]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/basic/socket-util.c
build-sys: use #if Y instead of #ifdef Y everywhere
[thirdparty/systemd.git] / src / basic / socket-util.c
1 /***
2 This file is part of systemd.
3
4 Copyright 2010 Lennart Poettering
5
6 systemd is free software; you can redistribute it and/or modify it
7 under the terms of the GNU Lesser General Public License as published by
8 the Free Software Foundation; either version 2.1 of the License, or
9 (at your option) any later version.
10
11 systemd is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public License
17 along with systemd; If not, see <http://www.gnu.org/licenses/>.
18 ***/
19
20 #include <arpa/inet.h>
21 #include <errno.h>
22 #include <limits.h>
23 #include <net/if.h>
24 #include <netdb.h>
25 #include <netinet/ip.h>
26 #include <poll.h>
27 #include <stddef.h>
28 #include <stdint.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <string.h>
32 #include <unistd.h>
33
34 #include "alloc-util.h"
35 #include "fd-util.h"
36 #include "fileio.h"
37 #include "format-util.h"
38 #include "log.h"
39 #include "macro.h"
40 #include "missing.h"
41 #include "parse-util.h"
42 #include "path-util.h"
43 #include "socket-util.h"
44 #include "string-table.h"
45 #include "string-util.h"
46 #include "strv.h"
47 #include "user-util.h"
48 #include "utf8.h"
49 #include "util.h"
50
51 #if ENABLE_IDN
52 # define IDN_FLAGS (NI_IDN|NI_IDN_USE_STD3_ASCII_RULES)
53 #else
54 # define IDN_FLAGS 0
55 #endif
56
57 int socket_address_parse(SocketAddress *a, const char *s) {
58 char *e, *n;
59 unsigned u;
60 int r;
61
62 assert(a);
63 assert(s);
64
65 zero(*a);
66 a->type = SOCK_STREAM;
67
68 if (*s == '[') {
69 /* IPv6 in [x:.....:z]:p notation */
70
71 e = strchr(s+1, ']');
72 if (!e)
73 return -EINVAL;
74
75 n = strndupa(s+1, e-s-1);
76
77 errno = 0;
78 if (inet_pton(AF_INET6, n, &a->sockaddr.in6.sin6_addr) <= 0)
79 return errno > 0 ? -errno : -EINVAL;
80
81 e++;
82 if (*e != ':')
83 return -EINVAL;
84
85 e++;
86 r = safe_atou(e, &u);
87 if (r < 0)
88 return r;
89
90 if (u <= 0 || u > 0xFFFF)
91 return -EINVAL;
92
93 a->sockaddr.in6.sin6_family = AF_INET6;
94 a->sockaddr.in6.sin6_port = htobe16((uint16_t)u);
95 a->size = sizeof(struct sockaddr_in6);
96
97 } else if (*s == '/') {
98 /* AF_UNIX socket */
99
100 size_t l;
101
102 l = strlen(s);
103 if (l >= sizeof(a->sockaddr.un.sun_path))
104 return -EINVAL;
105
106 a->sockaddr.un.sun_family = AF_UNIX;
107 memcpy(a->sockaddr.un.sun_path, s, l);
108 a->size = offsetof(struct sockaddr_un, sun_path) + l + 1;
109
110 } else if (*s == '@') {
111 /* Abstract AF_UNIX socket */
112 size_t l;
113
114 l = strlen(s+1);
115 if (l >= sizeof(a->sockaddr.un.sun_path) - 1)
116 return -EINVAL;
117
118 a->sockaddr.un.sun_family = AF_UNIX;
119 memcpy(a->sockaddr.un.sun_path+1, s+1, l);
120 a->size = offsetof(struct sockaddr_un, sun_path) + 1 + l;
121
122 } else if (startswith(s, "vsock:")) {
123 /* AF_VSOCK socket in vsock:cid:port notation */
124 const char *cid_start = s + strlen("vsock:");
125
126 e = strchr(cid_start, ':');
127 if (!e)
128 return -EINVAL;
129
130 r = safe_atou(e+1, &u);
131 if (r < 0)
132 return r;
133
134 n = strndupa(cid_start, e - cid_start);
135 if (!isempty(n)) {
136 r = safe_atou(n, &a->sockaddr.vm.svm_cid);
137 if (r < 0)
138 return r;
139 } else
140 a->sockaddr.vm.svm_cid = VMADDR_CID_ANY;
141
142 a->sockaddr.vm.svm_family = AF_VSOCK;
143 a->sockaddr.vm.svm_port = u;
144 a->size = sizeof(struct sockaddr_vm);
145
146 } else {
147 e = strchr(s, ':');
148 if (e) {
149 r = safe_atou(e+1, &u);
150 if (r < 0)
151 return r;
152
153 if (u <= 0 || u > 0xFFFF)
154 return -EINVAL;
155
156 n = strndupa(s, e-s);
157
158 /* IPv4 in w.x.y.z:p notation? */
159 r = inet_pton(AF_INET, n, &a->sockaddr.in.sin_addr);
160 if (r < 0)
161 return -errno;
162
163 if (r > 0) {
164 /* Gotcha, it's a traditional IPv4 address */
165 a->sockaddr.in.sin_family = AF_INET;
166 a->sockaddr.in.sin_port = htobe16((uint16_t)u);
167 a->size = sizeof(struct sockaddr_in);
168 } else {
169 unsigned idx;
170
171 if (strlen(n) > IF_NAMESIZE-1)
172 return -EINVAL;
173
174 /* Uh, our last resort, an interface name */
175 idx = if_nametoindex(n);
176 if (idx == 0)
177 return -EINVAL;
178
179 a->sockaddr.in6.sin6_family = AF_INET6;
180 a->sockaddr.in6.sin6_port = htobe16((uint16_t)u);
181 a->sockaddr.in6.sin6_scope_id = idx;
182 a->sockaddr.in6.sin6_addr = in6addr_any;
183 a->size = sizeof(struct sockaddr_in6);
184 }
185 } else {
186
187 /* Just a port */
188 r = safe_atou(s, &u);
189 if (r < 0)
190 return r;
191
192 if (u <= 0 || u > 0xFFFF)
193 return -EINVAL;
194
195 if (socket_ipv6_is_supported()) {
196 a->sockaddr.in6.sin6_family = AF_INET6;
197 a->sockaddr.in6.sin6_port = htobe16((uint16_t)u);
198 a->sockaddr.in6.sin6_addr = in6addr_any;
199 a->size = sizeof(struct sockaddr_in6);
200 } else {
201 a->sockaddr.in.sin_family = AF_INET;
202 a->sockaddr.in.sin_port = htobe16((uint16_t)u);
203 a->sockaddr.in.sin_addr.s_addr = INADDR_ANY;
204 a->size = sizeof(struct sockaddr_in);
205 }
206 }
207 }
208
209 return 0;
210 }
211
212 int socket_address_parse_and_warn(SocketAddress *a, const char *s) {
213 SocketAddress b;
214 int r;
215
216 /* Similar to socket_address_parse() but warns for IPv6 sockets when we don't support them. */
217
218 r = socket_address_parse(&b, s);
219 if (r < 0)
220 return r;
221
222 if (!socket_ipv6_is_supported() && b.sockaddr.sa.sa_family == AF_INET6) {
223 log_warning("Binding to IPv6 address not available since kernel does not support IPv6.");
224 return -EAFNOSUPPORT;
225 }
226
227 *a = b;
228 return 0;
229 }
230
231 int socket_address_parse_netlink(SocketAddress *a, const char *s) {
232 int family;
233 unsigned group = 0;
234 _cleanup_free_ char *sfamily = NULL;
235 assert(a);
236 assert(s);
237
238 zero(*a);
239 a->type = SOCK_RAW;
240
241 errno = 0;
242 if (sscanf(s, "%ms %u", &sfamily, &group) < 1)
243 return errno > 0 ? -errno : -EINVAL;
244
245 family = netlink_family_from_string(sfamily);
246 if (family < 0)
247 return -EINVAL;
248
249 a->sockaddr.nl.nl_family = AF_NETLINK;
250 a->sockaddr.nl.nl_groups = group;
251
252 a->type = SOCK_RAW;
253 a->size = sizeof(struct sockaddr_nl);
254 a->protocol = family;
255
256 return 0;
257 }
258
259 int socket_address_verify(const SocketAddress *a) {
260 assert(a);
261
262 switch (socket_address_family(a)) {
263
264 case AF_INET:
265 if (a->size != sizeof(struct sockaddr_in))
266 return -EINVAL;
267
268 if (a->sockaddr.in.sin_port == 0)
269 return -EINVAL;
270
271 if (!IN_SET(a->type, SOCK_STREAM, SOCK_DGRAM))
272 return -EINVAL;
273
274 return 0;
275
276 case AF_INET6:
277 if (a->size != sizeof(struct sockaddr_in6))
278 return -EINVAL;
279
280 if (a->sockaddr.in6.sin6_port == 0)
281 return -EINVAL;
282
283 if (!IN_SET(a->type, SOCK_STREAM, SOCK_DGRAM))
284 return -EINVAL;
285
286 return 0;
287
288 case AF_UNIX:
289 if (a->size < offsetof(struct sockaddr_un, sun_path))
290 return -EINVAL;
291
292 if (a->size > offsetof(struct sockaddr_un, sun_path)) {
293
294 if (a->sockaddr.un.sun_path[0] != 0) {
295 char *e;
296
297 /* path */
298 e = memchr(a->sockaddr.un.sun_path, 0, sizeof(a->sockaddr.un.sun_path));
299 if (!e)
300 return -EINVAL;
301
302 if (a->size != offsetof(struct sockaddr_un, sun_path) + (e - a->sockaddr.un.sun_path) + 1)
303 return -EINVAL;
304 }
305 }
306
307 if (!IN_SET(a->type, SOCK_STREAM, SOCK_DGRAM, SOCK_SEQPACKET))
308 return -EINVAL;
309
310 return 0;
311
312 case AF_NETLINK:
313
314 if (a->size != sizeof(struct sockaddr_nl))
315 return -EINVAL;
316
317 if (!IN_SET(a->type, SOCK_RAW, SOCK_DGRAM))
318 return -EINVAL;
319
320 return 0;
321
322 case AF_VSOCK:
323 if (a->size != sizeof(struct sockaddr_vm))
324 return -EINVAL;
325
326 if (!IN_SET(a->type, SOCK_STREAM, SOCK_DGRAM))
327 return -EINVAL;
328
329 return 0;
330
331 default:
332 return -EAFNOSUPPORT;
333 }
334 }
335
336 int socket_address_print(const SocketAddress *a, char **ret) {
337 int r;
338
339 assert(a);
340 assert(ret);
341
342 r = socket_address_verify(a);
343 if (r < 0)
344 return r;
345
346 if (socket_address_family(a) == AF_NETLINK) {
347 _cleanup_free_ char *sfamily = NULL;
348
349 r = netlink_family_to_string_alloc(a->protocol, &sfamily);
350 if (r < 0)
351 return r;
352
353 r = asprintf(ret, "%s %u", sfamily, a->sockaddr.nl.nl_groups);
354 if (r < 0)
355 return -ENOMEM;
356
357 return 0;
358 }
359
360 return sockaddr_pretty(&a->sockaddr.sa, a->size, false, true, ret);
361 }
362
363 bool socket_address_can_accept(const SocketAddress *a) {
364 assert(a);
365
366 return
367 IN_SET(a->type, SOCK_STREAM, SOCK_SEQPACKET);
368 }
369
370 bool socket_address_equal(const SocketAddress *a, const SocketAddress *b) {
371 assert(a);
372 assert(b);
373
374 /* Invalid addresses are unequal to all */
375 if (socket_address_verify(a) < 0 ||
376 socket_address_verify(b) < 0)
377 return false;
378
379 if (a->type != b->type)
380 return false;
381
382 if (socket_address_family(a) != socket_address_family(b))
383 return false;
384
385 switch (socket_address_family(a)) {
386
387 case AF_INET:
388 if (a->sockaddr.in.sin_addr.s_addr != b->sockaddr.in.sin_addr.s_addr)
389 return false;
390
391 if (a->sockaddr.in.sin_port != b->sockaddr.in.sin_port)
392 return false;
393
394 break;
395
396 case AF_INET6:
397 if (memcmp(&a->sockaddr.in6.sin6_addr, &b->sockaddr.in6.sin6_addr, sizeof(a->sockaddr.in6.sin6_addr)) != 0)
398 return false;
399
400 if (a->sockaddr.in6.sin6_port != b->sockaddr.in6.sin6_port)
401 return false;
402
403 break;
404
405 case AF_UNIX:
406 if (a->size <= offsetof(struct sockaddr_un, sun_path) ||
407 b->size <= offsetof(struct sockaddr_un, sun_path))
408 return false;
409
410 if ((a->sockaddr.un.sun_path[0] == 0) != (b->sockaddr.un.sun_path[0] == 0))
411 return false;
412
413 if (a->sockaddr.un.sun_path[0]) {
414 if (!path_equal_or_files_same(a->sockaddr.un.sun_path, b->sockaddr.un.sun_path, 0))
415 return false;
416 } else {
417 if (a->size != b->size)
418 return false;
419
420 if (memcmp(a->sockaddr.un.sun_path, b->sockaddr.un.sun_path, a->size) != 0)
421 return false;
422 }
423
424 break;
425
426 case AF_NETLINK:
427 if (a->protocol != b->protocol)
428 return false;
429
430 if (a->sockaddr.nl.nl_groups != b->sockaddr.nl.nl_groups)
431 return false;
432
433 break;
434
435 case AF_VSOCK:
436 if (a->sockaddr.vm.svm_cid != b->sockaddr.vm.svm_cid)
437 return false;
438
439 if (a->sockaddr.vm.svm_port != b->sockaddr.vm.svm_port)
440 return false;
441
442 break;
443
444 default:
445 /* Cannot compare, so we assume the addresses are different */
446 return false;
447 }
448
449 return true;
450 }
451
452 bool socket_address_is(const SocketAddress *a, const char *s, int type) {
453 struct SocketAddress b;
454
455 assert(a);
456 assert(s);
457
458 if (socket_address_parse(&b, s) < 0)
459 return false;
460
461 b.type = type;
462
463 return socket_address_equal(a, &b);
464 }
465
466 bool socket_address_is_netlink(const SocketAddress *a, const char *s) {
467 struct SocketAddress b;
468
469 assert(a);
470 assert(s);
471
472 if (socket_address_parse_netlink(&b, s) < 0)
473 return false;
474
475 return socket_address_equal(a, &b);
476 }
477
478 const char* socket_address_get_path(const SocketAddress *a) {
479 assert(a);
480
481 if (socket_address_family(a) != AF_UNIX)
482 return NULL;
483
484 if (a->sockaddr.un.sun_path[0] == 0)
485 return NULL;
486
487 return a->sockaddr.un.sun_path;
488 }
489
490 bool socket_ipv6_is_supported(void) {
491 if (access("/proc/net/if_inet6", F_OK) != 0)
492 return false;
493
494 return true;
495 }
496
497 bool socket_address_matches_fd(const SocketAddress *a, int fd) {
498 SocketAddress b;
499 socklen_t solen;
500
501 assert(a);
502 assert(fd >= 0);
503
504 b.size = sizeof(b.sockaddr);
505 if (getsockname(fd, &b.sockaddr.sa, &b.size) < 0)
506 return false;
507
508 if (b.sockaddr.sa.sa_family != a->sockaddr.sa.sa_family)
509 return false;
510
511 solen = sizeof(b.type);
512 if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &b.type, &solen) < 0)
513 return false;
514
515 if (b.type != a->type)
516 return false;
517
518 if (a->protocol != 0) {
519 solen = sizeof(b.protocol);
520 if (getsockopt(fd, SOL_SOCKET, SO_PROTOCOL, &b.protocol, &solen) < 0)
521 return false;
522
523 if (b.protocol != a->protocol)
524 return false;
525 }
526
527 return socket_address_equal(a, &b);
528 }
529
530 int sockaddr_port(const struct sockaddr *_sa, unsigned *port) {
531 union sockaddr_union *sa = (union sockaddr_union*) _sa;
532
533 assert(sa);
534
535 switch (sa->sa.sa_family) {
536 case AF_INET:
537 *port = be16toh(sa->in.sin_port);
538 return 0;
539
540 case AF_INET6:
541 *port = be16toh(sa->in6.sin6_port);
542 return 0;
543
544 case AF_VSOCK:
545 *port = sa->vm.svm_port;
546 return 0;
547
548 default:
549 return -EAFNOSUPPORT;
550 }
551 }
552
553 int sockaddr_pretty(const struct sockaddr *_sa, socklen_t salen, bool translate_ipv6, bool include_port, char **ret) {
554 union sockaddr_union *sa = (union sockaddr_union*) _sa;
555 char *p;
556 int r;
557
558 assert(sa);
559 assert(salen >= sizeof(sa->sa.sa_family));
560
561 switch (sa->sa.sa_family) {
562
563 case AF_INET: {
564 uint32_t a;
565
566 a = be32toh(sa->in.sin_addr.s_addr);
567
568 if (include_port)
569 r = asprintf(&p,
570 "%u.%u.%u.%u:%u",
571 a >> 24, (a >> 16) & 0xFF, (a >> 8) & 0xFF, a & 0xFF,
572 be16toh(sa->in.sin_port));
573 else
574 r = asprintf(&p,
575 "%u.%u.%u.%u",
576 a >> 24, (a >> 16) & 0xFF, (a >> 8) & 0xFF, a & 0xFF);
577 if (r < 0)
578 return -ENOMEM;
579 break;
580 }
581
582 case AF_INET6: {
583 static const unsigned char ipv4_prefix[] = {
584 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF
585 };
586
587 if (translate_ipv6 &&
588 memcmp(&sa->in6.sin6_addr, ipv4_prefix, sizeof(ipv4_prefix)) == 0) {
589 const uint8_t *a = sa->in6.sin6_addr.s6_addr+12;
590 if (include_port)
591 r = asprintf(&p,
592 "%u.%u.%u.%u:%u",
593 a[0], a[1], a[2], a[3],
594 be16toh(sa->in6.sin6_port));
595 else
596 r = asprintf(&p,
597 "%u.%u.%u.%u",
598 a[0], a[1], a[2], a[3]);
599 if (r < 0)
600 return -ENOMEM;
601 } else {
602 char a[INET6_ADDRSTRLEN];
603
604 inet_ntop(AF_INET6, &sa->in6.sin6_addr, a, sizeof(a));
605
606 if (include_port) {
607 r = asprintf(&p,
608 "[%s]:%u",
609 a,
610 be16toh(sa->in6.sin6_port));
611 if (r < 0)
612 return -ENOMEM;
613 } else {
614 p = strdup(a);
615 if (!p)
616 return -ENOMEM;
617 }
618 }
619
620 break;
621 }
622
623 case AF_UNIX:
624 if (salen <= offsetof(struct sockaddr_un, sun_path)) {
625 p = strdup("<unnamed>");
626 if (!p)
627 return -ENOMEM;
628
629 } else if (sa->un.sun_path[0] == 0) {
630 /* abstract */
631
632 /* FIXME: We assume we can print the
633 * socket path here and that it hasn't
634 * more than one NUL byte. That is
635 * actually an invalid assumption */
636
637 p = new(char, sizeof(sa->un.sun_path)+1);
638 if (!p)
639 return -ENOMEM;
640
641 p[0] = '@';
642 memcpy(p+1, sa->un.sun_path+1, sizeof(sa->un.sun_path)-1);
643 p[sizeof(sa->un.sun_path)] = 0;
644
645 } else {
646 p = strndup(sa->un.sun_path, sizeof(sa->un.sun_path));
647 if (!p)
648 return -ENOMEM;
649 }
650
651 break;
652
653 case AF_VSOCK:
654 if (include_port)
655 r = asprintf(&p,
656 "vsock:%u:%u",
657 sa->vm.svm_cid,
658 sa->vm.svm_port);
659 else
660 r = asprintf(&p, "vsock:%u", sa->vm.svm_cid);
661 if (r < 0)
662 return -ENOMEM;
663 break;
664
665 default:
666 return -EOPNOTSUPP;
667 }
668
669
670 *ret = p;
671 return 0;
672 }
673
674 int getpeername_pretty(int fd, bool include_port, char **ret) {
675 union sockaddr_union sa;
676 socklen_t salen = sizeof(sa);
677 int r;
678
679 assert(fd >= 0);
680 assert(ret);
681
682 if (getpeername(fd, &sa.sa, &salen) < 0)
683 return -errno;
684
685 if (sa.sa.sa_family == AF_UNIX) {
686 struct ucred ucred = {};
687
688 /* UNIX connection sockets are anonymous, so let's use
689 * PID/UID as pretty credentials instead */
690
691 r = getpeercred(fd, &ucred);
692 if (r < 0)
693 return r;
694
695 if (asprintf(ret, "PID "PID_FMT"/UID "UID_FMT, ucred.pid, ucred.uid) < 0)
696 return -ENOMEM;
697
698 return 0;
699 }
700
701 /* For remote sockets we translate IPv6 addresses back to IPv4
702 * if applicable, since that's nicer. */
703
704 return sockaddr_pretty(&sa.sa, salen, true, include_port, ret);
705 }
706
707 int getsockname_pretty(int fd, char **ret) {
708 union sockaddr_union sa;
709 socklen_t salen = sizeof(sa);
710
711 assert(fd >= 0);
712 assert(ret);
713
714 if (getsockname(fd, &sa.sa, &salen) < 0)
715 return -errno;
716
717 /* For local sockets we do not translate IPv6 addresses back
718 * to IPv6 if applicable, since this is usually used for
719 * listening sockets where the difference between IPv4 and
720 * IPv6 matters. */
721
722 return sockaddr_pretty(&sa.sa, salen, false, true, ret);
723 }
724
725 int socknameinfo_pretty(union sockaddr_union *sa, socklen_t salen, char **_ret) {
726 int r;
727 char host[NI_MAXHOST], *ret;
728
729 assert(_ret);
730
731 r = getnameinfo(&sa->sa, salen, host, sizeof(host), NULL, 0, IDN_FLAGS);
732 if (r != 0) {
733 int saved_errno = errno;
734
735 r = sockaddr_pretty(&sa->sa, salen, true, true, &ret);
736 if (r < 0)
737 return r;
738
739 log_debug_errno(saved_errno, "getnameinfo(%s) failed: %m", ret);
740 } else {
741 ret = strdup(host);
742 if (!ret)
743 return -ENOMEM;
744 }
745
746 *_ret = ret;
747 return 0;
748 }
749
750 int getnameinfo_pretty(int fd, char **ret) {
751 union sockaddr_union sa;
752 socklen_t salen = sizeof(sa);
753
754 assert(fd >= 0);
755 assert(ret);
756
757 if (getsockname(fd, &sa.sa, &salen) < 0)
758 return -errno;
759
760 return socknameinfo_pretty(&sa, salen, ret);
761 }
762
763 int socket_address_unlink(SocketAddress *a) {
764 assert(a);
765
766 if (socket_address_family(a) != AF_UNIX)
767 return 0;
768
769 if (a->sockaddr.un.sun_path[0] == 0)
770 return 0;
771
772 if (unlink(a->sockaddr.un.sun_path) < 0)
773 return -errno;
774
775 return 1;
776 }
777
778 static const char* const netlink_family_table[] = {
779 [NETLINK_ROUTE] = "route",
780 [NETLINK_FIREWALL] = "firewall",
781 [NETLINK_INET_DIAG] = "inet-diag",
782 [NETLINK_NFLOG] = "nflog",
783 [NETLINK_XFRM] = "xfrm",
784 [NETLINK_SELINUX] = "selinux",
785 [NETLINK_ISCSI] = "iscsi",
786 [NETLINK_AUDIT] = "audit",
787 [NETLINK_FIB_LOOKUP] = "fib-lookup",
788 [NETLINK_CONNECTOR] = "connector",
789 [NETLINK_NETFILTER] = "netfilter",
790 [NETLINK_IP6_FW] = "ip6-fw",
791 [NETLINK_DNRTMSG] = "dnrtmsg",
792 [NETLINK_KOBJECT_UEVENT] = "kobject-uevent",
793 [NETLINK_GENERIC] = "generic",
794 [NETLINK_SCSITRANSPORT] = "scsitransport",
795 [NETLINK_ECRYPTFS] = "ecryptfs",
796 [NETLINK_RDMA] = "rdma",
797 };
798
799 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(netlink_family, int, INT_MAX);
800
801 static const char* const socket_address_bind_ipv6_only_table[_SOCKET_ADDRESS_BIND_IPV6_ONLY_MAX] = {
802 [SOCKET_ADDRESS_DEFAULT] = "default",
803 [SOCKET_ADDRESS_BOTH] = "both",
804 [SOCKET_ADDRESS_IPV6_ONLY] = "ipv6-only"
805 };
806
807 DEFINE_STRING_TABLE_LOOKUP(socket_address_bind_ipv6_only, SocketAddressBindIPv6Only);
808
809 bool sockaddr_equal(const union sockaddr_union *a, const union sockaddr_union *b) {
810 assert(a);
811 assert(b);
812
813 if (a->sa.sa_family != b->sa.sa_family)
814 return false;
815
816 if (a->sa.sa_family == AF_INET)
817 return a->in.sin_addr.s_addr == b->in.sin_addr.s_addr;
818
819 if (a->sa.sa_family == AF_INET6)
820 return memcmp(&a->in6.sin6_addr, &b->in6.sin6_addr, sizeof(a->in6.sin6_addr)) == 0;
821
822 if (a->sa.sa_family == AF_VSOCK)
823 return a->vm.svm_cid == b->vm.svm_cid;
824
825 return false;
826 }
827
828 int fd_inc_sndbuf(int fd, size_t n) {
829 int r, value;
830 socklen_t l = sizeof(value);
831
832 r = getsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, &l);
833 if (r >= 0 && l == sizeof(value) && (size_t) value >= n*2)
834 return 0;
835
836 /* If we have the privileges we will ignore the kernel limit. */
837
838 value = (int) n;
839 if (setsockopt(fd, SOL_SOCKET, SO_SNDBUFFORCE, &value, sizeof(value)) < 0)
840 if (setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &value, sizeof(value)) < 0)
841 return -errno;
842
843 return 1;
844 }
845
846 int fd_inc_rcvbuf(int fd, size_t n) {
847 int r, value;
848 socklen_t l = sizeof(value);
849
850 r = getsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, &l);
851 if (r >= 0 && l == sizeof(value) && (size_t) value >= n*2)
852 return 0;
853
854 /* If we have the privileges we will ignore the kernel limit. */
855
856 value = (int) n;
857 if (setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &value, sizeof(value)) < 0)
858 if (setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &value, sizeof(value)) < 0)
859 return -errno;
860 return 1;
861 }
862
863 static const char* const ip_tos_table[] = {
864 [IPTOS_LOWDELAY] = "low-delay",
865 [IPTOS_THROUGHPUT] = "throughput",
866 [IPTOS_RELIABILITY] = "reliability",
867 [IPTOS_LOWCOST] = "low-cost",
868 };
869
870 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(ip_tos, int, 0xff);
871
872 bool ifname_valid(const char *p) {
873 bool numeric = true;
874
875 /* Checks whether a network interface name is valid. This is inspired by dev_valid_name() in the kernel sources
876 * but slightly stricter, as we only allow non-control, non-space ASCII characters in the interface name. We
877 * also don't permit names that only container numbers, to avoid confusion with numeric interface indexes. */
878
879 if (isempty(p))
880 return false;
881
882 if (strlen(p) >= IFNAMSIZ)
883 return false;
884
885 if (dot_or_dot_dot(p))
886 return false;
887
888 while (*p) {
889 if ((unsigned char) *p >= 127U)
890 return false;
891
892 if ((unsigned char) *p <= 32U)
893 return false;
894
895 if (*p == ':' || *p == '/')
896 return false;
897
898 numeric = numeric && (*p >= '0' && *p <= '9');
899 p++;
900 }
901
902 if (numeric)
903 return false;
904
905 return true;
906 }
907
908 bool address_label_valid(const char *p) {
909
910 if (isempty(p))
911 return false;
912
913 if (strlen(p) >= IFNAMSIZ)
914 return false;
915
916 while (*p) {
917 if ((uint8_t) *p >= 127U)
918 return false;
919
920 if ((uint8_t) *p <= 31U)
921 return false;
922 p++;
923 }
924
925 return true;
926 }
927
928 int getpeercred(int fd, struct ucred *ucred) {
929 socklen_t n = sizeof(struct ucred);
930 struct ucred u;
931 int r;
932
933 assert(fd >= 0);
934 assert(ucred);
935
936 r = getsockopt(fd, SOL_SOCKET, SO_PEERCRED, &u, &n);
937 if (r < 0)
938 return -errno;
939
940 if (n != sizeof(struct ucred))
941 return -EIO;
942
943 /* Check if the data is actually useful and not suppressed due
944 * to namespacing issues */
945 if (u.pid <= 0)
946 return -ENODATA;
947 if (u.uid == UID_INVALID)
948 return -ENODATA;
949 if (u.gid == GID_INVALID)
950 return -ENODATA;
951
952 *ucred = u;
953 return 0;
954 }
955
956 int getpeersec(int fd, char **ret) {
957 socklen_t n = 64;
958 char *s;
959 int r;
960
961 assert(fd >= 0);
962 assert(ret);
963
964 s = new0(char, n);
965 if (!s)
966 return -ENOMEM;
967
968 r = getsockopt(fd, SOL_SOCKET, SO_PEERSEC, s, &n);
969 if (r < 0) {
970 free(s);
971
972 if (errno != ERANGE)
973 return -errno;
974
975 s = new0(char, n);
976 if (!s)
977 return -ENOMEM;
978
979 r = getsockopt(fd, SOL_SOCKET, SO_PEERSEC, s, &n);
980 if (r < 0) {
981 free(s);
982 return -errno;
983 }
984 }
985
986 if (isempty(s)) {
987 free(s);
988 return -EOPNOTSUPP;
989 }
990
991 *ret = s;
992 return 0;
993 }
994
995 int send_one_fd_sa(
996 int transport_fd,
997 int fd,
998 const struct sockaddr *sa, socklen_t len,
999 int flags) {
1000
1001 union {
1002 struct cmsghdr cmsghdr;
1003 uint8_t buf[CMSG_SPACE(sizeof(int))];
1004 } control = {};
1005 struct msghdr mh = {
1006 .msg_name = (struct sockaddr*) sa,
1007 .msg_namelen = len,
1008 .msg_control = &control,
1009 .msg_controllen = sizeof(control),
1010 };
1011 struct cmsghdr *cmsg;
1012
1013 assert(transport_fd >= 0);
1014 assert(fd >= 0);
1015
1016 cmsg = CMSG_FIRSTHDR(&mh);
1017 cmsg->cmsg_level = SOL_SOCKET;
1018 cmsg->cmsg_type = SCM_RIGHTS;
1019 cmsg->cmsg_len = CMSG_LEN(sizeof(int));
1020 memcpy(CMSG_DATA(cmsg), &fd, sizeof(int));
1021
1022 mh.msg_controllen = CMSG_SPACE(sizeof(int));
1023 if (sendmsg(transport_fd, &mh, MSG_NOSIGNAL | flags) < 0)
1024 return -errno;
1025
1026 return 0;
1027 }
1028
1029 int receive_one_fd(int transport_fd, int flags) {
1030 union {
1031 struct cmsghdr cmsghdr;
1032 uint8_t buf[CMSG_SPACE(sizeof(int))];
1033 } control = {};
1034 struct msghdr mh = {
1035 .msg_control = &control,
1036 .msg_controllen = sizeof(control),
1037 };
1038 struct cmsghdr *cmsg, *found = NULL;
1039
1040 assert(transport_fd >= 0);
1041
1042 /*
1043 * Receive a single FD via @transport_fd. We don't care for
1044 * the transport-type. We retrieve a single FD at most, so for
1045 * packet-based transports, the caller must ensure to send
1046 * only a single FD per packet. This is best used in
1047 * combination with send_one_fd().
1048 */
1049
1050 if (recvmsg(transport_fd, &mh, MSG_NOSIGNAL | MSG_CMSG_CLOEXEC | flags) < 0)
1051 return -errno;
1052
1053 CMSG_FOREACH(cmsg, &mh) {
1054 if (cmsg->cmsg_level == SOL_SOCKET &&
1055 cmsg->cmsg_type == SCM_RIGHTS &&
1056 cmsg->cmsg_len == CMSG_LEN(sizeof(int))) {
1057 assert(!found);
1058 found = cmsg;
1059 break;
1060 }
1061 }
1062
1063 if (!found) {
1064 cmsg_close_all(&mh);
1065 return -EIO;
1066 }
1067
1068 return *(int*) CMSG_DATA(found);
1069 }
1070
1071 ssize_t next_datagram_size_fd(int fd) {
1072 ssize_t l;
1073 int k;
1074
1075 /* This is a bit like FIONREAD/SIOCINQ, however a bit more powerful. The difference being: recv(MSG_PEEK) will
1076 * actually cause the next datagram in the queue to be validated regarding checksums, which FIONREAD doesn't
1077 * do. This difference is actually of major importance as we need to be sure that the size returned here
1078 * actually matches what we will read with recvmsg() next, as otherwise we might end up allocating a buffer of
1079 * the wrong size. */
1080
1081 l = recv(fd, NULL, 0, MSG_PEEK|MSG_TRUNC);
1082 if (l < 0) {
1083 if (IN_SET(errno, EOPNOTSUPP, EFAULT))
1084 goto fallback;
1085
1086 return -errno;
1087 }
1088 if (l == 0)
1089 goto fallback;
1090
1091 return l;
1092
1093 fallback:
1094 k = 0;
1095
1096 /* Some sockets (AF_PACKET) do not support null-sized recv() with MSG_TRUNC set, let's fall back to FIONREAD
1097 * for them. Checksums don't matter for raw sockets anyway, hence this should be fine. */
1098
1099 if (ioctl(fd, FIONREAD, &k) < 0)
1100 return -errno;
1101
1102 return (ssize_t) k;
1103 }
1104
1105 int flush_accept(int fd) {
1106
1107 struct pollfd pollfd = {
1108 .fd = fd,
1109 .events = POLLIN,
1110 };
1111 int r;
1112
1113
1114 /* Similar to flush_fd() but flushes all incoming connection by accepting them and immediately closing them. */
1115
1116 for (;;) {
1117 int cfd;
1118
1119 r = poll(&pollfd, 1, 0);
1120 if (r < 0) {
1121 if (errno == EINTR)
1122 continue;
1123
1124 return -errno;
1125
1126 } else if (r == 0)
1127 return 0;
1128
1129 cfd = accept4(fd, NULL, NULL, SOCK_NONBLOCK|SOCK_CLOEXEC);
1130 if (cfd < 0) {
1131 if (errno == EINTR)
1132 continue;
1133
1134 if (errno == EAGAIN)
1135 return 0;
1136
1137 return -errno;
1138 }
1139
1140 close(cfd);
1141 }
1142 }
1143
1144 struct cmsghdr* cmsg_find(struct msghdr *mh, int level, int type, socklen_t length) {
1145 struct cmsghdr *cmsg;
1146
1147 assert(mh);
1148
1149 CMSG_FOREACH(cmsg, mh)
1150 if (cmsg->cmsg_level == level &&
1151 cmsg->cmsg_type == type &&
1152 (length == (socklen_t) -1 || length == cmsg->cmsg_len))
1153 return cmsg;
1154
1155 return NULL;
1156 }
1157
1158 int socket_ioctl_fd(void) {
1159 int fd;
1160
1161 /* Create a socket to invoke the various network interface ioctl()s on. Traditionally only AF_INET was good for
1162 * that. Since kernel 4.6 AF_NETLINK works for this too. We first try to use AF_INET hence, but if that's not
1163 * available (for example, because it is made unavailable via SECCOMP or such), we'll fall back to the more
1164 * generic AF_NETLINK. */
1165
1166 fd = socket(AF_INET, SOCK_DGRAM|SOCK_CLOEXEC, 0);
1167 if (fd < 0)
1168 fd = socket(AF_NETLINK, SOCK_RAW|SOCK_CLOEXEC, NETLINK_GENERIC);
1169 if (fd < 0)
1170 return -errno;
1171
1172 return fd;
1173 }