]> git.ipfire.org Git - thirdparty/qemu.git/blame - cpus-common.c
target/m68k: implement fmove.l #<data>,FPCR
[thirdparty/qemu.git] / cpus-common.c
CommitLineData
267f685b
PB
1/*
2 * CPU thread main loop - common bits for user and system mode emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
53f5ed95 21#include "qemu/main-loop.h"
267f685b 22#include "exec/cpu-common.h"
2e5b09fd 23#include "hw/core/cpu.h"
267f685b 24#include "sysemu/cpus.h"
6e8a355d 25#include "qemu/lockable.h"
267f685b
PB
26
27static QemuMutex qemu_cpu_list_lock;
ab129972
PB
28static QemuCond exclusive_cond;
29static QemuCond exclusive_resume;
d148d90e 30static QemuCond qemu_work_cond;
267f685b 31
c265e976
PB
32/* >= 1 if a thread is inside start_exclusive/end_exclusive. Written
33 * under qemu_cpu_list_lock, read with atomic operations.
34 */
ab129972
PB
35static int pending_cpus;
36
267f685b
PB
37void qemu_init_cpu_list(void)
38{
ab129972
PB
39 /* This is needed because qemu_init_cpu_list is also called by the
40 * child process in a fork. */
41 pending_cpus = 0;
42
267f685b 43 qemu_mutex_init(&qemu_cpu_list_lock);
ab129972
PB
44 qemu_cond_init(&exclusive_cond);
45 qemu_cond_init(&exclusive_resume);
d148d90e 46 qemu_cond_init(&qemu_work_cond);
267f685b
PB
47}
48
49void cpu_list_lock(void)
50{
51 qemu_mutex_lock(&qemu_cpu_list_lock);
52}
53
54void cpu_list_unlock(void)
55{
56 qemu_mutex_unlock(&qemu_cpu_list_lock);
57}
58
59static bool cpu_index_auto_assigned;
60
61static int cpu_get_free_index(void)
62{
63 CPUState *some_cpu;
716386e3 64 int max_cpu_index = 0;
267f685b
PB
65
66 cpu_index_auto_assigned = true;
67 CPU_FOREACH(some_cpu) {
716386e3
AB
68 if (some_cpu->cpu_index >= max_cpu_index) {
69 max_cpu_index = some_cpu->cpu_index + 1;
70 }
267f685b 71 }
716386e3 72 return max_cpu_index;
267f685b
PB
73}
74
75void cpu_list_add(CPUState *cpu)
76{
6e8a355d 77 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
267f685b
PB
78 if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
79 cpu->cpu_index = cpu_get_free_index();
80 assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
81 } else {
82 assert(!cpu_index_auto_assigned);
83 }
068a5ea0 84 QTAILQ_INSERT_TAIL_RCU(&cpus, cpu, node);
267f685b
PB
85}
86
87void cpu_list_remove(CPUState *cpu)
88{
6e8a355d 89 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
267f685b
PB
90 if (!QTAILQ_IN_USE(cpu, node)) {
91 /* there is nothing to undo since cpu_exec_init() hasn't been called */
267f685b
PB
92 return;
93 }
94
068a5ea0 95 QTAILQ_REMOVE_RCU(&cpus, cpu, node);
267f685b 96 cpu->cpu_index = UNASSIGNED_CPU_INDEX;
267f685b 97}
d148d90e
SF
98
99struct qemu_work_item {
100 struct qemu_work_item *next;
101 run_on_cpu_func func;
14e6fe12 102 run_on_cpu_data data;
53f5ed95 103 bool free, exclusive, done;
d148d90e
SF
104};
105
106static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
107{
108 qemu_mutex_lock(&cpu->work_mutex);
109 if (cpu->queued_work_first == NULL) {
110 cpu->queued_work_first = wi;
111 } else {
112 cpu->queued_work_last->next = wi;
113 }
114 cpu->queued_work_last = wi;
115 wi->next = NULL;
116 wi->done = false;
117 qemu_mutex_unlock(&cpu->work_mutex);
118
119 qemu_cpu_kick(cpu);
120}
121
14e6fe12 122void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
d148d90e
SF
123 QemuMutex *mutex)
124{
125 struct qemu_work_item wi;
126
127 if (qemu_cpu_is_self(cpu)) {
128 func(cpu, data);
129 return;
130 }
131
132 wi.func = func;
133 wi.data = data;
0e55539c 134 wi.done = false;
d148d90e 135 wi.free = false;
53f5ed95 136 wi.exclusive = false;
d148d90e
SF
137
138 queue_work_on_cpu(cpu, &wi);
139 while (!atomic_mb_read(&wi.done)) {
140 CPUState *self_cpu = current_cpu;
141
142 qemu_cond_wait(&qemu_work_cond, mutex);
143 current_cpu = self_cpu;
144 }
145}
146
14e6fe12 147void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
d148d90e
SF
148{
149 struct qemu_work_item *wi;
150
d148d90e
SF
151 wi = g_malloc0(sizeof(struct qemu_work_item));
152 wi->func = func;
153 wi->data = data;
154 wi->free = true;
155
156 queue_work_on_cpu(cpu, wi);
157}
158
ab129972
PB
159/* Wait for pending exclusive operations to complete. The CPU list lock
160 must be held. */
161static inline void exclusive_idle(void)
162{
163 while (pending_cpus) {
164 qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock);
165 }
166}
167
168/* Start an exclusive operation.
758e1b2b 169 Must only be called from outside cpu_exec. */
ab129972
PB
170void start_exclusive(void)
171{
172 CPUState *other_cpu;
c265e976 173 int running_cpus;
ab129972
PB
174
175 qemu_mutex_lock(&qemu_cpu_list_lock);
176 exclusive_idle();
177
178 /* Make all other cpus stop executing. */
c265e976
PB
179 atomic_set(&pending_cpus, 1);
180
181 /* Write pending_cpus before reading other_cpu->running. */
182 smp_mb();
183 running_cpus = 0;
ab129972 184 CPU_FOREACH(other_cpu) {
c265e976
PB
185 if (atomic_read(&other_cpu->running)) {
186 other_cpu->has_waiter = true;
187 running_cpus++;
ab129972
PB
188 qemu_cpu_kick(other_cpu);
189 }
190 }
c265e976
PB
191
192 atomic_set(&pending_cpus, running_cpus + 1);
ab129972
PB
193 while (pending_cpus > 1) {
194 qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
195 }
758e1b2b
PB
196
197 /* Can release mutex, no one will enter another exclusive
198 * section until end_exclusive resets pending_cpus to 0.
199 */
200 qemu_mutex_unlock(&qemu_cpu_list_lock);
cfbc3c60
EC
201
202 current_cpu->in_exclusive_context = true;
ab129972
PB
203}
204
758e1b2b 205/* Finish an exclusive operation. */
ab129972
PB
206void end_exclusive(void)
207{
cfbc3c60
EC
208 current_cpu->in_exclusive_context = false;
209
758e1b2b 210 qemu_mutex_lock(&qemu_cpu_list_lock);
c265e976 211 atomic_set(&pending_cpus, 0);
ab129972
PB
212 qemu_cond_broadcast(&exclusive_resume);
213 qemu_mutex_unlock(&qemu_cpu_list_lock);
214}
215
216/* Wait for exclusive ops to finish, and begin cpu execution. */
217void cpu_exec_start(CPUState *cpu)
218{
c265e976
PB
219 atomic_set(&cpu->running, true);
220
221 /* Write cpu->running before reading pending_cpus. */
222 smp_mb();
223
224 /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
225 * After taking the lock we'll see cpu->has_waiter == true and run---not
226 * for long because start_exclusive kicked us. cpu_exec_end will
227 * decrement pending_cpus and signal the waiter.
228 *
229 * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
230 * This includes the case when an exclusive item is running now.
231 * Then we'll see cpu->has_waiter == false and wait for the item to
232 * complete.
233 *
234 * 3. pending_cpus == 0. Then start_exclusive is definitely going to
235 * see cpu->running == true, and it will kick the CPU.
236 */
237 if (unlikely(atomic_read(&pending_cpus))) {
6e8a355d 238 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
c265e976
PB
239 if (!cpu->has_waiter) {
240 /* Not counted in pending_cpus, let the exclusive item
241 * run. Since we have the lock, just set cpu->running to true
242 * while holding it; no need to check pending_cpus again.
243 */
244 atomic_set(&cpu->running, false);
245 exclusive_idle();
246 /* Now pending_cpus is zero. */
247 atomic_set(&cpu->running, true);
248 } else {
249 /* Counted in pending_cpus, go ahead and release the
250 * waiter at cpu_exec_end.
251 */
252 }
c265e976 253 }
ab129972
PB
254}
255
256/* Mark cpu as not executing, and release pending exclusive ops. */
257void cpu_exec_end(CPUState *cpu)
258{
c265e976
PB
259 atomic_set(&cpu->running, false);
260
261 /* Write cpu->running before reading pending_cpus. */
262 smp_mb();
263
264 /* 1. start_exclusive saw cpu->running == true. Then it will increment
265 * pending_cpus and wait for exclusive_cond. After taking the lock
266 * we'll see cpu->has_waiter == true.
267 *
268 * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
269 * This includes the case when an exclusive item started after setting
270 * cpu->running to false and before we read pending_cpus. Then we'll see
271 * cpu->has_waiter == false and not touch pending_cpus. The next call to
272 * cpu_exec_start will run exclusive_idle if still necessary, thus waiting
273 * for the item to complete.
274 *
275 * 3. pending_cpus == 0. Then start_exclusive is definitely going to
276 * see cpu->running == false, and it can ignore this CPU until the
277 * next cpu_exec_start.
278 */
279 if (unlikely(atomic_read(&pending_cpus))) {
6e8a355d 280 QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
c265e976
PB
281 if (cpu->has_waiter) {
282 cpu->has_waiter = false;
283 atomic_set(&pending_cpus, pending_cpus - 1);
284 if (pending_cpus == 1) {
285 qemu_cond_signal(&exclusive_cond);
286 }
ab129972
PB
287 }
288 }
ab129972
PB
289}
290
14e6fe12
PB
291void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func,
292 run_on_cpu_data data)
53f5ed95
PB
293{
294 struct qemu_work_item *wi;
295
296 wi = g_malloc0(sizeof(struct qemu_work_item));
297 wi->func = func;
298 wi->data = data;
299 wi->free = true;
300 wi->exclusive = true;
301
302 queue_work_on_cpu(cpu, wi);
303}
304
d148d90e
SF
305void process_queued_cpu_work(CPUState *cpu)
306{
307 struct qemu_work_item *wi;
308
309 if (cpu->queued_work_first == NULL) {
310 return;
311 }
312
313 qemu_mutex_lock(&cpu->work_mutex);
314 while (cpu->queued_work_first != NULL) {
315 wi = cpu->queued_work_first;
316 cpu->queued_work_first = wi->next;
317 if (!cpu->queued_work_first) {
318 cpu->queued_work_last = NULL;
319 }
320 qemu_mutex_unlock(&cpu->work_mutex);
53f5ed95
PB
321 if (wi->exclusive) {
322 /* Running work items outside the BQL avoids the following deadlock:
323 * 1) start_exclusive() is called with the BQL taken while another
324 * CPU is running; 2) cpu_exec in the other CPU tries to takes the
325 * BQL, so it goes to sleep; start_exclusive() is sleeping too, so
326 * neither CPU can proceed.
327 */
328 qemu_mutex_unlock_iothread();
329 start_exclusive();
330 wi->func(cpu, wi->data);
331 end_exclusive();
332 qemu_mutex_lock_iothread();
333 } else {
334 wi->func(cpu, wi->data);
335 }
d148d90e
SF
336 qemu_mutex_lock(&cpu->work_mutex);
337 if (wi->free) {
338 g_free(wi);
339 } else {
340 atomic_mb_set(&wi->done, true);
341 }
342 }
343 qemu_mutex_unlock(&cpu->work_mutex);
344 qemu_cond_broadcast(&qemu_work_cond);
345}