]> git.ipfire.org Git - thirdparty/qemu.git/blame - exec.c
target/ppc: Add POWER9/ISAv3.00 to compat_table
[thirdparty/qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
b67d9a52 27#include "tcg.h"
741da0d3 28#include "hw/qdev-core.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3
PB
44#include "sysemu/dma.h"
45#include "exec/address-spaces.h"
9c17d615 46#include "sysemu/xen-mapcache.h"
0ab8ed18 47#include "trace-root.h"
d3a5038c 48
e2fa71f5
DDAG
49#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
50#include <fcntl.h>
51#include <linux/falloc.h>
52#endif
53
53a5960a 54#endif
0d6d3c87 55#include "exec/cpu-all.h"
0dc3f44a 56#include "qemu/rcu_queue.h"
4840f10e 57#include "qemu/main-loop.h"
5b6dd868 58#include "translate-all.h"
7615936e 59#include "sysemu/replay.h"
0cac1b66 60
022c62cb 61#include "exec/memory-internal.h"
220c3ebd 62#include "exec/ram_addr.h"
508127e2 63#include "exec/log.h"
67d95c15 64
9dfeca7c
BR
65#include "migration/vmstate.h"
66
b35ba30f 67#include "qemu/range.h"
794e8f30
MT
68#ifndef _WIN32
69#include "qemu/mmap-alloc.h"
70#endif
b35ba30f 71
db7b5426 72//#define DEBUG_SUBPAGE
1196be37 73
e2eef170 74#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
75/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
76 * are protected by the ramlist lock.
77 */
0d53d9fe 78RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
79
80static MemoryRegion *system_memory;
309cb471 81static MemoryRegion *system_io;
62152b8a 82
f6790af6
AK
83AddressSpace address_space_io;
84AddressSpace address_space_memory;
2673a5da 85
0844e007 86MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 87static MemoryRegion io_mem_unassigned;
0e0df1e2 88
7bd4f430
PB
89/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
90#define RAM_PREALLOC (1 << 0)
91
dbcb8981
PB
92/* RAM is mmap-ed with MAP_SHARED */
93#define RAM_SHARED (1 << 1)
94
62be4e3a
MT
95/* Only a portion of RAM (used_length) is actually used, and migrated.
96 * This used_length size can change across reboots.
97 */
98#define RAM_RESIZEABLE (1 << 2)
99
e2eef170 100#endif
9fa3e853 101
20bccb82
PM
102#ifdef TARGET_PAGE_BITS_VARY
103int target_page_bits;
104bool target_page_bits_decided;
105#endif
106
bdc44640 107struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
108/* current CPU in the current thread. It is only valid inside
109 cpu_exec() */
f240eb6f 110__thread CPUState *current_cpu;
2e70f6ef 111/* 0 = Do not count executed instructions.
bf20dc07 112 1 = Precise instruction counting.
2e70f6ef 113 2 = Adaptive rate instruction counting. */
5708fc66 114int use_icount;
6a00d601 115
20bccb82
PM
116bool set_preferred_target_page_bits(int bits)
117{
118 /* The target page size is the lowest common denominator for all
119 * the CPUs in the system, so we can only make it smaller, never
120 * larger. And we can't make it smaller once we've committed to
121 * a particular size.
122 */
123#ifdef TARGET_PAGE_BITS_VARY
124 assert(bits >= TARGET_PAGE_BITS_MIN);
125 if (target_page_bits == 0 || target_page_bits > bits) {
126 if (target_page_bits_decided) {
127 return false;
128 }
129 target_page_bits = bits;
130 }
131#endif
132 return true;
133}
134
e2eef170 135#if !defined(CONFIG_USER_ONLY)
4346ae3e 136
20bccb82
PM
137static void finalize_target_page_bits(void)
138{
139#ifdef TARGET_PAGE_BITS_VARY
140 if (target_page_bits == 0) {
141 target_page_bits = TARGET_PAGE_BITS_MIN;
142 }
143 target_page_bits_decided = true;
144#endif
145}
146
1db8abb1
PB
147typedef struct PhysPageEntry PhysPageEntry;
148
149struct PhysPageEntry {
9736e55b 150 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 151 uint32_t skip : 6;
9736e55b 152 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 153 uint32_t ptr : 26;
1db8abb1
PB
154};
155
8b795765
MT
156#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
157
03f49957 158/* Size of the L2 (and L3, etc) page tables. */
57271d63 159#define ADDR_SPACE_BITS 64
03f49957 160
026736ce 161#define P_L2_BITS 9
03f49957
PB
162#define P_L2_SIZE (1 << P_L2_BITS)
163
164#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
165
166typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 167
53cb28cb 168typedef struct PhysPageMap {
79e2b9ae
PB
169 struct rcu_head rcu;
170
53cb28cb
MA
171 unsigned sections_nb;
172 unsigned sections_nb_alloc;
173 unsigned nodes_nb;
174 unsigned nodes_nb_alloc;
175 Node *nodes;
176 MemoryRegionSection *sections;
177} PhysPageMap;
178
1db8abb1 179struct AddressSpaceDispatch {
79e2b9ae
PB
180 struct rcu_head rcu;
181
729633c2 182 MemoryRegionSection *mru_section;
1db8abb1
PB
183 /* This is a multi-level map on the physical address space.
184 * The bottom level has pointers to MemoryRegionSections.
185 */
186 PhysPageEntry phys_map;
53cb28cb 187 PhysPageMap map;
acc9d80b 188 AddressSpace *as;
1db8abb1
PB
189};
190
90260c6c
JK
191#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
192typedef struct subpage_t {
193 MemoryRegion iomem;
acc9d80b 194 AddressSpace *as;
90260c6c 195 hwaddr base;
2615fabd 196 uint16_t sub_section[];
90260c6c
JK
197} subpage_t;
198
b41aac4f
LPF
199#define PHYS_SECTION_UNASSIGNED 0
200#define PHYS_SECTION_NOTDIRTY 1
201#define PHYS_SECTION_ROM 2
202#define PHYS_SECTION_WATCH 3
5312bd8b 203
e2eef170 204static void io_mem_init(void);
62152b8a 205static void memory_map_init(void);
09daed84 206static void tcg_commit(MemoryListener *listener);
e2eef170 207
1ec9b909 208static MemoryRegion io_mem_watch;
32857f4d
PM
209
210/**
211 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
212 * @cpu: the CPU whose AddressSpace this is
213 * @as: the AddressSpace itself
214 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
215 * @tcg_as_listener: listener for tracking changes to the AddressSpace
216 */
217struct CPUAddressSpace {
218 CPUState *cpu;
219 AddressSpace *as;
220 struct AddressSpaceDispatch *memory_dispatch;
221 MemoryListener tcg_as_listener;
222};
223
6658ffb8 224#endif
fd6ce8f6 225
6d9a1304 226#if !defined(CONFIG_USER_ONLY)
d6f2ea22 227
53cb28cb 228static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 229{
101420b8 230 static unsigned alloc_hint = 16;
53cb28cb 231 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 232 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
234 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 235 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 236 }
f7bf5461
AK
237}
238
db94604b 239static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
240{
241 unsigned i;
8b795765 242 uint32_t ret;
db94604b
PB
243 PhysPageEntry e;
244 PhysPageEntry *p;
f7bf5461 245
53cb28cb 246 ret = map->nodes_nb++;
db94604b 247 p = map->nodes[ret];
f7bf5461 248 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 249 assert(ret != map->nodes_nb_alloc);
db94604b
PB
250
251 e.skip = leaf ? 0 : 1;
252 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 253 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 254 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 255 }
f7bf5461 256 return ret;
d6f2ea22
AK
257}
258
53cb28cb
MA
259static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
260 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 261 int level)
f7bf5461
AK
262{
263 PhysPageEntry *p;
03f49957 264 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 265
9736e55b 266 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 267 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 268 }
db94604b 269 p = map->nodes[lp->ptr];
03f49957 270 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 271
03f49957 272 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 273 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 274 lp->skip = 0;
c19e8800 275 lp->ptr = leaf;
07f07b31
AK
276 *index += step;
277 *nb -= step;
2999097b 278 } else {
53cb28cb 279 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
280 }
281 ++lp;
f7bf5461
AK
282 }
283}
284
ac1970fb 285static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 286 hwaddr index, hwaddr nb,
2999097b 287 uint16_t leaf)
f7bf5461 288{
2999097b 289 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 290 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 291
53cb28cb 292 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
293}
294
b35ba30f
MT
295/* Compact a non leaf page entry. Simply detect that the entry has a single child,
296 * and update our entry so we can skip it and go directly to the destination.
297 */
efee678d 298static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
299{
300 unsigned valid_ptr = P_L2_SIZE;
301 int valid = 0;
302 PhysPageEntry *p;
303 int i;
304
305 if (lp->ptr == PHYS_MAP_NODE_NIL) {
306 return;
307 }
308
309 p = nodes[lp->ptr];
310 for (i = 0; i < P_L2_SIZE; i++) {
311 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
312 continue;
313 }
314
315 valid_ptr = i;
316 valid++;
317 if (p[i].skip) {
efee678d 318 phys_page_compact(&p[i], nodes);
b35ba30f
MT
319 }
320 }
321
322 /* We can only compress if there's only one child. */
323 if (valid != 1) {
324 return;
325 }
326
327 assert(valid_ptr < P_L2_SIZE);
328
329 /* Don't compress if it won't fit in the # of bits we have. */
330 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
331 return;
332 }
333
334 lp->ptr = p[valid_ptr].ptr;
335 if (!p[valid_ptr].skip) {
336 /* If our only child is a leaf, make this a leaf. */
337 /* By design, we should have made this node a leaf to begin with so we
338 * should never reach here.
339 * But since it's so simple to handle this, let's do it just in case we
340 * change this rule.
341 */
342 lp->skip = 0;
343 } else {
344 lp->skip += p[valid_ptr].skip;
345 }
346}
347
348static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
349{
b35ba30f 350 if (d->phys_map.skip) {
efee678d 351 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
352 }
353}
354
29cb533d
FZ
355static inline bool section_covers_addr(const MemoryRegionSection *section,
356 hwaddr addr)
357{
358 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
359 * the section must cover the entire address space.
360 */
258dfaaa 361 return int128_gethi(section->size) ||
29cb533d 362 range_covers_byte(section->offset_within_address_space,
258dfaaa 363 int128_getlo(section->size), addr);
29cb533d
FZ
364}
365
97115a8d 366static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 367 Node *nodes, MemoryRegionSection *sections)
92e873b9 368{
31ab2b4a 369 PhysPageEntry *p;
97115a8d 370 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 371 int i;
f1f6e3b8 372
9736e55b 373 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 374 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 375 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 376 }
9affd6fc 377 p = nodes[lp.ptr];
03f49957 378 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 379 }
b35ba30f 380
29cb533d 381 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
382 return &sections[lp.ptr];
383 } else {
384 return &sections[PHYS_SECTION_UNASSIGNED];
385 }
f3705d53
AK
386}
387
e5548617
BS
388bool memory_region_is_unassigned(MemoryRegion *mr)
389{
2a8e7499 390 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 391 && mr != &io_mem_watch;
fd6ce8f6 392}
149f54b5 393
79e2b9ae 394/* Called from RCU critical section */
c7086b4a 395static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
396 hwaddr addr,
397 bool resolve_subpage)
9f029603 398{
729633c2 399 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 400 subpage_t *subpage;
729633c2 401 bool update;
90260c6c 402
729633c2
FZ
403 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
404 section_covers_addr(section, addr)) {
405 update = false;
406 } else {
407 section = phys_page_find(d->phys_map, addr, d->map.nodes,
408 d->map.sections);
409 update = true;
410 }
90260c6c
JK
411 if (resolve_subpage && section->mr->subpage) {
412 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 413 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 414 }
729633c2
FZ
415 if (update) {
416 atomic_set(&d->mru_section, section);
417 }
90260c6c 418 return section;
9f029603
JK
419}
420
79e2b9ae 421/* Called from RCU critical section */
90260c6c 422static MemoryRegionSection *
c7086b4a 423address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 424 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
425{
426 MemoryRegionSection *section;
965eb2fc 427 MemoryRegion *mr;
a87f3954 428 Int128 diff;
149f54b5 429
c7086b4a 430 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
431 /* Compute offset within MemoryRegionSection */
432 addr -= section->offset_within_address_space;
433
434 /* Compute offset within MemoryRegion */
435 *xlat = addr + section->offset_within_region;
436
965eb2fc 437 mr = section->mr;
b242e0e0
PB
438
439 /* MMIO registers can be expected to perform full-width accesses based only
440 * on their address, without considering adjacent registers that could
441 * decode to completely different MemoryRegions. When such registers
442 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
443 * regions overlap wildly. For this reason we cannot clamp the accesses
444 * here.
445 *
446 * If the length is small (as is the case for address_space_ldl/stl),
447 * everything works fine. If the incoming length is large, however,
448 * the caller really has to do the clamping through memory_access_size.
449 */
965eb2fc 450 if (memory_region_is_ram(mr)) {
e4a511f8 451 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
452 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
453 }
149f54b5
PB
454 return section;
455}
90260c6c 456
41063e1e 457/* Called from RCU critical section */
052c8fa9
JW
458IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
459 bool is_write)
460{
461 IOMMUTLBEntry iotlb = {0};
462 MemoryRegionSection *section;
463 MemoryRegion *mr;
464
465 for (;;) {
466 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
467 section = address_space_lookup_region(d, addr, false);
468 addr = addr - section->offset_within_address_space
469 + section->offset_within_region;
470 mr = section->mr;
471
472 if (!mr->iommu_ops) {
473 break;
474 }
475
476 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
477 if (!(iotlb.perm & (1 << is_write))) {
478 iotlb.target_as = NULL;
479 break;
480 }
481
482 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
483 | (addr & iotlb.addr_mask));
484 as = iotlb.target_as;
485 }
486
487 return iotlb;
488}
489
490/* Called from RCU critical section */
5c8a00ce
PB
491MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
492 hwaddr *xlat, hwaddr *plen,
493 bool is_write)
90260c6c 494{
30951157
AK
495 IOMMUTLBEntry iotlb;
496 MemoryRegionSection *section;
497 MemoryRegion *mr;
30951157
AK
498
499 for (;;) {
79e2b9ae
PB
500 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
501 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
502 mr = section->mr;
503
504 if (!mr->iommu_ops) {
505 break;
506 }
507
8d7b8cb9 508 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
509 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
510 | (addr & iotlb.addr_mask));
23820dbf 511 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
512 if (!(iotlb.perm & (1 << is_write))) {
513 mr = &io_mem_unassigned;
514 break;
515 }
516
517 as = iotlb.target_as;
518 }
519
fe680d0d 520 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 521 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 522 *plen = MIN(page, *plen);
a87f3954
PB
523 }
524
30951157
AK
525 *xlat = addr;
526 return mr;
90260c6c
JK
527}
528
79e2b9ae 529/* Called from RCU critical section */
90260c6c 530MemoryRegionSection *
d7898cda 531address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 532 hwaddr *xlat, hwaddr *plen)
90260c6c 533{
30951157 534 MemoryRegionSection *section;
f35e44e7 535 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
536
537 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
538
539 assert(!section->mr->iommu_ops);
540 return section;
90260c6c 541}
5b6dd868 542#endif
fd6ce8f6 543
b170fce3 544#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
545
546static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 547{
259186a7 548 CPUState *cpu = opaque;
a513fe19 549
5b6dd868
BS
550 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
551 version_id is increased. */
259186a7 552 cpu->interrupt_request &= ~0x01;
d10eb08f 553 tlb_flush(cpu);
5b6dd868
BS
554
555 return 0;
a513fe19 556}
7501267e 557
6c3bff0e
PD
558static int cpu_common_pre_load(void *opaque)
559{
560 CPUState *cpu = opaque;
561
adee6424 562 cpu->exception_index = -1;
6c3bff0e
PD
563
564 return 0;
565}
566
567static bool cpu_common_exception_index_needed(void *opaque)
568{
569 CPUState *cpu = opaque;
570
adee6424 571 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
572}
573
574static const VMStateDescription vmstate_cpu_common_exception_index = {
575 .name = "cpu_common/exception_index",
576 .version_id = 1,
577 .minimum_version_id = 1,
5cd8cada 578 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
579 .fields = (VMStateField[]) {
580 VMSTATE_INT32(exception_index, CPUState),
581 VMSTATE_END_OF_LIST()
582 }
583};
584
bac05aa9
AS
585static bool cpu_common_crash_occurred_needed(void *opaque)
586{
587 CPUState *cpu = opaque;
588
589 return cpu->crash_occurred;
590}
591
592static const VMStateDescription vmstate_cpu_common_crash_occurred = {
593 .name = "cpu_common/crash_occurred",
594 .version_id = 1,
595 .minimum_version_id = 1,
596 .needed = cpu_common_crash_occurred_needed,
597 .fields = (VMStateField[]) {
598 VMSTATE_BOOL(crash_occurred, CPUState),
599 VMSTATE_END_OF_LIST()
600 }
601};
602
1a1562f5 603const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
604 .name = "cpu_common",
605 .version_id = 1,
606 .minimum_version_id = 1,
6c3bff0e 607 .pre_load = cpu_common_pre_load,
5b6dd868 608 .post_load = cpu_common_post_load,
35d08458 609 .fields = (VMStateField[]) {
259186a7
AF
610 VMSTATE_UINT32(halted, CPUState),
611 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 612 VMSTATE_END_OF_LIST()
6c3bff0e 613 },
5cd8cada
JQ
614 .subsections = (const VMStateDescription*[]) {
615 &vmstate_cpu_common_exception_index,
bac05aa9 616 &vmstate_cpu_common_crash_occurred,
5cd8cada 617 NULL
5b6dd868
BS
618 }
619};
1a1562f5 620
5b6dd868 621#endif
ea041c0e 622
38d8f5c8 623CPUState *qemu_get_cpu(int index)
ea041c0e 624{
bdc44640 625 CPUState *cpu;
ea041c0e 626
bdc44640 627 CPU_FOREACH(cpu) {
55e5c285 628 if (cpu->cpu_index == index) {
bdc44640 629 return cpu;
55e5c285 630 }
ea041c0e 631 }
5b6dd868 632
bdc44640 633 return NULL;
ea041c0e
FB
634}
635
09daed84 636#if !defined(CONFIG_USER_ONLY)
56943e8c 637void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 638{
12ebc9a7
PM
639 CPUAddressSpace *newas;
640
641 /* Target code should have set num_ases before calling us */
642 assert(asidx < cpu->num_ases);
643
56943e8c
PM
644 if (asidx == 0) {
645 /* address space 0 gets the convenience alias */
646 cpu->as = as;
647 }
648
12ebc9a7
PM
649 /* KVM cannot currently support multiple address spaces. */
650 assert(asidx == 0 || !kvm_enabled());
09daed84 651
12ebc9a7
PM
652 if (!cpu->cpu_ases) {
653 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 654 }
32857f4d 655
12ebc9a7
PM
656 newas = &cpu->cpu_ases[asidx];
657 newas->cpu = cpu;
658 newas->as = as;
56943e8c 659 if (tcg_enabled()) {
12ebc9a7
PM
660 newas->tcg_as_listener.commit = tcg_commit;
661 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 662 }
09daed84 663}
651a5bc0
PM
664
665AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
666{
667 /* Return the AddressSpace corresponding to the specified index */
668 return cpu->cpu_ases[asidx].as;
669}
09daed84
EI
670#endif
671
7bbc124e 672void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 673{
9dfeca7c
BR
674 CPUClass *cc = CPU_GET_CLASS(cpu);
675
267f685b 676 cpu_list_remove(cpu);
9dfeca7c
BR
677
678 if (cc->vmsd != NULL) {
679 vmstate_unregister(NULL, cc->vmsd, cpu);
680 }
681 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
682 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
683 }
1c59eb39
BR
684}
685
39e329e3 686void cpu_exec_initfn(CPUState *cpu)
ea041c0e 687{
56943e8c 688 cpu->as = NULL;
12ebc9a7 689 cpu->num_ases = 0;
56943e8c 690
291135b5 691#ifndef CONFIG_USER_ONLY
291135b5 692 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
693
694 /* This is a softmmu CPU object, so create a property for it
695 * so users can wire up its memory. (This can't go in qom/cpu.c
696 * because that file is compiled only once for both user-mode
697 * and system builds.) The default if no link is set up is to use
698 * the system address space.
699 */
700 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
701 (Object **)&cpu->memory,
702 qdev_prop_allow_set_link_before_realize,
703 OBJ_PROP_LINK_UNREF_ON_RELEASE,
704 &error_abort);
705 cpu->memory = system_memory;
706 object_ref(OBJECT(cpu->memory));
291135b5 707#endif
39e329e3
LV
708}
709
ce5b1bbf 710void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3
LV
711{
712 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
291135b5 713
267f685b 714 cpu_list_add(cpu);
1bc7e522
IM
715
716#ifndef CONFIG_USER_ONLY
e0d47944 717 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 718 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 719 }
b170fce3 720 if (cc->vmsd != NULL) {
741da0d3 721 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 722 }
741da0d3 723#endif
ea041c0e
FB
724}
725
00b941e5 726static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 727{
a9353fe8
PM
728 /* Flush the whole TB as this will not have race conditions
729 * even if we don't have proper locking yet.
730 * Ideally we would just invalidate the TBs for the
731 * specified PC.
732 */
733 tb_flush(cpu);
1e7855a5 734}
d720b93d 735
c527ee8f 736#if defined(CONFIG_USER_ONLY)
75a34036 737void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
738
739{
740}
741
3ee887e8
PM
742int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
743 int flags)
744{
745 return -ENOSYS;
746}
747
748void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
749{
750}
751
75a34036 752int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
753 int flags, CPUWatchpoint **watchpoint)
754{
755 return -ENOSYS;
756}
757#else
6658ffb8 758/* Add a watchpoint. */
75a34036 759int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 760 int flags, CPUWatchpoint **watchpoint)
6658ffb8 761{
c0ce998e 762 CPUWatchpoint *wp;
6658ffb8 763
05068c0d 764 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 765 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
766 error_report("tried to set invalid watchpoint at %"
767 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
768 return -EINVAL;
769 }
7267c094 770 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
771
772 wp->vaddr = addr;
05068c0d 773 wp->len = len;
a1d1bb31
AL
774 wp->flags = flags;
775
2dc9f411 776 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
777 if (flags & BP_GDB) {
778 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
779 } else {
780 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
781 }
6658ffb8 782
31b030d4 783 tlb_flush_page(cpu, addr);
a1d1bb31
AL
784
785 if (watchpoint)
786 *watchpoint = wp;
787 return 0;
6658ffb8
PB
788}
789
a1d1bb31 790/* Remove a specific watchpoint. */
75a34036 791int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 792 int flags)
6658ffb8 793{
a1d1bb31 794 CPUWatchpoint *wp;
6658ffb8 795
ff4700b0 796 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 797 if (addr == wp->vaddr && len == wp->len
6e140f28 798 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 799 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
800 return 0;
801 }
802 }
a1d1bb31 803 return -ENOENT;
6658ffb8
PB
804}
805
a1d1bb31 806/* Remove a specific watchpoint by reference. */
75a34036 807void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 808{
ff4700b0 809 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 810
31b030d4 811 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 812
7267c094 813 g_free(watchpoint);
a1d1bb31
AL
814}
815
816/* Remove all matching watchpoints. */
75a34036 817void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 818{
c0ce998e 819 CPUWatchpoint *wp, *next;
a1d1bb31 820
ff4700b0 821 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
822 if (wp->flags & mask) {
823 cpu_watchpoint_remove_by_ref(cpu, wp);
824 }
c0ce998e 825 }
7d03f82f 826}
05068c0d
PM
827
828/* Return true if this watchpoint address matches the specified
829 * access (ie the address range covered by the watchpoint overlaps
830 * partially or completely with the address range covered by the
831 * access).
832 */
833static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
834 vaddr addr,
835 vaddr len)
836{
837 /* We know the lengths are non-zero, but a little caution is
838 * required to avoid errors in the case where the range ends
839 * exactly at the top of the address space and so addr + len
840 * wraps round to zero.
841 */
842 vaddr wpend = wp->vaddr + wp->len - 1;
843 vaddr addrend = addr + len - 1;
844
845 return !(addr > wpend || wp->vaddr > addrend);
846}
847
c527ee8f 848#endif
7d03f82f 849
a1d1bb31 850/* Add a breakpoint. */
b3310ab3 851int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 852 CPUBreakpoint **breakpoint)
4c3a88a2 853{
c0ce998e 854 CPUBreakpoint *bp;
3b46e624 855
7267c094 856 bp = g_malloc(sizeof(*bp));
4c3a88a2 857
a1d1bb31
AL
858 bp->pc = pc;
859 bp->flags = flags;
860
2dc9f411 861 /* keep all GDB-injected breakpoints in front */
00b941e5 862 if (flags & BP_GDB) {
f0c3c505 863 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 864 } else {
f0c3c505 865 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 866 }
3b46e624 867
f0c3c505 868 breakpoint_invalidate(cpu, pc);
a1d1bb31 869
00b941e5 870 if (breakpoint) {
a1d1bb31 871 *breakpoint = bp;
00b941e5 872 }
4c3a88a2 873 return 0;
4c3a88a2
FB
874}
875
a1d1bb31 876/* Remove a specific breakpoint. */
b3310ab3 877int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 878{
a1d1bb31
AL
879 CPUBreakpoint *bp;
880
f0c3c505 881 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 882 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 883 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
884 return 0;
885 }
7d03f82f 886 }
a1d1bb31 887 return -ENOENT;
7d03f82f
EI
888}
889
a1d1bb31 890/* Remove a specific breakpoint by reference. */
b3310ab3 891void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 892{
f0c3c505
AF
893 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
894
895 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 896
7267c094 897 g_free(breakpoint);
a1d1bb31
AL
898}
899
900/* Remove all matching breakpoints. */
b3310ab3 901void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 902{
c0ce998e 903 CPUBreakpoint *bp, *next;
a1d1bb31 904
f0c3c505 905 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
906 if (bp->flags & mask) {
907 cpu_breakpoint_remove_by_ref(cpu, bp);
908 }
c0ce998e 909 }
4c3a88a2
FB
910}
911
c33a346e
FB
912/* enable or disable single step mode. EXCP_DEBUG is returned by the
913 CPU loop after each instruction */
3825b28f 914void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 915{
ed2803da
AF
916 if (cpu->singlestep_enabled != enabled) {
917 cpu->singlestep_enabled = enabled;
918 if (kvm_enabled()) {
38e478ec 919 kvm_update_guest_debug(cpu, 0);
ed2803da 920 } else {
ccbb4d44 921 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 922 /* XXX: only flush what is necessary */
bbd77c18 923 tb_flush(cpu);
e22a25c9 924 }
c33a346e 925 }
c33a346e
FB
926}
927
a47dddd7 928void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
929{
930 va_list ap;
493ae1f0 931 va_list ap2;
7501267e
FB
932
933 va_start(ap, fmt);
493ae1f0 934 va_copy(ap2, ap);
7501267e
FB
935 fprintf(stderr, "qemu: fatal: ");
936 vfprintf(stderr, fmt, ap);
937 fprintf(stderr, "\n");
878096ee 938 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 939 if (qemu_log_separate()) {
1ee73216 940 qemu_log_lock();
93fcfe39
AL
941 qemu_log("qemu: fatal: ");
942 qemu_log_vprintf(fmt, ap2);
943 qemu_log("\n");
a0762859 944 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 945 qemu_log_flush();
1ee73216 946 qemu_log_unlock();
93fcfe39 947 qemu_log_close();
924edcae 948 }
493ae1f0 949 va_end(ap2);
f9373291 950 va_end(ap);
7615936e 951 replay_finish();
fd052bf6
RV
952#if defined(CONFIG_USER_ONLY)
953 {
954 struct sigaction act;
955 sigfillset(&act.sa_mask);
956 act.sa_handler = SIG_DFL;
957 sigaction(SIGABRT, &act, NULL);
958 }
959#endif
7501267e
FB
960 abort();
961}
962
0124311e 963#if !defined(CONFIG_USER_ONLY)
0dc3f44a 964/* Called from RCU critical section */
041603fe
PB
965static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
966{
967 RAMBlock *block;
968
43771539 969 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 970 if (block && addr - block->offset < block->max_length) {
68851b98 971 return block;
041603fe 972 }
0dc3f44a 973 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 974 if (addr - block->offset < block->max_length) {
041603fe
PB
975 goto found;
976 }
977 }
978
979 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
980 abort();
981
982found:
43771539
PB
983 /* It is safe to write mru_block outside the iothread lock. This
984 * is what happens:
985 *
986 * mru_block = xxx
987 * rcu_read_unlock()
988 * xxx removed from list
989 * rcu_read_lock()
990 * read mru_block
991 * mru_block = NULL;
992 * call_rcu(reclaim_ramblock, xxx);
993 * rcu_read_unlock()
994 *
995 * atomic_rcu_set is not needed here. The block was already published
996 * when it was placed into the list. Here we're just making an extra
997 * copy of the pointer.
998 */
041603fe
PB
999 ram_list.mru_block = block;
1000 return block;
1001}
1002
a2f4d5be 1003static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1004{
9a13565d 1005 CPUState *cpu;
041603fe 1006 ram_addr_t start1;
a2f4d5be
JQ
1007 RAMBlock *block;
1008 ram_addr_t end;
1009
1010 end = TARGET_PAGE_ALIGN(start + length);
1011 start &= TARGET_PAGE_MASK;
d24981d3 1012
0dc3f44a 1013 rcu_read_lock();
041603fe
PB
1014 block = qemu_get_ram_block(start);
1015 assert(block == qemu_get_ram_block(end - 1));
1240be24 1016 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1017 CPU_FOREACH(cpu) {
1018 tlb_reset_dirty(cpu, start1, length);
1019 }
0dc3f44a 1020 rcu_read_unlock();
d24981d3
JQ
1021}
1022
5579c7f3 1023/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1024bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1025 ram_addr_t length,
1026 unsigned client)
1ccde1cb 1027{
5b82b703 1028 DirtyMemoryBlocks *blocks;
03eebc9e 1029 unsigned long end, page;
5b82b703 1030 bool dirty = false;
03eebc9e
SH
1031
1032 if (length == 0) {
1033 return false;
1034 }
f23db169 1035
03eebc9e
SH
1036 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1037 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1038
1039 rcu_read_lock();
1040
1041 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1042
1043 while (page < end) {
1044 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1045 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1046 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1047
1048 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1049 offset, num);
1050 page += num;
1051 }
1052
1053 rcu_read_unlock();
03eebc9e
SH
1054
1055 if (dirty && tcg_enabled()) {
a2f4d5be 1056 tlb_reset_dirty_range_all(start, length);
5579c7f3 1057 }
03eebc9e
SH
1058
1059 return dirty;
1ccde1cb
FB
1060}
1061
79e2b9ae 1062/* Called from RCU critical section */
bb0e627a 1063hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1064 MemoryRegionSection *section,
1065 target_ulong vaddr,
1066 hwaddr paddr, hwaddr xlat,
1067 int prot,
1068 target_ulong *address)
e5548617 1069{
a8170e5e 1070 hwaddr iotlb;
e5548617
BS
1071 CPUWatchpoint *wp;
1072
cc5bea60 1073 if (memory_region_is_ram(section->mr)) {
e5548617 1074 /* Normal RAM. */
e4e69794 1075 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1076 if (!section->readonly) {
b41aac4f 1077 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1078 } else {
b41aac4f 1079 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1080 }
1081 } else {
0b8e2c10
PM
1082 AddressSpaceDispatch *d;
1083
1084 d = atomic_rcu_read(&section->address_space->dispatch);
1085 iotlb = section - d->map.sections;
149f54b5 1086 iotlb += xlat;
e5548617
BS
1087 }
1088
1089 /* Make accesses to pages with watchpoints go via the
1090 watchpoint trap routines. */
ff4700b0 1091 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1092 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1093 /* Avoid trapping reads of pages with a write breakpoint. */
1094 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1095 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1096 *address |= TLB_MMIO;
1097 break;
1098 }
1099 }
1100 }
1101
1102 return iotlb;
1103}
9fa3e853
FB
1104#endif /* defined(CONFIG_USER_ONLY) */
1105
e2eef170 1106#if !defined(CONFIG_USER_ONLY)
8da3ff18 1107
c227f099 1108static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1109 uint16_t section);
acc9d80b 1110static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1111
a2b257d6
IM
1112static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1113 qemu_anon_ram_alloc;
91138037
MA
1114
1115/*
1116 * Set a custom physical guest memory alloator.
1117 * Accelerators with unusual needs may need this. Hopefully, we can
1118 * get rid of it eventually.
1119 */
a2b257d6 1120void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1121{
1122 phys_mem_alloc = alloc;
1123}
1124
53cb28cb
MA
1125static uint16_t phys_section_add(PhysPageMap *map,
1126 MemoryRegionSection *section)
5312bd8b 1127{
68f3f65b
PB
1128 /* The physical section number is ORed with a page-aligned
1129 * pointer to produce the iotlb entries. Thus it should
1130 * never overflow into the page-aligned value.
1131 */
53cb28cb 1132 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1133
53cb28cb
MA
1134 if (map->sections_nb == map->sections_nb_alloc) {
1135 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1136 map->sections = g_renew(MemoryRegionSection, map->sections,
1137 map->sections_nb_alloc);
5312bd8b 1138 }
53cb28cb 1139 map->sections[map->sections_nb] = *section;
dfde4e6e 1140 memory_region_ref(section->mr);
53cb28cb 1141 return map->sections_nb++;
5312bd8b
AK
1142}
1143
058bc4b5
PB
1144static void phys_section_destroy(MemoryRegion *mr)
1145{
55b4e80b
DS
1146 bool have_sub_page = mr->subpage;
1147
dfde4e6e
PB
1148 memory_region_unref(mr);
1149
55b4e80b 1150 if (have_sub_page) {
058bc4b5 1151 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1152 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1153 g_free(subpage);
1154 }
1155}
1156
6092666e 1157static void phys_sections_free(PhysPageMap *map)
5312bd8b 1158{
9affd6fc
PB
1159 while (map->sections_nb > 0) {
1160 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1161 phys_section_destroy(section->mr);
1162 }
9affd6fc
PB
1163 g_free(map->sections);
1164 g_free(map->nodes);
5312bd8b
AK
1165}
1166
ac1970fb 1167static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1168{
1169 subpage_t *subpage;
a8170e5e 1170 hwaddr base = section->offset_within_address_space
0f0cb164 1171 & TARGET_PAGE_MASK;
97115a8d 1172 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1173 d->map.nodes, d->map.sections);
0f0cb164
AK
1174 MemoryRegionSection subsection = {
1175 .offset_within_address_space = base,
052e87b0 1176 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1177 };
a8170e5e 1178 hwaddr start, end;
0f0cb164 1179
f3705d53 1180 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1181
f3705d53 1182 if (!(existing->mr->subpage)) {
acc9d80b 1183 subpage = subpage_init(d->as, base);
3be91e86 1184 subsection.address_space = d->as;
0f0cb164 1185 subsection.mr = &subpage->iomem;
ac1970fb 1186 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1187 phys_section_add(&d->map, &subsection));
0f0cb164 1188 } else {
f3705d53 1189 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1190 }
1191 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1192 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1193 subpage_register(subpage, start, end,
1194 phys_section_add(&d->map, section));
0f0cb164
AK
1195}
1196
1197
052e87b0
PB
1198static void register_multipage(AddressSpaceDispatch *d,
1199 MemoryRegionSection *section)
33417e70 1200{
a8170e5e 1201 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1202 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1203 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1204 TARGET_PAGE_BITS));
dd81124b 1205
733d5ef5
PB
1206 assert(num_pages);
1207 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1208}
1209
ac1970fb 1210static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1211{
89ae337a 1212 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1213 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1214 MemoryRegionSection now = *section, remain = *section;
052e87b0 1215 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1216
733d5ef5
PB
1217 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1218 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1219 - now.offset_within_address_space;
1220
052e87b0 1221 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1222 register_subpage(d, &now);
733d5ef5 1223 } else {
052e87b0 1224 now.size = int128_zero();
733d5ef5 1225 }
052e87b0
PB
1226 while (int128_ne(remain.size, now.size)) {
1227 remain.size = int128_sub(remain.size, now.size);
1228 remain.offset_within_address_space += int128_get64(now.size);
1229 remain.offset_within_region += int128_get64(now.size);
69b67646 1230 now = remain;
052e87b0 1231 if (int128_lt(remain.size, page_size)) {
733d5ef5 1232 register_subpage(d, &now);
88266249 1233 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1234 now.size = page_size;
ac1970fb 1235 register_subpage(d, &now);
69b67646 1236 } else {
052e87b0 1237 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1238 register_multipage(d, &now);
69b67646 1239 }
0f0cb164
AK
1240 }
1241}
1242
62a2744c
SY
1243void qemu_flush_coalesced_mmio_buffer(void)
1244{
1245 if (kvm_enabled())
1246 kvm_flush_coalesced_mmio_buffer();
1247}
1248
b2a8658e
UD
1249void qemu_mutex_lock_ramlist(void)
1250{
1251 qemu_mutex_lock(&ram_list.mutex);
1252}
1253
1254void qemu_mutex_unlock_ramlist(void)
1255{
1256 qemu_mutex_unlock(&ram_list.mutex);
1257}
1258
e1e84ba0 1259#ifdef __linux__
d6af99c9
HZ
1260static int64_t get_file_size(int fd)
1261{
1262 int64_t size = lseek(fd, 0, SEEK_END);
1263 if (size < 0) {
1264 return -errno;
1265 }
1266 return size;
1267}
1268
04b16653
AW
1269static void *file_ram_alloc(RAMBlock *block,
1270 ram_addr_t memory,
7f56e740
PB
1271 const char *path,
1272 Error **errp)
c902760f 1273{
fd97fd44 1274 bool unlink_on_error = false;
c902760f 1275 char *filename;
8ca761f6
PF
1276 char *sanitized_name;
1277 char *c;
056b68af 1278 void *area = MAP_FAILED;
5c3ece79 1279 int fd = -1;
d6af99c9 1280 int64_t file_size;
c902760f
MT
1281
1282 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1283 error_setg(errp,
1284 "host lacks kvm mmu notifiers, -mem-path unsupported");
fd97fd44 1285 return NULL;
c902760f
MT
1286 }
1287
fd97fd44
MA
1288 for (;;) {
1289 fd = open(path, O_RDWR);
1290 if (fd >= 0) {
1291 /* @path names an existing file, use it */
1292 break;
8d31d6b6 1293 }
fd97fd44
MA
1294 if (errno == ENOENT) {
1295 /* @path names a file that doesn't exist, create it */
1296 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1297 if (fd >= 0) {
1298 unlink_on_error = true;
1299 break;
1300 }
1301 } else if (errno == EISDIR) {
1302 /* @path names a directory, create a file there */
1303 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1304 sanitized_name = g_strdup(memory_region_name(block->mr));
1305 for (c = sanitized_name; *c != '\0'; c++) {
1306 if (*c == '/') {
1307 *c = '_';
1308 }
1309 }
8ca761f6 1310
fd97fd44
MA
1311 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1312 sanitized_name);
1313 g_free(sanitized_name);
8d31d6b6 1314
fd97fd44
MA
1315 fd = mkstemp(filename);
1316 if (fd >= 0) {
1317 unlink(filename);
1318 g_free(filename);
1319 break;
1320 }
1321 g_free(filename);
8d31d6b6 1322 }
fd97fd44
MA
1323 if (errno != EEXIST && errno != EINTR) {
1324 error_setg_errno(errp, errno,
1325 "can't open backing store %s for guest RAM",
1326 path);
1327 goto error;
1328 }
1329 /*
1330 * Try again on EINTR and EEXIST. The latter happens when
1331 * something else creates the file between our two open().
1332 */
8d31d6b6 1333 }
c902760f 1334
863e9621 1335 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1336 block->mr->align = block->page_size;
1337#if defined(__s390x__)
1338 if (kvm_enabled()) {
1339 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1340 }
1341#endif
fd97fd44 1342
d6af99c9
HZ
1343 file_size = get_file_size(fd);
1344
863e9621 1345 if (memory < block->page_size) {
fd97fd44 1346 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1347 "or larger than page size 0x%zx",
1348 memory, block->page_size);
f9a49dfa 1349 goto error;
c902760f 1350 }
c902760f 1351
1775f111
HZ
1352 if (file_size > 0 && file_size < memory) {
1353 error_setg(errp, "backing store %s size 0x%" PRIx64
1354 " does not match 'size' option 0x" RAM_ADDR_FMT,
1355 path, file_size, memory);
1356 goto error;
1357 }
1358
863e9621 1359 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1360
1361 /*
1362 * ftruncate is not supported by hugetlbfs in older
1363 * hosts, so don't bother bailing out on errors.
1364 * If anything goes wrong with it under other filesystems,
1365 * mmap will fail.
d6af99c9
HZ
1366 *
1367 * Do not truncate the non-empty backend file to avoid corrupting
1368 * the existing data in the file. Disabling shrinking is not
1369 * enough. For example, the current vNVDIMM implementation stores
1370 * the guest NVDIMM labels at the end of the backend file. If the
1371 * backend file is later extended, QEMU will not be able to find
1372 * those labels. Therefore, extending the non-empty backend file
1373 * is disabled as well.
c902760f 1374 */
d6af99c9 1375 if (!file_size && ftruncate(fd, memory)) {
9742bf26 1376 perror("ftruncate");
7f56e740 1377 }
c902760f 1378
d2f39add
DD
1379 area = qemu_ram_mmap(fd, memory, block->mr->align,
1380 block->flags & RAM_SHARED);
c902760f 1381 if (area == MAP_FAILED) {
7f56e740 1382 error_setg_errno(errp, errno,
fd97fd44 1383 "unable to map backing store for guest RAM");
f9a49dfa 1384 goto error;
c902760f 1385 }
ef36fa14
MT
1386
1387 if (mem_prealloc) {
056b68af
IM
1388 os_mem_prealloc(fd, area, memory, errp);
1389 if (errp && *errp) {
1390 goto error;
1391 }
ef36fa14
MT
1392 }
1393
04b16653 1394 block->fd = fd;
c902760f 1395 return area;
f9a49dfa
MT
1396
1397error:
056b68af
IM
1398 if (area != MAP_FAILED) {
1399 qemu_ram_munmap(area, memory);
1400 }
fd97fd44
MA
1401 if (unlink_on_error) {
1402 unlink(path);
1403 }
5c3ece79
PB
1404 if (fd != -1) {
1405 close(fd);
1406 }
f9a49dfa 1407 return NULL;
c902760f
MT
1408}
1409#endif
1410
0dc3f44a 1411/* Called with the ramlist lock held. */
d17b5288 1412static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1413{
1414 RAMBlock *block, *next_block;
3e837b2c 1415 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1416
49cd9ac6
SH
1417 assert(size != 0); /* it would hand out same offset multiple times */
1418
0dc3f44a 1419 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1420 return 0;
0d53d9fe 1421 }
04b16653 1422
0dc3f44a 1423 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1424 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1425
62be4e3a 1426 end = block->offset + block->max_length;
04b16653 1427
0dc3f44a 1428 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1429 if (next_block->offset >= end) {
1430 next = MIN(next, next_block->offset);
1431 }
1432 }
1433 if (next - end >= size && next - end < mingap) {
3e837b2c 1434 offset = end;
04b16653
AW
1435 mingap = next - end;
1436 }
1437 }
3e837b2c
AW
1438
1439 if (offset == RAM_ADDR_MAX) {
1440 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1441 (uint64_t)size);
1442 abort();
1443 }
1444
04b16653
AW
1445 return offset;
1446}
1447
652d7ec2 1448ram_addr_t last_ram_offset(void)
d17b5288
AW
1449{
1450 RAMBlock *block;
1451 ram_addr_t last = 0;
1452
0dc3f44a
MD
1453 rcu_read_lock();
1454 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1455 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1456 }
0dc3f44a 1457 rcu_read_unlock();
d17b5288
AW
1458 return last;
1459}
1460
ddb97f1d
JB
1461static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1462{
1463 int ret;
ddb97f1d
JB
1464
1465 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1466 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1467 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1468 if (ret) {
1469 perror("qemu_madvise");
1470 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1471 "but dump_guest_core=off specified\n");
1472 }
1473 }
1474}
1475
422148d3
DDAG
1476const char *qemu_ram_get_idstr(RAMBlock *rb)
1477{
1478 return rb->idstr;
1479}
1480
ae3a7047 1481/* Called with iothread lock held. */
fa53a0e5 1482void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1483{
fa53a0e5 1484 RAMBlock *block;
20cfe881 1485
c5705a77
AK
1486 assert(new_block);
1487 assert(!new_block->idstr[0]);
84b89d78 1488
09e5ab63
AL
1489 if (dev) {
1490 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1491 if (id) {
1492 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1493 g_free(id);
84b89d78
CM
1494 }
1495 }
1496 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1497
ab0a9956 1498 rcu_read_lock();
0dc3f44a 1499 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
fa53a0e5
GA
1500 if (block != new_block &&
1501 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1502 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1503 new_block->idstr);
1504 abort();
1505 }
1506 }
0dc3f44a 1507 rcu_read_unlock();
c5705a77
AK
1508}
1509
ae3a7047 1510/* Called with iothread lock held. */
fa53a0e5 1511void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1512{
ae3a7047
MD
1513 /* FIXME: arch_init.c assumes that this is not called throughout
1514 * migration. Ignore the problem since hot-unplug during migration
1515 * does not work anyway.
1516 */
20cfe881
HT
1517 if (block) {
1518 memset(block->idstr, 0, sizeof(block->idstr));
1519 }
1520}
1521
863e9621
DDAG
1522size_t qemu_ram_pagesize(RAMBlock *rb)
1523{
1524 return rb->page_size;
1525}
1526
67f11b5c
DDAG
1527/* Returns the largest size of page in use */
1528size_t qemu_ram_pagesize_largest(void)
1529{
1530 RAMBlock *block;
1531 size_t largest = 0;
1532
1533 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1534 largest = MAX(largest, qemu_ram_pagesize(block));
1535 }
1536
1537 return largest;
1538}
1539
8490fc78
LC
1540static int memory_try_enable_merging(void *addr, size_t len)
1541{
75cc7f01 1542 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1543 /* disabled by the user */
1544 return 0;
1545 }
1546
1547 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1548}
1549
62be4e3a
MT
1550/* Only legal before guest might have detected the memory size: e.g. on
1551 * incoming migration, or right after reset.
1552 *
1553 * As memory core doesn't know how is memory accessed, it is up to
1554 * resize callback to update device state and/or add assertions to detect
1555 * misuse, if necessary.
1556 */
fa53a0e5 1557int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1558{
62be4e3a
MT
1559 assert(block);
1560
4ed023ce 1561 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1562
62be4e3a
MT
1563 if (block->used_length == newsize) {
1564 return 0;
1565 }
1566
1567 if (!(block->flags & RAM_RESIZEABLE)) {
1568 error_setg_errno(errp, EINVAL,
1569 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1570 " in != 0x" RAM_ADDR_FMT, block->idstr,
1571 newsize, block->used_length);
1572 return -EINVAL;
1573 }
1574
1575 if (block->max_length < newsize) {
1576 error_setg_errno(errp, EINVAL,
1577 "Length too large: %s: 0x" RAM_ADDR_FMT
1578 " > 0x" RAM_ADDR_FMT, block->idstr,
1579 newsize, block->max_length);
1580 return -EINVAL;
1581 }
1582
1583 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1584 block->used_length = newsize;
58d2707e
PB
1585 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1586 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1587 memory_region_set_size(block->mr, newsize);
1588 if (block->resized) {
1589 block->resized(block->idstr, newsize, block->host);
1590 }
1591 return 0;
1592}
1593
5b82b703
SH
1594/* Called with ram_list.mutex held */
1595static void dirty_memory_extend(ram_addr_t old_ram_size,
1596 ram_addr_t new_ram_size)
1597{
1598 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1599 DIRTY_MEMORY_BLOCK_SIZE);
1600 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1601 DIRTY_MEMORY_BLOCK_SIZE);
1602 int i;
1603
1604 /* Only need to extend if block count increased */
1605 if (new_num_blocks <= old_num_blocks) {
1606 return;
1607 }
1608
1609 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1610 DirtyMemoryBlocks *old_blocks;
1611 DirtyMemoryBlocks *new_blocks;
1612 int j;
1613
1614 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1615 new_blocks = g_malloc(sizeof(*new_blocks) +
1616 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1617
1618 if (old_num_blocks) {
1619 memcpy(new_blocks->blocks, old_blocks->blocks,
1620 old_num_blocks * sizeof(old_blocks->blocks[0]));
1621 }
1622
1623 for (j = old_num_blocks; j < new_num_blocks; j++) {
1624 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1625 }
1626
1627 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1628
1629 if (old_blocks) {
1630 g_free_rcu(old_blocks, rcu);
1631 }
1632 }
1633}
1634
528f46af 1635static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1636{
e1c57ab8 1637 RAMBlock *block;
0d53d9fe 1638 RAMBlock *last_block = NULL;
2152f5ca 1639 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1640 Error *err = NULL;
2152f5ca
JQ
1641
1642 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1643
b2a8658e 1644 qemu_mutex_lock_ramlist();
9b8424d5 1645 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1646
1647 if (!new_block->host) {
1648 if (xen_enabled()) {
9b8424d5 1649 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1650 new_block->mr, &err);
1651 if (err) {
1652 error_propagate(errp, err);
1653 qemu_mutex_unlock_ramlist();
39c350ee 1654 return;
37aa7a0e 1655 }
e1c57ab8 1656 } else {
9b8424d5 1657 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1658 &new_block->mr->align);
39228250 1659 if (!new_block->host) {
ef701d7b
HT
1660 error_setg_errno(errp, errno,
1661 "cannot set up guest memory '%s'",
1662 memory_region_name(new_block->mr));
1663 qemu_mutex_unlock_ramlist();
39c350ee 1664 return;
39228250 1665 }
9b8424d5 1666 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1667 }
c902760f 1668 }
94a6b54f 1669
dd631697
LZ
1670 new_ram_size = MAX(old_ram_size,
1671 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1672 if (new_ram_size > old_ram_size) {
1673 migration_bitmap_extend(old_ram_size, new_ram_size);
5b82b703 1674 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1675 }
0d53d9fe
MD
1676 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1677 * QLIST (which has an RCU-friendly variant) does not have insertion at
1678 * tail, so save the last element in last_block.
1679 */
0dc3f44a 1680 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1681 last_block = block;
9b8424d5 1682 if (block->max_length < new_block->max_length) {
abb26d63
PB
1683 break;
1684 }
1685 }
1686 if (block) {
0dc3f44a 1687 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1688 } else if (last_block) {
0dc3f44a 1689 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1690 } else { /* list is empty */
0dc3f44a 1691 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1692 }
0d6d3c87 1693 ram_list.mru_block = NULL;
94a6b54f 1694
0dc3f44a
MD
1695 /* Write list before version */
1696 smp_wmb();
f798b07f 1697 ram_list.version++;
b2a8658e 1698 qemu_mutex_unlock_ramlist();
f798b07f 1699
9b8424d5 1700 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1701 new_block->used_length,
1702 DIRTY_CLIENTS_ALL);
94a6b54f 1703
a904c911
PB
1704 if (new_block->host) {
1705 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1706 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1707 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1708 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 1709 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 1710 }
94a6b54f 1711}
e9a1ab19 1712
0b183fc8 1713#ifdef __linux__
528f46af
FZ
1714RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1715 bool share, const char *mem_path,
1716 Error **errp)
e1c57ab8
PB
1717{
1718 RAMBlock *new_block;
ef701d7b 1719 Error *local_err = NULL;
e1c57ab8
PB
1720
1721 if (xen_enabled()) {
7f56e740 1722 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1723 return NULL;
e1c57ab8
PB
1724 }
1725
1726 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1727 /*
1728 * file_ram_alloc() needs to allocate just like
1729 * phys_mem_alloc, but we haven't bothered to provide
1730 * a hook there.
1731 */
7f56e740
PB
1732 error_setg(errp,
1733 "-mem-path not supported with this accelerator");
528f46af 1734 return NULL;
e1c57ab8
PB
1735 }
1736
4ed023ce 1737 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1738 new_block = g_malloc0(sizeof(*new_block));
1739 new_block->mr = mr;
9b8424d5
MT
1740 new_block->used_length = size;
1741 new_block->max_length = size;
dbcb8981 1742 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1743 new_block->host = file_ram_alloc(new_block, size,
1744 mem_path, errp);
1745 if (!new_block->host) {
1746 g_free(new_block);
528f46af 1747 return NULL;
7f56e740
PB
1748 }
1749
528f46af 1750 ram_block_add(new_block, &local_err);
ef701d7b
HT
1751 if (local_err) {
1752 g_free(new_block);
1753 error_propagate(errp, local_err);
528f46af 1754 return NULL;
ef701d7b 1755 }
528f46af 1756 return new_block;
e1c57ab8 1757}
0b183fc8 1758#endif
e1c57ab8 1759
62be4e3a 1760static
528f46af
FZ
1761RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1762 void (*resized)(const char*,
1763 uint64_t length,
1764 void *host),
1765 void *host, bool resizeable,
1766 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1767{
1768 RAMBlock *new_block;
ef701d7b 1769 Error *local_err = NULL;
e1c57ab8 1770
4ed023ce
DDAG
1771 size = HOST_PAGE_ALIGN(size);
1772 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1773 new_block = g_malloc0(sizeof(*new_block));
1774 new_block->mr = mr;
62be4e3a 1775 new_block->resized = resized;
9b8424d5
MT
1776 new_block->used_length = size;
1777 new_block->max_length = max_size;
62be4e3a 1778 assert(max_size >= size);
e1c57ab8 1779 new_block->fd = -1;
863e9621 1780 new_block->page_size = getpagesize();
e1c57ab8
PB
1781 new_block->host = host;
1782 if (host) {
7bd4f430 1783 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1784 }
62be4e3a
MT
1785 if (resizeable) {
1786 new_block->flags |= RAM_RESIZEABLE;
1787 }
528f46af 1788 ram_block_add(new_block, &local_err);
ef701d7b
HT
1789 if (local_err) {
1790 g_free(new_block);
1791 error_propagate(errp, local_err);
528f46af 1792 return NULL;
ef701d7b 1793 }
528f46af 1794 return new_block;
e1c57ab8
PB
1795}
1796
528f46af 1797RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
1798 MemoryRegion *mr, Error **errp)
1799{
1800 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1801}
1802
528f46af 1803RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1804{
62be4e3a
MT
1805 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1806}
1807
528f46af 1808RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
1809 void (*resized)(const char*,
1810 uint64_t length,
1811 void *host),
1812 MemoryRegion *mr, Error **errp)
1813{
1814 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1815}
1816
43771539
PB
1817static void reclaim_ramblock(RAMBlock *block)
1818{
1819 if (block->flags & RAM_PREALLOC) {
1820 ;
1821 } else if (xen_enabled()) {
1822 xen_invalidate_map_cache_entry(block->host);
1823#ifndef _WIN32
1824 } else if (block->fd >= 0) {
2f3a2bb1 1825 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1826 close(block->fd);
1827#endif
1828 } else {
1829 qemu_anon_ram_free(block->host, block->max_length);
1830 }
1831 g_free(block);
1832}
1833
f1060c55 1834void qemu_ram_free(RAMBlock *block)
e9a1ab19 1835{
85bc2a15
MAL
1836 if (!block) {
1837 return;
1838 }
1839
0987d735
PB
1840 if (block->host) {
1841 ram_block_notify_remove(block->host, block->max_length);
1842 }
1843
b2a8658e 1844 qemu_mutex_lock_ramlist();
f1060c55
FZ
1845 QLIST_REMOVE_RCU(block, next);
1846 ram_list.mru_block = NULL;
1847 /* Write list before version */
1848 smp_wmb();
1849 ram_list.version++;
1850 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1851 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1852}
1853
cd19cfa2
HY
1854#ifndef _WIN32
1855void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1856{
1857 RAMBlock *block;
1858 ram_addr_t offset;
1859 int flags;
1860 void *area, *vaddr;
1861
0dc3f44a 1862 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1863 offset = addr - block->offset;
9b8424d5 1864 if (offset < block->max_length) {
1240be24 1865 vaddr = ramblock_ptr(block, offset);
7bd4f430 1866 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1867 ;
dfeaf2ab
MA
1868 } else if (xen_enabled()) {
1869 abort();
cd19cfa2
HY
1870 } else {
1871 flags = MAP_FIXED;
3435f395 1872 if (block->fd >= 0) {
dbcb8981
PB
1873 flags |= (block->flags & RAM_SHARED ?
1874 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1875 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1876 flags, block->fd, offset);
cd19cfa2 1877 } else {
2eb9fbaa
MA
1878 /*
1879 * Remap needs to match alloc. Accelerators that
1880 * set phys_mem_alloc never remap. If they did,
1881 * we'd need a remap hook here.
1882 */
1883 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1884
cd19cfa2
HY
1885 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1886 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1887 flags, -1, 0);
cd19cfa2
HY
1888 }
1889 if (area != vaddr) {
f15fbc4b
AP
1890 fprintf(stderr, "Could not remap addr: "
1891 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1892 length, addr);
1893 exit(1);
1894 }
8490fc78 1895 memory_try_enable_merging(vaddr, length);
ddb97f1d 1896 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1897 }
cd19cfa2
HY
1898 }
1899 }
1900}
1901#endif /* !_WIN32 */
1902
1b5ec234 1903/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1904 * This should not be used for general purpose DMA. Use address_space_map
1905 * or address_space_rw instead. For local memory (e.g. video ram) that the
1906 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 1907 *
49b24afc 1908 * Called within RCU critical section.
1b5ec234 1909 */
0878d0e1 1910void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 1911{
3655cb9c
GA
1912 RAMBlock *block = ram_block;
1913
1914 if (block == NULL) {
1915 block = qemu_get_ram_block(addr);
0878d0e1 1916 addr -= block->offset;
3655cb9c 1917 }
ae3a7047
MD
1918
1919 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1920 /* We need to check if the requested address is in the RAM
1921 * because we don't want to map the entire memory in QEMU.
1922 * In that case just map until the end of the page.
1923 */
1924 if (block->offset == 0) {
49b24afc 1925 return xen_map_cache(addr, 0, 0);
0d6d3c87 1926 }
ae3a7047
MD
1927
1928 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1929 }
0878d0e1 1930 return ramblock_ptr(block, addr);
dc828ca1
PB
1931}
1932
0878d0e1 1933/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 1934 * but takes a size argument.
0dc3f44a 1935 *
e81bcda5 1936 * Called within RCU critical section.
ae3a7047 1937 */
3655cb9c
GA
1938static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1939 hwaddr *size)
38bee5dc 1940{
3655cb9c 1941 RAMBlock *block = ram_block;
8ab934f9
SS
1942 if (*size == 0) {
1943 return NULL;
1944 }
e81bcda5 1945
3655cb9c
GA
1946 if (block == NULL) {
1947 block = qemu_get_ram_block(addr);
0878d0e1 1948 addr -= block->offset;
3655cb9c 1949 }
0878d0e1 1950 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
1951
1952 if (xen_enabled() && block->host == NULL) {
1953 /* We need to check if the requested address is in the RAM
1954 * because we don't want to map the entire memory in QEMU.
1955 * In that case just map the requested area.
1956 */
1957 if (block->offset == 0) {
1958 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
1959 }
1960
e81bcda5 1961 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 1962 }
e81bcda5 1963
0878d0e1 1964 return ramblock_ptr(block, addr);
38bee5dc
SS
1965}
1966
422148d3
DDAG
1967/*
1968 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1969 * in that RAMBlock.
1970 *
1971 * ptr: Host pointer to look up
1972 * round_offset: If true round the result offset down to a page boundary
1973 * *ram_addr: set to result ram_addr
1974 * *offset: set to result offset within the RAMBlock
1975 *
1976 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
1977 *
1978 * By the time this function returns, the returned pointer is not protected
1979 * by RCU anymore. If the caller is not within an RCU critical section and
1980 * does not hold the iothread lock, it must have other means of protecting the
1981 * pointer, such as a reference to the region that includes the incoming
1982 * ram_addr_t.
1983 */
422148d3 1984RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 1985 ram_addr_t *offset)
5579c7f3 1986{
94a6b54f
PB
1987 RAMBlock *block;
1988 uint8_t *host = ptr;
1989
868bb33f 1990 if (xen_enabled()) {
f615f396 1991 ram_addr_t ram_addr;
0dc3f44a 1992 rcu_read_lock();
f615f396
PB
1993 ram_addr = xen_ram_addr_from_mapcache(ptr);
1994 block = qemu_get_ram_block(ram_addr);
422148d3 1995 if (block) {
d6b6aec4 1996 *offset = ram_addr - block->offset;
422148d3 1997 }
0dc3f44a 1998 rcu_read_unlock();
422148d3 1999 return block;
712c2b41
SS
2000 }
2001
0dc3f44a
MD
2002 rcu_read_lock();
2003 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2004 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2005 goto found;
2006 }
2007
0dc3f44a 2008 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
2009 /* This case append when the block is not mapped. */
2010 if (block->host == NULL) {
2011 continue;
2012 }
9b8424d5 2013 if (host - block->host < block->max_length) {
23887b79 2014 goto found;
f471a17e 2015 }
94a6b54f 2016 }
432d268c 2017
0dc3f44a 2018 rcu_read_unlock();
1b5ec234 2019 return NULL;
23887b79
PB
2020
2021found:
422148d3
DDAG
2022 *offset = (host - block->host);
2023 if (round_offset) {
2024 *offset &= TARGET_PAGE_MASK;
2025 }
0dc3f44a 2026 rcu_read_unlock();
422148d3
DDAG
2027 return block;
2028}
2029
e3dd7493
DDAG
2030/*
2031 * Finds the named RAMBlock
2032 *
2033 * name: The name of RAMBlock to find
2034 *
2035 * Returns: RAMBlock (or NULL if not found)
2036 */
2037RAMBlock *qemu_ram_block_by_name(const char *name)
2038{
2039 RAMBlock *block;
2040
2041 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2042 if (!strcmp(name, block->idstr)) {
2043 return block;
2044 }
2045 }
2046
2047 return NULL;
2048}
2049
422148d3
DDAG
2050/* Some of the softmmu routines need to translate from a host pointer
2051 (typically a TLB entry) back to a ram offset. */
07bdaa41 2052ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2053{
2054 RAMBlock *block;
f615f396 2055 ram_addr_t offset;
422148d3 2056
f615f396 2057 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2058 if (!block) {
07bdaa41 2059 return RAM_ADDR_INVALID;
422148d3
DDAG
2060 }
2061
07bdaa41 2062 return block->offset + offset;
e890261f 2063}
f471a17e 2064
49b24afc 2065/* Called within RCU critical section. */
a8170e5e 2066static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2067 uint64_t val, unsigned size)
9fa3e853 2068{
ba051fb5
AB
2069 bool locked = false;
2070
52159192 2071 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
ba051fb5
AB
2072 locked = true;
2073 tb_lock();
0e0df1e2 2074 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2075 }
0e0df1e2
AK
2076 switch (size) {
2077 case 1:
0878d0e1 2078 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2079 break;
2080 case 2:
0878d0e1 2081 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2082 break;
2083 case 4:
0878d0e1 2084 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2085 break;
2086 default:
2087 abort();
3a7d929e 2088 }
ba051fb5
AB
2089
2090 if (locked) {
2091 tb_unlock();
2092 }
2093
58d2707e
PB
2094 /* Set both VGA and migration bits for simplicity and to remove
2095 * the notdirty callback faster.
2096 */
2097 cpu_physical_memory_set_dirty_range(ram_addr, size,
2098 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2099 /* we remove the notdirty callback only if the code has been
2100 flushed */
a2cd8c85 2101 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2102 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2103 }
9fa3e853
FB
2104}
2105
b018ddf6
PB
2106static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2107 unsigned size, bool is_write)
2108{
2109 return is_write;
2110}
2111
0e0df1e2 2112static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2113 .write = notdirty_mem_write,
b018ddf6 2114 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2115 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2116};
2117
0f459d16 2118/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2119static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2120{
93afeade 2121 CPUState *cpu = current_cpu;
568496c0 2122 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2123 CPUArchState *env = cpu->env_ptr;
06d55cc1 2124 target_ulong pc, cs_base;
0f459d16 2125 target_ulong vaddr;
a1d1bb31 2126 CPUWatchpoint *wp;
89fee74a 2127 uint32_t cpu_flags;
0f459d16 2128
ff4700b0 2129 if (cpu->watchpoint_hit) {
06d55cc1
AL
2130 /* We re-entered the check after replacing the TB. Now raise
2131 * the debug interrupt so that is will trigger after the
2132 * current instruction. */
93afeade 2133 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2134 return;
2135 }
93afeade 2136 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2137 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2138 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2139 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2140 && (wp->flags & flags)) {
08225676
PM
2141 if (flags == BP_MEM_READ) {
2142 wp->flags |= BP_WATCHPOINT_HIT_READ;
2143 } else {
2144 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2145 }
2146 wp->hitaddr = vaddr;
66b9b43c 2147 wp->hitattrs = attrs;
ff4700b0 2148 if (!cpu->watchpoint_hit) {
568496c0
SF
2149 if (wp->flags & BP_CPU &&
2150 !cc->debug_check_watchpoint(cpu, wp)) {
2151 wp->flags &= ~BP_WATCHPOINT_HIT;
2152 continue;
2153 }
ff4700b0 2154 cpu->watchpoint_hit = wp;
a5e99826 2155
8d04fb55
JK
2156 /* Both tb_lock and iothread_mutex will be reset when
2157 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2158 * back into the cpu_exec main loop.
a5e99826
FK
2159 */
2160 tb_lock();
239c51a5 2161 tb_check_watchpoint(cpu);
6e140f28 2162 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2163 cpu->exception_index = EXCP_DEBUG;
5638d180 2164 cpu_loop_exit(cpu);
6e140f28
AL
2165 } else {
2166 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2167 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
6886b980 2168 cpu_loop_exit_noexc(cpu);
6e140f28 2169 }
06d55cc1 2170 }
6e140f28
AL
2171 } else {
2172 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2173 }
2174 }
2175}
2176
6658ffb8
PB
2177/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2178 so these check for a hit then pass through to the normal out-of-line
2179 phys routines. */
66b9b43c
PM
2180static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2181 unsigned size, MemTxAttrs attrs)
6658ffb8 2182{
66b9b43c
PM
2183 MemTxResult res;
2184 uint64_t data;
79ed0416
PM
2185 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2186 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2187
2188 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2189 switch (size) {
66b9b43c 2190 case 1:
79ed0416 2191 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2192 break;
2193 case 2:
79ed0416 2194 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2195 break;
2196 case 4:
79ed0416 2197 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2198 break;
1ec9b909
AK
2199 default: abort();
2200 }
66b9b43c
PM
2201 *pdata = data;
2202 return res;
6658ffb8
PB
2203}
2204
66b9b43c
PM
2205static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2206 uint64_t val, unsigned size,
2207 MemTxAttrs attrs)
6658ffb8 2208{
66b9b43c 2209 MemTxResult res;
79ed0416
PM
2210 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2211 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2212
2213 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2214 switch (size) {
67364150 2215 case 1:
79ed0416 2216 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2217 break;
2218 case 2:
79ed0416 2219 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2220 break;
2221 case 4:
79ed0416 2222 address_space_stl(as, addr, val, attrs, &res);
67364150 2223 break;
1ec9b909
AK
2224 default: abort();
2225 }
66b9b43c 2226 return res;
6658ffb8
PB
2227}
2228
1ec9b909 2229static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2230 .read_with_attrs = watch_mem_read,
2231 .write_with_attrs = watch_mem_write,
1ec9b909 2232 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2233};
6658ffb8 2234
f25a49e0
PM
2235static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2236 unsigned len, MemTxAttrs attrs)
db7b5426 2237{
acc9d80b 2238 subpage_t *subpage = opaque;
ff6cff75 2239 uint8_t buf[8];
5c9eb028 2240 MemTxResult res;
791af8c8 2241
db7b5426 2242#if defined(DEBUG_SUBPAGE)
016e9d62 2243 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2244 subpage, len, addr);
db7b5426 2245#endif
5c9eb028
PM
2246 res = address_space_read(subpage->as, addr + subpage->base,
2247 attrs, buf, len);
2248 if (res) {
2249 return res;
f25a49e0 2250 }
acc9d80b
JK
2251 switch (len) {
2252 case 1:
f25a49e0
PM
2253 *data = ldub_p(buf);
2254 return MEMTX_OK;
acc9d80b 2255 case 2:
f25a49e0
PM
2256 *data = lduw_p(buf);
2257 return MEMTX_OK;
acc9d80b 2258 case 4:
f25a49e0
PM
2259 *data = ldl_p(buf);
2260 return MEMTX_OK;
ff6cff75 2261 case 8:
f25a49e0
PM
2262 *data = ldq_p(buf);
2263 return MEMTX_OK;
acc9d80b
JK
2264 default:
2265 abort();
2266 }
db7b5426
BS
2267}
2268
f25a49e0
PM
2269static MemTxResult subpage_write(void *opaque, hwaddr addr,
2270 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2271{
acc9d80b 2272 subpage_t *subpage = opaque;
ff6cff75 2273 uint8_t buf[8];
acc9d80b 2274
db7b5426 2275#if defined(DEBUG_SUBPAGE)
016e9d62 2276 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2277 " value %"PRIx64"\n",
2278 __func__, subpage, len, addr, value);
db7b5426 2279#endif
acc9d80b
JK
2280 switch (len) {
2281 case 1:
2282 stb_p(buf, value);
2283 break;
2284 case 2:
2285 stw_p(buf, value);
2286 break;
2287 case 4:
2288 stl_p(buf, value);
2289 break;
ff6cff75
PB
2290 case 8:
2291 stq_p(buf, value);
2292 break;
acc9d80b
JK
2293 default:
2294 abort();
2295 }
5c9eb028
PM
2296 return address_space_write(subpage->as, addr + subpage->base,
2297 attrs, buf, len);
db7b5426
BS
2298}
2299
c353e4cc 2300static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2301 unsigned len, bool is_write)
c353e4cc 2302{
acc9d80b 2303 subpage_t *subpage = opaque;
c353e4cc 2304#if defined(DEBUG_SUBPAGE)
016e9d62 2305 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2306 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2307#endif
2308
acc9d80b 2309 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2310 len, is_write);
c353e4cc
PB
2311}
2312
70c68e44 2313static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2314 .read_with_attrs = subpage_read,
2315 .write_with_attrs = subpage_write,
ff6cff75
PB
2316 .impl.min_access_size = 1,
2317 .impl.max_access_size = 8,
2318 .valid.min_access_size = 1,
2319 .valid.max_access_size = 8,
c353e4cc 2320 .valid.accepts = subpage_accepts,
70c68e44 2321 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2322};
2323
c227f099 2324static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2325 uint16_t section)
db7b5426
BS
2326{
2327 int idx, eidx;
2328
2329 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2330 return -1;
2331 idx = SUBPAGE_IDX(start);
2332 eidx = SUBPAGE_IDX(end);
2333#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2334 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2335 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2336#endif
db7b5426 2337 for (; idx <= eidx; idx++) {
5312bd8b 2338 mmio->sub_section[idx] = section;
db7b5426
BS
2339 }
2340
2341 return 0;
2342}
2343
acc9d80b 2344static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2345{
c227f099 2346 subpage_t *mmio;
db7b5426 2347
2615fabd 2348 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
acc9d80b 2349 mmio->as = as;
1eec614b 2350 mmio->base = base;
2c9b15ca 2351 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2352 NULL, TARGET_PAGE_SIZE);
b3b00c78 2353 mmio->iomem.subpage = true;
db7b5426 2354#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2355 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2356 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2357#endif
b41aac4f 2358 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2359
2360 return mmio;
2361}
2362
a656e22f
PC
2363static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2364 MemoryRegion *mr)
5312bd8b 2365{
a656e22f 2366 assert(as);
5312bd8b 2367 MemoryRegionSection section = {
a656e22f 2368 .address_space = as,
5312bd8b
AK
2369 .mr = mr,
2370 .offset_within_address_space = 0,
2371 .offset_within_region = 0,
052e87b0 2372 .size = int128_2_64(),
5312bd8b
AK
2373 };
2374
53cb28cb 2375 return phys_section_add(map, &section);
5312bd8b
AK
2376}
2377
a54c87b6 2378MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2379{
a54c87b6
PM
2380 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2381 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2382 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2383 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2384
2385 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2386}
2387
e9179ce1
AK
2388static void io_mem_init(void)
2389{
1f6245e5 2390 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2391 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2392 NULL, UINT64_MAX);
8d04fb55
JK
2393
2394 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2395 * which can be called without the iothread mutex.
2396 */
2c9b15ca 2397 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2398 NULL, UINT64_MAX);
8d04fb55
JK
2399 memory_region_clear_global_locking(&io_mem_notdirty);
2400
2c9b15ca 2401 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2402 NULL, UINT64_MAX);
e9179ce1
AK
2403}
2404
ac1970fb 2405static void mem_begin(MemoryListener *listener)
00752703
PB
2406{
2407 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2408 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2409 uint16_t n;
2410
a656e22f 2411 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2412 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2413 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2414 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2415 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2416 assert(n == PHYS_SECTION_ROM);
a656e22f 2417 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2418 assert(n == PHYS_SECTION_WATCH);
00752703 2419
9736e55b 2420 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2421 d->as = as;
2422 as->next_dispatch = d;
2423}
2424
79e2b9ae
PB
2425static void address_space_dispatch_free(AddressSpaceDispatch *d)
2426{
2427 phys_sections_free(&d->map);
2428 g_free(d);
2429}
2430
00752703 2431static void mem_commit(MemoryListener *listener)
ac1970fb 2432{
89ae337a 2433 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2434 AddressSpaceDispatch *cur = as->dispatch;
2435 AddressSpaceDispatch *next = as->next_dispatch;
2436
53cb28cb 2437 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2438
79e2b9ae 2439 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2440 if (cur) {
79e2b9ae 2441 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2442 }
9affd6fc
PB
2443}
2444
1d71148e 2445static void tcg_commit(MemoryListener *listener)
50c1e149 2446{
32857f4d
PM
2447 CPUAddressSpace *cpuas;
2448 AddressSpaceDispatch *d;
117712c3
AK
2449
2450 /* since each CPU stores ram addresses in its TLB cache, we must
2451 reset the modified entries */
32857f4d
PM
2452 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2453 cpu_reloading_memory_map();
2454 /* The CPU and TLB are protected by the iothread lock.
2455 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2456 * may have split the RCU critical section.
2457 */
2458 d = atomic_rcu_read(&cpuas->as->dispatch);
f35e44e7 2459 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2460 tlb_flush(cpuas->cpu);
50c1e149
AK
2461}
2462
ac1970fb
AK
2463void address_space_init_dispatch(AddressSpace *as)
2464{
00752703 2465 as->dispatch = NULL;
89ae337a 2466 as->dispatch_listener = (MemoryListener) {
ac1970fb 2467 .begin = mem_begin,
00752703 2468 .commit = mem_commit,
ac1970fb
AK
2469 .region_add = mem_add,
2470 .region_nop = mem_add,
2471 .priority = 0,
2472 };
89ae337a 2473 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2474}
2475
6e48e8f9
PB
2476void address_space_unregister(AddressSpace *as)
2477{
2478 memory_listener_unregister(&as->dispatch_listener);
2479}
2480
83f3c251
AK
2481void address_space_destroy_dispatch(AddressSpace *as)
2482{
2483 AddressSpaceDispatch *d = as->dispatch;
2484
79e2b9ae
PB
2485 atomic_rcu_set(&as->dispatch, NULL);
2486 if (d) {
2487 call_rcu(d, address_space_dispatch_free, rcu);
2488 }
83f3c251
AK
2489}
2490
62152b8a
AK
2491static void memory_map_init(void)
2492{
7267c094 2493 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2494
57271d63 2495 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2496 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2497
7267c094 2498 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2499 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2500 65536);
7dca8043 2501 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2502}
2503
2504MemoryRegion *get_system_memory(void)
2505{
2506 return system_memory;
2507}
2508
309cb471
AK
2509MemoryRegion *get_system_io(void)
2510{
2511 return system_io;
2512}
2513
e2eef170
PB
2514#endif /* !defined(CONFIG_USER_ONLY) */
2515
13eb76e0
FB
2516/* physical memory access (slow version, mainly for debug) */
2517#if defined(CONFIG_USER_ONLY)
f17ec444 2518int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2519 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2520{
2521 int l, flags;
2522 target_ulong page;
53a5960a 2523 void * p;
13eb76e0
FB
2524
2525 while (len > 0) {
2526 page = addr & TARGET_PAGE_MASK;
2527 l = (page + TARGET_PAGE_SIZE) - addr;
2528 if (l > len)
2529 l = len;
2530 flags = page_get_flags(page);
2531 if (!(flags & PAGE_VALID))
a68fe89c 2532 return -1;
13eb76e0
FB
2533 if (is_write) {
2534 if (!(flags & PAGE_WRITE))
a68fe89c 2535 return -1;
579a97f7 2536 /* XXX: this code should not depend on lock_user */
72fb7daa 2537 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2538 return -1;
72fb7daa
AJ
2539 memcpy(p, buf, l);
2540 unlock_user(p, addr, l);
13eb76e0
FB
2541 } else {
2542 if (!(flags & PAGE_READ))
a68fe89c 2543 return -1;
579a97f7 2544 /* XXX: this code should not depend on lock_user */
72fb7daa 2545 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2546 return -1;
72fb7daa 2547 memcpy(buf, p, l);
5b257578 2548 unlock_user(p, addr, 0);
13eb76e0
FB
2549 }
2550 len -= l;
2551 buf += l;
2552 addr += l;
2553 }
a68fe89c 2554 return 0;
13eb76e0 2555}
8df1cd07 2556
13eb76e0 2557#else
51d7a9eb 2558
845b6214 2559static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2560 hwaddr length)
51d7a9eb 2561{
e87f7778 2562 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2563 addr += memory_region_get_ram_addr(mr);
2564
e87f7778
PB
2565 /* No early return if dirty_log_mask is or becomes 0, because
2566 * cpu_physical_memory_set_dirty_range will still call
2567 * xen_modified_memory.
2568 */
2569 if (dirty_log_mask) {
2570 dirty_log_mask =
2571 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2572 }
2573 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
ba051fb5 2574 tb_lock();
e87f7778 2575 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2576 tb_unlock();
e87f7778 2577 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2578 }
e87f7778 2579 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2580}
2581
23326164 2582static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2583{
e1622f4b 2584 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2585
2586 /* Regions are assumed to support 1-4 byte accesses unless
2587 otherwise specified. */
23326164
RH
2588 if (access_size_max == 0) {
2589 access_size_max = 4;
2590 }
2591
2592 /* Bound the maximum access by the alignment of the address. */
2593 if (!mr->ops->impl.unaligned) {
2594 unsigned align_size_max = addr & -addr;
2595 if (align_size_max != 0 && align_size_max < access_size_max) {
2596 access_size_max = align_size_max;
2597 }
82f2563f 2598 }
23326164
RH
2599
2600 /* Don't attempt accesses larger than the maximum. */
2601 if (l > access_size_max) {
2602 l = access_size_max;
82f2563f 2603 }
6554f5c0 2604 l = pow2floor(l);
23326164
RH
2605
2606 return l;
82f2563f
PB
2607}
2608
4840f10e 2609static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2610{
4840f10e
JK
2611 bool unlocked = !qemu_mutex_iothread_locked();
2612 bool release_lock = false;
2613
2614 if (unlocked && mr->global_locking) {
2615 qemu_mutex_lock_iothread();
2616 unlocked = false;
2617 release_lock = true;
2618 }
125b3806 2619 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2620 if (unlocked) {
2621 qemu_mutex_lock_iothread();
2622 }
125b3806 2623 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2624 if (unlocked) {
2625 qemu_mutex_unlock_iothread();
2626 }
125b3806 2627 }
4840f10e
JK
2628
2629 return release_lock;
125b3806
PB
2630}
2631
a203ac70
PB
2632/* Called within RCU critical section. */
2633static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2634 MemTxAttrs attrs,
2635 const uint8_t *buf,
2636 int len, hwaddr addr1,
2637 hwaddr l, MemoryRegion *mr)
13eb76e0 2638{
13eb76e0 2639 uint8_t *ptr;
791af8c8 2640 uint64_t val;
3b643495 2641 MemTxResult result = MEMTX_OK;
4840f10e 2642 bool release_lock = false;
3b46e624 2643
a203ac70 2644 for (;;) {
eb7eeb88
PB
2645 if (!memory_access_is_direct(mr, true)) {
2646 release_lock |= prepare_mmio_access(mr);
2647 l = memory_access_size(mr, l, addr1);
2648 /* XXX: could force current_cpu to NULL to avoid
2649 potential bugs */
2650 switch (l) {
2651 case 8:
2652 /* 64 bit write access */
2653 val = ldq_p(buf);
2654 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2655 attrs);
2656 break;
2657 case 4:
2658 /* 32 bit write access */
6da67de6 2659 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
2660 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2661 attrs);
2662 break;
2663 case 2:
2664 /* 16 bit write access */
2665 val = lduw_p(buf);
2666 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2667 attrs);
2668 break;
2669 case 1:
2670 /* 8 bit write access */
2671 val = ldub_p(buf);
2672 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2673 attrs);
2674 break;
2675 default:
2676 abort();
13eb76e0
FB
2677 }
2678 } else {
eb7eeb88 2679 /* RAM case */
0878d0e1 2680 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2681 memcpy(ptr, buf, l);
2682 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2683 }
4840f10e
JK
2684
2685 if (release_lock) {
2686 qemu_mutex_unlock_iothread();
2687 release_lock = false;
2688 }
2689
13eb76e0
FB
2690 len -= l;
2691 buf += l;
2692 addr += l;
a203ac70
PB
2693
2694 if (!len) {
2695 break;
2696 }
2697
2698 l = len;
2699 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2700 }
fd8aaa76 2701
3b643495 2702 return result;
13eb76e0 2703}
8df1cd07 2704
a203ac70
PB
2705MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2706 const uint8_t *buf, int len)
ac1970fb 2707{
eb7eeb88 2708 hwaddr l;
eb7eeb88
PB
2709 hwaddr addr1;
2710 MemoryRegion *mr;
2711 MemTxResult result = MEMTX_OK;
eb7eeb88 2712
a203ac70
PB
2713 if (len > 0) {
2714 rcu_read_lock();
eb7eeb88 2715 l = len;
a203ac70
PB
2716 mr = address_space_translate(as, addr, &addr1, &l, true);
2717 result = address_space_write_continue(as, addr, attrs, buf, len,
2718 addr1, l, mr);
2719 rcu_read_unlock();
2720 }
2721
2722 return result;
2723}
2724
2725/* Called within RCU critical section. */
2726MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2727 MemTxAttrs attrs, uint8_t *buf,
2728 int len, hwaddr addr1, hwaddr l,
2729 MemoryRegion *mr)
2730{
2731 uint8_t *ptr;
2732 uint64_t val;
2733 MemTxResult result = MEMTX_OK;
2734 bool release_lock = false;
eb7eeb88 2735
a203ac70 2736 for (;;) {
eb7eeb88
PB
2737 if (!memory_access_is_direct(mr, false)) {
2738 /* I/O case */
2739 release_lock |= prepare_mmio_access(mr);
2740 l = memory_access_size(mr, l, addr1);
2741 switch (l) {
2742 case 8:
2743 /* 64 bit read access */
2744 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2745 attrs);
2746 stq_p(buf, val);
2747 break;
2748 case 4:
2749 /* 32 bit read access */
2750 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2751 attrs);
2752 stl_p(buf, val);
2753 break;
2754 case 2:
2755 /* 16 bit read access */
2756 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2757 attrs);
2758 stw_p(buf, val);
2759 break;
2760 case 1:
2761 /* 8 bit read access */
2762 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2763 attrs);
2764 stb_p(buf, val);
2765 break;
2766 default:
2767 abort();
2768 }
2769 } else {
2770 /* RAM case */
0878d0e1 2771 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2772 memcpy(buf, ptr, l);
2773 }
2774
2775 if (release_lock) {
2776 qemu_mutex_unlock_iothread();
2777 release_lock = false;
2778 }
2779
2780 len -= l;
2781 buf += l;
2782 addr += l;
a203ac70
PB
2783
2784 if (!len) {
2785 break;
2786 }
2787
2788 l = len;
2789 mr = address_space_translate(as, addr, &addr1, &l, false);
2790 }
2791
2792 return result;
2793}
2794
3cc8f884
PB
2795MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2796 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2797{
2798 hwaddr l;
2799 hwaddr addr1;
2800 MemoryRegion *mr;
2801 MemTxResult result = MEMTX_OK;
2802
2803 if (len > 0) {
2804 rcu_read_lock();
2805 l = len;
2806 mr = address_space_translate(as, addr, &addr1, &l, false);
2807 result = address_space_read_continue(as, addr, attrs, buf, len,
2808 addr1, l, mr);
2809 rcu_read_unlock();
eb7eeb88 2810 }
eb7eeb88
PB
2811
2812 return result;
ac1970fb
AK
2813}
2814
eb7eeb88
PB
2815MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2816 uint8_t *buf, int len, bool is_write)
2817{
2818 if (is_write) {
2819 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2820 } else {
2821 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2822 }
2823}
ac1970fb 2824
a8170e5e 2825void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2826 int len, int is_write)
2827{
5c9eb028
PM
2828 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2829 buf, len, is_write);
ac1970fb
AK
2830}
2831
582b55a9
AG
2832enum write_rom_type {
2833 WRITE_DATA,
2834 FLUSH_CACHE,
2835};
2836
2a221651 2837static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2838 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2839{
149f54b5 2840 hwaddr l;
d0ecd2aa 2841 uint8_t *ptr;
149f54b5 2842 hwaddr addr1;
5c8a00ce 2843 MemoryRegion *mr;
3b46e624 2844
41063e1e 2845 rcu_read_lock();
d0ecd2aa 2846 while (len > 0) {
149f54b5 2847 l = len;
2a221651 2848 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2849
5c8a00ce
PB
2850 if (!(memory_region_is_ram(mr) ||
2851 memory_region_is_romd(mr))) {
b242e0e0 2852 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2853 } else {
d0ecd2aa 2854 /* ROM/RAM case */
0878d0e1 2855 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
2856 switch (type) {
2857 case WRITE_DATA:
2858 memcpy(ptr, buf, l);
845b6214 2859 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2860 break;
2861 case FLUSH_CACHE:
2862 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2863 break;
2864 }
d0ecd2aa
FB
2865 }
2866 len -= l;
2867 buf += l;
2868 addr += l;
2869 }
41063e1e 2870 rcu_read_unlock();
d0ecd2aa
FB
2871}
2872
582b55a9 2873/* used for ROM loading : can write in RAM and ROM */
2a221651 2874void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2875 const uint8_t *buf, int len)
2876{
2a221651 2877 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2878}
2879
2880void cpu_flush_icache_range(hwaddr start, int len)
2881{
2882 /*
2883 * This function should do the same thing as an icache flush that was
2884 * triggered from within the guest. For TCG we are always cache coherent,
2885 * so there is no need to flush anything. For KVM / Xen we need to flush
2886 * the host's instruction cache at least.
2887 */
2888 if (tcg_enabled()) {
2889 return;
2890 }
2891
2a221651
EI
2892 cpu_physical_memory_write_rom_internal(&address_space_memory,
2893 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2894}
2895
6d16c2f8 2896typedef struct {
d3e71559 2897 MemoryRegion *mr;
6d16c2f8 2898 void *buffer;
a8170e5e
AK
2899 hwaddr addr;
2900 hwaddr len;
c2cba0ff 2901 bool in_use;
6d16c2f8
AL
2902} BounceBuffer;
2903
2904static BounceBuffer bounce;
2905
ba223c29 2906typedef struct MapClient {
e95205e1 2907 QEMUBH *bh;
72cf2d4f 2908 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2909} MapClient;
2910
38e047b5 2911QemuMutex map_client_list_lock;
72cf2d4f
BS
2912static QLIST_HEAD(map_client_list, MapClient) map_client_list
2913 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2914
e95205e1
FZ
2915static void cpu_unregister_map_client_do(MapClient *client)
2916{
2917 QLIST_REMOVE(client, link);
2918 g_free(client);
2919}
2920
33b6c2ed
FZ
2921static void cpu_notify_map_clients_locked(void)
2922{
2923 MapClient *client;
2924
2925 while (!QLIST_EMPTY(&map_client_list)) {
2926 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2927 qemu_bh_schedule(client->bh);
2928 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2929 }
2930}
2931
e95205e1 2932void cpu_register_map_client(QEMUBH *bh)
ba223c29 2933{
7267c094 2934 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2935
38e047b5 2936 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2937 client->bh = bh;
72cf2d4f 2938 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2939 if (!atomic_read(&bounce.in_use)) {
2940 cpu_notify_map_clients_locked();
2941 }
38e047b5 2942 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2943}
2944
38e047b5 2945void cpu_exec_init_all(void)
ba223c29 2946{
38e047b5 2947 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
2948 /* The data structures we set up here depend on knowing the page size,
2949 * so no more changes can be made after this point.
2950 * In an ideal world, nothing we did before we had finished the
2951 * machine setup would care about the target page size, and we could
2952 * do this much later, rather than requiring board models to state
2953 * up front what their requirements are.
2954 */
2955 finalize_target_page_bits();
38e047b5 2956 io_mem_init();
680a4783 2957 memory_map_init();
38e047b5 2958 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2959}
2960
e95205e1 2961void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2962{
2963 MapClient *client;
2964
e95205e1
FZ
2965 qemu_mutex_lock(&map_client_list_lock);
2966 QLIST_FOREACH(client, &map_client_list, link) {
2967 if (client->bh == bh) {
2968 cpu_unregister_map_client_do(client);
2969 break;
2970 }
ba223c29 2971 }
e95205e1 2972 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2973}
2974
2975static void cpu_notify_map_clients(void)
2976{
38e047b5 2977 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2978 cpu_notify_map_clients_locked();
38e047b5 2979 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2980}
2981
51644ab7
PB
2982bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2983{
5c8a00ce 2984 MemoryRegion *mr;
51644ab7
PB
2985 hwaddr l, xlat;
2986
41063e1e 2987 rcu_read_lock();
51644ab7
PB
2988 while (len > 0) {
2989 l = len;
5c8a00ce
PB
2990 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2991 if (!memory_access_is_direct(mr, is_write)) {
2992 l = memory_access_size(mr, l, addr);
2993 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
5ad4a2b7 2994 rcu_read_unlock();
51644ab7
PB
2995 return false;
2996 }
2997 }
2998
2999 len -= l;
3000 addr += l;
3001 }
41063e1e 3002 rcu_read_unlock();
51644ab7
PB
3003 return true;
3004}
3005
715c31ec
PB
3006static hwaddr
3007address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
3008 MemoryRegion *mr, hwaddr base, hwaddr len,
3009 bool is_write)
3010{
3011 hwaddr done = 0;
3012 hwaddr xlat;
3013 MemoryRegion *this_mr;
3014
3015 for (;;) {
3016 target_len -= len;
3017 addr += len;
3018 done += len;
3019 if (target_len == 0) {
3020 return done;
3021 }
3022
3023 len = target_len;
3024 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3025 if (this_mr != mr || xlat != base + done) {
3026 return done;
3027 }
3028 }
3029}
3030
6d16c2f8
AL
3031/* Map a physical memory region into a host virtual address.
3032 * May map a subset of the requested range, given by and returned in *plen.
3033 * May return NULL if resources needed to perform the mapping are exhausted.
3034 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3035 * Use cpu_register_map_client() to know when retrying the map operation is
3036 * likely to succeed.
6d16c2f8 3037 */
ac1970fb 3038void *address_space_map(AddressSpace *as,
a8170e5e
AK
3039 hwaddr addr,
3040 hwaddr *plen,
ac1970fb 3041 bool is_write)
6d16c2f8 3042{
a8170e5e 3043 hwaddr len = *plen;
715c31ec
PB
3044 hwaddr l, xlat;
3045 MemoryRegion *mr;
e81bcda5 3046 void *ptr;
6d16c2f8 3047
e3127ae0
PB
3048 if (len == 0) {
3049 return NULL;
3050 }
38bee5dc 3051
e3127ae0 3052 l = len;
41063e1e 3053 rcu_read_lock();
e3127ae0 3054 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 3055
e3127ae0 3056 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3057 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3058 rcu_read_unlock();
e3127ae0 3059 return NULL;
6d16c2f8 3060 }
e85d9db5
KW
3061 /* Avoid unbounded allocations */
3062 l = MIN(l, TARGET_PAGE_SIZE);
3063 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3064 bounce.addr = addr;
3065 bounce.len = l;
d3e71559
PB
3066
3067 memory_region_ref(mr);
3068 bounce.mr = mr;
e3127ae0 3069 if (!is_write) {
5c9eb028
PM
3070 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3071 bounce.buffer, l);
8ab934f9 3072 }
6d16c2f8 3073
41063e1e 3074 rcu_read_unlock();
e3127ae0
PB
3075 *plen = l;
3076 return bounce.buffer;
3077 }
3078
e3127ae0 3079
d3e71559 3080 memory_region_ref(mr);
715c31ec
PB
3081 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3082 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
e81bcda5
PB
3083 rcu_read_unlock();
3084
3085 return ptr;
6d16c2f8
AL
3086}
3087
ac1970fb 3088/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3089 * Will also mark the memory as dirty if is_write == 1. access_len gives
3090 * the amount of memory that was actually read or written by the caller.
3091 */
a8170e5e
AK
3092void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3093 int is_write, hwaddr access_len)
6d16c2f8
AL
3094{
3095 if (buffer != bounce.buffer) {
d3e71559
PB
3096 MemoryRegion *mr;
3097 ram_addr_t addr1;
3098
07bdaa41 3099 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3100 assert(mr != NULL);
6d16c2f8 3101 if (is_write) {
845b6214 3102 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3103 }
868bb33f 3104 if (xen_enabled()) {
e41d7c69 3105 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3106 }
d3e71559 3107 memory_region_unref(mr);
6d16c2f8
AL
3108 return;
3109 }
3110 if (is_write) {
5c9eb028
PM
3111 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3112 bounce.buffer, access_len);
6d16c2f8 3113 }
f8a83245 3114 qemu_vfree(bounce.buffer);
6d16c2f8 3115 bounce.buffer = NULL;
d3e71559 3116 memory_region_unref(bounce.mr);
c2cba0ff 3117 atomic_mb_set(&bounce.in_use, false);
ba223c29 3118 cpu_notify_map_clients();
6d16c2f8 3119}
d0ecd2aa 3120
a8170e5e
AK
3121void *cpu_physical_memory_map(hwaddr addr,
3122 hwaddr *plen,
ac1970fb
AK
3123 int is_write)
3124{
3125 return address_space_map(&address_space_memory, addr, plen, is_write);
3126}
3127
a8170e5e
AK
3128void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3129 int is_write, hwaddr access_len)
ac1970fb
AK
3130{
3131 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3132}
3133
0ce265ff
PB
3134#define ARG1_DECL AddressSpace *as
3135#define ARG1 as
3136#define SUFFIX
3137#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3138#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3139#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3140#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3141#define RCU_READ_LOCK(...) rcu_read_lock()
3142#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3143#include "memory_ldst.inc.c"
1e78bcc1 3144
1f4e496e
PB
3145int64_t address_space_cache_init(MemoryRegionCache *cache,
3146 AddressSpace *as,
3147 hwaddr addr,
3148 hwaddr len,
3149 bool is_write)
3150{
3151 hwaddr l, xlat;
3152 MemoryRegion *mr;
3153 void *ptr;
3154
3155 assert(len > 0);
3156
3157 l = len;
3158 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3159 if (!memory_access_is_direct(mr, is_write)) {
3160 return -EINVAL;
3161 }
3162
3163 l = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3164 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, &l);
3165
3166 cache->xlat = xlat;
3167 cache->is_write = is_write;
3168 cache->mr = mr;
3169 cache->ptr = ptr;
3170 cache->len = l;
3171 memory_region_ref(cache->mr);
3172
3173 return l;
3174}
3175
3176void address_space_cache_invalidate(MemoryRegionCache *cache,
3177 hwaddr addr,
3178 hwaddr access_len)
3179{
3180 assert(cache->is_write);
3181 invalidate_and_set_dirty(cache->mr, addr + cache->xlat, access_len);
3182}
3183
3184void address_space_cache_destroy(MemoryRegionCache *cache)
3185{
3186 if (!cache->mr) {
3187 return;
3188 }
3189
3190 if (xen_enabled()) {
3191 xen_invalidate_map_cache_entry(cache->ptr);
3192 }
3193 memory_region_unref(cache->mr);
91047df3 3194 cache->mr = NULL;
1f4e496e
PB
3195}
3196
3197/* Called from RCU critical section. This function has the same
3198 * semantics as address_space_translate, but it only works on a
3199 * predefined range of a MemoryRegion that was mapped with
3200 * address_space_cache_init.
3201 */
3202static inline MemoryRegion *address_space_translate_cached(
3203 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3204 hwaddr *plen, bool is_write)
3205{
3206 assert(addr < cache->len && *plen <= cache->len - addr);
3207 *xlat = addr + cache->xlat;
3208 return cache->mr;
3209}
3210
3211#define ARG1_DECL MemoryRegionCache *cache
3212#define ARG1 cache
3213#define SUFFIX _cached
3214#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3215#define IS_DIRECT(mr, is_write) true
3216#define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3217#define INVALIDATE(mr, ofs, len) ((void)0)
3218#define RCU_READ_LOCK() ((void)0)
3219#define RCU_READ_UNLOCK() ((void)0)
3220#include "memory_ldst.inc.c"
3221
5e2972fd 3222/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3223int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3224 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3225{
3226 int l;
a8170e5e 3227 hwaddr phys_addr;
9b3c35e0 3228 target_ulong page;
13eb76e0
FB
3229
3230 while (len > 0) {
5232e4c7
PM
3231 int asidx;
3232 MemTxAttrs attrs;
3233
13eb76e0 3234 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3235 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3236 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3237 /* if no physical page mapped, return an error */
3238 if (phys_addr == -1)
3239 return -1;
3240 l = (page + TARGET_PAGE_SIZE) - addr;
3241 if (l > len)
3242 l = len;
5e2972fd 3243 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3244 if (is_write) {
5232e4c7
PM
3245 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3246 phys_addr, buf, l);
2e38847b 3247 } else {
5232e4c7
PM
3248 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3249 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3250 buf, l, 0);
2e38847b 3251 }
13eb76e0
FB
3252 len -= l;
3253 buf += l;
3254 addr += l;
3255 }
3256 return 0;
3257}
038629a6
DDAG
3258
3259/*
3260 * Allows code that needs to deal with migration bitmaps etc to still be built
3261 * target independent.
3262 */
3263size_t qemu_target_page_bits(void)
3264{
3265 return TARGET_PAGE_BITS;
3266}
3267
a68fe89c 3268#endif
13eb76e0 3269
8e4a424b
BS
3270/*
3271 * A helper function for the _utterly broken_ virtio device model to find out if
3272 * it's running on a big endian machine. Don't do this at home kids!
3273 */
98ed8ecf
GK
3274bool target_words_bigendian(void);
3275bool target_words_bigendian(void)
8e4a424b
BS
3276{
3277#if defined(TARGET_WORDS_BIGENDIAN)
3278 return true;
3279#else
3280 return false;
3281#endif
3282}
3283
76f35538 3284#ifndef CONFIG_USER_ONLY
a8170e5e 3285bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3286{
5c8a00ce 3287 MemoryRegion*mr;
149f54b5 3288 hwaddr l = 1;
41063e1e 3289 bool res;
76f35538 3290
41063e1e 3291 rcu_read_lock();
5c8a00ce
PB
3292 mr = address_space_translate(&address_space_memory,
3293 phys_addr, &phys_addr, &l, false);
76f35538 3294
41063e1e
PB
3295 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3296 rcu_read_unlock();
3297 return res;
76f35538 3298}
bd2fa51f 3299
e3807054 3300int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3301{
3302 RAMBlock *block;
e3807054 3303 int ret = 0;
bd2fa51f 3304
0dc3f44a
MD
3305 rcu_read_lock();
3306 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3307 ret = func(block->idstr, block->host, block->offset,
3308 block->used_length, opaque);
3309 if (ret) {
3310 break;
3311 }
bd2fa51f 3312 }
0dc3f44a 3313 rcu_read_unlock();
e3807054 3314 return ret;
bd2fa51f 3315}
d3a5038c
DDAG
3316
3317/*
3318 * Unmap pages of memory from start to start+length such that
3319 * they a) read as 0, b) Trigger whatever fault mechanism
3320 * the OS provides for postcopy.
3321 * The pages must be unmapped by the end of the function.
3322 * Returns: 0 on success, none-0 on failure
3323 *
3324 */
3325int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3326{
3327 int ret = -1;
3328
3329 uint8_t *host_startaddr = rb->host + start;
3330
3331 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3332 error_report("ram_block_discard_range: Unaligned start address: %p",
3333 host_startaddr);
3334 goto err;
3335 }
3336
3337 if ((start + length) <= rb->used_length) {
3338 uint8_t *host_endaddr = host_startaddr + length;
3339 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3340 error_report("ram_block_discard_range: Unaligned end address: %p",
3341 host_endaddr);
3342 goto err;
3343 }
3344
3345 errno = ENOTSUP; /* If we are missing MADVISE etc */
3346
e2fa71f5 3347 if (rb->page_size == qemu_host_page_size) {
d3a5038c 3348#if defined(CONFIG_MADVISE)
e2fa71f5
DDAG
3349 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3350 * freeing the page.
3351 */
3352 ret = madvise(host_startaddr, length, MADV_DONTNEED);
d3a5038c 3353#endif
e2fa71f5
DDAG
3354 } else {
3355 /* Huge page case - unfortunately it can't do DONTNEED, but
3356 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3357 * huge page file.
3358 */
3359#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3360 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3361 start, length);
3362#endif
3363 }
d3a5038c
DDAG
3364 if (ret) {
3365 ret = -errno;
3366 error_report("ram_block_discard_range: Failed to discard range "
3367 "%s:%" PRIx64 " +%zx (%d)",
3368 rb->idstr, start, length, ret);
3369 }
3370 } else {
3371 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3372 "/%zx/" RAM_ADDR_FMT")",
3373 rb->idstr, start, length, rb->used_length);
3374 }
3375
3376err:
3377 return ret;
3378}
3379
ec3f8c99 3380#endif