]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
raid6check: Fix build of raid6check
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2012 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <ctype.h>
33 #include <dirent.h>
34 #include <signal.h>
35
36 /*
37 * following taken from linux/blkpg.h because they aren't
38 * anywhere else and it isn't safe to #include linux/ * stuff.
39 */
40
41 #define BLKPG _IO(0x12,105)
42
43 /* The argument structure */
44 struct blkpg_ioctl_arg {
45 int op;
46 int flags;
47 int datalen;
48 void *data;
49 };
50
51 /* The subfunctions (for the op field) */
52 #define BLKPG_ADD_PARTITION 1
53 #define BLKPG_DEL_PARTITION 2
54
55 /* Sizes of name fields. Unused at present. */
56 #define BLKPG_DEVNAMELTH 64
57 #define BLKPG_VOLNAMELTH 64
58
59 /* The data structure for ADD_PARTITION and DEL_PARTITION */
60 struct blkpg_partition {
61 long long start; /* starting offset in bytes */
62 long long length; /* length in bytes */
63 int pno; /* partition number */
64 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
65 to be used in kernel messages */
66 char volname[BLKPG_VOLNAMELTH]; /* volume label */
67 };
68
69 #include "part.h"
70
71 /* Force a compilation error if condition is true */
72 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
73
74 /* Force a compilation error if condition is true, but also produce a
75 result (of value 0 and type size_t), so the expression can be used
76 e.g. in a structure initializer (or where-ever else comma expressions
77 aren't permitted). */
78 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
79
80 /*
81 * Parse a 128 bit uuid in 4 integers
82 * format is 32 hexx nibbles with options :.<space> separator
83 * If not exactly 32 hex digits are found, return 0
84 * else return 1
85 */
86 int parse_uuid(char *str, int uuid[4])
87 {
88 int hit = 0; /* number of Hex digIT */
89 int i;
90 char c;
91 for (i = 0; i < 4; i++)
92 uuid[i] = 0;
93
94 while ((c = *str++) != 0) {
95 int n;
96 if (c >= '0' && c <= '9')
97 n = c-'0';
98 else if (c >= 'a' && c <= 'f')
99 n = 10 + c - 'a';
100 else if (c >= 'A' && c <= 'F')
101 n = 10 + c - 'A';
102 else if (strchr(":. -", c))
103 continue;
104 else return 0;
105
106 if (hit<32) {
107 uuid[hit/8] <<= 4;
108 uuid[hit/8] += n;
109 }
110 hit++;
111 }
112 if (hit == 32)
113 return 1;
114 return 0;
115 }
116
117 /*
118 * Get the md version number.
119 * We use the RAID_VERSION ioctl if it is supported
120 * If not, but we have a block device with major '9', we assume
121 * 0.36.0
122 *
123 * Return version number as 24 but number - assume version parts
124 * always < 255
125 */
126
127 int md_get_version(int fd)
128 {
129 struct stat stb;
130 mdu_version_t vers;
131
132 if (fstat(fd, &stb)<0)
133 return -1;
134 if ((S_IFMT&stb.st_mode) != S_IFBLK)
135 return -1;
136
137 if (ioctl(fd, RAID_VERSION, &vers) == 0)
138 return (vers.major*10000) + (vers.minor*100) + vers.patchlevel;
139 if (errno == EACCES)
140 return -1;
141 if (major(stb.st_rdev) == MD_MAJOR)
142 return (3600);
143 return -1;
144 }
145
146 int get_linux_version()
147 {
148 struct utsname name;
149 char *cp;
150 int a = 0, b = 0,c = 0;
151 if (uname(&name) <0)
152 return -1;
153
154 cp = name.release;
155 a = strtoul(cp, &cp, 10);
156 if (*cp == '.')
157 b = strtoul(cp+1, &cp, 10);
158 if (*cp == '.')
159 c = strtoul(cp+1, &cp, 10);
160
161 return (a*1000000)+(b*1000)+c;
162 }
163
164 #ifndef MDASSEMBLE
165 int mdadm_version(char *version)
166 {
167 int a, b, c;
168 char *cp;
169
170 if (!version)
171 version = Version;
172
173 cp = strchr(version, '-');
174 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
175 return -1;
176 cp += 3;
177 a = strtoul(cp, &cp, 10);
178 if (*cp != '.')
179 return -1;
180 b = strtoul(cp+1, &cp, 10);
181 if (*cp == '.')
182 c = strtoul(cp+1, &cp, 10);
183 else
184 c = 0;
185 if (*cp != ' ' && *cp != '-')
186 return -1;
187 return (a*1000000)+(b*1000)+c;
188 }
189
190 unsigned long long parse_size(char *size)
191 {
192 /* parse 'size' which should be a number optionally
193 * followed by 'K', 'M', or 'G'.
194 * Without a suffix, K is assumed.
195 * Number returned is in sectors (half-K)
196 * INVALID_SECTORS returned on error.
197 */
198 char *c;
199 long long s = strtoll(size, &c, 10);
200 if (s > 0) {
201 switch (*c) {
202 case 'K':
203 c++;
204 default:
205 s *= 2;
206 break;
207 case 'M':
208 c++;
209 s *= 1024 * 2;
210 break;
211 case 'G':
212 c++;
213 s *= 1024 * 1024 * 2;
214 break;
215 case 's': /* sectors */
216 c++;
217 break;
218 }
219 } else
220 s = INVALID_SECTORS;
221 if (*c)
222 s = INVALID_SECTORS;
223 return s;
224 }
225
226 int parse_layout_10(char *layout)
227 {
228 int copies, rv;
229 char *cp;
230 /* Parse the layout string for raid10 */
231 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
232 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
233 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
234 copies > 200 ||
235 *cp)
236 return -1;
237 if (layout[0] == 'n')
238 rv = 256 + copies;
239 else if (layout[0] == 'o')
240 rv = 0x10000 + (copies<<8) + 1;
241 else
242 rv = 1 + (copies<<8);
243 return rv;
244 }
245
246 int parse_layout_faulty(char *layout)
247 {
248 /* Parse the layout string for 'faulty' */
249 int ln = strcspn(layout, "0123456789");
250 char *m = xstrdup(layout);
251 int mode;
252 m[ln] = 0;
253 mode = map_name(faultylayout, m);
254 if (mode == UnSet)
255 return -1;
256
257 return mode | (atoi(layout+ln)<< ModeShift);
258 }
259
260 long parse_num(char *num)
261 {
262 /* Either return a valid number, or -1 */
263 char *c;
264 long rv = strtol(num, &c, 10);
265 if (rv < 0 || *c || !num[0])
266 return -1;
267 else
268 return rv;
269 }
270 #endif
271
272 void remove_partitions(int fd)
273 {
274 /* remove partitions from this block devices.
275 * This is used for components added to an array
276 */
277 #ifdef BLKPG_DEL_PARTITION
278 struct blkpg_ioctl_arg a;
279 struct blkpg_partition p;
280
281 a.op = BLKPG_DEL_PARTITION;
282 a.data = (void*)&p;
283 a.datalen = sizeof(p);
284 a.flags = 0;
285 memset(a.data, 0, a.datalen);
286 for (p.pno = 0; p.pno < 16; p.pno++)
287 ioctl(fd, BLKPG, &a);
288 #endif
289 }
290
291 int test_partition(int fd)
292 {
293 /* Check if fd is a whole-disk or a partition.
294 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
295 * will return ENXIO on an invalid partition number.
296 */
297 struct blkpg_ioctl_arg a;
298 struct blkpg_partition p;
299 a.op = BLKPG_DEL_PARTITION;
300 a.data = (void*)&p;
301 a.datalen = sizeof(p);
302 a.flags = 0;
303 memset(a.data, 0, a.datalen);
304 p.pno = 1<<30;
305 if (ioctl(fd, BLKPG, &a) == 0)
306 /* Very unlikely, but not a partition */
307 return 0;
308 if (errno == ENXIO)
309 /* not a partition */
310 return 0;
311
312 return 1;
313 }
314
315 int test_partition_from_id(dev_t id)
316 {
317 char buf[20];
318 int fd, rv;
319
320 sprintf(buf, "%d:%d", major(id), minor(id));
321 fd = dev_open(buf, O_RDONLY);
322 if (fd < 0)
323 return -1;
324 rv = test_partition(fd);
325 close(fd);
326 return rv;
327 }
328
329 int enough(int level, int raid_disks, int layout, int clean, char *avail)
330 {
331 int copies, first;
332 int i;
333 int avail_disks = 0;
334
335 for (i = 0; i < raid_disks; i++)
336 avail_disks += !!avail[i];
337
338 switch (level) {
339 case 10:
340 /* This is the tricky one - we need to check
341 * which actual disks are present.
342 */
343 copies = (layout&255)* ((layout>>8) & 255);
344 first = 0;
345 do {
346 /* there must be one of the 'copies' form 'first' */
347 int n = copies;
348 int cnt = 0;
349 int this = first;
350 while (n--) {
351 if (avail[this])
352 cnt++;
353 this = (this+1) % raid_disks;
354 }
355 if (cnt == 0)
356 return 0;
357 first = (first+(layout&255)) % raid_disks;
358 } while (first != 0);
359 return 1;
360
361 case LEVEL_MULTIPATH:
362 return avail_disks>= 1;
363 case LEVEL_LINEAR:
364 case 0:
365 return avail_disks == raid_disks;
366 case 1:
367 return avail_disks >= 1;
368 case 4:
369 case 5:
370 if (clean)
371 return avail_disks >= raid_disks-1;
372 else
373 return avail_disks >= raid_disks;
374 case 6:
375 if (clean)
376 return avail_disks >= raid_disks-2;
377 else
378 return avail_disks >= raid_disks;
379 default:
380 return 0;
381 }
382 }
383
384 int enough_fd(int fd)
385 {
386 struct mdu_array_info_s array;
387 struct mdu_disk_info_s disk;
388 int avail_disks = 0;
389 int i, rv;
390 char *avail;
391
392 if (ioctl(fd, GET_ARRAY_INFO, &array) != 0 ||
393 array.raid_disks <= 0)
394 return 0;
395 avail = xcalloc(array.raid_disks, 1);
396 for (i = 0; i < MAX_DISKS && array.nr_disks > 0; i++) {
397 disk.number = i;
398 if (ioctl(fd, GET_DISK_INFO, &disk) != 0)
399 continue;
400 if (disk.major == 0 && disk.minor == 0)
401 continue;
402 array.nr_disks--;
403
404 if (! (disk.state & (1<<MD_DISK_SYNC)))
405 continue;
406 if (disk.raid_disk < 0 || disk.raid_disk >= array.raid_disks)
407 continue;
408 avail_disks++;
409 avail[disk.raid_disk] = 1;
410 }
411 /* This is used on an active array, so assume it is clean */
412 rv = enough(array.level, array.raid_disks, array.layout,
413 1, avail);
414 free(avail);
415 return rv;
416 }
417
418 const int uuid_zero[4] = { 0, 0, 0, 0 };
419
420 int same_uuid(int a[4], int b[4], int swapuuid)
421 {
422 if (swapuuid) {
423 /* parse uuids are hostendian.
424 * uuid's from some superblocks are big-ending
425 * if there is a difference, we need to swap..
426 */
427 unsigned char *ac = (unsigned char *)a;
428 unsigned char *bc = (unsigned char *)b;
429 int i;
430 for (i = 0; i < 16; i += 4) {
431 if (ac[i+0] != bc[i+3] ||
432 ac[i+1] != bc[i+2] ||
433 ac[i+2] != bc[i+1] ||
434 ac[i+3] != bc[i+0])
435 return 0;
436 }
437 return 1;
438 } else {
439 if (a[0]==b[0] &&
440 a[1]==b[1] &&
441 a[2]==b[2] &&
442 a[3]==b[3])
443 return 1;
444 return 0;
445 }
446 }
447
448 void copy_uuid(void *a, int b[4], int swapuuid)
449 {
450 if (swapuuid) {
451 /* parse uuids are hostendian.
452 * uuid's from some superblocks are big-ending
453 * if there is a difference, we need to swap..
454 */
455 unsigned char *ac = (unsigned char *)a;
456 unsigned char *bc = (unsigned char *)b;
457 int i;
458 for (i = 0; i < 16; i += 4) {
459 ac[i+0] = bc[i+3];
460 ac[i+1] = bc[i+2];
461 ac[i+2] = bc[i+1];
462 ac[i+3] = bc[i+0];
463 }
464 } else
465 memcpy(a, b, 16);
466 }
467
468 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
469 {
470 int i, j;
471 char uuid[16];
472 char *c = buf;
473 strcpy(c, "UUID-");
474 c += strlen(c);
475 copy_uuid(uuid, id, swap);
476 for (i = 0; i < 4; i++) {
477 if (i)
478 *c++ = sep;
479 for (j = 3; j >= 0; j--) {
480 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
481 c+= 2;
482 }
483 }
484 return buf;
485
486 }
487
488 char *fname_from_uuid(struct supertype *st, struct mdinfo *info, char *buf, char sep)
489 {
490 // dirty hack to work around an issue with super1 superblocks...
491 // super1 superblocks need swapuuid set in order for assembly to
492 // work, but can't have it set if we want this printout to match
493 // all the other uuid printouts in super1.c, so we force swapuuid
494 // to 1 to make our printout match the rest of super1
495 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 : st->ss->swapuuid, buf, sep);
496 }
497
498 #ifndef MDASSEMBLE
499 int check_ext2(int fd, char *name)
500 {
501 /*
502 * Check for an ext2fs file system.
503 * Superblock is always 1K at 1K offset
504 *
505 * s_magic is le16 at 56 == 0xEF53
506 * report mtime - le32 at 44
507 * blocks - le32 at 4
508 * logblksize - le32 at 24
509 */
510 unsigned char sb[1024];
511 time_t mtime;
512 int size, bsize;
513 if (lseek(fd, 1024,0)!= 1024)
514 return 0;
515 if (read(fd, sb, 1024)!= 1024)
516 return 0;
517 if (sb[56] != 0x53 || sb[57] != 0xef)
518 return 0;
519
520 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
521 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
522 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
523 pr_err("%s appears to contain an ext2fs file system\n",
524 name);
525 cont_err("size=%dK mtime=%s",
526 size*(1<<bsize), ctime(&mtime));
527 return 1;
528 }
529
530 int check_reiser(int fd, char *name)
531 {
532 /*
533 * superblock is at 64K
534 * size is 1024;
535 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
536 *
537 */
538 unsigned char sb[1024];
539 unsigned long size;
540 if (lseek(fd, 64*1024, 0) != 64*1024)
541 return 0;
542 if (read(fd, sb, 1024) != 1024)
543 return 0;
544 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
545 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
546 return 0;
547 pr_err("%s appears to contain a reiserfs file system\n",name);
548 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
549 cont_err("size = %luK\n", size*4);
550
551 return 1;
552 }
553
554 int check_raid(int fd, char *name)
555 {
556 struct mdinfo info;
557 time_t crtime;
558 char *level;
559 struct supertype *st = guess_super(fd);
560
561 if (!st)
562 return 0;
563 st->ss->load_super(st, fd, name);
564 /* Looks like a raid array .. */
565 pr_err("%s appears to be part of a raid array:\n",
566 name);
567 st->ss->getinfo_super(st, &info, NULL);
568 st->ss->free_super(st);
569 crtime = info.array.ctime;
570 level = map_num(pers, info.array.level);
571 if (!level) level = "-unknown-";
572 cont_err("level=%s devices=%d ctime=%s",
573 level, info.array.raid_disks, ctime(&crtime));
574 return 1;
575 }
576
577 int ask(char *mesg)
578 {
579 char *add = "";
580 int i;
581 for (i = 0; i < 5; i++) {
582 char buf[100];
583 fprintf(stderr, "%s%s", mesg, add);
584 fflush(stderr);
585 if (fgets(buf, 100, stdin)==NULL)
586 return 0;
587 if (buf[0]=='y' || buf[0]=='Y')
588 return 1;
589 if (buf[0]=='n' || buf[0]=='N')
590 return 0;
591 add = "(y/n) ";
592 }
593 pr_err("assuming 'no'\n");
594 return 0;
595 }
596 #endif /* MDASSEMBLE */
597
598 int is_standard(char *dev, int *nump)
599 {
600 /* tests if dev is a "standard" md dev name.
601 * i.e if the last component is "/dNN" or "/mdNN",
602 * where NN is a string of digits
603 * Returns 1 if a partitionable standard,
604 * -1 if non-partitonable,
605 * 0 if not a standard name.
606 */
607 char *d = strrchr(dev, '/');
608 int type = 0;
609 int num;
610 if (!d)
611 return 0;
612 if (strncmp(d, "/d",2) == 0)
613 d += 2, type = 1; /* /dev/md/dN{pM} */
614 else if (strncmp(d, "/md_d", 5) == 0)
615 d += 5, type = 1; /* /dev/md_dN{pM} */
616 else if (strncmp(d, "/md", 3) == 0)
617 d += 3, type = -1; /* /dev/mdN */
618 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
619 d += 1, type = -1; /* /dev/md/N */
620 else
621 return 0;
622 if (!*d)
623 return 0;
624 num = atoi(d);
625 while (isdigit(*d))
626 d++;
627 if (*d)
628 return 0;
629 if (nump) *nump = num;
630
631 return type;
632 }
633
634 unsigned long calc_csum(void *super, int bytes)
635 {
636 unsigned long long newcsum = 0;
637 int i;
638 unsigned int csum;
639 unsigned int *superc = (unsigned int*) super;
640
641 for(i = 0; i < bytes/4; i++)
642 newcsum += superc[i];
643 csum = (newcsum& 0xffffffff) + (newcsum>>32);
644 #ifdef __alpha__
645 /* The in-kernel checksum calculation is always 16bit on
646 * the alpha, though it is 32 bit on i386...
647 * I wonder what it is elsewhere... (it uses an API in
648 * a way that it shouldn't).
649 */
650 csum = (csum & 0xffff) + (csum >> 16);
651 csum = (csum & 0xffff) + (csum >> 16);
652 #endif
653 return csum;
654 }
655
656 #ifndef MDASSEMBLE
657 char *human_size(long long bytes)
658 {
659 static char buf[30];
660
661 /* We convert bytes to either centi-M{ega,ibi}bytes or
662 * centi-G{igi,ibi}bytes, with appropriate rounding,
663 * and then print 1/100th of those as a decimal.
664 * We allow upto 2048Megabytes before converting to
665 * gigabytes, as that shows more precision and isn't
666 * too large a number.
667 * Terabytes are not yet handled.
668 */
669
670 if (bytes < 5000*1024)
671 buf[0] = 0;
672 else if (bytes < 2*1024LL*1024LL*1024LL) {
673 long cMiB = (bytes / ( (1LL<<20) / 200LL ) +1) /2;
674 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
675 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
676 cMiB/100 , cMiB % 100,
677 cMB/100, cMB % 100);
678 } else {
679 long cGiB = (bytes / ( (1LL<<30) / 200LL ) +1) /2;
680 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
681 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
682 cGiB/100 , cGiB % 100,
683 cGB/100, cGB % 100);
684 }
685 return buf;
686 }
687
688 char *human_size_brief(long long bytes, int prefix)
689 {
690 static char buf[30];
691
692 /* We convert bytes to either centi-M{ega,ibi}bytes or
693 * centi-G{igi,ibi}bytes, with appropriate rounding,
694 * and then print 1/100th of those as a decimal.
695 * We allow upto 2048Megabytes before converting to
696 * gigabytes, as that shows more precision and isn't
697 * too large a number.
698 * Terabytes are not yet handled.
699 *
700 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
701 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
702 */
703
704 if (bytes < 5000*1024)
705 buf[0] = 0;
706 else if (prefix == IEC) {
707 if (bytes < 2*1024LL*1024LL*1024LL) {
708 long cMiB = (bytes / ( (1LL<<20) / 200LL ) +1) /2;
709 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
710 cMiB/100 , cMiB % 100);
711 } else {
712 long cGiB = (bytes / ( (1LL<<30) / 200LL ) +1) /2;
713 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
714 cGiB/100 , cGiB % 100);
715 }
716 }
717 else if (prefix == JEDEC) {
718 if (bytes < 2*1024LL*1024LL*1024LL) {
719 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
720 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
721 cMB/100, cMB % 100);
722 } else {
723 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
724 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
725 cGB/100 , cGB % 100);
726 }
727 }
728 else
729 buf[0] = 0;
730
731 return buf;
732 }
733
734 void print_r10_layout(int layout)
735 {
736 int near = layout & 255;
737 int far = (layout >> 8) & 255;
738 int offset = (layout&0x10000);
739 char *sep = "";
740
741 if (near != 1) {
742 printf("%s near=%d", sep, near);
743 sep = ",";
744 }
745 if (far != 1)
746 printf("%s %s=%d", sep, offset?"offset":"far", far);
747 if (near*far == 1)
748 printf("NO REDUNDANCY");
749 }
750 #endif
751
752 unsigned long long calc_array_size(int level, int raid_disks, int layout,
753 int chunksize, unsigned long long devsize)
754 {
755 if (level == 1)
756 return devsize;
757 devsize &= ~(unsigned long long)((chunksize>>9)-1);
758 return get_data_disks(level, layout, raid_disks) * devsize;
759 }
760
761 int get_data_disks(int level, int layout, int raid_disks)
762 {
763 int data_disks = 0;
764 switch (level) {
765 case 0: data_disks = raid_disks;
766 break;
767 case 1: data_disks = 1;
768 break;
769 case 4:
770 case 5: data_disks = raid_disks - 1;
771 break;
772 case 6: data_disks = raid_disks - 2;
773 break;
774 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
775 break;
776 }
777
778 return data_disks;
779 }
780
781
782 int devnm2devid(char *devnm)
783 {
784 /* First look in /sys/block/$DEVNM/dev for %d:%d
785 * If that fails, try parsing out a number
786 */
787 char path[100];
788 char *ep;
789 int fd;
790 int mjr,mnr;
791
792 sprintf(path, "/sys/block/%s/dev", devnm);
793 fd = open(path, O_RDONLY);
794 if (fd >= 0) {
795 char buf[20];
796 int n = read(fd, buf, sizeof(buf));
797 close(fd);
798 if (n > 0)
799 buf[n] = 0;
800 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
801 return makedev(mjr, mnr);
802 }
803 if (strncmp(devnm, "md_d", 4) == 0 &&
804 isdigit(devnm[4]) &&
805 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
806 ep > devnm && *ep == 0)
807 return makedev(get_mdp_major(), mnr << MdpMinorShift);
808
809 if (strncmp(devnm, "md", 2) == 0 &&
810 isdigit(devnm[2]) &&
811 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
812 ep > devnm && *ep == 0)
813 return makedev(MD_MAJOR, mnr);
814
815 return 0;
816 }
817
818 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
819 char *get_md_name(char *devnm)
820 {
821 /* find /dev/md%d or /dev/md/%d or make a device /dev/.tmp.md%d */
822 /* if dev < 0, want /dev/md/d%d or find mdp in /proc/devices ... */
823
824 static char devname[50];
825 struct stat stb;
826 dev_t rdev = devnm2devid(devnm);
827 char *dn;
828
829 if (rdev == 0)
830 return 0;
831 if (strncmp(devnm, "md_", 3) == 0) {
832 snprintf(devname, sizeof(devname), "/dev/md/%s",
833 devnm + 3);
834 if (stat(devname, &stb) == 0
835 && (S_IFMT&stb.st_mode) == S_IFBLK
836 && (stb.st_rdev == rdev))
837 return devname;
838 }
839 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
840 if (stat(devname, &stb) == 0
841 && (S_IFMT&stb.st_mode) == S_IFBLK
842 && (stb.st_rdev == rdev))
843 return devname;
844
845 snprintf(devname, sizeof(devname), "/dev/md/%s", devnm+2);
846 if (stat(devname, &stb) == 0
847 && (S_IFMT&stb.st_mode) == S_IFBLK
848 && (stb.st_rdev == rdev))
849 return devname;
850
851 dn = map_dev(major(rdev), minor(rdev), 0);
852 if (dn)
853 return dn;
854 snprintf(devname, sizeof(devname), "/dev/.tmp.%s", devnm);
855 if (mknod(devname, S_IFBLK | 0600, rdev) == -1)
856 if (errno != EEXIST)
857 return NULL;
858
859 if (stat(devname, &stb) == 0
860 && (S_IFMT&stb.st_mode) == S_IFBLK
861 && (stb.st_rdev == rdev))
862 return devname;
863 unlink(devname);
864 return NULL;
865 }
866
867 void put_md_name(char *name)
868 {
869 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
870 unlink(name);
871 }
872
873 char *find_free_devnm(int use_partitions)
874 {
875 static char devnm[32];
876 int devnum;
877 for (devnum = 127; devnum != 128;
878 devnum = devnum ? devnum-1 : (1<<20)-1) {
879
880 if (use_partitions)
881 sprintf(devnm, "md_d%d", devnum);
882 else
883 sprintf(devnm, "md%d", devnum);
884 if (mddev_busy(devnm))
885 continue;
886 if (!conf_name_is_free(devnm))
887 continue;
888 if (!use_udev()) {
889 /* make sure it is new to /dev too, at least as a
890 * non-standard */
891 int devid = devnm2devid(devnm);
892 if (devid) {
893 char *dn = map_dev(major(devid),
894 minor(devid), 0);
895 if (dn && ! is_standard(dn, NULL))
896 continue;
897 }
898 }
899 break;
900 }
901 if (devnum == 128)
902 return NULL;
903 return devnm;
904 }
905 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
906
907 int dev_open(char *dev, int flags)
908 {
909 /* like 'open', but if 'dev' matches %d:%d, create a temp
910 * block device and open that
911 */
912 char *e;
913 int fd = -1;
914 char devname[32];
915 int major;
916 int minor;
917
918 if (!dev) return -1;
919 flags |= O_DIRECT;
920
921 major = strtoul(dev, &e, 0);
922 if (e > dev && *e == ':' && e[1] &&
923 (minor = strtoul(e+1, &e, 0)) >= 0 &&
924 *e == 0) {
925 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
926 (int)getpid(), major, minor);
927 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
928 fd = open(devname, flags);
929 unlink(devname);
930 }
931 if (fd < 0) {
932 /* Try /tmp as /dev appear to be read-only */
933 snprintf(devname, sizeof(devname), "/tmp/.tmp.md.%d:%d:%d",
934 (int)getpid(), major, minor);
935 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
936 fd = open(devname, flags);
937 unlink(devname);
938 }
939 }
940 } else
941 fd = open(dev, flags);
942 return fd;
943 }
944
945 int open_dev_flags(char *devnm, int flags)
946 {
947 int devid;
948 char buf[20];
949
950 devid = devnm2devid(devnm);
951 sprintf(buf, "%d:%d", major(devid), minor(devid));
952 return dev_open(buf, flags);
953 }
954
955 int open_dev(char *devnm)
956 {
957 return open_dev_flags(devnm, O_RDONLY);
958 }
959
960 int open_dev_excl(char *devnm)
961 {
962 char buf[20];
963 int i;
964 int flags = O_RDWR;
965 int devid = devnm2devid(devnm);
966
967 sprintf(buf, "%d:%d", major(devid), minor(devid));
968 for (i = 0 ; i < 25 ; i++) {
969 int fd = dev_open(buf, flags|O_EXCL);
970 if (fd >= 0)
971 return fd;
972 if (errno == EACCES && flags == O_RDWR) {
973 flags = O_RDONLY;
974 continue;
975 }
976 if (errno != EBUSY)
977 return fd;
978 usleep(200000);
979 }
980 return -1;
981 }
982
983 int same_dev(char *one, char *two)
984 {
985 struct stat st1, st2;
986 if (stat(one, &st1) != 0)
987 return 0;
988 if (stat(two, &st2) != 0)
989 return 0;
990 if ((st1.st_mode & S_IFMT) != S_IFBLK)
991 return 0;
992 if ((st2.st_mode & S_IFMT) != S_IFBLK)
993 return 0;
994 return st1.st_rdev == st2.st_rdev;
995 }
996
997 void wait_for(char *dev, int fd)
998 {
999 int i;
1000 struct stat stb_want;
1001
1002 if (fstat(fd, &stb_want) != 0 ||
1003 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1004 return;
1005
1006 for (i = 0 ; i < 25 ; i++) {
1007 struct stat stb;
1008 if (stat(dev, &stb) == 0 &&
1009 (stb.st_mode & S_IFMT) == S_IFBLK &&
1010 (stb.st_rdev == stb_want.st_rdev))
1011 return;
1012 usleep(200000);
1013 }
1014 if (i == 25)
1015 dprintf("%s: timeout waiting for %s\n", __func__, dev);
1016 }
1017
1018 struct superswitch *superlist[] =
1019 {
1020 &super0, &super1,
1021 &super_ddf, &super_imsm,
1022 &mbr, &gpt,
1023 NULL };
1024
1025 #if !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO)
1026
1027 struct supertype *super_by_fd(int fd, char **subarrayp)
1028 {
1029 mdu_array_info_t array;
1030 int vers;
1031 int minor;
1032 struct supertype *st = NULL;
1033 struct mdinfo *sra;
1034 char *verstr;
1035 char version[20];
1036 int i;
1037 char *subarray = NULL;
1038 char container[32] = "";
1039
1040 sra = sysfs_read(fd, NULL, GET_VERSION);
1041
1042 if (sra) {
1043 vers = sra->array.major_version;
1044 minor = sra->array.minor_version;
1045 verstr = sra->text_version;
1046 } else {
1047 if (ioctl(fd, GET_ARRAY_INFO, &array))
1048 array.major_version = array.minor_version = 0;
1049 vers = array.major_version;
1050 minor = array.minor_version;
1051 verstr = "";
1052 }
1053
1054 if (vers != -1) {
1055 sprintf(version, "%d.%d", vers, minor);
1056 verstr = version;
1057 }
1058 if (minor == -2 && is_subarray(verstr)) {
1059 char *dev = verstr+1;
1060
1061 subarray = strchr(dev, '/');
1062 if (subarray) {
1063 *subarray++ = '\0';
1064 subarray = xstrdup(subarray);
1065 }
1066 strcpy(container, dev);
1067 if (sra)
1068 sysfs_free(sra);
1069 sra = sysfs_read(-1, container, GET_VERSION);
1070 if (sra && sra->text_version[0])
1071 verstr = sra->text_version;
1072 else
1073 verstr = "-no-metadata-";
1074 }
1075
1076 for (i = 0; st == NULL && superlist[i] ; i++)
1077 st = superlist[i]->match_metadata_desc(verstr);
1078
1079 if (sra)
1080 sysfs_free(sra);
1081 if (st) {
1082 st->sb = NULL;
1083 if (subarrayp)
1084 *subarrayp = subarray;
1085 strcpy(st->container_devnm, container);
1086 strcpy(st->devnm, fd2devnm(fd));
1087 } else
1088 free(subarray);
1089
1090 return st;
1091 }
1092 #endif /* !defined(MDASSEMBLE) || defined(MDASSEMBLE) && defined(MDASSEMBLE_AUTO) */
1093
1094 int dev_size_from_id(dev_t id, unsigned long long *size)
1095 {
1096 char buf[20];
1097 int fd;
1098
1099 sprintf(buf, "%d:%d", major(id), minor(id));
1100 fd = dev_open(buf, O_RDONLY);
1101 if (fd < 0)
1102 return 0;
1103 if (get_dev_size(fd, NULL, size)) {
1104 close(fd);
1105 return 1;
1106 }
1107 close(fd);
1108 return 0;
1109 }
1110
1111 struct supertype *dup_super(struct supertype *orig)
1112 {
1113 struct supertype *st;
1114
1115 if (!orig)
1116 return orig;
1117 st = xcalloc(1, sizeof(*st));
1118 st->ss = orig->ss;
1119 st->max_devs = orig->max_devs;
1120 st->minor_version = orig->minor_version;
1121 st->ignore_hw_compat = orig->ignore_hw_compat;
1122 st->sb = NULL;
1123 st->info = NULL;
1124 return st;
1125 }
1126
1127 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1128 {
1129 /* try each load_super to find the best match,
1130 * and return the best superswitch
1131 */
1132 struct superswitch *ss;
1133 struct supertype *st;
1134 time_t besttime = 0;
1135 int bestsuper = -1;
1136 int i;
1137
1138 st = xcalloc(1, sizeof(*st));
1139 st->container_devnm[0] = 0;
1140
1141 for (i = 0 ; superlist[i]; i++) {
1142 int rv;
1143 ss = superlist[i];
1144 if (guess_type == guess_array && ss->add_to_super == NULL)
1145 continue;
1146 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1147 continue;
1148 memset(st, 0, sizeof(*st));
1149 st->ignore_hw_compat = 1;
1150 rv = ss->load_super(st, fd, NULL);
1151 if (rv == 0) {
1152 struct mdinfo info;
1153 st->ss->getinfo_super(st, &info, NULL);
1154 if (bestsuper == -1 ||
1155 besttime < info.array.ctime) {
1156 bestsuper = i;
1157 besttime = info.array.ctime;
1158 }
1159 ss->free_super(st);
1160 }
1161 }
1162 if (bestsuper != -1) {
1163 int rv;
1164 memset(st, 0, sizeof(*st));
1165 st->ignore_hw_compat = 1;
1166 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1167 if (rv == 0) {
1168 superlist[bestsuper]->free_super(st);
1169 return st;
1170 }
1171 }
1172 free(st);
1173 return NULL;
1174 }
1175
1176 /* Return size of device in bytes */
1177 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1178 {
1179 unsigned long long ldsize;
1180 struct stat st;
1181
1182 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1183 ldsize = (unsigned long long)st.st_size;
1184 else
1185 #ifdef BLKGETSIZE64
1186 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1187 #endif
1188 {
1189 unsigned long dsize;
1190 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1191 ldsize = dsize;
1192 ldsize <<= 9;
1193 } else {
1194 if (dname)
1195 pr_err("Cannot get size of %s: %s\b",
1196 dname, strerror(errno));
1197 return 0;
1198 }
1199 }
1200 *sizep = ldsize;
1201 return 1;
1202 }
1203
1204 /* Return true if this can only be a container, not a member device.
1205 * i.e. is and md device and size is zero
1206 */
1207 int must_be_container(int fd)
1208 {
1209 unsigned long long size;
1210 if (md_get_version(fd) < 0)
1211 return 0;
1212 if (get_dev_size(fd, NULL, &size) == 0)
1213 return 1;
1214 if (size == 0)
1215 return 1;
1216 return 0;
1217 }
1218
1219 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1220 * Returns: 1 if successful
1221 * -1 for unknown partition type
1222 * 0 for other errors
1223 */
1224 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1225 {
1226 struct GPT gpt;
1227 unsigned char empty_gpt_entry[16]= {0};
1228 struct GPT_part_entry *part;
1229 char buf[512];
1230 unsigned long long curr_part_end;
1231 unsigned all_partitions, entry_size;
1232 unsigned part_nr;
1233
1234 *endofpart = 0;
1235
1236 BUILD_BUG_ON(sizeof(gpt) != 512);
1237 /* skip protective MBR */
1238 lseek(fd, 512, SEEK_SET);
1239 /* read GPT header */
1240 if (read(fd, &gpt, 512) != 512)
1241 return 0;
1242
1243 /* get the number of partition entries and the entry size */
1244 all_partitions = __le32_to_cpu(gpt.part_cnt);
1245 entry_size = __le32_to_cpu(gpt.part_size);
1246
1247 /* Check GPT signature*/
1248 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1249 return -1;
1250
1251 /* sanity checks */
1252 if (all_partitions > 1024 ||
1253 entry_size > sizeof(buf))
1254 return -1;
1255
1256 part = (struct GPT_part_entry *)buf;
1257
1258 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1259 /* read partition entry */
1260 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1261 return 0;
1262
1263 /* is this valid partition? */
1264 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1265 /* check the last lba for the current partition */
1266 curr_part_end = __le64_to_cpu(part->ending_lba);
1267 if (curr_part_end > *endofpart)
1268 *endofpart = curr_part_end;
1269 }
1270
1271 }
1272 return 1;
1273 }
1274
1275 /* Sets endofpart parameter to the last block used by the last partition on the device.
1276 * Returns: 1 if successful
1277 * -1 for unknown partition type
1278 * 0 for other errors
1279 */
1280 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1281 {
1282 struct MBR boot_sect;
1283 struct MBR_part_record *part;
1284 unsigned long long curr_part_end;
1285 unsigned part_nr;
1286 int retval = 0;
1287
1288 *endofpart = 0;
1289
1290 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1291 /* read MBR */
1292 lseek(fd, 0, 0);
1293 if (read(fd, &boot_sect, 512) != 512)
1294 goto abort;
1295
1296 /* check MBP signature */
1297 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1298 retval = 1;
1299 /* found the correct signature */
1300 part = boot_sect.parts;
1301
1302 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1303 /* check for GPT type */
1304 if (part->part_type == MBR_GPT_PARTITION_TYPE) {
1305 retval = get_gpt_last_partition_end(fd, endofpart);
1306 break;
1307 }
1308 /* check the last used lba for the current partition */
1309 curr_part_end = __le32_to_cpu(part->first_sect_lba) +
1310 __le32_to_cpu(part->blocks_num);
1311 if (curr_part_end > *endofpart)
1312 *endofpart = curr_part_end;
1313
1314 part++;
1315 }
1316 } else {
1317 /* Unknown partition table */
1318 retval = -1;
1319 }
1320 abort:
1321 return retval;
1322 }
1323
1324 int check_partitions(int fd, char *dname, unsigned long long freesize,
1325 unsigned long long size)
1326 {
1327 /*
1328 * Check where the last partition ends
1329 */
1330 unsigned long long endofpart;
1331 int ret;
1332
1333 if ((ret = get_last_partition_end(fd, &endofpart)) > 0) {
1334 /* There appears to be a partition table here */
1335 if (freesize == 0) {
1336 /* partitions will not be visible in new device */
1337 pr_err("partition table exists on %s but will be lost or\n"
1338 " meaningless after creating array\n",
1339 dname);
1340 return 1;
1341 } else if (endofpart > freesize) {
1342 /* last partition overlaps metadata */
1343 pr_err("metadata will over-write last partition on %s.\n",
1344 dname);
1345 return 1;
1346 } else if (size && endofpart > size) {
1347 /* partitions will be truncated in new device */
1348 pr_err("array size is too small to cover all partitions on %s.\n",
1349 dname);
1350 return 1;
1351 }
1352 }
1353 return 0;
1354 }
1355
1356 int open_container(int fd)
1357 {
1358 /* 'fd' is a block device. Find out if it is in use
1359 * by a container, and return an open fd on that container.
1360 */
1361 char path[256];
1362 char *e;
1363 DIR *dir;
1364 struct dirent *de;
1365 int dfd, n;
1366 char buf[200];
1367 int major, minor;
1368 struct stat st;
1369
1370 if (fstat(fd, &st) != 0)
1371 return -1;
1372 sprintf(path, "/sys/dev/block/%d:%d/holders",
1373 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1374 e = path + strlen(path);
1375
1376 dir = opendir(path);
1377 if (!dir)
1378 return -1;
1379 while ((de = readdir(dir))) {
1380 if (de->d_ino == 0)
1381 continue;
1382 if (de->d_name[0] == '.')
1383 continue;
1384 /* Need to make sure it is a container and not a volume */
1385 sprintf(e, "/%s/md/metadata_version", de->d_name);
1386 dfd = open(path, O_RDONLY);
1387 if (dfd < 0)
1388 continue;
1389 n = read(dfd, buf, sizeof(buf));
1390 close(dfd);
1391 if (n <= 0 || (unsigned)n >= sizeof(buf))
1392 continue;
1393 buf[n] = 0;
1394 if (strncmp(buf, "external", 8) != 0 ||
1395 n < 10 ||
1396 buf[9] == '/')
1397 continue;
1398 sprintf(e, "/%s/dev", de->d_name);
1399 dfd = open(path, O_RDONLY);
1400 if (dfd < 0)
1401 continue;
1402 n = read(dfd, buf, sizeof(buf));
1403 close(dfd);
1404 if (n <= 0 || (unsigned)n >= sizeof(buf))
1405 continue;
1406 buf[n] = 0;
1407 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1408 continue;
1409 sprintf(buf, "%d:%d", major, minor);
1410 dfd = dev_open(buf, O_RDONLY);
1411 if (dfd >= 0) {
1412 closedir(dir);
1413 return dfd;
1414 }
1415 }
1416 closedir(dir);
1417 return -1;
1418 }
1419
1420 struct superswitch *version_to_superswitch(char *vers)
1421 {
1422 int i;
1423
1424 for (i = 0; superlist[i]; i++) {
1425 struct superswitch *ss = superlist[i];
1426
1427 if (strcmp(vers, ss->name) == 0)
1428 return ss;
1429 }
1430
1431 return NULL;
1432 }
1433
1434 int metadata_container_matches(char *metadata, char *devnm)
1435 {
1436 /* Check if 'devnm' is the container named in 'metadata'
1437 * which is
1438 * /containername/componentname or
1439 * -containername/componentname
1440 */
1441 int l;
1442 if (*metadata != '/' && *metadata != '-')
1443 return 0;
1444 l = strlen(devnm);
1445 if (strncmp(metadata+1, devnm, l) != 0)
1446 return 0;
1447 if (metadata[l+1] != '/')
1448 return 0;
1449 return 1;
1450 }
1451
1452 int metadata_subdev_matches(char *metadata, char *devnm)
1453 {
1454 /* Check if 'devnm' is the subdev named in 'metadata'
1455 * which is
1456 * /containername/subdev or
1457 * -containername/subdev
1458 */
1459 char *sl;
1460 if (*metadata != '/' && *metadata != '-')
1461 return 0;
1462 sl = strchr(metadata+1, '/');
1463 if (!sl)
1464 return 0;
1465 if (strcmp(sl+1, devnm) == 0)
1466 return 1;
1467 return 0;
1468 }
1469
1470 int is_container_member(struct mdstat_ent *mdstat, char *container)
1471 {
1472 if (mdstat->metadata_version == NULL ||
1473 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1474 !metadata_container_matches(mdstat->metadata_version+9, container))
1475 return 0;
1476
1477 return 1;
1478 }
1479
1480 int is_subarray_active(char *subarray, char *container)
1481 {
1482 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1483 struct mdstat_ent *ent;
1484
1485 for (ent = mdstat; ent; ent = ent->next)
1486 if (is_container_member(ent, container))
1487 if (strcmp(to_subarray(ent, container), subarray) == 0)
1488 break;
1489
1490 free_mdstat(mdstat);
1491
1492 return ent != NULL;
1493 }
1494
1495 /* open_subarray - opens a subarray in a container
1496 * @dev: container device name
1497 * @st: empty supertype
1498 * @quiet: block reporting errors flag
1499 *
1500 * On success returns an fd to a container and fills in *st
1501 */
1502 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1503 {
1504 struct mdinfo *mdi;
1505 struct mdinfo *info;
1506 int fd, err = 1;
1507 char *_devnm;
1508
1509 fd = open(dev, O_RDWR|O_EXCL);
1510 if (fd < 0) {
1511 if (!quiet)
1512 pr_err("Couldn't open %s, aborting\n",
1513 dev);
1514 return -1;
1515 }
1516
1517 _devnm = fd2devnm(fd);
1518 if (_devnm == NULL) {
1519 if (!quiet)
1520 pr_err("Failed to determine device number for %s\n",
1521 dev);
1522 goto close_fd;
1523 }
1524 strcpy(st->devnm, _devnm);
1525
1526 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1527 if (!mdi) {
1528 if (!quiet)
1529 pr_err("Failed to read sysfs for %s\n",
1530 dev);
1531 goto close_fd;
1532 }
1533
1534 if (mdi->array.level != UnSet) {
1535 if (!quiet)
1536 pr_err("%s is not a container\n", dev);
1537 goto free_sysfs;
1538 }
1539
1540 st->ss = version_to_superswitch(mdi->text_version);
1541 if (!st->ss) {
1542 if (!quiet)
1543 pr_err("Operation not supported for %s metadata\n",
1544 mdi->text_version);
1545 goto free_sysfs;
1546 }
1547
1548 if (st->devnm[0] == 0) {
1549 if (!quiet)
1550 pr_err("Failed to allocate device name\n");
1551 goto free_sysfs;
1552 }
1553
1554 if (!st->ss->load_container) {
1555 if (!quiet)
1556 pr_err("%s is not a container\n", dev);
1557 goto free_sysfs;
1558 }
1559
1560 if (st->ss->load_container(st, fd, NULL)) {
1561 if (!quiet)
1562 pr_err("Failed to load metadata for %s\n",
1563 dev);
1564 goto free_sysfs;
1565 }
1566
1567 info = st->ss->container_content(st, subarray);
1568 if (!info) {
1569 if (!quiet)
1570 pr_err("Failed to find subarray-%s in %s\n",
1571 subarray, dev);
1572 goto free_super;
1573 }
1574 free(info);
1575
1576 err = 0;
1577
1578 free_super:
1579 if (err)
1580 st->ss->free_super(st);
1581 free_sysfs:
1582 sysfs_free(mdi);
1583 close_fd:
1584 if (err)
1585 close(fd);
1586
1587 if (err)
1588 return -1;
1589 else
1590 return fd;
1591 }
1592
1593 int add_disk(int mdfd, struct supertype *st,
1594 struct mdinfo *sra, struct mdinfo *info)
1595 {
1596 /* Add a device to an array, in one of 2 ways. */
1597 int rv;
1598 #ifndef MDASSEMBLE
1599 if (st->ss->external) {
1600 if (info->disk.state & (1<<MD_DISK_SYNC))
1601 info->recovery_start = MaxSector;
1602 else
1603 info->recovery_start = 0;
1604 rv = sysfs_add_disk(sra, info, 0);
1605 if (! rv) {
1606 struct mdinfo *sd2;
1607 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1608 if (sd2 == info)
1609 break;
1610 if (sd2 == NULL) {
1611 sd2 = xmalloc(sizeof(*sd2));
1612 *sd2 = *info;
1613 sd2->next = sra->devs;
1614 sra->devs = sd2;
1615 }
1616 }
1617 } else
1618 #endif
1619 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1620 return rv;
1621 }
1622
1623 int remove_disk(int mdfd, struct supertype *st,
1624 struct mdinfo *sra, struct mdinfo *info)
1625 {
1626 int rv;
1627 /* Remove the disk given by 'info' from the array */
1628 #ifndef MDASSEMBLE
1629 if (st->ss->external)
1630 rv = sysfs_set_str(sra, info, "slot", "none");
1631 else
1632 #endif
1633 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1634 info->disk.minor));
1635 return rv;
1636 }
1637
1638 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1639 {
1640 /* Initialise kernel's knowledge of array.
1641 * This varies between externally managed arrays
1642 * and older kernels
1643 */
1644 int vers = md_get_version(mdfd);
1645 int rv;
1646
1647 #ifndef MDASSEMBLE
1648 if (st->ss->external)
1649 rv = sysfs_set_array(info, vers);
1650 else
1651 #endif
1652 if ((vers % 100) >= 1) { /* can use different versions */
1653 mdu_array_info_t inf;
1654 memset(&inf, 0, sizeof(inf));
1655 inf.major_version = info->array.major_version;
1656 inf.minor_version = info->array.minor_version;
1657 rv = ioctl(mdfd, SET_ARRAY_INFO, &inf);
1658 } else
1659 rv = ioctl(mdfd, SET_ARRAY_INFO, NULL);
1660 return rv;
1661 }
1662
1663 unsigned long long min_recovery_start(struct mdinfo *array)
1664 {
1665 /* find the minimum recovery_start in an array for metadata
1666 * formats that only record per-array recovery progress instead
1667 * of per-device
1668 */
1669 unsigned long long recovery_start = MaxSector;
1670 struct mdinfo *d;
1671
1672 for (d = array->devs; d; d = d->next)
1673 recovery_start = min(recovery_start, d->recovery_start);
1674
1675 return recovery_start;
1676 }
1677
1678 int mdmon_pid(char *devnm)
1679 {
1680 char path[100];
1681 char pid[10];
1682 int fd;
1683 int n;
1684
1685 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1686
1687 fd = open(path, O_RDONLY | O_NOATIME, 0);
1688
1689 if (fd < 0)
1690 return -1;
1691 n = read(fd, pid, 9);
1692 close(fd);
1693 if (n <= 0)
1694 return -1;
1695 return atoi(pid);
1696 }
1697
1698 int mdmon_running(char *devnm)
1699 {
1700 int pid = mdmon_pid(devnm);
1701 if (pid <= 0)
1702 return 0;
1703 if (kill(pid, 0) == 0)
1704 return 1;
1705 return 0;
1706 }
1707
1708 int start_mdmon(char *devnm)
1709 {
1710 int i, skipped;
1711 int len;
1712 pid_t pid;
1713 int status;
1714 char pathbuf[1024];
1715 char *paths[4] = {
1716 pathbuf,
1717 "/sbin/mdmon",
1718 "mdmon",
1719 NULL
1720 };
1721
1722 if (check_env("MDADM_NO_MDMON"))
1723 return 0;
1724
1725 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1726 if (len > 0) {
1727 char *sl;
1728 pathbuf[len] = 0;
1729 sl = strrchr(pathbuf, '/');
1730 if (sl)
1731 sl++;
1732 else
1733 sl = pathbuf;
1734 strcpy(sl, "mdmon");
1735 } else
1736 pathbuf[0] = '\0';
1737
1738 /* First try to run systemctl */
1739 switch(fork()) {
1740 case 0:
1741 /* FIXME yuk. CLOSE_EXEC?? */
1742 skipped = 0;
1743 for (i = 3; skipped < 20; i++)
1744 if (close(i) < 0)
1745 skipped++;
1746 else
1747 skipped = 0;
1748
1749 /* Don't want to see error messages from systemctl.
1750 * If the service doesn't exist, we start mdmon ourselves.
1751 */
1752 close(2);
1753 open("/dev/null", O_WRONLY);
1754 snprintf(pathbuf, sizeof(pathbuf), "mdmon@%s.service",
1755 devnm);
1756 status = execl("/usr/bin/systemctl", "systemctl", "start",
1757 pathbuf, NULL);
1758 status = execl("/bin/systemctl", "systemctl", "start",
1759 pathbuf, NULL);
1760 exit(1);
1761 case -1: pr_err("cannot run mdmon. "
1762 "Array remains readonly\n");
1763 return -1;
1764 default: /* parent - good */
1765 pid = wait(&status);
1766 if (pid >= 0 && status == 0)
1767 return 0;
1768 }
1769
1770 /* That failed, try running mdmon directly */
1771 switch(fork()) {
1772 case 0:
1773 /* FIXME yuk. CLOSE_EXEC?? */
1774 skipped = 0;
1775 for (i = 3; skipped < 20; i++)
1776 if (close(i) < 0)
1777 skipped++;
1778 else
1779 skipped = 0;
1780
1781 for (i = 0; paths[i]; i++)
1782 if (paths[i][0]) {
1783 execl(paths[i], "mdmon",
1784 devnm, NULL);
1785 }
1786 exit(1);
1787 case -1: pr_err("cannot run mdmon. "
1788 "Array remains readonly\n");
1789 return -1;
1790 default: /* parent - good */
1791 pid = wait(&status);
1792 if (pid < 0 || status != 0) {
1793 pr_err("failed to launch mdmon. "
1794 "Array remains readonly\n");
1795 return -1;
1796 }
1797 }
1798 return 0;
1799 }
1800
1801 __u32 random32(void)
1802 {
1803 __u32 rv;
1804 int rfd = open("/dev/urandom", O_RDONLY);
1805 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1806 rv = random();
1807 if (rfd >= 0)
1808 close(rfd);
1809 return rv;
1810 }
1811
1812 #ifndef MDASSEMBLE
1813 int flush_metadata_updates(struct supertype *st)
1814 {
1815 int sfd;
1816 if (!st->updates) {
1817 st->update_tail = NULL;
1818 return -1;
1819 }
1820
1821 sfd = connect_monitor(st->container_devnm);
1822 if (sfd < 0)
1823 return -1;
1824
1825 while (st->updates) {
1826 struct metadata_update *mu = st->updates;
1827 st->updates = mu->next;
1828
1829 send_message(sfd, mu, 0);
1830 wait_reply(sfd, 0);
1831 free(mu->buf);
1832 free(mu);
1833 }
1834 ack(sfd, 0);
1835 wait_reply(sfd, 0);
1836 close(sfd);
1837 st->update_tail = NULL;
1838 return 0;
1839 }
1840
1841 void append_metadata_update(struct supertype *st, void *buf, int len)
1842 {
1843
1844 struct metadata_update *mu = xmalloc(sizeof(*mu));
1845
1846 mu->buf = buf;
1847 mu->len = len;
1848 mu->space = NULL;
1849 mu->space_list = NULL;
1850 mu->next = NULL;
1851 *st->update_tail = mu;
1852 st->update_tail = &mu->next;
1853 }
1854 #endif /* MDASSEMBLE */
1855
1856 #ifdef __TINYC__
1857 /* tinyc doesn't optimize this check in ioctl.h out ... */
1858 unsigned int __invalid_size_argument_for_IOC = 0;
1859 #endif
1860
1861 int experimental(void)
1862 {
1863 if (check_env("MDADM_EXPERIMENTAL"))
1864 return 1;
1865 else {
1866 pr_err("To use this feature MDADM_EXPERIMENTAL"
1867 " environment variable has to be defined.\n");
1868 return 0;
1869 }
1870 }
1871
1872 /* Pick all spares matching given criteria from a container
1873 * if min_size == 0 do not check size
1874 * if domlist == NULL do not check domains
1875 * if spare_group given add it to domains of each spare
1876 * metadata allows to test domains using metadata of destination array */
1877 struct mdinfo *container_choose_spares(struct supertype *st,
1878 unsigned long long min_size,
1879 struct domainlist *domlist,
1880 char *spare_group,
1881 const char *metadata, int get_one)
1882 {
1883 struct mdinfo *d, **dp, *disks = NULL;
1884
1885 /* get list of all disks in container */
1886 if (st->ss->getinfo_super_disks)
1887 disks = st->ss->getinfo_super_disks(st);
1888
1889 if (!disks)
1890 return disks;
1891 /* find spare devices on the list */
1892 dp = &disks->devs;
1893 disks->array.spare_disks = 0;
1894 while (*dp) {
1895 int found = 0;
1896 d = *dp;
1897 if (d->disk.state == 0) {
1898 /* check if size is acceptable */
1899 unsigned long long dev_size;
1900 dev_t dev = makedev(d->disk.major,d->disk.minor);
1901
1902 if (!min_size ||
1903 (dev_size_from_id(dev, &dev_size) &&
1904 dev_size >= min_size))
1905 found = 1;
1906 /* check if domain matches */
1907 if (found && domlist) {
1908 struct dev_policy *pol = devid_policy(dev);
1909 if (spare_group)
1910 pol_add(&pol, pol_domain,
1911 spare_group, NULL);
1912 if (domain_test(domlist, pol, metadata) != 1)
1913 found = 0;
1914 dev_policy_free(pol);
1915 }
1916 }
1917 if (found) {
1918 dp = &d->next;
1919 disks->array.spare_disks++;
1920 if (get_one) {
1921 sysfs_free(*dp);
1922 d->next = NULL;
1923 }
1924 } else {
1925 *dp = d->next;
1926 d->next = NULL;
1927 sysfs_free(d);
1928 }
1929 }
1930 return disks;
1931 }
1932
1933 /* Checks if paths point to the same device
1934 * Returns 0 if they do.
1935 * Returns 1 if they don't.
1936 * Returns -1 if something went wrong,
1937 * e.g. paths are empty or the files
1938 * they point to don't exist */
1939 int compare_paths (char* path1, char* path2)
1940 {
1941 struct stat st1,st2;
1942
1943 if (path1 == NULL || path2 == NULL)
1944 return -1;
1945 if (stat(path1,&st1) != 0)
1946 return -1;
1947 if (stat(path2,&st2) != 0)
1948 return -1;
1949 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
1950 return 0;
1951 return 1;
1952 }
1953
1954 /* Make sure we can open as many devices as needed */
1955 void enable_fds(int devices)
1956 {
1957 unsigned int fds = 20 + devices;
1958 struct rlimit lim;
1959 if (getrlimit(RLIMIT_NOFILE, &lim) != 0
1960 || lim.rlim_cur >= fds)
1961 return;
1962 if (lim.rlim_max < fds)
1963 lim.rlim_max = fds;
1964 lim.rlim_cur = fds;
1965 setrlimit(RLIMIT_NOFILE, &lim);
1966 }