]> git.ipfire.org Git - thirdparty/systemd.git/blame - man/crypttab.xml
Merge pull request #19322 from poettering/dep-split
[thirdparty/systemd.git] / man / crypttab.xml
CommitLineData
45ae1a05
LP
1<?xml version="1.0"?>
2<!--*-nxml-*-->
3a54a157
ZJS
3<!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
4 "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
45ae1a05 5<!--
db9ecf05 6 SPDX-License-Identifier: LGPL-2.1-or-later
572eb058 7
45ae1a05
LP
8 This is based on crypttab(5) from Fedora's initscripts package, which in
9 turn is based on Debian's version.
10
11 The Red Hat version has been written by Miloslav Trmac <mitr@redhat.com>.
45ae1a05 12-->
c2d54475 13<refentry id="crypttab" conditional='HAVE_LIBCRYPTSETUP' xmlns:xi="http://www.w3.org/2001/XInclude">
45ae1a05 14
798d3a52
ZJS
15 <refentryinfo>
16 <title>crypttab</title>
17 <productname>systemd</productname>
798d3a52
ZJS
18 </refentryinfo>
19
20 <refmeta>
21 <refentrytitle>crypttab</refentrytitle>
22 <manvolnum>5</manvolnum>
23 </refmeta>
24
25 <refnamediv>
26 <refname>crypttab</refname>
27 <refpurpose>Configuration for encrypted block devices</refpurpose>
28 </refnamediv>
29
30 <refsynopsisdiv>
31 <para><filename>/etc/crypttab</filename></para>
32 </refsynopsisdiv>
33
34 <refsect1>
35 <title>Description</title>
36
37 <para>The <filename>/etc/crypttab</filename> file describes
38 encrypted block devices that are set up during system boot.</para>
39
40 <para>Empty lines and lines starting with the <literal>#</literal>
41 character are ignored. Each of the remaining lines describes one
ed3657d5 42 encrypted block device. Fields are delimited by white space.</para>
b2a1a5c7 43
6e41f4dd 44 <para>Each line is in the form<programlisting><replaceable>volume-name</replaceable> <replaceable>encrypted-device</replaceable> <replaceable>key-file</replaceable> <replaceable>options</replaceable></programlisting>
b2a1a5c7 45 The first two fields are mandatory, the remaining two are
798d3a52
ZJS
46 optional.</para>
47
cf1e172d
LP
48 <para>Setting up encrypted block devices using this file supports four encryption modes: LUKS, TrueCrypt,
49 BitLocker and plain. See <citerefentry
50 project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry> for
51 more information about each mode. When no mode is specified in the options field and the block device
52 contains a LUKS signature, it is opened as a LUKS device; otherwise, it is assumed to be in raw dm-crypt
53 (plain mode) format.</para>
798d3a52 54
96e9a9a4
LP
55 <para>The four fields of <filename>/etc/crypttab</filename> are defined as follows:</para>
56
57 <orderedlist>
58
59 <listitem><para>The first field contains the name of the resulting volume with decrypted data; its
60 block device is set up below <filename>/dev/mapper/</filename>.</para></listitem>
61
62 <listitem><para>The second field contains a path to the underlying block
63 device or file, or a specification of a block device via
64 <literal>UUID=</literal> followed by the UUID.</para></listitem>
65
66 <listitem><para>The third field specifies an absolute path to a file with the encryption
cf1e172d
LP
67 key. Optionally, the path may be followed by <literal>:</literal> and an
68 <filename>/etc/fstab</filename> style device specification (e.g. starting with
69 <literal>LABEL=</literal> or similar); in which case the path is taken relative to the specified
70 device's file system root. If the field is not present or is <literal>none</literal> or
96e9a9a4
LP
71 <literal>-</literal>, a key file named after the volume to unlock (i.e. the first column of the line),
72 suffixed with <filename>.key</filename> is automatically loaded from the
73 <filename>/etc/cryptsetup-keys.d/</filename> and <filename>/run/cryptsetup-keys.d/</filename>
74 directories, if present. Otherwise, the password has to be manually entered during system boot. For
75 swap encryption, <filename>/dev/urandom</filename> may be used as key file, resulting in a randomized
76 key.</para>
77
78 <para>If the specified key file path refers to an <constant>AF_UNIX</constant> stream socket in the
79 file system, the key is acquired by connecting to the socket and reading it from the connection. This
80 allows the implementation of a service to provide key information dynamically, at the moment when it is
81 needed. For details see below.</para></listitem>
82
da115b93 83 <listitem><para>The fourth field, if present, is a comma-delimited list of options. The supported
96e9a9a4
LP
84 options are listed below.</para></listitem>
85 </orderedlist>
cf1e172d
LP
86 </refsect1>
87
88 <refsect1>
89 <title>Key Acquisition</title>
90
91 <para>Six different mechanisms for acquiring the decryption key or passphrase unlocking the encrypted
92 volume are supported. Specifically:</para>
93
94 <orderedlist>
95
96 <listitem><para>Most prominently, the user may be queried interactively during volume activation
97 (i.e. typically at boot), asking them to type in the necessary passphrase(s).</para></listitem>
98
99 <listitem><para>The (unencrypted) key may be read from a file on disk, possibly on removable media. The third field
100 of each line encodes the location, for details see above.</para></listitem>
101
102 <listitem><para>The (unencrypted) key may be requested from another service, by specifying an
103 <constant>AF_UNIX</constant> file system socket in place of a key file in the third field. For details
104 see above and below.</para></listitem>
105
106 <listitem><para>The key may be acquired via a PKCS#11 compatible hardware security token or
107 smartcard. In this case an encrypted key is stored on disk/removable media, acquired via
108 <constant>AF_UNIX</constant>, or stored in the LUKS2 JSON token metadata header. The encrypted key is
109 then decrypted by the PKCS#11 token with an RSA key stored on it, and then used to unlock the encrypted
110 volume. Use the <option>pkcs11-uri=</option> option described below to use this mechanism.</para></listitem>
111
112 <listitem><para>Similar, the key may be acquired via a FIDO2 compatible hardware security token (which
113 must implement the "hmac-secret" extension). In this case a (during enrollment) randomly generated key
114 is stored on disk/removable media, acquired via <constant>AF_UNIX</constant>, or stored in the LUKS2
115 JSON token metadata header. The random key is hashed via a keyed hash function (HMAC) on the FIDO2
116 token, using a secret key stored on the token that never leaves it. The resulting hash value is then
117 used as key to unlock the encrypted volume. Use the <option>fido2-device=</option> option described
118 below to use this mechanism.</para></listitem>
119
120 <listitem><para>Similar, the key may be acquired via a TPM2 security chip. In this case a (during
121 enrollment) randomly generated key — encrypted by an asymmetric key derived from the TPM2 chip's seed
122 key — is stored on disk/removable media, acquired via <constant>AF_UNIX</constant>, or stored in the
123 LUKS2 JSON token metadata header. Use the <option>tpm2-device=</option> option described below to use
124 this mechanism.</para></listitem>
125 </orderedlist>
126
127 <para>For the latter five mechanisms the source for the key material used for unlocking the volume is
128 primarily configured in the third field of each <filename>/etc/crypttab</filename> line, but may also
129 configured in <filename>/etc/cryptsetup-keys.d/</filename> and
130 <filename>/run/cryptsetup-keys.d/</filename> (see above) or in the LUKS2 JSON token header (in case of
131 the latter three). Use the
132 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>
133 tool to enroll PKCS#11, FIDO2 and TPM2 devices in LUKS2 volumes.</para>
134 </refsect1>
135
136 <refsect1>
137 <title>Supported Options</title>
138
139 <para>The following options may be used in the fourth field of each line:</para>
798d3a52
ZJS
140
141 <variablelist class='fstab-options'>
142
798d3a52
ZJS
143 <varlistentry>
144 <term><option>cipher=</option></term>
145
b12bd993
ZJS
146 <listitem><para>Specifies the cipher to use. See <citerefentry
147 project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
148 for possible values and the default value of this option. A cipher with unpredictable IV values, such
149 as <literal>aes-cbc-essiv:sha256</literal>, is recommended. Embedded commas in the cipher
150 specification need to be escaped by preceding them with a backslash, see example below.</para>
151 </listitem>
798d3a52
ZJS
152 </varlistentry>
153
ed3657d5
ZJS
154 <varlistentry>
155 <term><option>discard</option></term>
156
157 <listitem><para>Allow discard requests to be passed through the encrypted block
158 device. This improves performance on SSD storage but has security implications.
159 </para></listitem>
160 </varlistentry>
161
798d3a52
ZJS
162 <varlistentry>
163 <term><option>hash=</option></term>
164
165 <listitem><para>Specifies the hash to use for password
166 hashing. See
3ba3a79d 167 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
798d3a52
ZJS
168 for possible values and the default value of this
169 option.</para></listitem>
170 </varlistentry>
171
172 <varlistentry>
173 <term><option>header=</option></term>
174
175 <listitem><para>Use a detached (separated) metadata device or
176 file where the LUKS header is stored. This option is only
177 relevant for LUKS devices. See
3ba3a79d 178 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
798d3a52 179 for possible values and the default value of this
13445d97
OK
180 option.</para>
181
cf1e172d
LP
182 <para>Optionally, the path may be followed by <literal>:</literal> and an
183 <filename>/etc/fstab</filename> device specification (e.g. starting with <literal>UUID=</literal> or
184 similar); in which case, the path is relative to the device file system root. The device gets mounted
185 automatically for LUKS device activation duration only.</para></listitem>
798d3a52
ZJS
186 </varlistentry>
187
188 <varlistentry>
189 <term><option>keyfile-offset=</option></term>
190
191 <listitem><para>Specifies the number of bytes to skip at the
192 start of the key file. See
3ba3a79d 193 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
798d3a52
ZJS
194 for possible values and the default value of this
195 option.</para></listitem>
196 </varlistentry>
197
198 <varlistentry>
199 <term><option>keyfile-size=</option></term>
200
201 <listitem><para>Specifies the maximum number of bytes to read
202 from the key file. See
3ba3a79d 203 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
798d3a52
ZJS
204 for possible values and the default value of this option. This
205 option is ignored in plain encryption mode, as the key file
206 size is then given by the key size.</para></listitem>
207 </varlistentry>
208
6e41f4dd
LP
209 <varlistentry>
210 <term><option>keyfile-erase</option></term>
211
212 <listitem><para>If enabled, the specified key file is erased after the volume is activated or when
213 activation fails. This is in particular useful when the key file is only acquired transiently before
214 activation (e.g. via a file in <filename>/run/</filename>, generated by a service running before
215 activation), and shall be removed after use. Defaults to off.</para></listitem>
216 </varlistentry>
217
798d3a52
ZJS
218 <varlistentry>
219 <term><option>key-slot=</option></term>
220
221 <listitem><para>Specifies the key slot to compare the
222 passphrase or key against. If the key slot does not match the
223 given passphrase or key, but another would, the setup of the
224 device will fail regardless. This option implies
225 <option>luks</option>. See
3ba3a79d 226 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
798d3a52
ZJS
227 for possible values. The default is to try all key slots in
228 sequential order.</para></listitem>
229 </varlistentry>
230
4e133451 231 <varlistentry>
232 <term><option>keyfile-timeout=</option></term>
233
234 <listitem><para> Specifies the timeout for the device on
235 which the key file resides and falls back to a password if
236 it could not be mounted. See
237 <citerefentry><refentrytitle>systemd-cryptsetup-generator</refentrytitle><manvolnum>8</manvolnum></citerefentry>
238 for key files on external devices.
239 </para></listitem>
240 </varlistentry>
241
798d3a52
ZJS
242 <varlistentry>
243 <term><option>luks</option></term>
244
245 <listitem><para>Force LUKS mode. When this mode is used, the
246 following options are ignored since they are provided by the
247 LUKS header on the device: <option>cipher=</option>,
248 <option>hash=</option>,
249 <option>size=</option>.</para></listitem>
250 </varlistentry>
251
6cc27c29
MF
252 <varlistentry>
253 <term><option>bitlk</option></term>
254
cf1e172d
LP
255 <listitem><para>Decrypt BitLocker drive. Encryption parameters
256 are deduced by cryptsetup from BitLocker header.</para></listitem>
6cc27c29
MF
257 </varlistentry>
258
b001ad61
ZJS
259 <varlistentry>
260 <term><option>_netdev</option></term>
261
262 <listitem><para>Marks this cryptsetup device as requiring network. It will be
263 started after the network is available, similarly to
264 <citerefentry><refentrytitle>systemd.mount</refentrytitle><manvolnum>5</manvolnum></citerefentry>
265 units marked with <option>_netdev</option>. The service unit to set up this device
a0dd2097 266 will be ordered between <filename>remote-fs-pre.target</filename> and
b001ad61
ZJS
267 <filename>remote-cryptsetup.target</filename>, instead of
268 <filename>cryptsetup-pre.target</filename> and
288c2616
ZJS
269 <filename>cryptsetup.target</filename>.</para>
270
271 <para>Hint: if this device is used for a mount point that is specified in
272 <citerefentry project='man-pages'><refentrytitle>fstab</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
273 the <option>_netdev</option> option should also be used for the mount
274 point. Otherwise, a dependency loop might be created where the mount point
275 will be pulled in by <filename>local-fs.target</filename>, while the
276 service to configure the network is usually only started <emphasis>after</emphasis>
277 the local file system has been mounted.</para>
278 </listitem>
b001ad61
ZJS
279 </varlistentry>
280
798d3a52
ZJS
281 <varlistentry>
282 <term><option>noauto</option></term>
283
5d0e4851
ZJS
284 <listitem><para>This device will not be added to <filename>cryptsetup.target</filename>.
285 This means that it will not be automatically unlocked on boot, unless something else pulls
286 it in. In particular, if the device is used for a mount point, it'll be unlocked
287 automatically during boot, unless the mount point itself is also disabled with
288 <option>noauto</option>.</para></listitem>
798d3a52
ZJS
289 </varlistentry>
290
291 <varlistentry>
292 <term><option>nofail</option></term>
293
5d0e4851 294 <listitem><para>This device will not be a hard dependency of
7792d9cd 295 <filename>cryptsetup.target</filename>. It'll still be pulled in and started, but the system
5d0e4851
ZJS
296 will not wait for the device to show up and be unlocked, and boot will not fail if this is
297 unsuccessful. Note that other units that depend on the unlocked device may still fail. In
7792d9cd
AZ
298 particular, if the device is used for a mount point, the mount point itself also needs to
299 have the <option>nofail</option> option, or the boot will fail if the device is not unlocked
5d0e4851 300 successfully.</para></listitem>
798d3a52
ZJS
301 </varlistentry>
302
ed3657d5
ZJS
303 <varlistentry>
304 <term><option>offset=</option></term>
305
306 <listitem><para>Start offset in the backend device, in 512-byte sectors. This
307 option is only relevant for plain devices.</para></listitem>
308 </varlistentry>
309
798d3a52
ZJS
310 <varlistentry>
311 <term><option>plain</option></term>
312
313 <listitem><para>Force plain encryption mode.</para></listitem>
314 </varlistentry>
315
316 <varlistentry>
317 <term><option>read-only</option></term><term><option>readonly</option></term>
318
319 <listitem><para>Set up the encrypted block device in read-only
320 mode.</para></listitem>
321 </varlistentry>
322
2c65512e
YW
323 <varlistentry>
324 <term><option>same-cpu-crypt</option></term>
325
cf1e172d 326 <listitem><para>Perform encryption using the same CPU that IO was submitted on. The default is to use
2c65512e 327 an unbound workqueue so that encryption work is automatically balanced between available CPUs.</para>
e9dd6984 328
2c65512e
YW
329 <para>This requires kernel 4.0 or newer.</para>
330 </listitem>
331 </varlistentry>
332
333 <varlistentry>
334 <term><option>submit-from-crypt-cpus</option></term>
335
336 <listitem><para>Disable offloading writes to a separate thread after encryption. There are some
e9dd6984
ZJS
337 situations where offloading write requests from the encryption threads to a dedicated thread degrades
338 performance significantly. The default is to offload write requests to a dedicated thread because it
339 benefits the CFQ scheduler to have writes submitted using the same context.</para>
340
2c65512e
YW
341 <para>This requires kernel 4.0 or newer.</para>
342 </listitem>
343 </varlistentry>
344
227acf00
JU
345 <varlistentry>
346 <term><option>no-read-workqueue</option></term>
347
348 <listitem><para>Bypass dm-crypt internal workqueue and process read requests synchronously. The
349 default is to queue these requests and process them asynchronously.</para>
350
351 <para>This requires kernel 5.9 or newer.</para>
352 </listitem>
353 </varlistentry>
354 <varlistentry>
355 <term><option>no-write-workqueue</option></term>
356
357 <listitem><para>Bypass dm-crypt internal workqueue and process write requests synchronously. The
358 default is to queue these requests and process them asynchronously.</para>
359
360 <para>This requires kernel 5.9 or newer.</para>
361 </listitem>
362 </varlistentry>
363
ed3657d5
ZJS
364 <varlistentry>
365 <term><option>skip=</option></term>
366
367 <listitem><para>How many 512-byte sectors of the encrypted data to skip at the
368 beginning. This is different from the <option>offset=</option> option with respect
369 to the sector numbers used in initialization vector (IV) calculation. Using
370 <option>offset=</option> will shift the IV calculation by the same negative
371 amount. Hence, if <option>offset=<replaceable>n</replaceable></option> is given,
372 sector <replaceable>n</replaceable> will get a sector number of 0 for the IV
373 calculation. Using <option>skip=</option> causes sector
374 <replaceable>n</replaceable> to also be the first sector of the mapped device, but
375 with its number for IV generation being <replaceable>n</replaceable>.</para>
376
377 <para>This option is only relevant for plain devices.</para>
378 </listitem>
379 </varlistentry>
380
798d3a52
ZJS
381 <varlistentry>
382 <term><option>size=</option></term>
383
384 <listitem><para>Specifies the key size in bits. See
3ba3a79d 385 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
798d3a52
ZJS
386 for possible values and the default value of this
387 option.</para></listitem>
388 </varlistentry>
389
a9fc6406
DJL
390 <varlistentry>
391 <term><option>sector-size=</option></term>
392
393 <listitem><para>Specifies the sector size in bytes. See
394 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
395 for possible values and the default value of this
396 option.</para></listitem>
397 </varlistentry>
398
798d3a52
ZJS
399 <varlistentry>
400 <term><option>swap</option></term>
401
402 <listitem><para>The encrypted block device will be used as a
403 swap device, and will be formatted accordingly after setting
404 up the encrypted block device, with
405 <citerefentry project='man-pages'><refentrytitle>mkswap</refentrytitle><manvolnum>8</manvolnum></citerefentry>.
406 This option implies <option>plain</option>.</para>
407
408 <para>WARNING: Using the <option>swap</option> option will
409 destroy the contents of the named partition during every boot,
410 so make sure the underlying block device is specified
411 correctly.</para></listitem>
412 </varlistentry>
413
414 <varlistentry>
415 <term><option>tcrypt</option></term>
416
417 <listitem><para>Use TrueCrypt encryption mode. When this mode
418 is used, the following options are ignored since they are
419 provided by the TrueCrypt header on the device or do not
420 apply:
421 <option>cipher=</option>,
422 <option>hash=</option>,
423 <option>keyfile-offset=</option>,
424 <option>keyfile-size=</option>,
425 <option>size=</option>.</para>
426
427 <para>When this mode is used, the passphrase is read from the
428 key file given in the third field. Only the first line of this
429 file is read, excluding the new line character.</para>
430
431 <para>Note that the TrueCrypt format uses both passphrase and
432 key files to derive a password for the volume. Therefore, the
433 passphrase and all key files need to be provided. Use
434 <option>tcrypt-keyfile=</option> to provide the absolute path
435 to all key files. When using an empty passphrase in
436 combination with one or more key files, use
437 <literal>/dev/null</literal> as the password file in the third
438 field.</para></listitem>
439 </varlistentry>
440
441 <varlistentry>
442 <term><option>tcrypt-hidden</option></term>
443
444 <listitem><para>Use the hidden TrueCrypt volume. This option
445 implies <option>tcrypt</option>.</para>
446
447 <para>This will map the hidden volume that is inside of the
448 volume provided in the second field. Please note that there is
449 no protection for the hidden volume if the outer volume is
450 mounted instead. See
3ba3a79d 451 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>
798d3a52
ZJS
452 for more information on this limitation.</para></listitem>
453 </varlistentry>
454
455 <varlistentry>
456 <term><option>tcrypt-keyfile=</option></term>
457
458 <listitem><para>Specifies the absolute path to a key file to
459 use for a TrueCrypt volume. This implies
460 <option>tcrypt</option> and can be used more than once to
461 provide several key files.</para>
462
463 <para>See the entry for <option>tcrypt</option> on the
464 behavior of the passphrase and key files when using TrueCrypt
465 encryption mode.</para></listitem>
466 </varlistentry>
467
468 <varlistentry>
469 <term><option>tcrypt-system</option></term>
470
471 <listitem><para>Use TrueCrypt in system encryption mode. This
472 option implies <option>tcrypt</option>.</para></listitem>
473 </varlistentry>
474
52028838
GH
475 <varlistentry>
476 <term><option>tcrypt-veracrypt</option></term>
477
478 <listitem><para>Check for a VeraCrypt volume. VeraCrypt is a fork of
479 TrueCrypt that is mostly compatible, but uses different, stronger key
480 derivation algorithms that cannot be detected without this flag.
481 Enabling this option could substantially slow down unlocking, because
482 VeraCrypt's key derivation takes much longer than TrueCrypt's. This
483 option implies <option>tcrypt</option>.</para></listitem>
484 </varlistentry>
485
798d3a52
ZJS
486 <varlistentry>
487 <term><option>timeout=</option></term>
488
489 <listitem><para>Specifies the timeout for querying for a
490 password. If no unit is specified, seconds is used. Supported
491 units are s, ms, us, min, h, d. A timeout of 0 waits
492 indefinitely (which is the default).</para></listitem>
493 </varlistentry>
494
798d3a52 495 <varlistentry>
53ac130b 496 <term><option>tmp=</option></term>
798d3a52 497
53ac130b
LP
498 <listitem><para>The encrypted block device will be prepared for using it as
499 <filename>/tmp/</filename>; it will be formatted using <citerefentry
500 project='man-pages'><refentrytitle>mkfs</refentrytitle><manvolnum>8</manvolnum></citerefentry>. Takes
501 a file system type as argument, such as <literal>ext4</literal>, <literal>xfs</literal> or
502 <literal>btrfs</literal>. If no argument is specified defaults to <literal>ext4</literal>. This
503 option implies <option>plain</option>.</para>
798d3a52 504
53ac130b
LP
505 <para>WARNING: Using the <option>tmp</option> option will destroy the contents of the named partition
506 during every boot, so make sure the underlying block device is specified correctly.</para></listitem>
798d3a52
ZJS
507 </varlistentry>
508
509 <varlistentry>
510 <term><option>tries=</option></term>
511
512 <listitem><para>Specifies the maximum number of times the user
513 is queried for a password. The default is 3. If set to 0, the
514 user is queried for a password indefinitely.</para></listitem>
515 </varlistentry>
516
cd5f57bd
LB
517 <varlistentry>
518 <term><option>headless=</option></term>
519
520 <listitem><para>Takes a boolean argument, defaults to false. If true, never query interactively
521 for the password/PIN. Useful for headless systems.</para></listitem>
522 </varlistentry>
523
798d3a52
ZJS
524 <varlistentry>
525 <term><option>verify</option></term>
526
c2d54475
LP
527 <listitem><para>If the encryption password is read from console, it has to be entered twice to
528 prevent typos.</para></listitem>
529 </varlistentry>
530
1fa94a31
SB
531 <varlistentry>
532 <term><option>silent</option></term>
533
534 <listitem><para>If the encryption password is read from console, no asterisks will be shown
535 while typing the password.</para></listitem>
536 </varlistentry>
537
c2d54475
LP
538 <varlistentry>
539 <term><option>pkcs11-uri=</option></term>
540
cf1e172d
LP
541 <listitem><para>Takes either the special value <literal>auto</literal> or an <ulink
542 url="https://tools.ietf.org/html/rfc7512">RFC7512 PKCS#11 URI</ulink> pointing to a private RSA key
543 which is used to decrypt the encrypted key specified in the third column of the line. This is useful
544 for unlocking encrypted volumes through PKCS#11 compatible security tokens or smartcards. See below
545 for an example how to set up this mechanism for unlocking a LUKS2 volume with a YubiKey security
546 token.</para>
547
548 <para>If specified as <literal>auto</literal> the volume must be of type LUKS2 and must carry PKCS#11
549 security token metadata in its LUKS2 JSON token section. In this mode the URI and the encrypted key
550 are automatically read from the LUKS2 JSON token header. Use
551 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>
552 as simple tool for enrolling PKCS#11 security tokens or smartcards in a way compatible with
553 <literal>auto</literal>. In this mode the third column of the line should remain empty (that is,
554 specified as <literal>-</literal>).</para>
555
556 <para>The specified URI can refer directly to a private RSA key stored on a token or alternatively
2ccf0ff6 557 just to a slot or token, in which case a search for a suitable private RSA key will be performed. In
cf1e172d
LP
558 this case if multiple suitable objects are found the token is refused. The encrypted key configured
559 in the third column of the line is passed as is (i.e. in binary form, unprocessed) to RSA
560 decryption. The resulting decrypted key is then Base64 encoded before it is used to unlock the LUKS
561 volume.</para>
562
563 <para>Use <command>systemd-cryptenroll --pkcs11-token-uri=list</command> to list all suitable PKCS#11
564 security tokens currently plugged in, along with their URIs.</para>
565
566 <para>Note that many newer security tokens that may be used as PKCS#11 security token typically also
567 implement the newer and simpler FIDO2 standard. Consider using <option>fido2-device=</option>
568 (described below) to enroll it via FIDO2 instead. Note that a security token enrolled via PKCS#11
569 cannot be used to unlock the volume via FIDO2, unless also enrolled via FIDO2, and vice
570 versa.</para></listitem>
571 </varlistentry>
572
573 <varlistentry>
574 <term><option>fido2-device=</option></term>
575
576 <listitem><para>Takes either the special value <literal>auto</literal> or the path to a
577 <literal>hidraw</literal> device node (e.g. <filename>/dev/hidraw1</filename>) referring to a FIDO2
578 security token that implements the <literal>hmac-secret</literal> extension (most current hardware
579 security tokens do). See below for an example how to set up this mechanism for unlocking an encrypted
580 volume with a FIDO2 security token.</para>
581
582 <para>If specified as <literal>auto</literal> the FIDO2 token device is automatically discovered, as
583 it is plugged in.</para>
584
585 <para>FIDO2 volume unlocking requires a client ID hash (CID) to be configured via
586 <option>fido2-cid=</option> (see below) and a key to pass to the security token's HMAC functionality
587 (configured in the line's third column) to operate. If not configured and the volume is of type
588 LUKS2, the CID and the key are read from LUKS2 JSON token metadata instead. Use
589 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>
590 as simple tool for enrolling FIDO2 security tokens, compatible with this automatic mode, which is
591 only available for LUKS2 volumes.</para>
592
593 <para>Use <command>systemd-cryptenroll --fido2-device=list</command> to list all suitable FIDO2
594 security tokens currently plugged in, along with their device nodes.</para>
595
596 <para>This option implements the following mechanism: the configured key is hashed via they HMAC
597 keyed hash function the FIDO2 device implements, keyed by a secret key embedded on the device. The
598 resulting hash value is Base64 encoded and used to unlock the LUKS2 volume. As it should not be
599 possible to extract the secret from the hardware token, it should not be possible to retrieve the
600 hashed key given the configured key — without possessing the hardware token.</para>
601
602 <para>Note that many security tokens that implement FIDO2 also implement PKCS#11, suitable for
603 unlocking volumes via the <option>pkcs11-uri=</option> option described above. Typically the newer,
604 simpler FIDO2 standard is preferable.</para></listitem>
605 </varlistentry>
606
607 <varlistentry>
608 <term><option>fido2-cid=</option></term>
609
610 <listitem><para>Takes a Base64 encoded FIDO2 client ID to use for the FIDO2 unlock operation. If
611 specified, but <option>fido2-device=</option> is not, <option>fido2-device=auto</option> is
612 implied. If <option>fido2-device=</option> is used but <option>fido2-cid=</option> is not, the volume
613 must be of LUKS2 type, and the CID is read from the LUKS2 JSON token header. Use
614 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>
615 for enrolling a FIDO2 token in the LUKS2 header compatible with this automatic
616 mode.</para></listitem>
617 </varlistentry>
618
619 <varlistentry>
620 <term><option>fido2-rp=</option></term>
621
622 <listitem><para>Takes a string, configuring the FIDO2 Relying Party (rp) for the FIDO2 unlock
623 operation. If not specified <literal>io.systemd.cryptsetup</literal> is used, except if the the LUKS2
624 JSON token header contains a different value. It should normally not be necessary to override
625 this.</para></listitem>
626 </varlistentry>
627
628 <varlistentry>
629 <term><option>tpm2-device=</option></term>
630
631 <listitem><para>Takes either the special value <literal>auto</literal> or the path to a device node
632 (e.g. <filename>/dev/tpmrm0</filename>) referring to a TPM2 security chip. See below for an example
633 how to set up this mechanism for unlocking an encrypted volume with a TPM2 chip.</para>
634
635 <para>Use <option>tpm2-pcrs=</option> (see below) to configure the set of TPM2 PCRs to bind the
636 volume unlocking to. Use
637 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>
638 as simple tool for enrolling TPM2 security chips in LUKS2 volumes.</para>
639
640 <para>If specified as <literal>auto</literal> the TPM2 device is automatically discovered. Use
641 <command>systemd-cryptenroll --tpm2-device=list</command> to list all suitable TPM2 devices currently
642 available, along with their device nodes.</para>
643
644 <para>This option implements the following mechanism: when enrolling a TPM2 device via
645 <command>systemd-cryptenroll</command> on a LUKS2 volume, a randomized key unlocking the volume is
646 generated on the host and loaded into the TPM2 chip where it is encrypted with an asymmetric
647 "primary" key pair derived from the TPM2's internal "seed" key. Neither the seed key nor the primary
648 key are permitted to ever leave the TPM2 chip — however, the now encrypted randomized key may. It is
649 saved in the LUKS2 volume JSON token header. When unlocking the encrypted volume, the primary key
650 pair is generated on the TPM2 chip again (which works as long as the chip's seed key is correctly
651 maintained by the TPM2 chip), which is then used to decrypt (on the TPM2 chip) the encrypted key from
652 the LUKS2 volume JSON token header saved there during enrollment. The resulting decrypted key is then
653 used to unlock the volume. When the randomized key is encrypted the current values of the selected
654 PCRs (see below) are included in the operation, so that different PCR state results in different
655 encrypted keys and the decrypted key can only be recovered if the same PCR state is
656 reproduced.</para></listitem>
657 </varlistentry>
658
659 <varlistentry>
660 <term><option>tpm2-pcrs=</option></term>
661
662 <listitem><para>Takes a comma separated list of numeric TPM2 PCR (i.e. "Platform Configuration
663 Register") indexes to bind the TPM2 volume unlocking to. This option is only useful when TPM2
664 enrollment metadata is not available in the LUKS2 JSON token header already, the way
665 <command>systemd-cryptenroll</command> writes it there. If not used (and no metadata in the LUKS2
666 JSON token header defines it), defaults to a list of a single entry: PCR 7. Assign an empty string to
667 encode a policy that binds the key to no PCRs, making the key accessible to local programs regardless
668 of the current PCR state.</para></listitem>
798d3a52
ZJS
669 </varlistentry>
670
6e41f4dd
LP
671 <varlistentry>
672 <term><option>try-empty-password=</option></term>
673
674 <listitem><para>Takes a boolean argument. If enabled, right before asking the user for a password it
675 is first attempted to unlock the volume with an empty password. This is useful for systems that are
676 initialized with an encrypted volume with only an empty password set, which shall be replaced with a
677 suitable password during first boot, but after activation.</para></listitem>
678 </varlistentry>
679
ed3657d5
ZJS
680 <varlistentry>
681 <term><option>x-systemd.device-timeout=</option></term>
682
683 <listitem><para>Specifies how long systemd should wait for a device to show up
684 before giving up on the entry. The argument is a time in seconds or explicitly
685 specified units of
686 <literal>s</literal>,
687 <literal>min</literal>,
688 <literal>h</literal>,
689 <literal>ms</literal>.
690 </para></listitem>
691 </varlistentry>
692
1dc85eff
FB
693 <varlistentry>
694 <term><option>x-initrd.attach</option></term>
695
696 <listitem><para>Setup this encrypted block device in the initramfs, similarly to
697 <citerefentry><refentrytitle>systemd.mount</refentrytitle><manvolnum>5</manvolnum></citerefentry>
698 units marked with <option>x-initrd.mount</option>.</para>
699
700 <para>Although it's not necessary to mark the mount entry for the root file system with
701 <option>x-initrd.mount</option>, <option>x-initrd.attach</option> is still recommended with
702 the encrypted block device containing the root file system as otherwise systemd will
703 attempt to detach the device during the regular system shutdown while it's still in
704 use. With this option the device will still be detached but later after the root file
705 system is unmounted.</para>
706
707 <para>All other encrypted block devices that contain file systems mounted in the initramfs
708 should use this option.</para>
709 </listitem>
710 </varlistentry>
711
798d3a52
ZJS
712 </variablelist>
713
714 <para>At early boot and when the system manager configuration is
715 reloaded, this file is translated into native systemd units by
716 <citerefentry><refentrytitle>systemd-cryptsetup-generator</refentrytitle><manvolnum>8</manvolnum></citerefentry>.</para>
717 </refsect1>
718
96e9a9a4
LP
719 <refsect1>
720 <title><constant>AF_UNIX</constant> Key Files</title>
721
722 <para>If the key file path (as specified in the third column of <filename>/etc/crypttab</filename>
723 entries, see above) refers to an <constant>AF_UNIX</constant> stream socket in the file system, the key
724 is acquired by connecting to the socket and reading the key from the connection. The connection is made
725 from an <constant>AF_UNIX</constant> socket name in the abstract namespace, see <citerefentry
726 project='man-pages'><refentrytitle>unix</refentrytitle><manvolnum>7</manvolnum></citerefentry> for
727 details. The source socket name is chosen according the following format:</para>
728
729 <programlisting><constant>NUL</constant> <replaceable>RANDOM</replaceable> <literal>/cryptsetup/</literal> <replaceable>VOLUME</replaceable></programlisting>
730
731 <para>In other words: a <constant>NUL</constant> byte (as required for abstract namespace sockets),
cf1e172d 732 followed by a random string (consisting of alphanumeric characters only), followed by the literal
96e9a9a4
LP
733 string <literal>/cryptsetup/</literal>, followed by the name of the volume to acquire they key
734 for. Example (for a volume <literal>myvol</literal>):</para>
735
736 <example><programlisting>\0d7067f78d9827418/cryptsetup/myvol</programlisting></example>
737
738 <para>Services listening on the <constant>AF_UNIX</constant> stream socket may query the source socket
739 name with <citerefentry
740 project='man-pages'><refentrytitle>getpeername</refentrytitle><manvolnum>2</manvolnum></citerefentry>,
741 and use it to determine which key to send, allowing a single listening socket to serve keys for a
cf1e172d
LP
742 multitude of volumes. If the PKCS#11 logic is used (see above) the socket source name is picked in
743 identical fashion, except that the literal string <literal>/cryptsetup-pkcs11/</literal> is used (similar
744 for FIDO2: <literal>/cryptsetup-fido2/</literal> and TPM2: <literal>/cryptsetup-tpm2/</literal>). This is
96e9a9a4 745 done so that services providing key material know that not a secret key is requested but an encrypted key
cf1e172d 746 that will be decrypted via the PKCS#11/FIDO2/TPM2 logic to acquire the final secret key.</para>
96e9a9a4 747 </refsect1>
cf1e172d 748
798d3a52 749 <refsect1>
c2d54475 750 <title>Examples</title>
798d3a52
ZJS
751 <example>
752 <title>/etc/crypttab example</title>
b12bd993
ZJS
753 <para>Set up four encrypted block devices. One using LUKS for normal storage, another one for usage as
754 a swap device and two TrueCrypt volumes. For the fourth device, the option string is interpreted as two
755 options <literal>cipher=xchacha12,aes-adiantum-plain64</literal>,
756 <literal>keyfile-timeout=10s</literal>.</para>
798d3a52
ZJS
757
758 <programlisting>luks UUID=2505567a-9e27-4efe-a4d5-15ad146c258b
759swap /dev/sda7 /dev/urandom swap
8cf3ca80 760truecrypt /dev/sda2 /etc/container_password tcrypt
4e133451 761hidden /mnt/tc_hidden /dev/null tcrypt-hidden,tcrypt-keyfile=/etc/keyfile
b12bd993
ZJS
762external /dev/sda3 keyfile:LABEL=keydev keyfile-timeout=10s,cipher=xchacha12\,aes-adiantum-plain64
763</programlisting>
798d3a52 764 </example>
c2d54475
LP
765
766 <example>
cf1e172d 767 <title>Yubikey-based PKCS#11 Volume Unlocking Example</title>
c2d54475
LP
768
769 <para>The PKCS#11 logic allows hooking up any compatible security token that is capable of storing RSA
cf1e172d
LP
770 decryption keys for unlocking an encrypted volume. Here's an example how to set up a Yubikey security
771 token for this purpose on a LUKS2 volume, using <citerefentry
772 project='debian'><refentrytitle>ykmap</refentrytitle><manvolnum>1</manvolnum></citerefentry> from the
773 yubikey-manager project to initialize the token and
774 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>
775 to add it in the LUKS2 volume:</para>
c2d54475
LP
776
777<programlisting><xi:include href="yubikey-crypttab.sh" parse="text" /></programlisting>
778
cf1e172d
LP
779 <para>A few notes on the above:</para>
780
781 <itemizedlist>
782 <listitem><para>We use RSA2048, which is the longest key size current Yubikeys support</para></listitem>
783 <listitem><para>We use Yubikey key slot 9d, since that's apparently the keyslot to use for decryption purposes,
784 <ulink url="https://developers.yubico.com/PIV/Introduction/Certificate_slots.html">see
785 documentation</ulink>.</para></listitem>
786 </itemizedlist>
787 </example>
788
789 <example>
790 <title>FIDO2 Volume Unlocking Example</title>
791
792 <para>The FIDO2 logic allows using any compatible FIDO2 security token that implements the
793 <literal>hmac-secret</literal> extension for unlocking an encrypted volume. Here's an example how to
794 set up a FIDO2 security token for this purpose for a LUKS2 volume, using
795 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>:</para>
796
797<programlisting><xi:include href="fido2-crypttab.sh" parse="text" /></programlisting>
798 </example>
799
800 <example>
801 <title>TPM2 Volume Unlocking Example</title>
c2d54475 802
cf1e172d
LP
803 <para>The TPM2 logic allows using any TPM2 chip supported by the Linux kernel for unlocking an
804 encrypted volume. Here's an example how to set up a TPM2 chip for this purpose for a LUKS2 volume,
805 using
806 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>:</para>
c2d54475 807
cf1e172d 808<programlisting><xi:include href="tpm2-crypttab.sh" parse="text" /></programlisting>
c2d54475 809 </example>
798d3a52
ZJS
810 </refsect1>
811
812 <refsect1>
813 <title>See Also</title>
814 <para>
815 <citerefentry><refentrytitle>systemd</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
816 <citerefentry><refentrytitle>systemd-cryptsetup@.service</refentrytitle><manvolnum>8</manvolnum></citerefentry>,
817 <citerefentry><refentrytitle>systemd-cryptsetup-generator</refentrytitle><manvolnum>8</manvolnum></citerefentry>,
cf1e172d 818 <citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
288c2616 819 <citerefentry project='man-pages'><refentrytitle>fstab</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
3ba3a79d 820 <citerefentry project='die-net'><refentrytitle>cryptsetup</refentrytitle><manvolnum>8</manvolnum></citerefentry>,
798d3a52
ZJS
821 <citerefentry project='man-pages'><refentrytitle>mkswap</refentrytitle><manvolnum>8</manvolnum></citerefentry>,
822 <citerefentry project='man-pages'><refentrytitle>mke2fs</refentrytitle><manvolnum>8</manvolnum></citerefentry>
823 </para>
824 </refsect1>
45ae1a05
LP
825
826</refentry>