]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
Grow: Fixup a pile of cosmetic issues
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <linux/magic.h>
34 #include <poll.h>
35 #include <ctype.h>
36 #include <dirent.h>
37 #include <signal.h>
38 #include <dlfcn.h>
39
40
41 /*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46 #define BLKPG _IO(0x12,105)
47
48 /* The argument structure */
49 struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54 };
55
56 /* The subfunctions (for the op field) */
57 #define BLKPG_ADD_PARTITION 1
58 #define BLKPG_DEL_PARTITION 2
59
60 /* Sizes of name fields. Unused at present. */
61 #define BLKPG_DEVNAMELTH 64
62 #define BLKPG_VOLNAMELTH 64
63
64 /* The data structure for ADD_PARTITION and DEL_PARTITION */
65 struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72 };
73
74 #include "part.h"
75
76 /* Force a compilation error if condition is true */
77 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79 /* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85 static int is_dlm_hooks_ready = 0;
86
87 int dlm_funs_ready(void)
88 {
89 return is_dlm_hooks_ready ? 1 : 0;
90 }
91
92 #ifndef MDASSEMBLE
93 static struct dlm_hooks *dlm_hooks = NULL;
94 struct dlm_lock_resource *dlm_lock_res = NULL;
95 static int ast_called = 0;
96
97 struct dlm_lock_resource {
98 dlm_lshandle_t *ls;
99 struct dlm_lksb lksb;
100 };
101
102 /* Using poll(2) to wait for and dispatch ASTs */
103 static int poll_for_ast(dlm_lshandle_t ls)
104 {
105 struct pollfd pfd;
106
107 pfd.fd = dlm_hooks->ls_get_fd(ls);
108 pfd.events = POLLIN;
109
110 while (!ast_called)
111 {
112 if (poll(&pfd, 1, 0) < 0)
113 {
114 perror("poll");
115 return -1;
116 }
117 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
118 }
119 ast_called = 0;
120
121 return 0;
122 }
123
124 static void dlm_ast(void *arg)
125 {
126 ast_called = 1;
127 }
128
129 static char *cluster_name = NULL;
130 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
131 int cluster_get_dlmlock(int *lockid)
132 {
133 int ret = -1;
134 char str[64];
135 int flags = LKF_NOQUEUE;
136
137 ret = get_cluster_name(&cluster_name);
138 if (ret) {
139 pr_err("The md can't get cluster name\n");
140 return -1;
141 }
142
143 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
144 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
145 if (!dlm_lock_res->ls) {
146 pr_err("%s failed to create lockspace\n", cluster_name);
147 return -ENOMEM;
148 }
149
150 snprintf(str, 64, "bitmap%s", cluster_name);
151 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE, &dlm_lock_res->lksb,
152 flags, str, strlen(str), 0, dlm_ast,
153 dlm_lock_res, NULL, NULL);
154 if (ret) {
155 pr_err("error %d when get PW mode on lock %s\n", errno, str);
156 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
157 return ret;
158 }
159
160 /* Wait for it to complete */
161 poll_for_ast(dlm_lock_res->ls);
162 *lockid = dlm_lock_res->lksb.sb_lkid;
163
164 return dlm_lock_res->lksb.sb_status;
165 }
166
167 int cluster_release_dlmlock(int lockid)
168 {
169 int ret = -1;
170
171 if (!cluster_name)
172 return -1;
173
174 ret = dlm_hooks->ls_unlock(dlm_lock_res->ls, lockid, 0,
175 &dlm_lock_res->lksb, dlm_lock_res);
176 if (ret) {
177 pr_err("error %d happened when unlock\n", errno);
178 /* XXX make sure the lock is unlocked eventually */
179 goto out;
180 }
181
182 /* Wait for it to complete */
183 poll_for_ast(dlm_lock_res->ls);
184
185 errno = dlm_lock_res->lksb.sb_status;
186 if (errno != EUNLOCK) {
187 pr_err("error %d happened in ast when unlock lockspace\n", errno);
188 /* XXX make sure the lockspace is unlocked eventually */
189 goto out;
190 }
191
192 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
193 if (ret) {
194 pr_err("error %d happened when release lockspace\n", errno);
195 /* XXX make sure the lockspace is released eventually */
196 goto out;
197 }
198 free(dlm_lock_res);
199
200 out:
201 return ret;
202 }
203 #else
204 int cluster_get_dlmlock(int *lockid)
205 {
206 return -1;
207 }
208 int cluster_release_dlmlock(int lockid)
209 {
210 return -1;
211 }
212 #endif
213
214 /*
215 * Parse a 128 bit uuid in 4 integers
216 * format is 32 hexx nibbles with options :.<space> separator
217 * If not exactly 32 hex digits are found, return 0
218 * else return 1
219 */
220 int parse_uuid(char *str, int uuid[4])
221 {
222 int hit = 0; /* number of Hex digIT */
223 int i;
224 char c;
225 for (i = 0; i < 4; i++)
226 uuid[i] = 0;
227
228 while ((c = *str++) != 0) {
229 int n;
230 if (c >= '0' && c <= '9')
231 n = c-'0';
232 else if (c >= 'a' && c <= 'f')
233 n = 10 + c - 'a';
234 else if (c >= 'A' && c <= 'F')
235 n = 10 + c - 'A';
236 else if (strchr(":. -", c))
237 continue;
238 else return 0;
239
240 if (hit<32) {
241 uuid[hit/8] <<= 4;
242 uuid[hit/8] += n;
243 }
244 hit++;
245 }
246 if (hit == 32)
247 return 1;
248 return 0;
249 }
250
251 /*
252 * Get the md version number.
253 * We use the RAID_VERSION ioctl if it is supported
254 * If not, but we have a block device with major '9', we assume
255 * 0.36.0
256 *
257 * Return version number as 24 but number - assume version parts
258 * always < 255
259 */
260
261 int md_get_version(int fd)
262 {
263 struct stat stb;
264 mdu_version_t vers;
265
266 if (fstat(fd, &stb)<0)
267 return -1;
268 if ((S_IFMT&stb.st_mode) != S_IFBLK)
269 return -1;
270
271 if (ioctl(fd, RAID_VERSION, &vers) == 0)
272 return (vers.major*10000) + (vers.minor*100) + vers.patchlevel;
273 if (errno == EACCES)
274 return -1;
275 if (major(stb.st_rdev) == MD_MAJOR)
276 return (3600);
277 return -1;
278 }
279
280 int get_linux_version()
281 {
282 struct utsname name;
283 char *cp;
284 int a = 0, b = 0,c = 0;
285 if (uname(&name) <0)
286 return -1;
287
288 cp = name.release;
289 a = strtoul(cp, &cp, 10);
290 if (*cp == '.')
291 b = strtoul(cp+1, &cp, 10);
292 if (*cp == '.')
293 c = strtoul(cp+1, &cp, 10);
294
295 return (a*1000000)+(b*1000)+c;
296 }
297
298 #ifndef MDASSEMBLE
299 int mdadm_version(char *version)
300 {
301 int a, b, c;
302 char *cp;
303
304 if (!version)
305 version = Version;
306
307 cp = strchr(version, '-');
308 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
309 return -1;
310 cp += 3;
311 a = strtoul(cp, &cp, 10);
312 if (*cp != '.')
313 return -1;
314 b = strtoul(cp+1, &cp, 10);
315 if (*cp == '.')
316 c = strtoul(cp+1, &cp, 10);
317 else
318 c = 0;
319 if (*cp != ' ' && *cp != '-')
320 return -1;
321 return (a*1000000)+(b*1000)+c;
322 }
323
324 unsigned long long parse_size(char *size)
325 {
326 /* parse 'size' which should be a number optionally
327 * followed by 'K', 'M', or 'G'.
328 * Without a suffix, K is assumed.
329 * Number returned is in sectors (half-K)
330 * INVALID_SECTORS returned on error.
331 */
332 char *c;
333 long long s = strtoll(size, &c, 10);
334 if (s > 0) {
335 switch (*c) {
336 case 'K':
337 c++;
338 default:
339 s *= 2;
340 break;
341 case 'M':
342 c++;
343 s *= 1024 * 2;
344 break;
345 case 'G':
346 c++;
347 s *= 1024 * 1024 * 2;
348 break;
349 case 's': /* sectors */
350 c++;
351 break;
352 }
353 } else
354 s = INVALID_SECTORS;
355 if (*c)
356 s = INVALID_SECTORS;
357 return s;
358 }
359
360 int parse_layout_10(char *layout)
361 {
362 int copies, rv;
363 char *cp;
364 /* Parse the layout string for raid10 */
365 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
366 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
367 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
368 copies > 200 ||
369 *cp)
370 return -1;
371 if (layout[0] == 'n')
372 rv = 256 + copies;
373 else if (layout[0] == 'o')
374 rv = 0x10000 + (copies<<8) + 1;
375 else
376 rv = 1 + (copies<<8);
377 return rv;
378 }
379
380 int parse_layout_faulty(char *layout)
381 {
382 /* Parse the layout string for 'faulty' */
383 int ln = strcspn(layout, "0123456789");
384 char *m = xstrdup(layout);
385 int mode;
386 m[ln] = 0;
387 mode = map_name(faultylayout, m);
388 if (mode == UnSet)
389 return -1;
390
391 return mode | (atoi(layout+ln)<< ModeShift);
392 }
393
394 long parse_num(char *num)
395 {
396 /* Either return a valid number, or -1 */
397 char *c;
398 long rv = strtol(num, &c, 10);
399 if (rv < 0 || *c || !num[0])
400 return -1;
401 else
402 return rv;
403 }
404 #endif
405
406 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
407 {
408 char *dev;
409 *slot = strtoul(input, &dev, 10);
410 if (dev == input || dev[0] != ':')
411 return -1;
412 *devname = dev+1;
413 return 0;
414 }
415
416 void remove_partitions(int fd)
417 {
418 /* remove partitions from this block devices.
419 * This is used for components added to an array
420 */
421 #ifdef BLKPG_DEL_PARTITION
422 struct blkpg_ioctl_arg a;
423 struct blkpg_partition p;
424
425 a.op = BLKPG_DEL_PARTITION;
426 a.data = (void*)&p;
427 a.datalen = sizeof(p);
428 a.flags = 0;
429 memset(a.data, 0, a.datalen);
430 for (p.pno = 0; p.pno < 16; p.pno++)
431 ioctl(fd, BLKPG, &a);
432 #endif
433 }
434
435 int test_partition(int fd)
436 {
437 /* Check if fd is a whole-disk or a partition.
438 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
439 * will return ENXIO on an invalid partition number.
440 */
441 struct blkpg_ioctl_arg a;
442 struct blkpg_partition p;
443 a.op = BLKPG_DEL_PARTITION;
444 a.data = (void*)&p;
445 a.datalen = sizeof(p);
446 a.flags = 0;
447 memset(a.data, 0, a.datalen);
448 p.pno = 1<<30;
449 if (ioctl(fd, BLKPG, &a) == 0)
450 /* Very unlikely, but not a partition */
451 return 0;
452 if (errno == ENXIO || errno == ENOTTY)
453 /* not a partition */
454 return 0;
455
456 return 1;
457 }
458
459 int test_partition_from_id(dev_t id)
460 {
461 char buf[20];
462 int fd, rv;
463
464 sprintf(buf, "%d:%d", major(id), minor(id));
465 fd = dev_open(buf, O_RDONLY);
466 if (fd < 0)
467 return -1;
468 rv = test_partition(fd);
469 close(fd);
470 return rv;
471 }
472
473 int enough(int level, int raid_disks, int layout, int clean, char *avail)
474 {
475 int copies, first;
476 int i;
477 int avail_disks = 0;
478
479 for (i = 0; i < raid_disks; i++)
480 avail_disks += !!avail[i];
481
482 switch (level) {
483 case 10:
484 /* This is the tricky one - we need to check
485 * which actual disks are present.
486 */
487 copies = (layout&255)* ((layout>>8) & 255);
488 first = 0;
489 do {
490 /* there must be one of the 'copies' form 'first' */
491 int n = copies;
492 int cnt = 0;
493 int this = first;
494 while (n--) {
495 if (avail[this])
496 cnt++;
497 this = (this+1) % raid_disks;
498 }
499 if (cnt == 0)
500 return 0;
501 first = (first+(layout&255)) % raid_disks;
502 } while (first != 0);
503 return 1;
504
505 case LEVEL_MULTIPATH:
506 return avail_disks>= 1;
507 case LEVEL_LINEAR:
508 case 0:
509 return avail_disks == raid_disks;
510 case 1:
511 return avail_disks >= 1;
512 case 4:
513 if (avail_disks == raid_disks - 1 &&
514 !avail[raid_disks - 1])
515 /* If just the parity device is missing, then we
516 * have enough, even if not clean
517 */
518 return 1;
519 /* FALL THROUGH */
520 case 5:
521 if (clean)
522 return avail_disks >= raid_disks-1;
523 else
524 return avail_disks >= raid_disks;
525 case 6:
526 if (clean)
527 return avail_disks >= raid_disks-2;
528 else
529 return avail_disks >= raid_disks;
530 default:
531 return 0;
532 }
533 }
534
535 int enough_fd(int fd)
536 {
537 struct mdu_array_info_s array;
538 struct mdu_disk_info_s disk;
539 int i, rv;
540 char *avail;
541
542 if (ioctl(fd, GET_ARRAY_INFO, &array) != 0 ||
543 array.raid_disks <= 0)
544 return 0;
545 avail = xcalloc(array.raid_disks, 1);
546 for (i = 0; i < MAX_DISKS && array.nr_disks > 0; i++) {
547 disk.number = i;
548 if (ioctl(fd, GET_DISK_INFO, &disk) != 0)
549 continue;
550 if (disk.major == 0 && disk.minor == 0)
551 continue;
552 array.nr_disks--;
553
554 if (! (disk.state & (1<<MD_DISK_SYNC)))
555 continue;
556 if (disk.raid_disk < 0 || disk.raid_disk >= array.raid_disks)
557 continue;
558 avail[disk.raid_disk] = 1;
559 }
560 /* This is used on an active array, so assume it is clean */
561 rv = enough(array.level, array.raid_disks, array.layout,
562 1, avail);
563 free(avail);
564 return rv;
565 }
566
567 const int uuid_zero[4] = { 0, 0, 0, 0 };
568
569 int same_uuid(int a[4], int b[4], int swapuuid)
570 {
571 if (swapuuid) {
572 /* parse uuids are hostendian.
573 * uuid's from some superblocks are big-ending
574 * if there is a difference, we need to swap..
575 */
576 unsigned char *ac = (unsigned char *)a;
577 unsigned char *bc = (unsigned char *)b;
578 int i;
579 for (i = 0; i < 16; i += 4) {
580 if (ac[i+0] != bc[i+3] ||
581 ac[i+1] != bc[i+2] ||
582 ac[i+2] != bc[i+1] ||
583 ac[i+3] != bc[i+0])
584 return 0;
585 }
586 return 1;
587 } else {
588 if (a[0]==b[0] &&
589 a[1]==b[1] &&
590 a[2]==b[2] &&
591 a[3]==b[3])
592 return 1;
593 return 0;
594 }
595 }
596
597 void copy_uuid(void *a, int b[4], int swapuuid)
598 {
599 if (swapuuid) {
600 /* parse uuids are hostendian.
601 * uuid's from some superblocks are big-ending
602 * if there is a difference, we need to swap..
603 */
604 unsigned char *ac = (unsigned char *)a;
605 unsigned char *bc = (unsigned char *)b;
606 int i;
607 for (i = 0; i < 16; i += 4) {
608 ac[i+0] = bc[i+3];
609 ac[i+1] = bc[i+2];
610 ac[i+2] = bc[i+1];
611 ac[i+3] = bc[i+0];
612 }
613 } else
614 memcpy(a, b, 16);
615 }
616
617 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
618 {
619 int i, j;
620 char uuid[16];
621 char *c = buf;
622 strcpy(c, "UUID-");
623 c += strlen(c);
624 copy_uuid(uuid, id, swap);
625 for (i = 0; i < 4; i++) {
626 if (i)
627 *c++ = sep;
628 for (j = 3; j >= 0; j--) {
629 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
630 c+= 2;
631 }
632 }
633 return buf;
634
635 }
636
637 char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep)
638 {
639 // dirty hack to work around an issue with super1 superblocks...
640 // super1 superblocks need swapuuid set in order for assembly to
641 // work, but can't have it set if we want this printout to match
642 // all the other uuid printouts in super1.c, so we force swapuuid
643 // to 1 to make our printout match the rest of super1
644 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 : st->ss->swapuuid, buf, sep);
645 }
646
647 #ifndef MDASSEMBLE
648 int check_ext2(int fd, char *name)
649 {
650 /*
651 * Check for an ext2fs file system.
652 * Superblock is always 1K at 1K offset
653 *
654 * s_magic is le16 at 56 == 0xEF53
655 * report mtime - le32 at 44
656 * blocks - le32 at 4
657 * logblksize - le32 at 24
658 */
659 unsigned char sb[1024];
660 time_t mtime;
661 unsigned long long size;
662 int bsize;
663 if (lseek(fd, 1024,0)!= 1024)
664 return 0;
665 if (read(fd, sb, 1024)!= 1024)
666 return 0;
667 if (sb[56] != 0x53 || sb[57] != 0xef)
668 return 0;
669
670 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
671 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
672 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
673 size <<= bsize;
674 pr_err("%s appears to contain an ext2fs file system\n",
675 name);
676 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
677 return 1;
678 }
679
680 int check_reiser(int fd, char *name)
681 {
682 /*
683 * superblock is at 64K
684 * size is 1024;
685 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
686 *
687 */
688 unsigned char sb[1024];
689 unsigned long long size;
690 if (lseek(fd, 64*1024, 0) != 64*1024)
691 return 0;
692 if (read(fd, sb, 1024) != 1024)
693 return 0;
694 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
695 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
696 return 0;
697 pr_err("%s appears to contain a reiserfs file system\n",name);
698 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
699 cont_err("size = %lluK\n", size*4);
700
701 return 1;
702 }
703
704 int check_raid(int fd, char *name)
705 {
706 struct mdinfo info;
707 time_t crtime;
708 char *level;
709 struct supertype *st = guess_super(fd);
710
711 if (!st)
712 return 0;
713 if (st->ss->add_to_super != NULL) {
714 st->ss->load_super(st, fd, name);
715 /* Looks like a raid array .. */
716 pr_err("%s appears to be part of a raid array:\n", name);
717 st->ss->getinfo_super(st, &info, NULL);
718 st->ss->free_super(st);
719 crtime = info.array.ctime;
720 level = map_num(pers, info.array.level);
721 if (!level)
722 level = "-unknown-";
723 cont_err("level=%s devices=%d ctime=%s",
724 level, info.array.raid_disks, ctime(&crtime));
725 } else {
726 /* Looks like GPT or MBR */
727 pr_err("partition table exists on %s\n", name);
728 }
729 return 1;
730 }
731
732 int ask(char *mesg)
733 {
734 char *add = "";
735 int i;
736 for (i = 0; i < 5; i++) {
737 char buf[100];
738 fprintf(stderr, "%s%s", mesg, add);
739 fflush(stderr);
740 if (fgets(buf, 100, stdin)==NULL)
741 return 0;
742 if (buf[0]=='y' || buf[0]=='Y')
743 return 1;
744 if (buf[0]=='n' || buf[0]=='N')
745 return 0;
746 add = "(y/n) ";
747 }
748 pr_err("assuming 'no'\n");
749 return 0;
750 }
751 #endif /* MDASSEMBLE */
752
753 int is_standard(char *dev, int *nump)
754 {
755 /* tests if dev is a "standard" md dev name.
756 * i.e if the last component is "/dNN" or "/mdNN",
757 * where NN is a string of digits
758 * Returns 1 if a partitionable standard,
759 * -1 if non-partitonable,
760 * 0 if not a standard name.
761 */
762 char *d = strrchr(dev, '/');
763 int type = 0;
764 int num;
765 if (!d)
766 return 0;
767 if (strncmp(d, "/d",2) == 0)
768 d += 2, type = 1; /* /dev/md/dN{pM} */
769 else if (strncmp(d, "/md_d", 5) == 0)
770 d += 5, type = 1; /* /dev/md_dN{pM} */
771 else if (strncmp(d, "/md", 3) == 0)
772 d += 3, type = -1; /* /dev/mdN */
773 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
774 d += 1, type = -1; /* /dev/md/N */
775 else
776 return 0;
777 if (!*d)
778 return 0;
779 num = atoi(d);
780 while (isdigit(*d))
781 d++;
782 if (*d)
783 return 0;
784 if (nump) *nump = num;
785
786 return type;
787 }
788
789 unsigned long calc_csum(void *super, int bytes)
790 {
791 unsigned long long newcsum = 0;
792 int i;
793 unsigned int csum;
794 unsigned int *superc = (unsigned int*) super;
795
796 for(i = 0; i < bytes/4; i++)
797 newcsum += superc[i];
798 csum = (newcsum& 0xffffffff) + (newcsum>>32);
799 #ifdef __alpha__
800 /* The in-kernel checksum calculation is always 16bit on
801 * the alpha, though it is 32 bit on i386...
802 * I wonder what it is elsewhere... (it uses an API in
803 * a way that it shouldn't).
804 */
805 csum = (csum & 0xffff) + (csum >> 16);
806 csum = (csum & 0xffff) + (csum >> 16);
807 #endif
808 return csum;
809 }
810
811 #ifndef MDASSEMBLE
812 char *human_size(long long bytes)
813 {
814 static char buf[47];
815
816 /* We convert bytes to either centi-M{ega,ibi}bytes or
817 * centi-G{igi,ibi}bytes, with appropriate rounding,
818 * and then print 1/100th of those as a decimal.
819 * We allow upto 2048Megabytes before converting to
820 * gigabytes, as that shows more precision and isn't
821 * too large a number.
822 * Terabytes are not yet handled.
823 */
824
825 if (bytes < 5000*1024)
826 buf[0] = 0;
827 else if (bytes < 2*1024LL*1024LL*1024LL) {
828 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
829 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
830 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
831 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
832 } else {
833 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
834 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
835 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
836 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
837 }
838 return buf;
839 }
840
841 char *human_size_brief(long long bytes, int prefix)
842 {
843 static char buf[30];
844
845 /* We convert bytes to either centi-M{ega,ibi}bytes or
846 * centi-G{igi,ibi}bytes, with appropriate rounding,
847 * and then print 1/100th of those as a decimal.
848 * We allow upto 2048Megabytes before converting to
849 * gigabytes, as that shows more precision and isn't
850 * too large a number.
851 * Terabytes are not yet handled.
852 *
853 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
854 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
855 */
856
857 if (bytes < 5000*1024)
858 buf[0] = 0;
859 else if (prefix == IEC) {
860 if (bytes < 2*1024LL*1024LL*1024LL) {
861 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
862 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
863 cMiB/100, cMiB % 100);
864 } else {
865 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
866 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
867 cGiB/100, cGiB % 100);
868 }
869 }
870 else if (prefix == JEDEC) {
871 if (bytes < 2*1024LL*1024LL*1024LL) {
872 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
873 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
874 cMB/100, cMB % 100);
875 } else {
876 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
877 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
878 cGB/100, cGB % 100);
879 }
880 }
881 else
882 buf[0] = 0;
883
884 return buf;
885 }
886
887 void print_r10_layout(int layout)
888 {
889 int near = layout & 255;
890 int far = (layout >> 8) & 255;
891 int offset = (layout&0x10000);
892 char *sep = "";
893
894 if (near != 1) {
895 printf("%s near=%d", sep, near);
896 sep = ",";
897 }
898 if (far != 1)
899 printf("%s %s=%d", sep, offset?"offset":"far", far);
900 if (near*far == 1)
901 printf("NO REDUNDANCY");
902 }
903 #endif
904
905 unsigned long long calc_array_size(int level, int raid_disks, int layout,
906 int chunksize, unsigned long long devsize)
907 {
908 if (level == 1)
909 return devsize;
910 devsize &= ~(unsigned long long)((chunksize>>9)-1);
911 return get_data_disks(level, layout, raid_disks) * devsize;
912 }
913
914 int get_data_disks(int level, int layout, int raid_disks)
915 {
916 int data_disks = 0;
917 switch (level) {
918 case 0: data_disks = raid_disks;
919 break;
920 case 1: data_disks = 1;
921 break;
922 case 4:
923 case 5: data_disks = raid_disks - 1;
924 break;
925 case 6: data_disks = raid_disks - 2;
926 break;
927 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
928 break;
929 }
930
931 return data_disks;
932 }
933
934 dev_t devnm2devid(char *devnm)
935 {
936 /* First look in /sys/block/$DEVNM/dev for %d:%d
937 * If that fails, try parsing out a number
938 */
939 char path[100];
940 char *ep;
941 int fd;
942 int mjr,mnr;
943
944 sprintf(path, "/sys/block/%s/dev", devnm);
945 fd = open(path, O_RDONLY);
946 if (fd >= 0) {
947 char buf[20];
948 int n = read(fd, buf, sizeof(buf));
949 close(fd);
950 if (n > 0)
951 buf[n] = 0;
952 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
953 return makedev(mjr, mnr);
954 }
955 if (strncmp(devnm, "md_d", 4) == 0 &&
956 isdigit(devnm[4]) &&
957 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
958 ep > devnm && *ep == 0)
959 return makedev(get_mdp_major(), mnr << MdpMinorShift);
960
961 if (strncmp(devnm, "md", 2) == 0 &&
962 isdigit(devnm[2]) &&
963 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
964 ep > devnm && *ep == 0)
965 return makedev(MD_MAJOR, mnr);
966
967 return 0;
968 }
969
970 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
971 char *get_md_name(char *devnm)
972 {
973 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
974 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
975
976 static char devname[50];
977 struct stat stb;
978 dev_t rdev = devnm2devid(devnm);
979 char *dn;
980
981 if (rdev == 0)
982 return 0;
983 if (strncmp(devnm, "md_", 3) == 0) {
984 snprintf(devname, sizeof(devname), "/dev/md/%s",
985 devnm + 3);
986 if (stat(devname, &stb) == 0
987 && (S_IFMT&stb.st_mode) == S_IFBLK
988 && (stb.st_rdev == rdev))
989 return devname;
990 }
991 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
992 if (stat(devname, &stb) == 0
993 && (S_IFMT&stb.st_mode) == S_IFBLK
994 && (stb.st_rdev == rdev))
995 return devname;
996
997 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
998 if (stat(devname, &stb) == 0
999 && (S_IFMT&stb.st_mode) == S_IFBLK
1000 && (stb.st_rdev == rdev))
1001 return devname;
1002
1003 dn = map_dev(major(rdev), minor(rdev), 0);
1004 if (dn)
1005 return dn;
1006 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
1007 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
1008 if (errno != EEXIST)
1009 return NULL;
1010
1011 if (stat(devname, &stb) == 0
1012 && (S_IFMT&stb.st_mode) == S_IFBLK
1013 && (stb.st_rdev == rdev))
1014 return devname;
1015 unlink(devname);
1016 return NULL;
1017 }
1018
1019 void put_md_name(char *name)
1020 {
1021 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1022 unlink(name);
1023 }
1024 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
1025
1026 int get_maj_min(char *dev, int *major, int *minor)
1027 {
1028 char *e;
1029 *major = strtoul(dev, &e, 0);
1030 return (e > dev && *e == ':' && e[1] &&
1031 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1032 *e == 0);
1033 }
1034
1035 int dev_open(char *dev, int flags)
1036 {
1037 /* like 'open', but if 'dev' matches %d:%d, create a temp
1038 * block device and open that
1039 */
1040 int fd = -1;
1041 char devname[32];
1042 int major;
1043 int minor;
1044
1045 if (!dev)
1046 return -1;
1047 flags |= O_DIRECT;
1048
1049 if (get_maj_min(dev, &major, &minor)) {
1050 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1051 (int)getpid(), major, minor);
1052 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1053 fd = open(devname, flags);
1054 unlink(devname);
1055 }
1056 if (fd < 0) {
1057 /* Try /tmp as /dev appear to be read-only */
1058 snprintf(devname, sizeof(devname), "/tmp/.tmp.md.%d:%d:%d",
1059 (int)getpid(), major, minor);
1060 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1061 fd = open(devname, flags);
1062 unlink(devname);
1063 }
1064 }
1065 } else
1066 fd = open(dev, flags);
1067 return fd;
1068 }
1069
1070 int open_dev_flags(char *devnm, int flags)
1071 {
1072 dev_t devid;
1073 char buf[20];
1074
1075 devid = devnm2devid(devnm);
1076 sprintf(buf, "%d:%d", major(devid), minor(devid));
1077 return dev_open(buf, flags);
1078 }
1079
1080 int open_dev(char *devnm)
1081 {
1082 return open_dev_flags(devnm, O_RDONLY);
1083 }
1084
1085 int open_dev_excl(char *devnm)
1086 {
1087 char buf[20];
1088 int i;
1089 int flags = O_RDWR;
1090 dev_t devid = devnm2devid(devnm);
1091 long delay = 1000;
1092
1093 sprintf(buf, "%d:%d", major(devid), minor(devid));
1094 for (i = 0; i < 25; i++) {
1095 int fd = dev_open(buf, flags|O_EXCL);
1096 if (fd >= 0)
1097 return fd;
1098 if (errno == EACCES && flags == O_RDWR) {
1099 flags = O_RDONLY;
1100 continue;
1101 }
1102 if (errno != EBUSY)
1103 return fd;
1104 usleep(delay);
1105 if (delay < 200000)
1106 delay *= 2;
1107 }
1108 return -1;
1109 }
1110
1111 int same_dev(char *one, char *two)
1112 {
1113 struct stat st1, st2;
1114 if (stat(one, &st1) != 0)
1115 return 0;
1116 if (stat(two, &st2) != 0)
1117 return 0;
1118 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1119 return 0;
1120 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1121 return 0;
1122 return st1.st_rdev == st2.st_rdev;
1123 }
1124
1125 void wait_for(char *dev, int fd)
1126 {
1127 int i;
1128 struct stat stb_want;
1129 long delay = 1000;
1130
1131 if (fstat(fd, &stb_want) != 0 ||
1132 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1133 return;
1134
1135 for (i = 0; i < 25; i++) {
1136 struct stat stb;
1137 if (stat(dev, &stb) == 0 &&
1138 (stb.st_mode & S_IFMT) == S_IFBLK &&
1139 (stb.st_rdev == stb_want.st_rdev))
1140 return;
1141 usleep(delay);
1142 if (delay < 200000)
1143 delay *= 2;
1144 }
1145 if (i == 25)
1146 dprintf("timeout waiting for %s\n", dev);
1147 }
1148
1149 struct superswitch *superlist[] =
1150 {
1151 &super0, &super1,
1152 &super_ddf, &super_imsm,
1153 &mbr, &gpt,
1154 NULL };
1155
1156 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
1157
1158 struct supertype *super_by_fd(int fd, char **subarrayp)
1159 {
1160 mdu_array_info_t array;
1161 int vers;
1162 int minor;
1163 struct supertype *st = NULL;
1164 struct mdinfo *sra;
1165 char *verstr;
1166 char version[20];
1167 int i;
1168 char *subarray = NULL;
1169 char container[32] = "";
1170
1171 sra = sysfs_read(fd, NULL, GET_VERSION);
1172
1173 if (sra) {
1174 vers = sra->array.major_version;
1175 minor = sra->array.minor_version;
1176 verstr = sra->text_version;
1177 } else {
1178 if (ioctl(fd, GET_ARRAY_INFO, &array))
1179 array.major_version = array.minor_version = 0;
1180 vers = array.major_version;
1181 minor = array.minor_version;
1182 verstr = "";
1183 }
1184
1185 if (vers != -1) {
1186 sprintf(version, "%d.%d", vers, minor);
1187 verstr = version;
1188 }
1189 if (minor == -2 && is_subarray(verstr)) {
1190 char *dev = verstr+1;
1191
1192 subarray = strchr(dev, '/');
1193 if (subarray) {
1194 *subarray++ = '\0';
1195 subarray = xstrdup(subarray);
1196 }
1197 strcpy(container, dev);
1198 sysfs_free(sra);
1199 sra = sysfs_read(-1, container, GET_VERSION);
1200 if (sra && sra->text_version[0])
1201 verstr = sra->text_version;
1202 else
1203 verstr = "-no-metadata-";
1204 }
1205
1206 for (i = 0; st == NULL && superlist[i]; i++)
1207 st = superlist[i]->match_metadata_desc(verstr);
1208
1209 sysfs_free(sra);
1210 if (st) {
1211 st->sb = NULL;
1212 if (subarrayp)
1213 *subarrayp = subarray;
1214 strcpy(st->container_devnm, container);
1215 strcpy(st->devnm, fd2devnm(fd));
1216 } else
1217 free(subarray);
1218
1219 return st;
1220 }
1221 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
1222
1223 int dev_size_from_id(dev_t id, unsigned long long *size)
1224 {
1225 char buf[20];
1226 int fd;
1227
1228 sprintf(buf, "%d:%d", major(id), minor(id));
1229 fd = dev_open(buf, O_RDONLY);
1230 if (fd < 0)
1231 return 0;
1232 if (get_dev_size(fd, NULL, size)) {
1233 close(fd);
1234 return 1;
1235 }
1236 close(fd);
1237 return 0;
1238 }
1239
1240 struct supertype *dup_super(struct supertype *orig)
1241 {
1242 struct supertype *st;
1243
1244 if (!orig)
1245 return orig;
1246 st = xcalloc(1, sizeof(*st));
1247 st->ss = orig->ss;
1248 st->max_devs = orig->max_devs;
1249 st->minor_version = orig->minor_version;
1250 st->ignore_hw_compat = orig->ignore_hw_compat;
1251 st->data_offset = orig->data_offset;
1252 st->sb = NULL;
1253 st->info = NULL;
1254 return st;
1255 }
1256
1257 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1258 {
1259 /* try each load_super to find the best match,
1260 * and return the best superswitch
1261 */
1262 struct superswitch *ss;
1263 struct supertype *st;
1264 unsigned int besttime = 0;
1265 int bestsuper = -1;
1266 int i;
1267
1268 st = xcalloc(1, sizeof(*st));
1269 st->container_devnm[0] = 0;
1270
1271 for (i = 0; superlist[i]; i++) {
1272 int rv;
1273 ss = superlist[i];
1274 if (guess_type == guess_array && ss->add_to_super == NULL)
1275 continue;
1276 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1277 continue;
1278 memset(st, 0, sizeof(*st));
1279 st->ignore_hw_compat = 1;
1280 rv = ss->load_super(st, fd, NULL);
1281 if (rv == 0) {
1282 struct mdinfo info;
1283 st->ss->getinfo_super(st, &info, NULL);
1284 if (bestsuper == -1 ||
1285 besttime < info.array.ctime) {
1286 bestsuper = i;
1287 besttime = info.array.ctime;
1288 }
1289 ss->free_super(st);
1290 }
1291 }
1292 if (bestsuper != -1) {
1293 int rv;
1294 memset(st, 0, sizeof(*st));
1295 st->ignore_hw_compat = 1;
1296 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1297 if (rv == 0) {
1298 superlist[bestsuper]->free_super(st);
1299 return st;
1300 }
1301 }
1302 free(st);
1303 return NULL;
1304 }
1305
1306 /* Return size of device in bytes */
1307 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1308 {
1309 unsigned long long ldsize;
1310 struct stat st;
1311
1312 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1313 ldsize = (unsigned long long)st.st_size;
1314 else
1315 #ifdef BLKGETSIZE64
1316 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1317 #endif
1318 {
1319 unsigned long dsize;
1320 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1321 ldsize = dsize;
1322 ldsize <<= 9;
1323 } else {
1324 if (dname)
1325 pr_err("Cannot get size of %s: %s\n",
1326 dname, strerror(errno));
1327 return 0;
1328 }
1329 }
1330 *sizep = ldsize;
1331 return 1;
1332 }
1333
1334 /* Return sector size of device in bytes */
1335 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1336 {
1337 unsigned int sectsize;
1338
1339 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1340 if (dname)
1341 pr_err("Cannot get sector size of %s: %s\n",
1342 dname, strerror(errno));
1343 return 0;
1344 }
1345
1346 *sectsizep = sectsize;
1347 return 1;
1348 }
1349
1350 /* Return true if this can only be a container, not a member device.
1351 * i.e. is and md device and size is zero
1352 */
1353 int must_be_container(int fd)
1354 {
1355 unsigned long long size;
1356 if (md_get_version(fd) < 0)
1357 return 0;
1358 if (get_dev_size(fd, NULL, &size) == 0)
1359 return 1;
1360 if (size == 0)
1361 return 1;
1362 return 0;
1363 }
1364
1365 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1366 * Returns: 1 if successful
1367 * -1 for unknown partition type
1368 * 0 for other errors
1369 */
1370 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1371 {
1372 struct GPT gpt;
1373 unsigned char empty_gpt_entry[16]= {0};
1374 struct GPT_part_entry *part;
1375 char buf[512];
1376 unsigned long long curr_part_end;
1377 unsigned all_partitions, entry_size;
1378 unsigned part_nr;
1379 unsigned int sector_size = 0;
1380
1381 *endofpart = 0;
1382
1383 BUILD_BUG_ON(sizeof(gpt) != 512);
1384 /* skip protective MBR */
1385 if (!get_dev_sector_size(fd, NULL, &sector_size))
1386 return 0;
1387 lseek(fd, sector_size, SEEK_SET);
1388 /* read GPT header */
1389 if (read(fd, &gpt, 512) != 512)
1390 return 0;
1391
1392 /* get the number of partition entries and the entry size */
1393 all_partitions = __le32_to_cpu(gpt.part_cnt);
1394 entry_size = __le32_to_cpu(gpt.part_size);
1395
1396 /* Check GPT signature*/
1397 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1398 return -1;
1399
1400 /* sanity checks */
1401 if (all_partitions > 1024 ||
1402 entry_size > sizeof(buf))
1403 return -1;
1404
1405 part = (struct GPT_part_entry *)buf;
1406
1407 /* set offset to third block (GPT entries) */
1408 lseek(fd, sector_size*2, SEEK_SET);
1409 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1410 /* read partition entry */
1411 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1412 return 0;
1413
1414 /* is this valid partition? */
1415 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1416 /* check the last lba for the current partition */
1417 curr_part_end = __le64_to_cpu(part->ending_lba);
1418 if (curr_part_end > *endofpart)
1419 *endofpart = curr_part_end;
1420 }
1421
1422 }
1423 return 1;
1424 }
1425
1426 /* Sets endofpart parameter to the last block used by the last partition on the device.
1427 * Returns: 1 if successful
1428 * -1 for unknown partition type
1429 * 0 for other errors
1430 */
1431 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1432 {
1433 struct MBR boot_sect;
1434 unsigned long long curr_part_end;
1435 unsigned part_nr;
1436 unsigned int sector_size;
1437 int retval = 0;
1438
1439 *endofpart = 0;
1440
1441 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1442 /* read MBR */
1443 lseek(fd, 0, 0);
1444 if (read(fd, &boot_sect, 512) != 512)
1445 goto abort;
1446
1447 /* check MBP signature */
1448 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1449 retval = 1;
1450 /* found the correct signature */
1451
1452 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1453 /*
1454 * Have to make every access through boot_sect rather
1455 * than using a pointer to the partition table (or an
1456 * entry), since the entries are not properly aligned.
1457 */
1458
1459 /* check for GPT type */
1460 if (boot_sect.parts[part_nr].part_type ==
1461 MBR_GPT_PARTITION_TYPE) {
1462 retval = get_gpt_last_partition_end(fd, endofpart);
1463 break;
1464 }
1465 /* check the last used lba for the current partition */
1466 curr_part_end =
1467 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1468 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1469 if (curr_part_end > *endofpart)
1470 *endofpart = curr_part_end;
1471 }
1472 } else {
1473 /* Unknown partition table */
1474 retval = -1;
1475 }
1476 /* calculate number of 512-byte blocks */
1477 if (get_dev_sector_size(fd, NULL, &sector_size))
1478 *endofpart *= (sector_size / 512);
1479 abort:
1480 return retval;
1481 }
1482
1483 int check_partitions(int fd, char *dname, unsigned long long freesize,
1484 unsigned long long size)
1485 {
1486 /*
1487 * Check where the last partition ends
1488 */
1489 unsigned long long endofpart;
1490
1491 if (get_last_partition_end(fd, &endofpart) > 0) {
1492 /* There appears to be a partition table here */
1493 if (freesize == 0) {
1494 /* partitions will not be visible in new device */
1495 pr_err("partition table exists on %s but will be lost or\n"
1496 " meaningless after creating array\n",
1497 dname);
1498 return 1;
1499 } else if (endofpart > freesize) {
1500 /* last partition overlaps metadata */
1501 pr_err("metadata will over-write last partition on %s.\n",
1502 dname);
1503 return 1;
1504 } else if (size && endofpart > size) {
1505 /* partitions will be truncated in new device */
1506 pr_err("array size is too small to cover all partitions on %s.\n",
1507 dname);
1508 return 1;
1509 }
1510 }
1511 return 0;
1512 }
1513
1514 int open_container(int fd)
1515 {
1516 /* 'fd' is a block device. Find out if it is in use
1517 * by a container, and return an open fd on that container.
1518 */
1519 char path[256];
1520 char *e;
1521 DIR *dir;
1522 struct dirent *de;
1523 int dfd, n;
1524 char buf[200];
1525 int major, minor;
1526 struct stat st;
1527
1528 if (fstat(fd, &st) != 0)
1529 return -1;
1530 sprintf(path, "/sys/dev/block/%d:%d/holders",
1531 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1532 e = path + strlen(path);
1533
1534 dir = opendir(path);
1535 if (!dir)
1536 return -1;
1537 while ((de = readdir(dir))) {
1538 if (de->d_ino == 0)
1539 continue;
1540 if (de->d_name[0] == '.')
1541 continue;
1542 /* Need to make sure it is a container and not a volume */
1543 sprintf(e, "/%s/md/metadata_version", de->d_name);
1544 dfd = open(path, O_RDONLY);
1545 if (dfd < 0)
1546 continue;
1547 n = read(dfd, buf, sizeof(buf));
1548 close(dfd);
1549 if (n <= 0 || (unsigned)n >= sizeof(buf))
1550 continue;
1551 buf[n] = 0;
1552 if (strncmp(buf, "external", 8) != 0 ||
1553 n < 10 ||
1554 buf[9] == '/')
1555 continue;
1556 sprintf(e, "/%s/dev", de->d_name);
1557 dfd = open(path, O_RDONLY);
1558 if (dfd < 0)
1559 continue;
1560 n = read(dfd, buf, sizeof(buf));
1561 close(dfd);
1562 if (n <= 0 || (unsigned)n >= sizeof(buf))
1563 continue;
1564 buf[n] = 0;
1565 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1566 continue;
1567 sprintf(buf, "%d:%d", major, minor);
1568 dfd = dev_open(buf, O_RDONLY);
1569 if (dfd >= 0) {
1570 closedir(dir);
1571 return dfd;
1572 }
1573 }
1574 closedir(dir);
1575 return -1;
1576 }
1577
1578 struct superswitch *version_to_superswitch(char *vers)
1579 {
1580 int i;
1581
1582 for (i = 0; superlist[i]; i++) {
1583 struct superswitch *ss = superlist[i];
1584
1585 if (strcmp(vers, ss->name) == 0)
1586 return ss;
1587 }
1588
1589 return NULL;
1590 }
1591
1592 int metadata_container_matches(char *metadata, char *devnm)
1593 {
1594 /* Check if 'devnm' is the container named in 'metadata'
1595 * which is
1596 * /containername/componentname or
1597 * -containername/componentname
1598 */
1599 int l;
1600 if (*metadata != '/' && *metadata != '-')
1601 return 0;
1602 l = strlen(devnm);
1603 if (strncmp(metadata+1, devnm, l) != 0)
1604 return 0;
1605 if (metadata[l+1] != '/')
1606 return 0;
1607 return 1;
1608 }
1609
1610 int metadata_subdev_matches(char *metadata, char *devnm)
1611 {
1612 /* Check if 'devnm' is the subdev named in 'metadata'
1613 * which is
1614 * /containername/subdev or
1615 * -containername/subdev
1616 */
1617 char *sl;
1618 if (*metadata != '/' && *metadata != '-')
1619 return 0;
1620 sl = strchr(metadata+1, '/');
1621 if (!sl)
1622 return 0;
1623 if (strcmp(sl+1, devnm) == 0)
1624 return 1;
1625 return 0;
1626 }
1627
1628 int is_container_member(struct mdstat_ent *mdstat, char *container)
1629 {
1630 if (mdstat->metadata_version == NULL ||
1631 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1632 !metadata_container_matches(mdstat->metadata_version+9, container))
1633 return 0;
1634
1635 return 1;
1636 }
1637
1638 int is_subarray_active(char *subarray, char *container)
1639 {
1640 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1641 struct mdstat_ent *ent;
1642
1643 for (ent = mdstat; ent; ent = ent->next)
1644 if (is_container_member(ent, container))
1645 if (strcmp(to_subarray(ent, container), subarray) == 0)
1646 break;
1647
1648 free_mdstat(mdstat);
1649
1650 return ent != NULL;
1651 }
1652
1653 /* open_subarray - opens a subarray in a container
1654 * @dev: container device name
1655 * @st: empty supertype
1656 * @quiet: block reporting errors flag
1657 *
1658 * On success returns an fd to a container and fills in *st
1659 */
1660 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1661 {
1662 struct mdinfo *mdi;
1663 struct mdinfo *info;
1664 int fd, err = 1;
1665 char *_devnm;
1666
1667 fd = open(dev, O_RDWR|O_EXCL);
1668 if (fd < 0) {
1669 if (!quiet)
1670 pr_err("Couldn't open %s, aborting\n",
1671 dev);
1672 return -1;
1673 }
1674
1675 _devnm = fd2devnm(fd);
1676 if (_devnm == NULL) {
1677 if (!quiet)
1678 pr_err("Failed to determine device number for %s\n",
1679 dev);
1680 goto close_fd;
1681 }
1682 strcpy(st->devnm, _devnm);
1683
1684 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1685 if (!mdi) {
1686 if (!quiet)
1687 pr_err("Failed to read sysfs for %s\n",
1688 dev);
1689 goto close_fd;
1690 }
1691
1692 if (mdi->array.level != UnSet) {
1693 if (!quiet)
1694 pr_err("%s is not a container\n", dev);
1695 goto free_sysfs;
1696 }
1697
1698 st->ss = version_to_superswitch(mdi->text_version);
1699 if (!st->ss) {
1700 if (!quiet)
1701 pr_err("Operation not supported for %s metadata\n",
1702 mdi->text_version);
1703 goto free_sysfs;
1704 }
1705
1706 if (st->devnm[0] == 0) {
1707 if (!quiet)
1708 pr_err("Failed to allocate device name\n");
1709 goto free_sysfs;
1710 }
1711
1712 if (!st->ss->load_container) {
1713 if (!quiet)
1714 pr_err("%s is not a container\n", dev);
1715 goto free_sysfs;
1716 }
1717
1718 if (st->ss->load_container(st, fd, NULL)) {
1719 if (!quiet)
1720 pr_err("Failed to load metadata for %s\n",
1721 dev);
1722 goto free_sysfs;
1723 }
1724
1725 info = st->ss->container_content(st, subarray);
1726 if (!info) {
1727 if (!quiet)
1728 pr_err("Failed to find subarray-%s in %s\n",
1729 subarray, dev);
1730 goto free_super;
1731 }
1732 free(info);
1733
1734 err = 0;
1735
1736 free_super:
1737 if (err)
1738 st->ss->free_super(st);
1739 free_sysfs:
1740 sysfs_free(mdi);
1741 close_fd:
1742 if (err)
1743 close(fd);
1744
1745 if (err)
1746 return -1;
1747 else
1748 return fd;
1749 }
1750
1751 int add_disk(int mdfd, struct supertype *st,
1752 struct mdinfo *sra, struct mdinfo *info)
1753 {
1754 /* Add a device to an array, in one of 2 ways. */
1755 int rv;
1756 #ifndef MDASSEMBLE
1757 if (st->ss->external) {
1758 if (info->disk.state & (1<<MD_DISK_SYNC))
1759 info->recovery_start = MaxSector;
1760 else
1761 info->recovery_start = 0;
1762 rv = sysfs_add_disk(sra, info, 0);
1763 if (! rv) {
1764 struct mdinfo *sd2;
1765 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1766 if (sd2 == info)
1767 break;
1768 if (sd2 == NULL) {
1769 sd2 = xmalloc(sizeof(*sd2));
1770 *sd2 = *info;
1771 sd2->next = sra->devs;
1772 sra->devs = sd2;
1773 }
1774 }
1775 } else
1776 #endif
1777 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1778 return rv;
1779 }
1780
1781 int remove_disk(int mdfd, struct supertype *st,
1782 struct mdinfo *sra, struct mdinfo *info)
1783 {
1784 int rv;
1785 /* Remove the disk given by 'info' from the array */
1786 #ifndef MDASSEMBLE
1787 if (st->ss->external)
1788 rv = sysfs_set_str(sra, info, "slot", "none");
1789 else
1790 #endif
1791 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1792 info->disk.minor));
1793 return rv;
1794 }
1795
1796 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1797 {
1798 int cnt = force ? 500 : 5;
1799 int ret;
1800
1801 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1802 * outstanding IO requests to the device.
1803 * In this case, it can be helpful to wait a little while,
1804 * up to 5 seconds if 'force' is set, or 50 msec if not.
1805 */
1806 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1807 errno == EBUSY &&
1808 cnt-- > 0)
1809 usleep(10000);
1810
1811 return ret;
1812 }
1813
1814 int sys_hot_remove_disk(int statefd, int force)
1815 {
1816 int cnt = force ? 500 : 5;
1817 int ret;
1818
1819 while ((ret = write(statefd, "remove", 6)) == -1 &&
1820 errno == EBUSY &&
1821 cnt-- > 0)
1822 usleep(10000);
1823 return ret == 6 ? 0 : -1;
1824 }
1825
1826 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1827 {
1828 /* Initialise kernel's knowledge of array.
1829 * This varies between externally managed arrays
1830 * and older kernels
1831 */
1832 int vers = md_get_version(mdfd);
1833 int rv;
1834
1835 #ifndef MDASSEMBLE
1836 if (st->ss->external)
1837 rv = sysfs_set_array(info, vers);
1838 else
1839 #endif
1840 if ((vers % 100) >= 1) { /* can use different versions */
1841 mdu_array_info_t inf;
1842 memset(&inf, 0, sizeof(inf));
1843 inf.major_version = info->array.major_version;
1844 inf.minor_version = info->array.minor_version;
1845 rv = ioctl(mdfd, SET_ARRAY_INFO, &inf);
1846 } else
1847 rv = ioctl(mdfd, SET_ARRAY_INFO, NULL);
1848 return rv;
1849 }
1850
1851 unsigned long long min_recovery_start(struct mdinfo *array)
1852 {
1853 /* find the minimum recovery_start in an array for metadata
1854 * formats that only record per-array recovery progress instead
1855 * of per-device
1856 */
1857 unsigned long long recovery_start = MaxSector;
1858 struct mdinfo *d;
1859
1860 for (d = array->devs; d; d = d->next)
1861 recovery_start = min(recovery_start, d->recovery_start);
1862
1863 return recovery_start;
1864 }
1865
1866 int mdmon_pid(char *devnm)
1867 {
1868 char path[100];
1869 char pid[10];
1870 int fd;
1871 int n;
1872
1873 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1874
1875 fd = open(path, O_RDONLY | O_NOATIME, 0);
1876
1877 if (fd < 0)
1878 return -1;
1879 n = read(fd, pid, 9);
1880 close(fd);
1881 if (n <= 0)
1882 return -1;
1883 return atoi(pid);
1884 }
1885
1886 int mdmon_running(char *devnm)
1887 {
1888 int pid = mdmon_pid(devnm);
1889 if (pid <= 0)
1890 return 0;
1891 if (kill(pid, 0) == 0)
1892 return 1;
1893 return 0;
1894 }
1895
1896 int start_mdmon(char *devnm)
1897 {
1898 int i, skipped;
1899 int len;
1900 pid_t pid;
1901 int status;
1902 char pathbuf[1024];
1903 char *paths[4] = {
1904 pathbuf,
1905 BINDIR "/mdmon",
1906 "./mdmon",
1907 NULL
1908 };
1909
1910 if (check_env("MDADM_NO_MDMON"))
1911 return 0;
1912
1913 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1914 if (len > 0) {
1915 char *sl;
1916 pathbuf[len] = 0;
1917 sl = strrchr(pathbuf, '/');
1918 if (sl)
1919 sl++;
1920 else
1921 sl = pathbuf;
1922 strcpy(sl, "mdmon");
1923 } else
1924 pathbuf[0] = '\0';
1925
1926 /* First try to run systemctl */
1927 if (!check_env("MDADM_NO_SYSTEMCTL"))
1928 switch(fork()) {
1929 case 0:
1930 /* FIXME yuk. CLOSE_EXEC?? */
1931 skipped = 0;
1932 for (i = 3; skipped < 20; i++)
1933 if (close(i) < 0)
1934 skipped++;
1935 else
1936 skipped = 0;
1937
1938 /* Don't want to see error messages from
1939 * systemctl. If the service doesn't exist,
1940 * we start mdmon ourselves.
1941 */
1942 close(2);
1943 open("/dev/null", O_WRONLY);
1944 snprintf(pathbuf, sizeof(pathbuf), "mdmon@%s.service",
1945 devnm);
1946 status = execl("/usr/bin/systemctl", "systemctl",
1947 "start",
1948 pathbuf, NULL);
1949 status = execl("/bin/systemctl", "systemctl", "start",
1950 pathbuf, NULL);
1951 exit(1);
1952 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1953 return -1;
1954 default: /* parent - good */
1955 pid = wait(&status);
1956 if (pid >= 0 && status == 0)
1957 return 0;
1958 }
1959
1960 /* That failed, try running mdmon directly */
1961 switch(fork()) {
1962 case 0:
1963 /* FIXME yuk. CLOSE_EXEC?? */
1964 skipped = 0;
1965 for (i = 3; skipped < 20; i++)
1966 if (close(i) < 0)
1967 skipped++;
1968 else
1969 skipped = 0;
1970
1971 for (i = 0; paths[i]; i++)
1972 if (paths[i][0]) {
1973 execl(paths[i], paths[i],
1974 devnm, NULL);
1975 }
1976 exit(1);
1977 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1978 return -1;
1979 default: /* parent - good */
1980 pid = wait(&status);
1981 if (pid < 0 || status != 0) {
1982 pr_err("failed to launch mdmon. Array remains readonly\n");
1983 return -1;
1984 }
1985 }
1986 return 0;
1987 }
1988
1989 __u32 random32(void)
1990 {
1991 __u32 rv;
1992 int rfd = open("/dev/urandom", O_RDONLY);
1993 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1994 rv = random();
1995 if (rfd >= 0)
1996 close(rfd);
1997 return rv;
1998 }
1999
2000 void random_uuid(__u8 *buf)
2001 {
2002 int fd, i, len;
2003 __u32 r[4];
2004
2005 fd = open("/dev/urandom", O_RDONLY);
2006 if (fd < 0)
2007 goto use_random;
2008 len = read(fd, buf, 16);
2009 close(fd);
2010 if (len != 16)
2011 goto use_random;
2012
2013 return;
2014
2015 use_random:
2016 for (i = 0; i < 4; i++)
2017 r[i] = random();
2018 memcpy(buf, r, 16);
2019 }
2020
2021 #ifndef MDASSEMBLE
2022 int flush_metadata_updates(struct supertype *st)
2023 {
2024 int sfd;
2025 if (!st->updates) {
2026 st->update_tail = NULL;
2027 return -1;
2028 }
2029
2030 sfd = connect_monitor(st->container_devnm);
2031 if (sfd < 0)
2032 return -1;
2033
2034 while (st->updates) {
2035 struct metadata_update *mu = st->updates;
2036 st->updates = mu->next;
2037
2038 send_message(sfd, mu, 0);
2039 wait_reply(sfd, 0);
2040 free(mu->buf);
2041 free(mu);
2042 }
2043 ack(sfd, 0);
2044 wait_reply(sfd, 0);
2045 close(sfd);
2046 st->update_tail = NULL;
2047 return 0;
2048 }
2049
2050 void append_metadata_update(struct supertype *st, void *buf, int len)
2051 {
2052
2053 struct metadata_update *mu = xmalloc(sizeof(*mu));
2054
2055 mu->buf = buf;
2056 mu->len = len;
2057 mu->space = NULL;
2058 mu->space_list = NULL;
2059 mu->next = NULL;
2060 *st->update_tail = mu;
2061 st->update_tail = &mu->next;
2062 }
2063 #endif /* MDASSEMBLE */
2064
2065 #ifdef __TINYC__
2066 /* tinyc doesn't optimize this check in ioctl.h out ... */
2067 unsigned int __invalid_size_argument_for_IOC = 0;
2068 #endif
2069
2070 int experimental(void)
2071 {
2072 if (check_env("MDADM_EXPERIMENTAL"))
2073 return 1;
2074 else {
2075 pr_err("To use this feature MDADM_EXPERIMENTAL environment variable has to be defined.\n");
2076 return 0;
2077 }
2078 }
2079
2080 /* Pick all spares matching given criteria from a container
2081 * if min_size == 0 do not check size
2082 * if domlist == NULL do not check domains
2083 * if spare_group given add it to domains of each spare
2084 * metadata allows to test domains using metadata of destination array */
2085 struct mdinfo *container_choose_spares(struct supertype *st,
2086 unsigned long long min_size,
2087 struct domainlist *domlist,
2088 char *spare_group,
2089 const char *metadata, int get_one)
2090 {
2091 struct mdinfo *d, **dp, *disks = NULL;
2092
2093 /* get list of all disks in container */
2094 if (st->ss->getinfo_super_disks)
2095 disks = st->ss->getinfo_super_disks(st);
2096
2097 if (!disks)
2098 return disks;
2099 /* find spare devices on the list */
2100 dp = &disks->devs;
2101 disks->array.spare_disks = 0;
2102 while (*dp) {
2103 int found = 0;
2104 d = *dp;
2105 if (d->disk.state == 0) {
2106 /* check if size is acceptable */
2107 unsigned long long dev_size;
2108 dev_t dev = makedev(d->disk.major,d->disk.minor);
2109
2110 if (!min_size ||
2111 (dev_size_from_id(dev, &dev_size) &&
2112 dev_size >= min_size))
2113 found = 1;
2114 /* check if domain matches */
2115 if (found && domlist) {
2116 struct dev_policy *pol = devid_policy(dev);
2117 if (spare_group)
2118 pol_add(&pol, pol_domain,
2119 spare_group, NULL);
2120 if (domain_test(domlist, pol, metadata) != 1)
2121 found = 0;
2122 dev_policy_free(pol);
2123 }
2124 }
2125 if (found) {
2126 dp = &d->next;
2127 disks->array.spare_disks++;
2128 if (get_one) {
2129 sysfs_free(*dp);
2130 d->next = NULL;
2131 }
2132 } else {
2133 *dp = d->next;
2134 d->next = NULL;
2135 sysfs_free(d);
2136 }
2137 }
2138 return disks;
2139 }
2140
2141 /* Checks if paths point to the same device
2142 * Returns 0 if they do.
2143 * Returns 1 if they don't.
2144 * Returns -1 if something went wrong,
2145 * e.g. paths are empty or the files
2146 * they point to don't exist */
2147 int compare_paths (char* path1, char* path2)
2148 {
2149 struct stat st1,st2;
2150
2151 if (path1 == NULL || path2 == NULL)
2152 return -1;
2153 if (stat(path1,&st1) != 0)
2154 return -1;
2155 if (stat(path2,&st2) != 0)
2156 return -1;
2157 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2158 return 0;
2159 return 1;
2160 }
2161
2162 /* Make sure we can open as many devices as needed */
2163 void enable_fds(int devices)
2164 {
2165 unsigned int fds = 20 + devices;
2166 struct rlimit lim;
2167 if (getrlimit(RLIMIT_NOFILE, &lim) != 0
2168 || lim.rlim_cur >= fds)
2169 return;
2170 if (lim.rlim_max < fds)
2171 lim.rlim_max = fds;
2172 lim.rlim_cur = fds;
2173 setrlimit(RLIMIT_NOFILE, &lim);
2174 }
2175
2176 int in_initrd(void)
2177 {
2178 /* This is based on similar function in systemd. */
2179 struct statfs s;
2180 /* statfs.f_type is signed long on s390x and MIPS, causing all
2181 sorts of sign extension problems with RAMFS_MAGIC being
2182 defined as 0x858458f6 */
2183 return statfs("/", &s) >= 0 &&
2184 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2185 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2186 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2187 }
2188
2189 void reopen_mddev(int mdfd)
2190 {
2191 /* Re-open without any O_EXCL, but keep
2192 * the same fd
2193 */
2194 char *devnm;
2195 int fd;
2196 devnm = fd2devnm(mdfd);
2197 close(mdfd);
2198 fd = open_dev(devnm);
2199 if (fd >= 0 && fd != mdfd)
2200 dup2(fd, mdfd);
2201 }
2202
2203 #ifndef MDASSEMBLE
2204 static struct cmap_hooks *cmap_hooks = NULL;
2205 static int is_cmap_hooks_ready = 0;
2206
2207 void set_cmap_hooks(void)
2208 {
2209 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2210 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2211 if (!cmap_hooks->cmap_handle)
2212 return;
2213
2214 cmap_hooks->initialize = dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2215 cmap_hooks->get_string = dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2216 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2217
2218 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2219 !cmap_hooks->finalize)
2220 dlclose(cmap_hooks->cmap_handle);
2221 else
2222 is_cmap_hooks_ready = 1;
2223 }
2224
2225 int get_cluster_name(char **cluster_name)
2226 {
2227 int rv = -1;
2228 cmap_handle_t handle;
2229
2230 if (!is_cmap_hooks_ready)
2231 return rv;
2232
2233 rv = cmap_hooks->initialize(&handle);
2234 if (rv != CS_OK)
2235 goto out;
2236
2237 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2238 if (rv != CS_OK) {
2239 free(*cluster_name);
2240 rv = -1;
2241 goto name_err;
2242 }
2243
2244 rv = 0;
2245 name_err:
2246 cmap_hooks->finalize(handle);
2247 out:
2248 return rv;
2249 }
2250
2251 void set_dlm_hooks(void)
2252 {
2253 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2254 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2255 if (!dlm_hooks->dlm_handle)
2256 return;
2257
2258 dlm_hooks->create_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2259 dlm_hooks->release_lockspace = dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2260 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2261 dlm_hooks->ls_unlock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock");
2262 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2263 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2264
2265 if (!dlm_hooks->create_lockspace || !dlm_hooks->ls_lock ||
2266 !dlm_hooks->ls_unlock || !dlm_hooks->release_lockspace ||
2267 !dlm_hooks->ls_get_fd || !dlm_hooks->dispatch)
2268 dlclose(dlm_hooks->dlm_handle);
2269 else
2270 is_dlm_hooks_ready = 1;
2271 }
2272
2273 void set_hooks(void)
2274 {
2275 set_dlm_hooks();
2276 set_cmap_hooks();
2277 }
2278 #endif