repart: log fixes
[thirdparty/systemd.git] / src / partition / repart.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #if HAVE_VALGRIND_MEMCHECK_H
4 #include <valgrind/memcheck.h>
5 #endif
6
7 #include <fcntl.h>
8 #include <getopt.h>
9 #include <libfdisk.h>
10 #include <linux/fs.h>
11 #include <linux/loop.h>
12 #include <sys/file.h>
13 #include <sys/ioctl.h>
14 #include <sys/stat.h>
15
16 #include <openssl/hmac.h>
17 #include <openssl/sha.h>
18
19 #include "sd-id128.h"
20
21 #include "alloc-util.h"
22 #include "blkid-util.h"
23 #include "blockdev-util.h"
24 #include "btrfs-util.h"
25 #include "conf-files.h"
26 #include "conf-parser.h"
27 #include "def.h"
28 #include "efivars.h"
29 #include "errno-util.h"
30 #include "fd-util.h"
31 #include "format-table.h"
32 #include "format-util.h"
33 #include "fs-util.h"
34 #include "gpt.h"
35 #include "id128-util.h"
36 #include "list.h"
37 #include "locale-util.h"
38 #include "main-func.h"
39 #include "parse-util.h"
40 #include "path-util.h"
41 #include "pretty-print.h"
42 #include "proc-cmdline.h"
43 #include "sort-util.h"
44 #include "specifier.h"
45 #include "stat-util.h"
46 #include "stdio-util.h"
47 #include "string-util.h"
48 #include "strv.h"
49 #include "terminal-util.h"
50 #include "utf8.h"
51
52 /* If not configured otherwise use a minimal partition size of 10M */
53 #define DEFAULT_MIN_SIZE (10*1024*1024)
54
55 /* Hard lower limit for new partition sizes */
56 #define HARD_MIN_SIZE 4096
57
58 /* Note: When growing and placing new partitions we always align to 4K sector size. It's how newer hard disks
59  * are designed, and if everything is aligned to that performance is best. And for older hard disks with 512B
60  * sector size devices were generally assumed to have an even number of sectors, hence at the worst we'll
61  * waste 3K per partition, which is probably fine. */
62
63 static enum {
64         EMPTY_REFUSE,   /* refuse empty disks, never create a partition table */
65         EMPTY_ALLOW,    /* allow empty disks, create partition table if necessary */
66         EMPTY_REQUIRE,  /* require an empty disk, create a partition table */
67         EMPTY_FORCE,    /* make disk empty, erase everything, create a partition table always */
68         EMPTY_CREATE,   /* create disk as loopback file, create a partition table always */
69 } arg_empty = EMPTY_REFUSE;
70
71 static bool arg_dry_run = true;
72 static const char *arg_node = NULL;
73 static char *arg_root = NULL;
74 static char *arg_definitions = NULL;
75 static bool arg_discard = true;
76 static bool arg_can_factory_reset = false;
77 static int arg_factory_reset = -1;
78 static sd_id128_t arg_seed = SD_ID128_NULL;
79 static bool arg_randomize = false;
80 static int arg_pretty = -1;
81 static uint64_t arg_size = UINT64_MAX;
82
83 STATIC_DESTRUCTOR_REGISTER(arg_root, freep);
84 STATIC_DESTRUCTOR_REGISTER(arg_definitions, freep);
85
86 typedef struct Partition Partition;
87 typedef struct FreeArea FreeArea;
88 typedef struct Context Context;
89
90 struct Partition {
91         char *definition_path;
92
93         sd_id128_t type_uuid;
94         sd_id128_t current_uuid, new_uuid;
95         char *current_label, *new_label;
96
97         bool dropped;
98         bool factory_reset;
99         int32_t priority;
100
101         uint32_t weight, padding_weight;
102
103         uint64_t current_size, new_size;
104         uint64_t size_min, size_max;
105
106         uint64_t current_padding, new_padding;
107         uint64_t padding_min, padding_max;
108
109         uint64_t partno;
110         uint64_t offset;
111
112         struct fdisk_partition *current_partition;
113         struct fdisk_partition *new_partition;
114         FreeArea *padding_area;
115         FreeArea *allocated_to_area;
116
117         char *copy_blocks_path;
118         int copy_blocks_fd;
119         uint64_t copy_blocks_size;
120
121         LIST_FIELDS(Partition, partitions);
122 };
123
124 #define PARTITION_IS_FOREIGN(p) (!(p)->definition_path)
125 #define PARTITION_EXISTS(p) (!!(p)->current_partition)
126
127 struct FreeArea {
128         Partition *after;
129         uint64_t size;
130         uint64_t allocated;
131 };
132
133 struct Context {
134         LIST_HEAD(Partition, partitions);
135         size_t n_partitions;
136
137         FreeArea **free_areas;
138         size_t n_free_areas, n_allocated_free_areas;
139
140         uint64_t start, end, total;
141
142         struct fdisk_context *fdisk_context;
143
144         sd_id128_t seed;
145 };
146
147 static uint64_t round_down_size(uint64_t v, uint64_t p) {
148         return (v / p) * p;
149 }
150
151 static uint64_t round_up_size(uint64_t v, uint64_t p) {
152
153         v = DIV_ROUND_UP(v, p);
154
155         if (v > UINT64_MAX / p)
156                 return UINT64_MAX; /* overflow */
157
158         return v * p;
159 }
160
161 static Partition *partition_new(void) {
162         Partition *p;
163
164         p = new(Partition, 1);
165         if (!p)
166                 return NULL;
167
168         *p = (Partition) {
169                 .weight = 1000,
170                 .padding_weight = 0,
171                 .current_size = UINT64_MAX,
172                 .new_size = UINT64_MAX,
173                 .size_min = UINT64_MAX,
174                 .size_max = UINT64_MAX,
175                 .current_padding = UINT64_MAX,
176                 .new_padding = UINT64_MAX,
177                 .padding_min = UINT64_MAX,
178                 .padding_max = UINT64_MAX,
179                 .partno = UINT64_MAX,
180                 .offset = UINT64_MAX,
181                 .copy_blocks_fd = -1,
182                 .copy_blocks_size = UINT64_MAX,
183         };
184
185         return p;
186 }
187
188 static Partition* partition_free(Partition *p) {
189         if (!p)
190                 return NULL;
191
192         free(p->current_label);
193         free(p->new_label);
194         free(p->definition_path);
195
196         if (p->current_partition)
197                 fdisk_unref_partition(p->current_partition);
198         if (p->new_partition)
199                 fdisk_unref_partition(p->new_partition);
200
201         free(p->copy_blocks_path);
202         safe_close(p->copy_blocks_fd);
203
204         return mfree(p);
205 }
206
207 static Partition* partition_unlink_and_free(Context *context, Partition *p) {
208         if (!p)
209                 return NULL;
210
211         LIST_REMOVE(partitions, context->partitions, p);
212
213         assert(context->n_partitions > 0);
214         context->n_partitions--;
215
216         return partition_free(p);
217 }
218
219 DEFINE_TRIVIAL_CLEANUP_FUNC(Partition*, partition_free);
220
221 static Context *context_new(sd_id128_t seed) {
222         Context *context;
223
224         context = new(Context, 1);
225         if (!context)
226                 return NULL;
227
228         *context = (Context) {
229                 .start = UINT64_MAX,
230                 .end = UINT64_MAX,
231                 .total = UINT64_MAX,
232                 .seed = seed,
233         };
234
235         return context;
236 }
237
238 static void context_free_free_areas(Context *context) {
239         assert(context);
240
241         for (size_t i = 0; i < context->n_free_areas; i++)
242                 free(context->free_areas[i]);
243
244         context->free_areas = mfree(context->free_areas);
245         context->n_free_areas = 0;
246         context->n_allocated_free_areas = 0;
247 }
248
249 static Context *context_free(Context *context) {
250         if (!context)
251                 return NULL;
252
253         while (context->partitions)
254                 partition_unlink_and_free(context, context->partitions);
255         assert(context->n_partitions == 0);
256
257         context_free_free_areas(context);
258
259         if (context->fdisk_context)
260                 fdisk_unref_context(context->fdisk_context);
261
262         return mfree(context);
263 }
264
265 DEFINE_TRIVIAL_CLEANUP_FUNC(Context*, context_free);
266
267 static int context_add_free_area(
268                 Context *context,
269                 uint64_t size,
270                 Partition *after) {
271
272         FreeArea *a;
273
274         assert(context);
275         assert(!after || !after->padding_area);
276
277         if (!GREEDY_REALLOC(context->free_areas, context->n_allocated_free_areas, context->n_free_areas + 1))
278                 return -ENOMEM;
279
280         a = new(FreeArea, 1);
281         if (!a)
282                 return -ENOMEM;
283
284         *a = (FreeArea) {
285                 .size = size,
286                 .after = after,
287         };
288
289         context->free_areas[context->n_free_areas++] = a;
290
291         if (after)
292                 after->padding_area = a;
293
294         return 0;
295 }
296
297 static bool context_drop_one_priority(Context *context) {
298         int32_t priority = 0;
299         Partition *p;
300         bool exists = false;
301
302         LIST_FOREACH(partitions, p, context->partitions) {
303                 if (p->dropped)
304                         continue;
305                 if (p->priority < priority)
306                         continue;
307                 if (p->priority == priority) {
308                         exists = exists || PARTITION_EXISTS(p);
309                         continue;
310                 }
311
312                 priority = p->priority;
313                 exists = PARTITION_EXISTS(p);
314         }
315
316         /* Refuse to drop partitions with 0 or negative priorities or partitions of priorities that have at
317          * least one existing priority */
318         if (priority <= 0 || exists)
319                 return false;
320
321         LIST_FOREACH(partitions, p, context->partitions) {
322                 if (p->priority < priority)
323                         continue;
324
325                 if (p->dropped)
326                         continue;
327
328                 p->dropped = true;
329                 log_info("Can't fit partition %s of priority %" PRIi32 ", dropping.", p->definition_path, p->priority);
330         }
331
332         return true;
333 }
334
335 static uint64_t partition_min_size(const Partition *p) {
336         uint64_t sz;
337
338         /* Calculate the disk space we really need at minimum for this partition. If the partition already
339          * exists the current size is what we really need. If it doesn't exist yet refuse to allocate less
340          * than 4K.
341          *
342          * DEFAULT_MIN_SIZE is the default SizeMin= we configure if nothing else is specified. */
343
344         if (PARTITION_IS_FOREIGN(p)) {
345                 /* Don't allow changing size of partitions not managed by us */
346                 assert(p->current_size != UINT64_MAX);
347                 return p->current_size;
348         }
349
350         sz = p->current_size != UINT64_MAX ? p->current_size : HARD_MIN_SIZE;
351
352         if (p->copy_blocks_size != UINT64_MAX)
353                 sz = MAX(p->copy_blocks_size, sz);
354
355         return MAX(p->size_min != UINT64_MAX ? p->size_min : DEFAULT_MIN_SIZE, sz);
356 }
357
358 static uint64_t partition_max_size(const Partition *p) {
359         /* Calculate how large the partition may become at max. This is generally the configured maximum
360          * size, except when it already exists and is larger than that. In that case it's the existing size,
361          * since we never want to shrink partitions. */
362
363         if (PARTITION_IS_FOREIGN(p)) {
364                 /* Don't allow changing size of partitions not managed by us */
365                 assert(p->current_size != UINT64_MAX);
366                 return p->current_size;
367         }
368
369         if (p->current_size != UINT64_MAX)
370                 return MAX(p->current_size, p->size_max);
371
372         return p->size_max;
373 }
374
375 static uint64_t partition_min_size_with_padding(const Partition *p) {
376         uint64_t sz;
377
378         /* Calculate the disk space we need for this partition plus any free space coming after it. This
379          * takes user configured padding into account as well as any additional whitespace needed to align
380          * the next partition to 4K again. */
381
382         sz = partition_min_size(p);
383
384         if (p->padding_min != UINT64_MAX)
385                 sz += p->padding_min;
386
387         if (PARTITION_EXISTS(p)) {
388                 /* If the partition wasn't aligned, add extra space so that any we might add will be aligned */
389                 assert(p->offset != UINT64_MAX);
390                 return round_up_size(p->offset + sz, 4096) - p->offset;
391         }
392
393         /* If this is a new partition we'll place it aligned, hence we just need to round up the required size here */
394         return round_up_size(sz, 4096);
395 }
396
397 static uint64_t free_area_available(const FreeArea *a) {
398         assert(a);
399
400         /* Determines how much of this free area is not allocated yet */
401
402         assert(a->size >= a->allocated);
403         return a->size - a->allocated;
404 }
405
406 static uint64_t free_area_available_for_new_partitions(const FreeArea *a) {
407         uint64_t avail;
408
409         /* Similar to free_area_available(), but takes into account that the required size and padding of the
410          * preceding partition is honoured. */
411
412         avail = free_area_available(a);
413         if (a->after) {
414                 uint64_t need, space;
415
416                 need = partition_min_size_with_padding(a->after);
417
418                 assert(a->after->offset != UINT64_MAX);
419                 assert(a->after->current_size != UINT64_MAX);
420
421                 space = round_up_size(a->after->offset + a->after->current_size, 4096) - a->after->offset + avail;
422                 if (need >= space)
423                         return 0;
424
425                 return space - need;
426         }
427
428         return avail;
429 }
430
431 static int free_area_compare(FreeArea *const *a, FreeArea *const*b) {
432         return CMP(free_area_available_for_new_partitions(*a),
433                    free_area_available_for_new_partitions(*b));
434 }
435
436 static uint64_t charge_size(uint64_t total, uint64_t amount) {
437         uint64_t rounded;
438
439         assert(amount <= total);
440
441         /* Subtract the specified amount from total, rounding up to multiple of 4K if there's room */
442         rounded = round_up_size(amount, 4096);
443         if (rounded >= total)
444                 return 0;
445
446         return total - rounded;
447 }
448
449 static uint64_t charge_weight(uint64_t total, uint64_t amount) {
450         assert(amount <= total);
451         return total - amount;
452 }
453
454 static bool context_allocate_partitions(Context *context) {
455         Partition *p;
456
457         assert(context);
458
459         /* A simple first-fit algorithm, assuming the array of free areas is sorted by size in decreasing
460          * order. */
461
462         LIST_FOREACH(partitions, p, context->partitions) {
463                 bool fits = false;
464                 uint64_t required;
465                 FreeArea *a = NULL;
466
467                 /* Skip partitions we already dropped or that already exist */
468                 if (p->dropped || PARTITION_EXISTS(p))
469                         continue;
470
471                 /* Sort by size */
472                 typesafe_qsort(context->free_areas, context->n_free_areas, free_area_compare);
473
474                 /* How much do we need to fit? */
475                 required = partition_min_size_with_padding(p);
476                 assert(required % 4096 == 0);
477
478                 for (size_t i = 0; i < context->n_free_areas; i++) {
479                         a = context->free_areas[i];
480
481                         if (free_area_available_for_new_partitions(a) >= required) {
482                                 fits = true;
483                                 break;
484                         }
485                 }
486
487                 if (!fits)
488                         return false; /* 😢 Oh no! We can't fit this partition into any free area! */
489
490                 /* Assign the partition to this free area */
491                 p->allocated_to_area = a;
492
493                 /* Budget the minimal partition size */
494                 a->allocated += required;
495         }
496
497         return true;
498 }
499
500 static int context_sum_weights(Context *context, FreeArea *a, uint64_t *ret) {
501         uint64_t weight_sum = 0;
502         Partition *p;
503
504         assert(context);
505         assert(a);
506         assert(ret);
507
508         /* Determine the sum of the weights of all partitions placed in or before the specified free area */
509
510         LIST_FOREACH(partitions, p, context->partitions) {
511                 if (p->padding_area != a && p->allocated_to_area != a)
512                         continue;
513
514                 if (p->weight > UINT64_MAX - weight_sum)
515                         goto overflow_sum;
516                 weight_sum += p->weight;
517
518                 if (p->padding_weight > UINT64_MAX - weight_sum)
519                         goto overflow_sum;
520                 weight_sum += p->padding_weight;
521         }
522
523         *ret = weight_sum;
524         return 0;
525
526 overflow_sum:
527         return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Combined weight of partition exceeds unsigned 64bit range, refusing.");
528 }
529
530 static int scale_by_weight(uint64_t value, uint64_t weight, uint64_t weight_sum, uint64_t *ret) {
531         assert(weight_sum >= weight);
532         assert(ret);
533
534         if (weight == 0) {
535                 *ret = 0;
536                 return 0;
537         }
538
539         if (value > UINT64_MAX / weight)
540                 return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Scaling by weight of partition exceeds unsigned 64bit range, refusing.");
541
542         *ret = value * weight / weight_sum;
543         return 0;
544 }
545
546 typedef enum GrowPartitionPhase {
547         /* The first phase: we charge partitions which need more (according to constraints) than their weight-based share. */
548         PHASE_OVERCHARGE,
549
550         /* The second phase: we charge partitions which need less (according to constraints) than their weight-based share. */
551         PHASE_UNDERCHARGE,
552
553         /* The third phase: we distribute what remains among the remaining partitions, according to the weights */
554         PHASE_DISTRIBUTE,
555 } GrowPartitionPhase;
556
557 static int context_grow_partitions_phase(
558                 Context *context,
559                 FreeArea *a,
560                 GrowPartitionPhase phase,
561                 uint64_t *span,
562                 uint64_t *weight_sum) {
563
564         Partition *p;
565         int r;
566
567         assert(context);
568         assert(a);
569
570         /* Now let's look at the intended weights and adjust them taking the minimum space assignments into
571          * account. i.e. if a partition has a small weight but a high minimum space value set it should not
572          * get any additional room from the left-overs. Similar, if two partitions have the same weight they
573          * should get the same space if possible, even if one has a smaller minimum size than the other. */
574         LIST_FOREACH(partitions, p, context->partitions) {
575
576                 /* Look only at partitions associated with this free area, i.e. immediately
577                  * preceding it, or allocated into it */
578                 if (p->allocated_to_area != a && p->padding_area != a)
579                         continue;
580
581                 if (p->new_size == UINT64_MAX) {
582                         bool charge = false, try_again = false;
583                         uint64_t share, rsz, xsz;
584
585                         /* Calculate how much this space this partition needs if everyone would get
586                          * the weight based share */
587                         r = scale_by_weight(*span, p->weight, *weight_sum, &share);
588                         if (r < 0)
589                                 return r;
590
591                         rsz = partition_min_size(p);
592                         xsz = partition_max_size(p);
593
594                         if (phase == PHASE_OVERCHARGE && rsz > share) {
595                                 /* This partition needs more than its calculated share. Let's assign
596                                  * it that, and take this partition out of all calculations and start
597                                  * again. */
598
599                                 p->new_size = rsz;
600                                 charge = try_again = true;
601
602                         } else if (phase == PHASE_UNDERCHARGE && xsz != UINT64_MAX && xsz < share) {
603                                 /* This partition accepts less than its calculated
604                                  * share. Let's assign it that, and take this partition out
605                                  * of all calculations and start again. */
606
607                                 p->new_size = xsz;
608                                 charge = try_again = true;
609
610                         } else if (phase == PHASE_DISTRIBUTE) {
611                                 /* This partition can accept its calculated share. Let's
612                                  * assign it. There's no need to restart things here since
613                                  * assigning this shouldn't impact the shares of the other
614                                  * partitions. */
615
616                                 if (PARTITION_IS_FOREIGN(p))
617                                         /* Never change of foreign partitions (i.e. those we don't manage) */
618                                         p->new_size = p->current_size;
619                                 else
620                                         p->new_size = MAX(round_down_size(share, 4096), rsz);
621
622                                 charge = true;
623                         }
624
625                         if (charge) {
626                                 *span = charge_size(*span, p->new_size);
627                                 *weight_sum = charge_weight(*weight_sum, p->weight);
628                         }
629
630                         if (try_again)
631                                 return 0; /* try again */
632                 }
633
634                 if (p->new_padding == UINT64_MAX) {
635                         bool charge = false, try_again = false;
636                         uint64_t share;
637
638                         r = scale_by_weight(*span, p->padding_weight, *weight_sum, &share);
639                         if (r < 0)
640                                 return r;
641
642                         if (phase == PHASE_OVERCHARGE && p->padding_min != UINT64_MAX && p->padding_min > share) {
643                                 p->new_padding = p->padding_min;
644                                 charge = try_again = true;
645                         } else if (phase == PHASE_UNDERCHARGE && p->padding_max != UINT64_MAX && p->padding_max < share) {
646                                 p->new_padding = p->padding_max;
647                                 charge = try_again = true;
648                         } else if (phase == PHASE_DISTRIBUTE) {
649
650                                 p->new_padding = round_down_size(share, 4096);
651                                 if (p->padding_min != UINT64_MAX && p->new_padding < p->padding_min)
652                                         p->new_padding = p->padding_min;
653
654                                 charge = true;
655                         }
656
657                         if (charge) {
658                                 *span = charge_size(*span, p->new_padding);
659                                 *weight_sum = charge_weight(*weight_sum, p->padding_weight);
660                         }
661
662                         if (try_again)
663                                 return 0; /* try again */
664                 }
665         }
666
667         return 1; /* done */
668 }
669
670 static int context_grow_partitions_on_free_area(Context *context, FreeArea *a) {
671         uint64_t weight_sum = 0, span;
672         int r;
673
674         assert(context);
675         assert(a);
676
677         r = context_sum_weights(context, a, &weight_sum);
678         if (r < 0)
679                 return r;
680
681         /* Let's calculate the total area covered by this free area and the partition before it */
682         span = a->size;
683         if (a->after) {
684                 assert(a->after->offset != UINT64_MAX);
685                 assert(a->after->current_size != UINT64_MAX);
686
687                 span += round_up_size(a->after->offset + a->after->current_size, 4096) - a->after->offset;
688         }
689
690         GrowPartitionPhase phase = PHASE_OVERCHARGE;
691         for (;;) {
692                 r = context_grow_partitions_phase(context, a, phase, &span, &weight_sum);
693                 if (r < 0)
694                         return r;
695                 if (r == 0) /* not done yet, re-run this phase */
696                         continue;
697
698                 if (phase == PHASE_OVERCHARGE)
699                         phase = PHASE_UNDERCHARGE;
700                 else if (phase == PHASE_UNDERCHARGE)
701                         phase = PHASE_DISTRIBUTE;
702                 else if (phase == PHASE_DISTRIBUTE)
703                         break;
704         }
705
706         /* We still have space left over? Donate to preceding partition if we have one */
707         if (span > 0 && a->after && !PARTITION_IS_FOREIGN(a->after)) {
708                 uint64_t m, xsz;
709
710                 assert(a->after->new_size != UINT64_MAX);
711                 m = a->after->new_size + span;
712
713                 xsz = partition_max_size(a->after);
714                 if (xsz != UINT64_MAX && m > xsz)
715                         m = xsz;
716
717                 span = charge_size(span, m - a->after->new_size);
718                 a->after->new_size = m;
719         }
720
721         /* What? Even still some space left (maybe because there was no preceding partition, or it had a
722          * size limit), then let's donate it to whoever wants it. */
723         if (span > 0) {
724                 Partition *p;
725
726                 LIST_FOREACH(partitions, p, context->partitions) {
727                         uint64_t m, xsz;
728
729                         if (p->allocated_to_area != a)
730                                 continue;
731
732                         if (PARTITION_IS_FOREIGN(p))
733                                 continue;
734
735                         assert(p->new_size != UINT64_MAX);
736                         m = p->new_size + span;
737
738                         xsz = partition_max_size(p);
739                         if (xsz != UINT64_MAX && m > xsz)
740                                 m = xsz;
741
742                         span = charge_size(span, m - p->new_size);
743                         p->new_size = m;
744
745                         if (span == 0)
746                                 break;
747                 }
748         }
749
750         /* Yuck, still no one? Then make it padding */
751         if (span > 0 && a->after) {
752                 assert(a->after->new_padding != UINT64_MAX);
753                 a->after->new_padding += span;
754         }
755
756         return 0;
757 }
758
759 static int context_grow_partitions(Context *context) {
760         Partition *p;
761         int r;
762
763         assert(context);
764
765         for (size_t i = 0; i < context->n_free_areas; i++) {
766                 r = context_grow_partitions_on_free_area(context, context->free_areas[i]);
767                 if (r < 0)
768                         return r;
769         }
770
771         /* All existing partitions that have no free space after them can't change size */
772         LIST_FOREACH(partitions, p, context->partitions) {
773                 if (p->dropped)
774                         continue;
775
776                 if (!PARTITION_EXISTS(p) || p->padding_area) {
777                         /* The algorithm above must have initialized this already */
778                         assert(p->new_size != UINT64_MAX);
779                         continue;
780                 }
781
782                 assert(p->new_size == UINT64_MAX);
783                 p->new_size = p->current_size;
784
785                 assert(p->new_padding == UINT64_MAX);
786                 p->new_padding = p->current_padding;
787         }
788
789         return 0;
790 }
791
792 static void context_place_partitions(Context *context) {
793         uint64_t partno = 0;
794         Partition *p;
795
796         assert(context);
797
798         /* Determine next partition number to assign */
799         LIST_FOREACH(partitions, p, context->partitions) {
800                 if (!PARTITION_EXISTS(p))
801                         continue;
802
803                 assert(p->partno != UINT64_MAX);
804                 if (p->partno >= partno)
805                         partno = p->partno + 1;
806         }
807
808         for (size_t i = 0; i < context->n_free_areas; i++) {
809                 FreeArea *a = context->free_areas[i];
810                 uint64_t start, left;
811
812                 if (a->after) {
813                         assert(a->after->offset != UINT64_MAX);
814                         assert(a->after->new_size != UINT64_MAX);
815                         assert(a->after->new_padding != UINT64_MAX);
816
817                         start = a->after->offset + a->after->new_size + a->after->new_padding;
818                 } else
819                         start = context->start;
820
821                 start = round_up_size(start, 4096);
822                 left = a->size;
823
824                 LIST_FOREACH(partitions, p, context->partitions) {
825                         if (p->allocated_to_area != a)
826                                 continue;
827
828                         p->offset = start;
829                         p->partno = partno++;
830
831                         assert(left >= p->new_size);
832                         start += p->new_size;
833                         left -= p->new_size;
834
835                         assert(left >= p->new_padding);
836                         start += p->new_padding;
837                         left -= p->new_padding;
838                 }
839         }
840 }
841
842 static int config_parse_type(
843                 const char *unit,
844                 const char *filename,
845                 unsigned line,
846                 const char *section,
847                 unsigned section_line,
848                 const char *lvalue,
849                 int ltype,
850                 const char *rvalue,
851                 void *data,
852                 void *userdata) {
853
854         sd_id128_t *type_uuid = data;
855         int r;
856
857         assert(rvalue);
858         assert(type_uuid);
859
860         r = gpt_partition_type_uuid_from_string(rvalue, type_uuid);
861         if (r < 0)
862                 return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse partition type: %s", rvalue);
863
864         return 0;
865 }
866
867 static int config_parse_label(
868                 const char *unit,
869                 const char *filename,
870                 unsigned line,
871                 const char *section,
872                 unsigned section_line,
873                 const char *lvalue,
874                 int ltype,
875                 const char *rvalue,
876                 void *data,
877                 void *userdata) {
878
879         static const Specifier specifier_table[] = {
880                 { 'm', specifier_machine_id,      NULL },
881                 { 'b', specifier_boot_id,         NULL },
882                 { 'H', specifier_host_name,       NULL },
883                 { 'l', specifier_short_host_name, NULL },
884                 { 'v', specifier_kernel_release,  NULL },
885                 { 'a', specifier_architecture,    NULL },
886                 { 'o', specifier_os_id,           NULL },
887                 { 'w', specifier_os_version_id,   NULL },
888                 { 'B', specifier_os_build_id,     NULL },
889                 { 'W', specifier_os_variant_id,   NULL },
890                 {}
891         };
892
893         _cleanup_free_ char16_t *recoded = NULL;
894         _cleanup_free_ char *resolved = NULL;
895         char **label = data;
896         int r;
897
898         assert(rvalue);
899         assert(label);
900
901         r = specifier_printf(rvalue, specifier_table, NULL, &resolved);
902         if (r < 0) {
903                 log_syntax(unit, LOG_ERR, filename, line, r,
904                            "Failed to expand specifiers in Label=, ignoring: %s", rvalue);
905                 return 0;
906         }
907
908         if (!utf8_is_valid(resolved)) {
909                 log_syntax(unit, LOG_WARNING, filename, line, 0,
910                            "Partition label not valid UTF-8, ignoring: %s", rvalue);
911                 return 0;
912         }
913
914         recoded = utf8_to_utf16(resolved, strlen(resolved));
915         if (!recoded)
916                 return log_oom();
917
918         if (char16_strlen(recoded) > 36) {
919                 log_syntax(unit, LOG_WARNING, filename, line, 0,
920                            "Partition label too long for GPT table, ignoring: \"%s\" (from \"%s\")",
921                            resolved, rvalue);
922                 return 0;
923         }
924
925         free_and_replace(*label, resolved);
926         return 0;
927 }
928
929 static int config_parse_weight(
930                 const char *unit,
931                 const char *filename,
932                 unsigned line,
933                 const char *section,
934                 unsigned section_line,
935                 const char *lvalue,
936                 int ltype,
937                 const char *rvalue,
938                 void *data,
939                 void *userdata) {
940
941         uint32_t *priority = data, v;
942         int r;
943
944         assert(rvalue);
945         assert(priority);
946
947         r = safe_atou32(rvalue, &v);
948         if (r < 0) {
949                 log_syntax(unit, LOG_WARNING, filename, line, r,
950                            "Failed to parse weight value, ignoring: %s", rvalue);
951                 return 0;
952         }
953
954         if (v > 1000U*1000U) {
955                 log_syntax(unit, LOG_WARNING, filename, line, 0,
956                            "Weight needs to be in range 0…10000000, ignoring: %" PRIu32, v);
957                 return 0;
958         }
959
960         *priority = v;
961         return 0;
962 }
963
964 static int config_parse_size4096(
965                 const char *unit,
966                 const char *filename,
967                 unsigned line,
968                 const char *section,
969                 unsigned section_line,
970                 const char *lvalue,
971                 int ltype,
972                 const char *rvalue,
973                 void *data,
974                 void *userdata) {
975
976         uint64_t *sz = data, parsed;
977         int r;
978
979         assert(rvalue);
980         assert(data);
981
982         r = parse_size(rvalue, 1024, &parsed);
983         if (r < 0)
984                 return log_syntax(unit, LOG_ERR, filename, line, r,
985                                   "Failed to parse size value: %s", rvalue);
986
987         if (ltype > 0)
988                 *sz = round_up_size(parsed, 4096);
989         else if (ltype < 0)
990                 *sz = round_down_size(parsed, 4096);
991         else
992                 *sz = parsed;
993
994         if (*sz != parsed)
995                 log_syntax(unit, LOG_NOTICE, filename, line, r, "Rounded %s= size %" PRIu64 " → %" PRIu64 ", a multiple of 4096.", lvalue, parsed, *sz);
996
997         return 0;
998 }
999
1000 static int partition_read_definition(Partition *p, const char *path) {
1001
1002         ConfigTableItem table[] = {
1003                 { "Partition", "Type",            config_parse_type,     0,  &p->type_uuid        },
1004                 { "Partition", "Label",           config_parse_label,    0,  &p->new_label        },
1005                 { "Partition", "UUID",            config_parse_id128,    0,  &p->new_uuid         },
1006                 { "Partition", "Priority",        config_parse_int32,    0,  &p->priority         },
1007                 { "Partition", "Weight",          config_parse_weight,   0,  &p->weight           },
1008                 { "Partition", "PaddingWeight",   config_parse_weight,   0,  &p->padding_weight   },
1009                 { "Partition", "SizeMinBytes",    config_parse_size4096, 1,  &p->size_min         },
1010                 { "Partition", "SizeMaxBytes",    config_parse_size4096, -1, &p->size_max         },
1011                 { "Partition", "PaddingMinBytes", config_parse_size4096, 1,  &p->padding_min      },
1012                 { "Partition", "PaddingMaxBytes", config_parse_size4096, -1, &p->padding_max      },
1013                 { "Partition", "FactoryReset",    config_parse_bool,     0,  &p->factory_reset    },
1014                 { "Partition", "CopyBlocks",      config_parse_path,     0,  &p->copy_blocks_path },
1015                 {}
1016         };
1017         int r;
1018
1019         r = config_parse(NULL, path, NULL,
1020                          "Partition\0",
1021                          config_item_table_lookup, table,
1022                          CONFIG_PARSE_WARN,
1023                          p,
1024                          NULL);
1025         if (r < 0)
1026                 return r;
1027
1028         if (p->size_min != UINT64_MAX && p->size_max != UINT64_MAX && p->size_min > p->size_max)
1029                 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1030                                   "SizeMinBytes= larger than SizeMaxBytes=, refusing.");
1031
1032         if (p->padding_min != UINT64_MAX && p->padding_max != UINT64_MAX && p->padding_min > p->padding_max)
1033                 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1034                                   "PaddingMinBytes= larger than PaddingMaxBytes=, refusing.");
1035
1036         if (sd_id128_is_null(p->type_uuid))
1037                 return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL),
1038                                   "Type= not defined, refusing.");
1039
1040         return 0;
1041 }
1042
1043 static int context_read_definitions(
1044                 Context *context,
1045                 const char *directory,
1046                 const char *root) {
1047
1048         _cleanup_strv_free_ char **files = NULL;
1049         Partition *last = NULL;
1050         char **f;
1051         int r;
1052
1053         assert(context);
1054
1055         if (directory)
1056                 r = conf_files_list_strv(&files, ".conf", NULL, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) STRV_MAKE(directory));
1057         else
1058                 r = conf_files_list_strv(&files, ".conf", root, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) CONF_PATHS_STRV("repart.d"));
1059         if (r < 0)
1060                 return log_error_errno(r, "Failed to enumerate *.conf files: %m");
1061
1062         STRV_FOREACH(f, files) {
1063                 _cleanup_(partition_freep) Partition *p = NULL;
1064
1065                 p = partition_new();
1066                 if (!p)
1067                         return log_oom();
1068
1069                 p->definition_path = strdup(*f);
1070                 if (!p->definition_path)
1071                         return log_oom();
1072
1073                 r = partition_read_definition(p, *f);
1074                 if (r < 0)
1075                         return r;
1076
1077                 LIST_INSERT_AFTER(partitions, context->partitions, last, p);
1078                 last = TAKE_PTR(p);
1079                 context->n_partitions++;
1080         }
1081
1082         return 0;
1083 }
1084
1085 DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_context*, fdisk_unref_context);
1086 DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_partition*, fdisk_unref_partition);
1087 DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_parttype*, fdisk_unref_parttype);
1088 DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_table*, fdisk_unref_table);
1089
1090 static int determine_current_padding(
1091                 struct fdisk_context *c,
1092                 struct fdisk_table *t,
1093                 struct fdisk_partition *p,
1094                 uint64_t *ret) {
1095
1096         size_t n_partitions;
1097         uint64_t offset, next = UINT64_MAX;
1098
1099         assert(c);
1100         assert(t);
1101         assert(p);
1102
1103         if (!fdisk_partition_has_end(p))
1104                 return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition has no end!");
1105
1106         offset = fdisk_partition_get_end(p);
1107         assert(offset < UINT64_MAX / 512);
1108         offset *= 512;
1109
1110         n_partitions = fdisk_table_get_nents(t);
1111         for (size_t i = 0; i < n_partitions; i++)  {
1112                 struct fdisk_partition *q;
1113                 uint64_t start;
1114
1115                 q = fdisk_table_get_partition(t, i);
1116                 if (!q)
1117                         return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m");
1118
1119                 if (fdisk_partition_is_used(q) <= 0)
1120                         continue;
1121
1122                 if (!fdisk_partition_has_start(q))
1123                         continue;
1124
1125                 start = fdisk_partition_get_start(q);
1126                 assert(start < UINT64_MAX / 512);
1127                 start *= 512;
1128
1129                 if (start >= offset && (next == UINT64_MAX || next > start))
1130                         next = start;
1131         }
1132
1133         if (next == UINT64_MAX) {
1134                 /* No later partition? In that case check the end of the usable area */
1135                 next = fdisk_get_last_lba(c);
1136                 assert(next < UINT64_MAX);
1137                 next++; /* The last LBA is one sector before the end */
1138
1139                 assert(next < UINT64_MAX / 512);
1140                 next *= 512;
1141
1142                 if (offset > next)
1143                         return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end.");
1144         }
1145
1146         assert(next >= offset);
1147         offset = round_up_size(offset, 4096);
1148         next = round_down_size(next, 4096);
1149
1150         if (next >= offset) /* Check again, rounding might have fucked things up */
1151                 *ret = next - offset;
1152         else
1153                 *ret = 0;
1154
1155         return 0;
1156 }
1157
1158 static int fdisk_ask_cb(struct fdisk_context *c, struct fdisk_ask *ask, void *data) {
1159         _cleanup_free_ char *ids = NULL;
1160         int r;
1161
1162         if (fdisk_ask_get_type(ask) != FDISK_ASKTYPE_STRING)
1163                 return -EINVAL;
1164
1165         ids = new(char, ID128_UUID_STRING_MAX);
1166         if (!ids)
1167                 return -ENOMEM;
1168
1169         r = fdisk_ask_string_set_result(ask, id128_to_uuid_string(*(sd_id128_t*) data, ids));
1170         if (r < 0)
1171                 return r;
1172
1173         TAKE_PTR(ids);
1174         return 0;
1175 }
1176
1177 static int fdisk_set_disklabel_id_by_uuid(struct fdisk_context *c, sd_id128_t id) {
1178         int r;
1179
1180         r = fdisk_set_ask(c, fdisk_ask_cb, &id);
1181         if (r < 0)
1182                 return r;
1183
1184         r = fdisk_set_disklabel_id(c);
1185         if (r < 0)
1186                 return r;
1187
1188         return fdisk_set_ask(c, NULL, NULL);
1189 }
1190
1191 #define DISK_UUID_TOKEN "disk-uuid"
1192
1193 static int disk_acquire_uuid(Context *context, sd_id128_t *ret) {
1194         union {
1195                 unsigned char md[SHA256_DIGEST_LENGTH];
1196                 sd_id128_t id;
1197         } result;
1198
1199         assert(context);
1200         assert(ret);
1201
1202         /* Calculate the HMAC-SHA256 of the string "disk-uuid", keyed off the machine ID. We use the machine
1203          * ID as key (and not as cleartext!) since it's the machine ID we don't want to leak. */
1204
1205         if (!HMAC(EVP_sha256(),
1206                   &context->seed, sizeof(context->seed),
1207                   (const unsigned char*) DISK_UUID_TOKEN, strlen(DISK_UUID_TOKEN),
1208                   result.md, NULL))
1209                 return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE), "HMAC-SHA256 calculation failed.");
1210
1211         /* Take the first half, mark it as v4 UUID */
1212         assert_cc(sizeof(result.md) == sizeof(result.id) * 2);
1213         *ret = id128_make_v4_uuid(result.id);
1214         return 0;
1215 }
1216
1217 static int context_load_partition_table(
1218                 Context *context,
1219                 const char *node,
1220                 int *backing_fd) {
1221
1222         _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL;
1223         _cleanup_(fdisk_unref_tablep) struct fdisk_table *t = NULL;
1224         uint64_t left_boundary = UINT64_MAX, first_lba, last_lba, nsectors;
1225         _cleanup_free_ char *disk_uuid_string = NULL;
1226         bool from_scratch = false;
1227         sd_id128_t disk_uuid;
1228         size_t n_partitions;
1229         int r;
1230
1231         assert(context);
1232         assert(node);
1233         assert(backing_fd);
1234
1235         c = fdisk_new_context();
1236         if (!c)
1237                 return log_oom();
1238
1239         /* libfdisk doesn't have an API to operate on arbitrary fds, hence reopen the fd going via the
1240          * /proc/self/fd/ magic path if we have an existing fd. Open the original file otherwise. */
1241         if (*backing_fd < 0)
1242                 r = fdisk_assign_device(c, node, arg_dry_run);
1243         else {
1244                 char procfs_path[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(int)];
1245                 xsprintf(procfs_path, "/proc/self/fd/%i", *backing_fd);
1246
1247                 r = fdisk_assign_device(c, procfs_path, arg_dry_run);
1248         }
1249         if (r < 0)
1250                 return log_error_errno(r, "Failed to open device '%s': %m", node);
1251
1252         if (*backing_fd < 0) {
1253                 /* If we have no fd referencing the device yet, make a copy of the fd now, so that we have one */
1254                 *backing_fd = fcntl(fdisk_get_devfd(c), F_DUPFD_CLOEXEC, 3);
1255                 if (*backing_fd < 0)
1256                         return log_error_errno(errno, "Failed to duplicate fdisk fd: %m");
1257         }
1258
1259         /* Tell udev not to interfere while we are processing the device */
1260         if (flock(fdisk_get_devfd(c), arg_dry_run ? LOCK_SH : LOCK_EX) < 0)
1261                 return log_error_errno(errno, "Failed to lock block device: %m");
1262
1263         switch (arg_empty) {
1264
1265         case EMPTY_REFUSE:
1266                 /* Refuse empty disks, insist on an existing GPT partition table */
1267                 if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT))
1268                         return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has no GPT disk label, not repartitioning.", node);
1269
1270                 break;
1271
1272         case EMPTY_REQUIRE:
1273                 /* Require an empty disk, refuse any existing partition table */
1274                 r = fdisk_has_label(c);
1275                 if (r < 0)
1276                         return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node);
1277                 if (r > 0)
1278                         return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s already has a disk label, refusing.", node);
1279
1280                 from_scratch = true;
1281                 break;
1282
1283         case EMPTY_ALLOW:
1284                 /* Allow both an empty disk and an existing partition table, but only GPT */
1285                 r = fdisk_has_label(c);
1286                 if (r < 0)
1287                         return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node);
1288                 if (r > 0) {
1289                         if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT))
1290                                 return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has non-GPT disk label, not repartitioning.", node);
1291                 } else
1292                         from_scratch = true;
1293
1294                 break;
1295
1296         case EMPTY_FORCE:
1297         case EMPTY_CREATE:
1298                 /* Always reinitiaize the disk, don't consider what there was on the disk before */
1299                 from_scratch = true;
1300                 break;
1301         }
1302
1303         if (from_scratch) {
1304                 r = fdisk_enable_wipe(c, true);
1305                 if (r < 0)
1306                         return log_error_errno(r, "Failed to enable wiping of disk signature: %m");
1307
1308                 r = fdisk_create_disklabel(c, "gpt");
1309                 if (r < 0)
1310                         return log_error_errno(r, "Failed to create GPT disk label: %m");
1311
1312                 r = disk_acquire_uuid(context, &disk_uuid);
1313                 if (r < 0)
1314                         return log_error_errno(r, "Failed to acquire disk GPT uuid: %m");
1315
1316                 r = fdisk_set_disklabel_id_by_uuid(c, disk_uuid);
1317                 if (r < 0)
1318                         return log_error_errno(r, "Failed to set GPT disk label: %m");
1319
1320                 goto add_initial_free_area;
1321         }
1322
1323         r = fdisk_get_disklabel_id(c, &disk_uuid_string);
1324         if (r < 0)
1325                 return log_error_errno(r, "Failed to get current GPT disk label UUID: %m");
1326
1327         r = sd_id128_from_string(disk_uuid_string, &disk_uuid);
1328         if (r < 0)
1329                 return log_error_errno(r, "Failed to parse current GPT disk label UUID: %m");
1330
1331         if (sd_id128_is_null(disk_uuid)) {
1332                 r = disk_acquire_uuid(context, &disk_uuid);
1333                 if (r < 0)
1334                         return log_error_errno(r, "Failed to acquire disk GPT uuid: %m");
1335
1336                 r = fdisk_set_disklabel_id(c);
1337                 if (r < 0)
1338                         return log_error_errno(r, "Failed to set GPT disk label: %m");
1339         }
1340
1341         r = fdisk_get_partitions(c, &t);
1342         if (r < 0)
1343                 return log_error_errno(r, "Failed to acquire partition table: %m");
1344
1345         n_partitions = fdisk_table_get_nents(t);
1346         for (size_t i = 0; i < n_partitions; i++)  {
1347                 _cleanup_free_ char *label_copy = NULL;
1348                 Partition *pp, *last = NULL;
1349                 struct fdisk_partition *p;
1350                 struct fdisk_parttype *pt;
1351                 const char *pts, *ids, *label;
1352                 uint64_t sz, start;
1353                 bool found = false;
1354                 sd_id128_t ptid, id;
1355                 size_t partno;
1356
1357                 p = fdisk_table_get_partition(t, i);
1358                 if (!p)
1359                         return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m");
1360
1361                 if (fdisk_partition_is_used(p) <= 0)
1362                         continue;
1363
1364                 if (fdisk_partition_has_start(p) <= 0 ||
1365                     fdisk_partition_has_size(p) <= 0 ||
1366                     fdisk_partition_has_partno(p) <= 0)
1367                         return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a position, size or number.");
1368
1369                 pt = fdisk_partition_get_type(p);
1370                 if (!pt)
1371                         return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition: %m");
1372
1373                 pts = fdisk_parttype_get_string(pt);
1374                 if (!pts)
1375                         return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition as string: %m");
1376
1377                 r = sd_id128_from_string(pts, &ptid);
1378                 if (r < 0)
1379                         return log_error_errno(r, "Failed to parse partition type UUID %s: %m", pts);
1380
1381                 ids = fdisk_partition_get_uuid(p);
1382                 if (!ids)
1383                         return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a UUID.");
1384
1385                 r = sd_id128_from_string(ids, &id);
1386                 if (r < 0)
1387                         return log_error_errno(r, "Failed to parse partition UUID %s: %m", ids);
1388
1389                 label = fdisk_partition_get_name(p);
1390                 if (!isempty(label)) {
1391                         label_copy = strdup(label);
1392                         if (!label_copy)
1393                                 return log_oom();
1394                 }
1395
1396                 sz = fdisk_partition_get_size(p);
1397                 assert_se(sz <= UINT64_MAX/512);
1398                 sz *= 512;
1399
1400                 start = fdisk_partition_get_start(p);
1401                 assert_se(start <= UINT64_MAX/512);
1402                 start *= 512;
1403
1404                 partno = fdisk_partition_get_partno(p);
1405
1406                 if (left_boundary == UINT64_MAX || left_boundary > start)
1407                         left_boundary = start;
1408
1409                 /* Assign this existing partition to the first partition of the right type that doesn't have
1410                  * an existing one assigned yet. */
1411                 LIST_FOREACH(partitions, pp, context->partitions) {
1412                         last = pp;
1413
1414                         if (!sd_id128_equal(pp->type_uuid, ptid))
1415                                 continue;
1416
1417                         if (!pp->current_partition) {
1418                                 pp->current_uuid = id;
1419                                 pp->current_size = sz;
1420                                 pp->offset = start;
1421                                 pp->partno = partno;
1422                                 pp->current_label = TAKE_PTR(label_copy);
1423
1424                                 pp->current_partition = p;
1425                                 fdisk_ref_partition(p);
1426
1427                                 r = determine_current_padding(c, t, p, &pp->current_padding);
1428                                 if (r < 0)
1429                                         return r;
1430
1431                                 if (pp->current_padding > 0) {
1432                                         r = context_add_free_area(context, pp->current_padding, pp);
1433                                         if (r < 0)
1434                                                 return r;
1435                                 }
1436
1437                                 found = true;
1438                                 break;
1439                         }
1440                 }
1441
1442                 /* If we have no matching definition, create a new one. */
1443                 if (!found) {
1444                         _cleanup_(partition_freep) Partition *np = NULL;
1445
1446                         np = partition_new();
1447                         if (!np)
1448                                 return log_oom();
1449
1450                         np->current_uuid = id;
1451                         np->type_uuid = ptid;
1452                         np->current_size = sz;
1453                         np->offset = start;
1454                         np->partno = partno;
1455                         np->current_label = TAKE_PTR(label_copy);
1456
1457                         np->current_partition = p;
1458                         fdisk_ref_partition(p);
1459
1460                         r = determine_current_padding(c, t, p, &np->current_padding);
1461                         if (r < 0)
1462                                 return r;
1463
1464                         if (np->current_padding > 0) {
1465                                 r = context_add_free_area(context, np->current_padding, np);
1466                                 if (r < 0)
1467                                         return r;
1468                         }
1469
1470                         LIST_INSERT_AFTER(partitions, context->partitions, last, TAKE_PTR(np));
1471                         context->n_partitions++;
1472                 }
1473         }
1474
1475 add_initial_free_area:
1476         nsectors = fdisk_get_nsectors(c);
1477         assert(nsectors <= UINT64_MAX/512);
1478         nsectors *= 512;
1479
1480         first_lba = fdisk_get_first_lba(c);
1481         assert(first_lba <= UINT64_MAX/512);
1482         first_lba *= 512;
1483
1484         last_lba = fdisk_get_last_lba(c);
1485         assert(last_lba < UINT64_MAX);
1486         last_lba++;
1487         assert(last_lba <= UINT64_MAX/512);
1488         last_lba *= 512;
1489
1490         assert(last_lba >= first_lba);
1491
1492         if (left_boundary == UINT64_MAX) {
1493                 /* No partitions at all? Then the whole disk is up for grabs. */
1494
1495                 first_lba = round_up_size(first_lba, 4096);
1496                 last_lba = round_down_size(last_lba, 4096);
1497
1498                 if (last_lba > first_lba) {
1499                         r = context_add_free_area(context, last_lba - first_lba, NULL);
1500                         if (r < 0)
1501                                 return r;
1502                 }
1503         } else {
1504                 /* Add space left of first partition */
1505                 assert(left_boundary >= first_lba);
1506
1507                 first_lba = round_up_size(first_lba, 4096);
1508                 left_boundary = round_down_size(left_boundary, 4096);
1509                 last_lba = round_down_size(last_lba, 4096);
1510
1511                 if (left_boundary > first_lba) {
1512                         r = context_add_free_area(context, left_boundary - first_lba, NULL);
1513                         if (r < 0)
1514                                 return r;
1515                 }
1516         }
1517
1518         context->start = first_lba;
1519         context->end = last_lba;
1520         context->total = nsectors;
1521         context->fdisk_context = TAKE_PTR(c);
1522
1523         return from_scratch;
1524 }
1525
1526 static void context_unload_partition_table(Context *context) {
1527         Partition *p, *next;
1528
1529         assert(context);
1530
1531         LIST_FOREACH_SAFE(partitions, p, next, context->partitions) {
1532
1533                 /* Entirely remove partitions that have no configuration */
1534                 if (PARTITION_IS_FOREIGN(p)) {
1535                         partition_unlink_and_free(context, p);
1536                         continue;
1537                 }
1538
1539                 /* Otherwise drop all data we read off the block device and everything we might have
1540                  * calculated based on it */
1541
1542                 p->dropped = false;
1543                 p->current_size = UINT64_MAX;
1544                 p->new_size = UINT64_MAX;
1545                 p->current_padding = UINT64_MAX;
1546                 p->new_padding = UINT64_MAX;
1547                 p->partno = UINT64_MAX;
1548                 p->offset = UINT64_MAX;
1549
1550                 if (p->current_partition) {
1551                         fdisk_unref_partition(p->current_partition);
1552                         p->current_partition = NULL;
1553                 }
1554
1555                 if (p->new_partition) {
1556                         fdisk_unref_partition(p->new_partition);
1557                         p->new_partition = NULL;
1558                 }
1559
1560                 p->padding_area = NULL;
1561                 p->allocated_to_area = NULL;
1562
1563                 p->current_uuid = p->new_uuid = SD_ID128_NULL;
1564         }
1565
1566         context->start = UINT64_MAX;
1567         context->end = UINT64_MAX;
1568         context->total = UINT64_MAX;
1569
1570         if (context->fdisk_context) {
1571                 fdisk_unref_context(context->fdisk_context);
1572                 context->fdisk_context = NULL;
1573         }
1574
1575         context_free_free_areas(context);
1576 }
1577
1578 static int format_size_change(uint64_t from, uint64_t to, char **ret) {
1579         char format_buffer1[FORMAT_BYTES_MAX], format_buffer2[FORMAT_BYTES_MAX], *buf;
1580
1581         if (from != UINT64_MAX)
1582                 format_bytes(format_buffer1, sizeof(format_buffer1), from);
1583         if (to != UINT64_MAX)
1584                 format_bytes(format_buffer2, sizeof(format_buffer2), to);
1585
1586         if (from != UINT64_MAX) {
1587                 if (from == to || to == UINT64_MAX)
1588                         buf = strdup(format_buffer1);
1589                 else
1590                         buf = strjoin(format_buffer1, " ", special_glyph(SPECIAL_GLYPH_ARROW), " ", format_buffer2);
1591         } else if (to != UINT64_MAX)
1592                 buf = strjoin(special_glyph(SPECIAL_GLYPH_ARROW), " ", format_buffer2);
1593         else {
1594                 *ret = NULL;
1595                 return 0;
1596         }
1597
1598         if (!buf)
1599                 return log_oom();
1600
1601         *ret = TAKE_PTR(buf);
1602         return 1;
1603 }
1604
1605 static const char *partition_label(const Partition *p) {
1606         assert(p);
1607
1608         if (p->new_label)
1609                 return p->new_label;
1610
1611         if (p->current_label)
1612                 return p->current_label;
1613
1614         return gpt_partition_type_uuid_to_string(p->type_uuid);
1615 }
1616
1617 static int context_dump_partitions(Context *context, const char *node) {
1618         _cleanup_(table_unrefp) Table *t = NULL;
1619         uint64_t sum_padding = 0, sum_size = 0;
1620         Partition *p;
1621         int r;
1622
1623         t = table_new("type", "label", "uuid", "file", "node", "offset", "raw size", "size", "raw padding", "padding");
1624         if (!t)
1625                 return log_oom();
1626
1627         if (!DEBUG_LOGGING)
1628                 (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4, (size_t) 7, (size_t) 9, (size_t) -1);
1629
1630         (void) table_set_align_percent(t, table_get_cell(t, 0, 4), 100);
1631         (void) table_set_align_percent(t, table_get_cell(t, 0, 5), 100);
1632
1633         LIST_FOREACH(partitions, p, context->partitions) {
1634                 _cleanup_free_ char *size_change = NULL, *padding_change = NULL, *partname = NULL;
1635                 char uuid_buffer[ID128_UUID_STRING_MAX];
1636                 const char *label;
1637
1638                 if (p->dropped)
1639                         continue;
1640
1641                 label = partition_label(p);
1642                 partname = p->partno != UINT64_MAX ? fdisk_partname(node, p->partno+1) : NULL;
1643
1644                 r = format_size_change(p->current_size, p->new_size, &size_change);
1645                 if (r < 0)
1646                         return r;
1647
1648                 r = format_size_change(p->current_padding, p->new_padding, &padding_change);
1649                 if (r < 0)
1650                         return r;
1651
1652                 if (p->new_size != UINT64_MAX)
1653                         sum_size += p->new_size;
1654                 if (p->new_padding != UINT64_MAX)
1655                         sum_padding += p->new_padding;
1656
1657                 r = table_add_many(
1658                                 t,
1659                                 TABLE_STRING, gpt_partition_type_uuid_to_string_harder(p->type_uuid, uuid_buffer),
1660                                 TABLE_STRING, label ?: "-", TABLE_SET_COLOR, label ? NULL : ansi_grey(),
1661                                 TABLE_UUID, sd_id128_is_null(p->new_uuid) ? p->current_uuid : p->new_uuid,
1662                                 TABLE_STRING, p->definition_path ? basename(p->definition_path) : "-", TABLE_SET_COLOR, p->definition_path ? NULL : ansi_grey(),
1663                                 TABLE_STRING, partname ?: "no", TABLE_SET_COLOR, partname ? NULL : ansi_highlight(),
1664                                 TABLE_UINT64, p->offset,
1665                                 TABLE_UINT64, p->new_size,
1666                                 TABLE_STRING, size_change, TABLE_SET_COLOR, !p->partitions_next && sum_size > 0 ? ansi_underline() : NULL,
1667                                 TABLE_UINT64, p->new_padding,
1668                                 TABLE_STRING, padding_change, TABLE_SET_COLOR, !p->partitions_next && sum_padding > 0 ? ansi_underline() : NULL);
1669                 if (r < 0)
1670                         return table_log_add_error(r);
1671         }
1672
1673         if (sum_padding > 0 || sum_size > 0) {
1674                 char s[FORMAT_BYTES_MAX];
1675                 const char *a, *b;
1676
1677                 a = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", format_bytes(s, sizeof(s), sum_size));
1678                 b = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", format_bytes(s, sizeof(s), sum_padding));
1679
1680                 r = table_add_many(
1681                                 t,
1682                                 TABLE_EMPTY,
1683                                 TABLE_EMPTY,
1684                                 TABLE_EMPTY,
1685                                 TABLE_EMPTY,
1686                                 TABLE_EMPTY,
1687                                 TABLE_EMPTY,
1688                                 TABLE_EMPTY,
1689                                 TABLE_STRING, a,
1690                                 TABLE_EMPTY,
1691                                 TABLE_STRING, b);
1692                 if (r < 0)
1693                         return table_log_add_error(r);
1694         }
1695
1696         r = table_print(t, stdout);
1697         if (r < 0)
1698                 return log_error_errno(r, "Failed to dump table: %m");
1699
1700         return 0;
1701 }
1702
1703 static void context_bar_char_process_partition(
1704                 Context *context,
1705                 Partition *bar[],
1706                 size_t n,
1707                 Partition *p,
1708                 size_t *ret_start) {
1709
1710         uint64_t from, to, total;
1711         size_t x, y;
1712
1713         assert(context);
1714         assert(bar);
1715         assert(n > 0);
1716         assert(p);
1717
1718         if (p->dropped)
1719                 return;
1720
1721         assert(p->offset != UINT64_MAX);
1722         assert(p->new_size != UINT64_MAX);
1723
1724         from = p->offset;
1725         to = from + p->new_size;
1726
1727         assert(context->end >= context->start);
1728         total = context->end - context->start;
1729
1730         assert(from >= context->start);
1731         assert(from <= context->end);
1732         x = (from - context->start) * n / total;
1733
1734         assert(to >= context->start);
1735         assert(to <= context->end);
1736         y = (to - context->start) * n / total;
1737
1738         assert(x <= y);
1739         assert(y <= n);
1740
1741         for (size_t i = x; i < y; i++)
1742                 bar[i] = p;
1743
1744         *ret_start = x;
1745 }
1746
1747 static int partition_hint(const Partition *p, const char *node, char **ret) {
1748         _cleanup_free_ char *buf = NULL;
1749         char ids[ID128_UUID_STRING_MAX];
1750         const char *label;
1751         sd_id128_t id;
1752
1753         /* Tries really hard to find a suitable description for this partition */
1754
1755         if (p->definition_path) {
1756                 buf = strdup(basename(p->definition_path));
1757                 goto done;
1758         }
1759
1760         label = partition_label(p);
1761         if (!isempty(label)) {
1762                 buf = strdup(label);
1763                 goto done;
1764         }
1765
1766         if (p->partno != UINT64_MAX) {
1767                 buf = fdisk_partname(node, p->partno+1);
1768                 goto done;
1769         }
1770
1771         if (!sd_id128_is_null(p->new_uuid))
1772                 id = p->new_uuid;
1773         else if (!sd_id128_is_null(p->current_uuid))
1774                 id = p->current_uuid;
1775         else
1776                 id = p->type_uuid;
1777
1778         buf = strdup(id128_to_uuid_string(id, ids));
1779
1780 done:
1781         if (!buf)
1782                 return -ENOMEM;
1783
1784         *ret = TAKE_PTR(buf);
1785         return 0;
1786 }
1787
1788 static int context_dump_partition_bar(Context *context, const char *node) {
1789         _cleanup_free_ Partition **bar = NULL;
1790         _cleanup_free_ size_t *start_array = NULL;
1791         Partition *p, *last = NULL;
1792         bool z = false;
1793         size_t c, j = 0;
1794
1795         assert_se((c = columns()) >= 2);
1796         c -= 2; /* We do not use the leftmost and rightmost character cell */
1797
1798         bar = new0(Partition*, c);
1799         if (!bar)
1800                 return log_oom();
1801
1802         start_array = new(size_t, context->n_partitions);
1803         if (!start_array)
1804                 return log_oom();
1805
1806         LIST_FOREACH(partitions, p, context->partitions)
1807                 context_bar_char_process_partition(context, bar, c, p, start_array + j++);
1808
1809         putc(' ', stdout);
1810
1811         for (size_t i = 0; i < c; i++) {
1812                 if (bar[i]) {
1813                         if (last != bar[i])
1814                                 z = !z;
1815
1816                         fputs(z ? ansi_green() : ansi_yellow(), stdout);
1817                         fputs(special_glyph(SPECIAL_GLYPH_DARK_SHADE), stdout);
1818                 } else {
1819                         fputs(ansi_normal(), stdout);
1820                         fputs(special_glyph(SPECIAL_GLYPH_LIGHT_SHADE), stdout);
1821                 }
1822
1823                 last = bar[i];
1824         }
1825
1826         fputs(ansi_normal(), stdout);
1827         putc('\n', stdout);
1828
1829         for (size_t i = 0; i < context->n_partitions; i++) {
1830                 _cleanup_free_ char **line = NULL;
1831
1832                 line = new0(char*, c);
1833                 if (!line)
1834                         return log_oom();
1835
1836                 j = 0;
1837                 LIST_FOREACH(partitions, p, context->partitions) {
1838                         _cleanup_free_ char *d = NULL;
1839                         j++;
1840
1841                         if (i < context->n_partitions - j) {
1842
1843                                 if (line[start_array[j-1]]) {
1844                                         const char *e;
1845
1846                                         /* Upgrade final corner to the right with a branch to the right */
1847                                         e = startswith(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_RIGHT));
1848                                         if (e) {
1849                                                 d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), e);
1850                                                 if (!d)
1851                                                         return log_oom();
1852                                         }
1853                                 }
1854
1855                                 if (!d) {
1856                                         d = strdup(special_glyph(SPECIAL_GLYPH_TREE_VERTICAL));
1857                                         if (!d)
1858                                                 return log_oom();
1859                                 }
1860
1861                         } else if (i == context->n_partitions - j) {
1862                                 _cleanup_free_ char *hint = NULL;
1863
1864                                 (void) partition_hint(p, node, &hint);
1865
1866                                 if (streq_ptr(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_VERTICAL)))
1867                                         d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), " ", strna(hint));
1868                                 else
1869                                         d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_RIGHT), " ", strna(hint));
1870
1871                                 if (!d)
1872                                         return log_oom();
1873                         }
1874
1875                         if (d)
1876                                 free_and_replace(line[start_array[j-1]], d);
1877                 }
1878
1879                 putc(' ', stdout);
1880
1881                 j = 0;
1882                 while (j < c) {
1883                         if (line[j]) {
1884                                 fputs(line[j], stdout);
1885                                 j += utf8_console_width(line[j]);
1886                         } else {
1887                                 putc(' ', stdout);
1888                                 j++;
1889                         }
1890                 }
1891
1892                 putc('\n', stdout);
1893
1894                 for (j = 0; j < c; j++)
1895                         free(line[j]);
1896         }
1897
1898         return 0;
1899 }
1900
1901 static bool context_changed(const Context *context) {
1902         Partition *p;
1903
1904         LIST_FOREACH(partitions, p, context->partitions) {
1905                 if (p->dropped)
1906                         continue;
1907
1908                 if (p->allocated_to_area)
1909                         return true;
1910
1911                 if (p->new_size != p->current_size)
1912                         return true;
1913         }
1914
1915         return false;
1916 }
1917
1918 static int context_wipe_partition(Context *context, Partition *p) {
1919         _cleanup_(blkid_free_probep) blkid_probe probe = NULL;
1920         int r;
1921
1922         assert(context);
1923         assert(p);
1924         assert(!PARTITION_EXISTS(p)); /* Safety check: never wipe existing partitions */
1925
1926         probe = blkid_new_probe();
1927         if (!probe)
1928                 return log_oom();
1929
1930         assert(p->offset != UINT64_MAX);
1931         assert(p->new_size != UINT64_MAX);
1932
1933         errno = 0;
1934         r = blkid_probe_set_device(probe, fdisk_get_devfd(context->fdisk_context), p->offset, p->new_size);
1935         if (r < 0)
1936                 return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to allocate device probe for partition %" PRIu64 ".", p->partno);
1937
1938         errno = 0;
1939         if (blkid_probe_enable_superblocks(probe, true) < 0 ||
1940             blkid_probe_set_superblocks_flags(probe, BLKID_SUBLKS_MAGIC|BLKID_SUBLKS_BADCSUM) < 0 ||
1941             blkid_probe_enable_partitions(probe, true) < 0 ||
1942             blkid_probe_set_partitions_flags(probe, BLKID_PARTS_MAGIC) < 0)
1943                 return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to enable superblock and partition probing for partition %" PRIu64 ".", p->partno);
1944
1945         for (;;) {
1946                 errno = 0;
1947                 r = blkid_do_probe(probe);
1948                 if (r < 0)
1949                         return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to probe for file systems.");
1950                 if (r > 0)
1951                         break;
1952
1953                 errno = 0;
1954                 if (blkid_do_wipe(probe, false) < 0)
1955                         return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to wipe file system signature.");
1956         }
1957
1958         log_info("Successfully wiped file system signatures from partition %" PRIu64 ".", p->partno);
1959         return 0;
1960 }
1961
1962 static int context_discard_range(Context *context, uint64_t offset, uint64_t size) {
1963         struct stat st;
1964         int fd;
1965
1966         assert(context);
1967         assert(offset != UINT64_MAX);
1968         assert(size != UINT64_MAX);
1969
1970         if (size <= 0)
1971                 return 0;
1972
1973         assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
1974
1975         if (fstat(fd, &st) < 0)
1976                 return -errno;
1977
1978         if (S_ISREG(st.st_mode)) {
1979                 if (fallocate(fd, FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE, offset, size) < 0) {
1980                         if (ERRNO_IS_NOT_SUPPORTED(errno))
1981                                 return -EOPNOTSUPP;
1982
1983                         return -errno;
1984                 }
1985
1986                 return 1;
1987         }
1988
1989         if (S_ISBLK(st.st_mode)) {
1990                 uint64_t range[2], end;
1991
1992                 range[0] = round_up_size(offset, 512);
1993
1994                 end = offset + size;
1995                 if (end <= range[0])
1996                         return 0;
1997
1998                 range[1] = round_down_size(end - range[0], 512);
1999                 if (range[1] <= 0)
2000                         return 0;
2001
2002                 if (ioctl(fd, BLKDISCARD, range) < 0) {
2003                         if (ERRNO_IS_NOT_SUPPORTED(errno))
2004                                 return -EOPNOTSUPP;
2005
2006                         return -errno;
2007                 }
2008
2009                 return 1;
2010         }
2011
2012         return -EOPNOTSUPP;
2013 }
2014
2015 static int context_discard_partition(Context *context, Partition *p) {
2016         int r;
2017
2018         assert(context);
2019         assert(p);
2020
2021         assert(p->offset != UINT64_MAX);
2022         assert(p->new_size != UINT64_MAX);
2023         assert(!PARTITION_EXISTS(p)); /* Safety check: never discard existing partitions */
2024
2025         if (!arg_discard)
2026                 return 0;
2027
2028         r = context_discard_range(context, p->offset, p->new_size);
2029         if (r == -EOPNOTSUPP) {
2030                 log_info("Storage does not support discarding, not discarding data in new partition %" PRIu64 ".", p->partno);
2031                 return 0;
2032         }
2033         if (r == 0) {
2034                 log_info("Partition %" PRIu64 " too short for discard, skipping.", p->partno);
2035                 return 0;
2036         }
2037         if (r < 0)
2038                 return log_error_errno(r, "Failed to discard data for new partition %" PRIu64 ".", p->partno);
2039
2040         log_info("Successfully discarded data from partition %" PRIu64 ".", p->partno);
2041         return 1;
2042 }
2043
2044 static int context_discard_gap_after(Context *context, Partition *p) {
2045         uint64_t gap, next = UINT64_MAX;
2046         Partition *q;
2047         int r;
2048
2049         assert(context);
2050         assert(!p || (p->offset != UINT64_MAX && p->new_size != UINT64_MAX));
2051
2052         if (p)
2053                 gap = p->offset + p->new_size;
2054         else
2055                 gap = context->start;
2056
2057         LIST_FOREACH(partitions, q, context->partitions) {
2058                 if (q->dropped)
2059                         continue;
2060
2061                 assert(q->offset != UINT64_MAX);
2062                 assert(q->new_size != UINT64_MAX);
2063
2064                 if (q->offset < gap)
2065                         continue;
2066
2067                 if (next == UINT64_MAX || q->offset < next)
2068                         next = q->offset;
2069         }
2070
2071         if (next == UINT64_MAX) {
2072                 next = context->end;
2073                 if (gap > next)
2074                         return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end.");
2075         }
2076
2077         assert(next >= gap);
2078         r = context_discard_range(context, gap, next - gap);
2079         if (r == -EOPNOTSUPP) {
2080                 if (p)
2081                         log_info("Storage does not support discarding, not discarding gap after partition %" PRIu64 ".", p->partno);
2082                 else
2083                         log_info("Storage does not support discarding, not discarding gap at beginning of disk.");
2084                 return 0;
2085         }
2086         if (r == 0)  /* Too short */
2087                 return 0;
2088         if (r < 0) {
2089                 if (p)
2090                         return log_error_errno(r, "Failed to discard gap after partition %" PRIu64 ".", p->partno);
2091                 else
2092                         return log_error_errno(r, "Failed to discard gap at beginning of disk.");
2093         }
2094
2095         if (p)
2096                 log_info("Successfully discarded gap after partition %" PRIu64 ".", p->partno);
2097         else
2098                 log_info("Successfully discarded gap at beginning of disk.");
2099
2100         return 0;
2101 }
2102
2103 static int context_wipe_and_discard(Context *context, bool from_scratch) {
2104         Partition *p;
2105         int r;
2106
2107         assert(context);
2108
2109         /* Wipe and discard the contents of all partitions we are about to create. We skip the discarding if
2110          * we were supposed to start from scratch anyway, as in that case we just discard the whole block
2111          * device in one go early on. */
2112
2113         LIST_FOREACH(partitions, p, context->partitions) {
2114
2115                 if (!p->allocated_to_area)
2116                         continue;
2117
2118                 if (!from_scratch) {
2119                         r = context_discard_partition(context, p);
2120                         if (r < 0)
2121                                 return r;
2122                 }
2123
2124                 r = context_wipe_partition(context, p);
2125                 if (r < 0)
2126                         return r;
2127
2128                 if (!from_scratch) {
2129                         r = context_discard_gap_after(context, p);
2130                         if (r < 0)
2131                                 return r;
2132                 }
2133         }
2134
2135         if (!from_scratch) {
2136                 r = context_discard_gap_after(context, NULL);
2137                 if (r < 0)
2138                         return r;
2139         }
2140
2141         return 0;
2142 }
2143
2144 static int context_copy_blocks(Context *context) {
2145         Partition *p;
2146         int fd = -1, r;
2147
2148         assert(context);
2149
2150         /* Copy in file systems on the block level */
2151
2152         LIST_FOREACH(partitions, p, context->partitions) {
2153                 char buf[FORMAT_BYTES_MAX];
2154
2155                 if (p->copy_blocks_fd < 0)
2156                         continue;
2157
2158                 if (p->dropped)
2159                         continue;
2160
2161                 if (PARTITION_EXISTS(p)) /* Never copy over existing partitions */
2162                         continue;
2163
2164                 assert(p->new_size != UINT64_MAX);
2165                 assert(p->copy_blocks_size != UINT64_MAX);
2166                 assert(p->new_size >= p->copy_blocks_size);
2167
2168                 if (fd < 0)
2169                         assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0);
2170
2171                 if (lseek(fd, p->offset, SEEK_SET) == (off_t) -1)
2172                         return log_error_errno(errno, "Failed to seek to partition offset: %m");
2173
2174                 log_info("Copying in '%s' (%s) on block level into partition %" PRIu64 ".", p->copy_blocks_path, format_bytes(buf, sizeof(buf), p->copy_blocks_size), p->partno);
2175
2176                 r = copy_bytes_full(p->copy_blocks_fd, fd, p->copy_blocks_size, 0, NULL, NULL, NULL, NULL);
2177                 if (r < 0)
2178                         return log_error_errno(r, "Failed to copy in data from '%s': %m", p->copy_blocks_path);
2179
2180                 log_info("Copying in of '%s' on block level completed.", p->copy_blocks_path);
2181         }
2182
2183         return 0;
2184 }
2185
2186 static int partition_acquire_uuid(Context *context, Partition *p, sd_id128_t *ret) {
2187         struct {
2188                 sd_id128_t type_uuid;
2189                 uint64_t counter;
2190         } _packed_  plaintext = {};
2191         union {
2192                 unsigned char md[SHA256_DIGEST_LENGTH];
2193                 sd_id128_t id;
2194         } result;
2195
2196         uint64_t k = 0;
2197         Partition *q;
2198         int r;
2199
2200         assert(context);
2201         assert(p);
2202         assert(ret);
2203
2204         /* Calculate a good UUID for the indicated partition. We want a certain degree of reproducibility,
2205          * hence we won't generate the UUIDs randomly. Instead we use a cryptographic hash (precisely:
2206          * HMAC-SHA256) to derive them from a single seed. The seed is generally the machine ID of the
2207          * installation we are processing, but if random behaviour is desired can be random, too. We use the
2208          * seed value as key for the HMAC (since the machine ID is something we generally don't want to leak)
2209          * and the partition type as plaintext. The partition type is suffixed with a counter (only for the
2210          * second and later partition of the same type) if we have more than one partition of the same
2211          * time. Or in other words:
2212          *
2213          * With:
2214          *     SEED := /etc/machine-id
2215          *
2216          * If first partition instance of type TYPE_UUID:
2217          *     PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID)
2218          *
2219          * For all later partition instances of type TYPE_UUID with INSTANCE being the LE64 encoded instance number:
2220          *     PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID || INSTANCE)
2221          */
2222
2223         LIST_FOREACH(partitions, q, context->partitions) {
2224                 if (p == q)
2225                         break;
2226
2227                 if (!sd_id128_equal(p->type_uuid, q->type_uuid))
2228                         continue;
2229
2230                 k++;
2231         }
2232
2233         plaintext.type_uuid = p->type_uuid;
2234         plaintext.counter = htole64(k);
2235
2236         if (!HMAC(EVP_sha256(),
2237                   &context->seed, sizeof(context->seed),
2238                   (const unsigned char*) &plaintext, k == 0 ? sizeof(sd_id128_t) : sizeof(plaintext),
2239                   result.md, NULL))
2240                 return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE), "SHA256 calculation failed.");
2241
2242         /* Take the first half, mark it as v4 UUID */
2243         assert_cc(sizeof(result.md) == sizeof(result.id) * 2);
2244         result.id = id128_make_v4_uuid(result.id);
2245
2246         /* Ensure this partition UUID is actually unique, and there's no remaining partition from an earlier run? */
2247         LIST_FOREACH(partitions, q, context->partitions) {
2248                 if (p == q)
2249                         continue;
2250
2251                 if (sd_id128_equal(q->current_uuid, result.id) ||
2252                     sd_id128_equal(q->new_uuid, result.id)) {
2253                         log_warning("Partition UUID calculated from seed for partition %" PRIu64 " exists already, reverting to randomized UUID.", p->partno);
2254
2255                         r = sd_id128_randomize(&result.id);
2256                         if (r < 0)
2257                                 return log_error_errno(r, "Failed to generate randomized UUID: %m");
2258
2259                         break;
2260                 }
2261         }
2262
2263         *ret = result.id;
2264         return 0;
2265 }
2266
2267 static int partition_acquire_label(Context *context, Partition *p, char **ret) {
2268         _cleanup_free_ char *label = NULL;
2269         const char *prefix;
2270         unsigned k = 1;
2271
2272         assert(context);
2273         assert(p);
2274         assert(ret);
2275
2276         prefix = gpt_partition_type_uuid_to_string(p->type_uuid);
2277         if (!prefix)
2278                 prefix = "linux";
2279
2280         for (;;) {
2281                 const char *ll = label ?: prefix;
2282                 bool retry = false;
2283                 Partition *q;
2284
2285                 LIST_FOREACH(partitions, q, context->partitions) {
2286                         if (p == q)
2287                                 break;
2288
2289                         if (streq_ptr(ll, q->current_label) ||
2290                             streq_ptr(ll, q->new_label)) {
2291                                 retry = true;
2292                                 break;
2293                         }
2294                 }
2295
2296                 if (!retry)
2297                         break;
2298
2299                 label = mfree(label);
2300
2301
2302                 if (asprintf(&label, "%s-%u", prefix, ++k) < 0)
2303                         return log_oom();
2304         }
2305
2306         if (!label) {
2307                 label = strdup(prefix);
2308                 if (!label)
2309                         return log_oom();
2310         }
2311
2312         *ret = TAKE_PTR(label);
2313         return 0;
2314 }
2315
2316 static int context_acquire_partition_uuids_and_labels(Context *context) {
2317         Partition *p;
2318         int r;
2319
2320         assert(context);
2321
2322         LIST_FOREACH(partitions, p, context->partitions) {
2323                 /* Never touch foreign partitions */
2324                 if (PARTITION_IS_FOREIGN(p)) {
2325                         p->new_uuid = p->current_uuid;
2326
2327                         if (p->current_label) {
2328                                 free(p->new_label);
2329                                 p->new_label = strdup(p->current_label);
2330                                 if (!p->new_label)
2331                                         return log_oom();
2332                         }
2333
2334                         continue;
2335                 }
2336
2337                 if (!sd_id128_is_null(p->current_uuid))
2338                         p->new_uuid = p->current_uuid; /* Never change initialized UUIDs */
2339                 else if (sd_id128_is_null(p->new_uuid)) {
2340                         /* Not explicitly set by user! */
2341                         r = partition_acquire_uuid(context, p, &p->new_uuid);
2342                         if (r < 0)
2343                                 return r;
2344                 }
2345
2346                 if (!isempty(p->current_label)) {
2347                         free(p->new_label);
2348                         p->new_label = strdup(p->current_label); /* never change initialized labels */
2349                         if (!p->new_label)
2350                                 return log_oom();
2351                 } else if (!p->new_label) {
2352                         /* Not explicitly set by user! */
2353
2354                         r = partition_acquire_label(context, p, &p->new_label);
2355                         if (r < 0)
2356                                 return r;
2357                 }
2358         }
2359
2360         return 0;
2361 }
2362
2363 static int device_kernel_partitions_supported(int fd) {
2364         struct loop_info64 info;
2365         struct stat st;
2366
2367         assert(fd >= 0);
2368
2369         if (fstat(fd, &st) < 0)
2370                 return log_error_errno(fd, "Failed to fstat() image file: %m");
2371         if (!S_ISBLK(st.st_mode))
2372                 return -ENOTBLK; /* we do not log in this one special case about errors */
2373
2374         if (ioctl(fd, LOOP_GET_STATUS64, &info) < 0) {
2375
2376                 if (ERRNO_IS_NOT_SUPPORTED(errno) || errno == EINVAL)
2377                         return true; /* not a loopback device, let's assume partition are supported */
2378
2379                 return log_error_errno(fd, "Failed to issue LOOP_GET_STATUS64 on block device: %m");
2380         }
2381
2382 #if HAVE_VALGRIND_MEMCHECK_H
2383         /* Valgrind currently doesn't know LOOP_GET_STATUS64. Remove this once it does */
2384         VALGRIND_MAKE_MEM_DEFINED(&info, sizeof(info));
2385 #endif
2386
2387         return FLAGS_SET(info.lo_flags, LO_FLAGS_PARTSCAN);
2388 }
2389
2390 static int context_write_partition_table(
2391                 Context *context,
2392                 const char *node,
2393                 bool from_scratch) {
2394
2395         _cleanup_(fdisk_unref_tablep) struct fdisk_table *original_table = NULL;
2396         int capable, r;
2397         Partition *p;
2398
2399         assert(context);
2400
2401         if (arg_pretty > 0 ||
2402             (arg_pretty < 0 && isatty(STDOUT_FILENO) > 0)) {
2403
2404                 if (context->n_partitions == 0)
2405                         puts("Empty partition table.");
2406                 else
2407                         (void) context_dump_partitions(context, node);
2408
2409                 putc('\n', stdout);
2410
2411                 (void) context_dump_partition_bar(context, node);
2412                 putc('\n', stdout);
2413                 fflush(stdout);
2414         }
2415
2416         if (!from_scratch && !context_changed(context)) {
2417                 log_info("No changes.");
2418                 return 0;
2419         }
2420
2421         if (arg_dry_run) {
2422                 log_notice("Refusing to repartition, please re-run with --dry-run=no.");
2423                 return 0;
2424         }
2425
2426         log_info("Applying changes.");
2427
2428         if (from_scratch) {
2429                 r = context_discard_range(context, 0, context->total);
2430                 if (r == -EOPNOTSUPP)
2431                         log_info("Storage does not support discarding, not discarding entire block device data.");
2432                 else if (r < 0)
2433                         return log_error_errno(r, "Failed to discard entire block device: %m");
2434                 else if (r > 0)
2435                         log_info("Discarded entire block device.");
2436         }
2437
2438         r = fdisk_get_partitions(context->fdisk_context, &original_table);
2439         if (r < 0)
2440                 return log_error_errno(r, "Failed to acquire partition table: %m");
2441
2442         /* Wipe fs signatures and discard sectors where the new partitions are going to be placed and in the
2443          * gaps between partitions, just to be sure. */
2444         r = context_wipe_and_discard(context, from_scratch);
2445         if (r < 0)
2446                 return r;
2447
2448         r = context_copy_blocks(context);
2449         if (r < 0)
2450                 return r;
2451
2452         LIST_FOREACH(partitions, p, context->partitions) {
2453                 if (p->dropped)
2454                         continue;
2455
2456                 assert(p->new_size != UINT64_MAX);
2457                 assert(p->offset != UINT64_MAX);
2458                 assert(p->partno != UINT64_MAX);
2459
2460                 if (PARTITION_EXISTS(p)) {
2461                         bool changed = false;
2462
2463                         assert(p->current_partition);
2464
2465                         if (p->new_size != p->current_size) {
2466                                 assert(p->new_size >= p->current_size);
2467                                 assert(p->new_size % 512 == 0);
2468
2469                                 r = fdisk_partition_size_explicit(p->current_partition, true);
2470                                 if (r < 0)
2471                                         return log_error_errno(r, "Failed to enable explicit sizing: %m");
2472
2473                                 r = fdisk_partition_set_size(p->current_partition, p->new_size / 512);
2474                                 if (r < 0)
2475                                         return log_error_errno(r, "Failed to grow partition: %m");
2476
2477                                 log_info("Growing existing partition %" PRIu64 ".", p->partno);
2478                                 changed = true;
2479                         }
2480
2481                         if (!sd_id128_equal(p->new_uuid, p->current_uuid)) {
2482                                 char buf[ID128_UUID_STRING_MAX];
2483
2484                                 assert(!sd_id128_is_null(p->new_uuid));
2485
2486                                 r = fdisk_partition_set_uuid(p->current_partition, id128_to_uuid_string(p->new_uuid, buf));
2487                                 if (r < 0)
2488                                         return log_error_errno(r, "Failed to set partition UUID: %m");
2489
2490                                 log_info("Initializing UUID of existing partition %" PRIu64 ".", p->partno);
2491                                 changed = true;
2492                         }
2493
2494                         if (!streq_ptr(p->new_label, p->current_label)) {
2495                                 assert(!isempty(p->new_label));
2496
2497                                 r = fdisk_partition_set_name(p->current_partition, p->new_label);
2498                                 if (r < 0)
2499                                         return log_error_errno(r, "Failed to set partition label: %m");
2500
2501                                 log_info("Setting partition label of existing partition %" PRIu64 ".", p->partno);
2502                                 changed = true;
2503                         }
2504
2505                         if (changed) {
2506                                 assert(!PARTITION_IS_FOREIGN(p)); /* never touch foreign partitions */
2507
2508                                 r = fdisk_set_partition(context->fdisk_context, p->partno, p->current_partition);
2509                                 if (r < 0)
2510                                         return log_error_errno(r, "Failed to update partition: %m");
2511                         }
2512                 } else {
2513                         _cleanup_(fdisk_unref_partitionp) struct fdisk_partition *q = NULL;
2514                         _cleanup_(fdisk_unref_parttypep) struct fdisk_parttype *t = NULL;
2515                         char ids[ID128_UUID_STRING_MAX];
2516
2517                         assert(!p->new_partition);
2518                         assert(p->offset % 512 == 0);
2519                         assert(p->new_size % 512 == 0);
2520                         assert(!sd_id128_is_null(p->new_uuid));
2521                         assert(!isempty(p->new_label));
2522
2523                         t = fdisk_new_parttype();
2524                         if (!t)
2525                                 return log_oom();
2526
2527                         r = fdisk_parttype_set_typestr(t, id128_to_uuid_string(p->type_uuid, ids));
2528                         if (r < 0)
2529                                 return log_error_errno(r, "Failed to initialize partition type: %m");
2530
2531                         q = fdisk_new_partition();
2532                         if (!q)
2533                                 return log_oom();
2534
2535                         r = fdisk_partition_set_type(q, t);
2536                         if (r < 0)
2537                                 return log_error_errno(r, "Failed to set partition type: %m");
2538
2539                         r = fdisk_partition_size_explicit(q, true);
2540                         if (r < 0)
2541                                 return log_error_errno(r, "Failed to enable explicit sizing: %m");
2542
2543                         r = fdisk_partition_set_start(q, p->offset / 512);
2544                         if (r < 0)
2545                                 return log_error_errno(r, "Failed to position partition: %m");
2546
2547                         r = fdisk_partition_set_size(q, p->new_size / 512);
2548                         if (r < 0)
2549                                 return log_error_errno(r, "Failed to grow partition: %m");
2550
2551                         r = fdisk_partition_set_partno(q, p->partno);
2552                         if (r < 0)
2553                                 return log_error_errno(r, "Failed to set partition number: %m");
2554
2555                         r = fdisk_partition_set_uuid(q, id128_to_uuid_string(p->new_uuid, ids));
2556                         if (r < 0)
2557                                 return log_error_errno(r, "Failed to set partition UUID: %m");
2558
2559                         r = fdisk_partition_set_name(q, p->new_label);
2560                         if (r < 0)
2561                                 return log_error_errno(r, "Failed to set partition label: %m");
2562
2563                         log_info("Creating new partition %" PRIu64 ".", p->partno);
2564
2565                         r = fdisk_add_partition(context->fdisk_context, q, NULL);
2566                         if (r < 0)
2567                                 return log_error_errno(r, "Failed to add partition: %m");
2568
2569                         assert(!p->new_partition);
2570                         p->new_partition = TAKE_PTR(q);
2571                 }
2572         }
2573
2574         log_info("Writing new partition table.");
2575
2576         r = fdisk_write_disklabel(context->fdisk_context);
2577         if (r < 0)
2578                 return log_error_errno(r, "Failed to write partition table: %m");
2579
2580         capable = device_kernel_partitions_supported(fdisk_get_devfd(context->fdisk_context));
2581         if (capable == -ENOTBLK)
2582                 log_debug("Not telling kernel to reread partition table, since we are not operating on a block device.");
2583         else if (capable < 0)
2584                 return capable;
2585         else if (capable > 0) {
2586                 log_info("Telling kernel to reread partition table.");
2587
2588                 if (from_scratch)
2589                         r = fdisk_reread_partition_table(context->fdisk_context);
2590                 else
2591                         r = fdisk_reread_changes(context->fdisk_context, original_table);
2592                 if (r < 0)
2593                         return log_error_errno(r, "Failed to reread partition table: %m");
2594         } else
2595                 log_notice("Not telling kernel to reread partition table, because selected image does not support kernel partition block devices.");
2596
2597         log_info("All done.");
2598
2599         return 0;
2600 }
2601
2602 static int context_read_seed(Context *context, const char *root) {
2603         int r;
2604
2605         assert(context);
2606
2607         if (!sd_id128_is_null(context->seed))
2608                 return 0;
2609
2610         if (!arg_randomize) {
2611                 _cleanup_close_ int fd = -1;
2612
2613                 fd = chase_symlinks_and_open("/etc/machine-id", root, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC, NULL);
2614                 if (fd == -ENOENT)
2615                         log_info("No machine ID set, using randomized partition UUIDs.");
2616                 else if (fd < 0)
2617                         return log_error_errno(fd, "Failed to determine machine ID of image: %m");
2618                 else {
2619                         r = id128_read_fd(fd, ID128_PLAIN, &context->seed);
2620                         if (r == -ENOMEDIUM)
2621                                 log_info("No machine ID set, using randomized partition UUIDs.");
2622                         else if (r < 0)
2623                                 return log_error_errno(r, "Failed to parse machine ID of image: %m");
2624
2625                         return 0;
2626                 }
2627         }
2628
2629         r = sd_id128_randomize(&context->seed);
2630         if (r < 0)
2631                 return log_error_errno(r, "Failed to generate randomized seed: %m");
2632
2633         return 0;
2634 }
2635
2636 static int context_factory_reset(Context *context, bool from_scratch) {
2637         Partition *p;
2638         size_t n = 0;
2639         int r;
2640
2641         assert(context);
2642
2643         if (arg_factory_reset <= 0)
2644                 return 0;
2645
2646         if (from_scratch) /* Nothing to reset if we start from scratch */
2647                 return 0;
2648
2649         if (arg_dry_run) {
2650                 log_notice("Refusing to factory reset, please re-run with --dry-run=no.");
2651                 return 0;
2652         }
2653
2654         log_info("Applying factory reset.");
2655
2656         LIST_FOREACH(partitions, p, context->partitions) {
2657
2658                 if (!p->factory_reset || !PARTITION_EXISTS(p))
2659                         continue;
2660
2661                 assert(p->partno != UINT64_MAX);
2662
2663                 log_info("Removing partition %" PRIu64 " for factory reset.", p->partno);
2664
2665                 r = fdisk_delete_partition(context->fdisk_context, p->partno);
2666                 if (r < 0)
2667                         return log_error_errno(r, "Failed to remove partition %" PRIu64 ": %m", p->partno);
2668
2669                 n++;
2670         }
2671
2672         if (n == 0) {
2673                 log_info("Factory reset requested, but no partitions to delete found.");
2674                 return 0;
2675         }
2676
2677         r = fdisk_write_disklabel(context->fdisk_context);
2678         if (r < 0)
2679                 return log_error_errno(r, "Failed to write disk label: %m");
2680
2681         log_info("Successfully deleted %zu partitions.", n);
2682         return 1;
2683 }
2684
2685 static int context_can_factory_reset(Context *context) {
2686         Partition *p;
2687
2688         assert(context);
2689
2690         LIST_FOREACH(partitions, p, context->partitions)
2691                 if (p->factory_reset && PARTITION_EXISTS(p))
2692                         return true;
2693
2694         return false;
2695 }
2696
2697 static int context_open_copy_block_paths(Context *context) {
2698         Partition *p;
2699         int r;
2700
2701         assert(context);
2702
2703         LIST_FOREACH(partitions, p, context->partitions) {
2704                 _cleanup_close_ int source_fd = -1;
2705                 uint64_t size;
2706                 struct stat st;
2707
2708                 assert(p->copy_blocks_fd < 0);
2709                 assert(p->copy_blocks_size == UINT64_MAX);
2710
2711                 if (PARTITION_EXISTS(p)) /* Never copy over partitions that already exist! */
2712                         continue;
2713
2714                 if (!p->copy_blocks_path)
2715                         continue;
2716
2717                 source_fd = open(p->copy_blocks_path, O_RDONLY|O_CLOEXEC|O_NOCTTY);
2718                 if (source_fd < 0)
2719                         return log_error_errno(errno, "Failed to open block copy file '%s': %m", p->copy_blocks_path);
2720
2721                 if (fstat(source_fd, &st) < 0)
2722                         return log_error_errno(errno, "Failed to stat block copy file '%s': %m", p->copy_blocks_path);
2723
2724                 if (S_ISDIR(st.st_mode)) {
2725                         _cleanup_free_ char *bdev = NULL;
2726
2727                         /* If the file is a directory, automatically find the backing block device */
2728
2729                         if (major(st.st_dev) != 0)
2730                                 r = device_path_make_major_minor(S_IFBLK, st.st_dev, &bdev);
2731                         else {
2732                                 dev_t devt;
2733
2734                                 /* Special support for btrfs */
2735
2736                                 r = btrfs_get_block_device_fd(source_fd, &devt);
2737                                 if (r < 0)
2738                                         return log_error_errno(r, "Unable to determine backing block device of '%s': %m", p->copy_blocks_path);
2739
2740                                 r = device_path_make_major_minor(S_IFBLK, devt, &bdev);
2741                         }
2742                         if (r < 0)
2743                                 return log_error_errno(r, "Failed to determine block device path for block device backing '%s': %m", p->copy_blocks_path);
2744
2745                         safe_close(source_fd);
2746
2747                         source_fd = open(bdev, O_RDONLY|O_CLOEXEC|O_NOCTTY);
2748                         if (source_fd < 0)
2749                                 return log_error_errno(errno, "Failed to open block device '%s': %m", bdev);
2750
2751                         if (fstat(source_fd, &st) < 0)
2752                                 return log_error_errno(errno, "Failed to stat block device '%s': %m", bdev);
2753
2754                         if (!S_ISBLK(st.st_mode))
2755                                 return log_error_errno(SYNTHETIC_ERRNO(ENOTBLK), "Block device '%s' is not actually a block device, refusing.", bdev);
2756                 }
2757
2758                 if (S_ISREG(st.st_mode))
2759                         size = st.st_size;
2760                 else if (S_ISBLK(st.st_mode)) {
2761                         if (ioctl(source_fd, BLKGETSIZE64, &size) != 0)
2762                                 return log_error_errno(errno, "Failed to determine size of block device to copy from: %m");
2763                 } else
2764                         return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Specified path to copy blocks from '%s' is not a regular file, block device or directory, refusing: %m", p->copy_blocks_path);
2765
2766                 if (size <= 0)
2767                         return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has zero size, refusing.", p->copy_blocks_path);
2768                 if (size % 512 != 0)
2769                         return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has size that is not multiple of 512, refusing.", p->copy_blocks_path);
2770
2771                 p->copy_blocks_fd = TAKE_FD(source_fd);
2772                 p->copy_blocks_size = size;
2773         }
2774
2775         return 0;
2776 }
2777
2778 static int help(void) {
2779         _cleanup_free_ char *link = NULL;
2780         int r;
2781
2782         r = terminal_urlify_man("systemd-repart", "1", &link);
2783         if (r < 0)
2784                 return log_oom();
2785
2786         printf("%s [OPTIONS...] [DEVICE]\n"
2787                "\n%sGrow and add partitions to partition table.%s\n\n"
2788                "  -h --help               Show this help\n"
2789                "     --version            Show package version\n"
2790                "     --dry-run=BOOL       Whether to run dry-run operation\n"
2791                "     --empty=MODE         One of refuse, allow, require, force, create; controls\n"
2792                "                          how to handle empty disks lacking partition tables\n"
2793                "     --discard=BOOL       Whether to discard backing blocks for new partitions\n"
2794                "     --pretty=BOOL        Whether to show pretty summary before executing operation\n"
2795                "     --factory-reset=BOOL Whether to remove data partitions before recreating\n"
2796                "                          them\n"
2797                "     --can-factory-reset  Test whether factory reset is defined\n"
2798                "     --root=PATH          Operate relative to root path\n"
2799                "     --definitions=DIR    Find partitions in specified directory\n"
2800                "     --seed=UUID          128bit seed UUID to derive all UUIDs from\n"
2801                "     --size=BYTES         Grow loopback file to specified size\n"
2802                "\nSee the %s for details.\n"
2803                , program_invocation_short_name
2804                , ansi_highlight(), ansi_normal()
2805                , link
2806         );
2807
2808         return 0;
2809 }
2810
2811 static int parse_argv(int argc, char *argv[]) {
2812
2813         enum {
2814                 ARG_VERSION = 0x100,
2815                 ARG_DRY_RUN,
2816                 ARG_EMPTY,
2817                 ARG_DISCARD,
2818                 ARG_FACTORY_RESET,
2819                 ARG_CAN_FACTORY_RESET,
2820                 ARG_ROOT,
2821                 ARG_SEED,
2822                 ARG_PRETTY,
2823                 ARG_DEFINITIONS,
2824                 ARG_SIZE,
2825         };
2826
2827         static const struct option options[] = {
2828                 { "help",              no_argument,       NULL, 'h'                   },
2829                 { "version",           no_argument,       NULL, ARG_VERSION           },
2830                 { "dry-run",           required_argument, NULL, ARG_DRY_RUN           },
2831                 { "empty",             required_argument, NULL, ARG_EMPTY             },
2832                 { "discard",           required_argument, NULL, ARG_DISCARD           },
2833                 { "factory-reset",     required_argument, NULL, ARG_FACTORY_RESET     },
2834                 { "can-factory-reset", no_argument,       NULL, ARG_CAN_FACTORY_RESET },
2835                 { "root",              required_argument, NULL, ARG_ROOT              },
2836                 { "seed",              required_argument, NULL, ARG_SEED              },
2837                 { "pretty",            required_argument, NULL, ARG_PRETTY            },
2838                 { "definitions",       required_argument, NULL, ARG_DEFINITIONS       },
2839                 { "size",              required_argument, NULL, ARG_SIZE              },
2840                 {}
2841         };
2842
2843         int c, r, dry_run = -1;
2844
2845         assert(argc >= 0);
2846         assert(argv);
2847
2848         while ((c = getopt_long(argc, argv, "h", options, NULL)) >= 0)
2849
2850                 switch (c) {
2851
2852                 case 'h':
2853                         return help();
2854
2855                 case ARG_VERSION:
2856                         return version();
2857
2858                 case ARG_DRY_RUN:
2859                         r = parse_boolean(optarg);
2860                         if (r < 0)
2861                                 return log_error_errno(r, "Failed to parse --dry-run= parameter: %s", optarg);
2862
2863                         dry_run = r;
2864                         break;
2865
2866                 case ARG_EMPTY:
2867                         if (isempty(optarg) || streq(optarg, "refuse"))
2868                                 arg_empty = EMPTY_REFUSE;
2869                         else if (streq(optarg, "allow"))
2870                                 arg_empty = EMPTY_ALLOW;
2871                         else if (streq(optarg, "require"))
2872                                 arg_empty = EMPTY_REQUIRE;
2873                         else if (streq(optarg, "force"))
2874                                 arg_empty = EMPTY_FORCE;
2875                         else if (streq(optarg, "create")) {
2876                                 arg_empty = EMPTY_CREATE;
2877
2878                                 if (dry_run < 0)
2879                                         dry_run = false; /* Imply --dry-run=no if we create the loopback file
2880                                                           * anew. After all we cannot really break anyone's
2881                                                           * partition tables that way. */
2882                         } else
2883                                 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
2884                                                        "Failed to parse --empty= parameter: %s", optarg);
2885                         break;
2886
2887                 case ARG_DISCARD:
2888                         r = parse_boolean(optarg);
2889                         if (r < 0)
2890                                 return log_error_errno(r, "Failed to parse --discard= parameter: %s", optarg);
2891
2892                         arg_discard = r;
2893                         break;
2894
2895                 case ARG_FACTORY_RESET:
2896                         r = parse_boolean(optarg);
2897                         if (r < 0)
2898                                 return log_error_errno(r, "Failed to parse --factory-reset= parameter: %s", optarg);
2899
2900                         arg_factory_reset = r;
2901                         break;
2902
2903                 case ARG_CAN_FACTORY_RESET:
2904                         arg_can_factory_reset = true;
2905                         break;
2906
2907                 case ARG_ROOT:
2908                         r = parse_path_argument_and_warn(optarg, false, &arg_root);
2909                         if (r < 0)
2910                                 return r;
2911                         break;
2912
2913                 case ARG_SEED:
2914                         if (isempty(optarg)) {
2915                                 arg_seed = SD_ID128_NULL;
2916                                 arg_randomize = false;
2917                         } else if (streq(optarg, "random"))
2918                                 arg_randomize = true;
2919                         else {
2920                                 r = sd_id128_from_string(optarg, &arg_seed);
2921                                 if (r < 0)
2922                                         return log_error_errno(r, "Failed to parse seed: %s", optarg);
2923
2924                                 arg_randomize = false;
2925                         }
2926
2927                         break;
2928
2929                 case ARG_PRETTY:
2930                         r = parse_boolean(optarg);
2931                         if (r < 0)
2932                                 return log_error_errno(r, "Failed to parse --pretty= parameter: %s", optarg);
2933
2934                         arg_pretty = r;
2935                         break;
2936
2937                 case ARG_DEFINITIONS:
2938                         r = parse_path_argument_and_warn(optarg, false, &arg_definitions);
2939                         if (r < 0)
2940                                 return r;
2941                         break;
2942
2943                 case ARG_SIZE: {
2944                         uint64_t parsed, rounded;
2945
2946                         r = parse_size(optarg, 1024, &parsed);
2947                         if (r < 0)
2948                                 return log_error_errno(r, "Failed to parse --size= parameter: %s", optarg);
2949
2950                         rounded = round_up_size(parsed, 4096);
2951                         if (rounded == 0)
2952                                 return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too small, refusing.");
2953                         if (rounded == UINT64_MAX)
2954                                 return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too large, refusing.");
2955
2956                         if (rounded != parsed)
2957                                 log_warning("Specified size is not a multiple of 4096, rounding up automatically. (%" PRIu64 " → %" PRIu64 ")",
2958                                             parsed, rounded);
2959
2960                         arg_size = rounded;
2961                         break;
2962                 }
2963
2964                 case '?':
2965                         return -EINVAL;
2966
2967                 default:
2968                         assert_not_reached("Unhandled option");
2969                 }
2970
2971         if (argc - optind > 1)
2972                 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
2973                                        "Expected at most one argument, the path to the block device.");
2974
2975         if (arg_factory_reset > 0 && IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE))
2976                 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
2977                                        "Combination of --factory-reset=yes and --empty=force/--empty=require/--empty=create is invalid.");
2978
2979         if (arg_can_factory_reset)
2980                 arg_dry_run = true; /* When --can-factory-reset is specified we don't make changes, hence
2981                                      * non-dry-run mode makes no sense. Thus, imply dry run mode so that we
2982                                      * open things strictly read-only. */
2983         else if (dry_run >= 0)
2984                 arg_dry_run = dry_run;
2985
2986         if (arg_empty == EMPTY_CREATE && arg_size == UINT64_MAX)
2987                 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
2988                                        "If --empty=create is specified, --size= must be specified, too.");
2989
2990         arg_node = argc > optind ? argv[optind] : NULL;
2991
2992         if (IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE) && !arg_node)
2993                 return log_error_errno(SYNTHETIC_ERRNO(EINVAL),
2994                                        "A path to a device node or loopback file must be specified when --empty=force, --empty=require or --empty=create are used.");
2995
2996         return 1;
2997 }
2998
2999 static int parse_proc_cmdline_factory_reset(void) {
3000         bool b;
3001         int r;
3002
3003         if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */
3004                 return 0;
3005
3006         if (!in_initrd()) /* Never honour kernel command line factory reset request outside of the initrd */
3007                 return 0;
3008
3009         r = proc_cmdline_get_bool("systemd.factory_reset", &b);
3010         if (r < 0)
3011                 return log_error_errno(r, "Failed to parse systemd.factory_reset kernel command line argument: %m");
3012         if (r > 0) {
3013                 arg_factory_reset = b;
3014
3015                 if (b)
3016                         log_notice("Honouring factory reset requested via kernel command line.");
3017         }
3018
3019         return 0;
3020 }
3021
3022 static int parse_efi_variable_factory_reset(void) {
3023         _cleanup_free_ char *value = NULL;
3024         int r;
3025
3026         if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */
3027                 return 0;
3028
3029         if (!in_initrd()) /* Never honour EFI variable factory reset request outside of the initrd */
3030                 return 0;
3031
3032         r = efi_get_variable_string(EFI_VENDOR_SYSTEMD, "FactoryReset", &value);
3033         if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r))
3034                 return 0;
3035         if (r < 0)
3036                 return log_error_errno(r, "Failed to read EFI variable FactoryReset: %m");
3037
3038         r = parse_boolean(value);
3039         if (r < 0)
3040                 return log_error_errno(r, "Failed to parse EFI variable FactoryReset: %m");
3041
3042         arg_factory_reset = r;
3043         if (r)
3044                 log_notice("Honouring factory reset requested via EFI variable FactoryReset: %m");
3045
3046         return 0;
3047 }
3048
3049 static int remove_efi_variable_factory_reset(void) {
3050         int r;
3051
3052         r = efi_set_variable(EFI_VENDOR_SYSTEMD, "FactoryReset", NULL, 0);
3053         if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r))
3054                 return 0;
3055         if (r < 0)
3056                 return log_error_errno(r, "Failed to remove EFI variable FactoryReset: %m");
3057
3058         log_info("Successfully unset EFI variable FactoryReset.");
3059         return 0;
3060 }
3061
3062 static int acquire_root_devno(const char *p, int mode, char **ret, int *ret_fd) {
3063         _cleanup_close_ int fd = -1;
3064         struct stat st;
3065         dev_t devno, fd_devno = (mode_t) -1;
3066         int r;
3067
3068         assert(p);
3069         assert(ret);
3070         assert(ret_fd);
3071
3072         fd = open(p, mode);
3073         if (fd < 0)
3074                 return -errno;
3075
3076         if (fstat(fd, &st) < 0)
3077                 return -errno;
3078
3079         if (S_ISREG(st.st_mode)) {
3080                 char *s;
3081
3082                 s = strdup(p);
3083                 if (!s)
3084                         return log_oom();
3085
3086                 *ret = s;
3087                 *ret_fd = TAKE_FD(fd);
3088
3089                 return 0;
3090         }
3091
3092         if (S_ISBLK(st.st_mode))
3093                 fd_devno = devno = st.st_rdev;
3094         else if (S_ISDIR(st.st_mode)) {
3095
3096                 devno = st.st_dev;
3097                 if (major(devno) == 0) {
3098                         r = btrfs_get_block_device_fd(fd, &devno);
3099                         if (r == -ENOTTY) /* not btrfs */
3100                                 return -ENODEV;
3101                         if (r < 0)
3102                                 return r;
3103                 }
3104         } else
3105                 return -ENOTBLK;
3106
3107         /* From dm-crypt to backing partition */
3108         r = block_get_originating(devno, &devno);
3109         if (r < 0)
3110                 log_debug_errno(r, "Failed to find underlying block device for '%s', ignoring: %m", p);
3111
3112         /* From partition to whole disk containing it */
3113         r = block_get_whole_disk(devno, &devno);
3114         if (r < 0)
3115                 log_debug_errno(r, "Failed to find whole disk block device for '%s', ignoring: %m", p);
3116
3117         r = device_path_make_canonical(S_IFBLK, devno, ret);
3118         if (r < 0)
3119                 return log_debug_errno(r, "Failed to determine canonical path for '%s': %m", p);
3120
3121         /* Only if we still lock at the same block device we can reuse the fd. Otherwise return an
3122          * invalidated fd. */
3123         *ret_fd = fd_devno != (mode_t) -1 && fd_devno == devno ? TAKE_FD(fd) : -1;
3124         return 0;
3125 }
3126
3127 static int find_root(char **ret, int *ret_fd) {
3128         const char *t;
3129         int r;
3130
3131         assert(ret);
3132         assert(ret_fd);
3133
3134         if (arg_node) {
3135                 if (arg_empty == EMPTY_CREATE) {
3136                         _cleanup_close_ int fd = -1;
3137                         _cleanup_free_ char *s = NULL;
3138
3139                         s = strdup(arg_node);
3140                         if (!s)
3141                                 return log_oom();
3142
3143                         fd = open(arg_node, O_RDONLY|O_CREAT|O_EXCL|O_CLOEXEC|O_NOFOLLOW, 0777);
3144                         if (fd < 0)
3145                                 return log_error_errno(errno, "Failed to create '%s': %m", arg_node);
3146
3147                         *ret = TAKE_PTR(s);
3148                         *ret_fd = TAKE_FD(fd);
3149                         return 0;
3150                 }
3151
3152                 r = acquire_root_devno(arg_node, O_RDONLY|O_CLOEXEC, ret, ret_fd);
3153                 if (r < 0)
3154                         return log_error_errno(r, "Failed to determine backing device of %s: %m", arg_node);
3155
3156                 return 0;
3157         }
3158
3159         assert(IN_SET(arg_empty, EMPTY_REFUSE, EMPTY_ALLOW));
3160
3161         /* Let's search for the root device. We look for two cases here: first in /, and then in /usr. The
3162          * latter we check for cases where / is a tmpfs and only /usr is an actual persistent block device
3163          * (think: volatile setups) */
3164
3165         FOREACH_STRING(t, "/", "/usr") {
3166                 _cleanup_free_ char *j = NULL;
3167                 const char *p;
3168
3169                 if (in_initrd()) {
3170                         j = path_join("/sysroot", t);
3171                         if (!j)
3172                                 return log_oom();
3173
3174                         p = j;
3175                 } else
3176                         p = t;
3177
3178                 r = acquire_root_devno(p, O_RDONLY|O_DIRECTORY|O_CLOEXEC, ret, ret_fd);
3179                 if (r < 0) {
3180                         if (r != -ENODEV)
3181                                 return log_error_errno(r, "Failed to determine backing device of %s: %m", p);
3182                 } else
3183                        &nbs