]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
imsm: validate multiple ppls during assemble
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <linux/magic.h>
34 #include <poll.h>
35 #include <ctype.h>
36 #include <dirent.h>
37 #include <signal.h>
38 #include <dlfcn.h>
39
40
41 /*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46 #define BLKPG _IO(0x12,105)
47
48 /* The argument structure */
49 struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54 };
55
56 /* The subfunctions (for the op field) */
57 #define BLKPG_ADD_PARTITION 1
58 #define BLKPG_DEL_PARTITION 2
59
60 /* Sizes of name fields. Unused at present. */
61 #define BLKPG_DEVNAMELTH 64
62 #define BLKPG_VOLNAMELTH 64
63
64 /* The data structure for ADD_PARTITION and DEL_PARTITION */
65 struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72 };
73
74 #include "part.h"
75
76 /* Force a compilation error if condition is true */
77 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79 /* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85 static int is_dlm_hooks_ready = 0;
86
87 int dlm_funs_ready(void)
88 {
89 return is_dlm_hooks_ready ? 1 : 0;
90 }
91
92 static struct dlm_hooks *dlm_hooks = NULL;
93 struct dlm_lock_resource *dlm_lock_res = NULL;
94 static int ast_called = 0;
95
96 struct dlm_lock_resource {
97 dlm_lshandle_t *ls;
98 struct dlm_lksb lksb;
99 };
100
101 /* Using poll(2) to wait for and dispatch ASTs */
102 static int poll_for_ast(dlm_lshandle_t ls)
103 {
104 struct pollfd pfd;
105
106 pfd.fd = dlm_hooks->ls_get_fd(ls);
107 pfd.events = POLLIN;
108
109 while (!ast_called)
110 {
111 if (poll(&pfd, 1, 0) < 0)
112 {
113 perror("poll");
114 return -1;
115 }
116 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
117 }
118 ast_called = 0;
119
120 return 0;
121 }
122
123 static void dlm_ast(void *arg)
124 {
125 ast_called = 1;
126 }
127
128 static char *cluster_name = NULL;
129 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
130 int cluster_get_dlmlock(int *lockid)
131 {
132 int ret = -1;
133 char str[64];
134 int flags = LKF_NOQUEUE;
135
136 ret = get_cluster_name(&cluster_name);
137 if (ret) {
138 pr_err("The md can't get cluster name\n");
139 return -1;
140 }
141
142 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
143 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
144 if (!dlm_lock_res->ls) {
145 pr_err("%s failed to create lockspace\n", cluster_name);
146 return -ENOMEM;
147 }
148
149 snprintf(str, 64, "bitmap%s", cluster_name);
150 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE,
151 &dlm_lock_res->lksb, flags, str, strlen(str),
152 0, dlm_ast, dlm_lock_res, NULL, NULL);
153 if (ret) {
154 pr_err("error %d when get PW mode on lock %s\n", errno, str);
155 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
156 return ret;
157 }
158
159 /* Wait for it to complete */
160 poll_for_ast(dlm_lock_res->ls);
161 *lockid = dlm_lock_res->lksb.sb_lkid;
162
163 return dlm_lock_res->lksb.sb_status;
164 }
165
166 int cluster_release_dlmlock(int lockid)
167 {
168 int ret = -1;
169
170 if (!cluster_name)
171 return -1;
172
173 ret = dlm_hooks->ls_unlock(dlm_lock_res->ls, lockid, 0,
174 &dlm_lock_res->lksb, dlm_lock_res);
175 if (ret) {
176 pr_err("error %d happened when unlock\n", errno);
177 /* XXX make sure the lock is unlocked eventually */
178 goto out;
179 }
180
181 /* Wait for it to complete */
182 poll_for_ast(dlm_lock_res->ls);
183
184 errno = dlm_lock_res->lksb.sb_status;
185 if (errno != EUNLOCK) {
186 pr_err("error %d happened in ast when unlock lockspace\n",
187 errno);
188 /* XXX make sure the lockspace is unlocked eventually */
189 goto out;
190 }
191
192 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
193 if (ret) {
194 pr_err("error %d happened when release lockspace\n", errno);
195 /* XXX make sure the lockspace is released eventually */
196 goto out;
197 }
198 free(dlm_lock_res);
199
200 out:
201 return ret;
202 }
203
204 int md_array_valid(int fd)
205 {
206 struct mdinfo *sra;
207 int ret;
208
209 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
210 if (sra) {
211 if (sra->array_state != ARRAY_UNKNOWN_STATE)
212 ret = 0;
213 else
214 ret = -ENODEV;
215
216 free(sra);
217 } else {
218 /*
219 * GET_ARRAY_INFO doesn't provide access to the proper state
220 * information, so fallback to a basic check for raid_disks != 0
221 */
222 ret = ioctl(fd, RAID_VERSION);
223 }
224
225 return !ret;
226 }
227
228 int md_array_active(int fd)
229 {
230 struct mdinfo *sra;
231 struct mdu_array_info_s array;
232 int ret = 0;
233
234 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
235 if (sra) {
236 if (!md_array_is_active(sra))
237 ret = -ENODEV;
238
239 free(sra);
240 } else {
241 /*
242 * GET_ARRAY_INFO doesn't provide access to the proper state
243 * information, so fallback to a basic check for raid_disks != 0
244 */
245 ret = ioctl(fd, GET_ARRAY_INFO, &array);
246 }
247
248 return !ret;
249 }
250
251 int md_array_is_active(struct mdinfo *info)
252 {
253 return (info->array_state != ARRAY_CLEAR &&
254 info->array_state != ARRAY_INACTIVE &&
255 info->array_state != ARRAY_UNKNOWN_STATE);
256 }
257
258 /*
259 * Get array info from the kernel. Longer term we want to deprecate the
260 * ioctl and get it from sysfs.
261 */
262 int md_get_array_info(int fd, struct mdu_array_info_s *array)
263 {
264 return ioctl(fd, GET_ARRAY_INFO, array);
265 }
266
267 /*
268 * Set array info
269 */
270 int md_set_array_info(int fd, struct mdu_array_info_s *array)
271 {
272 return ioctl(fd, SET_ARRAY_INFO, array);
273 }
274
275 /*
276 * Get disk info from the kernel.
277 */
278 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
279 {
280 return ioctl(fd, GET_DISK_INFO, disk);
281 }
282
283 /*
284 * Parse a 128 bit uuid in 4 integers
285 * format is 32 hexx nibbles with options :.<space> separator
286 * If not exactly 32 hex digits are found, return 0
287 * else return 1
288 */
289 int parse_uuid(char *str, int uuid[4])
290 {
291 int hit = 0; /* number of Hex digIT */
292 int i;
293 char c;
294 for (i = 0; i < 4; i++)
295 uuid[i] = 0;
296
297 while ((c = *str++) != 0) {
298 int n;
299 if (c >= '0' && c <= '9')
300 n = c-'0';
301 else if (c >= 'a' && c <= 'f')
302 n = 10 + c - 'a';
303 else if (c >= 'A' && c <= 'F')
304 n = 10 + c - 'A';
305 else if (strchr(":. -", c))
306 continue;
307 else return 0;
308
309 if (hit<32) {
310 uuid[hit/8] <<= 4;
311 uuid[hit/8] += n;
312 }
313 hit++;
314 }
315 if (hit == 32)
316 return 1;
317 return 0;
318 }
319
320 int get_linux_version()
321 {
322 struct utsname name;
323 char *cp;
324 int a = 0, b = 0,c = 0;
325 if (uname(&name) <0)
326 return -1;
327
328 cp = name.release;
329 a = strtoul(cp, &cp, 10);
330 if (*cp == '.')
331 b = strtoul(cp+1, &cp, 10);
332 if (*cp == '.')
333 c = strtoul(cp+1, &cp, 10);
334
335 return (a*1000000)+(b*1000)+c;
336 }
337
338 int mdadm_version(char *version)
339 {
340 int a, b, c;
341 char *cp;
342
343 if (!version)
344 version = Version;
345
346 cp = strchr(version, '-');
347 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
348 return -1;
349 cp += 3;
350 a = strtoul(cp, &cp, 10);
351 if (*cp != '.')
352 return -1;
353 b = strtoul(cp+1, &cp, 10);
354 if (*cp == '.')
355 c = strtoul(cp+1, &cp, 10);
356 else
357 c = 0;
358 if (*cp != ' ' && *cp != '-')
359 return -1;
360 return (a*1000000)+(b*1000)+c;
361 }
362
363 unsigned long long parse_size(char *size)
364 {
365 /* parse 'size' which should be a number optionally
366 * followed by 'K', 'M', or 'G'.
367 * Without a suffix, K is assumed.
368 * Number returned is in sectors (half-K)
369 * INVALID_SECTORS returned on error.
370 */
371 char *c;
372 long long s = strtoll(size, &c, 10);
373 if (s > 0) {
374 switch (*c) {
375 case 'K':
376 c++;
377 default:
378 s *= 2;
379 break;
380 case 'M':
381 c++;
382 s *= 1024 * 2;
383 break;
384 case 'G':
385 c++;
386 s *= 1024 * 1024 * 2;
387 break;
388 case 's': /* sectors */
389 c++;
390 break;
391 }
392 } else
393 s = INVALID_SECTORS;
394 if (*c)
395 s = INVALID_SECTORS;
396 return s;
397 }
398
399 int parse_layout_10(char *layout)
400 {
401 int copies, rv;
402 char *cp;
403 /* Parse the layout string for raid10 */
404 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
405 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
406 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
407 copies > 200 ||
408 *cp)
409 return -1;
410 if (layout[0] == 'n')
411 rv = 256 + copies;
412 else if (layout[0] == 'o')
413 rv = 0x10000 + (copies<<8) + 1;
414 else
415 rv = 1 + (copies<<8);
416 return rv;
417 }
418
419 int parse_layout_faulty(char *layout)
420 {
421 /* Parse the layout string for 'faulty' */
422 int ln = strcspn(layout, "0123456789");
423 char *m = xstrdup(layout);
424 int mode;
425 m[ln] = 0;
426 mode = map_name(faultylayout, m);
427 if (mode == UnSet)
428 return -1;
429
430 return mode | (atoi(layout+ln)<< ModeShift);
431 }
432
433 long parse_num(char *num)
434 {
435 /* Either return a valid number, or -1 */
436 char *c;
437 long rv = strtol(num, &c, 10);
438 if (rv < 0 || *c || !num[0])
439 return -1;
440 else
441 return rv;
442 }
443
444 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
445 {
446 char *dev;
447 *slot = strtoul(input, &dev, 10);
448 if (dev == input || dev[0] != ':')
449 return -1;
450 *devname = dev+1;
451 return 0;
452 }
453
454 void remove_partitions(int fd)
455 {
456 /* remove partitions from this block devices.
457 * This is used for components added to an array
458 */
459 #ifdef BLKPG_DEL_PARTITION
460 struct blkpg_ioctl_arg a;
461 struct blkpg_partition p;
462
463 a.op = BLKPG_DEL_PARTITION;
464 a.data = (void*)&p;
465 a.datalen = sizeof(p);
466 a.flags = 0;
467 memset(a.data, 0, a.datalen);
468 for (p.pno = 0; p.pno < 16; p.pno++)
469 ioctl(fd, BLKPG, &a);
470 #endif
471 }
472
473 int test_partition(int fd)
474 {
475 /* Check if fd is a whole-disk or a partition.
476 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
477 * will return ENXIO on an invalid partition number.
478 */
479 struct blkpg_ioctl_arg a;
480 struct blkpg_partition p;
481 a.op = BLKPG_DEL_PARTITION;
482 a.data = (void*)&p;
483 a.datalen = sizeof(p);
484 a.flags = 0;
485 memset(a.data, 0, a.datalen);
486 p.pno = 1<<30;
487 if (ioctl(fd, BLKPG, &a) == 0)
488 /* Very unlikely, but not a partition */
489 return 0;
490 if (errno == ENXIO || errno == ENOTTY)
491 /* not a partition */
492 return 0;
493
494 return 1;
495 }
496
497 int test_partition_from_id(dev_t id)
498 {
499 char buf[20];
500 int fd, rv;
501
502 sprintf(buf, "%d:%d", major(id), minor(id));
503 fd = dev_open(buf, O_RDONLY);
504 if (fd < 0)
505 return -1;
506 rv = test_partition(fd);
507 close(fd);
508 return rv;
509 }
510
511 int enough(int level, int raid_disks, int layout, int clean, char *avail)
512 {
513 int copies, first;
514 int i;
515 int avail_disks = 0;
516
517 for (i = 0; i < raid_disks; i++)
518 avail_disks += !!avail[i];
519
520 switch (level) {
521 case 10:
522 /* This is the tricky one - we need to check
523 * which actual disks are present.
524 */
525 copies = (layout&255)* ((layout>>8) & 255);
526 first = 0;
527 do {
528 /* there must be one of the 'copies' form 'first' */
529 int n = copies;
530 int cnt = 0;
531 int this = first;
532 while (n--) {
533 if (avail[this])
534 cnt++;
535 this = (this+1) % raid_disks;
536 }
537 if (cnt == 0)
538 return 0;
539 first = (first+(layout&255)) % raid_disks;
540 } while (first != 0);
541 return 1;
542
543 case LEVEL_MULTIPATH:
544 return avail_disks>= 1;
545 case LEVEL_LINEAR:
546 case 0:
547 return avail_disks == raid_disks;
548 case 1:
549 return avail_disks >= 1;
550 case 4:
551 if (avail_disks == raid_disks - 1 &&
552 !avail[raid_disks - 1])
553 /* If just the parity device is missing, then we
554 * have enough, even if not clean
555 */
556 return 1;
557 /* FALL THROUGH */
558 case 5:
559 if (clean)
560 return avail_disks >= raid_disks-1;
561 else
562 return avail_disks >= raid_disks;
563 case 6:
564 if (clean)
565 return avail_disks >= raid_disks-2;
566 else
567 return avail_disks >= raid_disks;
568 default:
569 return 0;
570 }
571 }
572
573 const int uuid_zero[4] = { 0, 0, 0, 0 };
574
575 int same_uuid(int a[4], int b[4], int swapuuid)
576 {
577 if (swapuuid) {
578 /* parse uuids are hostendian.
579 * uuid's from some superblocks are big-ending
580 * if there is a difference, we need to swap..
581 */
582 unsigned char *ac = (unsigned char *)a;
583 unsigned char *bc = (unsigned char *)b;
584 int i;
585 for (i = 0; i < 16; i += 4) {
586 if (ac[i+0] != bc[i+3] ||
587 ac[i+1] != bc[i+2] ||
588 ac[i+2] != bc[i+1] ||
589 ac[i+3] != bc[i+0])
590 return 0;
591 }
592 return 1;
593 } else {
594 if (a[0]==b[0] &&
595 a[1]==b[1] &&
596 a[2]==b[2] &&
597 a[3]==b[3])
598 return 1;
599 return 0;
600 }
601 }
602
603 void copy_uuid(void *a, int b[4], int swapuuid)
604 {
605 if (swapuuid) {
606 /* parse uuids are hostendian.
607 * uuid's from some superblocks are big-ending
608 * if there is a difference, we need to swap..
609 */
610 unsigned char *ac = (unsigned char *)a;
611 unsigned char *bc = (unsigned char *)b;
612 int i;
613 for (i = 0; i < 16; i += 4) {
614 ac[i+0] = bc[i+3];
615 ac[i+1] = bc[i+2];
616 ac[i+2] = bc[i+1];
617 ac[i+3] = bc[i+0];
618 }
619 } else
620 memcpy(a, b, 16);
621 }
622
623 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
624 {
625 int i, j;
626 char uuid[16];
627 char *c = buf;
628 strcpy(c, "UUID-");
629 c += strlen(c);
630 copy_uuid(uuid, id, swap);
631 for (i = 0; i < 4; i++) {
632 if (i)
633 *c++ = sep;
634 for (j = 3; j >= 0; j--) {
635 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
636 c+= 2;
637 }
638 }
639 return buf;
640
641 }
642
643 char *fname_from_uuid(struct supertype *st, struct mdinfo *info,
644 char *buf, char sep)
645 {
646 // dirty hack to work around an issue with super1 superblocks...
647 // super1 superblocks need swapuuid set in order for assembly to
648 // work, but can't have it set if we want this printout to match
649 // all the other uuid printouts in super1.c, so we force swapuuid
650 // to 1 to make our printout match the rest of super1
651 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 :
652 st->ss->swapuuid, buf, sep);
653 }
654
655 int check_ext2(int fd, char *name)
656 {
657 /*
658 * Check for an ext2fs file system.
659 * Superblock is always 1K at 1K offset
660 *
661 * s_magic is le16 at 56 == 0xEF53
662 * report mtime - le32 at 44
663 * blocks - le32 at 4
664 * logblksize - le32 at 24
665 */
666 unsigned char sb[1024];
667 time_t mtime;
668 unsigned long long size;
669 int bsize;
670 if (lseek(fd, 1024,0)!= 1024)
671 return 0;
672 if (read(fd, sb, 1024)!= 1024)
673 return 0;
674 if (sb[56] != 0x53 || sb[57] != 0xef)
675 return 0;
676
677 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
678 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
679 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
680 size <<= bsize;
681 pr_err("%s appears to contain an ext2fs file system\n",
682 name);
683 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
684 return 1;
685 }
686
687 int check_reiser(int fd, char *name)
688 {
689 /*
690 * superblock is at 64K
691 * size is 1024;
692 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
693 *
694 */
695 unsigned char sb[1024];
696 unsigned long long size;
697 if (lseek(fd, 64*1024, 0) != 64*1024)
698 return 0;
699 if (read(fd, sb, 1024) != 1024)
700 return 0;
701 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
702 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
703 return 0;
704 pr_err("%s appears to contain a reiserfs file system\n",name);
705 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
706 cont_err("size = %lluK\n", size*4);
707
708 return 1;
709 }
710
711 int check_raid(int fd, char *name)
712 {
713 struct mdinfo info;
714 time_t crtime;
715 char *level;
716 struct supertype *st = guess_super(fd);
717
718 if (!st)
719 return 0;
720 if (st->ss->add_to_super != NULL) {
721 st->ss->load_super(st, fd, name);
722 /* Looks like a raid array .. */
723 pr_err("%s appears to be part of a raid array:\n", name);
724 st->ss->getinfo_super(st, &info, NULL);
725 st->ss->free_super(st);
726 crtime = info.array.ctime;
727 level = map_num(pers, info.array.level);
728 if (!level)
729 level = "-unknown-";
730 cont_err("level=%s devices=%d ctime=%s",
731 level, info.array.raid_disks, ctime(&crtime));
732 } else {
733 /* Looks like GPT or MBR */
734 pr_err("partition table exists on %s\n", name);
735 }
736 return 1;
737 }
738
739 int fstat_is_blkdev(int fd, char *devname, dev_t *rdev)
740 {
741 struct stat stb;
742
743 if (fstat(fd, &stb) != 0) {
744 pr_err("fstat failed for %s: %s\n", devname, strerror(errno));
745 return 0;
746 }
747 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
748 pr_err("%s is not a block device.\n", devname);
749 return 0;
750 }
751 if (rdev)
752 *rdev = stb.st_rdev;
753 return 1;
754 }
755
756 int stat_is_blkdev(char *devname, dev_t *rdev)
757 {
758 struct stat stb;
759
760 if (stat(devname, &stb) != 0) {
761 pr_err("stat failed for %s: %s\n", devname, strerror(errno));
762 return 0;
763 }
764 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
765 pr_err("%s is not a block device.\n", devname);
766 return 0;
767 }
768 if (rdev)
769 *rdev = stb.st_rdev;
770 return 1;
771 }
772
773 int ask(char *mesg)
774 {
775 char *add = "";
776 int i;
777 for (i = 0; i < 5; i++) {
778 char buf[100];
779 fprintf(stderr, "%s%s", mesg, add);
780 fflush(stderr);
781 if (fgets(buf, 100, stdin)==NULL)
782 return 0;
783 if (buf[0]=='y' || buf[0]=='Y')
784 return 1;
785 if (buf[0]=='n' || buf[0]=='N')
786 return 0;
787 add = "(y/n) ";
788 }
789 pr_err("assuming 'no'\n");
790 return 0;
791 }
792
793 int is_standard(char *dev, int *nump)
794 {
795 /* tests if dev is a "standard" md dev name.
796 * i.e if the last component is "/dNN" or "/mdNN",
797 * where NN is a string of digits
798 * Returns 1 if a partitionable standard,
799 * -1 if non-partitonable,
800 * 0 if not a standard name.
801 */
802 char *d = strrchr(dev, '/');
803 int type = 0;
804 int num;
805 if (!d)
806 return 0;
807 if (strncmp(d, "/d",2) == 0)
808 d += 2, type = 1; /* /dev/md/dN{pM} */
809 else if (strncmp(d, "/md_d", 5) == 0)
810 d += 5, type = 1; /* /dev/md_dN{pM} */
811 else if (strncmp(d, "/md", 3) == 0)
812 d += 3, type = -1; /* /dev/mdN */
813 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
814 d += 1, type = -1; /* /dev/md/N */
815 else
816 return 0;
817 if (!*d)
818 return 0;
819 num = atoi(d);
820 while (isdigit(*d))
821 d++;
822 if (*d)
823 return 0;
824 if (nump) *nump = num;
825
826 return type;
827 }
828
829 unsigned long calc_csum(void *super, int bytes)
830 {
831 unsigned long long newcsum = 0;
832 int i;
833 unsigned int csum;
834 unsigned int *superc = (unsigned int*) super;
835
836 for(i = 0; i < bytes/4; i++)
837 newcsum += superc[i];
838 csum = (newcsum& 0xffffffff) + (newcsum>>32);
839 #ifdef __alpha__
840 /* The in-kernel checksum calculation is always 16bit on
841 * the alpha, though it is 32 bit on i386...
842 * I wonder what it is elsewhere... (it uses an API in
843 * a way that it shouldn't).
844 */
845 csum = (csum & 0xffff) + (csum >> 16);
846 csum = (csum & 0xffff) + (csum >> 16);
847 #endif
848 return csum;
849 }
850
851 char *human_size(long long bytes)
852 {
853 static char buf[47];
854
855 /* We convert bytes to either centi-M{ega,ibi}bytes or
856 * centi-G{igi,ibi}bytes, with appropriate rounding,
857 * and then print 1/100th of those as a decimal.
858 * We allow upto 2048Megabytes before converting to
859 * gigabytes, as that shows more precision and isn't
860 * too large a number.
861 * Terabytes are not yet handled.
862 */
863
864 if (bytes < 5000*1024)
865 buf[0] = 0;
866 else if (bytes < 2*1024LL*1024LL*1024LL) {
867 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
868 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
869 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
870 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
871 } else {
872 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
873 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
874 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
875 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
876 }
877 return buf;
878 }
879
880 char *human_size_brief(long long bytes, int prefix)
881 {
882 static char buf[30];
883
884 /* We convert bytes to either centi-M{ega,ibi}bytes or
885 * centi-G{igi,ibi}bytes, with appropriate rounding,
886 * and then print 1/100th of those as a decimal.
887 * We allow upto 2048Megabytes before converting to
888 * gigabytes, as that shows more precision and isn't
889 * too large a number.
890 * Terabytes are not yet handled.
891 *
892 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
893 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
894 */
895
896 if (bytes < 5000*1024)
897 buf[0] = 0;
898 else if (prefix == IEC) {
899 if (bytes < 2*1024LL*1024LL*1024LL) {
900 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
901 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
902 cMiB/100, cMiB % 100);
903 } else {
904 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
905 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
906 cGiB/100, cGiB % 100);
907 }
908 }
909 else if (prefix == JEDEC) {
910 if (bytes < 2*1024LL*1024LL*1024LL) {
911 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
912 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
913 cMB/100, cMB % 100);
914 } else {
915 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
916 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
917 cGB/100, cGB % 100);
918 }
919 }
920 else
921 buf[0] = 0;
922
923 return buf;
924 }
925
926 void print_r10_layout(int layout)
927 {
928 int near = layout & 255;
929 int far = (layout >> 8) & 255;
930 int offset = (layout&0x10000);
931 char *sep = "";
932
933 if (near != 1) {
934 printf("%s near=%d", sep, near);
935 sep = ",";
936 }
937 if (far != 1)
938 printf("%s %s=%d", sep, offset?"offset":"far", far);
939 if (near*far == 1)
940 printf("NO REDUNDANCY");
941 }
942
943 unsigned long long calc_array_size(int level, int raid_disks, int layout,
944 int chunksize, unsigned long long devsize)
945 {
946 if (level == 1)
947 return devsize;
948 devsize &= ~(unsigned long long)((chunksize>>9)-1);
949 return get_data_disks(level, layout, raid_disks) * devsize;
950 }
951
952 int get_data_disks(int level, int layout, int raid_disks)
953 {
954 int data_disks = 0;
955 switch (level) {
956 case 0: data_disks = raid_disks;
957 break;
958 case 1: data_disks = 1;
959 break;
960 case 4:
961 case 5: data_disks = raid_disks - 1;
962 break;
963 case 6: data_disks = raid_disks - 2;
964 break;
965 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
966 break;
967 }
968
969 return data_disks;
970 }
971
972 dev_t devnm2devid(char *devnm)
973 {
974 /* First look in /sys/block/$DEVNM/dev for %d:%d
975 * If that fails, try parsing out a number
976 */
977 char path[100];
978 char *ep;
979 int fd;
980 int mjr,mnr;
981
982 sprintf(path, "/sys/block/%s/dev", devnm);
983 fd = open(path, O_RDONLY);
984 if (fd >= 0) {
985 char buf[20];
986 int n = read(fd, buf, sizeof(buf));
987 close(fd);
988 if (n > 0)
989 buf[n] = 0;
990 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
991 return makedev(mjr, mnr);
992 }
993 if (strncmp(devnm, "md_d", 4) == 0 &&
994 isdigit(devnm[4]) &&
995 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
996 ep > devnm && *ep == 0)
997 return makedev(get_mdp_major(), mnr << MdpMinorShift);
998
999 if (strncmp(devnm, "md", 2) == 0 &&
1000 isdigit(devnm[2]) &&
1001 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
1002 ep > devnm && *ep == 0)
1003 return makedev(MD_MAJOR, mnr);
1004
1005 return 0;
1006 }
1007
1008 char *get_md_name(char *devnm)
1009 {
1010 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
1011 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
1012
1013 static char devname[50];
1014 struct stat stb;
1015 dev_t rdev = devnm2devid(devnm);
1016 char *dn;
1017
1018 if (rdev == 0)
1019 return 0;
1020 if (strncmp(devnm, "md_", 3) == 0) {
1021 snprintf(devname, sizeof(devname), "/dev/md/%s",
1022 devnm + 3);
1023 if (stat(devname, &stb) == 0 &&
1024 (S_IFMT&stb.st_mode) == S_IFBLK && (stb.st_rdev == rdev))
1025 return devname;
1026 }
1027 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
1028 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
1029 (stb.st_rdev == rdev))
1030 return devname;
1031
1032 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
1033 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
1034 (stb.st_rdev == rdev))
1035 return devname;
1036
1037 dn = map_dev(major(rdev), minor(rdev), 0);
1038 if (dn)
1039 return dn;
1040 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
1041 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
1042 if (errno != EEXIST)
1043 return NULL;
1044
1045 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK &&
1046 (stb.st_rdev == rdev))
1047 return devname;
1048 unlink(devname);
1049 return NULL;
1050 }
1051
1052 void put_md_name(char *name)
1053 {
1054 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1055 unlink(name);
1056 }
1057
1058 int get_maj_min(char *dev, int *major, int *minor)
1059 {
1060 char *e;
1061 *major = strtoul(dev, &e, 0);
1062 return (e > dev && *e == ':' && e[1] &&
1063 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1064 *e == 0);
1065 }
1066
1067 int dev_open(char *dev, int flags)
1068 {
1069 /* like 'open', but if 'dev' matches %d:%d, create a temp
1070 * block device and open that
1071 */
1072 int fd = -1;
1073 char devname[32];
1074 int major;
1075 int minor;
1076
1077 if (!dev)
1078 return -1;
1079 flags |= O_DIRECT;
1080
1081 if (get_maj_min(dev, &major, &minor)) {
1082 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1083 (int)getpid(), major, minor);
1084 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1085 fd = open(devname, flags);
1086 unlink(devname);
1087 }
1088 if (fd < 0) {
1089 /* Try /tmp as /dev appear to be read-only */
1090 snprintf(devname, sizeof(devname),
1091 "/tmp/.tmp.md.%d:%d:%d",
1092 (int)getpid(), major, minor);
1093 if (mknod(devname, S_IFBLK|0600,
1094 makedev(major, minor)) == 0) {
1095 fd = open(devname, flags);
1096 unlink(devname);
1097 }
1098 }
1099 } else
1100 fd = open(dev, flags);
1101 return fd;
1102 }
1103
1104 int open_dev_flags(char *devnm, int flags)
1105 {
1106 dev_t devid;
1107 char buf[20];
1108
1109 devid = devnm2devid(devnm);
1110 sprintf(buf, "%d:%d", major(devid), minor(devid));
1111 return dev_open(buf, flags);
1112 }
1113
1114 int open_dev(char *devnm)
1115 {
1116 return open_dev_flags(devnm, O_RDONLY);
1117 }
1118
1119 int open_dev_excl(char *devnm)
1120 {
1121 char buf[20];
1122 int i;
1123 int flags = O_RDWR;
1124 dev_t devid = devnm2devid(devnm);
1125 long delay = 1000;
1126
1127 sprintf(buf, "%d:%d", major(devid), minor(devid));
1128 for (i = 0; i < 25; i++) {
1129 int fd = dev_open(buf, flags|O_EXCL);
1130 if (fd >= 0)
1131 return fd;
1132 if (errno == EACCES && flags == O_RDWR) {
1133 flags = O_RDONLY;
1134 continue;
1135 }
1136 if (errno != EBUSY)
1137 return fd;
1138 usleep(delay);
1139 if (delay < 200000)
1140 delay *= 2;
1141 }
1142 return -1;
1143 }
1144
1145 int same_dev(char *one, char *two)
1146 {
1147 struct stat st1, st2;
1148 if (stat(one, &st1) != 0)
1149 return 0;
1150 if (stat(two, &st2) != 0)
1151 return 0;
1152 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1153 return 0;
1154 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1155 return 0;
1156 return st1.st_rdev == st2.st_rdev;
1157 }
1158
1159 void wait_for(char *dev, int fd)
1160 {
1161 int i;
1162 struct stat stb_want;
1163 long delay = 1000;
1164
1165 if (fstat(fd, &stb_want) != 0 ||
1166 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1167 return;
1168
1169 for (i = 0; i < 25; i++) {
1170 struct stat stb;
1171 if (stat(dev, &stb) == 0 &&
1172 (stb.st_mode & S_IFMT) == S_IFBLK &&
1173 (stb.st_rdev == stb_want.st_rdev))
1174 return;
1175 usleep(delay);
1176 if (delay < 200000)
1177 delay *= 2;
1178 }
1179 if (i == 25)
1180 pr_err("timeout waiting for %s\n", dev);
1181 }
1182
1183 struct superswitch *superlist[] =
1184 {
1185 &super0, &super1,
1186 &super_ddf, &super_imsm,
1187 &mbr, &gpt,
1188 NULL
1189 };
1190
1191 struct supertype *super_by_fd(int fd, char **subarrayp)
1192 {
1193 mdu_array_info_t array;
1194 int vers;
1195 int minor;
1196 struct supertype *st = NULL;
1197 struct mdinfo *sra;
1198 char *verstr;
1199 char version[20];
1200 int i;
1201 char *subarray = NULL;
1202 char container[32] = "";
1203
1204 sra = sysfs_read(fd, NULL, GET_VERSION);
1205
1206 if (sra) {
1207 vers = sra->array.major_version;
1208 minor = sra->array.minor_version;
1209 verstr = sra->text_version;
1210 } else {
1211 if (md_get_array_info(fd, &array))
1212 array.major_version = array.minor_version = 0;
1213 vers = array.major_version;
1214 minor = array.minor_version;
1215 verstr = "";
1216 }
1217
1218 if (vers != -1) {
1219 sprintf(version, "%d.%d", vers, minor);
1220 verstr = version;
1221 }
1222 if (minor == -2 && is_subarray(verstr)) {
1223 char *dev = verstr+1;
1224
1225 subarray = strchr(dev, '/');
1226 if (subarray) {
1227 *subarray++ = '\0';
1228 subarray = xstrdup(subarray);
1229 }
1230 strcpy(container, dev);
1231 sysfs_free(sra);
1232 sra = sysfs_read(-1, container, GET_VERSION);
1233 if (sra && sra->text_version[0])
1234 verstr = sra->text_version;
1235 else
1236 verstr = "-no-metadata-";
1237 }
1238
1239 for (i = 0; st == NULL && superlist[i]; i++)
1240 st = superlist[i]->match_metadata_desc(verstr);
1241
1242 sysfs_free(sra);
1243 if (st) {
1244 st->sb = NULL;
1245 if (subarrayp)
1246 *subarrayp = subarray;
1247 strcpy(st->container_devnm, container);
1248 strcpy(st->devnm, fd2devnm(fd));
1249 } else
1250 free(subarray);
1251
1252 return st;
1253 }
1254
1255 int dev_size_from_id(dev_t id, unsigned long long *size)
1256 {
1257 char buf[20];
1258 int fd;
1259
1260 sprintf(buf, "%d:%d", major(id), minor(id));
1261 fd = dev_open(buf, O_RDONLY);
1262 if (fd < 0)
1263 return 0;
1264 if (get_dev_size(fd, NULL, size)) {
1265 close(fd);
1266 return 1;
1267 }
1268 close(fd);
1269 return 0;
1270 }
1271
1272 int dev_sector_size_from_id(dev_t id, unsigned int *size)
1273 {
1274 char buf[20];
1275 int fd;
1276
1277 sprintf(buf, "%d:%d", major(id), minor(id));
1278 fd = dev_open(buf, O_RDONLY);
1279 if (fd < 0)
1280 return 0;
1281 if (get_dev_sector_size(fd, NULL, size)) {
1282 close(fd);
1283 return 1;
1284 }
1285 close(fd);
1286 return 0;
1287 }
1288
1289 struct supertype *dup_super(struct supertype *orig)
1290 {
1291 struct supertype *st;
1292
1293 if (!orig)
1294 return orig;
1295 st = xcalloc(1, sizeof(*st));
1296 st->ss = orig->ss;
1297 st->max_devs = orig->max_devs;
1298 st->minor_version = orig->minor_version;
1299 st->ignore_hw_compat = orig->ignore_hw_compat;
1300 st->data_offset = orig->data_offset;
1301 st->sb = NULL;
1302 st->info = NULL;
1303 return st;
1304 }
1305
1306 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1307 {
1308 /* try each load_super to find the best match,
1309 * and return the best superswitch
1310 */
1311 struct superswitch *ss;
1312 struct supertype *st;
1313 unsigned int besttime = 0;
1314 int bestsuper = -1;
1315 int i;
1316
1317 st = xcalloc(1, sizeof(*st));
1318 st->container_devnm[0] = 0;
1319
1320 for (i = 0; superlist[i]; i++) {
1321 int rv;
1322 ss = superlist[i];
1323 if (guess_type == guess_array && ss->add_to_super == NULL)
1324 continue;
1325 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1326 continue;
1327 memset(st, 0, sizeof(*st));
1328 st->ignore_hw_compat = 1;
1329 rv = ss->load_super(st, fd, NULL);
1330 if (rv == 0) {
1331 struct mdinfo info;
1332 st->ss->getinfo_super(st, &info, NULL);
1333 if (bestsuper == -1 ||
1334 besttime < info.array.ctime) {
1335 bestsuper = i;
1336 besttime = info.array.ctime;
1337 }
1338 ss->free_super(st);
1339 }
1340 }
1341 if (bestsuper != -1) {
1342 int rv;
1343 memset(st, 0, sizeof(*st));
1344 st->ignore_hw_compat = 1;
1345 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1346 if (rv == 0) {
1347 superlist[bestsuper]->free_super(st);
1348 return st;
1349 }
1350 }
1351 free(st);
1352 return NULL;
1353 }
1354
1355 /* Return size of device in bytes */
1356 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1357 {
1358 unsigned long long ldsize;
1359 struct stat st;
1360
1361 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1362 ldsize = (unsigned long long)st.st_size;
1363 else
1364 #ifdef BLKGETSIZE64
1365 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1366 #endif
1367 {
1368 unsigned long dsize;
1369 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1370 ldsize = dsize;
1371 ldsize <<= 9;
1372 } else {
1373 if (dname)
1374 pr_err("Cannot get size of %s: %s\n",
1375 dname, strerror(errno));
1376 return 0;
1377 }
1378 }
1379 *sizep = ldsize;
1380 return 1;
1381 }
1382
1383 /* Return sector size of device in bytes */
1384 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1385 {
1386 unsigned int sectsize;
1387
1388 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1389 if (dname)
1390 pr_err("Cannot get sector size of %s: %s\n",
1391 dname, strerror(errno));
1392 return 0;
1393 }
1394
1395 *sectsizep = sectsize;
1396 return 1;
1397 }
1398
1399 /* Return true if this can only be a container, not a member device.
1400 * i.e. is and md device and size is zero
1401 */
1402 int must_be_container(int fd)
1403 {
1404 struct mdinfo *mdi;
1405 unsigned long long size;
1406
1407 mdi = sysfs_read(fd, NULL, GET_VERSION);
1408 if (!mdi)
1409 return 0;
1410 sysfs_free(mdi);
1411
1412 if (get_dev_size(fd, NULL, &size) == 0)
1413 return 1;
1414 if (size == 0)
1415 return 1;
1416 return 0;
1417 }
1418
1419 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1420 * Returns: 1 if successful
1421 * -1 for unknown partition type
1422 * 0 for other errors
1423 */
1424 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1425 {
1426 struct GPT gpt;
1427 unsigned char empty_gpt_entry[16]= {0};
1428 struct GPT_part_entry *part;
1429 char buf[512];
1430 unsigned long long curr_part_end;
1431 unsigned all_partitions, entry_size;
1432 unsigned part_nr;
1433 unsigned int sector_size = 0;
1434
1435 *endofpart = 0;
1436
1437 BUILD_BUG_ON(sizeof(gpt) != 512);
1438 /* skip protective MBR */
1439 if (!get_dev_sector_size(fd, NULL, &sector_size))
1440 return 0;
1441 lseek(fd, sector_size, SEEK_SET);
1442 /* read GPT header */
1443 if (read(fd, &gpt, 512) != 512)
1444 return 0;
1445
1446 /* get the number of partition entries and the entry size */
1447 all_partitions = __le32_to_cpu(gpt.part_cnt);
1448 entry_size = __le32_to_cpu(gpt.part_size);
1449
1450 /* Check GPT signature*/
1451 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1452 return -1;
1453
1454 /* sanity checks */
1455 if (all_partitions > 1024 ||
1456 entry_size > sizeof(buf))
1457 return -1;
1458
1459 part = (struct GPT_part_entry *)buf;
1460
1461 /* set offset to third block (GPT entries) */
1462 lseek(fd, sector_size*2, SEEK_SET);
1463 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1464 /* read partition entry */
1465 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1466 return 0;
1467
1468 /* is this valid partition? */
1469 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1470 /* check the last lba for the current partition */
1471 curr_part_end = __le64_to_cpu(part->ending_lba);
1472 if (curr_part_end > *endofpart)
1473 *endofpart = curr_part_end;
1474 }
1475
1476 }
1477 return 1;
1478 }
1479
1480 /* Sets endofpart parameter to the last block used by the last partition on the device.
1481 * Returns: 1 if successful
1482 * -1 for unknown partition type
1483 * 0 for other errors
1484 */
1485 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1486 {
1487 struct MBR boot_sect;
1488 unsigned long long curr_part_end;
1489 unsigned part_nr;
1490 unsigned int sector_size;
1491 int retval = 0;
1492
1493 *endofpart = 0;
1494
1495 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1496 /* read MBR */
1497 lseek(fd, 0, 0);
1498 if (read(fd, &boot_sect, 512) != 512)
1499 goto abort;
1500
1501 /* check MBP signature */
1502 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1503 retval = 1;
1504 /* found the correct signature */
1505
1506 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1507 /*
1508 * Have to make every access through boot_sect rather
1509 * than using a pointer to the partition table (or an
1510 * entry), since the entries are not properly aligned.
1511 */
1512
1513 /* check for GPT type */
1514 if (boot_sect.parts[part_nr].part_type ==
1515 MBR_GPT_PARTITION_TYPE) {
1516 retval = get_gpt_last_partition_end(fd, endofpart);
1517 break;
1518 }
1519 /* check the last used lba for the current partition */
1520 curr_part_end =
1521 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1522 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1523 if (curr_part_end > *endofpart)
1524 *endofpart = curr_part_end;
1525 }
1526 } else {
1527 /* Unknown partition table */
1528 retval = -1;
1529 }
1530 /* calculate number of 512-byte blocks */
1531 if (get_dev_sector_size(fd, NULL, &sector_size))
1532 *endofpart *= (sector_size / 512);
1533 abort:
1534 return retval;
1535 }
1536
1537 int check_partitions(int fd, char *dname, unsigned long long freesize,
1538 unsigned long long size)
1539 {
1540 /*
1541 * Check where the last partition ends
1542 */
1543 unsigned long long endofpart;
1544
1545 if (get_last_partition_end(fd, &endofpart) > 0) {
1546 /* There appears to be a partition table here */
1547 if (freesize == 0) {
1548 /* partitions will not be visible in new device */
1549 pr_err("partition table exists on %s but will be lost or\n"
1550 " meaningless after creating array\n",
1551 dname);
1552 return 1;
1553 } else if (endofpart > freesize) {
1554 /* last partition overlaps metadata */
1555 pr_err("metadata will over-write last partition on %s.\n",
1556 dname);
1557 return 1;
1558 } else if (size && endofpart > size) {
1559 /* partitions will be truncated in new device */
1560 pr_err("array size is too small to cover all partitions on %s.\n",
1561 dname);
1562 return 1;
1563 }
1564 }
1565 return 0;
1566 }
1567
1568 int open_container(int fd)
1569 {
1570 /* 'fd' is a block device. Find out if it is in use
1571 * by a container, and return an open fd on that container.
1572 */
1573 char path[256];
1574 char *e;
1575 DIR *dir;
1576 struct dirent *de;
1577 int dfd, n;
1578 char buf[200];
1579 int major, minor;
1580 struct stat st;
1581
1582 if (fstat(fd, &st) != 0)
1583 return -1;
1584 sprintf(path, "/sys/dev/block/%d:%d/holders",
1585 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1586 e = path + strlen(path);
1587
1588 dir = opendir(path);
1589 if (!dir)
1590 return -1;
1591 while ((de = readdir(dir))) {
1592 if (de->d_ino == 0)
1593 continue;
1594 if (de->d_name[0] == '.')
1595 continue;
1596 /* Need to make sure it is a container and not a volume */
1597 sprintf(e, "/%s/md/metadata_version", de->d_name);
1598 dfd = open(path, O_RDONLY);
1599 if (dfd < 0)
1600 continue;
1601 n = read(dfd, buf, sizeof(buf));
1602 close(dfd);
1603 if (n <= 0 || (unsigned)n >= sizeof(buf))
1604 continue;
1605 buf[n] = 0;
1606 if (strncmp(buf, "external", 8) != 0 ||
1607 n < 10 ||
1608 buf[9] == '/')
1609 continue;
1610 sprintf(e, "/%s/dev", de->d_name);
1611 dfd = open(path, O_RDONLY);
1612 if (dfd < 0)
1613 continue;
1614 n = read(dfd, buf, sizeof(buf));
1615 close(dfd);
1616 if (n <= 0 || (unsigned)n >= sizeof(buf))
1617 continue;
1618 buf[n] = 0;
1619 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1620 continue;
1621 sprintf(buf, "%d:%d", major, minor);
1622 dfd = dev_open(buf, O_RDONLY);
1623 if (dfd >= 0) {
1624 closedir(dir);
1625 return dfd;
1626 }
1627 }
1628 closedir(dir);
1629 return -1;
1630 }
1631
1632 struct superswitch *version_to_superswitch(char *vers)
1633 {
1634 int i;
1635
1636 for (i = 0; superlist[i]; i++) {
1637 struct superswitch *ss = superlist[i];
1638
1639 if (strcmp(vers, ss->name) == 0)
1640 return ss;
1641 }
1642
1643 return NULL;
1644 }
1645
1646 int metadata_container_matches(char *metadata, char *devnm)
1647 {
1648 /* Check if 'devnm' is the container named in 'metadata'
1649 * which is
1650 * /containername/componentname or
1651 * -containername/componentname
1652 */
1653 int l;
1654 if (*metadata != '/' && *metadata != '-')
1655 return 0;
1656 l = strlen(devnm);
1657 if (strncmp(metadata+1, devnm, l) != 0)
1658 return 0;
1659 if (metadata[l+1] != '/')
1660 return 0;
1661 return 1;
1662 }
1663
1664 int metadata_subdev_matches(char *metadata, char *devnm)
1665 {
1666 /* Check if 'devnm' is the subdev named in 'metadata'
1667 * which is
1668 * /containername/subdev or
1669 * -containername/subdev
1670 */
1671 char *sl;
1672 if (*metadata != '/' && *metadata != '-')
1673 return 0;
1674 sl = strchr(metadata+1, '/');
1675 if (!sl)
1676 return 0;
1677 if (strcmp(sl+1, devnm) == 0)
1678 return 1;
1679 return 0;
1680 }
1681
1682 int is_container_member(struct mdstat_ent *mdstat, char *container)
1683 {
1684 if (mdstat->metadata_version == NULL ||
1685 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1686 !metadata_container_matches(mdstat->metadata_version+9, container))
1687 return 0;
1688
1689 return 1;
1690 }
1691
1692 int is_subarray_active(char *subarray, char *container)
1693 {
1694 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1695 struct mdstat_ent *ent;
1696
1697 for (ent = mdstat; ent; ent = ent->next)
1698 if (is_container_member(ent, container))
1699 if (strcmp(to_subarray(ent, container), subarray) == 0)
1700 break;
1701
1702 free_mdstat(mdstat);
1703
1704 return ent != NULL;
1705 }
1706
1707 /* open_subarray - opens a subarray in a container
1708 * @dev: container device name
1709 * @st: empty supertype
1710 * @quiet: block reporting errors flag
1711 *
1712 * On success returns an fd to a container and fills in *st
1713 */
1714 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1715 {
1716 struct mdinfo *mdi;
1717 struct mdinfo *info;
1718 int fd, err = 1;
1719 char *_devnm;
1720
1721 fd = open(dev, O_RDWR|O_EXCL);
1722 if (fd < 0) {
1723 if (!quiet)
1724 pr_err("Couldn't open %s, aborting\n",
1725 dev);
1726 return -1;
1727 }
1728
1729 _devnm = fd2devnm(fd);
1730 if (_devnm == NULL) {
1731 if (!quiet)
1732 pr_err("Failed to determine device number for %s\n",
1733 dev);
1734 goto close_fd;
1735 }
1736 strcpy(st->devnm, _devnm);
1737
1738 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1739 if (!mdi) {
1740 if (!quiet)
1741 pr_err("Failed to read sysfs for %s\n",
1742 dev);
1743 goto close_fd;
1744 }
1745
1746 if (mdi->array.level != UnSet) {
1747 if (!quiet)
1748 pr_err("%s is not a container\n", dev);
1749 goto free_sysfs;
1750 }
1751
1752 st->ss = version_to_superswitch(mdi->text_version);
1753 if (!st->ss) {
1754 if (!quiet)
1755 pr_err("Operation not supported for %s metadata\n",
1756 mdi->text_version);
1757 goto free_sysfs;
1758 }
1759
1760 if (st->devnm[0] == 0) {
1761 if (!quiet)
1762 pr_err("Failed to allocate device name\n");
1763 goto free_sysfs;
1764 }
1765
1766 if (!st->ss->load_container) {
1767 if (!quiet)
1768 pr_err("%s is not a container\n", dev);
1769 goto free_sysfs;
1770 }
1771
1772 if (st->ss->load_container(st, fd, NULL)) {
1773 if (!quiet)
1774 pr_err("Failed to load metadata for %s\n",
1775 dev);
1776 goto free_sysfs;
1777 }
1778
1779 info = st->ss->container_content(st, subarray);
1780 if (!info) {
1781 if (!quiet)
1782 pr_err("Failed to find subarray-%s in %s\n",
1783 subarray, dev);
1784 goto free_super;
1785 }
1786 free(info);
1787
1788 err = 0;
1789
1790 free_super:
1791 if (err)
1792 st->ss->free_super(st);
1793 free_sysfs:
1794 sysfs_free(mdi);
1795 close_fd:
1796 if (err)
1797 close(fd);
1798
1799 if (err)
1800 return -1;
1801 else
1802 return fd;
1803 }
1804
1805 int add_disk(int mdfd, struct supertype *st,
1806 struct mdinfo *sra, struct mdinfo *info)
1807 {
1808 /* Add a device to an array, in one of 2 ways. */
1809 int rv;
1810
1811 if (st->ss->external) {
1812 if (info->disk.state & (1<<MD_DISK_SYNC))
1813 info->recovery_start = MaxSector;
1814 else
1815 info->recovery_start = 0;
1816 rv = sysfs_add_disk(sra, info, 0);
1817 if (! rv) {
1818 struct mdinfo *sd2;
1819 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1820 if (sd2 == info)
1821 break;
1822 if (sd2 == NULL) {
1823 sd2 = xmalloc(sizeof(*sd2));
1824 *sd2 = *info;
1825 sd2->next = sra->devs;
1826 sra->devs = sd2;
1827 }
1828 }
1829 } else
1830 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1831 return rv;
1832 }
1833
1834 int remove_disk(int mdfd, struct supertype *st,
1835 struct mdinfo *sra, struct mdinfo *info)
1836 {
1837 int rv;
1838
1839 /* Remove the disk given by 'info' from the array */
1840 if (st->ss->external)
1841 rv = sysfs_set_str(sra, info, "slot", "none");
1842 else
1843 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1844 info->disk.minor));
1845 return rv;
1846 }
1847
1848 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1849 {
1850 int cnt = force ? 500 : 5;
1851 int ret;
1852
1853 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1854 * outstanding IO requests to the device.
1855 * In this case, it can be helpful to wait a little while,
1856 * up to 5 seconds if 'force' is set, or 50 msec if not.
1857 */
1858 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1859 errno == EBUSY &&
1860 cnt-- > 0)
1861 usleep(10000);
1862
1863 return ret;
1864 }
1865
1866 int sys_hot_remove_disk(int statefd, int force)
1867 {
1868 int cnt = force ? 500 : 5;
1869 int ret;
1870
1871 while ((ret = write(statefd, "remove", 6)) == -1 &&
1872 errno == EBUSY &&
1873 cnt-- > 0)
1874 usleep(10000);
1875 return ret == 6 ? 0 : -1;
1876 }
1877
1878 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1879 {
1880 /* Initialise kernel's knowledge of array.
1881 * This varies between externally managed arrays
1882 * and older kernels
1883 */
1884 mdu_array_info_t inf;
1885 int rv;
1886
1887 if (st->ss->external)
1888 return sysfs_set_array(info, 9003);
1889
1890 memset(&inf, 0, sizeof(inf));
1891 inf.major_version = info->array.major_version;
1892 inf.minor_version = info->array.minor_version;
1893 rv = md_set_array_info(mdfd, &inf);
1894
1895 return rv;
1896 }
1897
1898 unsigned long long min_recovery_start(struct mdinfo *array)
1899 {
1900 /* find the minimum recovery_start in an array for metadata
1901 * formats that only record per-array recovery progress instead
1902 * of per-device
1903 */
1904 unsigned long long recovery_start = MaxSector;
1905 struct mdinfo *d;
1906
1907 for (d = array->devs; d; d = d->next)
1908 recovery_start = min(recovery_start, d->recovery_start);
1909
1910 return recovery_start;
1911 }
1912
1913 int mdmon_pid(char *devnm)
1914 {
1915 char path[100];
1916 char pid[10];
1917 int fd;
1918 int n;
1919
1920 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1921
1922 fd = open(path, O_RDONLY | O_NOATIME, 0);
1923
1924 if (fd < 0)
1925 return -1;
1926 n = read(fd, pid, 9);
1927 close(fd);
1928 if (n <= 0)
1929 return -1;
1930 return atoi(pid);
1931 }
1932
1933 int mdmon_running(char *devnm)
1934 {
1935 int pid = mdmon_pid(devnm);
1936 if (pid <= 0)
1937 return 0;
1938 if (kill(pid, 0) == 0)
1939 return 1;
1940 return 0;
1941 }
1942
1943 int start_mdmon(char *devnm)
1944 {
1945 int i, skipped;
1946 int len;
1947 pid_t pid;
1948 int status;
1949 char pathbuf[1024];
1950 char *paths[4] = {
1951 pathbuf,
1952 BINDIR "/mdmon",
1953 "./mdmon",
1954 NULL
1955 };
1956
1957 if (check_env("MDADM_NO_MDMON"))
1958 return 0;
1959
1960 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1961 if (len > 0) {
1962 char *sl;
1963 pathbuf[len] = 0;
1964 sl = strrchr(pathbuf, '/');
1965 if (sl)
1966 sl++;
1967 else
1968 sl = pathbuf;
1969 strcpy(sl, "mdmon");
1970 } else
1971 pathbuf[0] = '\0';
1972
1973 /* First try to run systemctl */
1974 if (!check_env("MDADM_NO_SYSTEMCTL"))
1975 switch(fork()) {
1976 case 0:
1977 /* FIXME yuk. CLOSE_EXEC?? */
1978 skipped = 0;
1979 for (i = 3; skipped < 20; i++)
1980 if (close(i) < 0)
1981 skipped++;
1982 else
1983 skipped = 0;
1984
1985 /* Don't want to see error messages from
1986 * systemctl. If the service doesn't exist,
1987 * we start mdmon ourselves.
1988 */
1989 close(2);
1990 open("/dev/null", O_WRONLY);
1991 snprintf(pathbuf, sizeof(pathbuf), "mdmon@%s.service",
1992 devnm);
1993 status = execl("/usr/bin/systemctl", "systemctl",
1994 "start",
1995 pathbuf, NULL);
1996 status = execl("/bin/systemctl", "systemctl", "start",
1997 pathbuf, NULL);
1998 exit(1);
1999 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
2000 return -1;
2001 default: /* parent - good */
2002 pid = wait(&status);
2003 if (pid >= 0 && status == 0)
2004 return 0;
2005 }
2006
2007 /* That failed, try running mdmon directly */
2008 switch(fork()) {
2009 case 0:
2010 /* FIXME yuk. CLOSE_EXEC?? */
2011 skipped = 0;
2012 for (i = 3; skipped < 20; i++)
2013 if (close(i) < 0)
2014 skipped++;
2015 else
2016 skipped = 0;
2017
2018 for (i = 0; paths[i]; i++)
2019 if (paths[i][0]) {
2020 execl(paths[i], paths[i],
2021 devnm, NULL);
2022 }
2023 exit(1);
2024 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
2025 return -1;
2026 default: /* parent - good */
2027 pid = wait(&status);
2028 if (pid < 0 || status != 0) {
2029 pr_err("failed to launch mdmon. Array remains readonly\n");
2030 return -1;
2031 }
2032 }
2033 return 0;
2034 }
2035
2036 __u32 random32(void)
2037 {
2038 __u32 rv;
2039 int rfd = open("/dev/urandom", O_RDONLY);
2040 if (rfd < 0 || read(rfd, &rv, 4) != 4)
2041 rv = random();
2042 if (rfd >= 0)
2043 close(rfd);
2044 return rv;
2045 }
2046
2047 void random_uuid(__u8 *buf)
2048 {
2049 int fd, i, len;
2050 __u32 r[4];
2051
2052 fd = open("/dev/urandom", O_RDONLY);
2053 if (fd < 0)
2054 goto use_random;
2055 len = read(fd, buf, 16);
2056 close(fd);
2057 if (len != 16)
2058 goto use_random;
2059
2060 return;
2061
2062 use_random:
2063 for (i = 0; i < 4; i++)
2064 r[i] = random();
2065 memcpy(buf, r, 16);
2066 }
2067
2068 int flush_metadata_updates(struct supertype *st)
2069 {
2070 int sfd;
2071 if (!st->updates) {
2072 st->update_tail = NULL;
2073 return -1;
2074 }
2075
2076 sfd = connect_monitor(st->container_devnm);
2077 if (sfd < 0)
2078 return -1;
2079
2080 while (st->updates) {
2081 struct metadata_update *mu = st->updates;
2082 st->updates = mu->next;
2083
2084 send_message(sfd, mu, 0);
2085 wait_reply(sfd, 0);
2086 free(mu->buf);
2087 free(mu);
2088 }
2089 ack(sfd, 0);
2090 wait_reply(sfd, 0);
2091 close(sfd);
2092 st->update_tail = NULL;
2093 return 0;
2094 }
2095
2096 void append_metadata_update(struct supertype *st, void *buf, int len)
2097 {
2098
2099 struct metadata_update *mu = xmalloc(sizeof(*mu));
2100
2101 mu->buf = buf;
2102 mu->len = len;
2103 mu->space = NULL;
2104 mu->space_list = NULL;
2105 mu->next = NULL;
2106 *st->update_tail = mu;
2107 st->update_tail = &mu->next;
2108 }
2109
2110 #ifdef __TINYC__
2111 /* tinyc doesn't optimize this check in ioctl.h out ... */
2112 unsigned int __invalid_size_argument_for_IOC = 0;
2113 #endif
2114
2115 int experimental(void)
2116 {
2117 if (check_env("MDADM_EXPERIMENTAL"))
2118 return 1;
2119 else {
2120 pr_err("To use this feature MDADM_EXPERIMENTAL environment variable has to be defined.\n");
2121 return 0;
2122 }
2123 }
2124
2125 /* Pick all spares matching given criteria from a container
2126 * if min_size == 0 do not check size
2127 * if domlist == NULL do not check domains
2128 * if spare_group given add it to domains of each spare
2129 * metadata allows to test domains using metadata of destination array */
2130 struct mdinfo *container_choose_spares(struct supertype *st,
2131 struct spare_criteria *criteria,
2132 struct domainlist *domlist,
2133 char *spare_group,
2134 const char *metadata, int get_one)
2135 {
2136 struct mdinfo *d, **dp, *disks = NULL;
2137
2138 /* get list of all disks in container */
2139 if (st->ss->getinfo_super_disks)
2140 disks = st->ss->getinfo_super_disks(st);
2141
2142 if (!disks)
2143 return disks;
2144 /* find spare devices on the list */
2145 dp = &disks->devs;
2146 disks->array.spare_disks = 0;
2147 while (*dp) {
2148 int found = 0;
2149 d = *dp;
2150 if (d->disk.state == 0) {
2151 /* check if size is acceptable */
2152 unsigned long long dev_size;
2153 unsigned int dev_sector_size;
2154 int size_valid = 0;
2155 int sector_size_valid = 0;
2156
2157 dev_t dev = makedev(d->disk.major,d->disk.minor);
2158
2159 if (!criteria->min_size ||
2160 (dev_size_from_id(dev, &dev_size) &&
2161 dev_size >= criteria->min_size))
2162 size_valid = 1;
2163
2164 if (!criteria->sector_size ||
2165 (dev_sector_size_from_id(dev, &dev_sector_size) &&
2166 criteria->sector_size == dev_sector_size))
2167 sector_size_valid = 1;
2168
2169 found = size_valid && sector_size_valid;
2170
2171 /* check if domain matches */
2172 if (found && domlist) {
2173 struct dev_policy *pol = devid_policy(dev);
2174 if (spare_group)
2175 pol_add(&pol, pol_domain,
2176 spare_group, NULL);
2177 if (domain_test(domlist, pol, metadata) != 1)
2178 found = 0;
2179 dev_policy_free(pol);
2180 }
2181 }
2182 if (found) {
2183 dp = &d->next;
2184 disks->array.spare_disks++;
2185 if (get_one) {
2186 sysfs_free(*dp);
2187 d->next = NULL;
2188 }
2189 } else {
2190 *dp = d->next;
2191 d->next = NULL;
2192 sysfs_free(d);
2193 }
2194 }
2195 return disks;
2196 }
2197
2198 /* Checks if paths point to the same device
2199 * Returns 0 if they do.
2200 * Returns 1 if they don't.
2201 * Returns -1 if something went wrong,
2202 * e.g. paths are empty or the files
2203 * they point to don't exist */
2204 int compare_paths (char* path1, char* path2)
2205 {
2206 struct stat st1,st2;
2207
2208 if (path1 == NULL || path2 == NULL)
2209 return -1;
2210 if (stat(path1,&st1) != 0)
2211 return -1;
2212 if (stat(path2,&st2) != 0)
2213 return -1;
2214 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2215 return 0;
2216 return 1;
2217 }
2218
2219 /* Make sure we can open as many devices as needed */
2220 void enable_fds(int devices)
2221 {
2222 unsigned int fds = 20 + devices;
2223 struct rlimit lim;
2224 if (getrlimit(RLIMIT_NOFILE, &lim) != 0 || lim.rlim_cur >= fds)
2225 return;
2226 if (lim.rlim_max < fds)
2227 lim.rlim_max = fds;
2228 lim.rlim_cur = fds;
2229 setrlimit(RLIMIT_NOFILE, &lim);
2230 }
2231
2232 int in_initrd(void)
2233 {
2234 /* This is based on similar function in systemd. */
2235 struct statfs s;
2236 /* statfs.f_type is signed long on s390x and MIPS, causing all
2237 sorts of sign extension problems with RAMFS_MAGIC being
2238 defined as 0x858458f6 */
2239 return statfs("/", &s) >= 0 &&
2240 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2241 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2242 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2243 }
2244
2245 void reopen_mddev(int mdfd)
2246 {
2247 /* Re-open without any O_EXCL, but keep
2248 * the same fd
2249 */
2250 char *devnm;
2251 int fd;
2252 devnm = fd2devnm(mdfd);
2253 close(mdfd);
2254 fd = open_dev(devnm);
2255 if (fd >= 0 && fd != mdfd)
2256 dup2(fd, mdfd);
2257 }
2258
2259 static struct cmap_hooks *cmap_hooks = NULL;
2260 static int is_cmap_hooks_ready = 0;
2261
2262 void set_cmap_hooks(void)
2263 {
2264 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2265 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2266 if (!cmap_hooks->cmap_handle)
2267 return;
2268
2269 cmap_hooks->initialize =
2270 dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2271 cmap_hooks->get_string =
2272 dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2273 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2274
2275 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2276 !cmap_hooks->finalize)
2277 dlclose(cmap_hooks->cmap_handle);
2278 else
2279 is_cmap_hooks_ready = 1;
2280 }
2281
2282 int get_cluster_name(char **cluster_name)
2283 {
2284 int rv = -1;
2285 cmap_handle_t handle;
2286
2287 if (!is_cmap_hooks_ready)
2288 return rv;
2289
2290 rv = cmap_hooks->initialize(&handle);
2291 if (rv != CS_OK)
2292 goto out;
2293
2294 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2295 if (rv != CS_OK) {
2296 free(*cluster_name);
2297 rv = -1;
2298 goto name_err;
2299 }
2300
2301 rv = 0;
2302 name_err:
2303 cmap_hooks->finalize(handle);
2304 out:
2305 return rv;
2306 }
2307
2308 void set_dlm_hooks(void)
2309 {
2310 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2311 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2312 if (!dlm_hooks->dlm_handle)
2313 return;
2314
2315 dlm_hooks->create_lockspace =
2316 dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2317 dlm_hooks->release_lockspace =
2318 dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2319 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2320 dlm_hooks->ls_unlock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock");
2321 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2322 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2323
2324 if (!dlm_hooks->create_lockspace || !dlm_hooks->ls_lock ||
2325 !dlm_hooks->ls_unlock || !dlm_hooks->release_lockspace ||
2326 !dlm_hooks->ls_get_fd || !dlm_hooks->dispatch)
2327 dlclose(dlm_hooks->dlm_handle);
2328 else
2329 is_dlm_hooks_ready = 1;
2330 }
2331
2332 void set_hooks(void)
2333 {
2334 set_dlm_hooks();
2335 set_cmap_hooks();
2336 }