uuid(char *str, int uuid[4])
89 {
90 int hit = 0; /* number of Hex digIT */
91 int i;
92 char c;
93 for (i = 0; i < 4; i++)
94 uuid[i] = 0;
95
96 while ((c = *str++) != 0) {
97 int n;
98 if (c >= '0' && c <= '9')
99 n = c-'0';
100 else if (c >= 'a' && c <= 'f')
101 n = 10 + c - 'a';
102 else if (c >= 'A' && c <= 'F')
103 n = 10 + c - 'A';
104 else if (strchr(":. -", c))
105 continue;
106 else return 0;
107
108 if (hit<32) {
109 uuid[hit/8] <<= 4;
110 uuid[hit/8] += n;
111 }
112 hit++;
113 }
114 if (hit == 32)
115 return 1;
116 return 0;
117 }
118
119 /*
120 * Get the md version number.
121 * We use the RAID_VERSION ioctl if it is supported
122 * If not, but we have a block device with major '9', we assume
123 * 0.36.0
124 *
125 * Return version number as 24 but number - assume version parts
126 * always < 255
127 */
128
129 int md_get_version(int fd)
130 {
131 struct stat stb;
132 mdu_version_t vers;
133
134 if (fstat(fd, &stb)<0)
135 return -1;
136 if ((S_IFMT&stb.st_mode) != S_IFBLK)
137 return -1;
138
139 if (ioctl(fd, RAID_VERSION, &vers) == 0)
140 return (vers.major*10000) + (vers.minor*100) + vers.patchlevel;
141 if (errno == EACCES)
142 return -1;
143 if (major(stb.st_rdev) == MD_MAJOR)
144 return (3600);
145 return -1;
146 }
147
148 int get_linux_version()
149 {
150 struct utsname name;
151 char *cp;
152 int a = 0, b = 0,c = 0;
153 if (uname(&name) <0)
154 return -1;
155
156 cp = name.release;
157 a = strtoul(cp, &cp, 10);
158 if (*cp == '.')
159 b = strtoul(cp+1, &cp, 10);
160 if (*cp == '.')
161 c = strtoul(cp+1, &cp, 10);
162
163 return (a*1000000)+(b*1000)+c;
164 }
165
166 #ifndef MDASSEMBLE
167 int mdadm_version(char *version)
168 {
169 int a, b, c;
170 char *cp;
171
172 if (!version)
173 version = Version;
174
175 cp = strchr(version, '-');
176 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
177 return -1;
178 cp += 3;
179 a = strtoul(cp, &cp, 10);
180 if (*cp != '.')
181 return -1;
182 b = strtoul(cp+1, &cp, 10);
183 if (*cp == '.')
184 c = strtoul(cp+1, &cp, 10);
185 else
186 c = 0;
187 if (*cp != ' ' && *cp != '-')
188 return -1;
189 return (a*1000000)+(b*1000)+c;
190 }
191
192 unsigned long long parse_size(char *size)
193 {
194 /* parse 'size' which should be a number optionally
195 * followed by 'K', 'M', or 'G'.
196 * Without a suffix, K is assumed.
197 * Number returned is in sectors (half-K)
198 * INVALID_SECTORS returned on error.
199 */
200 char *c;
201 long long s = strtoll(size, &c, 10);
202 if (s > 0) {
203 switch (*c) {
204 case 'K':
205 c++;
206 default:
207 s *= 2;
208 break;
209 case 'M':
210 c++;
211 s *= 1024 * 2;
212 break;
213 case 'G':
214 c++;
215 s *= 1024 * 1024 * 2;
216 break;
217 case 's': /* sectors */
218 c++;
219 break;
220 }
221 } else
222 s = INVALID_SECTORS;
223 if (*c)
224 s = INVALID_SECTORS;
225 return s;
226 }
227
228 int parse_layout_10(char *layout)
229 {
230 int copies, rv;
231 char *cp;
232 /* Parse the layout string for raid10 */
233 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
234 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
235 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
236 copies > 200 ||
237 *cp)
238 return -1;
239 if (layout[0] == 'n')
240 rv = 256 + copies;
241 else if (layout[0] == 'o')
242 rv = 0x10000 + (copies<<8) + 1;
243 else
244 rv = 1 + (copies<<8);
245 return rv;
246 }
247
248 int parse_layout_faulty(char *layout)
249 {
250 /* Parse the layout string for 'faulty' */
251 int ln = strcspn(layout, "0123456789");
252 char *m = xstrdup(layout);
253 int mode;
254 m[ln] = 0;
255 mode = map_name(faultylayout, m);
256 if (mode == UnSet)
257 return -1;
258
259 return mode | (atoi(layout+ln)<< ModeShift);
260 }
261
262 long parse_num(char *num)
263 {
264 /* Either return a valid number, or -1 */
265 char *c;
266 long rv = strtol(num, &c, 10);
267 if (rv < 0 || *c || !num[0])
268 return -1;
269 else
270 return rv;
271 }
272 #endif
273
274 void remove_partitions(int fd)
275 {
276 /* remove partitions from this block devices.
277 * This is used for components added to an array
278 */
279 #ifdef BLKPG_DEL_PARTITION
280 struct blkpg_ioctl_arg a;
281 struct blkpg_partition p;
282
283 a.op = BLKPG_DEL_PARTITION;
284 a.data = (void*)&p;
285 a.datalen = sizeof(p);
286 a.flags = 0;
287 memset(a.data, 0, a.datalen);
288 for (p.pno = 0; p.pno < 16; p.pno++)
289 ioctl(fd, BLKPG, &a);
290 #endif
291 }
292
293 int test_partition(int fd)
294 {
295 /* Check if fd is a whole-disk or a partition.
296 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
297 * will return ENXIO on an invalid partition number.
298 */
299 struct blkpg_ioctl_arg a;
300 struct blkpg_partition p;
301 a.op = BLKPG_DEL_PARTITION;
302 a.data = (void*)&p;
303 a.datalen = sizeof(p);
304 a.flags = 0;
305 memset(a.data, 0, a.datalen);
306 p.pno = 1<<30;
307 if (ioctl(fd, BLKPG, &a) == 0)
308 /* Very unlikely, but not a partition */
309 return 0;
310 if (errno == ENXIO || errno == ENOTTY)
311 /* not a partition */
312 return 0;
313
314 return 1;
315 }
316
317 int test_partition_from_id(dev_t id)
318 {
319 char buf[20];
320 int fd, rv;
321
322 sprintf(buf, "%d:%d", major(id), minor(id));
323 fd = dev_open(buf, O_RDONLY);
324 if (fd < 0)
325 return -1;
326 rv = test_partition(fd);
327 close(fd);
328 return rv;
329 }
330
331 int enough(int level, int raid_disks, int layout, int clean, char *avail)
332 {
333 int copies, first;
334 int i;
335 int avail_disks = 0;
336
337 for (i = 0; i < raid_disks; i++)
338 avail_disks += !!avail[i];
339
340 switch (level) {
341 case 10:
342 /* This is the tricky one - we need to check
343 * which actual disks are present.
344 */
345 copies = (layout&255)* ((layout>>8) & 255);
346 first = 0;
347 do {
348 /* there must be one of the 'copies' form 'first' */
349 int n = copies;
350 int cnt = 0;
351 int this = first;
352 while (n--) {
353 if (avail[this])
354 cnt++;
355 this = (this+1) % raid_disks;
356 }
357 if (cnt == 0)
358 return 0;
359 first = (first+(layout&255)) % raid_disks;
360 } while (first != 0);
361 return 1;
362
363 case LEVEL_MULTIPATH:
364 return avail_disks>= 1;
365 case LEVEL_LINEAR:
366 case 0:
367 return avail_disks == raid_disks;
368 case 1:
369 return avail_disks >= 1;
370 case 4:
371 case 5:
372 if (clean)
373 return avail_disks >= raid_disks-1;
374 else
375 return avail_disks >= raid_disks;
376 case 6:
377 if (clean)
378 return avail_disks >= raid_disks-2;
379 else
380 return avail_disks >= raid_disks;
381 default:
382 return 0;
383 }
384 }
385
386 int enough_fd(int fd)
387 {
388 struct mdu_array_info_s array;
389 struct mdu_disk_info_s disk;
390 int avail_disks = 0;
391 int i, rv;
392 char *avail;
393
394 if (ioctl(fd, GET_ARRAY_INFO, &array) != 0 ||
395 array.raid_disks <= 0)
396 return 0;
397 avail = xcalloc(array.raid_disks, 1);
398 for (i = 0; i < MAX_DISKS && array.nr_disks > 0; i++) {
399 disk.number = i;
400 if (ioctl(fd, GET_DISK_INFO, &disk) != 0)
401 continue;
402 if (disk.major == 0 && disk.minor == 0)
403 continue;
404 array.nr_disks--;
405
406 if (! (disk.state & (1<<MD_DISK_SYNC)))
407 continue;
408 if (disk.raid_disk < 0 || disk.raid_disk >= array.raid_disks)
409 continue;
410 avail_disks++;
411 avail[disk.raid_disk] = 1;
412 }
413 /* This is used on an active array, so assume it is clean */
414 rv = enough(array.level, array.raid_disks, array.layout,
415 1, avail);
416 free(avail);
417 return rv;
418 }
419
420 const int uuid_zero[4] = { 0, 0, 0, 0 };
421
422 int same_uuid(int a[4], int b[4], int swapuuid)
423 {
424 if (swapuuid) {
425 /* parse uuids are hostendian.
426 * uuid's from some superblocks are big-ending
427 * if there is a difference, we need to swap..
428 */
429 unsigned char *ac = (unsigned char *)a;
430 unsigned char *bc = (unsigned char *)b;
431 int i;
432 for (i = 0; i < 16; i += 4) {
433 if (ac[i+0] != bc[i+3] ||
434 ac[i+1] != bc[i+2] ||
435 ac[i+2] != bc[i+1] ||
436 ac[i+3] != bc[i+0])
437 return 0;
438 }
439 return 1;
440 } else {
441 if (a[0]==b[0] &&
442 a[1]==b[1] &&
443 a[2]==b[2] &&
444 a[3]==b[3])
445 return 1;
446 return 0;
447 }
448 }
449
450 void copy_uuid(void *a, int b[4], int swapuuid)
451 {
452 if (swapuuid) {
453 /* parse uuids are hostendian.
454 * uuid's from some superblocks are big-ending
455 * if there is a difference, we need to swap..
456 */
457 unsigned char *ac = (unsigned char *)a;
458 unsigned char *bc = (unsigned char *)b;
459 int i;
460 for (i = 0; i < 16; i += 4) {
461 ac[i+0] = bc[i+3];
462 ac[i+1] = bc[i+2];
463 ac[i+2] = bc[i+1];
464 ac[i+3] = bc[i+0];
465 }
466 } else
467 memcpy(a, b, 16);
468 }
469
470 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
471 {
472 int i, j;
473 char uuid[16];
474 char *c = buf;
475 strcpy(c, "UUID-");
476 c += strlen(c);
477 copy_uuid(uuid, id, swap);
478 for (i = 0; i < 4; i++) {
479 if (i)
480 *c++ = sep;
481 for (j = 3; j >= 0; j--) {
482 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
483 c+= 2;
484 }
485 }
486 return buf;
487
488 }
489
490 char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep)
491 {
492 // dirty hack to work around an issue with super1 superblocks...
493 // super1 superblocks need swapuuid set in order for assembly to
494 // work, but can't have it set if we want this printout to match
495 // all the other uuid printouts in super1.c, so we force swapuuid
496 // to 1 to make our printout match the rest of super1
497 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 : st->ss->swapuuid, buf, sep);
498 }
499
500 #ifndef MDASSEMBLE
501 int check_ext2(int fd, char *name)
502 {
503 /*
504 * Check for an ext2fs file system.
505 * Superblock is always 1K at 1K offset
506 *
507 * s_magic is le16 at 56 == 0xEF53
508 * report mtime - le32 at 44
509 * blocks - le32 at 4
510 * logblksize - le32 at 24
511 */
512 unsigned char sb[1024];
513 time_t mtime;
514 unsigned long long size;
515 int bsize;
516 if (lseek(fd, 1024,0)!= 1024)
517 return 0;
518 if (read(fd, sb, 1024)!= 1024)
519 return 0;
520 if (sb[56] != 0x53 || sb[57] != 0xef)
521 return 0;
522
523 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
524 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
525 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
526 size <<= bsize;
527 pr_err("%s appears to contain an ext2fs file system\n",
528 name);
529 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
530 return 1;
531 }
532
533 int check_reiser(int fd, char *name)
534 {
535 /*
536 * superblock is at 64K
537 * size is 1024;
538 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
539 *
540 */
541 unsigned char sb[1024];
542 unsigned long long size;
543 if (lseek(fd, 64*1024, 0) != 64*1024)
544 return 0;
545 if (read(fd, sb, 1024) != 1024)
546 return 0;
547 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
548 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
549 return 0;
550 pr_err("%s appears to contain a reiserfs file system\n",name);
551 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
552 cont_err("size = %lluK\n", size*4);
553
554 return 1;
555 }
556
557 int check_raid(int fd, char *name)
558 {
559 struct mdinfo info;
560 time_t crtime;
561 char *level;
562 struct supertype *st = guess_super(fd);
563
564 if (!st)
565 return 0;
566 st->ss->load_super(st, fd, name);
567 /* Looks like a raid array .. */
568 pr_err("%s appears to be part of a raid array:\n",
569 name);
570 st->ss->getinfo_super(st, &info, NULL);
571 st->ss->free_super(st);
572 crtime = info.array.ctime;
573 level = map_num(pers, info.array.level);
574 if (!level) level = "-unknown-";
575 cont_err("level=%s devices=%d ctime=%s",
576 level, info.array.raid_disks, ctime(&crtime));
577 return 1;
578 }
579
580 int ask(char *mesg)
581 {
582 char *add = "";
583 int i;
584 for (i = 0; i < 5; i++) {
585 char buf[100];
586 fprintf(stderr, "%s%s", mesg, add);
587 fflush(stderr);
588 if (fgets(buf, 100, stdin)==NULL)
589 return 0;
590 if (buf[0]=='y' || buf[0]=='Y')
591 return 1;
592 if (buf[0]=='n' || buf[0]=='N')
593 return 0;
594 add = "(y/n) ";
595 }
596 pr_err("assuming 'no'\n");
597 return 0;
598 }
599 #endif /* MDASSEMBLE */
600
601 int is_standard(char *dev, int *nump)
602 {
603 /* tests if dev is a "standard" md dev name.
604 * i.e if the last component is "/dNN" or "/mdNN",
605 * where NN is a string of digits
606 * Returns 1 if a partitionable standard,
607 * -1 if non-partitonable,
608 * 0 if not a standard name.
609 */
610 char *d = strrchr(dev, '/');
611 int type = 0;
612 int num;
613 if (!d)
614 return 0;
615 if (strncmp(d, "/d",2) == 0)
616 d += 2, type = 1; /* /dev/md/dN{pM} */
617 else if (strncmp(d, "/md_d", 5) == 0)
618 d += 5, type = 1; /* /dev/md_dN{pM} */
619 else if (strncmp(d, "/md", 3) == 0)
620 d += 3, type = -1; /* /dev/mdN */
621 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
622 d += 1, type = -1; /* /dev/md/N */
623 else
624 return 0;
625 if (!*d)
626 return 0;
627 num = atoi(d);
628 while (isdigit(*d))
629 d++;
630 if (*d)
631 return 0;
632 if (nump) *nump = num;
633
634 return type;
635 }
636
637 unsigned long calc_csum(void *super, int bytes)
638 {
639 unsigned long long newcsum = 0;
640 int i;
641 unsigned int csum;
642 unsigned int *superc = (unsigned int*) super;
643
644 for(i = 0; i < bytes/4; i++)
645 newcsum += superc[i];
646 csum = (newcsum& 0xffffffff) + (newcsum>>32);
647 #ifdef __alpha__
648 /* The in-kernel checksum calculation is always 16bit on
649 * the alpha, though it is 32 bit on i386...
650 * I wonder what it is elsewhere... (it uses an API in
651 * a way that it shouldn't).
652 */
653 csum = (csum & 0xffff) + (csum >> 16);
654 csum = (csum & 0xffff) + (csum >> 16);
655 #endif
656 return csum;
657 }
658
659 #ifndef MDASSEMBLE
660 char *human_size(long long bytes)
661 {
662 static char buf[30];
663
664 /* We convert bytes to either centi-M{ega,ibi}bytes or
665 * centi-G{igi,ibi}bytes, with appropriate rounding,
666 * and then print 1/100th of those as a decimal.
667 * We allow upto 2048Megabytes before converting to
668 * gigabytes, as that shows more precision and isn't
669 * too large a number.
670 * Terabytes are not yet handled.
671 */
672
673 if (bytes < 5000*1024)
674 buf[0] = 0;
675 else if (bytes < 2*1024LL*1024LL*1024LL) {
676 long cMiB = (bytes / ( (1LL<<20) / 200LL ) +1) /2;
677 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
678 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
679 cMiB/100 , cMiB % 100,
680 cMB/100, cMB % 100);
681 } else {
682 long cGiB = (bytes / ( (1LL<<30) / 200LL ) +1) /2;
683 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
684 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
685 cGiB/100 , cGiB % 100,
686 cGB/100, cGB % 100);
687 }
688 return buf;
689 }
690
691 char *human_size_brief(long long bytes, int prefix)
692 {
693 static char buf[30];
694
695 /* We convert bytes to either centi-M{ega,ibi}bytes or
696 * centi-G{igi,ibi}bytes, with appropriate rounding,
697 * and then print 1/100th of those as a decimal.
698 * We allow upto 2048Megabytes before converting to
699 * gigabytes, as that shows more precision and isn't
700 * too large a number.
701 * Terabytes are not yet handled.
702 *
703 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
704 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
705 */
706
707 if (bytes < 5000*1024)
708 buf[0] = 0;
709 else if (prefix == IEC) {
710 if (bytes < 2*1024LL*1024LL*1024LL) {
711 long cMiB = (bytes / ( (1LL<<20) / 200LL ) +1) /2;
712 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
713 cMiB/100 , cMiB % 100);
714 } else {
715 long cGiB = (bytes / ( (1LL<<30) / 200LL ) +1) /2;
716 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
717 cGiB/100 , cGiB % 100);
718 }
719 }
720 else if (prefix == JEDEC) {
721 if (bytes < 2*1024LL*1024LL*1024LL) {
722 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
723 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
724 cMB/100, cMB % 100);
725 } else {
726 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
727 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
728 cGB/100 , cGB % 100);
729 }
730 }
731 else
732 buf[0] = 0;
733
734 return buf;
735 }
736
737 void print_r10_layout(int layout)
738 {
739 int near = layout & 255;
740 int far = (layout >> 8) & 255;
741 int offset = (layout&0x10000);
742 char *sep = "";
743
744 if (near != 1) {
745 printf("%s near=%d", sep, near);
746 sep = ",";
747 }
748 if (far != 1)
749 printf("%s %s=%d", sep, offset?"offset":"far", far);
750 if (near*far == 1)
751 printf("NO REDUNDANCY");
752 }
753 #endif
754
755 unsigned long long calc_array_size(int level, int raid_disks, int layout,
756 int chunksize, unsigned long long devsize)
757 {
758 if (level == 1)
759 return devsize;
760 devsize &= ~(unsigned long long)((chunksize>>9)-1);
761 return get_data_disks(level, layout, raid_disks) * devsize;
762 }
763
764 int get_data_disks(int level, int layout, int raid_disks)
765 {
766 int data_disks = 0;
767 switch (level) {
768 case 0: data_disks = raid_disks;
769 break;
770 case 1: data_disks = 1;
771 break;
772 case 4:
773 case 5: data_disks = raid_disks - 1;
774 break;
775 case 6: data_disks = raid_disks - 2;
776 break;
777 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
778 break;
779 }
780
781 return data_disks;
782 }
783
784 int devnm2devid(char *devnm)
785 {
786 /* First look in /sys/block/$DEVNM/dev for %d:%d
787 * If that fails, try parsing out a number
788 */
789 char path[100];
790 char *ep;
791 int fd;
792 int mjr,mnr;
793
794 sprintf(path, "/sys/block/%s/dev", devnm);
795 fd = open(path, O_RDONLY);
796 if (fd >= 0) {
797 char buf[20];
798 int n = read(fd, buf, sizeof(buf));
799 close(fd);
800 if (n > 0)
801 buf[n] = 0;
802 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
803 return makedev(mjr, mnr);
804 }
805 if (strncmp(devnm, "md_d", 4) == 0 &&
806 isdigit(devnm[4]) &&
807 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
808 ep > devnm && *ep == 0)
809 return makedev(get_mdp_major(), mnr << MdpMinorShift);
810
811 if (strncmp(devnm, "md", 2) == 0 &&
812 isdigit(devnm[2]) &&
813 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
814 ep > devnm && *ep == 0)
815 return makedev(MD_MAJOR, mnr);
816
817 return 0;
818 }
819
820 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
821 char *get_md_name(char *devnm)
822 {
823 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
824 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
825
826 static char devname[50];
827 struct stat stb;
828 dev_t rdev = devnm2devid(devnm);
829 char *dn;
830
831 if (rdev == 0)
832 return 0;
833 if (strncmp(devnm, "md_", 3) == 0) {
834 snprintf(devname, sizeof(devname), "/dev/md/%s",
835 devnm + 3);
836 if (stat(devname, &stb) == 0
837 && (S_IFMT&stb.st_mode) == S_IFBLK
838 && (stb.st_rdev == rdev))
839 return devname;
840 }
841 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
842 if (stat(devname, &stb) == 0
843 && (S_IFMT&stb.st_mode) == S_IFBLK
844 && (stb.st_rdev == rdev))
845 return devname;
846
847 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
848 if (stat(devname, &stb) == 0
849 && (S_IFMT&stb.st_mode) == S_IFBLK
850 && (stb.st_rdev == rdev))
851 return devname;
852
853 dn = map_dev(major(rdev), minor(rdev), 0);
854 if (dn)
855 return dn;
856 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
857 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
858 if (errno != EEXIST)
859 return NULL;
860
861 if (stat(devname, &stb) == 0
862 && (S_IFMT&stb.st_mode) == S_IFBLK
863 && (stb.st_rdev == rdev))
864 return devname;
865 unlink(devname);
866 return NULL;
867 }
868
869 void put_md_name(char *name)
870 {
871 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
872 unlink(name);
873 }
874 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
875
876 int dev_open(char *dev, int flags)
877 {
878 /* like 'open', but if 'dev' matches %d:%d, create a temp
879 * block device and open that
880 */
881 char *e;
882 int fd = -1;
883 char devname[32];
884 int major;
885 int minor;
886
887 if (!dev) return -1;
888 flags |= O_DIRECT;
889
890 major = strtoul(dev, &e, 0);
891 if (e > dev && *e == ':' && e[1] &&
892 (minor = strtoul(e+1, &e, 0)) >= 0 &&
893 *e == 0) {
894 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
895 (int)getpid(), major, minor);
896 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
897 fd = open(devname, flags);
898 unlink(devname);
899 }
900 if (fd < 0) {
901 /* Try /tmp as /dev appear to be read-only */
902 snprintf(devname, sizeof(devname), "/tmp/.tmp.md.%d:%d:%d",
903 (int)getpid(), major, minor);
904 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
905 fd = open(devname, flags);
906 unlink(devname);
907 }
908 }
909 } else
910 fd = open(dev, flags);
911 return fd;
912 }
913
914 int open_dev_flags(char *devnm, int flags)
915 {
916 int devid;
917 char buf[20];
918
919 devid = devnm2devid(devnm);
920 sprintf(buf, "%d:%d", major(devid), minor(devid));
921 return dev_open(buf, flags);
922 }
923
924 int open_dev(char *devnm)
925 {
926 return open_dev_flags(devnm, O_RDONLY);
927 }
928
929 int open_dev_excl(char *devnm)
930 {
931 char buf[20];
932 int i;
933 int flags = O_RDWR;
934 int devid = devnm2devid(devnm);
935 long delay = 1000;
936
937 sprintf(buf, "%d:%d", major(devid), minor(devid));
938 for (i = 0 ; i < 25 ; i++) {
939 int fd = dev_open(buf, flags|O_EXCL);
940 if (fd >= 0)
941 return fd;
942 if (errno == EACCES && flags == O_RDWR) {
943 flags = O_RDONLY;
944 continue;
945 }
946 if (errno != EBUSY)
947 return fd;
948 usleep(delay);
949 if (delay < 200000)
950 delay *= 2;
951 }
952 return -1;
953 }
954
955 int same_dev(char *one, char *two)
956 {
957 struct stat st1, st2;
958 if (stat(one, &st1) != 0)
959 return 0;
960 if (stat(two, &st2) != 0)
961 return 0;
962 if ((st1.st_mode & S_IFMT) != S_IFBLK)
963 return 0;
964 if ((st2.st_mode & S_IFMT) != S_IFBLK)
965 return 0;
966 return st1.st_rdev == st2.st_rdev;
967 }
968
969 void wait_for(char *dev, int fd)
970 {
971 int i;
972 struct stat stb_want;
973 long delay = 1000;
974
975 if (fstat(fd, &stb_want) != 0 ||
976 (stb_want.st_mode & S_IFMT) != S_IFBLK)
977 return;
978
979 for (i = 0 ; i < 25 ; i++) {
980 struct stat stb;
981 if (stat(dev, &stb) == 0 &&
982 (stb.st_mode & S_IFMT) == S_IFBLK &&
983 (stb.st_rdev == stb_want.st_rdev))
984 return;
985 usleep(delay);
986 if (delay < 200000)
987 delay *= 2;
988 }
989 if (i == 25)
990 dprintf("%s: timeout waiting for %s\n", __func__, dev);
991 }
992
993 struct superswitch *superlist[] =
994 {
995 &super0, &super1,
996 &super_ddf, &super_imsm,
997 &mbr, &gpt,
998 NULL };
999
1000 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
1001
1002 struct supertype *super_by_fd(int fd, char **subarrayp)
1003 {
1004 mdu_array_info_t array;
1005 int vers;
1006 int minor;
1007 struct supertype *st = NULL;
1008 struct mdinfo *sra;
1009 char *verstr;
1010 char version[20];
1011 int i;
1012 char *subarray = NULL;
1013 char container[32] = "";
1014
1015 sra = sysfs_read(fd, NULL, GET_VERSION);
1016
1017 if (sra) {
1018 vers = sra->array.major_version;
1019 minor = sra->array.minor_version;
1020 verstr = sra->text_version;
1021 } else {
1022 if (ioctl(fd, GET_ARRAY_INFO, &array))
1023 array.major_version = array.minor_version = 0;
1024 vers = array.major_version;
1025 minor = array.minor_version;
1026 verstr = "";
1027 }
1028
1029 if (vers != -1) {
1030 sprintf(version, "%d.%d", vers, minor);
1031 verstr = version;
1032 }
1033 if (minor == -2 && is_subarray(verstr)) {
1034 char *dev = verstr+1;
1035
1036 subarray = strchr(dev, '/');
1037 if (subarray) {
1038 *subarray++ = '\0';
1039 subarray = xstrdup(subarray);
1040 }
1041 strcpy(container, dev);
1042 if (sra)
1043 sysfs_free(sra);
1044 sra = sysfs_read(-1, container, GET_VERSION);
1045 if (sra && sra->text_version[0])
1046 verstr = sra->text_version;
1047 else
1048 verstr = "-no-metadata-";
1049 }
1050
1051 for (i = 0; st == NULL && superlist[i] ; i++)
1052 st = superlist[i]->match_metadata_desc(verstr);
1053
1054 if (sra)
1055 sysfs_free(sra);
1056 if (st) {
1057 st->sb = NULL;
1058 if (subarrayp)
1059 *subarrayp = subarray;
1060 strcpy(st->container_devnm, container);
1061 strcpy(st->devnm, fd2devnm(fd));
1062 } else
1063 free(subarray);
1064
1065 return st;
1066 }
1067 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
1068
1069 int dev_size_from_id(dev_t id, unsigned long long *size)
1070 {
1071 char buf[20];
1072 int fd;
1073
1074 sprintf(buf, "%d:%d", major(id), minor(id));
1075 fd = dev_open(buf, O_RDONLY);
1076 if (fd < 0)
1077 return 0;
1078 if (get_dev_size(fd, NULL, size)) {
1079 close(fd);
1080 return 1;
1081 }
1082 close(fd);
1083 return 0;
1084 }
1085
1086 struct supertype *dup_super(struct supertype *orig)
1087 {
1088 struct supertype *st;
1089
1090 if (!orig)
1091 return orig;
1092 st = xcalloc(1, sizeof(*st));
1093 st->ss = orig->ss;
1094 st->max_devs = orig->max_devs;
1095 st->minor_version = orig->minor_version;
1096 st->ignore_hw_compat = orig->ignore_hw_compat;
1097 st->data_offset = orig->data_offset;
1098 st->sb = NULL;
1099 st->info = NULL;
1100 return st;
1101 }
1102
1103 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1104 {
1105 /* try each load_super to find the best match,
1106 * and return the best superswitch
1107 */
1108 struct superswitch *ss;
1109 struct supertype *st;
1110 time_t besttime = 0;
1111 int bestsuper = -1;
1112 int i;
1113
1114 st = xcalloc(1, sizeof(*st));
1115 st->container_devnm[0] = 0;
1116
1117 for (i = 0 ; superlist[i]; i++) {
1118 int rv;
1119 ss = superlist[i];
1120 if (guess_type == guess_array && ss->add_to_super == NULL)
1121 continue;
1122 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1123 continue;
1124 memset(st, 0, sizeof(*st));
1125 st->ignore_hw_compat = 1;
1126 rv = ss->load_super(st, fd, NULL);
1127 if (rv == 0) {
1128 struct mdinfo info;
1129 st->ss->getinfo_super(st, &info, NULL);
1130 if (bestsuper == -1 ||
1131 besttime < info.array.ctime) {
1132 bestsuper = i;
1133 besttime = info.array.ctime;
1134 }
1135 ss->free_super(st);
1136 }
1137 }
1138 if (bestsuper != -1) {
1139 int rv;
1140 memset(st, 0, sizeof(*st));
1141 st->ignore_hw_compat = 1;
1142 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1143 if (rv == 0) {
1144 superlist[bestsuper]->free_super(st);
1145 return st;
1146 }
1147 }
1148 free(st);
1149 return NULL;
1150 }
1151
1152 /* Return size of device in bytes */
1153 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1154 {
1155 unsigned long long ldsize;
1156 struct stat st;
1157
1158 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1159 ldsize = (unsigned long long)st.st_size;
1160 else
1161 #ifdef BLKGETSIZE64
1162 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1163 #endif
1164 {
1165 unsigned long dsize;
1166 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1167 ldsize = dsize;
1168 ldsize <<= 9;
1169 } else {
1170 if (dname)
1171 pr_err("Cannot get size of %s: %s\b",
1172 dname, strerror(errno));
1173 return 0;
1174 }
1175 }
1176 *sizep = ldsize;
1177 return 1;
1178 }
1179
1180 /* Return true if this can only be a container, not a member device.
1181 * i.e. is and md device and size is zero
1182 */
1183 int must_be_container(int fd)
1184 {
1185 unsigned long long size;
1186 if (md_get_version(fd) < 0)
1187 return 0;
1188 if (get_dev_size(fd, NULL, &size) == 0)
1189 return 1;
1190 if (size == 0)
1191 return 1;
1192 return 0;
1193 }
1194
1195 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1196 * Returns: 1 if successful
1197 * -1 for unknown partition type
1198 * 0 for other errors
1199 */
1200 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1201 {
1202 struct GPT gpt;
1203 unsigned char empty_gpt_entry[16]= {0};
1204 struct GPT_part_entry *part;
1205 char buf[512];
1206 unsigned long long curr_part_end;
1207 unsigned all_partitions, entry_size;
1208 unsigned part_nr;
1209
1210 *endofpart = 0;
1211
1212 BUILD_BUG_ON(sizeof(gpt) != 512);
1213 /* skip protective MBR */
1214 lseek(fd, 512, SEEK_SET);
1215 /* read GPT header */
1216 if (read(fd, &gpt, 512) != 512)
1217 return 0;
1218
1219 /* get the number of partition entries and the entry size */
1220 all_partitions = __le32_to_cpu(gpt.part_cnt);
1221 entry_size = __le32_to_cpu(gpt.part_size);
1222
1223 /* Check GPT signature*/
1224 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1225 return -1;
1226
1227 /* sanity checks */
1228 if (all_partitions > 1024 ||
1229 entry_size > sizeof(buf))
1230 return -1;
1231
1232 part = (struct GPT_part_entry *)buf;
1233
1234 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1235 /* read partition entry */
1236 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1237 return 0;
1238
1239 /* is this valid partition? */
1240 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1241 /* check the last lba for the current partition */
1242 curr_part_end = __le64_to_cpu(part->ending_lba);
1243 if (curr_part_end > *endofpart)
1244 *endofpart = curr_part_end;
1245 }
1246
1247 }
1248 return 1;
1249 }
1250
1251 /* Sets endofpart parameter to the last block used by the last partition on the device.
1252 * Returns: 1 if successful
1253 * -1 for unknown partition type
1254 * 0 for other errors
1255 */
1256 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1257 {
1258 struct MBR boot_sect;
1259 struct MBR_part_record *part;
1260 unsigned long long curr_part_end;
1261 unsigned part_nr;
1262 int retval = 0;
1263
1264 *endofpart = 0;
1265
1266 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1267 /* read MBR */
1268 lseek(fd, 0, 0);
1269 if (read(fd, &boot_sect, 512) != 512)
1270 goto abort;
1271
1272 /* check MBP signature */
1273 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1274 retval = 1;
1275 /* found the correct signature */
1276 part = boot_sect.parts;
1277
1278 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1279 /* check for GPT type */
1280 if (part->part_type == MBR_GPT_PARTITION_TYPE) {
1281 retval = get_gpt_last_partition_end(fd, endofpart);
1282 break;
1283 }
1284 /* check the last used lba for the current partition */
1285 curr_part_end = __le32_to_cpu(part->first_sect_lba) +
1286 __le32_to_cpu(part->blocks_num);
1287 if (curr_part_end > *endofpart)
1288 *endofpart = curr_part_end;
1289
1290 part++;
1291 }
1292 } else {
1293 /* Unknown partition table */
1294 retval = -1;
1295 }
1296 abort:
1297 return retval;
1298 }
1299
1300 int check_partitions(int fd, char *dname, unsigned long long freesize,
1301 unsigned long long size)
1302 {
1303 /*
1304 * Check where the last partition ends
1305 */
1306 unsigned long long endofpart;
1307 int ret;
1308
1309 if ((ret = get_last_partition_end(fd, &endofpart)) > 0) {
1310 /* There appears to be a partition table here */
1311 if (freesize == 0) {
1312 /* partitions will not be visible in new device */
1313 pr_err("partition table exists on %s but will be lost or\n"
1314 " meaningless after creating array\n",
1315 dname);
1316 return 1;
1317 } else if (endofpart > freesize) {
1318 /* last partition overlaps metadata */
1319 pr_err("metadata will over-write last partition on %s.\n",
1320 dname);
1321 return 1;
1322 } else if (size && endofpart > size) {
1323 /* partitions will be truncated in new device */
1324 pr_err("array size is too small to cover all partitions on %s.\n",
1325 dname);
1326 return 1;
1327 }
1328 }
1329 return 0;
1330 }
1331
1332 int open_container(int fd)
1333 {
1334 /* 'fd' is a block device. Find out if it is in use
1335 * by a container, and return an open fd on that container.
1336 */
1337 char path[256];
1338 char *e;
1339 DIR *dir;
1340 struct dirent *de;
1341 int dfd, n;
1342 char buf[200];
1343 int major, minor;
1344 struct stat st;
1345
1346 if (fstat(fd, &st) != 0)
1347 return -1;
1348 sprintf(path, "/sys/dev/block/%d:%d/holders",
1349 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1350 e = path + strlen(path);
1351
1352 dir = opendir(path);
1353 if (!dir)
1354 return -1;
1355 while ((de = readdir(dir))) {
1356 if (de->d_ino == 0)
1357 continue;
1358 if (de->d_name[0] == '.')
1359 continue;
1360 /* Need to make sure it is a container and not a volume */
1361 sprintf(e, "/%s/md/metadata_version", de->d_name);
1362 dfd = open(path, O_RDONLY);
1363 if (dfd < 0)
1364 continue;
1365 n = read(dfd, buf, sizeof(buf));
1366 close(dfd);
1367 if (n <= 0 || (unsigned)n >= sizeof(buf))
1368 continue;
1369 buf[n] = 0;
1370 if (strncmp(buf, "external", 8) != 0 ||
1371 n < 10 ||
1372 buf[9] == '/')
1373 continue;
1374 sprintf(e, "/%s/dev", de->d_name);
1375 dfd = open(path, O_RDONLY);
1376 if (dfd < 0)
1377 continue;
1378 n = read(dfd, buf, sizeof(buf));
1379 close(dfd);
1380 if (n <= 0 || (unsigned)n >= sizeof(buf))
1381 continue;
1382 buf[n] = 0;
1383 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1384 continue;
1385 sprintf(buf, "%d:%d", major, minor);
1386 dfd = dev_open(buf, O_RDONLY);
1387 if (dfd >= 0) {
1388 closedir(dir);
1389 return dfd;
1390 }
1391 }
1392 closedir(dir);
1393 return -1;
1394 }
1395
1396 struct superswitch *version_to_superswitch(char *vers)
1397 {
1398 int i;
1399
1400 for (i = 0; superlist[i]; i++) {
1401 struct superswitch *ss = superlist[i];
1402
1403 if (strcmp(vers, ss->name) == 0)
1404 return ss;
1405 }
1406
1407 return NULL;
1408 }
1409
1410 int metadata_container_matches(char *metadata, char *devnm)
1411 {
1412 /* Check if 'devnm' is the container named in 'metadata'
1413 * which is
1414 * /containername/componentname or
1415 * -containername/componentname
1416 */
1417 int l;
1418 if (*metadata != '/' && *metadata != '-')
1419 return 0;
1420 l = strlen(devnm);
1421 if (strncmp(metadata+1, devnm, l) != 0)
1422 return 0;
1423 if (metadata[l+1] != '/')
1424 return 0;
1425 return 1;
1426 }
1427
1428 int metadata_subdev_matches(char *metadata, char *devnm)
1429 {
1430 /* Check if 'devnm' is the subdev named in 'metadata'
1431 * which is
1432 * /containername/subdev or
1433 * -containername/subdev
1434 */
1435 char *sl;
1436 if (*metadata != '/' && *metadata != '-')
1437 return 0;
1438 sl = strchr(metadata+1, '/');
1439 if (!sl)
1440 return 0;
1441 if (strcmp(sl+1, devnm) == 0)
1442 return 1;
1443 return 0;
1444 }
1445
1446 int is_container_member(struct mdstat_ent *mdstat, char *container)
1447 {
1448 if (mdstat->metadata_version == NULL ||
1449 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1450 !metadata_container_matches(mdstat->metadata_version+9, container))
1451 return 0;
1452
1453 return 1;
1454 }
1455
1456 int is_subarray_active(char *subarray, char *container)
1457 {
1458 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1459 struct mdstat_ent *ent;
1460
1461 for (ent = mdstat; ent; ent = ent->next)
1462 if (is_container_member(ent, container))
1463 if (strcmp(to_subarray(ent, container), subarray) == 0)
1464 break;
1465
1466 free_mdstat(mdstat);
1467
1468 return ent != NULL;
1469 }
1470
1471 /* open_subarray - opens a subarray in a container
1472 * @dev: container device name
1473 * @st: empty supertype
1474 * @quiet: block reporting errors flag
1475 *
1476 * On success returns an fd to a container and fills in *st
1477 */
1478 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1479 {
1480 struct mdinfo *mdi;
1481 struct mdinfo *info;
1482 int fd, err = 1;
1483 char *_devnm;
1484
1485 fd = open(dev, O_RDWR|O_EXCL);
1486 if (fd < 0) {
1487 if (!quiet)
1488 pr_err("Couldn't open %s, aborting\n",
1489 dev);
1490 return -1;
1491 }
1492
1493 _devnm = fd2devnm(fd);
1494 if (_devnm == NULL) {
1495 if (!quiet)
1496 pr_err("Failed to determine device number for %s\n",
1497 dev);
1498 goto close_fd;
1499 }
1500 strcpy(st->devnm, _devnm);
1501
1502 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1503 if (!mdi) {
1504 if (!quiet)
1505 pr_err("Failed to read sysfs for %s\n",
1506 dev);
1507 goto close_fd;
1508 }
1509
1510 if (mdi->array.level != UnSet) {
1511 if (!quiet)
1512 pr_err("%s is not a container\n", dev);
1513 goto free_sysfs;
1514 }
1515
1516 st->ss = version_to_superswitch(mdi->text_version);
1517 if (!st->ss) {
1518 if (!quiet)
1519 pr_err("Operation not supported for %s metadata\n",
1520 mdi->text_version);
1521 goto free_sysfs;
1522 }
1523
1524 if (st->devnm[0] == 0) {
1525 if (!quiet)
1526 pr_err("Failed to allocate device name\n");
1527 goto free_sysfs;
1528 }
1529
1530 if (!st->ss->load_container) {
1531 if (!quiet)
1532 pr_err("%s is not a container\n", dev);
1533 goto free_sysfs;
1534 }
1535
1536 if (st->ss->load_container(st, fd, NULL)) {
1537 if (!quiet)
1538 pr_err("Failed to load metadata for %s\n",
1539 dev);
1540 goto free_sysfs;
1541 }
1542
1543 info = st->ss->container_content(st, subarray);
1544 if (!info) {
1545 if (!quiet)
1546 pr_err("Failed to find subarray-%s in %s\n",
1547 subarray, dev);
1548 goto free_super;
1549 }
1550 free(info);
1551
1552 err = 0;
1553
1554 free_super:
1555 if (err)
1556 st->ss->free_super(st);
1557 free_sysfs:
1558 sysfs_free(mdi);
1559 close_fd:
1560 if (err)
1561 close(fd);
1562
1563 if (err)
1564 return -1;
1565 else
1566 return fd;
1567 }
1568
1569 int add_disk(int mdfd, struct supertype *st,
1570 struct mdinfo *sra, struct mdinfo *info)
1571 {
1572 /* Add a device to an array, in one of 2 ways. */
1573 int rv;
1574 #ifndef MDASSEMBLE
1575 if (st->ss->external) {
1576 if (info->disk.state & (1<<MD_DISK_SYNC))
1577 info->recovery_start = MaxSector;
1578 else
1579 info->recovery_start = 0;
1580 rv = sysfs_add_disk(sra, info, 0);
1581 if (! rv) {
1582 struct mdinfo *sd2;
1583 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1584 if (sd2 == info)
1585 break;
1586 if (sd2 == NULL) {
1587 sd2 = xmalloc(sizeof(*sd2));
1588 *sd2 = *info;
1589 sd2->next = sra->devs;
1590 sra->devs = sd2;
1591 }
1592 }
1593 } else
1594 #endif
1595 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1596 return rv;
1597 }
1598
1599 int remove_disk(int mdfd, struct supertype *st,
1600 struct mdinfo *sra, struct mdinfo *info)
1601 {
1602 int rv;
1603 /* Remove the disk given by 'info' from the array */
1604 #ifndef MDASSEMBLE
1605 if (st->ss->external)
1606 rv = sysfs_set_str(sra, info, "slot", "none");
1607 else
1608 #endif
1609 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1610 info->disk.minor));
1611 return rv;
1612 }
1613
1614 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1615 {
1616 /* Initialise kernel's knowledge of array.
1617 * This varies between externally managed arrays
1618 * and older kernels
1619 */
1620 int vers = md_get_version(mdfd);
1621 int rv;
1622
1623 #ifndef MDASSEMBLE
1624 if (st->ss->external)
1625 rv = sysfs_set_array(info, vers);
1626 else
1627 #endif
1628 if ((vers % 100) >= 1) { /* can use different versions */
1629 mdu_array_info_t inf;
1630 memset(&inf, 0, sizeof(inf));
1631 inf.major_version = info->array.major_version;
1632 inf.minor_version = info->array.minor_version;
1633 rv = ioctl(mdfd, SET_ARRAY_INFO, &inf);
1634 } else
1635 rv = ioctl(mdfd, SET_ARRAY_INFO, NULL);
1636 return rv;
1637 }
1638
1639 unsigned long long min_recovery_start(struct mdinfo *array)
1640 {
1641 /* find the minimum recovery_start in an array for metadata
1642 * formats that only record per-array recovery progress instead
1643 * of per-device
1644 */
1645 unsigned long long recovery_start = MaxSector;
1646 struct mdinfo *d;
1647
1648 for (d = array->devs; d; d = d->next)
1649 recovery_start = min(recovery_start, d->recovery_start);
1650
1651 return recovery_start;
1652 }
1653
1654 int mdmon_pid(char *devnm)
1655 {
1656 char path[100];
1657 char pid[10];
1658 int fd;
1659 int n;
1660
1661 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1662
1663 fd = open(path, O_RDONLY | O_NOATIME, 0);
1664
1665 if (fd < 0)
1666 return -1;
1667 n = read(fd, pid, 9);
1668 close(fd);
1669 if (n <= 0)
1670 return -1;
1671 return atoi(pid);
1672 }
1673
1674 int mdmon_running(char *devnm)
1675 {
1676 int pid = mdmon_pid(devnm);
1677 if (pid <= 0)
1678 return 0;
1679 if (kill(pid, 0) == 0)
1680 return 1;
1681 return 0;
1682 }
1683
1684 int start_mdmon(char *devnm)
1685 {
1686 int i, skipped;
1687 int len;
1688 pid_t pid;
1689 int status;
1690 char pathbuf[1024];
1691 char *paths[4] = {
1692 pathbuf,
1693 "/sbin/mdmon",
1694 "./mdmon",
1695 NULL
1696 };
1697
1698 if (check_env("MDADM_NO_MDMON"))
1699 return 0;
1700
1701 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1702 if (len > 0) {
1703 char *sl;
1704 pathbuf[len] = 0;
1705 sl = strrchr(pathbuf, '/');
1706 if (sl)
1707 sl++;
1708 else
1709 sl = pathbuf;
1710 strcpy(sl, "mdmon");
1711 } else
1712 pathbuf[0] = '\0';
1713
1714 /* First try to run systemctl */
1715 if (!check_env("MDADM_NO_SYSTEMCTL"))
1716 switch(fork()) {
1717 case 0:
1718 /* FIXME yuk. CLOSE_EXEC?? */
1719 skipped = 0;
1720 for (i = 3; skipped < 20; i++)
1721 if (close(i) < 0)
1722 skipped++;
1723 else
1724 skipped = 0;
1725
1726 /* Don't want to see error messages from
1727 * systemctl. If the service doesn't exist,
1728 * we start mdmon ourselves.
1729 */
1730 close(2);
1731 open("/dev/null", O_WRONLY);
1732 snprintf(pathbuf, sizeof(pathbuf), "mdmon@%s.service",
1733 devnm);
1734 status = execl("/usr/bin/systemctl", "systemctl",
1735 "start",
1736 pathbuf, NULL);
1737 status = execl("/bin/systemctl", "systemctl", "start",
1738 pathbuf, NULL);
1739 exit(1);
1740 case -1: pr_err("cannot run mdmon. "
1741 "Array remains readonly\n");
1742 return -1;
1743 default: /* parent - good */
1744 pid = wait(&status);
1745 if (pid >= 0 && status == 0)
1746 return 0;
1747 }
1748
1749 /* That failed, try running mdmon directly */
1750 switch(fork()) {
1751 case 0:
1752 /* FIXME yuk. CLOSE_EXEC?? */
1753 skipped = 0;
1754 for (i = 3; skipped < 20; i++)
1755 if (close(i) < 0)
1756 skipped++;
1757 else
1758 skipped = 0;
1759
1760 for (i = 0; paths[i]; i++)
1761 if (paths[i][0]) {
1762 execl(paths[i], paths[i],
1763 devnm, NULL);
1764 }
1765 exit(1);
1766 case -1: pr_err("cannot run mdmon. "
1767 "Array remains readonly\n");
1768 return -1;
1769 default: /* parent - good */
1770 pid = wait(&status);
1771 if (pid < 0 || status != 0) {
1772 pr_err("failed to launch mdmon. "
1773 "Array remains readonly\n");
1774 return -1;
1775 }
1776 }
1777 return 0;
1778 }
1779
1780 __u32 random32(void)
1781 {
1782 __u32 rv;
1783 int rfd = open("/dev/urandom", O_RDONLY);
1784 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1785 rv = random();
1786 if (rfd >= 0)
1787 close(rfd);
1788 return rv;
1789 }
1790
1791 #ifndef MDASSEMBLE
1792 int flush_metadata_updates(struct supertype *st)
1793 {
1794 int sfd;
1795 if (!st->updates) {
1796 st->update_tail = NULL;
1797 return -1;
1798 }
1799
1800 sfd = connect_monitor(st->container_devnm);
1801 if (sfd < 0)
1802 return -1;
1803
1804 while (st->updates) {
1805 struct metadata_update *mu = st->updates;
1806 st->updates = mu->next;
1807
1808 send_message(sfd, mu, 0);
1809 wait_reply(sfd, 0);
1810 free(mu->buf);
1811 free(mu);
1812 }
1813 ack(sfd, 0);
1814 wait_reply(sfd, 0);
1815 close(sfd);
1816 st->update_tail = NULL;
1817 return 0;
1818 }
1819
1820 void append_metadata_update(struct supertype *st, void *buf, int len)
1821 {
1822
1823 struct metadata_update *mu = xmalloc(sizeof(*mu));
1824
1825 mu->buf = buf;
1826 mu->len = len;
1827 mu->space = NULL;
1828 mu->space_list = NULL;
1829 mu->next = NULL;
1830 *st->update_tail = mu;
1831 st->update_tail = &mu->next;
1832 }
1833 #endif /* MDASSEMBLE */
1834
1835 #ifdef __TINYC__
1836 /* tinyc doesn't optimize this check in ioctl.h out ... */
1837 unsigned int __invalid_size_argument_for_IOC = 0;
1838 #endif
1839
1840 int experimental(void)
1841 {
1842 if (check_env("MDADM_EXPERIMENTAL"))
1843 return 1;
1844 else {
1845 pr_err("To use this feature MDADM_EXPERIMENTAL"
1846 " environment variable has to be defined.\n");
1847 return 0;
1848 }
1849 }
1850
1851 /* Pick all spares matching given criteria from a container
1852 * if min_size == 0 do not check size
1853 * if domlist == NULL do not check domains
1854 * if spare_group given add it to domains of each spare
1855 * metadata allows to test domains using metadata of destination array */
1856 struct mdinfo *container_choose_spares(struct supertype *st,
1857 unsigned long long min_size,
1858 struct domainlist *domlist,
1859 char *spare_group,
1860 const char *metadata, int get_one)
1861 {
1862 struct mdinfo *d, **dp, *disks = NULL;
1863
1864 /* get list of all disks in container */
1865 if (st->ss->getinfo_super_disks)
1866 disks = st->ss->getinfo_super_disks(st);
1867
1868 if (!disks)
1869 return disks;
1870 /* find spare devices on the list */
1871 dp = &disks->devs;
1872 disks->array.spare_disks = 0;
1873 while (*dp) {
1874 int found = 0;
1875 d = *dp;
1876 if (d->disk.state == 0) {
1877 /* check if size is acceptable */
1878 unsigned long long dev_size;
1879 dev_t dev = makedev(d->disk.major,d->disk.minor);
1880
1881 if (!min_size ||
1882 (dev_size_from_id(dev, &dev_size) &&
1883 dev_size >= min_size))
1884 found = 1;
1885 /* check if domain matches */
1886 if (found && domlist) {
1887 struct dev_policy *pol = devid_policy(dev);
1888 if (spare_group)
1889 pol_add(&pol, pol_domain,
1890 spare_group, NULL);
1891 if (domain_test(domlist, pol, metadata) != 1)
1892 found = 0;
1893 dev_policy_free(pol);
1894 }
1895 }
1896 if (found) {
1897 dp = &d->next;
1898 disks->array.spare_disks++;
1899 if (get_one) {
1900 sysfs_free(*dp);
1901 d->next = NULL;
1902 }
1903 } else {
1904 *dp = d->next;
1905 d->next = NULL;
1906 sysfs_free(d);
1907 }
1908 }
1909 return disks;
1910 }
1911
1912 /* Checks if paths point to the same device
1913 * Returns 0 if they do.
1914 * Returns 1 if they don't.
1915 * Returns -1 if something went wrong,
1916 * e.g. paths are empty or the files
1917 * they point to don't exist */
1918 int compare_paths (char* path1, char* path2)
1919 {
1920 struct stat st1,st2;
1921
1922 if (path1 == NULL || path2 == NULL)
1923 return -1;
1924 if (stat(path1,&st1) != 0)
1925 return -1;
1926 if (stat(path2,&st2) != 0)
1927 return -1;
1928 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
1929 return 0;
1930 return 1;
1931 }
1932
1933 /* Make sure we can open as many devices as needed */
1934 void enable_fds(int devices)
1935 {
1936 unsigned int fds = 20 + devices;
1937 struct rlimit lim;
1938 if (getrlimit(RLIMIT_NOFILE, &lim) != 0
1939 || lim.rlim_cur >= fds)
1940 return;
1941 if (lim.rlim_max < fds)
1942 lim.rlim_max = fds;
1943 lim.rlim_cur = fds;
1944 setrlimit(RLIMIT_NOFILE, &lim);
1945 }
1946
1947 int in_initrd(void)
1948 {
1949 /* This is based on similar function in systemd. */
1950 struct statfs s;
1951 return statfs("/", &s) >= 0 &&
1952 ((unsigned long)s.f_type == TMPFS_MAGIC ||
1953 (unsigned long)s.f_type == RAMFS_MAGIC);
1954 }