]> git.ipfire.org Git - thirdparty/systemd.git/blame - src/shared/hashmap.c
sysv-generator: always log on oom
[thirdparty/systemd.git] / src / shared / hashmap.c
CommitLineData
d6c9574f 1/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/
60918275 2
a7334b09
LP
3/***
4 This file is part of systemd.
5
6 Copyright 2010 Lennart Poettering
89439d4f 7 Copyright 2014 Michal Schmidt
a7334b09
LP
8
9 systemd is free software; you can redistribute it and/or modify it
5430f7f2
LP
10 under the terms of the GNU Lesser General Public License as published by
11 the Free Software Foundation; either version 2.1 of the License, or
a7334b09
LP
12 (at your option) any later version.
13
14 systemd is distributed in the hope that it will be useful, but
15 WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
5430f7f2 17 Lesser General Public License for more details.
a7334b09 18
5430f7f2 19 You should have received a copy of the GNU Lesser General Public License
a7334b09
LP
20 along with systemd; If not, see <http://www.gnu.org/licenses/>.
21***/
22
60918275 23#include <stdlib.h>
60918275
LP
24#include <errno.h>
25
26#include "util.h"
27#include "hashmap.h"
89439d4f 28#include "set.h"
60918275 29#include "macro.h"
9bf3b535 30#include "siphash24.h"
89439d4f 31#include "strv.h"
b3dcf58e 32#include "mempool.h"
3df3e884 33#include "random-util.h"
60918275 34
2eec67ac
TA
35#ifdef ENABLE_DEBUG_HASHMAP
36#include "list.h"
37#endif
38
89439d4f
MS
39/*
40 * Implementation of hashmaps.
41 * Addressing: open
42 * - uses less RAM compared to closed addressing (chaining), because
43 * our entries are small (especially in Sets, which tend to contain
44 * the majority of entries in systemd).
45 * Collision resolution: Robin Hood
46 * - tends to equalize displacement of entries from their optimal buckets.
47 * Probe sequence: linear
48 * - though theoretically worse than random probing/uniform hashing/double
49 * hashing, it is good for cache locality.
50 *
51 * References:
52 * Celis, P. 1986. Robin Hood Hashing.
53 * Ph.D. Dissertation. University of Waterloo, Waterloo, Ont., Canada, Canada.
54 * https://cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf
55 * - The results are derived for random probing. Suggests deletion with
56 * tombstones and two mean-centered search methods. None of that works
57 * well for linear probing.
58 *
59 * Janson, S. 2005. Individual displacements for linear probing hashing with different insertion policies.
60 * ACM Trans. Algorithms 1, 2 (October 2005), 177-213.
61 * DOI=10.1145/1103963.1103964 http://doi.acm.org/10.1145/1103963.1103964
62 * http://www.math.uu.se/~svante/papers/sj157.pdf
63 * - Applies to Robin Hood with linear probing. Contains remarks on
64 * the unsuitability of mean-centered search with linear probing.
65 *
66 * Viola, A. 2005. Exact distribution of individual displacements in linear probing hashing.
67 * ACM Trans. Algorithms 1, 2 (October 2005), 214-242.
68 * DOI=10.1145/1103963.1103965 http://doi.acm.org/10.1145/1103963.1103965
69 * - Similar to Janson. Note that Viola writes about C_{m,n} (number of probes
70 * in a successful search), and Janson writes about displacement. C = d + 1.
71 *
72 * Goossaert, E. 2013. Robin Hood hashing: backward shift deletion.
73 * http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/
74 * - Explanation of backward shift deletion with pictures.
75 *
76 * Khuong, P. 2013. The Other Robin Hood Hashing.
77 * http://www.pvk.ca/Blog/2013/11/26/the-other-robin-hood-hashing/
78 * - Short summary of random vs. linear probing, and tombstones vs. backward shift.
79 */
80
81/*
82 * XXX Ideas for improvement:
83 * For unordered hashmaps, randomize iteration order, similarly to Perl:
84 * http://blog.booking.com/hardening-perls-hash-function.html
85 */
86
87/* INV_KEEP_FREE = 1 / (1 - max_load_factor)
88 * e.g. 1 / (1 - 0.8) = 5 ... keep one fifth of the buckets free. */
89#define INV_KEEP_FREE 5U
90
91/* Fields common to entries of all hashmap/set types */
92struct hashmap_base_entry {
60918275 93 const void *key;
89439d4f
MS
94};
95
96/* Entry types for specific hashmap/set types
97 * hashmap_base_entry must be at the beginning of each entry struct. */
98
99struct plain_hashmap_entry {
100 struct hashmap_base_entry b;
60918275 101 void *value;
60918275
LP
102};
103
89439d4f
MS
104struct ordered_hashmap_entry {
105 struct plain_hashmap_entry p;
106 unsigned iterate_next, iterate_previous;
107};
60918275 108
89439d4f
MS
109struct set_entry {
110 struct hashmap_base_entry b;
111};
45fa9e29 112
89439d4f
MS
113/* In several functions it is advantageous to have the hash table extended
114 * virtually by a couple of additional buckets. We reserve special index values
115 * for these "swap" buckets. */
116#define _IDX_SWAP_BEGIN (UINT_MAX - 3)
117#define IDX_PUT (_IDX_SWAP_BEGIN + 0)
118#define IDX_TMP (_IDX_SWAP_BEGIN + 1)
119#define _IDX_SWAP_END (_IDX_SWAP_BEGIN + 2)
39c2a6f1 120
89439d4f
MS
121#define IDX_FIRST (UINT_MAX - 1) /* special index for freshly initialized iterators */
122#define IDX_NIL UINT_MAX /* special index value meaning "none" or "end" */
123
124assert_cc(IDX_FIRST == _IDX_SWAP_END);
125assert_cc(IDX_FIRST == _IDX_ITERATOR_FIRST);
126
127/* Storage space for the "swap" buckets.
128 * All entry types can fit into a ordered_hashmap_entry. */
129struct swap_entries {
130 struct ordered_hashmap_entry e[_IDX_SWAP_END - _IDX_SWAP_BEGIN];
60918275
LP
131};
132
89439d4f
MS
133/* Distance from Initial Bucket */
134typedef uint8_t dib_raw_t;
135#define DIB_RAW_OVERFLOW ((dib_raw_t)0xfdU) /* indicates DIB value is greater than representable */
136#define DIB_RAW_REHASH ((dib_raw_t)0xfeU) /* entry yet to be rehashed during in-place resize */
137#define DIB_RAW_FREE ((dib_raw_t)0xffU) /* a free bucket */
138#define DIB_RAW_INIT ((char)DIB_RAW_FREE) /* a byte to memset a DIB store with when initializing */
139
140#define DIB_FREE UINT_MAX
141
fc86aa0e 142#ifdef ENABLE_DEBUG_HASHMAP
89439d4f
MS
143struct hashmap_debug_info {
144 LIST_FIELDS(struct hashmap_debug_info, debug_list);
145 unsigned max_entries; /* high watermark of n_entries */
146
147 /* who allocated this hashmap */
148 int line;
149 const char *file;
150 const char *func;
151
152 /* fields to detect modification while iterating */
153 unsigned put_count; /* counts puts into the hashmap */
154 unsigned rem_count; /* counts removals from hashmap */
155 unsigned last_rem_idx; /* remembers last removal index */
39c2a6f1
LP
156};
157
89439d4f
MS
158/* Tracks all existing hashmaps. Get at it from gdb. See sd_dump_hashmaps.py */
159static LIST_HEAD(struct hashmap_debug_info, hashmap_debug_list);
39c2a6f1 160
89439d4f 161#define HASHMAP_DEBUG_FIELDS struct hashmap_debug_info debug;
39c2a6f1 162
fc86aa0e 163#else /* !ENABLE_DEBUG_HASHMAP */
89439d4f 164#define HASHMAP_DEBUG_FIELDS
fc86aa0e 165#endif /* ENABLE_DEBUG_HASHMAP */
39c2a6f1 166
89439d4f
MS
167enum HashmapType {
168 HASHMAP_TYPE_PLAIN,
169 HASHMAP_TYPE_ORDERED,
170 HASHMAP_TYPE_SET,
171 _HASHMAP_TYPE_MAX
172};
39c2a6f1 173
89439d4f
MS
174struct _packed_ indirect_storage {
175 char *storage; /* where buckets and DIBs are stored */
176 uint8_t hash_key[HASH_KEY_SIZE]; /* hash key; changes during resize */
177
178 unsigned n_entries; /* number of stored entries */
179 unsigned n_buckets; /* number of buckets */
180
181 unsigned idx_lowest_entry; /* Index below which all buckets are free.
182 Makes "while(hashmap_steal_first())" loops
183 O(n) instead of O(n^2) for unordered hashmaps. */
184 uint8_t _pad[3]; /* padding for the whole HashmapBase */
185 /* The bitfields in HashmapBase complete the alignment of the whole thing. */
186};
187
188struct direct_storage {
189 /* This gives us 39 bytes on 64bit, or 35 bytes on 32bit.
190 * That's room for 4 set_entries + 4 DIB bytes + 3 unused bytes on 64bit,
191 * or 7 set_entries + 7 DIB bytes + 0 unused bytes on 32bit. */
192 char storage[sizeof(struct indirect_storage)];
193};
194
195#define DIRECT_BUCKETS(entry_t) \
196 (sizeof(struct direct_storage) / (sizeof(entry_t) + sizeof(dib_raw_t)))
197
198/* We should be able to store at least one entry directly. */
199assert_cc(DIRECT_BUCKETS(struct ordered_hashmap_entry) >= 1);
200
201/* We have 3 bits for n_direct_entries. */
202assert_cc(DIRECT_BUCKETS(struct set_entry) < (1 << 3));
203
204/* Hashmaps with directly stored entries all use this shared hash key.
205 * It's no big deal if the key is guessed, because there can be only
206 * a handful of directly stored entries in a hashmap. When a hashmap
207 * outgrows direct storage, it gets its own key for indirect storage. */
208static uint8_t shared_hash_key[HASH_KEY_SIZE];
209static bool shared_hash_key_initialized;
210
211/* Fields that all hashmap/set types must have */
212struct HashmapBase {
213 const struct hash_ops *hash_ops; /* hash and compare ops to use */
214
215 union _packed_ {
216 struct indirect_storage indirect; /* if has_indirect */
217 struct direct_storage direct; /* if !has_indirect */
218 };
219
220 enum HashmapType type:2; /* HASHMAP_TYPE_* */
221 bool has_indirect:1; /* whether indirect storage is used */
222 unsigned n_direct_entries:3; /* Number of entries in direct storage.
223 * Only valid if !has_indirect. */
224 bool from_pool:1; /* whether was allocated from mempool */
225 HASHMAP_DEBUG_FIELDS /* optional hashmap_debug_info */
226};
227
228/* Specific hash types
229 * HashmapBase must be at the beginning of each hashmap struct. */
230
231struct Hashmap {
232 struct HashmapBase b;
233};
234
235struct OrderedHashmap {
236 struct HashmapBase b;
237 unsigned iterate_list_head, iterate_list_tail;
238};
239
240struct Set {
241 struct HashmapBase b;
242};
243
244DEFINE_MEMPOOL(hashmap_pool, Hashmap, 8);
245DEFINE_MEMPOOL(ordered_hashmap_pool, OrderedHashmap, 8);
246/* No need for a separate Set pool */
247assert_cc(sizeof(Hashmap) == sizeof(Set));
248
249struct hashmap_type_info {
250 size_t head_size;
251 size_t entry_size;
252 struct mempool *mempool;
253 unsigned n_direct_buckets;
254};
255
256static const struct hashmap_type_info hashmap_type_info[_HASHMAP_TYPE_MAX] = {
257 [HASHMAP_TYPE_PLAIN] = {
258 .head_size = sizeof(Hashmap),
259 .entry_size = sizeof(struct plain_hashmap_entry),
260 .mempool = &hashmap_pool,
261 .n_direct_buckets = DIRECT_BUCKETS(struct plain_hashmap_entry),
262 },
263 [HASHMAP_TYPE_ORDERED] = {
264 .head_size = sizeof(OrderedHashmap),
265 .entry_size = sizeof(struct ordered_hashmap_entry),
266 .mempool = &ordered_hashmap_pool,
267 .n_direct_buckets = DIRECT_BUCKETS(struct ordered_hashmap_entry),
268 },
269 [HASHMAP_TYPE_SET] = {
270 .head_size = sizeof(Set),
271 .entry_size = sizeof(struct set_entry),
272 .mempool = &hashmap_pool,
273 .n_direct_buckets = DIRECT_BUCKETS(struct set_entry),
274 },
275};
39c2a6f1 276
9bf3b535
LP
277unsigned long string_hash_func(const void *p, const uint8_t hash_key[HASH_KEY_SIZE]) {
278 uint64_t u;
279 siphash24((uint8_t*) &u, p, strlen(p), hash_key);
280 return (unsigned long) u;
60918275
LP
281}
282
283int string_compare_func(const void *a, const void *b) {
284 return strcmp(a, b);
285}
286
d5099efc
MS
287const struct hash_ops string_hash_ops = {
288 .hash = string_hash_func,
289 .compare = string_compare_func
290};
291
9bf3b535
LP
292unsigned long trivial_hash_func(const void *p, const uint8_t hash_key[HASH_KEY_SIZE]) {
293 uint64_t u;
294 siphash24((uint8_t*) &u, &p, sizeof(p), hash_key);
295 return (unsigned long) u;
60918275
LP
296}
297
298int trivial_compare_func(const void *a, const void *b) {
299 return a < b ? -1 : (a > b ? 1 : 0);
300}
301
d5099efc
MS
302const struct hash_ops trivial_hash_ops = {
303 .hash = trivial_hash_func,
304 .compare = trivial_compare_func
305};
306
9bf3b535 307unsigned long uint64_hash_func(const void *p, const uint8_t hash_key[HASH_KEY_SIZE]) {
a4bcff5b 308 uint64_t u;
9bf3b535
LP
309 siphash24((uint8_t*) &u, p, sizeof(uint64_t), hash_key);
310 return (unsigned long) u;
a4bcff5b
LP
311}
312
313int uint64_compare_func(const void *_a, const void *_b) {
314 uint64_t a, b;
a4bcff5b
LP
315 a = *(const uint64_t*) _a;
316 b = *(const uint64_t*) _b;
a4bcff5b
LP
317 return a < b ? -1 : (a > b ? 1 : 0);
318}
319
d5099efc
MS
320const struct hash_ops uint64_hash_ops = {
321 .hash = uint64_hash_func,
322 .compare = uint64_compare_func
323};
324
de99c9dc
LP
325#if SIZEOF_DEV_T != 8
326unsigned long devt_hash_func(const void *p, const uint8_t hash_key[HASH_KEY_SIZE]) {
327 uint64_t u;
328 siphash24((uint8_t*) &u, p, sizeof(dev_t), hash_key);
329 return (unsigned long) u;
330}
331
332int devt_compare_func(const void *_a, const void *_b) {
333 dev_t a, b;
334 a = *(const dev_t*) _a;
335 b = *(const dev_t*) _b;
336 return a < b ? -1 : (a > b ? 1 : 0);
337}
d5099efc
MS
338
339const struct hash_ops devt_hash_ops = {
340 .hash = devt_hash_func,
341 .compare = devt_compare_func
342};
de99c9dc
LP
343#endif
344
89439d4f
MS
345static unsigned n_buckets(HashmapBase *h) {
346 return h->has_indirect ? h->indirect.n_buckets
347 : hashmap_type_info[h->type].n_direct_buckets;
348}
349
350static unsigned n_entries(HashmapBase *h) {
351 return h->has_indirect ? h->indirect.n_entries
352 : h->n_direct_entries;
353}
354
355static void n_entries_inc(HashmapBase *h) {
356 if (h->has_indirect)
357 h->indirect.n_entries++;
358 else
359 h->n_direct_entries++;
360}
361
362static void n_entries_dec(HashmapBase *h) {
363 if (h->has_indirect)
364 h->indirect.n_entries--;
365 else
366 h->n_direct_entries--;
367}
368
369static char *storage_ptr(HashmapBase *h) {
370 return h->has_indirect ? h->indirect.storage
371 : h->direct.storage;
372}
373
374static uint8_t *hash_key(HashmapBase *h) {
375 return h->has_indirect ? h->indirect.hash_key
376 : shared_hash_key;
377}
378
379static unsigned base_bucket_hash(HashmapBase *h, const void *p) {
380 return (unsigned) (h->hash_ops->hash(p, hash_key(h)) % n_buckets(h));
9bf3b535 381}
89439d4f 382#define bucket_hash(h, p) base_bucket_hash(HASHMAP_BASE(h), p)
9bf3b535
LP
383
384static void get_hash_key(uint8_t hash_key[HASH_KEY_SIZE], bool reuse_is_ok) {
385 static uint8_t current[HASH_KEY_SIZE];
386 static bool current_initialized = false;
387
388 /* Returns a hash function key to use. In order to keep things
389 * fast we will not generate a new key each time we allocate a
390 * new hash table. Instead, we'll just reuse the most recently
391 * generated one, except if we never generated one or when we
392 * are rehashing an entire hash table because we reached a
393 * fill level */
394
395 if (!current_initialized || !reuse_is_ok) {
396 random_bytes(current, sizeof(current));
397 current_initialized = true;
398 }
399
400 memcpy(hash_key, current, sizeof(current));
a3b6fafe
LP
401}
402
89439d4f
MS
403static struct hashmap_base_entry *bucket_at(HashmapBase *h, unsigned idx) {
404 return (struct hashmap_base_entry*)
405 (storage_ptr(h) + idx * hashmap_type_info[h->type].entry_size);
406}
407
408static struct plain_hashmap_entry *plain_bucket_at(Hashmap *h, unsigned idx) {
409 return (struct plain_hashmap_entry*) bucket_at(HASHMAP_BASE(h), idx);
410}
411
412static struct ordered_hashmap_entry *ordered_bucket_at(OrderedHashmap *h, unsigned idx) {
413 return (struct ordered_hashmap_entry*) bucket_at(HASHMAP_BASE(h), idx);
414}
39c2a6f1 415
89439d4f
MS
416static struct set_entry *set_bucket_at(Set *h, unsigned idx) {
417 return (struct set_entry*) bucket_at(HASHMAP_BASE(h), idx);
418}
39c2a6f1 419
89439d4f
MS
420static struct ordered_hashmap_entry *bucket_at_swap(struct swap_entries *swap, unsigned idx) {
421 return &swap->e[idx - _IDX_SWAP_BEGIN];
422}
39c2a6f1 423
89439d4f
MS
424/* Returns a pointer to the bucket at index idx.
425 * Understands real indexes and swap indexes, hence "_virtual". */
426static struct hashmap_base_entry *bucket_at_virtual(HashmapBase *h, struct swap_entries *swap,
427 unsigned idx) {
428 if (idx < _IDX_SWAP_BEGIN)
429 return bucket_at(h, idx);
430
431 if (idx < _IDX_SWAP_END)
432 return &bucket_at_swap(swap, idx)->p.b;
433
434 assert_not_reached("Invalid index");
435}
436
437static dib_raw_t *dib_raw_ptr(HashmapBase *h) {
438 return (dib_raw_t*)
439 (storage_ptr(h) + hashmap_type_info[h->type].entry_size * n_buckets(h));
440}
441
442static unsigned bucket_distance(HashmapBase *h, unsigned idx, unsigned from) {
443 return idx >= from ? idx - from
444 : n_buckets(h) + idx - from;
445}
446
447static unsigned bucket_calculate_dib(HashmapBase *h, unsigned idx, dib_raw_t raw_dib) {
448 unsigned initial_bucket;
449
450 if (raw_dib == DIB_RAW_FREE)
451 return DIB_FREE;
452
453 if (_likely_(raw_dib < DIB_RAW_OVERFLOW))
454 return raw_dib;
455
456 /*
457 * Having an overflow DIB value is very unlikely. The hash function
458 * would have to be bad. For example, in a table of size 2^24 filled
459 * to load factor 0.9 the maximum observed DIB is only about 60.
460 * In theory (assuming I used Maxima correctly), for an infinite size
461 * hash table with load factor 0.8 the probability of a given entry
462 * having DIB > 40 is 1.9e-8.
463 * This returns the correct DIB value by recomputing the hash value in
464 * the unlikely case. XXX Hitting this case could be a hint to rehash.
465 */
466 initial_bucket = bucket_hash(h, bucket_at(h, idx)->key);
467 return bucket_distance(h, idx, initial_bucket);
468}
469
470static void bucket_set_dib(HashmapBase *h, unsigned idx, unsigned dib) {
471 dib_raw_ptr(h)[idx] = dib != DIB_FREE ? MIN(dib, DIB_RAW_OVERFLOW) : DIB_RAW_FREE;
472}
473
474static unsigned skip_free_buckets(HashmapBase *h, unsigned idx) {
475 dib_raw_t *dibs;
476
477 dibs = dib_raw_ptr(h);
478
479 for ( ; idx < n_buckets(h); idx++)
480 if (dibs[idx] != DIB_RAW_FREE)
481 return idx;
482
483 return IDX_NIL;
484}
485
486static void bucket_mark_free(HashmapBase *h, unsigned idx) {
eccaf899 487 memzero(bucket_at(h, idx), hashmap_type_info[h->type].entry_size);
89439d4f
MS
488 bucket_set_dib(h, idx, DIB_FREE);
489}
490
491static void bucket_move_entry(HashmapBase *h, struct swap_entries *swap,
492 unsigned from, unsigned to) {
493 struct hashmap_base_entry *e_from, *e_to;
494
495 assert(from != to);
39c2a6f1 496
89439d4f
MS
497 e_from = bucket_at_virtual(h, swap, from);
498 e_to = bucket_at_virtual(h, swap, to);
499
500 memcpy(e_to, e_from, hashmap_type_info[h->type].entry_size);
501
502 if (h->type == HASHMAP_TYPE_ORDERED) {
503 OrderedHashmap *lh = (OrderedHashmap*) h;
504 struct ordered_hashmap_entry *le, *le_to;
505
506 le_to = (struct ordered_hashmap_entry*) e_to;
507
508 if (le_to->iterate_next != IDX_NIL) {
509 le = (struct ordered_hashmap_entry*)
510 bucket_at_virtual(h, swap, le_to->iterate_next);
511 le->iterate_previous = to;
512 }
513
514 if (le_to->iterate_previous != IDX_NIL) {
515 le = (struct ordered_hashmap_entry*)
516 bucket_at_virtual(h, swap, le_to->iterate_previous);
517 le->iterate_next = to;
518 }
519
520 if (lh->iterate_list_head == from)
521 lh->iterate_list_head = to;
522 if (lh->iterate_list_tail == from)
523 lh->iterate_list_tail = to;
39c2a6f1 524 }
89439d4f 525}
60918275 526
89439d4f
MS
527static unsigned next_idx(HashmapBase *h, unsigned idx) {
528 return (idx + 1U) % n_buckets(h);
529}
60918275 530
89439d4f
MS
531static unsigned prev_idx(HashmapBase *h, unsigned idx) {
532 return (n_buckets(h) + idx - 1U) % n_buckets(h);
533}
60918275 534
89439d4f
MS
535static void *entry_value(HashmapBase *h, struct hashmap_base_entry *e) {
536 switch (h->type) {
45fa9e29 537
89439d4f
MS
538 case HASHMAP_TYPE_PLAIN:
539 case HASHMAP_TYPE_ORDERED:
540 return ((struct plain_hashmap_entry*)e)->value;
39c2a6f1 541
89439d4f
MS
542 case HASHMAP_TYPE_SET:
543 return (void*) e->key;
a3b6fafe 544
89439d4f
MS
545 default:
546 assert_not_reached("Unknown hashmap type");
547 }
60918275
LP
548}
549
89439d4f
MS
550static void base_remove_entry(HashmapBase *h, unsigned idx) {
551 unsigned left, right, prev, dib;
552 dib_raw_t raw_dib, *dibs;
45fa9e29 553
89439d4f
MS
554 dibs = dib_raw_ptr(h);
555 assert(dibs[idx] != DIB_RAW_FREE);
034c6ed7 556
fc86aa0e 557#ifdef ENABLE_DEBUG_HASHMAP
89439d4f
MS
558 h->debug.rem_count++;
559 h->debug.last_rem_idx = idx;
560#endif
034c6ed7 561
89439d4f
MS
562 left = idx;
563 /* Find the stop bucket ("right"). It is either free or has DIB == 0. */
564 for (right = next_idx(h, left); ; right = next_idx(h, right)) {
565 raw_dib = dibs[right];
566 if (raw_dib == 0 || raw_dib == DIB_RAW_FREE)
567 break;
568
569 /* The buckets are not supposed to be all occupied and with DIB > 0.
570 * That would mean we could make everyone better off by shifting them
571 * backward. This scenario is impossible. */
572 assert(left != right);
573 }
034c6ed7 574
89439d4f
MS
575 if (h->type == HASHMAP_TYPE_ORDERED) {
576 OrderedHashmap *lh = (OrderedHashmap*) h;
577 struct ordered_hashmap_entry *le = ordered_bucket_at(lh, idx);
578
579 if (le->iterate_next != IDX_NIL)
580 ordered_bucket_at(lh, le->iterate_next)->iterate_previous = le->iterate_previous;
581 else
582 lh->iterate_list_tail = le->iterate_previous;
583
584 if (le->iterate_previous != IDX_NIL)
585 ordered_bucket_at(lh, le->iterate_previous)->iterate_next = le->iterate_next;
586 else
587 lh->iterate_list_head = le->iterate_next;
588 }
589
590 /* Now shift all buckets in the interval (left, right) one step backwards */
591 for (prev = left, left = next_idx(h, left); left != right;
592 prev = left, left = next_idx(h, left)) {
593 dib = bucket_calculate_dib(h, left, dibs[left]);
594 assert(dib != 0);
595 bucket_move_entry(h, NULL, left, prev);
596 bucket_set_dib(h, prev, dib - 1);
597 }
598
599 bucket_mark_free(h, prev);
600 n_entries_dec(h);
034c6ed7 601}
89439d4f
MS
602#define remove_entry(h, idx) base_remove_entry(HASHMAP_BASE(h), idx)
603
604static unsigned hashmap_iterate_in_insertion_order(OrderedHashmap *h, Iterator *i) {
605 struct ordered_hashmap_entry *e;
606 unsigned idx;
034c6ed7 607
101d8e63 608 assert(h);
89439d4f
MS
609 assert(i);
610
611 if (i->idx == IDX_NIL)
612 goto at_end;
613
614 if (i->idx == IDX_FIRST && h->iterate_list_head == IDX_NIL)
615 goto at_end;
616
617 if (i->idx == IDX_FIRST) {
618 idx = h->iterate_list_head;
619 e = ordered_bucket_at(h, idx);
101d8e63 620 } else {
89439d4f
MS
621 idx = i->idx;
622 e = ordered_bucket_at(h, idx);
623 /*
624 * We allow removing the current entry while iterating, but removal may cause
625 * a backward shift. The next entry may thus move one bucket to the left.
626 * To detect when it happens, we remember the key pointer of the entry we were
627 * going to iterate next. If it does not match, there was a backward shift.
628 */
629 if (e->p.b.key != i->next_key) {
630 idx = prev_idx(HASHMAP_BASE(h), idx);
631 e = ordered_bucket_at(h, idx);
632 }
633 assert(e->p.b.key == i->next_key);
101d8e63 634 }
101d8e63 635
fc86aa0e 636#ifdef ENABLE_DEBUG_HASHMAP
89439d4f
MS
637 i->prev_idx = idx;
638#endif
639
640 if (e->iterate_next != IDX_NIL) {
641 struct ordered_hashmap_entry *n;
642 i->idx = e->iterate_next;
643 n = ordered_bucket_at(h, i->idx);
644 i->next_key = n->p.b.key;
645 } else
646 i->idx = IDX_NIL;
647
648 return idx;
649
650at_end:
651 i->idx = IDX_NIL;
652 return IDX_NIL;
101d8e63
LP
653}
654
89439d4f
MS
655static unsigned hashmap_iterate_in_internal_order(HashmapBase *h, Iterator *i) {
656 unsigned idx;
657
60918275 658 assert(h);
89439d4f 659 assert(i);
60918275 660
89439d4f
MS
661 if (i->idx == IDX_NIL)
662 goto at_end;
60918275 663
89439d4f
MS
664 if (i->idx == IDX_FIRST) {
665 /* fast forward to the first occupied bucket */
666 if (h->has_indirect) {
667 i->idx = skip_free_buckets(h, h->indirect.idx_lowest_entry);
668 h->indirect.idx_lowest_entry = i->idx;
669 } else
670 i->idx = skip_free_buckets(h, 0);
671
672 if (i->idx == IDX_NIL)
673 goto at_end;
674 } else {
675 struct hashmap_base_entry *e;
676
677 assert(i->idx > 0);
60918275 678
89439d4f
MS
679 e = bucket_at(h, i->idx);
680 /*
681 * We allow removing the current entry while iterating, but removal may cause
682 * a backward shift. The next entry may thus move one bucket to the left.
683 * To detect when it happens, we remember the key pointer of the entry we were
684 * going to iterate next. If it does not match, there was a backward shift.
685 */
686 if (e->key != i->next_key)
687 e = bucket_at(h, --i->idx);
60918275 688
89439d4f
MS
689 assert(e->key == i->next_key);
690 }
691
692 idx = i->idx;
fc86aa0e 693#ifdef ENABLE_DEBUG_HASHMAP
89439d4f
MS
694 i->prev_idx = idx;
695#endif
696
697 i->idx = skip_free_buckets(h, i->idx + 1);
698 if (i->idx != IDX_NIL)
699 i->next_key = bucket_at(h, i->idx)->key;
101d8e63 700 else
89439d4f
MS
701 i->idx = IDX_NIL;
702
703 return idx;
60918275 704
89439d4f
MS
705at_end:
706 i->idx = IDX_NIL;
707 return IDX_NIL;
60918275
LP
708}
709
89439d4f
MS
710static unsigned hashmap_iterate_entry(HashmapBase *h, Iterator *i) {
711 if (!h) {
712 i->idx = IDX_NIL;
713 return IDX_NIL;
714 }
101d8e63 715
fc86aa0e 716#ifdef ENABLE_DEBUG_HASHMAP
89439d4f
MS
717 if (i->idx == IDX_FIRST) {
718 i->put_count = h->debug.put_count;
719 i->rem_count = h->debug.rem_count;
720 } else {
721 /* While iterating, must not add any new entries */
722 assert(i->put_count == h->debug.put_count);
723 /* ... or remove entries other than the current one */
724 assert(i->rem_count == h->debug.rem_count ||
725 (i->rem_count == h->debug.rem_count - 1 &&
726 i->prev_idx == h->debug.last_rem_idx));
727 /* Reset our removals counter */
728 i->rem_count = h->debug.rem_count;
729 }
730#endif
101d8e63 731
89439d4f
MS
732 return h->type == HASHMAP_TYPE_ORDERED ? hashmap_iterate_in_insertion_order((OrderedHashmap*) h, i)
733 : hashmap_iterate_in_internal_order(h, i);
734}
39c2a6f1 735
89439d4f
MS
736void *internal_hashmap_iterate(HashmapBase *h, Iterator *i, const void **key) {
737 struct hashmap_base_entry *e;
738 void *data;
739 unsigned idx;
740
741 idx = hashmap_iterate_entry(h, i);
742 if (idx == IDX_NIL) {
743 if (key)
744 *key = NULL;
745
746 return NULL;
747 }
748
749 e = bucket_at(h, idx);
750 data = entry_value(h, e);
751 if (key)
752 *key = e->key;
753
754 return data;
101d8e63
LP
755}
756
89439d4f
MS
757void *set_iterate(Set *s, Iterator *i) {
758 return internal_hashmap_iterate(HASHMAP_BASE(s), i, NULL);
759}
60918275 760
89439d4f
MS
761#define HASHMAP_FOREACH_IDX(idx, h, i) \
762 for ((i) = ITERATOR_FIRST, (idx) = hashmap_iterate_entry((h), &(i)); \
763 (idx != IDX_NIL); \
764 (idx) = hashmap_iterate_entry((h), &(i)))
765
766static void reset_direct_storage(HashmapBase *h) {
767 const struct hashmap_type_info *hi = &hashmap_type_info[h->type];
768 void *p;
769
770 assert(!h->has_indirect);
771
772 p = mempset(h->direct.storage, 0, hi->entry_size * hi->n_direct_buckets);
773 memset(p, DIB_RAW_INIT, sizeof(dib_raw_t) * hi->n_direct_buckets);
774}
775
776static struct HashmapBase *hashmap_base_new(const struct hash_ops *hash_ops, enum HashmapType type HASHMAP_DEBUG_PARAMS) {
777 HashmapBase *h;
778 const struct hashmap_type_info *hi = &hashmap_type_info[type];
779 bool use_pool;
780
781 use_pool = is_main_thread();
782
783 h = use_pool ? mempool_alloc0_tile(hi->mempool) : malloc0(hi->head_size);
67f3c402 784
60918275 785 if (!h)
89439d4f
MS
786 return NULL;
787
788 h->type = type;
789 h->from_pool = use_pool;
790 h->hash_ops = hash_ops ? hash_ops : &trivial_hash_ops;
791
792 if (type == HASHMAP_TYPE_ORDERED) {
793 OrderedHashmap *lh = (OrderedHashmap*)h;
794 lh->iterate_list_head = lh->iterate_list_tail = IDX_NIL;
795 }
796
797 reset_direct_storage(h);
60918275 798
89439d4f
MS
799 if (!shared_hash_key_initialized) {
800 random_bytes(shared_hash_key, sizeof(shared_hash_key));
801 shared_hash_key_initialized= true;
802 }
803
fc86aa0e 804#ifdef ENABLE_DEBUG_HASHMAP
89439d4f
MS
805 LIST_PREPEND(debug_list, hashmap_debug_list, &h->debug);
806 h->debug.func = func;
807 h->debug.file = file;
808 h->debug.line = line;
809#endif
810
811 return h;
812}
60918275 813
89439d4f
MS
814Hashmap *internal_hashmap_new(const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
815 return (Hashmap*) hashmap_base_new(hash_ops, HASHMAP_TYPE_PLAIN HASHMAP_DEBUG_PASS_ARGS);
816}
817
818OrderedHashmap *internal_ordered_hashmap_new(const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
819 return (OrderedHashmap*) hashmap_base_new(hash_ops, HASHMAP_TYPE_ORDERED HASHMAP_DEBUG_PASS_ARGS);
820}
821
822Set *internal_set_new(const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
823 return (Set*) hashmap_base_new(hash_ops, HASHMAP_TYPE_SET HASHMAP_DEBUG_PASS_ARGS);
824}
825
826static int hashmap_base_ensure_allocated(HashmapBase **h, const struct hash_ops *hash_ops,
827 enum HashmapType type HASHMAP_DEBUG_PARAMS) {
828 HashmapBase *q;
829
830 assert(h);
831
832 if (*h)
833 return 0;
834
835 q = hashmap_base_new(hash_ops, type HASHMAP_DEBUG_PASS_ARGS);
836 if (!q)
837 return -ENOMEM;
838
839 *h = q;
840 return 0;
841}
842
843int internal_hashmap_ensure_allocated(Hashmap **h, const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
844 return hashmap_base_ensure_allocated((HashmapBase**)h, hash_ops, HASHMAP_TYPE_PLAIN HASHMAP_DEBUG_PASS_ARGS);
845}
846
847int internal_ordered_hashmap_ensure_allocated(OrderedHashmap **h, const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
848 return hashmap_base_ensure_allocated((HashmapBase**)h, hash_ops, HASHMAP_TYPE_ORDERED HASHMAP_DEBUG_PASS_ARGS);
849}
850
851int internal_set_ensure_allocated(Set **s, const struct hash_ops *hash_ops HASHMAP_DEBUG_PARAMS) {
852 return hashmap_base_ensure_allocated((HashmapBase**)s, hash_ops, HASHMAP_TYPE_SET HASHMAP_DEBUG_PASS_ARGS);
853}
854
855static void hashmap_free_no_clear(HashmapBase *h) {
856 assert(!h->has_indirect);
857 assert(!h->n_direct_entries);
858
fc86aa0e 859#ifdef ENABLE_DEBUG_HASHMAP
89439d4f
MS
860 LIST_REMOVE(debug_list, hashmap_debug_list, &h->debug);
861#endif
45fa9e29 862
39c2a6f1 863 if (h->from_pool)
89439d4f 864 mempool_free_tile(hashmap_type_info[h->type].mempool, h);
39c2a6f1
LP
865 else
866 free(h);
60918275
LP
867}
868
cfe561a4 869HashmapBase *internal_hashmap_free(HashmapBase *h) {
89439d4f
MS
870
871 /* Free the hashmap, but nothing in it */
872
cfe561a4
DH
873 if (h) {
874 internal_hashmap_clear(h);
875 hashmap_free_no_clear(h);
876 }
89439d4f 877
cfe561a4 878 return NULL;
89439d4f
MS
879}
880
cfe561a4 881HashmapBase *internal_hashmap_free_free(HashmapBase *h) {
67f3c402
LP
882
883 /* Free the hashmap and all data objects in it, but not the
884 * keys */
885
cfe561a4
DH
886 if (h) {
887 internal_hashmap_clear_free(h);
888 hashmap_free_no_clear(h);
889 }
61b1477c 890
cfe561a4 891 return NULL;
449ddb2d
LP
892}
893
cfe561a4 894Hashmap *hashmap_free_free_free(Hashmap *h) {
fabe5c0e
LP
895
896 /* Free the hashmap and all data and key objects in it */
897
cfe561a4
DH
898 if (h) {
899 hashmap_clear_free_free(h);
900 hashmap_free_no_clear(HASHMAP_BASE(h));
901 }
fabe5c0e 902
cfe561a4 903 return NULL;
fabe5c0e
LP
904}
905
89439d4f 906void internal_hashmap_clear(HashmapBase *h) {
11dd41ce
LP
907 if (!h)
908 return;
909
89439d4f
MS
910 if (h->has_indirect) {
911 free(h->indirect.storage);
912 h->has_indirect = false;
913 }
914
915 h->n_direct_entries = 0;
916 reset_direct_storage(h);
917
918 if (h->type == HASHMAP_TYPE_ORDERED) {
919 OrderedHashmap *lh = (OrderedHashmap*) h;
920 lh->iterate_list_head = lh->iterate_list_tail = IDX_NIL;
921 }
11dd41ce
LP
922}
923
89439d4f
MS
924void internal_hashmap_clear_free(HashmapBase *h) {
925 unsigned idx;
9946996c 926
61b1477c
LP
927 if (!h)
928 return;
9946996c 929
89439d4f
MS
930 for (idx = skip_free_buckets(h, 0); idx != IDX_NIL;
931 idx = skip_free_buckets(h, idx + 1))
932 free(entry_value(h, bucket_at(h, idx)));
933
934 internal_hashmap_clear(h);
9946996c
LP
935}
936
fabe5c0e 937void hashmap_clear_free_free(Hashmap *h) {
89439d4f
MS
938 unsigned idx;
939
fabe5c0e
LP
940 if (!h)
941 return;
942
89439d4f
MS
943 for (idx = skip_free_buckets(HASHMAP_BASE(h), 0); idx != IDX_NIL;
944 idx = skip_free_buckets(HASHMAP_BASE(h), idx + 1)) {
945 struct plain_hashmap_entry *e = plain_bucket_at(h, idx);
946 free((void*)e->b.key);
947 free(e->value);
fabe5c0e 948 }
89439d4f
MS
949
950 internal_hashmap_clear(HASHMAP_BASE(h));
fabe5c0e
LP
951}
952
89439d4f
MS
953static int resize_buckets(HashmapBase *h, unsigned entries_add);
954
955/*
956 * Finds an empty bucket to put an entry into, starting the scan at 'idx'.
957 * Performs Robin Hood swaps as it goes. The entry to put must be placed
958 * by the caller into swap slot IDX_PUT.
959 * If used for in-place resizing, may leave a displaced entry in swap slot
960 * IDX_PUT. Caller must rehash it next.
961 * Returns: true if it left a displaced entry to rehash next in IDX_PUT,
962 * false otherwise.
963 */
964static bool hashmap_put_robin_hood(HashmapBase *h, unsigned idx,
965 struct swap_entries *swap) {
966 dib_raw_t raw_dib, *dibs;
967 unsigned dib, distance;
968
fc86aa0e 969#ifdef ENABLE_DEBUG_HASHMAP
89439d4f
MS
970 h->debug.put_count++;
971#endif
972
973 dibs = dib_raw_ptr(h);
974
975 for (distance = 0; ; distance++) {
976 raw_dib = dibs[idx];
977 if (raw_dib == DIB_RAW_FREE || raw_dib == DIB_RAW_REHASH) {
978 if (raw_dib == DIB_RAW_REHASH)
979 bucket_move_entry(h, swap, idx, IDX_TMP);
980
981 if (h->has_indirect && h->indirect.idx_lowest_entry > idx)
982 h->indirect.idx_lowest_entry = idx;
60918275 983
89439d4f
MS
984 bucket_set_dib(h, idx, distance);
985 bucket_move_entry(h, swap, IDX_PUT, idx);
986 if (raw_dib == DIB_RAW_REHASH) {
987 bucket_move_entry(h, swap, IDX_TMP, IDX_PUT);
988 return true;
989 }
60918275 990
89439d4f
MS
991 return false;
992 }
993
994 dib = bucket_calculate_dib(h, idx, raw_dib);
995
996 if (dib < distance) {
997 /* Found a wealthier entry. Go Robin Hood! */
998
999 bucket_set_dib(h, idx, distance);
1000
1001 /* swap the entries */
1002 bucket_move_entry(h, swap, idx, IDX_TMP);
1003 bucket_move_entry(h, swap, IDX_PUT, idx);
1004 bucket_move_entry(h, swap, IDX_TMP, IDX_PUT);
1005
1006 distance = dib;
1007 }
1008
1009 idx = next_idx(h, idx);
1010 }
60918275
LP
1011}
1012
89439d4f
MS
1013/*
1014 * Puts an entry into a hashmap, boldly - no check whether key already exists.
1015 * The caller must place the entry (only its key and value, not link indexes)
1016 * in swap slot IDX_PUT.
1017 * Caller must ensure: the key does not exist yet in the hashmap.
1018 * that resize is not needed if !may_resize.
1019 * Returns: 1 if entry was put successfully.
1020 * -ENOMEM if may_resize==true and resize failed with -ENOMEM.
1021 * Cannot return -ENOMEM if !may_resize.
1022 */
1023static int hashmap_base_put_boldly(HashmapBase *h, unsigned idx,
1024 struct swap_entries *swap, bool may_resize) {
1025 struct ordered_hashmap_entry *new_entry;
1026 int r;
1027
1028 assert(idx < n_buckets(h));
1029
1030 new_entry = bucket_at_swap(swap, IDX_PUT);
1031
1032 if (may_resize) {
1033 r = resize_buckets(h, 1);
1034 if (r < 0)
1035 return r;
1036 if (r > 0)
1037 idx = bucket_hash(h, new_entry->p.b.key);
1038 }
1039 assert(n_entries(h) < n_buckets(h));
1040
1041 if (h->type == HASHMAP_TYPE_ORDERED) {
1042 OrderedHashmap *lh = (OrderedHashmap*) h;
1043
1044 new_entry->iterate_next = IDX_NIL;
1045 new_entry->iterate_previous = lh->iterate_list_tail;
1046
1047 if (lh->iterate_list_tail != IDX_NIL) {
1048 struct ordered_hashmap_entry *old_tail;
1049
1050 old_tail = ordered_bucket_at(lh, lh->iterate_list_tail);
1051 assert(old_tail->iterate_next == IDX_NIL);
1052 old_tail->iterate_next = IDX_PUT;
1053 }
1054
1055 lh->iterate_list_tail = IDX_PUT;
1056 if (lh->iterate_list_head == IDX_NIL)
1057 lh->iterate_list_head = IDX_PUT;
1058 }
1059
1060 assert_se(hashmap_put_robin_hood(h, idx, swap) == false);
1061
1062 n_entries_inc(h);
fc86aa0e 1063#ifdef ENABLE_DEBUG_HASHMAP
89439d4f
MS
1064 h->debug.max_entries = MAX(h->debug.max_entries, n_entries(h));
1065#endif
1066
1067 return 1;
1068}
1069#define hashmap_put_boldly(h, idx, swap, may_resize) \
1070 hashmap_base_put_boldly(HASHMAP_BASE(h), idx, swap, may_resize)
1071
1072/*
1073 * Returns 0 if resize is not needed.
f131770b 1074 * 1 if successfully resized.
89439d4f
MS
1075 * -ENOMEM on allocation failure.
1076 */
1077static int resize_buckets(HashmapBase *h, unsigned entries_add) {
1078 struct swap_entries swap;
1079 char *new_storage;
1080 dib_raw_t *old_dibs, *new_dibs;
1081 const struct hashmap_type_info *hi;
1082 unsigned idx, optimal_idx;
1083 unsigned old_n_buckets, new_n_buckets, n_rehashed, new_n_entries;
1084 uint8_t new_shift;
1085 bool rehash_next;
45fa9e29
LP
1086
1087 assert(h);
1088
89439d4f
MS
1089 hi = &hashmap_type_info[h->type];
1090 new_n_entries = n_entries(h) + entries_add;
e4c691b5
MS
1091
1092 /* overflow? */
89439d4f 1093 if (_unlikely_(new_n_entries < entries_add))
e4c691b5
MS
1094 return -ENOMEM;
1095
89439d4f
MS
1096 /* For direct storage we allow 100% load, because it's tiny. */
1097 if (!h->has_indirect && new_n_entries <= hi->n_direct_buckets)
9700d698 1098 return 0;
45fa9e29 1099
89439d4f
MS
1100 /*
1101 * Load factor = n/m = 1 - (1/INV_KEEP_FREE).
1102 * From it follows: m = n + n/(INV_KEEP_FREE - 1)
1103 */
1104 new_n_buckets = new_n_entries + new_n_entries / (INV_KEEP_FREE - 1);
1105 /* overflow? */
1106 if (_unlikely_(new_n_buckets < new_n_entries))
9700d698 1107 return -ENOMEM;
45fa9e29 1108
89439d4f
MS
1109 if (_unlikely_(new_n_buckets > UINT_MAX / (hi->entry_size + sizeof(dib_raw_t))))
1110 return -ENOMEM;
a3b6fafe 1111
89439d4f 1112 old_n_buckets = n_buckets(h);
45fa9e29 1113
89439d4f
MS
1114 if (_likely_(new_n_buckets <= old_n_buckets))
1115 return 0;
45fa9e29 1116
89439d4f
MS
1117 new_shift = log2u_round_up(MAX(
1118 new_n_buckets * (hi->entry_size + sizeof(dib_raw_t)),
1119 2 * sizeof(struct direct_storage)));
45fa9e29 1120
89439d4f
MS
1121 /* Realloc storage (buckets and DIB array). */
1122 new_storage = realloc(h->has_indirect ? h->indirect.storage : NULL,
1123 1U << new_shift);
1124 if (!new_storage)
1125 return -ENOMEM;
45fa9e29 1126
89439d4f
MS
1127 /* Must upgrade direct to indirect storage. */
1128 if (!h->has_indirect) {
1129 memcpy(new_storage, h->direct.storage,
1130 old_n_buckets * (hi->entry_size + sizeof(dib_raw_t)));
1131 h->indirect.n_entries = h->n_direct_entries;
1132 h->indirect.idx_lowest_entry = 0;
1133 h->n_direct_entries = 0;
1134 }
45fa9e29 1135
89439d4f
MS
1136 /* Get a new hash key. If we've just upgraded to indirect storage,
1137 * allow reusing a previously generated key. It's still a different key
1138 * from the shared one that we used for direct storage. */
1139 get_hash_key(h->indirect.hash_key, !h->has_indirect);
1140
1141 h->has_indirect = true;
1142 h->indirect.storage = new_storage;
1143 h->indirect.n_buckets = (1U << new_shift) /
1144 (hi->entry_size + sizeof(dib_raw_t));
1145
1146 old_dibs = (dib_raw_t*)(new_storage + hi->entry_size * old_n_buckets);
1147 new_dibs = dib_raw_ptr(h);
1148
1149 /*
1150 * Move the DIB array to the new place, replacing valid DIB values with
1151 * DIB_RAW_REHASH to indicate all of the used buckets need rehashing.
1152 * Note: Overlap is not possible, because we have at least doubled the
1153 * number of buckets and dib_raw_t is smaller than any entry type.
1154 */
1155 for (idx = 0; idx < old_n_buckets; idx++) {
1156 assert(old_dibs[idx] != DIB_RAW_REHASH);
1157 new_dibs[idx] = old_dibs[idx] == DIB_RAW_FREE ? DIB_RAW_FREE
1158 : DIB_RAW_REHASH;
45fa9e29
LP
1159 }
1160
89439d4f 1161 /* Zero the area of newly added entries (including the old DIB area) */
eccaf899 1162 memzero(bucket_at(h, old_n_buckets),
89439d4f 1163 (n_buckets(h) - old_n_buckets) * hi->entry_size);
45fa9e29 1164
89439d4f
MS
1165 /* The upper half of the new DIB array needs initialization */
1166 memset(&new_dibs[old_n_buckets], DIB_RAW_INIT,
1167 (n_buckets(h) - old_n_buckets) * sizeof(dib_raw_t));
9bf3b535 1168
89439d4f
MS
1169 /* Rehash entries that need it */
1170 n_rehashed = 0;
1171 for (idx = 0; idx < old_n_buckets; idx++) {
1172 if (new_dibs[idx] != DIB_RAW_REHASH)
1173 continue;
45fa9e29 1174
89439d4f 1175 optimal_idx = bucket_hash(h, bucket_at(h, idx)->key);
45fa9e29 1176
89439d4f
MS
1177 /*
1178 * Not much to do if by luck the entry hashes to its current
1179 * location. Just set its DIB.
1180 */
1181 if (optimal_idx == idx) {
1182 new_dibs[idx] = 0;
1183 n_rehashed++;
1184 continue;
1185 }
1186
1187 new_dibs[idx] = DIB_RAW_FREE;
1188 bucket_move_entry(h, &swap, idx, IDX_PUT);
1189 /* bucket_move_entry does not clear the source */
eccaf899 1190 memzero(bucket_at(h, idx), hi->entry_size);
89439d4f
MS
1191
1192 do {
1193 /*
1194 * Find the new bucket for the current entry. This may make
1195 * another entry homeless and load it into IDX_PUT.
1196 */
1197 rehash_next = hashmap_put_robin_hood(h, optimal_idx, &swap);
1198 n_rehashed++;
1199
1200 /* Did the current entry displace another one? */
1201 if (rehash_next)
1202 optimal_idx = bucket_hash(h, bucket_at_swap(&swap, IDX_PUT)->p.b.key);
1203 } while (rehash_next);
1204 }
60918275 1205
89439d4f 1206 assert(n_rehashed == n_entries(h));
60918275 1207
89439d4f
MS
1208 return 1;
1209}
45fa9e29 1210
89439d4f
MS
1211/*
1212 * Finds an entry with a matching key
1213 * Returns: index of the found entry, or IDX_NIL if not found.
1214 */
1215static unsigned base_bucket_scan(HashmapBase *h, unsigned idx, const void *key) {
1216 struct hashmap_base_entry *e;
1217 unsigned dib, distance;
1218 dib_raw_t *dibs = dib_raw_ptr(h);
39c2a6f1 1219
89439d4f 1220 assert(idx < n_buckets(h));
60918275 1221
89439d4f
MS
1222 for (distance = 0; ; distance++) {
1223 if (dibs[idx] == DIB_RAW_FREE)
1224 return IDX_NIL;
60918275 1225
89439d4f 1226 dib = bucket_calculate_dib(h, idx, dibs[idx]);
60918275 1227
89439d4f
MS
1228 if (dib < distance)
1229 return IDX_NIL;
1230 if (dib == distance) {
1231 e = bucket_at(h, idx);
1232 if (h->hash_ops->compare(e->key, key) == 0)
1233 return idx;
1234 }
1235
1236 idx = next_idx(h, idx);
1237 }
60918275 1238}
89439d4f 1239#define bucket_scan(h, idx, key) base_bucket_scan(HASHMAP_BASE(h), idx, key)
60918275 1240
923041cb 1241int hashmap_put(Hashmap *h, const void *key, void *value) {
89439d4f
MS
1242 struct swap_entries swap;
1243 struct plain_hashmap_entry *e;
1244 unsigned hash, idx;
923041cb
MS
1245
1246 assert(h);
1247
1248 hash = bucket_hash(h, key);
89439d4f
MS
1249 idx = bucket_scan(h, hash, key);
1250 if (idx != IDX_NIL) {
1251 e = plain_bucket_at(h, idx);
923041cb
MS
1252 if (e->value == value)
1253 return 0;
1254 return -EEXIST;
1255 }
1256
89439d4f
MS
1257 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1258 e->b.key = key;
1259 e->value = value;
1260 return hashmap_put_boldly(h, hash, &swap, true);
1261}
1262
1263int set_put(Set *s, const void *key) {
1264 struct swap_entries swap;
1265 struct hashmap_base_entry *e;
1266 unsigned hash, idx;
1267
1268 assert(s);
1269
1270 hash = bucket_hash(s, key);
1271 idx = bucket_scan(s, hash, key);
1272 if (idx != IDX_NIL)
1273 return 0;
1274
1275 e = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1276 e->key = key;
1277 return hashmap_put_boldly(s, hash, &swap, true);
923041cb
MS
1278}
1279
3158713e 1280int hashmap_replace(Hashmap *h, const void *key, void *value) {
89439d4f
MS
1281 struct swap_entries swap;
1282 struct plain_hashmap_entry *e;
1283 unsigned hash, idx;
3158713e
LP
1284
1285 assert(h);
1286
a3b6fafe 1287 hash = bucket_hash(h, key);
89439d4f
MS
1288 idx = bucket_scan(h, hash, key);
1289 if (idx != IDX_NIL) {
1290 e = plain_bucket_at(h, idx);
fc86aa0e 1291#ifdef ENABLE_DEBUG_HASHMAP
89439d4f
MS
1292 /* Although the key is equal, the key pointer may have changed,
1293 * and this would break our assumption for iterating. So count
1294 * this operation as incompatible with iteration. */
1295 if (e->b.key != key) {
1296 h->b.debug.put_count++;
1297 h->b.debug.rem_count++;
1298 h->b.debug.last_rem_idx = idx;
1299 }
1300#endif
1301 e->b.key = key;
3158713e
LP
1302 e->value = value;
1303 return 0;
1304 }
1305
89439d4f
MS
1306 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1307 e->b.key = key;
1308 e->value = value;
1309 return hashmap_put_boldly(h, hash, &swap, true);
3158713e
LP
1310}
1311
d99ae53a 1312int hashmap_update(Hashmap *h, const void *key, void *value) {
89439d4f
MS
1313 struct plain_hashmap_entry *e;
1314 unsigned hash, idx;
d99ae53a
LP
1315
1316 assert(h);
1317
a3b6fafe 1318 hash = bucket_hash(h, key);
89439d4f
MS
1319 idx = bucket_scan(h, hash, key);
1320 if (idx == IDX_NIL)
d99ae53a
LP
1321 return -ENOENT;
1322
89439d4f 1323 e = plain_bucket_at(h, idx);
d99ae53a
LP
1324 e->value = value;
1325 return 0;
1326}
1327
89439d4f
MS
1328void *internal_hashmap_get(HashmapBase *h, const void *key) {
1329 struct hashmap_base_entry *e;
1330 unsigned hash, idx;
60918275
LP
1331
1332 if (!h)
1333 return NULL;
1334
a3b6fafe 1335 hash = bucket_hash(h, key);
89439d4f
MS
1336 idx = bucket_scan(h, hash, key);
1337 if (idx == IDX_NIL)
60918275
LP
1338 return NULL;
1339
89439d4f
MS
1340 e = bucket_at(h, idx);
1341 return entry_value(h, e);
60918275
LP
1342}
1343
89439d4f
MS
1344void *hashmap_get2(Hashmap *h, const void *key, void **key2) {
1345 struct plain_hashmap_entry *e;
1346 unsigned hash, idx;
d99ae53a
LP
1347
1348 if (!h)
1349 return NULL;
1350
a3b6fafe 1351 hash = bucket_hash(h, key);
89439d4f
MS
1352 idx = bucket_scan(h, hash, key);
1353 if (idx == IDX_NIL)
d99ae53a
LP
1354 return NULL;
1355
89439d4f 1356 e = plain_bucket_at(h, idx);
d99ae53a 1357 if (key2)
89439d4f 1358 *key2 = (void*) e->b.key;
d99ae53a
LP
1359
1360 return e->value;
1361}
1362
89439d4f 1363bool internal_hashmap_contains(HashmapBase *h, const void *key) {
96342de6 1364 unsigned hash;
96342de6
LN
1365
1366 if (!h)
1367 return false;
1368
a3b6fafe 1369 hash = bucket_hash(h, key);
89439d4f 1370 return bucket_scan(h, hash, key) != IDX_NIL;
96342de6
LN
1371}
1372
89439d4f
MS
1373void *internal_hashmap_remove(HashmapBase *h, const void *key) {
1374 struct hashmap_base_entry *e;
1375 unsigned hash, idx;
60918275
LP
1376 void *data;
1377
1378 if (!h)
1379 return NULL;
1380
a3b6fafe 1381 hash = bucket_hash(h, key);
89439d4f
MS
1382 idx = bucket_scan(h, hash, key);
1383 if (idx == IDX_NIL)
60918275
LP
1384 return NULL;
1385
89439d4f
MS
1386 e = bucket_at(h, idx);
1387 data = entry_value(h, e);
1388 remove_entry(h, idx);
60918275
LP
1389
1390 return data;
1391}
1392
89439d4f
MS
1393void *hashmap_remove2(Hashmap *h, const void *key, void **rkey) {
1394 struct plain_hashmap_entry *e;
1395 unsigned hash, idx;
c582a3b3
LP
1396 void *data;
1397
1398 if (!h) {
1399 if (rkey)
1400 *rkey = NULL;
1401 return NULL;
1402 }
1403
1404 hash = bucket_hash(h, key);
89439d4f
MS
1405 idx = bucket_scan(h, hash, key);
1406 if (idx == IDX_NIL) {
c582a3b3
LP
1407 if (rkey)
1408 *rkey = NULL;
1409 return NULL;
1410 }
1411
89439d4f 1412 e = plain_bucket_at(h, idx);
c582a3b3
LP
1413 data = e->value;
1414 if (rkey)
89439d4f 1415 *rkey = (void*) e->b.key;
c582a3b3 1416
89439d4f 1417 remove_entry(h, idx);
c582a3b3
LP
1418
1419 return data;
1420}
1421
101d8e63 1422int hashmap_remove_and_put(Hashmap *h, const void *old_key, const void *new_key, void *value) {
89439d4f
MS
1423 struct swap_entries swap;
1424 struct plain_hashmap_entry *e;
1425 unsigned old_hash, new_hash, idx;
101d8e63
LP
1426
1427 if (!h)
1428 return -ENOENT;
1429
a3b6fafe 1430 old_hash = bucket_hash(h, old_key);
89439d4f
MS
1431 idx = bucket_scan(h, old_hash, old_key);
1432 if (idx == IDX_NIL)
101d8e63
LP
1433 return -ENOENT;
1434
a3b6fafe 1435 new_hash = bucket_hash(h, new_key);
89439d4f 1436 if (bucket_scan(h, new_hash, new_key) != IDX_NIL)
101d8e63
LP
1437 return -EEXIST;
1438
89439d4f 1439 remove_entry(h, idx);
101d8e63 1440
89439d4f
MS
1441 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1442 e->b.key = new_key;
101d8e63 1443 e->value = value;
89439d4f
MS
1444 assert_se(hashmap_put_boldly(h, new_hash, &swap, false) == 1);
1445
1446 return 0;
1447}
1448
1449int set_remove_and_put(Set *s, const void *old_key, const void *new_key) {
1450 struct swap_entries swap;
1451 struct hashmap_base_entry *e;
1452 unsigned old_hash, new_hash, idx;
101d8e63 1453
89439d4f
MS
1454 if (!s)
1455 return -ENOENT;
1456
1457 old_hash = bucket_hash(s, old_key);
1458 idx = bucket_scan(s, old_hash, old_key);
1459 if (idx == IDX_NIL)
1460 return -ENOENT;
1461
1462 new_hash = bucket_hash(s, new_key);
1463 if (bucket_scan(s, new_hash, new_key) != IDX_NIL)
1464 return -EEXIST;
1465
1466 remove_entry(s, idx);
1467
1468 e = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1469 e->key = new_key;
1470 assert_se(hashmap_put_boldly(s, new_hash, &swap, false) == 1);
101d8e63
LP
1471
1472 return 0;
1473}
1474
8fe914ec 1475int hashmap_remove_and_replace(Hashmap *h, const void *old_key, const void *new_key, void *value) {
89439d4f
MS
1476 struct swap_entries swap;
1477 struct plain_hashmap_entry *e;
1478 unsigned old_hash, new_hash, idx_old, idx_new;
8fe914ec
LP
1479
1480 if (!h)
1481 return -ENOENT;
1482
a3b6fafe 1483 old_hash = bucket_hash(h, old_key);
89439d4f
MS
1484 idx_old = bucket_scan(h, old_hash, old_key);
1485 if (idx_old == IDX_NIL)
8fe914ec
LP
1486 return -ENOENT;
1487
89439d4f 1488 old_key = bucket_at(HASHMAP_BASE(h), idx_old)->key;
8fe914ec 1489
89439d4f
MS
1490 new_hash = bucket_hash(h, new_key);
1491 idx_new = bucket_scan(h, new_hash, new_key);
1492 if (idx_new != IDX_NIL)
1493 if (idx_old != idx_new) {
1494 remove_entry(h, idx_new);
1495 /* Compensate for a possible backward shift. */
1496 if (old_key != bucket_at(HASHMAP_BASE(h), idx_old)->key)
1497 idx_old = prev_idx(HASHMAP_BASE(h), idx_old);
1498 assert(old_key == bucket_at(HASHMAP_BASE(h), idx_old)->key);
1499 }
1500
1501 remove_entry(h, idx_old);
1502
1503 e = &bucket_at_swap(&swap, IDX_PUT)->p;
1504 e->b.key = new_key;
8fe914ec 1505 e->value = value;
89439d4f 1506 assert_se(hashmap_put_boldly(h, new_hash, &swap, false) == 1);
8fe914ec
LP
1507
1508 return 0;
1509}
1510
89439d4f
MS
1511void *hashmap_remove_value(Hashmap *h, const void *key, void *value) {
1512 struct plain_hashmap_entry *e;
1513 unsigned hash, idx;
3158713e
LP
1514
1515 if (!h)
1516 return NULL;
1517
a3b6fafe 1518 hash = bucket_hash(h, key);
89439d4f
MS
1519 idx = bucket_scan(h, hash, key);
1520 if (idx == IDX_NIL)
3158713e
LP
1521 return NULL;
1522
89439d4f 1523 e = plain_bucket_at(h, idx);
3158713e
LP
1524 if (e->value != value)
1525 return NULL;
1526
89439d4f 1527 remove_entry(h, idx);
3158713e
LP
1528
1529 return value;
1530}
1531
89439d4f
MS
1532static unsigned find_first_entry(HashmapBase *h) {
1533 Iterator i = ITERATOR_FIRST;
60918275 1534
89439d4f
MS
1535 if (!h || !n_entries(h))
1536 return IDX_NIL;
60918275 1537
89439d4f 1538 return hashmap_iterate_entry(h, &i);
60918275
LP
1539}
1540
89439d4f
MS
1541void *internal_hashmap_first(HashmapBase *h) {
1542 unsigned idx;
60918275 1543
89439d4f
MS
1544 idx = find_first_entry(h);
1545 if (idx == IDX_NIL)
60918275
LP
1546 return NULL;
1547
89439d4f 1548 return entry_value(h, bucket_at(h, idx));
60918275
LP
1549}
1550
89439d4f
MS
1551void *internal_hashmap_first_key(HashmapBase *h) {
1552 struct hashmap_base_entry *e;
1553 unsigned idx;
2e4a6ff4 1554
89439d4f
MS
1555 idx = find_first_entry(h);
1556 if (idx == IDX_NIL)
2e4a6ff4
LP
1557 return NULL;
1558
89439d4f
MS
1559 e = bucket_at(h, idx);
1560 return (void*) e->key;
2e4a6ff4
LP
1561}
1562
89439d4f
MS
1563void *internal_hashmap_steal_first(HashmapBase *h) {
1564 struct hashmap_base_entry *e;
60918275 1565 void *data;
89439d4f 1566 unsigned idx;
60918275 1567
89439d4f
MS
1568 idx = find_first_entry(h);
1569 if (idx == IDX_NIL)
60918275
LP
1570 return NULL;
1571
89439d4f
MS
1572 e = bucket_at(h, idx);
1573 data = entry_value(h, e);
1574 remove_entry(h, idx);
60918275
LP
1575
1576 return data;
1577}
1578
89439d4f
MS
1579void *internal_hashmap_steal_first_key(HashmapBase *h) {
1580 struct hashmap_base_entry *e;
22be093f 1581 void *key;
89439d4f 1582 unsigned idx;
22be093f 1583
89439d4f
MS
1584 idx = find_first_entry(h);
1585 if (idx == IDX_NIL)
22be093f
LP
1586 return NULL;
1587
89439d4f
MS
1588 e = bucket_at(h, idx);
1589 key = (void*) e->key;
1590 remove_entry(h, idx);
22be093f
LP
1591
1592 return key;
1593}
1594
89439d4f 1595unsigned internal_hashmap_size(HashmapBase *h) {
60918275
LP
1596
1597 if (!h)
1598 return 0;
1599
89439d4f 1600 return n_entries(h);
60918275
LP
1601}
1602
89439d4f 1603unsigned internal_hashmap_buckets(HashmapBase *h) {
45fa9e29
LP
1604
1605 if (!h)
1606 return 0;
1607
89439d4f 1608 return n_buckets(h);
45fa9e29
LP
1609}
1610
89439d4f
MS
1611int internal_hashmap_merge(Hashmap *h, Hashmap *other) {
1612 Iterator i;
1613 unsigned idx;
60918275 1614
89439d4f 1615 assert(h);
60918275 1616
89439d4f
MS
1617 HASHMAP_FOREACH_IDX(idx, HASHMAP_BASE(other), i) {
1618 struct plain_hashmap_entry *pe = plain_bucket_at(other, idx);
1619 int r;
91cdde8a 1620
89439d4f
MS
1621 r = hashmap_put(h, pe->b.key, pe->value);
1622 if (r < 0 && r != -EEXIST)
1623 return r;
1624 }
91cdde8a 1625
89439d4f
MS
1626 return 0;
1627}
91cdde8a 1628
89439d4f
MS
1629int set_merge(Set *s, Set *other) {
1630 Iterator i;
1631 unsigned idx;
91cdde8a 1632
89439d4f
MS
1633 assert(s);
1634
1635 HASHMAP_FOREACH_IDX(idx, HASHMAP_BASE(other), i) {
1636 struct set_entry *se = set_bucket_at(other, idx);
91cdde8a
LP
1637 int r;
1638
89439d4f
MS
1639 r = set_put(s, se->b.key);
1640 if (r < 0)
a3b6fafe 1641 return r;
91cdde8a
LP
1642 }
1643
1644 return 0;
1645}
1646
89439d4f 1647int internal_hashmap_reserve(HashmapBase *h, unsigned entries_add) {
e4c691b5
MS
1648 int r;
1649
1650 assert(h);
1651
1652 r = resize_buckets(h, entries_add);
1653 if (r < 0)
1654 return r;
1655
1656 return 0;
1657}
1658
89439d4f
MS
1659/*
1660 * The same as hashmap_merge(), but every new item from other is moved to h.
1661 * Keys already in h are skipped and stay in other.
1662 * Returns: 0 on success.
1663 * -ENOMEM on alloc failure, in which case no move has been done.
1664 */
1665int internal_hashmap_move(HashmapBase *h, HashmapBase *other) {
1666 struct swap_entries swap;
1667 struct hashmap_base_entry *e, *n;
1668 Iterator i;
1669 unsigned idx;
1670 int r;
101d8e63
LP
1671
1672 assert(h);
1673
101d8e63 1674 if (!other)
7ad63f57 1675 return 0;
101d8e63 1676
89439d4f
MS
1677 assert(other->type == h->type);
1678
1679 /*
1680 * This reserves buckets for the worst case, where none of other's
1681 * entries are yet present in h. This is preferable to risking
1682 * an allocation failure in the middle of the moving and having to
1683 * rollback or return a partial result.
1684 */
1685 r = resize_buckets(h, n_entries(other));
1686 if (r < 0)
1687 return r;
101d8e63 1688
89439d4f
MS
1689 HASHMAP_FOREACH_IDX(idx, other, i) {
1690 unsigned h_hash;
101d8e63 1691
89439d4f 1692 e = bucket_at(other, idx);
a3b6fafe 1693 h_hash = bucket_hash(h, e->key);
89439d4f 1694 if (bucket_scan(h, h_hash, e->key) != IDX_NIL)
101d8e63
LP
1695 continue;
1696
89439d4f
MS
1697 n = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1698 n->key = e->key;
1699 if (h->type != HASHMAP_TYPE_SET)
1700 ((struct plain_hashmap_entry*) n)->value =
1701 ((struct plain_hashmap_entry*) e)->value;
1702 assert_se(hashmap_put_boldly(h, h_hash, &swap, false) == 1);
1703
1704 remove_entry(other, idx);
101d8e63 1705 }
7ad63f57
MS
1706
1707 return 0;
101d8e63
LP
1708}
1709
89439d4f
MS
1710int internal_hashmap_move_one(HashmapBase *h, HashmapBase *other, const void *key) {
1711 struct swap_entries swap;
1712 unsigned h_hash, other_hash, idx;
1713 struct hashmap_base_entry *e, *n;
1714 int r;
101d8e63 1715
101d8e63
LP
1716 assert(h);
1717
a3b6fafe 1718 h_hash = bucket_hash(h, key);
89439d4f 1719 if (bucket_scan(h, h_hash, key) != IDX_NIL)
101d8e63
LP
1720 return -EEXIST;
1721
bf3d3e2b
MS
1722 if (!other)
1723 return -ENOENT;
1724
89439d4f
MS
1725 assert(other->type == h->type);
1726
a3b6fafe 1727 other_hash = bucket_hash(other, key);
89439d4f
MS
1728 idx = bucket_scan(other, other_hash, key);
1729 if (idx == IDX_NIL)
101d8e63
LP
1730 return -ENOENT;
1731
89439d4f
MS
1732 e = bucket_at(other, idx);
1733
1734 n = &bucket_at_swap(&swap, IDX_PUT)->p.b;
1735 n->key = e->key;
1736 if (h->type != HASHMAP_TYPE_SET)
1737 ((struct plain_hashmap_entry*) n)->value =
1738 ((struct plain_hashmap_entry*) e)->value;
1739 r = hashmap_put_boldly(h, h_hash, &swap, true);
1740 if (r < 0)
1741 return r;
101d8e63 1742
89439d4f 1743 remove_entry(other, idx);
101d8e63
LP
1744 return 0;
1745}
1746
89439d4f
MS
1747HashmapBase *internal_hashmap_copy(HashmapBase *h) {
1748 HashmapBase *copy;
1749 int r;
91cdde8a
LP
1750
1751 assert(h);
1752
89439d4f 1753 copy = hashmap_base_new(h->hash_ops, h->type HASHMAP_DEBUG_SRC_ARGS);
45fa9e29 1754 if (!copy)
91cdde8a
LP
1755 return NULL;
1756
89439d4f
MS
1757 switch (h->type) {
1758 case HASHMAP_TYPE_PLAIN:
1759 case HASHMAP_TYPE_ORDERED:
1760 r = hashmap_merge((Hashmap*)copy, (Hashmap*)h);
1761 break;
1762 case HASHMAP_TYPE_SET:
1763 r = set_merge((Set*)copy, (Set*)h);
1764 break;
1765 default:
1766 assert_not_reached("Unknown hashmap type");
1767 }
1768
1769 if (r < 0) {
1770 internal_hashmap_free(copy);
91cdde8a
LP
1771 return NULL;
1772 }
1773
1774 return copy;
1775}
db1413d7 1776
89439d4f 1777char **internal_hashmap_get_strv(HashmapBase *h) {
db1413d7 1778 char **sv;
89439d4f
MS
1779 Iterator i;
1780 unsigned idx, n;
db1413d7 1781
89439d4f 1782 sv = new(char*, n_entries(h)+1);
729e3769 1783 if (!sv)
db1413d7
KS
1784 return NULL;
1785
1786 n = 0;
89439d4f
MS
1787 HASHMAP_FOREACH_IDX(idx, h, i)
1788 sv[n++] = entry_value(h, bucket_at(h, idx));
db1413d7
KS
1789 sv[n] = NULL;
1790
1791 return sv;
1792}
3c1668da 1793
89439d4f
MS
1794void *ordered_hashmap_next(OrderedHashmap *h, const void *key) {
1795 struct ordered_hashmap_entry *e;
1796 unsigned hash, idx;
3c1668da 1797
3c1668da
LP
1798 assert(key);
1799
1800 if (!h)
1801 return NULL;
1802
a3b6fafe 1803 hash = bucket_hash(h, key);
89439d4f
MS
1804 idx = bucket_scan(h, hash, key);
1805 if (idx == IDX_NIL)
3c1668da
LP
1806 return NULL;
1807
89439d4f
MS
1808 e = ordered_bucket_at(h, idx);
1809 if (e->iterate_next == IDX_NIL)
3c1668da 1810 return NULL;
89439d4f
MS
1811 return ordered_bucket_at(h, e->iterate_next)->p.value;
1812}
3c1668da 1813
89439d4f
MS
1814int set_consume(Set *s, void *value) {
1815 int r;
1816
1817 r = set_put(s, value);
575ccc1b 1818 if (r <= 0)
89439d4f
MS
1819 free(value);
1820
1821 return r;
1822}
1823
1824int set_put_strdup(Set *s, const char *p) {
1825 char *c;
1826 int r;
1827
1828 assert(s);
1829 assert(p);
1830
1831 c = strdup(p);
1832 if (!c)
1833 return -ENOMEM;
1834
1835 r = set_consume(s, c);
1836 if (r == -EEXIST)
1837 return 0;
1838
1839 return r;
1840}
1841
1842int set_put_strdupv(Set *s, char **l) {
1843 int n = 0, r;
1844 char **i;
1845
1846 STRV_FOREACH(i, l) {
1847 r = set_put_strdup(s, *i);
1848 if (r < 0)
1849 return r;
1850
1851 n += r;
1852 }
1853
1854 return n;
3c1668da 1855}