]> git.ipfire.org Git - thirdparty/systemd.git/blame - src/core/cgroup.c
util-lib: move yes_no() and friends to string-util.h
[thirdparty/systemd.git] / src / core / cgroup.c
CommitLineData
53e1b683 1/* SPDX-License-Identifier: LGPL-2.1+ */
8e274523 2
c6c18be3 3#include <fcntl.h>
e41969e3 4#include <fnmatch.h>
8c6db833 5
afcfaa69
LP
6#include "sd-messages.h"
7
b5efdb8a 8#include "alloc-util.h"
18c528e9 9#include "blockdev-util.h"
d8b4d14d 10#include "bpf-devices.h"
906c06f6 11#include "bpf-firewall.h"
45c2e068 12#include "btrfs-util.h"
6592b975 13#include "bus-error.h"
03a7b521 14#include "cgroup-util.h"
3ffd4af2
LP
15#include "cgroup.h"
16#include "fd-util.h"
0d39fa9c 17#include "fileio.h"
77601719 18#include "fs-util.h"
d8b4d14d 19#include "nulstr-util.h"
6bedfcbb 20#include "parse-util.h"
9eb977db 21#include "path-util.h"
03a7b521 22#include "process-util.h"
c36a69f4 23#include "procfs-util.h"
9444b1f2 24#include "special.h"
74c48bf5 25#include "stat-util.h"
906c06f6 26#include "stdio-util.h"
8b43440b 27#include "string-table.h"
07630cea 28#include "string-util.h"
cc6271f1 29#include "virt.h"
8e274523 30
10f28641 31#define CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
9a054909 32
39b9fefb
LP
33/* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
34 * problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
35 * out specific attributes from us. */
36#define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
37
611c4f8a 38bool manager_owns_host_root_cgroup(Manager *m) {
cc6271f1
LP
39 assert(m);
40
41 /* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
42 * group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
43 * appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
44 * we run in any kind of container virtualization. */
45
28cfdc5a
LP
46 if (MANAGER_IS_USER(m))
47 return false;
48
cc6271f1
LP
49 if (detect_container() > 0)
50 return false;
51
57ea45e1 52 return empty_or_root(m->cgroup_root);
cc6271f1
LP
53}
54
611c4f8a 55bool unit_has_host_root_cgroup(Unit *u) {
f3725e64
LP
56 assert(u);
57
cc6271f1
LP
58 /* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
59 * the manager manages the root cgroup. */
f3725e64 60
611c4f8a 61 if (!manager_owns_host_root_cgroup(u->manager))
f3725e64
LP
62 return false;
63
cc6271f1 64 return unit_has_name(u, SPECIAL_ROOT_SLICE);
f3725e64
LP
65}
66
293d32df
LP
67static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
68 int r;
69
70 r = cg_set_attribute(controller, u->cgroup_path, attribute, value);
71 if (r < 0)
72 log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
73 strna(attribute), isempty(u->cgroup_path) ? "/" : u->cgroup_path, (int) strcspn(value, NEWLINE), value);
74
75 return r;
76}
77
2b40998d 78static void cgroup_compat_warn(void) {
128fadc9
TH
79 static bool cgroup_compat_warned = false;
80
81 if (cgroup_compat_warned)
82 return;
83
cc6271f1
LP
84 log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
85 "See cgroup-compat debug messages for details.");
86
128fadc9
TH
87 cgroup_compat_warned = true;
88}
89
90#define log_cgroup_compat(unit, fmt, ...) do { \
91 cgroup_compat_warn(); \
92 log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
2b40998d 93 } while (false)
128fadc9 94
4ad49000
LP
95void cgroup_context_init(CGroupContext *c) {
96 assert(c);
97
de8a711a 98 /* Initialize everything to the kernel defaults. */
4ad49000 99
de8a711a
LP
100 *c = (CGroupContext) {
101 .cpu_weight = CGROUP_WEIGHT_INVALID,
102 .startup_cpu_weight = CGROUP_WEIGHT_INVALID,
103 .cpu_quota_per_sec_usec = USEC_INFINITY,
10f28641 104 .cpu_quota_period_usec = USEC_INFINITY,
66ebf6c0 105
de8a711a
LP
106 .cpu_shares = CGROUP_CPU_SHARES_INVALID,
107 .startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
d53d9474 108
de8a711a
LP
109 .memory_high = CGROUP_LIMIT_MAX,
110 .memory_max = CGROUP_LIMIT_MAX,
111 .memory_swap_max = CGROUP_LIMIT_MAX,
da4d897e 112
de8a711a 113 .memory_limit = CGROUP_LIMIT_MAX,
b2f8b02e 114
de8a711a
LP
115 .io_weight = CGROUP_WEIGHT_INVALID,
116 .startup_io_weight = CGROUP_WEIGHT_INVALID,
13c31542 117
de8a711a
LP
118 .blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
119 .startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
d53d9474 120
de8a711a
LP
121 .tasks_max = CGROUP_LIMIT_MAX,
122 };
4ad49000 123}
8e274523 124
4ad49000
LP
125void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
126 assert(c);
127 assert(a);
128
71fda00f 129 LIST_REMOVE(device_allow, c->device_allow, a);
4ad49000
LP
130 free(a->path);
131 free(a);
132}
133
13c31542
TH
134void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
135 assert(c);
136 assert(w);
137
138 LIST_REMOVE(device_weights, c->io_device_weights, w);
139 free(w->path);
140 free(w);
141}
142
6ae4283c
TH
143void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
144 assert(c);
145 assert(l);
146
147 LIST_REMOVE(device_latencies, c->io_device_latencies, l);
148 free(l->path);
149 free(l);
150}
151
13c31542
TH
152void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
153 assert(c);
154 assert(l);
155
156 LIST_REMOVE(device_limits, c->io_device_limits, l);
157 free(l->path);
158 free(l);
159}
160
4ad49000
LP
161void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
162 assert(c);
163 assert(w);
164
71fda00f 165 LIST_REMOVE(device_weights, c->blockio_device_weights, w);
4ad49000
LP
166 free(w->path);
167 free(w);
168}
169
170void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
171 assert(c);
8e274523 172 assert(b);
8e274523 173
71fda00f 174 LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
4ad49000
LP
175 free(b->path);
176 free(b);
177}
178
179void cgroup_context_done(CGroupContext *c) {
180 assert(c);
181
13c31542
TH
182 while (c->io_device_weights)
183 cgroup_context_free_io_device_weight(c, c->io_device_weights);
184
6ae4283c
TH
185 while (c->io_device_latencies)
186 cgroup_context_free_io_device_latency(c, c->io_device_latencies);
187
13c31542
TH
188 while (c->io_device_limits)
189 cgroup_context_free_io_device_limit(c, c->io_device_limits);
190
4ad49000
LP
191 while (c->blockio_device_weights)
192 cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
193
194 while (c->blockio_device_bandwidths)
195 cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
196
197 while (c->device_allow)
198 cgroup_context_free_device_allow(c, c->device_allow);
6a48d82f
DM
199
200 c->ip_address_allow = ip_address_access_free_all(c->ip_address_allow);
201 c->ip_address_deny = ip_address_access_free_all(c->ip_address_deny);
fab34748
KL
202
203 c->ip_filters_ingress = strv_free(c->ip_filters_ingress);
204 c->ip_filters_egress = strv_free(c->ip_filters_egress);
4ad49000
LP
205}
206
207void cgroup_context_dump(CGroupContext *c, FILE* f, const char *prefix) {
25cc30c4 208 _cleanup_free_ char *disable_controllers_str = NULL;
13c31542
TH
209 CGroupIODeviceLimit *il;
210 CGroupIODeviceWeight *iw;
6ae4283c 211 CGroupIODeviceLatency *l;
4ad49000
LP
212 CGroupBlockIODeviceBandwidth *b;
213 CGroupBlockIODeviceWeight *w;
214 CGroupDeviceAllow *a;
c21c9906 215 IPAddressAccessItem *iaai;
fab34748 216 char **path;
9a054909 217 char u[FORMAT_TIMESPAN_MAX];
10f28641 218 char v[FORMAT_TIMESPAN_MAX];
4ad49000
LP
219
220 assert(c);
221 assert(f);
222
223 prefix = strempty(prefix);
224
25cc30c4
AZ
225 (void) cg_mask_to_string(c->disable_controllers, &disable_controllers_str);
226
4ad49000
LP
227 fprintf(f,
228 "%sCPUAccounting=%s\n"
13c31542 229 "%sIOAccounting=%s\n"
4ad49000
LP
230 "%sBlockIOAccounting=%s\n"
231 "%sMemoryAccounting=%s\n"
d53d9474 232 "%sTasksAccounting=%s\n"
c21c9906 233 "%sIPAccounting=%s\n"
66ebf6c0
TH
234 "%sCPUWeight=%" PRIu64 "\n"
235 "%sStartupCPUWeight=%" PRIu64 "\n"
d53d9474
LP
236 "%sCPUShares=%" PRIu64 "\n"
237 "%sStartupCPUShares=%" PRIu64 "\n"
b2f8b02e 238 "%sCPUQuotaPerSecSec=%s\n"
10f28641 239 "%sCPUQuotaPeriodSec=%s\n"
13c31542
TH
240 "%sIOWeight=%" PRIu64 "\n"
241 "%sStartupIOWeight=%" PRIu64 "\n"
d53d9474
LP
242 "%sBlockIOWeight=%" PRIu64 "\n"
243 "%sStartupBlockIOWeight=%" PRIu64 "\n"
7ad5439e 244 "%sDefaultMemoryMin=%" PRIu64 "\n"
c52db42b 245 "%sDefaultMemoryLow=%" PRIu64 "\n"
48422635 246 "%sMemoryMin=%" PRIu64 "\n"
da4d897e
TH
247 "%sMemoryLow=%" PRIu64 "\n"
248 "%sMemoryHigh=%" PRIu64 "\n"
249 "%sMemoryMax=%" PRIu64 "\n"
96e131ea 250 "%sMemorySwapMax=%" PRIu64 "\n"
4ad49000 251 "%sMemoryLimit=%" PRIu64 "\n"
03a7b521 252 "%sTasksMax=%" PRIu64 "\n"
a931ad47 253 "%sDevicePolicy=%s\n"
25cc30c4 254 "%sDisableControllers=%s\n"
a931ad47 255 "%sDelegate=%s\n",
4ad49000 256 prefix, yes_no(c->cpu_accounting),
13c31542 257 prefix, yes_no(c->io_accounting),
4ad49000
LP
258 prefix, yes_no(c->blockio_accounting),
259 prefix, yes_no(c->memory_accounting),
d53d9474 260 prefix, yes_no(c->tasks_accounting),
c21c9906 261 prefix, yes_no(c->ip_accounting),
66ebf6c0
TH
262 prefix, c->cpu_weight,
263 prefix, c->startup_cpu_weight,
4ad49000 264 prefix, c->cpu_shares,
95ae05c0 265 prefix, c->startup_cpu_shares,
b1d6dcf5 266 prefix, format_timespan(u, sizeof(u), c->cpu_quota_per_sec_usec, 1),
10f28641 267 prefix, format_timespan(v, sizeof(v), c->cpu_quota_period_usec, 1),
13c31542
TH
268 prefix, c->io_weight,
269 prefix, c->startup_io_weight,
4ad49000 270 prefix, c->blockio_weight,
95ae05c0 271 prefix, c->startup_blockio_weight,
7ad5439e 272 prefix, c->default_memory_min,
c52db42b 273 prefix, c->default_memory_low,
48422635 274 prefix, c->memory_min,
da4d897e
TH
275 prefix, c->memory_low,
276 prefix, c->memory_high,
277 prefix, c->memory_max,
96e131ea 278 prefix, c->memory_swap_max,
4ad49000 279 prefix, c->memory_limit,
03a7b521 280 prefix, c->tasks_max,
a931ad47 281 prefix, cgroup_device_policy_to_string(c->device_policy),
f4c43a81 282 prefix, strempty(disable_controllers_str),
a931ad47 283 prefix, yes_no(c->delegate));
4ad49000 284
02638280
LP
285 if (c->delegate) {
286 _cleanup_free_ char *t = NULL;
287
288 (void) cg_mask_to_string(c->delegate_controllers, &t);
289
47a78d41 290 fprintf(f, "%sDelegateControllers=%s\n",
02638280
LP
291 prefix,
292 strempty(t));
293 }
294
4ad49000
LP
295 LIST_FOREACH(device_allow, a, c->device_allow)
296 fprintf(f,
297 "%sDeviceAllow=%s %s%s%s\n",
298 prefix,
299 a->path,
300 a->r ? "r" : "", a->w ? "w" : "", a->m ? "m" : "");
301
13c31542
TH
302 LIST_FOREACH(device_weights, iw, c->io_device_weights)
303 fprintf(f,
6ae4283c 304 "%sIODeviceWeight=%s %" PRIu64 "\n",
13c31542
TH
305 prefix,
306 iw->path,
307 iw->weight);
308
6ae4283c
TH
309 LIST_FOREACH(device_latencies, l, c->io_device_latencies)
310 fprintf(f,
311 "%sIODeviceLatencyTargetSec=%s %s\n",
312 prefix,
313 l->path,
314 format_timespan(u, sizeof(u), l->target_usec, 1));
315
13c31542
TH
316 LIST_FOREACH(device_limits, il, c->io_device_limits) {
317 char buf[FORMAT_BYTES_MAX];
9be57249
TH
318 CGroupIOLimitType type;
319
320 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
321 if (il->limits[type] != cgroup_io_limit_defaults[type])
322 fprintf(f,
323 "%s%s=%s %s\n",
324 prefix,
325 cgroup_io_limit_type_to_string(type),
326 il->path,
327 format_bytes(buf, sizeof(buf), il->limits[type]));
13c31542
TH
328 }
329
4ad49000
LP
330 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
331 fprintf(f,
d53d9474 332 "%sBlockIODeviceWeight=%s %" PRIu64,
4ad49000
LP
333 prefix,
334 w->path,
335 w->weight);
336
337 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
338 char buf[FORMAT_BYTES_MAX];
339
979d0311
TH
340 if (b->rbps != CGROUP_LIMIT_MAX)
341 fprintf(f,
342 "%sBlockIOReadBandwidth=%s %s\n",
343 prefix,
344 b->path,
345 format_bytes(buf, sizeof(buf), b->rbps));
346 if (b->wbps != CGROUP_LIMIT_MAX)
347 fprintf(f,
348 "%sBlockIOWriteBandwidth=%s %s\n",
349 prefix,
350 b->path,
351 format_bytes(buf, sizeof(buf), b->wbps));
4ad49000 352 }
c21c9906
LP
353
354 LIST_FOREACH(items, iaai, c->ip_address_allow) {
355 _cleanup_free_ char *k = NULL;
356
357 (void) in_addr_to_string(iaai->family, &iaai->address, &k);
358 fprintf(f, "%sIPAddressAllow=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
359 }
360
361 LIST_FOREACH(items, iaai, c->ip_address_deny) {
362 _cleanup_free_ char *k = NULL;
363
364 (void) in_addr_to_string(iaai->family, &iaai->address, &k);
365 fprintf(f, "%sIPAddressDeny=%s/%u\n", prefix, strnull(k), iaai->prefixlen);
366 }
fab34748
KL
367
368 STRV_FOREACH(path, c->ip_filters_ingress)
369 fprintf(f, "%sIPIngressFilterPath=%s\n", prefix, *path);
370
371 STRV_FOREACH(path, c->ip_filters_egress)
372 fprintf(f, "%sIPEgressFilterPath=%s\n", prefix, *path);
4ad49000
LP
373}
374
fd870bac
YW
375int cgroup_add_device_allow(CGroupContext *c, const char *dev, const char *mode) {
376 _cleanup_free_ CGroupDeviceAllow *a = NULL;
377 _cleanup_free_ char *d = NULL;
378
379 assert(c);
380 assert(dev);
381 assert(isempty(mode) || in_charset(mode, "rwm"));
382
383 a = new(CGroupDeviceAllow, 1);
384 if (!a)
385 return -ENOMEM;
386
387 d = strdup(dev);
388 if (!d)
389 return -ENOMEM;
390
391 *a = (CGroupDeviceAllow) {
392 .path = TAKE_PTR(d),
490c5a37
LP
393 .r = isempty(mode) || strchr(mode, 'r'),
394 .w = isempty(mode) || strchr(mode, 'w'),
395 .m = isempty(mode) || strchr(mode, 'm'),
fd870bac
YW
396 };
397
398 LIST_PREPEND(device_allow, c->device_allow, a);
399 TAKE_PTR(a);
400
401 return 0;
402}
403
6264b85e
CD
404#define UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(entry) \
405 uint64_t unit_get_ancestor_##entry(Unit *u) { \
406 CGroupContext *c; \
407 \
408 /* 1. Is entry set in this unit? If so, use that. \
409 * 2. Is the default for this entry set in any \
410 * ancestor? If so, use that. \
411 * 3. Otherwise, return CGROUP_LIMIT_MIN. */ \
412 \
413 assert(u); \
414 \
415 c = unit_get_cgroup_context(u); \
c5322608 416 if (c && c->entry##_set) \
6264b85e
CD
417 return c->entry; \
418 \
c5322608 419 while ((u = UNIT_DEREF(u->slice))) { \
6264b85e 420 c = unit_get_cgroup_context(u); \
c5322608 421 if (c && c->default_##entry##_set) \
6264b85e
CD
422 return c->default_##entry; \
423 } \
424 \
425 /* We've reached the root, but nobody had default for \
426 * this entry set, so set it to the kernel default. */ \
427 return CGROUP_LIMIT_MIN; \
c52db42b
CD
428}
429
6264b85e 430UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_low);
7ad5439e 431UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_min);
6264b85e 432
0d2d6fbf
CD
433static void cgroup_xattr_apply(Unit *u) {
434 char ids[SD_ID128_STRING_MAX];
435 int r;
436
437 assert(u);
438
439 if (!MANAGER_IS_SYSTEM(u->manager))
440 return;
441
442 if (sd_id128_is_null(u->invocation_id))
443 return;
444
445 r = cg_set_xattr(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path,
446 "trusted.invocation_id",
447 sd_id128_to_string(u->invocation_id, ids), 32,
448 0);
449 if (r < 0)
450 log_unit_debug_errno(u, r, "Failed to set invocation ID on control group %s, ignoring: %m", u->cgroup_path);
451}
452
45c2e068 453static int lookup_block_device(const char *p, dev_t *ret) {
f5855697
YS
454 dev_t rdev, dev = 0;
455 mode_t mode;
45c2e068 456 int r;
4ad49000
LP
457
458 assert(p);
45c2e068 459 assert(ret);
4ad49000 460
f5855697 461 r = device_path_parse_major_minor(p, &mode, &rdev);
d5aecba6 462 if (r == -ENODEV) { /* not a parsable device node, need to go to disk */
f5855697 463 struct stat st;
d5aecba6
LP
464 if (stat(p, &st) < 0)
465 return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
f5855697
YS
466 rdev = (dev_t)st.st_rdev;
467 dev = (dev_t)st.st_dev;
468 mode = st.st_mode;
d5aecba6
LP
469 } else if (r < 0)
470 return log_warning_errno(r, "Failed to parse major/minor from path '%s': %m", p);
471
f5855697 472 if (S_ISCHR(mode)) {
d5aecba6
LP
473 log_warning("Device node '%s' is a character device, but block device needed.", p);
474 return -ENOTBLK;
f5855697
YS
475 } else if (S_ISBLK(mode))
476 *ret = rdev;
477 else if (major(dev) != 0)
478 *ret = dev; /* If this is not a device node then use the block device this file is stored on */
45c2e068
LP
479 else {
480 /* If this is btrfs, getting the backing block device is a bit harder */
481 r = btrfs_get_block_device(p, ret);
482 if (r < 0 && r != -ENOTTY)
483 return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
484 if (r == -ENOTTY) {
485 log_warning("'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
486 return -ENODEV;
487 }
4ad49000 488 }
8e274523 489
45c2e068
LP
490 /* If this is a LUKS device, try to get the originating block device */
491 (void) block_get_originating(*ret, ret);
492
493 /* If this is a partition, try to get the originating block device */
494 (void) block_get_whole_disk(*ret, ret);
8e274523 495 return 0;
8e274523
LP
496}
497
084c7007 498static int whitelist_device(BPFProgram *prog, const char *path, const char *node, const char *acc) {
f5855697
YS
499 dev_t rdev;
500 mode_t mode;
8c6db833 501 int r;
8e274523 502
4ad49000
LP
503 assert(path);
504 assert(acc);
8e274523 505
74c48bf5
LP
506 /* Some special handling for /dev/block/%u:%u, /dev/char/%u:%u, /run/systemd/inaccessible/chr and
507 * /run/systemd/inaccessible/blk paths. Instead of stat()ing these we parse out the major/minor directly. This
508 * means clients can use these path without the device node actually around */
f5855697 509 r = device_path_parse_major_minor(node, &mode, &rdev);
74c48bf5
LP
510 if (r < 0) {
511 if (r != -ENODEV)
512 return log_warning_errno(r, "Couldn't parse major/minor from device path '%s': %m", node);
b200489b 513
f5855697 514 struct stat st;
74c48bf5
LP
515 if (stat(node, &st) < 0)
516 return log_warning_errno(errno, "Couldn't stat device %s: %m", node);
e7330dfe 517
74c48bf5
LP
518 if (!S_ISCHR(st.st_mode) && !S_ISBLK(st.st_mode)) {
519 log_warning("%s is not a device.", node);
520 return -ENODEV;
521 }
f5855697
YS
522 rdev = (dev_t) st.st_rdev;
523 mode = st.st_mode;
4ad49000
LP
524 }
525
084c7007
RG
526 if (cg_all_unified() > 0) {
527 if (!prog)
528 return 0;
4ad49000 529
f5855697
YS
530 return cgroup_bpf_whitelist_device(prog, S_ISCHR(mode) ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
531 major(rdev), minor(rdev), acc);
b9839ac9 532
084c7007
RG
533 } else {
534 char buf[2+DECIMAL_STR_MAX(dev_t)*2+2+4];
535
536 sprintf(buf,
537 "%c %u:%u %s",
f5855697
YS
538 S_ISCHR(mode) ? 'c' : 'b',
539 major(rdev), minor(rdev),
084c7007
RG
540 acc);
541
8c838407
LP
542 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL here. */
543
084c7007
RG
544 r = cg_set_attribute("devices", path, "devices.allow", buf);
545 if (r < 0)
2c74e12b 546 return log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
b9839ac9 547 r, "Failed to set devices.allow on %s: %m", path);
4ad49000 548
b9839ac9
LP
549 return 0;
550 }
8e274523
LP
551}
552
084c7007 553static int whitelist_major(BPFProgram *prog, const char *path, const char *name, char type, const char *acc) {
90060676 554 _cleanup_fclose_ FILE *f = NULL;
8e8b5d2e 555 char buf[2+DECIMAL_STR_MAX(unsigned)+3+4];
90060676 556 bool good = false;
8e8b5d2e 557 unsigned maj;
90060676
LP
558 int r;
559
560 assert(path);
561 assert(acc);
4c701096 562 assert(IN_SET(type, 'b', 'c'));
90060676 563
8e8b5d2e
LP
564 if (streq(name, "*")) {
565 /* If the name is a wildcard, then apply this list to all devices of this type */
566
567 if (cg_all_unified() > 0) {
568 if (!prog)
569 return 0;
570
571 (void) cgroup_bpf_whitelist_class(prog, type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK, acc);
572 } else {
573 xsprintf(buf, "%c *:* %s", type, acc);
574
575 r = cg_set_attribute("devices", path, "devices.allow", buf);
576 if (r < 0)
577 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
578 "Failed to set devices.allow on %s: %m", path);
579 return 0;
580 }
581 }
582
583 if (safe_atou(name, &maj) >= 0 && DEVICE_MAJOR_VALID(maj)) {
584 /* The name is numeric and suitable as major. In that case, let's take is major, and create the entry
585 * directly */
586
587 if (cg_all_unified() > 0) {
588 if (!prog)
589 return 0;
590
591 (void) cgroup_bpf_whitelist_major(prog,
592 type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
593 maj, acc);
594 } else {
595 xsprintf(buf, "%c %u:* %s", type, maj, acc);
596
597 r = cg_set_attribute("devices", path, "devices.allow", buf);
598 if (r < 0)
599 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES) ? LOG_DEBUG : LOG_WARNING, r,
600 "Failed to set devices.allow on %s: %m", path);
601 }
602
603 return 0;
604 }
605
90060676 606 f = fopen("/proc/devices", "re");
4a62c710
MS
607 if (!f)
608 return log_warning_errno(errno, "Cannot open /proc/devices to resolve %s (%c): %m", name, type);
90060676 609
c66e60a8
LP
610 for (;;) {
611 _cleanup_free_ char *line = NULL;
8e8b5d2e 612 char *w, *p;
90060676 613
c66e60a8
LP
614 r = read_line(f, LONG_LINE_MAX, &line);
615 if (r < 0)
616 return log_warning_errno(r, "Failed to read /proc/devices: %m");
617 if (r == 0)
618 break;
90060676
LP
619
620 if (type == 'c' && streq(line, "Character devices:")) {
621 good = true;
622 continue;
623 }
624
625 if (type == 'b' && streq(line, "Block devices:")) {
626 good = true;
627 continue;
628 }
629
630 if (isempty(line)) {
631 good = false;
632 continue;
633 }
634
635 if (!good)
636 continue;
637
638 p = strstrip(line);
639
640 w = strpbrk(p, WHITESPACE);
641 if (!w)
642 continue;
643 *w = 0;
644
645 r = safe_atou(p, &maj);
646 if (r < 0)
647 continue;
648 if (maj <= 0)
649 continue;
650
651 w++;
652 w += strspn(w, WHITESPACE);
e41969e3
LP
653
654 if (fnmatch(name, w, 0) != 0)
90060676
LP
655 continue;
656
084c7007
RG
657 if (cg_all_unified() > 0) {
658 if (!prog)
659 continue;
90060676 660
913c898c
LP
661 (void) cgroup_bpf_whitelist_major(prog,
662 type == 'c' ? BPF_DEVCG_DEV_CHAR : BPF_DEVCG_DEV_BLOCK,
663 maj, acc);
084c7007 664 } else {
084c7007
RG
665 sprintf(buf,
666 "%c %u:* %s",
667 type,
668 maj,
669 acc);
670
8c838407
LP
671 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
672 * here. */
673
084c7007
RG
674 r = cg_set_attribute("devices", path, "devices.allow", buf);
675 if (r < 0)
2c74e12b 676 log_full_errno(IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING,
084c7007
RG
677 r, "Failed to set devices.allow on %s: %m", path);
678 }
90060676
LP
679 }
680
681 return 0;
90060676
LP
682}
683
66ebf6c0
TH
684static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
685 return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
686 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
687}
688
689static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
690 return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
691 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
692}
693
694static uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
695 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
696 c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
697 return c->startup_cpu_weight;
698 else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
699 return c->cpu_weight;
700 else
701 return CGROUP_WEIGHT_DEFAULT;
702}
703
704static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
705 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
706 c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
707 return c->startup_cpu_shares;
708 else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
709 return c->cpu_shares;
710 else
711 return CGROUP_CPU_SHARES_DEFAULT;
712}
713
10f28641
FB
714usec_t cgroup_cpu_adjust_period(usec_t period, usec_t quota, usec_t resolution, usec_t max_period) {
715 /* kernel uses a minimum resolution of 1ms, so both period and (quota * period)
716 * need to be higher than that boundary. quota is specified in USecPerSec.
717 * Additionally, period must be at most max_period. */
718 assert(quota > 0);
719
720 return MIN(MAX3(period, resolution, resolution * USEC_PER_SEC / quota), max_period);
721}
722
723static usec_t cgroup_cpu_adjust_period_and_log(Unit *u, usec_t period, usec_t quota) {
724 usec_t new_period;
725
726 if (quota == USEC_INFINITY)
727 /* Always use default period for infinity quota. */
728 return CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
729
730 if (period == USEC_INFINITY)
731 /* Default period was requested. */
732 period = CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
733
734 /* Clamp to interval [1ms, 1s] */
735 new_period = cgroup_cpu_adjust_period(period, quota, USEC_PER_MSEC, USEC_PER_SEC);
736
737 if (new_period != period) {
738 char v[FORMAT_TIMESPAN_MAX];
527ede0c 739 log_unit_full(u, u->warned_clamping_cpu_quota_period ? LOG_DEBUG : LOG_WARNING, 0,
10f28641
FB
740 "Clamping CPU interval for cpu.max: period is now %s",
741 format_timespan(v, sizeof(v), new_period, 1));
527ede0c 742 u->warned_clamping_cpu_quota_period = true;
10f28641
FB
743 }
744
745 return new_period;
746}
747
52fecf20
LP
748static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) {
749 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
66ebf6c0
TH
750
751 xsprintf(buf, "%" PRIu64 "\n", weight);
293d32df 752 (void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
52fecf20
LP
753}
754
10f28641 755static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota, usec_t period) {
52fecf20 756 char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1];
66ebf6c0 757
10f28641 758 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
66ebf6c0
TH
759 if (quota != USEC_INFINITY)
760 xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
10f28641 761 MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC), period);
66ebf6c0 762 else
10f28641 763 xsprintf(buf, "max " USEC_FMT "\n", period);
293d32df 764 (void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
66ebf6c0
TH
765}
766
52fecf20
LP
767static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) {
768 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
66ebf6c0
TH
769
770 xsprintf(buf, "%" PRIu64 "\n", shares);
293d32df 771 (void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
52fecf20
LP
772}
773
10f28641 774static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota, usec_t period) {
52fecf20 775 char buf[DECIMAL_STR_MAX(usec_t) + 2];
66ebf6c0 776
10f28641
FB
777 period = cgroup_cpu_adjust_period_and_log(u, period, quota);
778
779 xsprintf(buf, USEC_FMT "\n", period);
293d32df 780 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
66ebf6c0
TH
781
782 if (quota != USEC_INFINITY) {
10f28641 783 xsprintf(buf, USEC_FMT "\n", MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC));
293d32df 784 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
66ebf6c0 785 } else
589a5f7a 786 (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
66ebf6c0
TH
787}
788
789static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
790 return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
791 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
792}
793
794static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
795 return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
796 CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
797}
798
508c45da 799static bool cgroup_context_has_io_config(CGroupContext *c) {
538b4852
TH
800 return c->io_accounting ||
801 c->io_weight != CGROUP_WEIGHT_INVALID ||
802 c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
803 c->io_device_weights ||
6ae4283c 804 c->io_device_latencies ||
538b4852
TH
805 c->io_device_limits;
806}
807
508c45da 808static bool cgroup_context_has_blockio_config(CGroupContext *c) {
538b4852
TH
809 return c->blockio_accounting ||
810 c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
811 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
812 c->blockio_device_weights ||
813 c->blockio_device_bandwidths;
814}
815
508c45da 816static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
64faf04c
TH
817 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
818 c->startup_io_weight != CGROUP_WEIGHT_INVALID)
819 return c->startup_io_weight;
820 else if (c->io_weight != CGROUP_WEIGHT_INVALID)
821 return c->io_weight;
822 else
823 return CGROUP_WEIGHT_DEFAULT;
824}
825
508c45da 826static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
64faf04c
TH
827 if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING) &&
828 c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
829 return c->startup_blockio_weight;
830 else if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
831 return c->blockio_weight;
832 else
833 return CGROUP_BLKIO_WEIGHT_DEFAULT;
834}
835
508c45da 836static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
538b4852
TH
837 return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
838 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
839}
840
508c45da 841static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
538b4852
TH
842 return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
843 CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
844}
845
f29ff115 846static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
64faf04c
TH
847 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
848 dev_t dev;
849 int r;
850
851 r = lookup_block_device(dev_path, &dev);
852 if (r < 0)
853 return;
854
855 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), io_weight);
293d32df 856 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
64faf04c
TH
857}
858
f29ff115 859static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
64faf04c
TH
860 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
861 dev_t dev;
862 int r;
863
864 r = lookup_block_device(dev_path, &dev);
865 if (r < 0)
866 return;
867
868 xsprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), blkio_weight);
293d32df 869 (void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
64faf04c
TH
870}
871
6ae4283c
TH
872static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
873 char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
874 dev_t dev;
875 int r;
876
877 r = lookup_block_device(dev_path, &dev);
878 if (r < 0)
879 return;
880
881 if (target != USEC_INFINITY)
882 xsprintf(buf, "%u:%u target=%" PRIu64 "\n", major(dev), minor(dev), target);
883 else
884 xsprintf(buf, "%u:%u target=max\n", major(dev), minor(dev));
885
293d32df 886 (void) set_attribute_and_warn(u, "io", "io.latency", buf);
6ae4283c
TH
887}
888
17ae2780 889static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
64faf04c
TH
890 char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)];
891 char buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
892 CGroupIOLimitType type;
893 dev_t dev;
64faf04c
TH
894 int r;
895
896 r = lookup_block_device(dev_path, &dev);
897 if (r < 0)
17ae2780 898 return;
64faf04c 899
17ae2780
LP
900 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
901 if (limits[type] != cgroup_io_limit_defaults[type])
64faf04c 902 xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
17ae2780 903 else
64faf04c 904 xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
64faf04c
TH
905
906 xsprintf(buf, "%u:%u rbps=%s wbps=%s riops=%s wiops=%s\n", major(dev), minor(dev),
907 limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
908 limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
293d32df 909 (void) set_attribute_and_warn(u, "io", "io.max", buf);
64faf04c
TH
910}
911
17ae2780 912static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
64faf04c
TH
913 char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
914 dev_t dev;
64faf04c
TH
915 int r;
916
917 r = lookup_block_device(dev_path, &dev);
918 if (r < 0)
17ae2780 919 return;
64faf04c 920
64faf04c 921 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), rbps);
293d32df 922 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
64faf04c 923
64faf04c 924 sprintf(buf, "%u:%u %" PRIu64 "\n", major(dev), minor(dev), wbps);
293d32df 925 (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
64faf04c
TH
926}
927
c52db42b
CD
928static bool unit_has_unified_memory_config(Unit *u) {
929 CGroupContext *c;
930
931 assert(u);
932
933 c = unit_get_cgroup_context(u);
934 assert(c);
935
936 return c->memory_min > 0 || unit_get_ancestor_memory_low(u) > 0 ||
937 c->memory_high != CGROUP_LIMIT_MAX || c->memory_max != CGROUP_LIMIT_MAX ||
938 c->memory_swap_max != CGROUP_LIMIT_MAX;
da4d897e
TH
939}
940
f29ff115 941static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
589a5f7a 942 char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
da4d897e
TH
943
944 if (v != CGROUP_LIMIT_MAX)
945 xsprintf(buf, "%" PRIu64 "\n", v);
946
293d32df 947 (void) set_attribute_and_warn(u, "memory", file, buf);
da4d897e
TH
948}
949
0f2d84d2 950static void cgroup_apply_firewall(Unit *u) {
0f2d84d2
LP
951 assert(u);
952
acf7f253 953 /* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
906c06f6 954
acf7f253 955 if (bpf_firewall_compile(u) < 0)
906c06f6
DM
956 return;
957
fab34748 958 (void) bpf_firewall_load_custom(u);
906c06f6 959 (void) bpf_firewall_install(u);
906c06f6
DM
960}
961
962static void cgroup_context_apply(
963 Unit *u,
964 CGroupMask apply_mask,
906c06f6
DM
965 ManagerState state) {
966
f29ff115
TH
967 const char *path;
968 CGroupContext *c;
52fecf20 969 bool is_host_root, is_local_root;
4ad49000
LP
970 int r;
971
f29ff115
TH
972 assert(u);
973
906c06f6 974 /* Nothing to do? Exit early! */
17f14955 975 if (apply_mask == 0)
4ad49000 976 return;
8e274523 977
52fecf20
LP
978 /* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other
979 * attributes should only be managed for cgroups further down the tree. */
980 is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE);
981 is_host_root = unit_has_host_root_cgroup(u);
f3725e64
LP
982
983 assert_se(c = unit_get_cgroup_context(u));
984 assert_se(path = u->cgroup_path);
985
52fecf20 986 if (is_local_root) /* Make sure we don't try to display messages with an empty path. */
6da13913 987 path = "/";
01efdf13 988
be2c0327
LP
989 /* We generally ignore errors caused by read-only mounted cgroup trees (assuming we are running in a container
990 * then), and missing cgroups, i.e. EROFS and ENOENT. */
714e2e1d 991
be2c0327
LP
992 /* In fully unified mode these attributes don't exist on the host cgroup root. On legacy the weights exist, but
993 * setting the weight makes very little sense on the host root cgroup, as there are no other cgroups at this
994 * level. The quota exists there too, but any attempt to write to it is refused with EINVAL. Inside of
4e1dfa45 995 * containers we want to leave control of these to the container manager (and if cgroup v2 delegation is used
be2c0327
LP
996 * we couldn't even write to them if we wanted to). */
997 if ((apply_mask & CGROUP_MASK_CPU) && !is_local_root) {
8e274523 998
b4cccbc1 999 if (cg_all_unified() > 0) {
be2c0327 1000 uint64_t weight;
b2f8b02e 1001
be2c0327
LP
1002 if (cgroup_context_has_cpu_weight(c))
1003 weight = cgroup_context_cpu_weight(c, state);
1004 else if (cgroup_context_has_cpu_shares(c)) {
1005 uint64_t shares;
66ebf6c0 1006
be2c0327
LP
1007 shares = cgroup_context_cpu_shares(c, state);
1008 weight = cgroup_cpu_shares_to_weight(shares);
66ebf6c0 1009
be2c0327
LP
1010 log_cgroup_compat(u, "Applying [Startup]CPUShares=%" PRIu64 " as [Startup]CPUWeight=%" PRIu64 " on %s",
1011 shares, weight, path);
1012 } else
1013 weight = CGROUP_WEIGHT_DEFAULT;
66ebf6c0 1014
be2c0327 1015 cgroup_apply_unified_cpu_weight(u, weight);
10f28641 1016 cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
66ebf6c0 1017
52fecf20 1018 } else {
be2c0327 1019 uint64_t shares;
52fecf20 1020
be2c0327
LP
1021 if (cgroup_context_has_cpu_weight(c)) {
1022 uint64_t weight;
52fecf20 1023
be2c0327
LP
1024 weight = cgroup_context_cpu_weight(c, state);
1025 shares = cgroup_cpu_weight_to_shares(weight);
52fecf20 1026
be2c0327
LP
1027 log_cgroup_compat(u, "Applying [Startup]CPUWeight=%" PRIu64 " as [Startup]CPUShares=%" PRIu64 " on %s",
1028 weight, shares, path);
1029 } else if (cgroup_context_has_cpu_shares(c))
1030 shares = cgroup_context_cpu_shares(c, state);
1031 else
1032 shares = CGROUP_CPU_SHARES_DEFAULT;
66ebf6c0 1033
be2c0327 1034 cgroup_apply_legacy_cpu_shares(u, shares);
10f28641 1035 cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
66ebf6c0 1036 }
4ad49000
LP
1037 }
1038
4e1dfa45 1039 /* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroup v2
52fecf20
LP
1040 * controller), and in case of containers we want to leave control of these attributes to the container manager
1041 * (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */
1042 if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) {
1043 char buf[8+DECIMAL_STR_MAX(uint64_t)+1];
1044 bool has_io, has_blockio;
1045 uint64_t weight;
13c31542 1046
52fecf20
LP
1047 has_io = cgroup_context_has_io_config(c);
1048 has_blockio = cgroup_context_has_blockio_config(c);
13c31542 1049
52fecf20
LP
1050 if (has_io)
1051 weight = cgroup_context_io_weight(c, state);
1052 else if (has_blockio) {
1053 uint64_t blkio_weight;
128fadc9 1054
52fecf20
LP
1055 blkio_weight = cgroup_context_blkio_weight(c, state);
1056 weight = cgroup_weight_blkio_to_io(blkio_weight);
128fadc9 1057
67e2ea15 1058 log_cgroup_compat(u, "Applying [Startup]BlockIOWeight=%" PRIu64 " as [Startup]IOWeight=%" PRIu64,
52fecf20
LP
1059 blkio_weight, weight);
1060 } else
1061 weight = CGROUP_WEIGHT_DEFAULT;
13c31542 1062
52fecf20
LP
1063 xsprintf(buf, "default %" PRIu64 "\n", weight);
1064 (void) set_attribute_and_warn(u, "io", "io.weight", buf);
538b4852 1065
2dbc45ae
KK
1066 /* FIXME: drop this when distro kernels properly support BFQ through "io.weight"
1067 * See also: https://github.com/systemd/systemd/pull/13335 */
1068 xsprintf(buf, "%" PRIu64 "\n", weight);
1069 (void) set_attribute_and_warn(u, "io", "io.bfq.weight", buf);
1070
52fecf20
LP
1071 if (has_io) {
1072 CGroupIODeviceLatency *latency;
1073 CGroupIODeviceLimit *limit;
1074 CGroupIODeviceWeight *w;
128fadc9 1075
52fecf20
LP
1076 LIST_FOREACH(device_weights, w, c->io_device_weights)
1077 cgroup_apply_io_device_weight(u, w->path, w->weight);
128fadc9 1078
52fecf20
LP
1079 LIST_FOREACH(device_limits, limit, c->io_device_limits)
1080 cgroup_apply_io_device_limit(u, limit->path, limit->limits);
6ae4283c 1081
52fecf20
LP
1082 LIST_FOREACH(device_latencies, latency, c->io_device_latencies)
1083 cgroup_apply_io_device_latency(u, latency->path, latency->target_usec);
6ae4283c 1084
52fecf20
LP
1085 } else if (has_blockio) {
1086 CGroupBlockIODeviceWeight *w;
1087 CGroupBlockIODeviceBandwidth *b;
13c31542 1088
52fecf20
LP
1089 LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
1090 weight = cgroup_weight_blkio_to_io(w->weight);
17ae2780 1091
67e2ea15 1092 log_cgroup_compat(u, "Applying BlockIODeviceWeight=%" PRIu64 " as IODeviceWeight=%" PRIu64 " for %s",
52fecf20 1093 w->weight, weight, w->path);
538b4852 1094
52fecf20
LP
1095 cgroup_apply_io_device_weight(u, w->path, weight);
1096 }
538b4852 1097
17ae2780 1098 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
538b4852
TH
1099 uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
1100 CGroupIOLimitType type;
1101
1102 for (type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
1103 limits[type] = cgroup_io_limit_defaults[type];
1104
1105 limits[CGROUP_IO_RBPS_MAX] = b->rbps;
1106 limits[CGROUP_IO_WBPS_MAX] = b->wbps;
1107
67e2ea15 1108 log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax= for %s",
128fadc9
TH
1109 b->rbps, b->wbps, b->path);
1110
17ae2780 1111 cgroup_apply_io_device_limit(u, b->path, limits);
538b4852 1112 }
13c31542
TH
1113 }
1114 }
1115
906c06f6 1116 if (apply_mask & CGROUP_MASK_BLKIO) {
52fecf20 1117 bool has_io, has_blockio;
4ad49000 1118
52fecf20
LP
1119 has_io = cgroup_context_has_io_config(c);
1120 has_blockio = cgroup_context_has_blockio_config(c);
1121
1122 /* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be
1123 * left to our container manager, too. */
1124 if (!is_local_root) {
64faf04c
TH
1125 char buf[DECIMAL_STR_MAX(uint64_t)+1];
1126 uint64_t weight;
64faf04c 1127
7d862ab8 1128 if (has_io) {
52fecf20 1129 uint64_t io_weight;
128fadc9 1130
52fecf20 1131 io_weight = cgroup_context_io_weight(c, state);
538b4852 1132 weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
128fadc9 1133
67e2ea15 1134 log_cgroup_compat(u, "Applying [Startup]IOWeight=%" PRIu64 " as [Startup]BlockIOWeight=%" PRIu64,
128fadc9 1135 io_weight, weight);
7d862ab8
TH
1136 } else if (has_blockio)
1137 weight = cgroup_context_blkio_weight(c, state);
1138 else
538b4852 1139 weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
64faf04c
TH
1140
1141 xsprintf(buf, "%" PRIu64 "\n", weight);
293d32df 1142 (void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
4ad49000 1143
7d862ab8 1144 if (has_io) {
538b4852
TH
1145 CGroupIODeviceWeight *w;
1146
128fadc9
TH
1147 LIST_FOREACH(device_weights, w, c->io_device_weights) {
1148 weight = cgroup_weight_io_to_blkio(w->weight);
1149
67e2ea15 1150 log_cgroup_compat(u, "Applying IODeviceWeight=%" PRIu64 " as BlockIODeviceWeight=%" PRIu64 " for %s",
128fadc9
TH
1151 w->weight, weight, w->path);
1152
1153 cgroup_apply_blkio_device_weight(u, w->path, weight);
1154 }
7d862ab8
TH
1155 } else if (has_blockio) {
1156 CGroupBlockIODeviceWeight *w;
1157
7d862ab8
TH
1158 LIST_FOREACH(device_weights, w, c->blockio_device_weights)
1159 cgroup_apply_blkio_device_weight(u, w->path, w->weight);
538b4852 1160 }
4ad49000
LP
1161 }
1162
5238e957 1163 /* The bandwidth limits are something that make sense to be applied to the host's root but not container
52fecf20
LP
1164 * roots, as there we want the container manager to handle it */
1165 if (is_host_root || !is_local_root) {
1166 if (has_io) {
1167 CGroupIODeviceLimit *l;
538b4852 1168
52fecf20 1169 LIST_FOREACH(device_limits, l, c->io_device_limits) {
67e2ea15 1170 log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax= for %s",
52fecf20 1171 l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
128fadc9 1172
52fecf20
LP
1173 cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
1174 }
1175 } else if (has_blockio) {
1176 CGroupBlockIODeviceBandwidth *b;
7d862ab8 1177
52fecf20
LP
1178 LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
1179 cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
1180 }
d686d8a9 1181 }
8e274523
LP
1182 }
1183
be2c0327
LP
1184 /* In unified mode 'memory' attributes do not exist on the root cgroup. In legacy mode 'memory.limit_in_bytes'
1185 * exists on the root cgroup, but any writes to it are refused with EINVAL. And if we run in a container we
4e1dfa45 1186 * want to leave control to the container manager (and if proper cgroup v2 delegation is used we couldn't even
be2c0327
LP
1187 * write to this if we wanted to.) */
1188 if ((apply_mask & CGROUP_MASK_MEMORY) && !is_local_root) {
efdb0237 1189
52fecf20 1190 if (cg_all_unified() > 0) {
be2c0327
LP
1191 uint64_t max, swap_max = CGROUP_LIMIT_MAX;
1192
c52db42b 1193 if (unit_has_unified_memory_config(u)) {
be2c0327
LP
1194 max = c->memory_max;
1195 swap_max = c->memory_swap_max;
1196 } else {
1197 max = c->memory_limit;
efdb0237 1198
be2c0327
LP
1199 if (max != CGROUP_LIMIT_MAX)
1200 log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
128fadc9 1201 }
da4d897e 1202
be2c0327 1203 cgroup_apply_unified_memory_limit(u, "memory.min", c->memory_min);
c52db42b 1204 cgroup_apply_unified_memory_limit(u, "memory.low", unit_get_ancestor_memory_low(u));
be2c0327
LP
1205 cgroup_apply_unified_memory_limit(u, "memory.high", c->memory_high);
1206 cgroup_apply_unified_memory_limit(u, "memory.max", max);
1207 cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
128fadc9 1208
afcfaa69
LP
1209 (void) set_attribute_and_warn(u, "memory", "memory.oom.group", one_zero(c->memory_oom_group));
1210
be2c0327
LP
1211 } else {
1212 char buf[DECIMAL_STR_MAX(uint64_t) + 1];
1213 uint64_t val;
52fecf20 1214
c52db42b 1215 if (unit_has_unified_memory_config(u)) {
be2c0327
LP
1216 val = c->memory_max;
1217 log_cgroup_compat(u, "Applying MemoryMax=%" PRIi64 " as MemoryLimit=", val);
1218 } else
1219 val = c->memory_limit;
78a4ee59 1220
be2c0327
LP
1221 if (val == CGROUP_LIMIT_MAX)
1222 strncpy(buf, "-1\n", sizeof(buf));
1223 else
1224 xsprintf(buf, "%" PRIu64 "\n", val);
1225
1226 (void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
da4d897e 1227 }
4ad49000 1228 }
8e274523 1229
4e1dfa45 1230 /* On cgroup v2 we can apply BPF everywhere. On cgroup v1 we apply it everywhere except for the root of
52fecf20
LP
1231 * containers, where we leave this to the manager */
1232 if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) &&
1233 (is_host_root || cg_all_unified() > 0 || !is_local_root)) {
084c7007 1234 _cleanup_(bpf_program_unrefp) BPFProgram *prog = NULL;
4ad49000 1235 CGroupDeviceAllow *a;
8e274523 1236
084c7007
RG
1237 if (cg_all_unified() > 0) {
1238 r = cgroup_init_device_bpf(&prog, c->device_policy, c->device_allow);
1239 if (r < 0)
1240 log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
1241 } else {
8c838407 1242 /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore EINVAL
084c7007 1243 * here. */
714e2e1d 1244
084c7007
RG
1245 if (c->device_allow || c->device_policy != CGROUP_AUTO)
1246 r = cg_set_attribute("devices", path, "devices.deny", "a");
1247 else
1248 r = cg_set_attribute("devices", path, "devices.allow", "a");
1249 if (r < 0)
2c74e12b
LP
1250 log_unit_full(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
1251 "Failed to reset devices.allow/devices.deny: %m");
084c7007 1252 }
fb385181 1253
4ad49000
LP
1254 if (c->device_policy == CGROUP_CLOSED ||
1255 (c->device_policy == CGROUP_AUTO && c->device_allow)) {
1256 static const char auto_devices[] =
7d711efb
LP
1257 "/dev/null\0" "rwm\0"
1258 "/dev/zero\0" "rwm\0"
1259 "/dev/full\0" "rwm\0"
1260 "/dev/random\0" "rwm\0"
1261 "/dev/urandom\0" "rwm\0"
1262 "/dev/tty\0" "rwm\0"
5a7f87a9 1263 "/dev/ptmx\0" "rwm\0"
0d9e7991 1264 /* Allow /run/systemd/inaccessible/{chr,blk} devices for mapping InaccessiblePaths */
74c48bf5
LP
1265 "/run/systemd/inaccessible/chr\0" "rwm\0"
1266 "/run/systemd/inaccessible/blk\0" "rwm\0";
4ad49000
LP
1267
1268 const char *x, *y;
1269
1270 NULSTR_FOREACH_PAIR(x, y, auto_devices)
913c898c 1271 (void) whitelist_device(prog, path, x, y);
7d711efb 1272
5a7f87a9 1273 /* PTS (/dev/pts) devices may not be duplicated, but accessed */
913c898c 1274 (void) whitelist_major(prog, path, "pts", 'c', "rw");
4ad49000
LP
1275 }
1276
1277 LIST_FOREACH(device_allow, a, c->device_allow) {
fb4650aa 1278 char acc[4], *val;
4ad49000
LP
1279 unsigned k = 0;
1280
1281 if (a->r)
1282 acc[k++] = 'r';
1283 if (a->w)
1284 acc[k++] = 'w';
1285 if (a->m)
1286 acc[k++] = 'm';
fb385181 1287
4ad49000
LP
1288 if (k == 0)
1289 continue;
fb385181 1290
4ad49000 1291 acc[k++] = 0;
90060676 1292
27458ed6 1293 if (path_startswith(a->path, "/dev/"))
913c898c 1294 (void) whitelist_device(prog, path, a->path, acc);
fb4650aa 1295 else if ((val = startswith(a->path, "block-")))
913c898c 1296 (void) whitelist_major(prog, path, val, 'b', acc);
fb4650aa 1297 else if ((val = startswith(a->path, "char-")))
913c898c 1298 (void) whitelist_major(prog, path, val, 'c', acc);
90060676 1299 else
8e8b5d2e 1300 log_unit_debug(u, "Ignoring device '%s' while writing cgroup attribute.", a->path);
4ad49000 1301 }
084c7007
RG
1302
1303 r = cgroup_apply_device_bpf(u, prog, c->device_policy, c->device_allow);
1304 if (r < 0) {
1305 static bool warned = false;
1306
1307 log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
1308 "Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
1309 "Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
1310 "(This warning is only shown for the first loaded unit using device ACL.)", u->id);
1311
1312 warned = true;
1313 }
4ad49000 1314 }
03a7b521 1315
00b5974f
LP
1316 if (apply_mask & CGROUP_MASK_PIDS) {
1317
52fecf20 1318 if (is_host_root) {
00b5974f
LP
1319 /* So, the "pids" controller does not expose anything on the root cgroup, in order not to
1320 * replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
1321 * the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
1322 * non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
1323 * exclusive ownership of the sysctls, but we still want to honour things if the user sets
1324 * limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
1325 * through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
1326 * it also counts. But if the user never set a limit through us (i.e. we are the default of
1327 * "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
1328 * the first time we set a limit. Note that this boolean is flushed out on manager reload,
5238e957 1329 * which is desirable so that there's an official way to release control of the sysctl from
00b5974f
LP
1330 * systemd: set the limit to unbounded and reload. */
1331
1332 if (c->tasks_max != CGROUP_LIMIT_MAX) {
1333 u->manager->sysctl_pid_max_changed = true;
1334 r = procfs_tasks_set_limit(c->tasks_max);
1335 } else if (u->manager->sysctl_pid_max_changed)
1336 r = procfs_tasks_set_limit(TASKS_MAX);
1337 else
1338 r = 0;
00b5974f 1339 if (r < 0)
39b9fefb 1340 log_unit_full(u, LOG_LEVEL_CGROUP_WRITE(r), r,
00b5974f 1341 "Failed to write to tasks limit sysctls: %m");
52fecf20 1342 }
03a7b521 1343
52fecf20
LP
1344 /* The attribute itself is not available on the host root cgroup, and in the container case we want to
1345 * leave it for the container manager. */
1346 if (!is_local_root) {
00b5974f
LP
1347 if (c->tasks_max != CGROUP_LIMIT_MAX) {
1348 char buf[DECIMAL_STR_MAX(uint64_t) + 2];
03a7b521 1349
00b5974f 1350 sprintf(buf, "%" PRIu64 "\n", c->tasks_max);
293d32df 1351 (void) set_attribute_and_warn(u, "pids", "pids.max", buf);
00b5974f 1352 } else
589a5f7a 1353 (void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
00b5974f 1354 }
03a7b521 1355 }
906c06f6 1356
17f14955 1357 if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
0f2d84d2 1358 cgroup_apply_firewall(u);
fb385181
LP
1359}
1360
16492445
LP
1361static bool unit_get_needs_bpf_firewall(Unit *u) {
1362 CGroupContext *c;
1363 Unit *p;
1364 assert(u);
1365
1366 c = unit_get_cgroup_context(u);
1367 if (!c)
1368 return false;
1369
1370 if (c->ip_accounting ||
1371 c->ip_address_allow ||
fab34748
KL
1372 c->ip_address_deny ||
1373 c->ip_filters_ingress ||
1374 c->ip_filters_egress)
16492445
LP
1375 return true;
1376
1377 /* If any parent slice has an IP access list defined, it applies too */
1378 for (p = UNIT_DEREF(u->slice); p; p = UNIT_DEREF(p->slice)) {
1379 c = unit_get_cgroup_context(p);
1380 if (!c)
1381 return false;
1382
1383 if (c->ip_address_allow ||
1384 c->ip_address_deny)
1385 return true;
1386 }
1387
1388 return false;
1389}
1390
c52db42b 1391static CGroupMask unit_get_cgroup_mask(Unit *u) {
efdb0237 1392 CGroupMask mask = 0;
c52db42b
CD
1393 CGroupContext *c;
1394
1395 assert(u);
1396
1397 c = unit_get_cgroup_context(u);
8e274523 1398
c710d3b4
CD
1399 assert(c);
1400
fae9bc29 1401 /* Figure out which controllers we need, based on the cgroup context object */
8e274523 1402
fae9bc29 1403 if (c->cpu_accounting)
f98c2585 1404 mask |= get_cpu_accounting_mask();
fae9bc29
LP
1405
1406 if (cgroup_context_has_cpu_weight(c) ||
66ebf6c0 1407 cgroup_context_has_cpu_shares(c) ||
3a43da28 1408 c->cpu_quota_per_sec_usec != USEC_INFINITY)
fae9bc29 1409 mask |= CGROUP_MASK_CPU;
ecedd90f 1410
538b4852
TH
1411 if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
1412 mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
ecedd90f 1413
4ad49000 1414 if (c->memory_accounting ||
da4d897e 1415 c->memory_limit != CGROUP_LIMIT_MAX ||
c52db42b 1416 unit_has_unified_memory_config(u))
efdb0237 1417 mask |= CGROUP_MASK_MEMORY;
8e274523 1418
a931ad47
LP
1419 if (c->device_allow ||
1420 c->device_policy != CGROUP_AUTO)
084c7007 1421 mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
4ad49000 1422
03a7b521 1423 if (c->tasks_accounting ||
8793fa25 1424 c->tasks_max != CGROUP_LIMIT_MAX)
03a7b521
LP
1425 mask |= CGROUP_MASK_PIDS;
1426
fae9bc29 1427 return CGROUP_MASK_EXTEND_JOINED(mask);
8e274523
LP
1428}
1429
53aea74a 1430static CGroupMask unit_get_bpf_mask(Unit *u) {
17f14955
RG
1431 CGroupMask mask = 0;
1432
fae9bc29
LP
1433 /* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
1434 * too. */
1435
17f14955
RG
1436 if (unit_get_needs_bpf_firewall(u))
1437 mask |= CGROUP_MASK_BPF_FIREWALL;
1438
1439 return mask;
1440}
1441
efdb0237 1442CGroupMask unit_get_own_mask(Unit *u) {
4ad49000 1443 CGroupContext *c;
8e274523 1444
442ce775
LP
1445 /* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty
1446 * mask, as we shouldn't reflect it in the cgroup hierarchy then. */
1447
1448 if (u->load_state != UNIT_LOADED)
1449 return 0;
efdb0237 1450
4ad49000
LP
1451 c = unit_get_cgroup_context(u);
1452 if (!c)
1453 return 0;
8e274523 1454
c52db42b 1455 return (unit_get_cgroup_mask(u) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u)) & ~unit_get_ancestor_disable_mask(u);
02638280
LP
1456}
1457
1458CGroupMask unit_get_delegate_mask(Unit *u) {
1459 CGroupContext *c;
1460
1461 /* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
1462 * process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
19af675e 1463 *
02638280 1464 * Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
a931ad47 1465
1d9cc876 1466 if (!unit_cgroup_delegate(u))
02638280
LP
1467 return 0;
1468
1469 if (cg_all_unified() <= 0) {
a931ad47
LP
1470 ExecContext *e;
1471
1472 e = unit_get_exec_context(u);
02638280
LP
1473 if (e && !exec_context_maintains_privileges(e))
1474 return 0;
a931ad47
LP
1475 }
1476
1d9cc876 1477 assert_se(c = unit_get_cgroup_context(u));
fae9bc29 1478 return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
8e274523
LP
1479}
1480
efdb0237 1481CGroupMask unit_get_members_mask(Unit *u) {
4ad49000 1482 assert(u);
bc432dc7 1483
02638280 1484 /* Returns the mask of controllers all of the unit's children require, merged */
efdb0237 1485
bc432dc7 1486 if (u->cgroup_members_mask_valid)
26a17ca2 1487 return u->cgroup_members_mask; /* Use cached value if possible */
bc432dc7 1488
64e844e5 1489 u->cgroup_members_mask = 0;
bc432dc7
LP
1490
1491 if (u->type == UNIT_SLICE) {
eef85c4a 1492 void *v;
bc432dc7
LP
1493 Unit *member;
1494 Iterator i;
1495
eef85c4a 1496 HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
cb5e3bc3
CD
1497 if (UNIT_DEREF(member->slice) == u)
1498 u->cgroup_members_mask |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
bc432dc7
LP
1499 }
1500 }
1501
1502 u->cgroup_members_mask_valid = true;
6414b7c9 1503 return u->cgroup_members_mask;
246aa6dd
LP
1504}
1505
efdb0237 1506CGroupMask unit_get_siblings_mask(Unit *u) {
4ad49000 1507 assert(u);
246aa6dd 1508
efdb0237
LP
1509 /* Returns the mask of controllers all of the unit's siblings
1510 * require, i.e. the members mask of the unit's parent slice
1511 * if there is one. */
1512
bc432dc7 1513 if (UNIT_ISSET(u->slice))
637f421e 1514 return unit_get_members_mask(UNIT_DEREF(u->slice));
4ad49000 1515
64e844e5 1516 return unit_get_subtree_mask(u); /* we are the top-level slice */
246aa6dd
LP
1517}
1518
4f6f62e4
CD
1519CGroupMask unit_get_disable_mask(Unit *u) {
1520 CGroupContext *c;
1521
1522 c = unit_get_cgroup_context(u);
1523 if (!c)
1524 return 0;
1525
1526 return c->disable_controllers;
1527}
1528
1529CGroupMask unit_get_ancestor_disable_mask(Unit *u) {
1530 CGroupMask mask;
1531
1532 assert(u);
1533 mask = unit_get_disable_mask(u);
1534
1535 /* Returns the mask of controllers which are marked as forcibly
1536 * disabled in any ancestor unit or the unit in question. */
1537
1538 if (UNIT_ISSET(u->slice))
1539 mask |= unit_get_ancestor_disable_mask(UNIT_DEREF(u->slice));
1540
1541 return mask;
1542}
1543
efdb0237
LP
1544CGroupMask unit_get_subtree_mask(Unit *u) {
1545
1546 /* Returns the mask of this subtree, meaning of the group
1547 * itself and its children. */
1548
1549 return unit_get_own_mask(u) | unit_get_members_mask(u);
1550}
1551
1552CGroupMask unit_get_target_mask(Unit *u) {
1553 CGroupMask mask;
1554
1555 /* This returns the cgroup mask of all controllers to enable
1556 * for a specific cgroup, i.e. everything it needs itself,
1557 * plus all that its children need, plus all that its siblings
1558 * need. This is primarily useful on the legacy cgroup
1559 * hierarchy, where we need to duplicate each cgroup in each
1560 * hierarchy that shall be enabled for it. */
6414b7c9 1561
efdb0237 1562 mask = unit_get_own_mask(u) | unit_get_members_mask(u) | unit_get_siblings_mask(u);
84d2744b
ZJS
1563
1564 if (mask & CGROUP_MASK_BPF_FIREWALL & ~u->manager->cgroup_supported)
1565 emit_bpf_firewall_warning(u);
1566
efdb0237 1567 mask &= u->manager->cgroup_supported;
c72703e2 1568 mask &= ~unit_get_ancestor_disable_mask(u);
efdb0237
LP
1569
1570 return mask;
1571}
1572
1573CGroupMask unit_get_enable_mask(Unit *u) {
1574 CGroupMask mask;
1575
1576 /* This returns the cgroup mask of all controllers to enable
1577 * for the children of a specific cgroup. This is primarily
1578 * useful for the unified cgroup hierarchy, where each cgroup
1579 * controls which controllers are enabled for its children. */
1580
1581 mask = unit_get_members_mask(u);
6414b7c9 1582 mask &= u->manager->cgroup_supported;
c72703e2 1583 mask &= ~unit_get_ancestor_disable_mask(u);
6414b7c9
DS
1584
1585 return mask;
1586}
1587
5af88058 1588void unit_invalidate_cgroup_members_masks(Unit *u) {
bc432dc7
LP
1589 assert(u);
1590
5af88058
LP
1591 /* Recurse invalidate the member masks cache all the way up the tree */
1592 u->cgroup_members_mask_valid = false;
bc432dc7 1593
5af88058
LP
1594 if (UNIT_ISSET(u->slice))
1595 unit_invalidate_cgroup_members_masks(UNIT_DEREF(u->slice));
6414b7c9
DS
1596}
1597
6592b975 1598const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
03b90d4b 1599
6592b975 1600 /* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
03b90d4b
LP
1601
1602 while (u) {
6592b975 1603
03b90d4b
LP
1604 if (u->cgroup_path &&
1605 u->cgroup_realized &&
d94a24ca 1606 FLAGS_SET(u->cgroup_realized_mask, mask))
03b90d4b
LP
1607 return u->cgroup_path;
1608
1609 u = UNIT_DEREF(u->slice);
1610 }
1611
1612 return NULL;
1613}
1614
6592b975
LP
1615static const char *migrate_callback(CGroupMask mask, void *userdata) {
1616 return unit_get_realized_cgroup_path(userdata, mask);
1617}
1618
303ee601 1619char *unit_default_cgroup_path(const Unit *u) {
efdb0237
LP
1620 _cleanup_free_ char *escaped = NULL, *slice = NULL;
1621 int r;
1622
1623 assert(u);
1624
1625 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1626 return strdup(u->manager->cgroup_root);
1627
1628 if (UNIT_ISSET(u->slice) && !unit_has_name(UNIT_DEREF(u->slice), SPECIAL_ROOT_SLICE)) {
1629 r = cg_slice_to_path(UNIT_DEREF(u->slice)->id, &slice);
1630 if (r < 0)
1631 return NULL;
1632 }
1633
1634 escaped = cg_escape(u->id);
1635 if (!escaped)
1636 return NULL;
1637
657ee2d8 1638 return path_join(empty_to_root(u->manager->cgroup_root), slice, escaped);
efdb0237
LP
1639}
1640
1641int unit_set_cgroup_path(Unit *u, const char *path) {
1642 _cleanup_free_ char *p = NULL;
1643 int r;
1644
1645 assert(u);
1646
5210387e
LP
1647 if (streq_ptr(u->cgroup_path, path))
1648 return 0;
1649
efdb0237
LP
1650 if (path) {
1651 p = strdup(path);
1652 if (!p)
1653 return -ENOMEM;
5210387e 1654 }
efdb0237
LP
1655
1656 if (p) {
1657 r = hashmap_put(u->manager->cgroup_unit, p, u);
1658 if (r < 0)
1659 return r;
1660 }
1661
1662 unit_release_cgroup(u);
ae2a15bc 1663 u->cgroup_path = TAKE_PTR(p);
efdb0237
LP
1664
1665 return 1;
1666}
1667
1668int unit_watch_cgroup(Unit *u) {
ab2c3861 1669 _cleanup_free_ char *events = NULL;
efdb0237
LP
1670 int r;
1671
1672 assert(u);
1673
0bb814c2
LP
1674 /* Watches the "cgroups.events" attribute of this unit's cgroup for "empty" events, but only if
1675 * cgroupv2 is available. */
1676
efdb0237
LP
1677 if (!u->cgroup_path)
1678 return 0;
1679
0bb814c2 1680 if (u->cgroup_control_inotify_wd >= 0)
efdb0237
LP
1681 return 0;
1682
1683 /* Only applies to the unified hierarchy */
c22800e4 1684 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
b4cccbc1
LP
1685 if (r < 0)
1686 return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
1687 if (r == 0)
efdb0237
LP
1688 return 0;
1689
0bb814c2 1690 /* No point in watch the top-level slice, it's never going to run empty. */
efdb0237
LP
1691 if (unit_has_name(u, SPECIAL_ROOT_SLICE))
1692 return 0;
1693
0bb814c2 1694 r = hashmap_ensure_allocated(&u->manager->cgroup_control_inotify_wd_unit, &trivial_hash_ops);
efdb0237
LP
1695 if (r < 0)
1696 return log_oom();
1697
ab2c3861 1698 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events);
efdb0237
LP
1699 if (r < 0)
1700 return log_oom();
1701
0bb814c2
LP
1702 u->cgroup_control_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
1703 if (u->cgroup_control_inotify_wd < 0) {
efdb0237 1704
0bb814c2
LP
1705 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
1706 * is not an error */
efdb0237
LP
1707 return 0;
1708
0bb814c2 1709 return log_unit_error_errno(u, errno, "Failed to add control inotify watch descriptor for control group %s: %m", u->cgroup_path);
efdb0237
LP
1710 }
1711
0bb814c2 1712 r = hashmap_put(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd), u);
efdb0237 1713 if (r < 0)
0bb814c2 1714 return log_unit_error_errno(u, r, "Failed to add control inotify watch descriptor to hash map: %m");
efdb0237
LP
1715
1716 return 0;
1717}
1718
afcfaa69
LP
1719int unit_watch_cgroup_memory(Unit *u) {
1720 _cleanup_free_ char *events = NULL;
1721 CGroupContext *c;
1722 int r;
1723
1724 assert(u);
1725
1726 /* Watches the "memory.events" attribute of this unit's cgroup for "oom_kill" events, but only if
1727 * cgroupv2 is available. */
1728
1729 if (!u->cgroup_path)
1730 return 0;
1731
1732 c = unit_get_cgroup_context(u);
1733 if (!c)
1734 return 0;
1735
1736 /* The "memory.events" attribute is only available if the memory controller is on. Let's hence tie
1737 * this to memory accounting, in a way watching for OOM kills is a form of memory accounting after
1738 * all. */
1739 if (!c->memory_accounting)
1740 return 0;
1741
1742 /* Don't watch inner nodes, as the kernel doesn't report oom_kill events recursively currently, and
1743 * we also don't want to generate a log message for each parent cgroup of a process. */
1744 if (u->type == UNIT_SLICE)
1745 return 0;
1746
1747 if (u->cgroup_memory_inotify_wd >= 0)
1748 return 0;
1749
1750 /* Only applies to the unified hierarchy */
1751 r = cg_all_unified();
1752 if (r < 0)
1753 return log_error_errno(r, "Failed to determine whether the memory controller is unified: %m");
1754 if (r == 0)
1755 return 0;
1756
1757 r = hashmap_ensure_allocated(&u->manager->cgroup_memory_inotify_wd_unit, &trivial_hash_ops);
1758 if (r < 0)
1759 return log_oom();
1760
1761 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "memory.events", &events);
1762 if (r < 0)
1763 return log_oom();
1764
1765 u->cgroup_memory_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
1766 if (u->cgroup_memory_inotify_wd < 0) {
1767
1768 if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
1769 * is not an error */
1770 return 0;
1771
1772 return log_unit_error_errno(u, errno, "Failed to add memory inotify watch descriptor for control group %s: %m", u->cgroup_path);
1773 }
1774
1775 r = hashmap_put(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd), u);
1776 if (r < 0)
1777 return log_unit_error_errno(u, r, "Failed to add memory inotify watch descriptor to hash map: %m");
1778
1779 return 0;
1780}
1781
a4634b21
LP
1782int unit_pick_cgroup_path(Unit *u) {
1783 _cleanup_free_ char *path = NULL;
1784 int r;
1785
1786 assert(u);
1787
1788 if (u->cgroup_path)
1789 return 0;
1790
1791 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1792 return -EINVAL;
1793
1794 path = unit_default_cgroup_path(u);
1795 if (!path)
1796 return log_oom();
1797
1798 r = unit_set_cgroup_path(u, path);
1799 if (r == -EEXIST)
1800 return log_unit_error_errno(u, r, "Control group %s exists already.", path);
1801 if (r < 0)
1802 return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", path);
1803
1804 return 0;
1805}
1806
efdb0237
LP
1807static int unit_create_cgroup(
1808 Unit *u,
1809 CGroupMask target_mask,
0d2d6fbf
CD
1810 CGroupMask enable_mask,
1811 ManagerState state) {
efdb0237 1812
65be7e06 1813 bool created;
27adcc97 1814 int r;
64747e2d 1815
4ad49000 1816 assert(u);
64747e2d 1817
27c4ed79 1818 if (!UNIT_HAS_CGROUP_CONTEXT(u))
0cd385d3
LP
1819 return 0;
1820
a4634b21
LP
1821 /* Figure out our cgroup path */
1822 r = unit_pick_cgroup_path(u);
1823 if (r < 0)
1824 return r;
b58b8e11 1825
03b90d4b 1826 /* First, create our own group */
efdb0237 1827 r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path);
23bbb0de 1828 if (r < 0)
efdb0237 1829 return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", u->cgroup_path);
490c5a37 1830 created = r;
efdb0237
LP
1831
1832 /* Start watching it */
1833 (void) unit_watch_cgroup(u);
afcfaa69 1834 (void) unit_watch_cgroup_memory(u);
efdb0237 1835
65be7e06 1836 /* Preserve enabled controllers in delegated units, adjust others. */
1fd3a10c 1837 if (created || !u->cgroup_realized || !unit_cgroup_delegate(u)) {
27adcc97 1838 CGroupMask result_mask = 0;
65be7e06
ZJS
1839
1840 /* Enable all controllers we need */
27adcc97 1841 r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path, &result_mask);
65be7e06 1842 if (r < 0)
27adcc97
LP
1843 log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", u->cgroup_path);
1844
1845 /* If we just turned off a controller, this might release the controller for our parent too, let's
1846 * enqueue the parent for re-realization in that case again. */
1847 if (UNIT_ISSET(u->slice)) {
1848 CGroupMask turned_off;
1849
1850 turned_off = (u->cgroup_realized ? u->cgroup_enabled_mask & ~result_mask : 0);
1851 if (turned_off != 0) {
1852 Unit *parent;
1853
1854 /* Force the parent to propagate the enable mask to the kernel again, by invalidating
1855 * the controller we just turned off. */
1856
1857 for (parent = UNIT_DEREF(u->slice); parent; parent = UNIT_DEREF(parent->slice))
1858 unit_invalidate_cgroup(parent, turned_off);
1859 }
1860 }
1861
1862 /* Remember what's actually enabled now */
1863 u->cgroup_enabled_mask = result_mask;
65be7e06 1864 }
03b90d4b
LP
1865
1866 /* Keep track that this is now realized */
4ad49000 1867 u->cgroup_realized = true;
efdb0237 1868 u->cgroup_realized_mask = target_mask;
4ad49000 1869
1d9cc876 1870 if (u->type != UNIT_SLICE && !unit_cgroup_delegate(u)) {
0cd385d3
LP
1871
1872 /* Then, possibly move things over, but not if
1873 * subgroups may contain processes, which is the case
1874 * for slice and delegation units. */
1875 r = cg_migrate_everywhere(u->manager->cgroup_supported, u->cgroup_path, u->cgroup_path, migrate_callback, u);
1876 if (r < 0)
efdb0237 1877 log_unit_warning_errno(u, r, "Failed to migrate cgroup from to %s, ignoring: %m", u->cgroup_path);
0cd385d3 1878 }
03b90d4b 1879
0d2d6fbf
CD
1880 /* Set attributes */
1881 cgroup_context_apply(u, target_mask, state);
1882 cgroup_xattr_apply(u);
1883
64747e2d
LP
1884 return 0;
1885}
1886
6592b975
LP
1887static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
1888 _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
1889 char *pp;
7b3fd631 1890 int r;
6592b975 1891
7b3fd631
LP
1892 assert(u);
1893
6592b975
LP
1894 if (MANAGER_IS_SYSTEM(u->manager))
1895 return -EINVAL;
1896
1897 if (!u->manager->system_bus)
1898 return -EIO;
1899
1900 if (!u->cgroup_path)
1901 return -EINVAL;
1902
1903 /* Determine this unit's cgroup path relative to our cgroup root */
1904 pp = path_startswith(u->cgroup_path, u->manager->cgroup_root);
1905 if (!pp)
1906 return -EINVAL;
1907
1908 pp = strjoina("/", pp, suffix_path);
858d36c1 1909 path_simplify(pp, false);
6592b975
LP
1910
1911 r = sd_bus_call_method(u->manager->system_bus,
1912 "org.freedesktop.systemd1",
1913 "/org/freedesktop/systemd1",
1914 "org.freedesktop.systemd1.Manager",
1915 "AttachProcessesToUnit",
1916 &error, NULL,
1917 "ssau",
1918 NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
7b3fd631 1919 if (r < 0)
6592b975
LP
1920 return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
1921
1922 return 0;
1923}
1924
1925int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
1926 CGroupMask delegated_mask;
1927 const char *p;
1928 Iterator i;
1929 void *pidp;
1930 int r, q;
1931
1932 assert(u);
1933
1934 if (!UNIT_HAS_CGROUP_CONTEXT(u))
1935 return -EINVAL;
1936
1937 if (set_isempty(pids))
1938 return 0;
7b3fd631 1939
fab34748
KL
1940 /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
1941 * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
1942 r = bpf_firewall_load_custom(u);
1943 if (r < 0)
1944 return r;
1945
6592b975 1946 r = unit_realize_cgroup(u);
7b3fd631
LP
1947 if (r < 0)
1948 return r;
1949
6592b975
LP
1950 if (isempty(suffix_path))
1951 p = u->cgroup_path;
1952 else
270384b2 1953 p = prefix_roota(u->cgroup_path, suffix_path);
6592b975
LP
1954
1955 delegated_mask = unit_get_delegate_mask(u);
1956
1957 r = 0;
1958 SET_FOREACH(pidp, pids, i) {
1959 pid_t pid = PTR_TO_PID(pidp);
1960 CGroupController c;
1961
1962 /* First, attach the PID to the main cgroup hierarchy */
1963 q = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid);
1964 if (q < 0) {
1965 log_unit_debug_errno(u, q, "Couldn't move process " PID_FMT " to requested cgroup '%s': %m", pid, p);
1966
1967 if (MANAGER_IS_USER(u->manager) && IN_SET(q, -EPERM, -EACCES)) {
1968 int z;
1969
1970 /* If we are in a user instance, and we can't move the process ourselves due to
1971 * permission problems, let's ask the system instance about it instead. Since it's more
1972 * privileged it might be able to move the process across the leaves of a subtree who's
1973 * top node is not owned by us. */
1974
1975 z = unit_attach_pid_to_cgroup_via_bus(u, pid, suffix_path);
1976 if (z < 0)
1977 log_unit_debug_errno(u, z, "Couldn't move process " PID_FMT " to requested cgroup '%s' via the system bus either: %m", pid, p);
1978 else
1979 continue; /* When the bus thing worked via the bus we are fully done for this PID. */
1980 }
1981
1982 if (r >= 0)
1983 r = q; /* Remember first error */
1984
1985 continue;
1986 }
1987
1988 q = cg_all_unified();
1989 if (q < 0)
1990 return q;
1991 if (q > 0)
1992 continue;
1993
1994 /* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the
1995 * innermost realized one */
1996
1997 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
1998 CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
1999 const char *realized;
2000
2001 if (!(u->manager->cgroup_supported & bit))
2002 continue;
2003
2004 /* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */
2005 if (delegated_mask & u->cgroup_realized_mask & bit) {
2006 q = cg_attach(cgroup_controller_to_string(c), p, pid);
2007 if (q >= 0)
2008 continue; /* Success! */
2009
2010 log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m",
2011 pid, p, cgroup_controller_to_string(c));
2012 }
2013
2014 /* So this controller is either not delegate or realized, or something else weird happened. In
2015 * that case let's attach the PID at least to the closest cgroup up the tree that is
2016 * realized. */
2017 realized = unit_get_realized_cgroup_path(u, bit);
2018 if (!realized)
2019 continue; /* Not even realized in the root slice? Then let's not bother */
2020
2021 q = cg_attach(cgroup_controller_to_string(c), realized, pid);
2022 if (q < 0)
2023 log_unit_debug_errno(u, q, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m",
2024 pid, realized, cgroup_controller_to_string(c));
2025 }
2026 }
2027
2028 return r;
7b3fd631
LP
2029}
2030
906c06f6
DM
2031static bool unit_has_mask_realized(
2032 Unit *u,
2033 CGroupMask target_mask,
17f14955 2034 CGroupMask enable_mask) {
906c06f6 2035
bc432dc7
LP
2036 assert(u);
2037
d5095dcd
LP
2038 /* Returns true if this unit is fully realized. We check four things:
2039 *
2040 * 1. Whether the cgroup was created at all
4e1dfa45
CD
2041 * 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroup v1)
2042 * 3. Whether the cgroup has all the right controllers enabled (in case of cgroup v2)
d5095dcd
LP
2043 * 4. Whether the invalidation mask is currently zero
2044 *
2045 * If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note
4e1dfa45
CD
2046 * that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroup v1 controllers), CGROUP_MASK_V2 (for
2047 * real cgroup v2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask
2048 * is only matters for cgroup v1 controllers, and cgroup_enabled_mask only used for cgroup v2, and if they
d5095dcd
LP
2049 * differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are
2050 * enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they
2051 * simply don't matter. */
2052
906c06f6 2053 return u->cgroup_realized &&
d5095dcd
LP
2054 ((u->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 &&
2055 ((u->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 &&
17f14955 2056 u->cgroup_invalidated_mask == 0;
6414b7c9
DS
2057}
2058
4f6f62e4
CD
2059static bool unit_has_mask_disables_realized(
2060 Unit *u,
2061 CGroupMask target_mask,
2062 CGroupMask enable_mask) {
2063
2064 assert(u);
2065
2066 /* Returns true if all controllers which should be disabled are indeed disabled.
2067 *
2068 * Unlike unit_has_mask_realized, we don't care what was enabled, only that anything we want to remove is
2069 * already removed. */
2070
2071 return !u->cgroup_realized ||
2072 (FLAGS_SET(u->cgroup_realized_mask, target_mask & CGROUP_MASK_V1) &&
2073 FLAGS_SET(u->cgroup_enabled_mask, enable_mask & CGROUP_MASK_V2));
2074}
2075
a57669d2
CD
2076static bool unit_has_mask_enables_realized(
2077 Unit *u,
2078 CGroupMask target_mask,
2079 CGroupMask enable_mask) {
2080
2081 assert(u);
2082
2083 /* Returns true if all controllers which should be enabled are indeed enabled.
2084 *
2085 * Unlike unit_has_mask_realized, we don't care about the controllers that are not present, only that anything
2086 * we want to add is already added. */
2087
2088 return u->cgroup_realized &&
c72703e2
CD
2089 ((u->cgroup_realized_mask | target_mask) & CGROUP_MASK_V1) == (u->cgroup_realized_mask & CGROUP_MASK_V1) &&
2090 ((u->cgroup_enabled_mask | enable_mask) & CGROUP_MASK_V2) == (u->cgroup_enabled_mask & CGROUP_MASK_V2);
a57669d2
CD
2091}
2092
27adcc97 2093void unit_add_to_cgroup_realize_queue(Unit *u) {
2aa57a65
LP
2094 assert(u);
2095
2096 if (u->in_cgroup_realize_queue)
2097 return;
2098
2099 LIST_PREPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
2100 u->in_cgroup_realize_queue = true;
2101}
2102
2103static void unit_remove_from_cgroup_realize_queue(Unit *u) {
2104 assert(u);
2105
2106 if (!u->in_cgroup_realize_queue)
2107 return;
2108
2109 LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
2110 u->in_cgroup_realize_queue = false;
2111}
2112
a57669d2
CD
2113/* Controllers can only be enabled breadth-first, from the root of the
2114 * hierarchy downwards to the unit in question. */
2115static int unit_realize_cgroup_now_enable(Unit *u, ManagerState state) {
2116 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
2117 int r;
2118
2119 assert(u);
2120
2121 /* First go deal with this unit's parent, or we won't be able to enable
2122 * any new controllers at this layer. */
2123 if (UNIT_ISSET(u->slice)) {
2124 r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state);
2125 if (r < 0)
2126 return r;
2127 }
2128
2129 target_mask = unit_get_target_mask(u);
2130 enable_mask = unit_get_enable_mask(u);
2131
2132 /* We can only enable in this direction, don't try to disable anything.
2133 */
2134 if (unit_has_mask_enables_realized(u, target_mask, enable_mask))
2135 return 0;
2136
2137 new_target_mask = u->cgroup_realized_mask | target_mask;
2138 new_enable_mask = u->cgroup_enabled_mask | enable_mask;
2139
c72703e2 2140 return unit_create_cgroup(u, new_target_mask, new_enable_mask, state);
a57669d2
CD
2141}
2142
4f6f62e4
CD
2143/* Controllers can only be disabled depth-first, from the leaves of the
2144 * hierarchy upwards to the unit in question. */
2145static int unit_realize_cgroup_now_disable(Unit *u, ManagerState state) {
2146 Iterator i;
2147 Unit *m;
2148 void *v;
2149
2150 assert(u);
2151
2152 if (u->type != UNIT_SLICE)
2153 return 0;
2154
2155 HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
2156 CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
2157 int r;
2158
2159 if (UNIT_DEREF(m->slice) != u)
2160 continue;
2161
2162 /* The cgroup for this unit might not actually be fully
2163 * realised yet, in which case it isn't holding any controllers
2164 * open anyway. */
2165 if (!m->cgroup_path)
2166 continue;
2167
2168 /* We must disable those below us first in order to release the
2169 * controller. */
2170 if (m->type == UNIT_SLICE)
2171 (void) unit_realize_cgroup_now_disable(m, state);
2172
2173 target_mask = unit_get_target_mask(m);
2174 enable_mask = unit_get_enable_mask(m);
2175
2176 /* We can only disable in this direction, don't try to enable
2177 * anything. */
2178 if (unit_has_mask_disables_realized(m, target_mask, enable_mask))
2179 continue;
2180
2181 new_target_mask = m->cgroup_realized_mask & target_mask;
2182 new_enable_mask = m->cgroup_enabled_mask & enable_mask;
2183
2184 r = unit_create_cgroup(m, new_target_mask, new_enable_mask, state);
2185 if (r < 0)
2186 return r;
2187 }
2188
2189 return 0;
2190}
a57669d2 2191
6414b7c9
DS
2192/* Check if necessary controllers and attributes for a unit are in place.
2193 *
a57669d2
CD
2194 * - If so, do nothing.
2195 * - If not, create paths, move processes over, and set attributes.
2196 *
2197 * Controllers can only be *enabled* in a breadth-first way, and *disabled* in
2198 * a depth-first way. As such the process looks like this:
2199 *
2200 * Suppose we have a cgroup hierarchy which looks like this:
2201 *
2202 * root
2203 * / \
2204 * / \
2205 * / \
2206 * a b
2207 * / \ / \
2208 * / \ / \
2209 * c d e f
2210 * / \ / \ / \ / \
2211 * h i j k l m n o
2212 *
2213 * 1. We want to realise cgroup "d" now.
c72703e2 2214 * 2. cgroup "a" has DisableControllers=cpu in the associated unit.
a57669d2
CD
2215 * 3. cgroup "k" just started requesting the memory controller.
2216 *
2217 * To make this work we must do the following in order:
2218 *
2219 * 1. Disable CPU controller in k, j
2220 * 2. Disable CPU controller in d
2221 * 3. Enable memory controller in root
2222 * 4. Enable memory controller in a
2223 * 5. Enable memory controller in d
2224 * 6. Enable memory controller in k
2225 *
2226 * Notice that we need to touch j in one direction, but not the other. We also
2227 * don't go beyond d when disabling -- it's up to "a" to get realized if it
2228 * wants to disable further. The basic rules are therefore:
2229 *
2230 * - If you're disabling something, you need to realise all of the cgroups from
2231 * your recursive descendants to the root. This starts from the leaves.
2232 * - If you're enabling something, you need to realise from the root cgroup
2233 * downwards, but you don't need to iterate your recursive descendants.
6414b7c9
DS
2234 *
2235 * Returns 0 on success and < 0 on failure. */
db785129 2236static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
efdb0237 2237 CGroupMask target_mask, enable_mask;
6414b7c9 2238 int r;
64747e2d 2239
4ad49000 2240 assert(u);
64747e2d 2241
2aa57a65 2242 unit_remove_from_cgroup_realize_queue(u);
64747e2d 2243
efdb0237 2244 target_mask = unit_get_target_mask(u);
ccf78df1
TH
2245 enable_mask = unit_get_enable_mask(u);
2246
17f14955 2247 if (unit_has_mask_realized(u, target_mask, enable_mask))
0a1eb06d 2248 return 0;
64747e2d 2249
4f6f62e4
CD
2250 /* Disable controllers below us, if there are any */
2251 r = unit_realize_cgroup_now_disable(u, state);
2252 if (r < 0)
2253 return r;
2254
2255 /* Enable controllers above us, if there are any */
6414b7c9 2256 if (UNIT_ISSET(u->slice)) {
a57669d2 2257 r = unit_realize_cgroup_now_enable(UNIT_DEREF(u->slice), state);
6414b7c9
DS
2258 if (r < 0)
2259 return r;
2260 }
4ad49000 2261
0d2d6fbf
CD
2262 /* Now actually deal with the cgroup we were trying to realise and set attributes */
2263 r = unit_create_cgroup(u, target_mask, enable_mask, state);
6414b7c9
DS
2264 if (r < 0)
2265 return r;
2266
c2baf11c
LP
2267 /* Now, reset the invalidation mask */
2268 u->cgroup_invalidated_mask = 0;
6414b7c9 2269 return 0;
64747e2d
LP
2270}
2271
91a6073e 2272unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
db785129 2273 ManagerState state;
4ad49000 2274 unsigned n = 0;
db785129 2275 Unit *i;
6414b7c9 2276 int r;
ecedd90f 2277
91a6073e
LP
2278 assert(m);
2279
db785129
LP
2280 state = manager_state(m);
2281
91a6073e
LP
2282 while ((i = m->cgroup_realize_queue)) {
2283 assert(i->in_cgroup_realize_queue);
ecedd90f 2284
2aa57a65
LP
2285 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
2286 /* Maybe things changed, and the unit is not actually active anymore? */
2287 unit_remove_from_cgroup_realize_queue(i);
2288 continue;
2289 }
2290
db785129 2291 r = unit_realize_cgroup_now(i, state);
6414b7c9 2292 if (r < 0)
efdb0237 2293 log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
0a1eb06d 2294
4ad49000
LP
2295 n++;
2296 }
ecedd90f 2297
4ad49000 2298 return n;
8e274523
LP
2299}
2300
91a6073e 2301static void unit_add_siblings_to_cgroup_realize_queue(Unit *u) {
4ad49000 2302 Unit *slice;
ca949c9d 2303
4ad49000
LP
2304 /* This adds the siblings of the specified unit and the
2305 * siblings of all parent units to the cgroup queue. (But
2306 * neither the specified unit itself nor the parents.) */
2307
2308 while ((slice = UNIT_DEREF(u->slice))) {
2309 Iterator i;
2310 Unit *m;
eef85c4a 2311 void *v;
8f53a7b8 2312
eef85c4a 2313 HASHMAP_FOREACH_KEY(v, m, u->dependencies[UNIT_BEFORE], i) {
6414b7c9
DS
2314 /* Skip units that have a dependency on the slice
2315 * but aren't actually in it. */
4ad49000 2316 if (UNIT_DEREF(m->slice) != slice)
50159e6a 2317 continue;
8e274523 2318
6414b7c9
DS
2319 /* No point in doing cgroup application for units
2320 * without active processes. */
2321 if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
2322 continue;
2323
2324 /* If the unit doesn't need any new controllers
2325 * and has current ones realized, it doesn't need
2326 * any changes. */
906c06f6
DM
2327 if (unit_has_mask_realized(m,
2328 unit_get_target_mask(m),
17f14955 2329 unit_get_enable_mask(m)))
6414b7c9
DS
2330 continue;
2331
91a6073e 2332 unit_add_to_cgroup_realize_queue(m);
50159e6a
LP
2333 }
2334
4ad49000 2335 u = slice;
8e274523 2336 }
4ad49000
LP
2337}
2338
0a1eb06d 2339int unit_realize_cgroup(Unit *u) {
4ad49000
LP
2340 assert(u);
2341
35b7ff80 2342 if (!UNIT_HAS_CGROUP_CONTEXT(u))
0a1eb06d 2343 return 0;
8e274523 2344
4ad49000
LP
2345 /* So, here's the deal: when realizing the cgroups for this
2346 * unit, we need to first create all parents, but there's more
2347 * actually: for the weight-based controllers we also need to
2348 * make sure that all our siblings (i.e. units that are in the
73e231ab 2349 * same slice as we are) have cgroups, too. Otherwise, things
4ad49000
LP
2350 * would become very uneven as each of their processes would
2351 * get as much resources as all our group together. This call
2352 * will synchronously create the parent cgroups, but will
2353 * defer work on the siblings to the next event loop
2354 * iteration. */
ca949c9d 2355
4ad49000 2356 /* Add all sibling slices to the cgroup queue. */
91a6073e 2357 unit_add_siblings_to_cgroup_realize_queue(u);
4ad49000 2358
6414b7c9 2359 /* And realize this one now (and apply the values) */
db785129 2360 return unit_realize_cgroup_now(u, manager_state(u->manager));
8e274523
LP
2361}
2362
efdb0237
LP
2363void unit_release_cgroup(Unit *u) {
2364 assert(u);
2365
8a0d5388
LP
2366 /* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call
2367 * when we close down everything for reexecution, where we really want to leave the cgroup in place. */
efdb0237
LP
2368
2369 if (u->cgroup_path) {
2370 (void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
2371 u->cgroup_path = mfree(u->cgroup_path);
2372 }
2373
0bb814c2
LP
2374 if (u->cgroup_control_inotify_wd >= 0) {
2375 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_control_inotify_wd) < 0)
2376 log_unit_debug_errno(u, errno, "Failed to remove cgroup control inotify watch %i for %s, ignoring: %m", u->cgroup_control_inotify_wd, u->id);
efdb0237 2377
0bb814c2
LP
2378 (void) hashmap_remove(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd));
2379 u->cgroup_control_inotify_wd = -1;
efdb0237 2380 }
afcfaa69
LP
2381
2382 if (u->cgroup_memory_inotify_wd >= 0) {
2383 if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_memory_inotify_wd) < 0)
2384 log_unit_debug_errno(u, errno, "Failed to remove cgroup memory inotify watch %i for %s, ignoring: %m", u->cgroup_memory_inotify_wd, u->id);
2385
2386 (void) hashmap_remove(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd));
2387 u->cgroup_memory_inotify_wd = -1;
2388 }
efdb0237
LP
2389}
2390
2391void unit_prune_cgroup(Unit *u) {
8e274523 2392 int r;
efdb0237 2393 bool is_root_slice;
8e274523 2394
4ad49000 2395 assert(u);
8e274523 2396
efdb0237
LP
2397 /* Removes the cgroup, if empty and possible, and stops watching it. */
2398
4ad49000
LP
2399 if (!u->cgroup_path)
2400 return;
8e274523 2401
fe700f46
LP
2402 (void) unit_get_cpu_usage(u, NULL); /* Cache the last CPU usage value before we destroy the cgroup */
2403
efdb0237
LP
2404 is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
2405
2406 r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice);
0219b352
DB
2407 if (r < 0)
2408 /* One reason we could have failed here is, that the cgroup still contains a process.
2409 * However, if the cgroup becomes removable at a later time, it might be removed when
2410 * the containing slice is stopped. So even if we failed now, this unit shouldn't assume
2411 * that the cgroup is still realized the next time it is started. Do not return early
2412 * on error, continue cleanup. */
2413 log_unit_full(u, r == -EBUSY ? LOG_DEBUG : LOG_WARNING, r, "Failed to destroy cgroup %s, ignoring: %m", u->cgroup_path);
8e274523 2414
efdb0237
LP
2415 if (is_root_slice)
2416 return;
2417
2418 unit_release_cgroup(u);
0a1eb06d 2419
4ad49000 2420 u->cgroup_realized = false;
bc432dc7 2421 u->cgroup_realized_mask = 0;
ccf78df1 2422 u->cgroup_enabled_mask = 0;
084c7007
RG
2423
2424 u->bpf_device_control_installed = bpf_program_unref(u->bpf_device_control_installed);
8e274523
LP
2425}
2426
efdb0237 2427int unit_search_main_pid(Unit *u, pid_t *ret) {
4ad49000 2428 _cleanup_fclose_ FILE *f = NULL;
4d051546 2429 pid_t pid = 0, npid;
efdb0237 2430 int r;
4ad49000
LP
2431
2432 assert(u);
efdb0237 2433 assert(ret);
4ad49000
LP
2434
2435 if (!u->cgroup_path)
efdb0237 2436 return -ENXIO;
4ad49000 2437
efdb0237
LP
2438 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f);
2439 if (r < 0)
2440 return r;
4ad49000 2441
4ad49000 2442 while (cg_read_pid(f, &npid) > 0) {
4ad49000
LP
2443
2444 if (npid == pid)
2445 continue;
8e274523 2446
4d051546 2447 if (pid_is_my_child(npid) == 0)
4ad49000 2448 continue;
8e274523 2449
efdb0237 2450 if (pid != 0)
4ad49000
LP
2451 /* Dang, there's more than one daemonized PID
2452 in this group, so we don't know what process
2453 is the main process. */
efdb0237
LP
2454
2455 return -ENODATA;
8e274523 2456
4ad49000 2457 pid = npid;
8e274523
LP
2458 }
2459
efdb0237
LP
2460 *ret = pid;
2461 return 0;
2462}
2463
2464static int unit_watch_pids_in_path(Unit *u, const char *path) {
b3c5bad3 2465 _cleanup_closedir_ DIR *d = NULL;
efdb0237
LP
2466 _cleanup_fclose_ FILE *f = NULL;
2467 int ret = 0, r;
2468
2469 assert(u);
2470 assert(path);
2471
2472 r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
2473 if (r < 0)
2474 ret = r;
2475 else {
2476 pid_t pid;
2477
2478 while ((r = cg_read_pid(f, &pid)) > 0) {
f75f613d 2479 r = unit_watch_pid(u, pid, false);
efdb0237
LP
2480 if (r < 0 && ret >= 0)
2481 ret = r;
2482 }
2483
2484 if (r < 0 && ret >= 0)
2485 ret = r;
2486 }
2487
2488 r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
2489 if (r < 0) {
2490 if (ret >= 0)
2491 ret = r;
2492 } else {
2493 char *fn;
2494
2495 while ((r = cg_read_subgroup(d, &fn)) > 0) {
2496 _cleanup_free_ char *p = NULL;
2497
95b21cff 2498 p = path_join(empty_to_root(path), fn);
efdb0237
LP
2499 free(fn);
2500
2501 if (!p)
2502 return -ENOMEM;
2503
2504 r = unit_watch_pids_in_path(u, p);
2505 if (r < 0 && ret >= 0)
2506 ret = r;
2507 }
2508
2509 if (r < 0 && ret >= 0)
2510 ret = r;
2511 }
2512
2513 return ret;
2514}
2515
11aef522
LP
2516int unit_synthesize_cgroup_empty_event(Unit *u) {
2517 int r;
2518
2519 assert(u);
2520
2521 /* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility
2522 * support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can
2523 * get as notification source as soon as we stopped having any useful PIDs to watch for. */
2524
2525 if (!u->cgroup_path)
2526 return -ENOENT;
2527
2528 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
2529 if (r < 0)
2530 return r;
2531 if (r > 0) /* On unified we have reliable notifications, and don't need this */
2532 return 0;
2533
2534 if (!set_isempty(u->pids))
2535 return 0;
2536
2537 unit_add_to_cgroup_empty_queue(u);
2538 return 0;
2539}
2540
efdb0237 2541int unit_watch_all_pids(Unit *u) {
b4cccbc1
LP
2542 int r;
2543
efdb0237
LP
2544 assert(u);
2545
2546 /* Adds all PIDs from our cgroup to the set of PIDs we
2547 * watch. This is a fallback logic for cases where we do not
2548 * get reliable cgroup empty notifications: we try to use
2549 * SIGCHLD as replacement. */
2550
2551 if (!u->cgroup_path)
2552 return -ENOENT;
2553
c22800e4 2554 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
b4cccbc1
LP
2555 if (r < 0)
2556 return r;
2557 if (r > 0) /* On unified we can use proper notifications */
efdb0237
LP
2558 return 0;
2559
2560 return unit_watch_pids_in_path(u, u->cgroup_path);
2561}
2562
09e24654
LP
2563static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
2564 Manager *m = userdata;
2565 Unit *u;
efdb0237
LP
2566 int r;
2567
09e24654
LP
2568 assert(s);
2569 assert(m);
efdb0237 2570
09e24654
LP
2571 u = m->cgroup_empty_queue;
2572 if (!u)
efdb0237
LP
2573 return 0;
2574
09e24654
LP
2575 assert(u->in_cgroup_empty_queue);
2576 u->in_cgroup_empty_queue = false;
2577 LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
2578
2579 if (m->cgroup_empty_queue) {
2580 /* More stuff queued, let's make sure we remain enabled */
2581 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
2582 if (r < 0)
19a691a9 2583 log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
09e24654 2584 }
efdb0237
LP
2585
2586 unit_add_to_gc_queue(u);
2587
2588 if (UNIT_VTABLE(u)->notify_cgroup_empty)
2589 UNIT_VTABLE(u)->notify_cgroup_empty(u);
2590
2591 return 0;
2592}
2593
09e24654
LP
2594void unit_add_to_cgroup_empty_queue(Unit *u) {
2595 int r;
2596
2597 assert(u);
2598
2599 /* Note that there are four different ways how cgroup empty events reach us:
2600 *
2601 * 1. On the unified hierarchy we get an inotify event on the cgroup
2602 *
2603 * 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket
2604 *
2605 * 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus
2606 *
2607 * 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as
2608 * soon as we get one SIGCHLD, to deal with unreliable cgroup notifications.
2609 *
2610 * Regardless which way we got the notification, we'll verify it here, and then add it to a separate
2611 * queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use
2612 * SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending
2613 * (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the
2614 * case for scope units). */
2615
2616 if (u->in_cgroup_empty_queue)
2617 return;
2618
2619 /* Let's verify that the cgroup is really empty */
2620 if (!u->cgroup_path)
2621 return;
2622 r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
2623 if (r < 0) {
2624 log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", u->cgroup_path);
2625 return;
2626 }
2627 if (r == 0)
2628 return;
2629
2630 LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
2631 u->in_cgroup_empty_queue = true;
2632
2633 /* Trigger the defer event */
2634 r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
2635 if (r < 0)
2636 log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
2637}
2638
2ba6ae6b 2639int unit_check_oom(Unit *u) {
afcfaa69
LP
2640 _cleanup_free_ char *oom_kill = NULL;
2641 bool increased;
2642 uint64_t c;
2643 int r;
2644
2645 if (!u->cgroup_path)
2646 return 0;
2647
2648 r = cg_get_keyed_attribute("memory", u->cgroup_path, "memory.events", STRV_MAKE("oom_kill"), &oom_kill);
2649 if (r < 0)
2650 return log_unit_debug_errno(u, r, "Failed to read oom_kill field of memory.events cgroup attribute: %m");
2651
2652 r = safe_atou64(oom_kill, &c);
2653 if (r < 0)
2654 return log_unit_debug_errno(u, r, "Failed to parse oom_kill field: %m");
2655
2656 increased = c > u->oom_kill_last;
2657 u->oom_kill_last = c;
2658
2659 if (!increased)
2660 return 0;
2661
2662 log_struct(LOG_NOTICE,
2663 "MESSAGE_ID=" SD_MESSAGE_UNIT_OUT_OF_MEMORY_STR,
2664 LOG_UNIT_ID(u),
2665 LOG_UNIT_INVOCATION_ID(u),
2666 LOG_UNIT_MESSAGE(u, "A process of this unit has been killed by the OOM killer."));
2667
2668 if (UNIT_VTABLE(u)->notify_cgroup_oom)
2669 UNIT_VTABLE(u)->notify_cgroup_oom(u);
2670
2671 return 1;
2672}
2673
2674static int on_cgroup_oom_event(sd_event_source *s, void *userdata) {
2675 Manager *m = userdata;
2676 Unit *u;
2677 int r;
2678
2679 assert(s);
2680 assert(m);
2681
2682 u = m->cgroup_oom_queue;
2683 if (!u)
2684 return 0;
2685
2686 assert(u->in_cgroup_oom_queue);
2687 u->in_cgroup_oom_queue = false;
2688 LIST_REMOVE(cgroup_oom_queue, m->cgroup_oom_queue, u);
2689
2690 if (m->cgroup_oom_queue) {
2691 /* More stuff queued, let's make sure we remain enabled */
2692 r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
2693 if (r < 0)
2694 log_debug_errno(r, "Failed to reenable cgroup oom event source, ignoring: %m");
2695 }
2696
2697 (void) unit_check_oom(u);
2698 return 0;
2699}
2700
2701static void unit_add_to_cgroup_oom_queue(Unit *u) {
2702 int r;
2703
2704 assert(u);
2705
2706 if (u->in_cgroup_oom_queue)
2707 return;
2708 if (!u->cgroup_path)
2709 return;
2710
2711 LIST_PREPEND(cgroup_oom_queue, u->manager->cgroup_oom_queue, u);
2712 u->in_cgroup_oom_queue = true;
2713
2714 /* Trigger the defer event */
2715 if (!u->manager->cgroup_oom_event_source) {
2716 _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
2717
2718 r = sd_event_add_defer(u->manager->event, &s, on_cgroup_oom_event, u->manager);
2719 if (r < 0) {
2720 log_error_errno(r, "Failed to create cgroup oom event source: %m");
2721 return;
2722 }
2723
2724 r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_NORMAL-8);
2725 if (r < 0) {
2726 log_error_errno(r, "Failed to set priority of cgroup oom event source: %m");
2727 return;
2728 }
2729
2730 (void) sd_event_source_set_description(s, "cgroup-oom");
2731 u->manager->cgroup_oom_event_source = TAKE_PTR(s);
2732 }
2733
2734 r = sd_event_source_set_enabled(u->manager->cgroup_oom_event_source, SD_EVENT_ONESHOT);
2735 if (r < 0)
2736 log_error_errno(r, "Failed to enable cgroup oom event source: %m");
2737}
2738
efdb0237
LP
2739static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
2740 Manager *m = userdata;
2741
2742 assert(s);
2743 assert(fd >= 0);
2744 assert(m);
2745
2746 for (;;) {
2747 union inotify_event_buffer buffer;
2748 struct inotify_event *e;
2749 ssize_t l;
2750
2751 l = read(fd, &buffer, sizeof(buffer));
2752 if (l < 0) {
47249640 2753 if (IN_SET(errno, EINTR, EAGAIN))
efdb0237
LP
2754 return 0;
2755
2756 return log_error_errno(errno, "Failed to read control group inotify events: %m");
2757 }
2758
2759 FOREACH_INOTIFY_EVENT(e, buffer, l) {
2760 Unit *u;
2761
2762 if (e->wd < 0)
2763 /* Queue overflow has no watch descriptor */
2764 continue;
2765
2766 if (e->mask & IN_IGNORED)
2767 /* The watch was just removed */
2768 continue;
2769
afcfaa69
LP
2770 /* Note that inotify might deliver events for a watch even after it was removed,
2771 * because it was queued before the removal. Let's ignore this here safely. */
2772
0bb814c2 2773 u = hashmap_get(m->cgroup_control_inotify_wd_unit, INT_TO_PTR(e->wd));
afcfaa69
LP
2774 if (u)
2775 unit_add_to_cgroup_empty_queue(u);
efdb0237 2776
afcfaa69
LP
2777 u = hashmap_get(m->cgroup_memory_inotify_wd_unit, INT_TO_PTR(e->wd));
2778 if (u)
2779 unit_add_to_cgroup_oom_queue(u);
efdb0237
LP
2780 }
2781 }
8e274523
LP
2782}
2783
17f14955
RG
2784static int cg_bpf_mask_supported(CGroupMask *ret) {
2785 CGroupMask mask = 0;
2786 int r;
2787
2788 /* BPF-based firewall */
2789 r = bpf_firewall_supported();
2790 if (r > 0)
2791 mask |= CGROUP_MASK_BPF_FIREWALL;
2792
084c7007
RG
2793 /* BPF-based device access control */
2794 r = bpf_devices_supported();
2795 if (r > 0)
2796 mask |= CGROUP_MASK_BPF_DEVICES;
2797
17f14955
RG
2798 *ret = mask;
2799 return 0;
2800}
2801
8e274523 2802int manager_setup_cgroup(Manager *m) {
9444b1f2 2803 _cleanup_free_ char *path = NULL;
10bd3e2e 2804 const char *scope_path;
efdb0237 2805 CGroupController c;
b4cccbc1 2806 int r, all_unified;
17f14955 2807 CGroupMask mask;
efdb0237 2808 char *e;
8e274523
LP
2809
2810 assert(m);
2811
35d2e7ec 2812 /* 1. Determine hierarchy */
efdb0237 2813 m->cgroup_root = mfree(m->cgroup_root);
9444b1f2 2814 r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
23bbb0de
MS
2815 if (r < 0)
2816 return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
8e274523 2817
efdb0237
LP
2818 /* Chop off the init scope, if we are already located in it */
2819 e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
0d8c31ff 2820
efdb0237
LP
2821 /* LEGACY: Also chop off the system slice if we are in
2822 * it. This is to support live upgrades from older systemd
2823 * versions where PID 1 was moved there. Also see
2824 * cg_get_root_path(). */
463d0d15 2825 if (!e && MANAGER_IS_SYSTEM(m)) {
9444b1f2 2826 e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
15c60e99 2827 if (!e)
efdb0237 2828 e = endswith(m->cgroup_root, "/system"); /* even more legacy */
0baf24dd 2829 }
efdb0237
LP
2830 if (e)
2831 *e = 0;
7ccfb64a 2832
7546145e
LP
2833 /* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
2834 * easily prepend it everywhere. */
2835 delete_trailing_chars(m->cgroup_root, "/");
8e274523 2836
35d2e7ec 2837 /* 2. Show data */
9444b1f2 2838 r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
23bbb0de
MS
2839 if (r < 0)
2840 return log_error_errno(r, "Cannot find cgroup mount point: %m");
8e274523 2841
d4d99bc6 2842 r = cg_unified();
415fc41c
TH
2843 if (r < 0)
2844 return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
5da38d07 2845
b4cccbc1 2846 all_unified = cg_all_unified();
d4c819ed
ZJS
2847 if (all_unified < 0)
2848 return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m");
2849 if (all_unified > 0)
efdb0237 2850 log_debug("Unified cgroup hierarchy is located at %s.", path);
b4cccbc1 2851 else {
c22800e4 2852 r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
b4cccbc1
LP
2853 if (r < 0)
2854 return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m");
2855 if (r > 0)
2856 log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path);
2857 else
2858 log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path);
2859 }
efdb0237 2860
09e24654
LP
2861 /* 3. Allocate cgroup empty defer event source */
2862 m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
2863 r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
2864 if (r < 0)
2865 return log_error_errno(r, "Failed to create cgroup empty event source: %m");
2866
cbe83389
LP
2867 /* Schedule cgroup empty checks early, but after having processed service notification messages or
2868 * SIGCHLD signals, so that a cgroup running empty is always just the last safety net of
2869 * notification, and we collected the metadata the notification and SIGCHLD stuff offers first. */
09e24654
LP
2870 r = sd_event_source_set_priority(m->cgroup_empty_event_source, SD_EVENT_PRIORITY_NORMAL-5);
2871 if (r < 0)
2872 return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
2873
2874 r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
2875 if (r < 0)
2876 return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
2877
2878 (void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
2879
2880 /* 4. Install notifier inotify object, or agent */
10bd3e2e 2881 if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
c6c18be3 2882
09e24654 2883 /* In the unified hierarchy we can get cgroup empty notifications via inotify. */
efdb0237 2884
10bd3e2e
LP
2885 m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
2886 safe_close(m->cgroup_inotify_fd);
efdb0237 2887
10bd3e2e
LP
2888 m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
2889 if (m->cgroup_inotify_fd < 0)
2890 return log_error_errno(errno, "Failed to create control group inotify object: %m");
efdb0237 2891
10bd3e2e
LP
2892 r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
2893 if (r < 0)
2894 return log_error_errno(r, "Failed to watch control group inotify object: %m");
efdb0237 2895
cbe83389
LP
2896 /* Process cgroup empty notifications early. Note that when this event is dispatched it'll
2897 * just add the unit to a cgroup empty queue, hence let's run earlier than that. Also see
2898 * handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
2899 r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-9);
10bd3e2e
LP
2900 if (r < 0)
2901 return log_error_errno(r, "Failed to set priority of inotify event source: %m");
efdb0237 2902
10bd3e2e 2903 (void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
efdb0237 2904
611c4f8a 2905 } else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) {
efdb0237 2906
10bd3e2e
LP
2907 /* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable,
2908 * since it does not generate events when control groups with children run empty. */
8e274523 2909
10bd3e2e 2910 r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUP_AGENT_PATH);
23bbb0de 2911 if (r < 0)
10bd3e2e
LP
2912 log_warning_errno(r, "Failed to install release agent, ignoring: %m");
2913 else if (r > 0)
2914 log_debug("Installed release agent.");
2915 else if (r == 0)
2916 log_debug("Release agent already installed.");
2917 }
efdb0237 2918
09e24654 2919 /* 5. Make sure we are in the special "init.scope" unit in the root slice. */
10bd3e2e
LP
2920 scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
2921 r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
aa77e234
MS
2922 if (r >= 0) {
2923 /* Also, move all other userspace processes remaining in the root cgroup into that scope. */
2924 r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
2925 if (r < 0)
2926 log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
c6c18be3 2927
aa77e234
MS
2928 /* 6. And pin it, so that it cannot be unmounted */
2929 safe_close(m->pin_cgroupfs_fd);
2930 m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
2931 if (m->pin_cgroupfs_fd < 0)
2932 return log_error_errno(errno, "Failed to open pin file: %m");
0d8c31ff 2933
638cece4 2934 } else if (!MANAGER_IS_TEST_RUN(m))
aa77e234 2935 return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
10bd3e2e 2936
09e24654 2937 /* 7. Always enable hierarchical support if it exists... */
638cece4 2938 if (!all_unified && !MANAGER_IS_TEST_RUN(m))
10bd3e2e 2939 (void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
c6c18be3 2940
17f14955 2941 /* 8. Figure out which controllers are supported */
efdb0237
LP
2942 r = cg_mask_supported(&m->cgroup_supported);
2943 if (r < 0)
2944 return log_error_errno(r, "Failed to determine supported controllers: %m");
17f14955
RG
2945
2946 /* 9. Figure out which bpf-based pseudo-controllers are supported */
2947 r = cg_bpf_mask_supported(&mask);
2948 if (r < 0)
2949 return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
2950 m->cgroup_supported |= mask;
2951
2952 /* 10. Log which controllers are supported */
efdb0237 2953 for (c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
eee0a1e4 2954 log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c), yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
9156e799 2955
a32360f1 2956 return 0;
8e274523
LP
2957}
2958
c6c18be3 2959void manager_shutdown_cgroup(Manager *m, bool delete) {
8e274523
LP
2960 assert(m);
2961
9444b1f2
LP
2962 /* We can't really delete the group, since we are in it. But
2963 * let's trim it. */
f6c63f6f 2964 if (delete && m->cgroup_root && m->test_run_flags != MANAGER_TEST_RUN_MINIMAL)
efdb0237
LP
2965 (void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
2966
09e24654
LP
2967 m->cgroup_empty_event_source = sd_event_source_unref(m->cgroup_empty_event_source);
2968
0bb814c2 2969 m->cgroup_control_inotify_wd_unit = hashmap_free(m->cgroup_control_inotify_wd_unit);
afcfaa69 2970 m->cgroup_memory_inotify_wd_unit = hashmap_free(m->cgroup_memory_inotify_wd_unit);
efdb0237
LP
2971
2972 m->cgroup_inotify_event_source = sd_event_source_unref(m->cgroup_inotify_event_source);
2973 m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
8e274523 2974
03e334a1 2975 m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
c6c18be3 2976
efdb0237 2977 m->cgroup_root = mfree(m->cgroup_root);
8e274523
LP
2978}
2979
4ad49000 2980Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
acb14d31 2981 char *p;
4ad49000 2982 Unit *u;
acb14d31
LP
2983
2984 assert(m);
2985 assert(cgroup);
acb14d31 2986
4ad49000
LP
2987 u = hashmap_get(m->cgroup_unit, cgroup);
2988 if (u)
2989 return u;
acb14d31 2990
8e70580b 2991 p = strdupa(cgroup);
acb14d31
LP
2992 for (;;) {
2993 char *e;
2994
2995 e = strrchr(p, '/');
efdb0237
LP
2996 if (!e || e == p)
2997 return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
acb14d31
LP
2998
2999 *e = 0;
3000
4ad49000
LP
3001 u = hashmap_get(m->cgroup_unit, p);
3002 if (u)
3003 return u;
acb14d31
LP
3004 }
3005}
3006
b3ac818b 3007Unit *manager_get_unit_by_pid_cgroup(Manager *m, pid_t pid) {
4ad49000 3008 _cleanup_free_ char *cgroup = NULL;
8e274523 3009
8c47c732
LP
3010 assert(m);
3011
62a76913 3012 if (!pid_is_valid(pid))
b3ac818b
LP
3013 return NULL;
3014
62a76913 3015 if (cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
b3ac818b
LP
3016 return NULL;
3017
3018 return manager_get_unit_by_cgroup(m, cgroup);
3019}
3020
3021Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
62a76913 3022 Unit *u, **array;
b3ac818b
LP
3023
3024 assert(m);
3025
62a76913
LP
3026 /* Note that a process might be owned by multiple units, we return only one here, which is good enough for most
3027 * cases, though not strictly correct. We prefer the one reported by cgroup membership, as that's the most
3028 * relevant one as children of the process will be assigned to that one, too, before all else. */
3029
3030 if (!pid_is_valid(pid))
8c47c732
LP
3031 return NULL;
3032
2ca9d979 3033 if (pid == getpid_cached())
efdb0237
LP
3034 return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
3035
62a76913 3036 u = manager_get_unit_by_pid_cgroup(m, pid);
5fe8876b
LP
3037 if (u)
3038 return u;
3039
62a76913 3040 u = hashmap_get(m->watch_pids, PID_TO_PTR(pid));
5fe8876b
LP
3041 if (u)
3042 return u;
3043
62a76913
LP
3044 array = hashmap_get(m->watch_pids, PID_TO_PTR(-pid));
3045 if (array)
3046 return array[0];
3047
3048 return NULL;
6dde1f33 3049}
4fbf50b3 3050
4ad49000
LP
3051int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
3052 Unit *u;
4fbf50b3 3053
4ad49000
LP
3054 assert(m);
3055 assert(cgroup);
4fbf50b3 3056
09e24654
LP
3057 /* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process
3058 * or from the --system instance */
3059
d8fdc620
LP
3060 log_debug("Got cgroup empty notification for: %s", cgroup);
3061
4ad49000 3062 u = manager_get_unit_by_cgroup(m, cgroup);
5ad096b3
LP
3063 if (!u)
3064 return 0;
b56c28c3 3065
09e24654
LP
3066 unit_add_to_cgroup_empty_queue(u);
3067 return 1;
5ad096b3
LP
3068}
3069
3070int unit_get_memory_current(Unit *u, uint64_t *ret) {
3071 _cleanup_free_ char *v = NULL;
3072 int r;
3073
3074 assert(u);
3075 assert(ret);
3076
2e4025c0 3077 if (!UNIT_CGROUP_BOOL(u, memory_accounting))
cf3b4be1
LP
3078 return -ENODATA;
3079
5ad096b3
LP
3080 if (!u->cgroup_path)
3081 return -ENODATA;
3082
1f73aa00 3083 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
611c4f8a 3084 if (unit_has_host_root_cgroup(u))
c482724a 3085 return procfs_memory_get_used(ret);
1f73aa00 3086
efdb0237 3087 if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
5ad096b3
LP
3088 return -ENODATA;
3089
b4cccbc1
LP
3090 r = cg_all_unified();
3091 if (r < 0)
3092 return r;
3093 if (r > 0)
efdb0237 3094 r = cg_get_attribute("memory", u->cgroup_path, "memory.current", &v);
b4cccbc1
LP
3095 else
3096 r = cg_get_attribute("memory", u->cgroup_path, "memory.usage_in_bytes", &v);
5ad096b3
LP
3097 if (r == -ENOENT)
3098 return -ENODATA;
3099 if (r < 0)
3100 return r;
3101
3102 return safe_atou64(v, ret);
3103}
3104
03a7b521
LP
3105int unit_get_tasks_current(Unit *u, uint64_t *ret) {
3106 _cleanup_free_ char *v = NULL;
3107 int r;
3108
3109 assert(u);
3110 assert(ret);
3111
2e4025c0 3112 if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
cf3b4be1
LP
3113 return -ENODATA;
3114
03a7b521
LP
3115 if (!u->cgroup_path)
3116 return -ENODATA;
3117
c36a69f4 3118 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
611c4f8a 3119 if (unit_has_host_root_cgroup(u))
c36a69f4
LP
3120 return procfs_tasks_get_current(ret);
3121
1f73aa00
LP
3122 if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
3123 return -ENODATA;
3124
03a7b521
LP
3125 r = cg_get_attribute("pids", u->cgroup_path, "pids.current", &v);
3126 if (r == -ENOENT)
3127 return -ENODATA;
3128 if (r < 0)
3129 return r;
3130
3131 return safe_atou64(v, ret);
3132}
3133
5ad096b3
LP
3134static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
3135 _cleanup_free_ char *v = NULL;
3136 uint64_t ns;
3137 int r;
3138
3139 assert(u);
3140 assert(ret);
3141
3142 if (!u->cgroup_path)
3143 return -ENODATA;
3144
1f73aa00 3145 /* The root cgroup doesn't expose this information, let's get it from /proc instead */
611c4f8a 3146 if (unit_has_host_root_cgroup(u))
1f73aa00
LP
3147 return procfs_cpu_get_usage(ret);
3148
f98c2585
CD
3149 /* Requisite controllers for CPU accounting are not enabled */
3150 if ((get_cpu_accounting_mask() & ~u->cgroup_realized_mask) != 0)
3151 return -ENODATA;
3152
92a99304
LP
3153 r = cg_all_unified();
3154 if (r < 0)
3155 return r;
b4cccbc1 3156 if (r > 0) {
66ebf6c0
TH
3157 _cleanup_free_ char *val = NULL;
3158 uint64_t us;
5ad096b3 3159
b734a4ff 3160 r = cg_get_keyed_attribute("cpu", u->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
b734a4ff
LP
3161 if (IN_SET(r, -ENOENT, -ENXIO))
3162 return -ENODATA;
d742f4b5
LP
3163 if (r < 0)
3164 return r;
66ebf6c0
TH
3165
3166 r = safe_atou64(val, &us);
3167 if (r < 0)
3168 return r;
3169
3170 ns = us * NSEC_PER_USEC;
3171 } else {
66ebf6c0
TH
3172 r = cg_get_attribute("cpuacct", u->cgroup_path, "cpuacct.usage", &v);
3173 if (r == -ENOENT)
3174 return -ENODATA;
3175 if (r < 0)
3176 return r;
3177
3178 r = safe_atou64(v, &ns);
3179 if (r < 0)
3180 return r;
3181 }
5ad096b3
LP
3182
3183 *ret = ns;
3184 return 0;
3185}
3186
3187int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
3188 nsec_t ns;
3189 int r;
3190
fe700f46
LP
3191 assert(u);
3192
3193 /* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
3194 * started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
3195 * call this function with a NULL return value. */
3196
2e4025c0 3197 if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
cf3b4be1
LP
3198 return -ENODATA;
3199
5ad096b3 3200 r = unit_get_cpu_usage_raw(u, &ns);
fe700f46
LP
3201 if (r == -ENODATA && u->cpu_usage_last != NSEC_INFINITY) {
3202 /* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
3203 * cached value. */
3204
3205 if (ret)
3206 *ret = u->cpu_usage_last;
3207 return 0;
3208 }
5ad096b3
LP
3209 if (r < 0)
3210 return r;
3211
66ebf6c0
TH
3212 if (ns > u->cpu_usage_base)
3213 ns -= u->cpu_usage_base;
5ad096b3
LP
3214 else
3215 ns = 0;
3216
fe700f46
LP
3217 u->cpu_usage_last = ns;
3218 if (ret)
3219 *ret = ns;
3220
5ad096b3
LP
3221 return 0;
3222}
3223
906c06f6
DM
3224int unit_get_ip_accounting(
3225 Unit *u,
3226 CGroupIPAccountingMetric metric,
3227 uint64_t *ret) {
3228
6b659ed8 3229 uint64_t value;
906c06f6
DM
3230 int fd, r;
3231
3232 assert(u);
3233 assert(metric >= 0);
3234 assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
3235 assert(ret);
3236
2e4025c0 3237 if (!UNIT_CGROUP_BOOL(u, ip_accounting))
cf3b4be1
LP
3238 return -ENODATA;
3239
906c06f6
DM
3240 fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
3241 u->ip_accounting_ingress_map_fd :
3242 u->ip_accounting_egress_map_fd;
906c06f6
DM
3243 if (fd < 0)
3244 return -ENODATA;
3245
3246 if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
6b659ed8 3247 r = bpf_firewall_read_accounting(fd, &value, NULL);
906c06f6 3248 else
6b659ed8
LP
3249 r = bpf_firewall_read_accounting(fd, NULL, &value);
3250 if (r < 0)
3251 return r;
3252
3253 /* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
3254 * all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
3255 * ip_accounting_extra[] field, and add them in here transparently. */
3256
3257 *ret = value + u->ip_accounting_extra[metric];
906c06f6
DM
3258
3259 return r;
3260}
3261
fbe14fc9
LP
3262static int unit_get_io_accounting_raw(Unit *u, uint64_t ret[static _CGROUP_IO_ACCOUNTING_METRIC_MAX]) {
3263 static const char *const field_names[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
3264 [CGROUP_IO_READ_BYTES] = "rbytes=",
3265 [CGROUP_IO_WRITE_BYTES] = "wbytes=",
3266 [CGROUP_IO_READ_OPERATIONS] = "rios=",
3267 [CGROUP_IO_WRITE_OPERATIONS] = "wios=",
3268 };
3269 uint64_t acc[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {};
3270 _cleanup_free_ char *path = NULL;
3271 _cleanup_fclose_ FILE *f = NULL;
3272 int r;
3273
3274 assert(u);
3275
3276 if (!u->cgroup_path)
3277 return -ENODATA;
3278
3279 if (unit_has_host_root_cgroup(u))
3280 return -ENODATA; /* TODO: return useful data for the top-level cgroup */
3281
3282 r = cg_all_unified();
3283 if (r < 0)
3284 return r;
3285 if (r == 0) /* TODO: support cgroupv1 */
3286 return -ENODATA;
3287
3288 if (!FLAGS_SET(u->cgroup_realized_mask, CGROUP_MASK_IO))
3289 return -ENODATA;
3290
3291 r = cg_get_path("io", u->cgroup_path, "io.stat", &path);
3292 if (r < 0)
3293 return r;
3294
3295 f = fopen(path, "re");
3296 if (!f)
3297 return -errno;
3298
3299 for (;;) {
3300 _cleanup_free_ char *line = NULL;
3301 const char *p;
3302
3303 r = read_line(f, LONG_LINE_MAX, &line);
3304 if (r < 0)
3305 return r;
3306 if (r == 0)
3307 break;
3308
3309 p = line;
3310 p += strcspn(p, WHITESPACE); /* Skip over device major/minor */
3311 p += strspn(p, WHITESPACE); /* Skip over following whitespace */
3312
3313 for (;;) {
3314 _cleanup_free_ char *word = NULL;
3315
3316 r = extract_first_word(&p, &word, NULL, EXTRACT_RETAIN_ESCAPE);
3317 if (r < 0)
3318 return r;
3319 if (r == 0)
3320 break;
3321
3322 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
3323 const char *x;
3324
3325 x = startswith(word, field_names[i]);
3326 if (x) {
3327 uint64_t w;
3328
3329 r = safe_atou64(x, &w);
3330 if (r < 0)
3331 return r;
3332
3333 /* Sum up the stats of all devices */
3334 acc[i] += w;
3335 break;
3336 }
3337 }
3338 }
3339 }
3340
3341 memcpy(ret, acc, sizeof(acc));
3342 return 0;
3343}
3344
3345int unit_get_io_accounting(
3346 Unit *u,
3347 CGroupIOAccountingMetric metric,
3348 bool allow_cache,
3349 uint64_t *ret) {
3350
3351 uint64_t raw[_CGROUP_IO_ACCOUNTING_METRIC_MAX];
3352 int r;
3353
3354 /* Retrieve an IO account parameter. This will subtract the counter when the unit was started. */
3355
3356 if (!UNIT_CGROUP_BOOL(u, io_accounting))
3357 return -ENODATA;
3358
3359 if (allow_cache && u->io_accounting_last[metric] != UINT64_MAX)
3360 goto done;
3361
3362 r = unit_get_io_accounting_raw(u, raw);
3363 if (r == -ENODATA && u->io_accounting_last[metric] != UINT64_MAX)
3364 goto done;
3365 if (r < 0)
3366 return r;
3367
3368 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
3369 /* Saturated subtraction */
3370 if (raw[i] > u->io_accounting_base[i])
3371 u->io_accounting_last[i] = raw[i] - u->io_accounting_base[i];
3372 else
3373 u->io_accounting_last[i] = 0;
3374 }
3375
3376done:
3377 if (ret)
3378 *ret = u->io_accounting_last[metric];
3379
3380 return 0;
3381}
3382
906c06f6 3383int unit_reset_cpu_accounting(Unit *u) {
5ad096b3
LP
3384 int r;
3385
3386 assert(u);
3387
fe700f46
LP
3388 u->cpu_usage_last = NSEC_INFINITY;
3389
0bbff7d6 3390 r = unit_get_cpu_usage_raw(u, &u->cpu_usage_base);
5ad096b3 3391 if (r < 0) {
66ebf6c0 3392 u->cpu_usage_base = 0;
5ad096b3 3393 return r;
b56c28c3 3394 }
2633eb83 3395
4ad49000 3396 return 0;
4fbf50b3
LP
3397}
3398
906c06f6
DM
3399int unit_reset_ip_accounting(Unit *u) {
3400 int r = 0, q = 0;
3401
3402 assert(u);
3403
3404 if (u->ip_accounting_ingress_map_fd >= 0)
3405 r = bpf_firewall_reset_accounting(u->ip_accounting_ingress_map_fd);
3406
3407 if (u->ip_accounting_egress_map_fd >= 0)
3408 q = bpf_firewall_reset_accounting(u->ip_accounting_egress_map_fd);
3409
6b659ed8
LP
3410 zero(u->ip_accounting_extra);
3411
906c06f6
DM
3412 return r < 0 ? r : q;
3413}
3414
fbe14fc9
LP
3415int unit_reset_io_accounting(Unit *u) {
3416 int r;
3417
3418 assert(u);
3419
3420 for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++)
3421 u->io_accounting_last[i] = UINT64_MAX;
3422
3423 r = unit_get_io_accounting_raw(u, u->io_accounting_base);
3424 if (r < 0) {
3425 zero(u->io_accounting_base);
3426 return r;
3427 }
3428
3429 return 0;
3430}
3431
9b2559a1 3432int unit_reset_accounting(Unit *u) {
fbe14fc9 3433 int r, q, v;
9b2559a1
LP
3434
3435 assert(u);
3436
3437 r = unit_reset_cpu_accounting(u);
fbe14fc9
LP
3438 q = unit_reset_io_accounting(u);
3439 v = unit_reset_ip_accounting(u);
9b2559a1 3440
fbe14fc9 3441 return r < 0 ? r : q < 0 ? q : v;
9b2559a1
LP
3442}
3443
e7ab4d1a
LP
3444void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
3445 assert(u);
3446
3447 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3448 return;
3449
3450 if (m == 0)
3451 return;
3452
538b4852
TH
3453 /* always invalidate compat pairs together */
3454 if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
3455 m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
3456
7cce4fb7
LP
3457 if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
3458 m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
3459
e00068e7 3460 if (FLAGS_SET(u->cgroup_invalidated_mask, m)) /* NOP? */
e7ab4d1a
LP
3461 return;
3462
e00068e7 3463 u->cgroup_invalidated_mask |= m;
91a6073e 3464 unit_add_to_cgroup_realize_queue(u);
e7ab4d1a
LP
3465}
3466
906c06f6
DM
3467void unit_invalidate_cgroup_bpf(Unit *u) {
3468 assert(u);
3469
3470 if (!UNIT_HAS_CGROUP_CONTEXT(u))
3471 return;
3472
17f14955 3473 if (u->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
906c06f6
DM
3474 return;
3475
17f14955 3476 u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
91a6073e 3477 unit_add_to_cgroup_realize_queue(u);
906c06f6
DM
3478
3479 /* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
3480 * list of our children includes our own. */
3481 if (u->type == UNIT_SLICE) {
3482 Unit *member;
3483 Iterator i;
eef85c4a 3484 void *v;
906c06f6 3485
eef85c4a 3486 HASHMAP_FOREACH_KEY(v, member, u->dependencies[UNIT_BEFORE], i) {
cb5e3bc3
CD
3487 if (UNIT_DEREF(member->slice) == u)
3488 unit_invalidate_cgroup_bpf(member);
906c06f6
DM
3489 }
3490 }
3491}
3492
1d9cc876
LP
3493bool unit_cgroup_delegate(Unit *u) {
3494 CGroupContext *c;
3495
3496 assert(u);
3497
3498 if (!UNIT_VTABLE(u)->can_delegate)
3499 return false;
3500
3501 c = unit_get_cgroup_context(u);
3502 if (!c)
3503 return false;
3504
3505 return c->delegate;
3506}
3507
e7ab4d1a
LP
3508void manager_invalidate_startup_units(Manager *m) {
3509 Iterator i;
3510 Unit *u;
3511
3512 assert(m);
3513
3514 SET_FOREACH(u, m->startup_units, i)
13c31542 3515 unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO);
e7ab4d1a
LP
3516}
3517
da8e1782
MO
3518static int unit_get_nice(Unit *u) {
3519 ExecContext *ec;
3520
3521 ec = unit_get_exec_context(u);
3522 return ec ? ec->nice : 0;
3523}
3524
3525static uint64_t unit_get_cpu_weight(Unit *u) {
3526 ManagerState state = manager_state(u->manager);
3527 CGroupContext *cc;
3528
3529 cc = unit_get_cgroup_context(u);
3530 return cc ? cgroup_context_cpu_weight(cc, state) : CGROUP_WEIGHT_DEFAULT;
3531}
3532
3533int compare_job_priority(const void *a, const void *b) {
3534 const Job *x = a, *y = b;
3535 int nice_x, nice_y;
3536 uint64_t weight_x, weight_y;
3537 int ret;
3538
217b7b33
ZJS
3539 if ((ret = CMP(x->unit->type, y->unit->type)) != 0)
3540 return -ret;
3541
da8e1782
MO
3542 weight_x = unit_get_cpu_weight(x->unit);
3543 weight_y = unit_get_cpu_weight(y->unit);
3544
217b7b33
ZJS
3545 if ((ret = CMP(weight_x, weight_y)) != 0)
3546 return -ret;
da8e1782
MO
3547
3548 nice_x = unit_get_nice(x->unit);
3549 nice_y = unit_get_nice(y->unit);
3550
3551 if ((ret = CMP(nice_x, nice_y)) != 0)
3552 return ret;
3553
da8e1782
MO
3554 return strcmp(x->unit->id, y->unit->id);
3555}
3556
4ad49000
LP
3557static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
3558 [CGROUP_AUTO] = "auto",
3559 [CGROUP_CLOSED] = "closed",
3560 [CGROUP_STRICT] = "strict",
3561};
4fbf50b3 3562
4ad49000 3563DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);