]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
Raid limit of 1024 when scanning for devices.
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2009 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <ctype.h>
32 #include <dirent.h>
33 #include <signal.h>
34
35 int __offroot;
36
37 /*
38 * following taken from linux/blkpg.h because they aren't
39 * anywhere else and it isn't safe to #include linux/ * stuff.
40 */
41
42 #define BLKPG _IO(0x12,105)
43
44 /* The argument structure */
45 struct blkpg_ioctl_arg {
46 int op;
47 int flags;
48 int datalen;
49 void *data;
50 };
51
52 /* The subfunctions (for the op field) */
53 #define BLKPG_ADD_PARTITION 1
54 #define BLKPG_DEL_PARTITION 2
55
56 /* Sizes of name fields. Unused at present. */
57 #define BLKPG_DEVNAMELTH 64
58 #define BLKPG_VOLNAMELTH 64
59
60 /* The data structure for ADD_PARTITION and DEL_PARTITION */
61 struct blkpg_partition {
62 long long start; /* starting offset in bytes */
63 long long length; /* length in bytes */
64 int pno; /* partition number */
65 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
66 to be used in kernel messages */
67 char volname[BLKPG_VOLNAMELTH]; /* volume label */
68 };
69
70 #include "part.h"
71
72 /* Force a compilation error if condition is true */
73 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
74
75 /* Force a compilation error if condition is true, but also produce a
76 result (of value 0 and type size_t), so the expression can be used
77 e.g. in a structure initializer (or where-ever else comma expressions
78 aren't permitted). */
79 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
80
81 /*
82 * Parse a 128 bit uuid in 4 integers
83 * format is 32 hexx nibbles with options :.<space> separator
84 * If not exactly 32 hex digits are found, return 0
85 * else return 1
86 */
87 int parse_uuid(char *str, int uuid[4])
88 {
89 int hit = 0; /* number of Hex digIT */
90 int i;
91 char c;
92 for (i=0; i<4; i++) uuid[i]=0;
93
94 while ((c= *str++)) {
95 int n;
96 if (c>='0' && c<='9')
97 n = c-'0';
98 else if (c>='a' && c <= 'f')
99 n = 10 + c - 'a';
100 else if (c>='A' && c <= 'F')
101 n = 10 + c - 'A';
102 else if (strchr(":. -", c))
103 continue;
104 else return 0;
105
106 if (hit<32) {
107 uuid[hit/8] <<= 4;
108 uuid[hit/8] += n;
109 }
110 hit++;
111 }
112 if (hit == 32)
113 return 1;
114 return 0;
115 }
116
117
118 /*
119 * Get the md version number.
120 * We use the RAID_VERSION ioctl if it is supported
121 * If not, but we have a block device with major '9', we assume
122 * 0.36.0
123 *
124 * Return version number as 24 but number - assume version parts
125 * always < 255
126 */
127
128 int md_get_version(int fd)
129 {
130 struct stat stb;
131 mdu_version_t vers;
132
133 if (fstat(fd, &stb)<0)
134 return -1;
135 if ((S_IFMT&stb.st_mode) != S_IFBLK)
136 return -1;
137
138 if (ioctl(fd, RAID_VERSION, &vers) == 0)
139 return (vers.major*10000) + (vers.minor*100) + vers.patchlevel;
140 if (errno == EACCES)
141 return -1;
142 if (major(stb.st_rdev) == MD_MAJOR)
143 return (3600);
144 return -1;
145 }
146
147 int get_linux_version()
148 {
149 struct utsname name;
150 char *cp;
151 int a = 0, b = 0,c = 0;
152 if (uname(&name) <0)
153 return -1;
154
155 cp = name.release;
156 a = strtoul(cp, &cp, 10);
157 if (*cp == '.')
158 b = strtoul(cp+1, &cp, 10);
159 if (*cp == '.')
160 c = strtoul(cp+1, &cp, 10);
161
162 return (a*1000000)+(b*1000)+c;
163 }
164
165 #ifndef MDASSEMBLE
166 int mdadm_version(char *version)
167 {
168 int a, b, c;
169 char *cp;
170
171 if (!version)
172 version = Version;
173
174 cp = strchr(version, '-');
175 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
176 return -1;
177 cp += 3;
178 a = strtoul(cp, &cp, 10);
179 if (*cp != '.')
180 return -1;
181 b = strtoul(cp+1, &cp, 10);
182 if (*cp == '.')
183 c = strtoul(cp+1, &cp, 10);
184 else
185 c = 0;
186 if (*cp != ' ' && *cp != '-')
187 return -1;
188 return (a*1000000)+(b*1000)+c;
189 }
190
191 long long parse_size(char *size)
192 {
193 /* parse 'size' which should be a number optionally
194 * followed by 'K', 'M', or 'G'.
195 * Without a suffix, K is assumed.
196 * Number returned is in sectors (half-K)
197 * -1 returned on error.
198 */
199 char *c;
200 long long s = strtoll(size, &c, 10);
201 if (s > 0) {
202 switch (*c) {
203 case 'K':
204 c++;
205 default:
206 s *= 2;
207 break;
208 case 'M':
209 c++;
210 s *= 1024 * 2;
211 break;
212 case 'G':
213 c++;
214 s *= 1024 * 1024 * 2;
215 break;
216 }
217 }
218 if (*c)
219 s = -1;
220 return s;
221 }
222
223 int parse_layout_10(char *layout)
224 {
225 int copies, rv;
226 char *cp;
227 /* Parse the layout string for raid10 */
228 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
229 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
230 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
231 copies > 200 ||
232 *cp)
233 return -1;
234 if (layout[0] == 'n')
235 rv = 256 + copies;
236 else if (layout[0] == 'o')
237 rv = 0x10000 + (copies<<8) + 1;
238 else
239 rv = 1 + (copies<<8);
240 return rv;
241 }
242
243 int parse_layout_faulty(char *layout)
244 {
245 /* Parse the layout string for 'faulty' */
246 int ln = strcspn(layout, "0123456789");
247 char *m = strdup(layout);
248 int mode;
249 m[ln] = 0;
250 mode = map_name(faultylayout, m);
251 if (mode == UnSet)
252 return -1;
253
254 return mode | (atoi(layout+ln)<< ModeShift);
255 }
256 #endif
257
258 void remove_partitions(int fd)
259 {
260 /* remove partitions from this block devices.
261 * This is used for components added to an array
262 */
263 #ifdef BLKPG_DEL_PARTITION
264 struct blkpg_ioctl_arg a;
265 struct blkpg_partition p;
266
267 a.op = BLKPG_DEL_PARTITION;
268 a.data = (void*)&p;
269 a.datalen = sizeof(p);
270 a.flags = 0;
271 memset(a.data, 0, a.datalen);
272 for (p.pno=0; p.pno < 16; p.pno++)
273 ioctl(fd, BLKPG, &a);
274 #endif
275 }
276
277 int test_partition(int fd)
278 {
279 /* Check if fd is a whole-disk or a partition.
280 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
281 * will return ENXIO on an invalid partition number.
282 */
283 struct blkpg_ioctl_arg a;
284 struct blkpg_partition p;
285 a.op = BLKPG_DEL_PARTITION;
286 a.data = (void*)&p;
287 a.datalen = sizeof(p);
288 a.flags = 0;
289 memset(a.data, 0, a.datalen);
290 p.pno = 1<<30;
291 if (ioctl(fd, BLKPG, &a) == 0)
292 /* Very unlikely, but not a partition */
293 return 0;
294 if (errno == ENXIO)
295 /* not a partition */
296 return 0;
297
298 return 1;
299 }
300
301 int test_partition_from_id(dev_t id)
302 {
303 char buf[20];
304 int fd, rv;
305
306 sprintf(buf, "%d:%d", major(id), minor(id));
307 fd = dev_open(buf, O_RDONLY);
308 if (fd < 0)
309 return -1;
310 rv = test_partition(fd);
311 close(fd);
312 return rv;
313 }
314
315 int enough(int level, int raid_disks, int layout, int clean, char *avail)
316 {
317 int copies, first;
318 int i;
319 int avail_disks = 0;
320
321 for (i = 0; i < raid_disks; i++)
322 avail_disks += !!avail[i];
323
324 switch (level) {
325 case 10:
326 /* This is the tricky one - we need to check
327 * which actual disks are present.
328 */
329 copies = (layout&255)* ((layout>>8) & 255);
330 first=0;
331 do {
332 /* there must be one of the 'copies' form 'first' */
333 int n = copies;
334 int cnt=0;
335 while (n--) {
336 if (avail[first])
337 cnt++;
338 first = (first+1) % raid_disks;
339 }
340 if (cnt == 0)
341 return 0;
342
343 } while (first != 0);
344 return 1;
345
346 case LEVEL_MULTIPATH:
347 return avail_disks>= 1;
348 case LEVEL_LINEAR:
349 case 0:
350 return avail_disks == raid_disks;
351 case 1:
352 return avail_disks >= 1;
353 case 4:
354 case 5:
355 if (clean)
356 return avail_disks >= raid_disks-1;
357 else
358 return avail_disks >= raid_disks;
359 case 6:
360 if (clean)
361 return avail_disks >= raid_disks-2;
362 else
363 return avail_disks >= raid_disks;
364 default:
365 return 0;
366 }
367 }
368
369 int enough_fd(int fd)
370 {
371 struct mdu_array_info_s array;
372 struct mdu_disk_info_s disk;
373 int avail_disks = 0;
374 int i, rv;
375 char *avail;
376
377 if (ioctl(fd, GET_ARRAY_INFO, &array) != 0 ||
378 array.raid_disks <= 0)
379 return 0;
380 avail = calloc(array.raid_disks, 1);
381 for (i=0; i < MAX_DISKS && array.nr_disks > 0; i++) {
382 disk.number = i;
383 if (ioctl(fd, GET_DISK_INFO, &disk) != 0)
384 continue;
385 if (disk.major == 0 && disk.minor == 0)
386 continue;
387 array.nr_disks--;
388
389 if (! (disk.state & (1<<MD_DISK_SYNC)))
390 continue;
391 if (disk.raid_disk < 0 || disk.raid_disk >= array.raid_disks)
392 continue;
393 avail_disks++;
394 avail[disk.raid_disk] = 1;
395 }
396 /* This is used on an active array, so assume it is clean */
397 rv = enough(array.level, array.raid_disks, array.layout,
398 1, avail);
399 free(avail);
400 return rv;
401 }
402
403
404 const int uuid_zero[4] = { 0, 0, 0, 0 };
405
406 int same_uuid(int a[4], int b[4], int swapuuid)
407 {
408 if (swapuuid) {
409 /* parse uuids are hostendian.
410 * uuid's from some superblocks are big-ending
411 * if there is a difference, we need to swap..
412 */
413 unsigned char *ac = (unsigned char *)a;
414 unsigned char *bc = (unsigned char *)b;
415 int i;
416 for (i=0; i<16; i+= 4) {
417 if (ac[i+0] != bc[i+3] ||
418 ac[i+1] != bc[i+2] ||
419 ac[i+2] != bc[i+1] ||
420 ac[i+3] != bc[i+0])
421 return 0;
422 }
423 return 1;
424 } else {
425 if (a[0]==b[0] &&
426 a[1]==b[1] &&
427 a[2]==b[2] &&
428 a[3]==b[3])
429 return 1;
430 return 0;
431 }
432 }
433 void copy_uuid(void *a, int b[4], int swapuuid)
434 {
435 if (swapuuid) {
436 /* parse uuids are hostendian.
437 * uuid's from some superblocks are big-ending
438 * if there is a difference, we need to swap..
439 */
440 unsigned char *ac = (unsigned char *)a;
441 unsigned char *bc = (unsigned char *)b;
442 int i;
443 for (i=0; i<16; i+= 4) {
444 ac[i+0] = bc[i+3];
445 ac[i+1] = bc[i+2];
446 ac[i+2] = bc[i+1];
447 ac[i+3] = bc[i+0];
448 }
449 } else
450 memcpy(a, b, 16);
451 }
452
453 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
454 {
455 int i, j;
456 char uuid[16];
457 char *c = buf;
458 strcpy(c, "UUID-");
459 c += strlen(c);
460 copy_uuid(uuid, id, swap);
461 for (i = 0; i < 4; i++) {
462 if (i)
463 *c++ = sep;
464 for (j = 3; j >= 0; j--) {
465 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
466 c+= 2;
467 }
468 }
469 return buf;
470
471 }
472
473 char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep)
474 {
475 // dirty hack to work around an issue with super1 superblocks...
476 // super1 superblocks need swapuuid set in order for assembly to
477 // work, but can't have it set if we want this printout to match
478 // all the other uuid printouts in super1.c, so we force swapuuid
479 // to 1 to make our printout match the rest of super1
480 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 : st->ss->swapuuid, buf, sep);
481 }
482
483 #ifndef MDASSEMBLE
484 int check_ext2(int fd, char *name)
485 {
486 /*
487 * Check for an ext2fs file system.
488 * Superblock is always 1K at 1K offset
489 *
490 * s_magic is le16 at 56 == 0xEF53
491 * report mtime - le32 at 44
492 * blocks - le32 at 4
493 * logblksize - le32 at 24
494 */
495 unsigned char sb[1024];
496 time_t mtime;
497 int size, bsize;
498 if (lseek(fd, 1024,0)!= 1024)
499 return 0;
500 if (read(fd, sb, 1024)!= 1024)
501 return 0;
502 if (sb[56] != 0x53 || sb[57] != 0xef)
503 return 0;
504
505 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
506 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
507 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
508 fprintf(stderr, Name ": %s appears to contain an ext2fs file system\n",
509 name);
510 fprintf(stderr," size=%dK mtime=%s",
511 size*(1<<bsize), ctime(&mtime));
512 return 1;
513 }
514
515 int check_reiser(int fd, char *name)
516 {
517 /*
518 * superblock is at 64K
519 * size is 1024;
520 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
521 *
522 */
523 unsigned char sb[1024];
524 unsigned long size;
525 if (lseek(fd, 64*1024, 0) != 64*1024)
526 return 0;
527 if (read(fd, sb, 1024) != 1024)
528 return 0;
529 if (strncmp((char*)sb+52, "ReIsErFs",8)!=0 &&
530 strncmp((char*)sb+52, "ReIsEr2Fs",9)!=0)
531 return 0;
532 fprintf(stderr, Name ": %s appears to contain a reiserfs file system\n",name);
533 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
534 fprintf(stderr, " size = %luK\n", size*4);
535
536 return 1;
537 }
538
539 int check_raid(int fd, char *name)
540 {
541 struct mdinfo info;
542 time_t crtime;
543 char *level;
544 struct supertype *st = guess_super(fd);
545
546 if (!st) return 0;
547 st->ignore_hw_compat = 1;
548 st->ss->load_super(st, fd, name);
549 /* Looks like a raid array .. */
550 fprintf(stderr, Name ": %s appears to be part of a raid array:\n",
551 name);
552 st->ss->getinfo_super(st, &info, NULL);
553 st->ss->free_super(st);
554 crtime = info.array.ctime;
555 level = map_num(pers, info.array.level);
556 if (!level) level = "-unknown-";
557 fprintf(stderr, " level=%s devices=%d ctime=%s",
558 level, info.array.raid_disks, ctime(&crtime));
559 return 1;
560 }
561
562 int ask(char *mesg)
563 {
564 char *add = "";
565 int i;
566 for (i=0; i<5; i++) {
567 char buf[100];
568 fprintf(stderr, "%s%s", mesg, add);
569 fflush(stderr);
570 if (fgets(buf, 100, stdin)==NULL)
571 return 0;
572 if (buf[0]=='y' || buf[0]=='Y')
573 return 1;
574 if (buf[0]=='n' || buf[0]=='N')
575 return 0;
576 add = "(y/n) ";
577 }
578 fprintf(stderr, Name ": assuming 'no'\n");
579 return 0;
580 }
581 #endif /* MDASSEMBLE */
582
583 int is_standard(char *dev, int *nump)
584 {
585 /* tests if dev is a "standard" md dev name.
586 * i.e if the last component is "/dNN" or "/mdNN",
587 * where NN is a string of digits
588 * Returns 1 if a partitionable standard,
589 * -1 if non-partitonable,
590 * 0 if not a standard name.
591 */
592 char *d = strrchr(dev, '/');
593 int type=0;
594 int num;
595 if (!d)
596 return 0;
597 if (strncmp(d, "/d",2)==0)
598 d += 2, type=1; /* /dev/md/dN{pM} */
599 else if (strncmp(d, "/md_d", 5)==0)
600 d += 5, type=1; /* /dev/md_dN{pM} */
601 else if (strncmp(d, "/md", 3)==0)
602 d += 3, type=-1; /* /dev/mdN */
603 else if (d-dev > 3 && strncmp(d-2, "md/", 3)==0)
604 d += 1, type=-1; /* /dev/md/N */
605 else
606 return 0;
607 if (!*d)
608 return 0;
609 num = atoi(d);
610 while (isdigit(*d))
611 d++;
612 if (*d)
613 return 0;
614 if (nump) *nump = num;
615
616 return type;
617 }
618
619 unsigned long calc_csum(void *super, int bytes)
620 {
621 unsigned long long newcsum = 0;
622 int i;
623 unsigned int csum;
624 unsigned int *superc = (unsigned int*) super;
625
626 for(i=0; i<bytes/4; i++)
627 newcsum+= superc[i];
628 csum = (newcsum& 0xffffffff) + (newcsum>>32);
629 #ifdef __alpha__
630 /* The in-kernel checksum calculation is always 16bit on
631 * the alpha, though it is 32 bit on i386...
632 * I wonder what it is elsewhere... (it uses and API in
633 * a way that it shouldn't).
634 */
635 csum = (csum & 0xffff) + (csum >> 16);
636 csum = (csum & 0xffff) + (csum >> 16);
637 #endif
638 return csum;
639 }
640
641 #ifndef MDASSEMBLE
642 char *human_size(long long bytes)
643 {
644 static char buf[30];
645
646 /* We convert bytes to either centi-M{ega,ibi}bytes or
647 * centi-G{igi,ibi}bytes, with appropriate rounding,
648 * and then print 1/100th of those as a decimal.
649 * We allow upto 2048Megabytes before converting to
650 * gigabytes, as that shows more precision and isn't
651 * too large a number.
652 * Terabytes are not yet handled.
653 */
654
655 if (bytes < 5000*1024)
656 buf[0]=0;
657 else if (bytes < 2*1024LL*1024LL*1024LL) {
658 long cMiB = (bytes / ( (1LL<<20) / 200LL ) +1) /2;
659 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
660 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
661 cMiB/100 , cMiB % 100,
662 cMB/100, cMB % 100);
663 } else {
664 long cGiB = (bytes / ( (1LL<<30) / 200LL ) +1) /2;
665 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
666 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
667 cGiB/100 , cGiB % 100,
668 cGB/100, cGB % 100);
669 }
670 return buf;
671 }
672
673 char *human_size_brief(long long bytes)
674 {
675 static char buf[30];
676
677 if (bytes < 5000*1024)
678 snprintf(buf, sizeof(buf), "%ld.%02ldKiB",
679 (long)(bytes>>10), (long)(((bytes&1023)*100+512)/1024)
680 );
681 else if (bytes < 2*1024LL*1024LL*1024LL)
682 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
683 (long)(bytes>>20),
684 (long)((bytes&0xfffff)+0x100000/200)/(0x100000/100)
685 );
686 else
687 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
688 (long)(bytes>>30),
689 (long)(((bytes>>10)&0xfffff)+0x100000/200)/(0x100000/100)
690 );
691 return buf;
692 }
693
694 void print_r10_layout(int layout)
695 {
696 int near = layout & 255;
697 int far = (layout >> 8) & 255;
698 int offset = (layout&0x10000);
699 char *sep = "";
700
701 if (near != 1) {
702 printf("%s near=%d", sep, near);
703 sep = ",";
704 }
705 if (far != 1)
706 printf("%s %s=%d", sep, offset?"offset":"far", far);
707 if (near*far == 1)
708 printf("NO REDUNDANCY");
709 }
710 #endif
711
712 unsigned long long calc_array_size(int level, int raid_disks, int layout,
713 int chunksize, unsigned long long devsize)
714 {
715 if (level == 1)
716 return devsize;
717 devsize &= ~(unsigned long long)((chunksize>>9)-1);
718 return get_data_disks(level, layout, raid_disks) * devsize;
719 }
720
721 int get_data_disks(int level, int layout, int raid_disks)
722 {
723 int data_disks = 0;
724 switch (level) {
725 case 0: data_disks = raid_disks; break;
726 case 1: data_disks = 1; break;
727 case 4:
728 case 5: data_disks = raid_disks - 1; break;
729 case 6: data_disks = raid_disks - 2; break;
730 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
731 break;
732 }
733
734 return data_disks;
735 }
736
737 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
738 char *get_md_name(int dev)
739 {
740 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
741 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
742 static char devname[50];
743 struct stat stb;
744 dev_t rdev;
745 char *dn;
746
747 if (dev < 0) {
748 int mdp = get_mdp_major();
749 if (mdp < 0) return NULL;
750 rdev = makedev(mdp, (-1-dev)<<6);
751 snprintf(devname, sizeof(devname), "/dev/md/d%d", -1-dev);
752 if (stat(devname, &stb) == 0
753 && (S_IFMT&stb.st_mode) == S_IFBLK
754 && (stb.st_rdev == rdev))
755 return devname;
756 } else {
757 rdev = makedev(MD_MAJOR, dev);
758 snprintf(devname, sizeof(devname), "/dev/md%d", dev);
759 if (stat(devname, &stb) == 0
760 && (S_IFMT&stb.st_mode) == S_IFBLK
761 && (stb.st_rdev == rdev))
762 return devname;
763
764 snprintf(devname, sizeof(devname), "/dev/md/%d", dev);
765 if (stat(devname, &stb) == 0
766 && (S_IFMT&stb.st_mode) == S_IFBLK
767 && (stb.st_rdev == rdev))
768 return devname;
769 }
770 dn = map_dev(major(rdev), minor(rdev), 0);
771 if (dn)
772 return dn;
773 snprintf(devname, sizeof(devname), "/dev/.tmp.md%d", dev);
774 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
775 if (errno != EEXIST)
776 return NULL;
777
778 if (stat(devname, &stb) == 0
779 && (S_IFMT&stb.st_mode) == S_IFBLK
780 && (stb.st_rdev == rdev))
781 return devname;
782 unlink(devname);
783 return NULL;
784 }
785
786 void put_md_name(char *name)
787 {
788 if (strncmp(name, "/dev/.tmp.md", 12)==0)
789 unlink(name);
790 }
791
792 int find_free_devnum(int use_partitions)
793 {
794 int devnum;
795 for (devnum = 127; devnum != 128;
796 devnum = devnum ? devnum-1 : (1<<20)-1) {
797 char *dn;
798 int _devnum;
799
800 _devnum = use_partitions ? (-1-devnum) : devnum;
801 if (mddev_busy(_devnum))
802 continue;
803 /* make sure it is new to /dev too, at least as a
804 * non-standard */
805 dn = map_dev(dev2major(_devnum), dev2minor(_devnum), 0);
806 if (dn && ! is_standard(dn, NULL))
807 continue;
808 break;
809 }
810 if (devnum == 128)
811 return NoMdDev;
812 return use_partitions ? (-1-devnum) : devnum;
813 }
814 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
815
816 int dev_open(char *dev, int flags)
817 {
818 /* like 'open', but if 'dev' matches %d:%d, create a temp
819 * block device and open that
820 */
821 char *e;
822 int fd = -1;
823 char devname[32];
824 int major;
825 int minor;
826
827 if (!dev) return -1;
828 flags |= O_DIRECT;
829
830 major = strtoul(dev, &e, 0);
831 if (e > dev && *e == ':' && e[1] &&
832 (minor = strtoul(e+1, &e, 0)) >= 0 &&
833 *e == 0) {
834 char *path = map_dev(major, minor, 0);
835 if (path)
836 fd = open(path, flags);
837 if (fd < 0) {
838 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
839 (int)getpid(), major, minor);
840 if (mknod(devname, S_IFBLK|0600, makedev(major, minor))==0) {
841 fd = open(devname, flags);
842 unlink(devname);
843 }
844 }
845 if (fd < 0) {
846 snprintf(devname, sizeof(devname), "/tmp/.tmp.md.%d:%d:%d",
847 (int)getpid(), major, minor);
848 if (mknod(devname, S_IFBLK|0600, makedev(major, minor))==0) {
849 fd = open(devname, flags);
850 unlink(devname);
851 }
852 }
853 } else
854 fd = open(dev, flags);
855 return fd;
856 }
857
858 int open_dev_flags(int devnum, int flags)
859 {
860 char buf[20];
861
862 sprintf(buf, "%d:%d", dev2major(devnum), dev2minor(devnum));
863 return dev_open(buf, flags);
864 }
865
866 int open_dev(int devnum)
867 {
868 return open_dev_flags(devnum, O_RDONLY);
869 }
870
871 int open_dev_excl(int devnum)
872 {
873 char buf[20];
874 int i;
875 int flags = O_RDWR;
876
877 sprintf(buf, "%d:%d", dev2major(devnum), dev2minor(devnum));
878 for (i=0 ; i<25 ; i++) {
879 int fd = dev_open(buf, flags|O_EXCL);
880 if (fd >= 0)
881 return fd;
882 if (errno == EACCES && flags == O_RDWR) {
883 flags = O_RDONLY;
884 continue;
885 }
886 if (errno != EBUSY)
887 return fd;
888 usleep(200000);
889 }
890 return -1;
891 }
892
893 int same_dev(char *one, char *two)
894 {
895 struct stat st1, st2;
896 if (stat(one, &st1) != 0)
897 return 0;
898 if (stat(two, &st2) != 0)
899 return 0;
900 if ((st1.st_mode & S_IFMT) != S_IFBLK)
901 return 0;
902 if ((st2.st_mode & S_IFMT) != S_IFBLK)
903 return 0;
904 return st1.st_rdev == st2.st_rdev;
905 }
906
907 void wait_for(char *dev, int fd)
908 {
909 int i;
910 struct stat stb_want;
911
912 if (fstat(fd, &stb_want) != 0 ||
913 (stb_want.st_mode & S_IFMT) != S_IFBLK)
914 return;
915
916 for (i=0 ; i<25 ; i++) {
917 struct stat stb;
918 if (stat(dev, &stb) == 0 &&
919 (stb.st_mode & S_IFMT) == S_IFBLK &&
920 (stb.st_rdev == stb_want.st_rdev))
921 return;
922 usleep(200000);
923 }
924 if (i == 25)
925 dprintf("%s: timeout waiting for %s\n", __func__, dev);
926 }
927
928 struct superswitch *superlist[] =
929 {
930 &super0, &super1,
931 &super_ddf, &super_imsm,
932 &mbr, &gpt,
933 NULL };
934
935 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
936
937 struct supertype *super_by_fd(int fd, char **subarrayp)
938 {
939 mdu_array_info_t array;
940 int vers;
941 int minor;
942 struct supertype *st = NULL;
943 struct mdinfo *sra;
944 char *verstr;
945 char version[20];
946 int i;
947 char *subarray = NULL;
948 int container = NoMdDev;
949
950 sra = sysfs_read(fd, 0, GET_VERSION);
951
952 if (sra) {
953 vers = sra->array.major_version;
954 minor = sra->array.minor_version;
955 verstr = sra->text_version;
956 } else {
957 if (ioctl(fd, GET_ARRAY_INFO, &array))
958 array.major_version = array.minor_version = 0;
959 vers = array.major_version;
960 minor = array.minor_version;
961 verstr = "";
962 }
963
964 if (vers != -1) {
965 sprintf(version, "%d.%d", vers, minor);
966 verstr = version;
967 }
968 if (minor == -2 && is_subarray(verstr)) {
969 char *dev = verstr+1;
970
971 subarray = strchr(dev, '/');
972 if (subarray) {
973 *subarray++ = '\0';
974 subarray = strdup(subarray);
975 }
976 container = devname2devnum(dev);
977 if (sra)
978 sysfs_free(sra);
979 sra = sysfs_read(-1, container, GET_VERSION);
980 if (sra && sra->text_version[0])
981 verstr = sra->text_version;
982 else
983 verstr = "-no-metadata-";
984 }
985
986 for (i = 0; st == NULL && superlist[i] ; i++)
987 st = superlist[i]->match_metadata_desc(verstr);
988
989 if (sra)
990 sysfs_free(sra);
991 if (st) {
992 st->sb = NULL;
993 if (subarrayp)
994 *subarrayp = subarray;
995 st->container_dev = container;
996 st->devnum = fd2devnum(fd);
997 } else
998 free(subarray);
999
1000 return st;
1001 }
1002 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
1003
1004 int dev_size_from_id(dev_t id, unsigned long long *size)
1005 {
1006 char buf[20];
1007 int fd;
1008
1009 sprintf(buf, "%d:%d", major(id), minor(id));
1010 fd = dev_open(buf, O_RDONLY);
1011 if (fd < 0)
1012 return 0;
1013 if (get_dev_size(fd, NULL, size)) {
1014 close(fd);
1015 return 1;
1016 }
1017 close(fd);
1018 return 0;
1019 }
1020
1021 struct supertype *dup_super(struct supertype *orig)
1022 {
1023 struct supertype *st;
1024
1025 if (!orig)
1026 return orig;
1027 st = malloc(sizeof(*st));
1028 if (!st)
1029 return st;
1030 memset(st, 0, sizeof(*st));
1031 st->ss = orig->ss;
1032 st->max_devs = orig->max_devs;
1033 st->minor_version = orig->minor_version;
1034 st->sb = NULL;
1035 st->info = NULL;
1036 return st;
1037 }
1038
1039 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1040 {
1041 /* try each load_super to find the best match,
1042 * and return the best superswitch
1043 */
1044 struct superswitch *ss;
1045 struct supertype *st;
1046 time_t besttime = 0;
1047 int bestsuper = -1;
1048 int i;
1049
1050 st = malloc(sizeof(*st));
1051 memset(st, 0, sizeof(*st));
1052 st->container_dev = NoMdDev;
1053
1054 for (i=0 ; superlist[i]; i++) {
1055 int rv;
1056 ss = superlist[i];
1057 if (guess_type == guess_array && ss->add_to_super == NULL)
1058 continue;
1059 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1060 continue;
1061 memset(st, 0, sizeof(*st));
1062 st->ignore_hw_compat = 1;
1063 rv = ss->load_super(st, fd, NULL);
1064 if (rv == 0) {
1065 struct mdinfo info;
1066 st->ss->getinfo_super(st, &info, NULL);
1067 if (bestsuper == -1 ||
1068 besttime < info.array.ctime) {
1069 bestsuper = i;
1070 besttime = info.array.ctime;
1071 }
1072 ss->free_super(st);
1073 }
1074 }
1075 if (bestsuper != -1) {
1076 int rv;
1077 memset(st, 0, sizeof(*st));
1078 st->ignore_hw_compat = 1;
1079 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1080 if (rv == 0) {
1081 superlist[bestsuper]->free_super(st);
1082 st->ignore_hw_compat = 0;
1083 return st;
1084 }
1085 }
1086 free(st);
1087 return NULL;
1088 }
1089
1090 /* Return size of device in bytes */
1091 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1092 {
1093 unsigned long long ldsize;
1094 struct stat st;
1095
1096 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1097 ldsize = (unsigned long long)st.st_size;
1098 else
1099 #ifdef BLKGETSIZE64
1100 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1101 #endif
1102 {
1103 unsigned long dsize;
1104 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1105 ldsize = dsize;
1106 ldsize <<= 9;
1107 } else {
1108 if (dname)
1109 fprintf(stderr, Name ": Cannot get size of %s: %s\b",
1110 dname, strerror(errno));
1111 return 0;
1112 }
1113 }
1114 *sizep = ldsize;
1115 return 1;
1116 }
1117
1118 /* Return true if this can only be a container, not a member device.
1119 * i.e. is and md device and size is zero
1120 */
1121 int must_be_container(int fd)
1122 {
1123 unsigned long long size;
1124 if (md_get_version(fd) < 0)
1125 return 0;
1126 if (get_dev_size(fd, NULL, &size) == 0)
1127 return 1;
1128 if (size == 0)
1129 return 1;
1130 return 0;
1131 }
1132
1133 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1134 * Returns: 1 if successful
1135 * -1 for unknown partition type
1136 * 0 for other errors
1137 */
1138 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1139 {
1140 struct GPT gpt;
1141 unsigned char empty_gpt_entry[16]= {0};
1142 struct GPT_part_entry *part;
1143 char buf[512];
1144 unsigned long long curr_part_end;
1145 unsigned all_partitions, entry_size;
1146 unsigned part_nr;
1147
1148 *endofpart = 0;
1149
1150 BUILD_BUG_ON(sizeof(gpt) != 512);
1151 /* skip protective MBR */
1152 lseek(fd, 512, SEEK_SET);
1153 /* read GPT header */
1154 if (read(fd, &gpt, 512) != 512)
1155 return 0;
1156
1157 /* get the number of partition entries and the entry size */
1158 all_partitions = __le32_to_cpu(gpt.part_cnt);
1159 entry_size = __le32_to_cpu(gpt.part_size);
1160
1161 /* Check GPT signature*/
1162 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1163 return -1;
1164
1165 /* sanity checks */
1166 if (all_partitions > 1024 ||
1167 entry_size > sizeof(buf))
1168 return -1;
1169
1170 part = (struct GPT_part_entry *)buf;
1171
1172 for (part_nr=0; part_nr < all_partitions; part_nr++) {
1173 /* read partition entry */
1174 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1175 return 0;
1176
1177 /* is this valid partition? */
1178 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1179 /* check the last lba for the current partition */
1180 curr_part_end = __le64_to_cpu(part->ending_lba);
1181 if (curr_part_end > *endofpart)
1182 *endofpart = curr_part_end;
1183 }
1184
1185 }
1186 return 1;
1187 }
1188
1189 /* Sets endofpart parameter to the last block used by the last partition on the device.
1190 * Returns: 1 if successful
1191 * -1 for unknown partition type
1192 * 0 for other errors
1193 */
1194 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1195 {
1196 struct MBR boot_sect;
1197 struct MBR_part_record *part;
1198 unsigned long long curr_part_end;
1199 unsigned part_nr;
1200 int retval = 0;
1201
1202 *endofpart = 0;
1203
1204 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1205 /* read MBR */
1206 lseek(fd, 0, 0);
1207 if (read(fd, &boot_sect, 512) != 512)
1208 goto abort;
1209
1210 /* check MBP signature */
1211 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1212 retval = 1;
1213 /* found the correct signature */
1214 part = boot_sect.parts;
1215
1216 for (part_nr=0; part_nr < MBR_PARTITIONS; part_nr++) {
1217 /* check for GPT type */
1218 if (part->part_type == MBR_GPT_PARTITION_TYPE) {
1219 retval = get_gpt_last_partition_end(fd, endofpart);
1220 break;
1221 }
1222 /* check the last used lba for the current partition */
1223 curr_part_end = __le32_to_cpu(part->first_sect_lba) +
1224 __le32_to_cpu(part->blocks_num);
1225 if (curr_part_end > *endofpart)
1226 *endofpart = curr_part_end;
1227
1228 part++;
1229 }
1230 } else {
1231 /* Unknown partition table */
1232 retval = -1;
1233 }
1234 abort:
1235 return retval;
1236 }
1237
1238 int check_partitions(int fd, char *dname, unsigned long long freesize,
1239 unsigned long long size)
1240 {
1241 /*
1242 * Check where the last partition ends
1243 */
1244 unsigned long long endofpart;
1245 int ret;
1246
1247 if ((ret = get_last_partition_end(fd, &endofpart)) > 0) {
1248 /* There appears to be a partition table here */
1249 if (freesize == 0) {
1250 /* partitions will not be visible in new device */
1251 fprintf(stderr,
1252 Name ": partition table exists on %s but will be lost or\n"
1253 " meaningless after creating array\n",
1254 dname);
1255 return 1;
1256 } else if (endofpart > freesize) {
1257 /* last partition overlaps metadata */
1258 fprintf(stderr,
1259 Name ": metadata will over-write last partition on %s.\n",
1260 dname);
1261 return 1;
1262 } else if (size && endofpart > size) {
1263 /* partitions will be truncated in new device */
1264 fprintf(stderr,
1265 Name ": array size is too small to cover all partitions on %s.\n",
1266 dname);
1267 return 1;
1268 }
1269 }
1270 return 0;
1271 }
1272
1273 void get_one_disk(int mdfd, mdu_array_info_t *ainf, mdu_disk_info_t *disk)
1274 {
1275 int d;
1276
1277 ioctl(mdfd, GET_ARRAY_INFO, ainf);
1278 for (d = 0 ; d < MAX_DISKS ; d++) {
1279 if (ioctl(mdfd, GET_DISK_INFO, disk) == 0 &&
1280 (disk->major || disk->minor))
1281 return;
1282 }
1283 }
1284
1285 int open_container(int fd)
1286 {
1287 /* 'fd' is a block device. Find out if it is in use
1288 * by a container, and return an open fd on that container.
1289 */
1290 char path[256];
1291 char *e;
1292 DIR *dir;
1293 struct dirent *de;
1294 int dfd, n;
1295 char buf[200];
1296 int major, minor;
1297 struct stat st;
1298
1299 if (fstat(fd, &st) != 0)
1300 return -1;
1301 sprintf(path, "/sys/dev/block/%d:%d/holders",
1302 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1303 e = path + strlen(path);
1304
1305 dir = opendir(path);
1306 if (!dir)
1307 return -1;
1308 while ((de = readdir(dir))) {
1309 if (de->d_ino == 0)
1310 continue;
1311 if (de->d_name[0] == '.')
1312 continue;
1313 sprintf(e, "/%s/dev", de->d_name);
1314 dfd = open(path, O_RDONLY);
1315 if (dfd < 0)
1316 continue;
1317 n = read(dfd, buf, sizeof(buf));
1318 close(dfd);
1319 if (n <= 0 || (unsigned)n >= sizeof(buf))
1320 continue;
1321 buf[n] = 0;
1322 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1323 continue;
1324 sprintf(buf, "%d:%d", major, minor);
1325 dfd = dev_open(buf, O_RDONLY);
1326 if (dfd >= 0) {
1327 closedir(dir);
1328 return dfd;
1329 }
1330 }
1331 closedir(dir);
1332 return -1;
1333 }
1334
1335 struct superswitch *version_to_superswitch(char *vers)
1336 {
1337 int i;
1338
1339 for (i = 0; superlist[i]; i++) {
1340 struct superswitch *ss = superlist[i];
1341
1342 if (strcmp(vers, ss->name) == 0)
1343 return ss;
1344 }
1345
1346 return NULL;
1347 }
1348
1349 int is_container_member(struct mdstat_ent *mdstat, char *container)
1350 {
1351 if (mdstat->metadata_version == NULL ||
1352 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1353 !is_subarray(mdstat->metadata_version+9) ||
1354 strncmp(mdstat->metadata_version+10, container, strlen(container)) != 0 ||
1355 mdstat->metadata_version[10+strlen(container)] != '/')
1356 return 0;
1357
1358 return 1;
1359 }
1360
1361 int is_subarray_active(char *subarray, char *container)
1362 {
1363 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1364 struct mdstat_ent *ent;
1365
1366 for (ent = mdstat; ent; ent = ent->next)
1367 if (is_container_member(ent, container))
1368 if (strcmp(to_subarray(ent, container), subarray) == 0)
1369 break;
1370
1371 free_mdstat(mdstat);
1372
1373 return ent != NULL;
1374 }
1375
1376 /* open_subarray - opens a subarray in a container
1377 * @dev: container device name
1378 * @st: empty supertype
1379 * @quiet: block reporting errors flag
1380 *
1381 * On success returns an fd to a container and fills in *st
1382 */
1383 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1384 {
1385 struct mdinfo *mdi;
1386 struct mdinfo *info;
1387 int fd, err = 1;
1388
1389 fd = open(dev, O_RDWR|O_EXCL);
1390 if (fd < 0) {
1391 if (!quiet)
1392 fprintf(stderr, Name ": Couldn't open %s, aborting\n",
1393 dev);
1394 return -1;
1395 }
1396
1397 st->devnum = fd2devnum(fd);
1398 if (st->devnum == NoMdDev) {
1399 if (!quiet)
1400 fprintf(stderr,
1401 Name ": Failed to determine device number for %s\n",
1402 dev);
1403 goto close_fd;
1404 }
1405
1406 mdi = sysfs_read(fd, st->devnum, GET_VERSION|GET_LEVEL);
1407 if (!mdi) {
1408 if (!quiet)
1409 fprintf(stderr, Name ": Failed to read sysfs for %s\n",
1410 dev);
1411 goto close_fd;
1412 }
1413
1414 if (mdi->array.level != UnSet) {
1415 if (!quiet)
1416 fprintf(stderr, Name ": %s is not a container\n", dev);
1417 goto free_sysfs;
1418 }
1419
1420 st->ss = version_to_superswitch(mdi->text_version);
1421 if (!st->ss) {
1422 if (!quiet)
1423 fprintf(stderr,
1424 Name ": Operation not supported for %s metadata\n",
1425 mdi->text_version);
1426 goto free_sysfs;
1427 }
1428
1429 st->devname = devnum2devname(st->devnum);
1430 if (!st->devname) {
1431 if (!quiet)
1432 fprintf(stderr, Name ": Failed to allocate device name\n");
1433 goto free_sysfs;
1434 }
1435
1436 if (!st->ss->load_container) {
1437 if (!quiet)
1438 fprintf(stderr, Name ": %s is not a container\n", dev);
1439 goto free_name;
1440 }
1441
1442 if (st->ss->load_container(st, fd, NULL)) {
1443 if (!quiet)
1444 fprintf(stderr, Name ": Failed to load metadata for %s\n",
1445 dev);
1446 goto free_name;
1447 }
1448
1449 info = st->ss->container_content(st, subarray);
1450 if (!info) {
1451 if (!quiet)
1452 fprintf(stderr, Name ": Failed to find subarray-%s in %s\n",
1453 subarray, dev);
1454 goto free_super;
1455 }
1456 free(info);
1457
1458 err = 0;
1459
1460 free_super:
1461 if (err)
1462 st->ss->free_super(st);
1463 free_name:
1464 if (err)
1465 free(st->devname);
1466 free_sysfs:
1467 sysfs_free(mdi);
1468 close_fd:
1469 if (err)
1470 close(fd);
1471
1472 if (err)
1473 return -1;
1474 else
1475 return fd;
1476 }
1477
1478 int add_disk(int mdfd, struct supertype *st,
1479 struct mdinfo *sra, struct mdinfo *info)
1480 {
1481 /* Add a device to an array, in one of 2 ways. */
1482 int rv;
1483 #ifndef MDASSEMBLE
1484 if (st->ss->external) {
1485 if (info->disk.state & (1<<MD_DISK_SYNC))
1486 info->recovery_start = MaxSector;
1487 else
1488 info->recovery_start = 0;
1489 rv = sysfs_add_disk(sra, info, 0);
1490 if (! rv) {
1491 struct mdinfo *sd2;
1492 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1493 if (sd2 == info)
1494 break;
1495 if (sd2 == NULL) {
1496 sd2 = malloc(sizeof(*sd2));
1497 *sd2 = *info;
1498 sd2->next = sra->devs;
1499 sra->devs = sd2;
1500 }
1501 }
1502 } else
1503 #endif
1504 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1505 return rv;
1506 }
1507
1508 int remove_disk(int mdfd, struct supertype *st,
1509 struct mdinfo *sra, struct mdinfo *info)
1510 {
1511 int rv;
1512 /* Remove the disk given by 'info' from the array */
1513 #ifndef MDASSEMBLE
1514 if (st->ss->external)
1515 rv = sysfs_set_str(sra, info, "slot", "none");
1516 else
1517 #endif
1518 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1519 info->disk.minor));
1520 return rv;
1521 }
1522
1523 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1524 {
1525 /* Initialise kernel's knowledge of array.
1526 * This varies between externally managed arrays
1527 * and older kernels
1528 */
1529 int vers = md_get_version(mdfd);
1530 int rv;
1531
1532 #ifndef MDASSEMBLE
1533 if (st->ss->external)
1534 rv = sysfs_set_array(info, vers);
1535 else
1536 #endif
1537 if ((vers % 100) >= 1) { /* can use different versions */
1538 mdu_array_info_t inf;
1539 memset(&inf, 0, sizeof(inf));
1540 inf.major_version = info->array.major_version;
1541 inf.minor_version = info->array.minor_version;
1542 rv = ioctl(mdfd, SET_ARRAY_INFO, &inf);
1543 } else
1544 rv = ioctl(mdfd, SET_ARRAY_INFO, NULL);
1545 return rv;
1546 }
1547
1548 unsigned long long min_recovery_start(struct mdinfo *array)
1549 {
1550 /* find the minimum recovery_start in an array for metadata
1551 * formats that only record per-array recovery progress instead
1552 * of per-device
1553 */
1554 unsigned long long recovery_start = MaxSector;
1555 struct mdinfo *d;
1556
1557 for (d = array->devs; d; d = d->next)
1558 recovery_start = min(recovery_start, d->recovery_start);
1559
1560 return recovery_start;
1561 }
1562
1563 int mdmon_pid(int devnum)
1564 {
1565 char path[100];
1566 char pid[10];
1567 int fd;
1568 int n;
1569 char *devname = devnum2devname(devnum);
1570
1571 sprintf(path, "%s/%s.pid", MDMON_DIR, devname);
1572 free(devname);
1573
1574 fd = open(path, O_RDONLY | O_NOATIME, 0);
1575
1576 if (fd < 0)
1577 return -1;
1578 n = read(fd, pid, 9);
1579 close(fd);
1580 if (n <= 0)
1581 return -1;
1582 return atoi(pid);
1583 }
1584
1585 int mdmon_running(int devnum)
1586 {
1587 int pid = mdmon_pid(devnum);
1588 if (pid <= 0)
1589 return 0;
1590 if (kill(pid, 0) == 0)
1591 return 1;
1592 return 0;
1593 }
1594
1595 int start_mdmon(int devnum)
1596 {
1597 int i, skipped;
1598 int len;
1599 pid_t pid;
1600 int status;
1601 char pathbuf[1024];
1602 char *paths[4] = {
1603 pathbuf,
1604 "/sbin/mdmon",
1605 "mdmon",
1606 NULL
1607 };
1608
1609 if (check_env("MDADM_NO_MDMON"))
1610 return 0;
1611
1612 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1613 if (len > 0) {
1614 char *sl;
1615 pathbuf[len] = 0;
1616 sl = strrchr(pathbuf, '/');
1617 if (sl)
1618 sl++;
1619 else
1620 sl = pathbuf;
1621 strcpy(sl, "mdmon");
1622 } else
1623 pathbuf[0] = '\0';
1624
1625 switch(fork()) {
1626 case 0:
1627 /* FIXME yuk. CLOSE_EXEC?? */
1628 skipped = 0;
1629 for (i=3; skipped < 20; i++)
1630 if (close(i) < 0)
1631 skipped++;
1632 else
1633 skipped = 0;
1634
1635 for (i=0; paths[i]; i++)
1636 if (paths[i][0]) {
1637 if (__offroot) {
1638 execl(paths[i], "mdmon", "--offroot",
1639 devnum2devname(devnum),
1640 NULL);
1641 } else {
1642 execl(paths[i], "mdmon",
1643 devnum2devname(devnum),
1644 NULL);
1645 }
1646 }
1647 exit(1);
1648 case -1: fprintf(stderr, Name ": cannot run mdmon. "
1649 "Array remains readonly\n");
1650 return -1;
1651 default: /* parent - good */
1652 pid = wait(&status);
1653 if (pid < 0 || status != 0)
1654 return -1;
1655 }
1656 return 0;
1657 }
1658
1659 int check_env(char *name)
1660 {
1661 char *val = getenv(name);
1662
1663 if (val && atoi(val) == 1)
1664 return 1;
1665
1666 return 0;
1667 }
1668
1669 __u32 random32(void)
1670 {
1671 __u32 rv;
1672 int rfd = open("/dev/urandom", O_RDONLY);
1673 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1674 rv = random();
1675 if (rfd >= 0)
1676 close(rfd);
1677 return rv;
1678 }
1679
1680 #ifndef MDASSEMBLE
1681 int flush_metadata_updates(struct supertype *st)
1682 {
1683 int sfd;
1684 if (!st->updates) {
1685 st->update_tail = NULL;
1686 return -1;
1687 }
1688
1689 sfd = connect_monitor(devnum2devname(st->container_dev));
1690 if (sfd < 0)
1691 return -1;
1692
1693 while (st->updates) {
1694 struct metadata_update *mu = st->updates;
1695 st->updates = mu->next;
1696
1697 send_message(sfd, mu, 0);
1698 wait_reply(sfd, 0);
1699 free(mu->buf);
1700 free(mu);
1701 }
1702 ack(sfd, 0);
1703 wait_reply(sfd, 0);
1704 close(sfd);
1705 st->update_tail = NULL;
1706 return 0;
1707 }
1708
1709 void append_metadata_update(struct supertype *st, void *buf, int len)
1710 {
1711
1712 struct metadata_update *mu = malloc(sizeof(*mu));
1713
1714 mu->buf = buf;
1715 mu->len = len;
1716 mu->space = NULL;
1717 mu->space_list = NULL;
1718 mu->next = NULL;
1719 *st->update_tail = mu;
1720 st->update_tail = &mu->next;
1721 }
1722 #endif /* MDASSEMBLE */
1723
1724 #ifdef __TINYC__
1725 /* tinyc doesn't optimize this check in ioctl.h out ... */
1726 unsigned int __invalid_size_argument_for_IOC = 0;
1727 #endif
1728
1729 int experimental(void)
1730 {
1731 if (check_env("MDADM_EXPERIMENTAL"))
1732 return 1;
1733 else {
1734 fprintf(stderr, Name ": To use this feature MDADM_EXPERIMENTAL"
1735 " environment variable has to be defined.\n");
1736 return 0;
1737 }
1738 }
1739
1740 /* Pick all spares matching given criteria from a container
1741 * if min_size == 0 do not check size
1742 * if domlist == NULL do not check domains
1743 * if spare_group given add it to domains of each spare
1744 * metadata allows to test domains using metadata of destination array */
1745 struct mdinfo *container_choose_spares(struct supertype *st,
1746 unsigned long long min_size,
1747 struct domainlist *domlist,
1748 char *spare_group,
1749 const char *metadata, int get_one)
1750 {
1751 struct mdinfo *d, **dp, *disks = NULL;
1752
1753 /* get list of all disks in container */
1754 if (st->ss->getinfo_super_disks)
1755 disks = st->ss->getinfo_super_disks(st);
1756
1757 if (!disks)
1758 return disks;
1759 /* find spare devices on the list */
1760 dp = &disks->devs;
1761 disks->array.spare_disks = 0;
1762 while (*dp) {
1763 int found = 0;
1764 d = *dp;
1765 if (d->disk.state == 0) {
1766 /* check if size is acceptable */
1767 unsigned long long dev_size;
1768 dev_t dev = makedev(d->disk.major,d->disk.minor);
1769
1770 if (!min_size ||
1771 (dev_size_from_id(dev, &dev_size) &&
1772 dev_size >= min_size))
1773 found = 1;
1774 /* check if domain matches */
1775 if (found && domlist) {
1776 struct dev_policy *pol = devnum_policy(dev);
1777 if (spare_group)
1778 pol_add(&pol, pol_domain,
1779 spare_group, NULL);
1780 if (domain_test(domlist, pol, metadata) != 1)
1781 found = 0;
1782 dev_policy_free(pol);
1783 }
1784 }
1785 if (found) {
1786 dp = &d->next;
1787 disks->array.spare_disks++;
1788 if (get_one) {
1789 sysfs_free(*dp);
1790 d->next = NULL;
1791 }
1792 } else {
1793 *dp = d->next;
1794 d->next = NULL;
1795 sysfs_free(d);
1796 }
1797 }
1798 return disks;
1799 }