]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/resolve/resolved-dns-rr.c
Merge pull request #7411 from joergsteffens/tapechanger
[thirdparty/systemd.git] / src / resolve / resolved-dns-rr.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <math.h>
4
5 #include "alloc-util.h"
6 #include "dns-domain.h"
7 #include "dns-type.h"
8 #include "escape.h"
9 #include "hexdecoct.h"
10 #include "resolved-dns-dnssec.h"
11 #include "resolved-dns-packet.h"
12 #include "resolved-dns-rr.h"
13 #include "string-table.h"
14 #include "string-util.h"
15 #include "strv.h"
16 #include "terminal-util.h"
17
18 DnsResourceKey* dns_resource_key_new(uint16_t class, uint16_t type, const char *name) {
19 DnsResourceKey *k;
20 size_t l;
21
22 assert(name);
23
24 l = strlen(name);
25 k = malloc0(sizeof(DnsResourceKey) + l + 1);
26 if (!k)
27 return NULL;
28
29 k->n_ref = 1;
30 k->class = class;
31 k->type = type;
32
33 strcpy((char*) k + sizeof(DnsResourceKey), name);
34
35 return k;
36 }
37
38 DnsResourceKey* dns_resource_key_new_redirect(const DnsResourceKey *key, const DnsResourceRecord *cname) {
39 int r;
40
41 assert(key);
42 assert(cname);
43
44 assert(IN_SET(cname->key->type, DNS_TYPE_CNAME, DNS_TYPE_DNAME));
45
46 if (cname->key->type == DNS_TYPE_CNAME)
47 return dns_resource_key_new(key->class, key->type, cname->cname.name);
48 else {
49 DnsResourceKey *k;
50 char *destination = NULL;
51
52 r = dns_name_change_suffix(dns_resource_key_name(key), dns_resource_key_name(cname->key), cname->dname.name, &destination);
53 if (r < 0)
54 return NULL;
55 if (r == 0)
56 return dns_resource_key_ref((DnsResourceKey*) key);
57
58 k = dns_resource_key_new_consume(key->class, key->type, destination);
59 if (!k)
60 return mfree(destination);
61
62 return k;
63 }
64 }
65
66 int dns_resource_key_new_append_suffix(DnsResourceKey **ret, DnsResourceKey *key, char *name) {
67 DnsResourceKey *new_key;
68 char *joined;
69 int r;
70
71 assert(ret);
72 assert(key);
73 assert(name);
74
75 if (dns_name_is_root(name)) {
76 *ret = dns_resource_key_ref(key);
77 return 0;
78 }
79
80 r = dns_name_concat(dns_resource_key_name(key), name, &joined);
81 if (r < 0)
82 return r;
83
84 new_key = dns_resource_key_new_consume(key->class, key->type, joined);
85 if (!new_key) {
86 free(joined);
87 return -ENOMEM;
88 }
89
90 *ret = new_key;
91 return 0;
92 }
93
94 DnsResourceKey* dns_resource_key_new_consume(uint16_t class, uint16_t type, char *name) {
95 DnsResourceKey *k;
96
97 assert(name);
98
99 k = new0(DnsResourceKey, 1);
100 if (!k)
101 return NULL;
102
103 k->n_ref = 1;
104 k->class = class;
105 k->type = type;
106 k->_name = name;
107
108 return k;
109 }
110
111 DnsResourceKey* dns_resource_key_ref(DnsResourceKey *k) {
112
113 if (!k)
114 return NULL;
115
116 /* Static/const keys created with DNS_RESOURCE_KEY_CONST will
117 * set this to -1, they should not be reffed/unreffed */
118 assert(k->n_ref != (unsigned) -1);
119
120 assert(k->n_ref > 0);
121 k->n_ref++;
122
123 return k;
124 }
125
126 DnsResourceKey* dns_resource_key_unref(DnsResourceKey *k) {
127 if (!k)
128 return NULL;
129
130 assert(k->n_ref != (unsigned) -1);
131 assert(k->n_ref > 0);
132
133 if (k->n_ref == 1) {
134 free(k->_name);
135 free(k);
136 } else
137 k->n_ref--;
138
139 return NULL;
140 }
141
142 const char* dns_resource_key_name(const DnsResourceKey *key) {
143 const char *name;
144
145 if (!key)
146 return NULL;
147
148 if (key->_name)
149 name = key->_name;
150 else
151 name = (char*) key + sizeof(DnsResourceKey);
152
153 if (dns_name_is_root(name))
154 return ".";
155 else
156 return name;
157 }
158
159 bool dns_resource_key_is_address(const DnsResourceKey *key) {
160 assert(key);
161
162 /* Check if this is an A or AAAA resource key */
163
164 return key->class == DNS_CLASS_IN && IN_SET(key->type, DNS_TYPE_A, DNS_TYPE_AAAA);
165 }
166
167 bool dns_resource_key_is_dnssd_ptr(const DnsResourceKey *key) {
168 assert(key);
169
170 /* Check if this is a PTR resource key used in
171 Service Instance Enumeration as described in RFC6763 p4.1. */
172
173 if (key->type != DNS_TYPE_PTR)
174 return false;
175
176 return dns_name_endswith(dns_resource_key_name(key), "_tcp.local") ||
177 dns_name_endswith(dns_resource_key_name(key), "_udp.local");
178 }
179
180 int dns_resource_key_equal(const DnsResourceKey *a, const DnsResourceKey *b) {
181 int r;
182
183 if (a == b)
184 return 1;
185
186 r = dns_name_equal(dns_resource_key_name(a), dns_resource_key_name(b));
187 if (r <= 0)
188 return r;
189
190 if (a->class != b->class)
191 return 0;
192
193 if (a->type != b->type)
194 return 0;
195
196 return 1;
197 }
198
199 int dns_resource_key_match_rr(const DnsResourceKey *key, DnsResourceRecord *rr, const char *search_domain) {
200 int r;
201
202 assert(key);
203 assert(rr);
204
205 if (key == rr->key)
206 return 1;
207
208 /* Checks if an rr matches the specified key. If a search
209 * domain is specified, it will also be checked if the key
210 * with the search domain suffixed might match the RR. */
211
212 if (rr->key->class != key->class && key->class != DNS_CLASS_ANY)
213 return 0;
214
215 if (rr->key->type != key->type && key->type != DNS_TYPE_ANY)
216 return 0;
217
218 r = dns_name_equal(dns_resource_key_name(rr->key), dns_resource_key_name(key));
219 if (r != 0)
220 return r;
221
222 if (search_domain) {
223 _cleanup_free_ char *joined = NULL;
224
225 r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
226 if (r < 0)
227 return r;
228
229 return dns_name_equal(dns_resource_key_name(rr->key), joined);
230 }
231
232 return 0;
233 }
234
235 int dns_resource_key_match_cname_or_dname(const DnsResourceKey *key, const DnsResourceKey *cname, const char *search_domain) {
236 int r;
237
238 assert(key);
239 assert(cname);
240
241 if (cname->class != key->class && key->class != DNS_CLASS_ANY)
242 return 0;
243
244 if (cname->type == DNS_TYPE_CNAME)
245 r = dns_name_equal(dns_resource_key_name(key), dns_resource_key_name(cname));
246 else if (cname->type == DNS_TYPE_DNAME)
247 r = dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(cname));
248 else
249 return 0;
250
251 if (r != 0)
252 return r;
253
254 if (search_domain) {
255 _cleanup_free_ char *joined = NULL;
256
257 r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
258 if (r < 0)
259 return r;
260
261 if (cname->type == DNS_TYPE_CNAME)
262 return dns_name_equal(joined, dns_resource_key_name(cname));
263 else if (cname->type == DNS_TYPE_DNAME)
264 return dns_name_endswith(joined, dns_resource_key_name(cname));
265 }
266
267 return 0;
268 }
269
270 int dns_resource_key_match_soa(const DnsResourceKey *key, const DnsResourceKey *soa) {
271 assert(soa);
272 assert(key);
273
274 /* Checks whether 'soa' is a SOA record for the specified key. */
275
276 if (soa->class != key->class)
277 return 0;
278
279 if (soa->type != DNS_TYPE_SOA)
280 return 0;
281
282 return dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(soa));
283 }
284
285 static void dns_resource_key_hash_func(const void *i, struct siphash *state) {
286 const DnsResourceKey *k = i;
287
288 assert(k);
289
290 dns_name_hash_func(dns_resource_key_name(k), state);
291 siphash24_compress(&k->class, sizeof(k->class), state);
292 siphash24_compress(&k->type, sizeof(k->type), state);
293 }
294
295 static int dns_resource_key_compare_func(const void *a, const void *b) {
296 const DnsResourceKey *x = a, *y = b;
297 int ret;
298
299 ret = dns_name_compare_func(dns_resource_key_name(x), dns_resource_key_name(y));
300 if (ret != 0)
301 return ret;
302
303 ret = CMP(x->type, y->type);
304 if (ret != 0)
305 return ret;
306
307 ret = CMP(x->class, y->class);
308 if (ret != 0)
309 return ret;
310
311 return 0;
312 }
313
314 const struct hash_ops dns_resource_key_hash_ops = {
315 .hash = dns_resource_key_hash_func,
316 .compare = dns_resource_key_compare_func
317 };
318
319 char* dns_resource_key_to_string(const DnsResourceKey *key, char *buf, size_t buf_size) {
320 const char *c, *t;
321 char *ans = buf;
322
323 /* If we cannot convert the CLASS/TYPE into a known string,
324 use the format recommended by RFC 3597, Section 5. */
325
326 c = dns_class_to_string(key->class);
327 t = dns_type_to_string(key->type);
328
329 snprintf(buf, buf_size, "%s %s%s%.0u %s%s%.0u",
330 dns_resource_key_name(key),
331 strempty(c), c ? "" : "CLASS", c ? 0 : key->class,
332 strempty(t), t ? "" : "TYPE", t ? 0 : key->type);
333
334 return ans;
335 }
336
337 bool dns_resource_key_reduce(DnsResourceKey **a, DnsResourceKey **b) {
338 assert(a);
339 assert(b);
340
341 /* Try to replace one RR key by another if they are identical, thus saving a bit of memory. Note that we do
342 * this only for RR keys, not for RRs themselves, as they carry a lot of additional metadata (where they come
343 * from, validity data, and suchlike), and cannot be replaced so easily by other RRs that have the same
344 * superficial data. */
345
346 if (!*a)
347 return false;
348 if (!*b)
349 return false;
350
351 /* We refuse merging const keys */
352 if ((*a)->n_ref == (unsigned) -1)
353 return false;
354 if ((*b)->n_ref == (unsigned) -1)
355 return false;
356
357 /* Already the same? */
358 if (*a == *b)
359 return true;
360
361 /* Are they really identical? */
362 if (dns_resource_key_equal(*a, *b) <= 0)
363 return false;
364
365 /* Keep the one which already has more references. */
366 if ((*a)->n_ref > (*b)->n_ref) {
367 dns_resource_key_unref(*b);
368 *b = dns_resource_key_ref(*a);
369 } else {
370 dns_resource_key_unref(*a);
371 *a = dns_resource_key_ref(*b);
372 }
373
374 return true;
375 }
376
377 DnsResourceRecord* dns_resource_record_new(DnsResourceKey *key) {
378 DnsResourceRecord *rr;
379
380 rr = new0(DnsResourceRecord, 1);
381 if (!rr)
382 return NULL;
383
384 rr->n_ref = 1;
385 rr->key = dns_resource_key_ref(key);
386 rr->expiry = USEC_INFINITY;
387 rr->n_skip_labels_signer = rr->n_skip_labels_source = (unsigned) -1;
388
389 return rr;
390 }
391
392 DnsResourceRecord* dns_resource_record_new_full(uint16_t class, uint16_t type, const char *name) {
393 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
394
395 key = dns_resource_key_new(class, type, name);
396 if (!key)
397 return NULL;
398
399 return dns_resource_record_new(key);
400 }
401
402 static DnsResourceRecord* dns_resource_record_free(DnsResourceRecord *rr) {
403 assert(rr);
404
405 if (rr->key) {
406 switch(rr->key->type) {
407
408 case DNS_TYPE_SRV:
409 free(rr->srv.name);
410 break;
411
412 case DNS_TYPE_PTR:
413 case DNS_TYPE_NS:
414 case DNS_TYPE_CNAME:
415 case DNS_TYPE_DNAME:
416 free(rr->ptr.name);
417 break;
418
419 case DNS_TYPE_HINFO:
420 free(rr->hinfo.cpu);
421 free(rr->hinfo.os);
422 break;
423
424 case DNS_TYPE_TXT:
425 case DNS_TYPE_SPF:
426 dns_txt_item_free_all(rr->txt.items);
427 break;
428
429 case DNS_TYPE_SOA:
430 free(rr->soa.mname);
431 free(rr->soa.rname);
432 break;
433
434 case DNS_TYPE_MX:
435 free(rr->mx.exchange);
436 break;
437
438 case DNS_TYPE_DS:
439 free(rr->ds.digest);
440 break;
441
442 case DNS_TYPE_SSHFP:
443 free(rr->sshfp.fingerprint);
444 break;
445
446 case DNS_TYPE_DNSKEY:
447 free(rr->dnskey.key);
448 break;
449
450 case DNS_TYPE_RRSIG:
451 free(rr->rrsig.signer);
452 free(rr->rrsig.signature);
453 break;
454
455 case DNS_TYPE_NSEC:
456 free(rr->nsec.next_domain_name);
457 bitmap_free(rr->nsec.types);
458 break;
459
460 case DNS_TYPE_NSEC3:
461 free(rr->nsec3.next_hashed_name);
462 free(rr->nsec3.salt);
463 bitmap_free(rr->nsec3.types);
464 break;
465
466 case DNS_TYPE_LOC:
467 case DNS_TYPE_A:
468 case DNS_TYPE_AAAA:
469 break;
470
471 case DNS_TYPE_TLSA:
472 free(rr->tlsa.data);
473 break;
474
475 case DNS_TYPE_CAA:
476 free(rr->caa.tag);
477 free(rr->caa.value);
478 break;
479
480 case DNS_TYPE_OPENPGPKEY:
481 default:
482 if (!rr->unparseable)
483 free(rr->generic.data);
484 }
485
486 if (rr->unparseable)
487 free(rr->generic.data);
488
489 free(rr->wire_format);
490 dns_resource_key_unref(rr->key);
491 }
492
493 free(rr->to_string);
494 return mfree(rr);
495 }
496
497 DEFINE_TRIVIAL_REF_UNREF_FUNC(DnsResourceRecord, dns_resource_record, dns_resource_record_free);
498
499 int dns_resource_record_new_reverse(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *hostname) {
500 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
501 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL;
502 _cleanup_free_ char *ptr = NULL;
503 int r;
504
505 assert(ret);
506 assert(address);
507 assert(hostname);
508
509 r = dns_name_reverse(family, address, &ptr);
510 if (r < 0)
511 return r;
512
513 key = dns_resource_key_new_consume(DNS_CLASS_IN, DNS_TYPE_PTR, ptr);
514 if (!key)
515 return -ENOMEM;
516
517 ptr = NULL;
518
519 rr = dns_resource_record_new(key);
520 if (!rr)
521 return -ENOMEM;
522
523 rr->ptr.name = strdup(hostname);
524 if (!rr->ptr.name)
525 return -ENOMEM;
526
527 *ret = TAKE_PTR(rr);
528
529 return 0;
530 }
531
532 int dns_resource_record_new_address(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *name) {
533 DnsResourceRecord *rr;
534
535 assert(ret);
536 assert(address);
537 assert(family);
538
539 if (family == AF_INET) {
540
541 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_A, name);
542 if (!rr)
543 return -ENOMEM;
544
545 rr->a.in_addr = address->in;
546
547 } else if (family == AF_INET6) {
548
549 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_AAAA, name);
550 if (!rr)
551 return -ENOMEM;
552
553 rr->aaaa.in6_addr = address->in6;
554 } else
555 return -EAFNOSUPPORT;
556
557 *ret = rr;
558
559 return 0;
560 }
561
562 #define FIELD_EQUAL(a, b, field) \
563 ((a).field ## _size == (b).field ## _size && \
564 memcmp((a).field, (b).field, (a).field ## _size) == 0)
565
566 int dns_resource_record_equal(const DnsResourceRecord *a, const DnsResourceRecord *b) {
567 int r;
568
569 assert(a);
570 assert(b);
571
572 if (a == b)
573 return 1;
574
575 r = dns_resource_key_equal(a->key, b->key);
576 if (r <= 0)
577 return r;
578
579 if (a->unparseable != b->unparseable)
580 return 0;
581
582 switch (a->unparseable ? _DNS_TYPE_INVALID : a->key->type) {
583
584 case DNS_TYPE_SRV:
585 r = dns_name_equal(a->srv.name, b->srv.name);
586 if (r <= 0)
587 return r;
588
589 return a->srv.priority == b->srv.priority &&
590 a->srv.weight == b->srv.weight &&
591 a->srv.port == b->srv.port;
592
593 case DNS_TYPE_PTR:
594 case DNS_TYPE_NS:
595 case DNS_TYPE_CNAME:
596 case DNS_TYPE_DNAME:
597 return dns_name_equal(a->ptr.name, b->ptr.name);
598
599 case DNS_TYPE_HINFO:
600 return strcaseeq(a->hinfo.cpu, b->hinfo.cpu) &&
601 strcaseeq(a->hinfo.os, b->hinfo.os);
602
603 case DNS_TYPE_SPF: /* exactly the same as TXT */
604 case DNS_TYPE_TXT:
605 return dns_txt_item_equal(a->txt.items, b->txt.items);
606
607 case DNS_TYPE_A:
608 return memcmp(&a->a.in_addr, &b->a.in_addr, sizeof(struct in_addr)) == 0;
609
610 case DNS_TYPE_AAAA:
611 return memcmp(&a->aaaa.in6_addr, &b->aaaa.in6_addr, sizeof(struct in6_addr)) == 0;
612
613 case DNS_TYPE_SOA:
614 r = dns_name_equal(a->soa.mname, b->soa.mname);
615 if (r <= 0)
616 return r;
617 r = dns_name_equal(a->soa.rname, b->soa.rname);
618 if (r <= 0)
619 return r;
620
621 return a->soa.serial == b->soa.serial &&
622 a->soa.refresh == b->soa.refresh &&
623 a->soa.retry == b->soa.retry &&
624 a->soa.expire == b->soa.expire &&
625 a->soa.minimum == b->soa.minimum;
626
627 case DNS_TYPE_MX:
628 if (a->mx.priority != b->mx.priority)
629 return 0;
630
631 return dns_name_equal(a->mx.exchange, b->mx.exchange);
632
633 case DNS_TYPE_LOC:
634 assert(a->loc.version == b->loc.version);
635
636 return a->loc.size == b->loc.size &&
637 a->loc.horiz_pre == b->loc.horiz_pre &&
638 a->loc.vert_pre == b->loc.vert_pre &&
639 a->loc.latitude == b->loc.latitude &&
640 a->loc.longitude == b->loc.longitude &&
641 a->loc.altitude == b->loc.altitude;
642
643 case DNS_TYPE_DS:
644 return a->ds.key_tag == b->ds.key_tag &&
645 a->ds.algorithm == b->ds.algorithm &&
646 a->ds.digest_type == b->ds.digest_type &&
647 FIELD_EQUAL(a->ds, b->ds, digest);
648
649 case DNS_TYPE_SSHFP:
650 return a->sshfp.algorithm == b->sshfp.algorithm &&
651 a->sshfp.fptype == b->sshfp.fptype &&
652 FIELD_EQUAL(a->sshfp, b->sshfp, fingerprint);
653
654 case DNS_TYPE_DNSKEY:
655 return a->dnskey.flags == b->dnskey.flags &&
656 a->dnskey.protocol == b->dnskey.protocol &&
657 a->dnskey.algorithm == b->dnskey.algorithm &&
658 FIELD_EQUAL(a->dnskey, b->dnskey, key);
659
660 case DNS_TYPE_RRSIG:
661 /* do the fast comparisons first */
662 return a->rrsig.type_covered == b->rrsig.type_covered &&
663 a->rrsig.algorithm == b->rrsig.algorithm &&
664 a->rrsig.labels == b->rrsig.labels &&
665 a->rrsig.original_ttl == b->rrsig.original_ttl &&
666 a->rrsig.expiration == b->rrsig.expiration &&
667 a->rrsig.inception == b->rrsig.inception &&
668 a->rrsig.key_tag == b->rrsig.key_tag &&
669 FIELD_EQUAL(a->rrsig, b->rrsig, signature) &&
670 dns_name_equal(a->rrsig.signer, b->rrsig.signer);
671
672 case DNS_TYPE_NSEC:
673 return dns_name_equal(a->nsec.next_domain_name, b->nsec.next_domain_name) &&
674 bitmap_equal(a->nsec.types, b->nsec.types);
675
676 case DNS_TYPE_NSEC3:
677 return a->nsec3.algorithm == b->nsec3.algorithm &&
678 a->nsec3.flags == b->nsec3.flags &&
679 a->nsec3.iterations == b->nsec3.iterations &&
680 FIELD_EQUAL(a->nsec3, b->nsec3, salt) &&
681 FIELD_EQUAL(a->nsec3, b->nsec3, next_hashed_name) &&
682 bitmap_equal(a->nsec3.types, b->nsec3.types);
683
684 case DNS_TYPE_TLSA:
685 return a->tlsa.cert_usage == b->tlsa.cert_usage &&
686 a->tlsa.selector == b->tlsa.selector &&
687 a->tlsa.matching_type == b->tlsa.matching_type &&
688 FIELD_EQUAL(a->tlsa, b->tlsa, data);
689
690 case DNS_TYPE_CAA:
691 return a->caa.flags == b->caa.flags &&
692 streq(a->caa.tag, b->caa.tag) &&
693 FIELD_EQUAL(a->caa, b->caa, value);
694
695 case DNS_TYPE_OPENPGPKEY:
696 default:
697 return FIELD_EQUAL(a->generic, b->generic, data);
698 }
699 }
700
701 static char* format_location(uint32_t latitude, uint32_t longitude, uint32_t altitude,
702 uint8_t size, uint8_t horiz_pre, uint8_t vert_pre) {
703 char *s;
704 char NS = latitude >= 1U<<31 ? 'N' : 'S';
705 char EW = longitude >= 1U<<31 ? 'E' : 'W';
706
707 int lat = latitude >= 1U<<31 ? (int) (latitude - (1U<<31)) : (int) ((1U<<31) - latitude);
708 int lon = longitude >= 1U<<31 ? (int) (longitude - (1U<<31)) : (int) ((1U<<31) - longitude);
709 double alt = altitude >= 10000000u ? altitude - 10000000u : -(double)(10000000u - altitude);
710 double siz = (size >> 4) * exp10((double) (size & 0xF));
711 double hor = (horiz_pre >> 4) * exp10((double) (horiz_pre & 0xF));
712 double ver = (vert_pre >> 4) * exp10((double) (vert_pre & 0xF));
713
714 if (asprintf(&s, "%d %d %.3f %c %d %d %.3f %c %.2fm %.2fm %.2fm %.2fm",
715 (lat / 60000 / 60),
716 (lat / 60000) % 60,
717 (lat % 60000) / 1000.,
718 NS,
719 (lon / 60000 / 60),
720 (lon / 60000) % 60,
721 (lon % 60000) / 1000.,
722 EW,
723 alt / 100.,
724 siz / 100.,
725 hor / 100.,
726 ver / 100.) < 0)
727 return NULL;
728
729 return s;
730 }
731
732 static int format_timestamp_dns(char *buf, size_t l, time_t sec) {
733 struct tm tm;
734
735 assert(buf);
736 assert(l > STRLEN("YYYYMMDDHHmmSS"));
737
738 if (!gmtime_r(&sec, &tm))
739 return -EINVAL;
740
741 if (strftime(buf, l, "%Y%m%d%H%M%S", &tm) <= 0)
742 return -EINVAL;
743
744 return 0;
745 }
746
747 static char *format_types(Bitmap *types) {
748 _cleanup_strv_free_ char **strv = NULL;
749 _cleanup_free_ char *str = NULL;
750 Iterator i;
751 unsigned type;
752 int r;
753
754 BITMAP_FOREACH(type, types, i) {
755 if (dns_type_to_string(type)) {
756 r = strv_extend(&strv, dns_type_to_string(type));
757 if (r < 0)
758 return NULL;
759 } else {
760 char *t;
761
762 r = asprintf(&t, "TYPE%u", type);
763 if (r < 0)
764 return NULL;
765
766 r = strv_consume(&strv, t);
767 if (r < 0)
768 return NULL;
769 }
770 }
771
772 str = strv_join(strv, " ");
773 if (!str)
774 return NULL;
775
776 return strjoin("( ", str, " )");
777 }
778
779 static char *format_txt(DnsTxtItem *first) {
780 DnsTxtItem *i;
781 size_t c = 1;
782 char *p, *s;
783
784 LIST_FOREACH(items, i, first)
785 c += i->length * 4 + 3;
786
787 p = s = new(char, c);
788 if (!s)
789 return NULL;
790
791 LIST_FOREACH(items, i, first) {
792 size_t j;
793
794 if (i != first)
795 *(p++) = ' ';
796
797 *(p++) = '"';
798
799 for (j = 0; j < i->length; j++) {
800 if (i->data[j] < ' ' || i->data[j] == '"' || i->data[j] >= 127) {
801 *(p++) = '\\';
802 *(p++) = '0' + (i->data[j] / 100);
803 *(p++) = '0' + ((i->data[j] / 10) % 10);
804 *(p++) = '0' + (i->data[j] % 10);
805 } else
806 *(p++) = i->data[j];
807 }
808
809 *(p++) = '"';
810 }
811
812 *p = 0;
813 return s;
814 }
815
816 const char *dns_resource_record_to_string(DnsResourceRecord *rr) {
817 _cleanup_free_ char *t = NULL;
818 char *s, k[DNS_RESOURCE_KEY_STRING_MAX];
819 int r;
820
821 assert(rr);
822
823 if (rr->to_string)
824 return rr->to_string;
825
826 dns_resource_key_to_string(rr->key, k, sizeof(k));
827
828 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
829
830 case DNS_TYPE_SRV:
831 r = asprintf(&s, "%s %u %u %u %s",
832 k,
833 rr->srv.priority,
834 rr->srv.weight,
835 rr->srv.port,
836 strna(rr->srv.name));
837 if (r < 0)
838 return NULL;
839 break;
840
841 case DNS_TYPE_PTR:
842 case DNS_TYPE_NS:
843 case DNS_TYPE_CNAME:
844 case DNS_TYPE_DNAME:
845 s = strjoin(k, " ", rr->ptr.name);
846 if (!s)
847 return NULL;
848
849 break;
850
851 case DNS_TYPE_HINFO:
852 s = strjoin(k, " ", rr->hinfo.cpu, " ", rr->hinfo.os);
853 if (!s)
854 return NULL;
855 break;
856
857 case DNS_TYPE_SPF: /* exactly the same as TXT */
858 case DNS_TYPE_TXT:
859 t = format_txt(rr->txt.items);
860 if (!t)
861 return NULL;
862
863 s = strjoin(k, " ", t);
864 if (!s)
865 return NULL;
866 break;
867
868 case DNS_TYPE_A: {
869 _cleanup_free_ char *x = NULL;
870
871 r = in_addr_to_string(AF_INET, (const union in_addr_union*) &rr->a.in_addr, &x);
872 if (r < 0)
873 return NULL;
874
875 s = strjoin(k, " ", x);
876 if (!s)
877 return NULL;
878 break;
879 }
880
881 case DNS_TYPE_AAAA:
882 r = in_addr_to_string(AF_INET6, (const union in_addr_union*) &rr->aaaa.in6_addr, &t);
883 if (r < 0)
884 return NULL;
885
886 s = strjoin(k, " ", t);
887 if (!s)
888 return NULL;
889 break;
890
891 case DNS_TYPE_SOA:
892 r = asprintf(&s, "%s %s %s %u %u %u %u %u",
893 k,
894 strna(rr->soa.mname),
895 strna(rr->soa.rname),
896 rr->soa.serial,
897 rr->soa.refresh,
898 rr->soa.retry,
899 rr->soa.expire,
900 rr->soa.minimum);
901 if (r < 0)
902 return NULL;
903 break;
904
905 case DNS_TYPE_MX:
906 r = asprintf(&s, "%s %u %s",
907 k,
908 rr->mx.priority,
909 rr->mx.exchange);
910 if (r < 0)
911 return NULL;
912 break;
913
914 case DNS_TYPE_LOC:
915 assert(rr->loc.version == 0);
916
917 t = format_location(rr->loc.latitude,
918 rr->loc.longitude,
919 rr->loc.altitude,
920 rr->loc.size,
921 rr->loc.horiz_pre,
922 rr->loc.vert_pre);
923 if (!t)
924 return NULL;
925
926 s = strjoin(k, " ", t);
927 if (!s)
928 return NULL;
929 break;
930
931 case DNS_TYPE_DS:
932 t = hexmem(rr->ds.digest, rr->ds.digest_size);
933 if (!t)
934 return NULL;
935
936 r = asprintf(&s, "%s %u %u %u %s",
937 k,
938 rr->ds.key_tag,
939 rr->ds.algorithm,
940 rr->ds.digest_type,
941 t);
942 if (r < 0)
943 return NULL;
944 break;
945
946 case DNS_TYPE_SSHFP:
947 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
948 if (!t)
949 return NULL;
950
951 r = asprintf(&s, "%s %u %u %s",
952 k,
953 rr->sshfp.algorithm,
954 rr->sshfp.fptype,
955 t);
956 if (r < 0)
957 return NULL;
958 break;
959
960 case DNS_TYPE_DNSKEY: {
961 _cleanup_free_ char *alg = NULL;
962 char *ss;
963 int n;
964 uint16_t key_tag;
965
966 key_tag = dnssec_keytag(rr, true);
967
968 r = dnssec_algorithm_to_string_alloc(rr->dnskey.algorithm, &alg);
969 if (r < 0)
970 return NULL;
971
972 r = asprintf(&s, "%s %u %u %s %n",
973 k,
974 rr->dnskey.flags,
975 rr->dnskey.protocol,
976 alg,
977 &n);
978 if (r < 0)
979 return NULL;
980
981 r = base64_append(&s, n,
982 rr->dnskey.key, rr->dnskey.key_size,
983 8, columns());
984 if (r < 0)
985 return NULL;
986
987 r = asprintf(&ss, "%s\n"
988 " -- Flags:%s%s%s\n"
989 " -- Key tag: %u",
990 s,
991 rr->dnskey.flags & DNSKEY_FLAG_SEP ? " SEP" : "",
992 rr->dnskey.flags & DNSKEY_FLAG_REVOKE ? " REVOKE" : "",
993 rr->dnskey.flags & DNSKEY_FLAG_ZONE_KEY ? " ZONE_KEY" : "",
994 key_tag);
995 if (r < 0)
996 return NULL;
997 free(s);
998 s = ss;
999
1000 break;
1001 }
1002
1003 case DNS_TYPE_RRSIG: {
1004 _cleanup_free_ char *alg = NULL;
1005 char expiration[STRLEN("YYYYMMDDHHmmSS") + 1], inception[STRLEN("YYYYMMDDHHmmSS") + 1];
1006 const char *type;
1007 int n;
1008
1009 type = dns_type_to_string(rr->rrsig.type_covered);
1010
1011 r = dnssec_algorithm_to_string_alloc(rr->rrsig.algorithm, &alg);
1012 if (r < 0)
1013 return NULL;
1014
1015 r = format_timestamp_dns(expiration, sizeof(expiration), rr->rrsig.expiration);
1016 if (r < 0)
1017 return NULL;
1018
1019 r = format_timestamp_dns(inception, sizeof(inception), rr->rrsig.inception);
1020 if (r < 0)
1021 return NULL;
1022
1023 /* TYPE?? follows
1024 * http://tools.ietf.org/html/rfc3597#section-5 */
1025
1026 r = asprintf(&s, "%s %s%.*u %s %u %u %s %s %u %s %n",
1027 k,
1028 type ?: "TYPE",
1029 type ? 0 : 1, type ? 0u : (unsigned) rr->rrsig.type_covered,
1030 alg,
1031 rr->rrsig.labels,
1032 rr->rrsig.original_ttl,
1033 expiration,
1034 inception,
1035 rr->rrsig.key_tag,
1036 rr->rrsig.signer,
1037 &n);
1038 if (r < 0)
1039 return NULL;
1040
1041 r = base64_append(&s, n,
1042 rr->rrsig.signature, rr->rrsig.signature_size,
1043 8, columns());
1044 if (r < 0)
1045 return NULL;
1046
1047 break;
1048 }
1049
1050 case DNS_TYPE_NSEC:
1051 t = format_types(rr->nsec.types);
1052 if (!t)
1053 return NULL;
1054
1055 r = asprintf(&s, "%s %s %s",
1056 k,
1057 rr->nsec.next_domain_name,
1058 t);
1059 if (r < 0)
1060 return NULL;
1061 break;
1062
1063 case DNS_TYPE_NSEC3: {
1064 _cleanup_free_ char *salt = NULL, *hash = NULL;
1065
1066 if (rr->nsec3.salt_size > 0) {
1067 salt = hexmem(rr->nsec3.salt, rr->nsec3.salt_size);
1068 if (!salt)
1069 return NULL;
1070 }
1071
1072 hash = base32hexmem(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, false);
1073 if (!hash)
1074 return NULL;
1075
1076 t = format_types(rr->nsec3.types);
1077 if (!t)
1078 return NULL;
1079
1080 r = asprintf(&s, "%s %"PRIu8" %"PRIu8" %"PRIu16" %s %s %s",
1081 k,
1082 rr->nsec3.algorithm,
1083 rr->nsec3.flags,
1084 rr->nsec3.iterations,
1085 rr->nsec3.salt_size > 0 ? salt : "-",
1086 hash,
1087 t);
1088 if (r < 0)
1089 return NULL;
1090
1091 break;
1092 }
1093
1094 case DNS_TYPE_TLSA: {
1095 const char *cert_usage, *selector, *matching_type;
1096
1097 cert_usage = tlsa_cert_usage_to_string(rr->tlsa.cert_usage);
1098 selector = tlsa_selector_to_string(rr->tlsa.selector);
1099 matching_type = tlsa_matching_type_to_string(rr->tlsa.matching_type);
1100
1101 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1102 if (!t)
1103 return NULL;
1104
1105 r = asprintf(&s,
1106 "%s %u %u %u %s\n"
1107 " -- Cert. usage: %s\n"
1108 " -- Selector: %s\n"
1109 " -- Matching type: %s",
1110 k,
1111 rr->tlsa.cert_usage,
1112 rr->tlsa.selector,
1113 rr->tlsa.matching_type,
1114 t,
1115 cert_usage,
1116 selector,
1117 matching_type);
1118 if (r < 0)
1119 return NULL;
1120
1121 break;
1122 }
1123
1124 case DNS_TYPE_CAA: {
1125 _cleanup_free_ char *value;
1126
1127 value = octescape(rr->caa.value, rr->caa.value_size);
1128 if (!value)
1129 return NULL;
1130
1131 r = asprintf(&s, "%s %u %s \"%s\"%s%s%s%.0u",
1132 k,
1133 rr->caa.flags,
1134 rr->caa.tag,
1135 value,
1136 rr->caa.flags ? "\n -- Flags:" : "",
1137 rr->caa.flags & CAA_FLAG_CRITICAL ? " critical" : "",
1138 rr->caa.flags & ~CAA_FLAG_CRITICAL ? " " : "",
1139 rr->caa.flags & ~CAA_FLAG_CRITICAL);
1140 if (r < 0)
1141 return NULL;
1142
1143 break;
1144 }
1145
1146 case DNS_TYPE_OPENPGPKEY: {
1147 int n;
1148
1149 r = asprintf(&s, "%s %n",
1150 k,
1151 &n);
1152 if (r < 0)
1153 return NULL;
1154
1155 r = base64_append(&s, n,
1156 rr->generic.data, rr->generic.data_size,
1157 8, columns());
1158 if (r < 0)
1159 return NULL;
1160 break;
1161 }
1162
1163 default:
1164 t = hexmem(rr->generic.data, rr->generic.data_size);
1165 if (!t)
1166 return NULL;
1167
1168 /* Format as documented in RFC 3597, Section 5 */
1169 r = asprintf(&s, "%s \\# %zu %s", k, rr->generic.data_size, t);
1170 if (r < 0)
1171 return NULL;
1172 break;
1173 }
1174
1175 rr->to_string = s;
1176 return s;
1177 }
1178
1179 ssize_t dns_resource_record_payload(DnsResourceRecord *rr, void **out) {
1180 assert(rr);
1181 assert(out);
1182
1183 switch(rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1184 case DNS_TYPE_SRV:
1185 case DNS_TYPE_PTR:
1186 case DNS_TYPE_NS:
1187 case DNS_TYPE_CNAME:
1188 case DNS_TYPE_DNAME:
1189 case DNS_TYPE_HINFO:
1190 case DNS_TYPE_SPF:
1191 case DNS_TYPE_TXT:
1192 case DNS_TYPE_A:
1193 case DNS_TYPE_AAAA:
1194 case DNS_TYPE_SOA:
1195 case DNS_TYPE_MX:
1196 case DNS_TYPE_LOC:
1197 case DNS_TYPE_DS:
1198 case DNS_TYPE_DNSKEY:
1199 case DNS_TYPE_RRSIG:
1200 case DNS_TYPE_NSEC:
1201 case DNS_TYPE_NSEC3:
1202 return -EINVAL;
1203
1204 case DNS_TYPE_SSHFP:
1205 *out = rr->sshfp.fingerprint;
1206 return rr->sshfp.fingerprint_size;
1207
1208 case DNS_TYPE_TLSA:
1209 *out = rr->tlsa.data;
1210 return rr->tlsa.data_size;
1211
1212 case DNS_TYPE_OPENPGPKEY:
1213 default:
1214 *out = rr->generic.data;
1215 return rr->generic.data_size;
1216 }
1217 }
1218
1219 int dns_resource_record_to_wire_format(DnsResourceRecord *rr, bool canonical) {
1220
1221 DnsPacket packet = {
1222 .n_ref = 1,
1223 .protocol = DNS_PROTOCOL_DNS,
1224 .on_stack = true,
1225 .refuse_compression = true,
1226 .canonical_form = canonical,
1227 };
1228
1229 size_t start, rds;
1230 int r;
1231
1232 assert(rr);
1233
1234 /* Generates the RR in wire-format, optionally in the
1235 * canonical form as discussed in the DNSSEC RFC 4034, Section
1236 * 6.2. We allocate a throw-away DnsPacket object on the stack
1237 * here, because we need some book-keeping for memory
1238 * management, and can reuse the DnsPacket serializer, that
1239 * can generate the canonical form, too, but also knows label
1240 * compression and suchlike. */
1241
1242 if (rr->wire_format && rr->wire_format_canonical == canonical)
1243 return 0;
1244
1245 r = dns_packet_append_rr(&packet, rr, 0, &start, &rds);
1246 if (r < 0)
1247 return r;
1248
1249 assert(start == 0);
1250 assert(packet._data);
1251
1252 free(rr->wire_format);
1253 rr->wire_format = packet._data;
1254 rr->wire_format_size = packet.size;
1255 rr->wire_format_rdata_offset = rds;
1256 rr->wire_format_canonical = canonical;
1257
1258 packet._data = NULL;
1259 dns_packet_unref(&packet);
1260
1261 return 0;
1262 }
1263
1264 int dns_resource_record_signer(DnsResourceRecord *rr, const char **ret) {
1265 const char *n;
1266 int r;
1267
1268 assert(rr);
1269 assert(ret);
1270
1271 /* Returns the RRset's signer, if it is known. */
1272
1273 if (rr->n_skip_labels_signer == (unsigned) -1)
1274 return -ENODATA;
1275
1276 n = dns_resource_key_name(rr->key);
1277 r = dns_name_skip(n, rr->n_skip_labels_signer, &n);
1278 if (r < 0)
1279 return r;
1280 if (r == 0)
1281 return -EINVAL;
1282
1283 *ret = n;
1284 return 0;
1285 }
1286
1287 int dns_resource_record_source(DnsResourceRecord *rr, const char **ret) {
1288 const char *n;
1289 int r;
1290
1291 assert(rr);
1292 assert(ret);
1293
1294 /* Returns the RRset's synthesizing source, if it is known. */
1295
1296 if (rr->n_skip_labels_source == (unsigned) -1)
1297 return -ENODATA;
1298
1299 n = dns_resource_key_name(rr->key);
1300 r = dns_name_skip(n, rr->n_skip_labels_source, &n);
1301 if (r < 0)
1302 return r;
1303 if (r == 0)
1304 return -EINVAL;
1305
1306 *ret = n;
1307 return 0;
1308 }
1309
1310 int dns_resource_record_is_signer(DnsResourceRecord *rr, const char *zone) {
1311 const char *signer;
1312 int r;
1313
1314 assert(rr);
1315
1316 r = dns_resource_record_signer(rr, &signer);
1317 if (r < 0)
1318 return r;
1319
1320 return dns_name_equal(zone, signer);
1321 }
1322
1323 int dns_resource_record_is_synthetic(DnsResourceRecord *rr) {
1324 int r;
1325
1326 assert(rr);
1327
1328 /* Returns > 0 if the RR is generated from a wildcard, and is not the asterisk name itself */
1329
1330 if (rr->n_skip_labels_source == (unsigned) -1)
1331 return -ENODATA;
1332
1333 if (rr->n_skip_labels_source == 0)
1334 return 0;
1335
1336 if (rr->n_skip_labels_source > 1)
1337 return 1;
1338
1339 r = dns_name_startswith(dns_resource_key_name(rr->key), "*");
1340 if (r < 0)
1341 return r;
1342
1343 return !r;
1344 }
1345
1346 void dns_resource_record_hash_func(const void *i, struct siphash *state) {
1347 const DnsResourceRecord *rr = i;
1348
1349 assert(rr);
1350
1351 dns_resource_key_hash_func(rr->key, state);
1352
1353 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1354
1355 case DNS_TYPE_SRV:
1356 siphash24_compress(&rr->srv.priority, sizeof(rr->srv.priority), state);
1357 siphash24_compress(&rr->srv.weight, sizeof(rr->srv.weight), state);
1358 siphash24_compress(&rr->srv.port, sizeof(rr->srv.port), state);
1359 dns_name_hash_func(rr->srv.name, state);
1360 break;
1361
1362 case DNS_TYPE_PTR:
1363 case DNS_TYPE_NS:
1364 case DNS_TYPE_CNAME:
1365 case DNS_TYPE_DNAME:
1366 dns_name_hash_func(rr->ptr.name, state);
1367 break;
1368
1369 case DNS_TYPE_HINFO:
1370 string_hash_func(rr->hinfo.cpu, state);
1371 string_hash_func(rr->hinfo.os, state);
1372 break;
1373
1374 case DNS_TYPE_TXT:
1375 case DNS_TYPE_SPF: {
1376 DnsTxtItem *j;
1377
1378 LIST_FOREACH(items, j, rr->txt.items) {
1379 siphash24_compress(j->data, j->length, state);
1380
1381 /* Add an extra NUL byte, so that "a" followed by "b" doesn't result in the same hash as "ab"
1382 * followed by "". */
1383 siphash24_compress_byte(0, state);
1384 }
1385 break;
1386 }
1387
1388 case DNS_TYPE_A:
1389 siphash24_compress(&rr->a.in_addr, sizeof(rr->a.in_addr), state);
1390 break;
1391
1392 case DNS_TYPE_AAAA:
1393 siphash24_compress(&rr->aaaa.in6_addr, sizeof(rr->aaaa.in6_addr), state);
1394 break;
1395
1396 case DNS_TYPE_SOA:
1397 dns_name_hash_func(rr->soa.mname, state);
1398 dns_name_hash_func(rr->soa.rname, state);
1399 siphash24_compress(&rr->soa.serial, sizeof(rr->soa.serial), state);
1400 siphash24_compress(&rr->soa.refresh, sizeof(rr->soa.refresh), state);
1401 siphash24_compress(&rr->soa.retry, sizeof(rr->soa.retry), state);
1402 siphash24_compress(&rr->soa.expire, sizeof(rr->soa.expire), state);
1403 siphash24_compress(&rr->soa.minimum, sizeof(rr->soa.minimum), state);
1404 break;
1405
1406 case DNS_TYPE_MX:
1407 siphash24_compress(&rr->mx.priority, sizeof(rr->mx.priority), state);
1408 dns_name_hash_func(rr->mx.exchange, state);
1409 break;
1410
1411 case DNS_TYPE_LOC:
1412 siphash24_compress(&rr->loc.version, sizeof(rr->loc.version), state);
1413 siphash24_compress(&rr->loc.size, sizeof(rr->loc.size), state);
1414 siphash24_compress(&rr->loc.horiz_pre, sizeof(rr->loc.horiz_pre), state);
1415 siphash24_compress(&rr->loc.vert_pre, sizeof(rr->loc.vert_pre), state);
1416 siphash24_compress(&rr->loc.latitude, sizeof(rr->loc.latitude), state);
1417 siphash24_compress(&rr->loc.longitude, sizeof(rr->loc.longitude), state);
1418 siphash24_compress(&rr->loc.altitude, sizeof(rr->loc.altitude), state);
1419 break;
1420
1421 case DNS_TYPE_SSHFP:
1422 siphash24_compress(&rr->sshfp.algorithm, sizeof(rr->sshfp.algorithm), state);
1423 siphash24_compress(&rr->sshfp.fptype, sizeof(rr->sshfp.fptype), state);
1424 siphash24_compress(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size, state);
1425 break;
1426
1427 case DNS_TYPE_DNSKEY:
1428 siphash24_compress(&rr->dnskey.flags, sizeof(rr->dnskey.flags), state);
1429 siphash24_compress(&rr->dnskey.protocol, sizeof(rr->dnskey.protocol), state);
1430 siphash24_compress(&rr->dnskey.algorithm, sizeof(rr->dnskey.algorithm), state);
1431 siphash24_compress(rr->dnskey.key, rr->dnskey.key_size, state);
1432 break;
1433
1434 case DNS_TYPE_RRSIG:
1435 siphash24_compress(&rr->rrsig.type_covered, sizeof(rr->rrsig.type_covered), state);
1436 siphash24_compress(&rr->rrsig.algorithm, sizeof(rr->rrsig.algorithm), state);
1437 siphash24_compress(&rr->rrsig.labels, sizeof(rr->rrsig.labels), state);
1438 siphash24_compress(&rr->rrsig.original_ttl, sizeof(rr->rrsig.original_ttl), state);
1439 siphash24_compress(&rr->rrsig.expiration, sizeof(rr->rrsig.expiration), state);
1440 siphash24_compress(&rr->rrsig.inception, sizeof(rr->rrsig.inception), state);
1441 siphash24_compress(&rr->rrsig.key_tag, sizeof(rr->rrsig.key_tag), state);
1442 dns_name_hash_func(rr->rrsig.signer, state);
1443 siphash24_compress(rr->rrsig.signature, rr->rrsig.signature_size, state);
1444 break;
1445
1446 case DNS_TYPE_NSEC:
1447 dns_name_hash_func(rr->nsec.next_domain_name, state);
1448 /* FIXME: we leave out the type bitmap here. Hash
1449 * would be better if we'd take it into account
1450 * too. */
1451 break;
1452
1453 case DNS_TYPE_DS:
1454 siphash24_compress(&rr->ds.key_tag, sizeof(rr->ds.key_tag), state);
1455 siphash24_compress(&rr->ds.algorithm, sizeof(rr->ds.algorithm), state);
1456 siphash24_compress(&rr->ds.digest_type, sizeof(rr->ds.digest_type), state);
1457 siphash24_compress(rr->ds.digest, rr->ds.digest_size, state);
1458 break;
1459
1460 case DNS_TYPE_NSEC3:
1461 siphash24_compress(&rr->nsec3.algorithm, sizeof(rr->nsec3.algorithm), state);
1462 siphash24_compress(&rr->nsec3.flags, sizeof(rr->nsec3.flags), state);
1463 siphash24_compress(&rr->nsec3.iterations, sizeof(rr->nsec3.iterations), state);
1464 siphash24_compress(rr->nsec3.salt, rr->nsec3.salt_size, state);
1465 siphash24_compress(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, state);
1466 /* FIXME: We leave the bitmaps out */
1467 break;
1468
1469 case DNS_TYPE_TLSA:
1470 siphash24_compress(&rr->tlsa.cert_usage, sizeof(rr->tlsa.cert_usage), state);
1471 siphash24_compress(&rr->tlsa.selector, sizeof(rr->tlsa.selector), state);
1472 siphash24_compress(&rr->tlsa.matching_type, sizeof(rr->tlsa.matching_type), state);
1473 siphash24_compress(rr->tlsa.data, rr->tlsa.data_size, state);
1474 break;
1475
1476 case DNS_TYPE_CAA:
1477 siphash24_compress(&rr->caa.flags, sizeof(rr->caa.flags), state);
1478 string_hash_func(rr->caa.tag, state);
1479 siphash24_compress(rr->caa.value, rr->caa.value_size, state);
1480 break;
1481
1482 case DNS_TYPE_OPENPGPKEY:
1483 default:
1484 siphash24_compress(rr->generic.data, rr->generic.data_size, state);
1485 break;
1486 }
1487 }
1488
1489 static int dns_resource_record_compare_func(const void *a, const void *b) {
1490 const DnsResourceRecord *x = a, *y = b;
1491 int ret;
1492
1493 ret = dns_resource_key_compare_func(x->key, y->key);
1494 if (ret != 0)
1495 return ret;
1496
1497 if (dns_resource_record_equal(x, y))
1498 return 0;
1499
1500 /* We still use CMP() here, even though don't implement proper
1501 * ordering, since the hashtable doesn't need ordering anyway. */
1502 return CMP(x, y);
1503 }
1504
1505 const struct hash_ops dns_resource_record_hash_ops = {
1506 .hash = dns_resource_record_hash_func,
1507 .compare = dns_resource_record_compare_func,
1508 };
1509
1510 DnsResourceRecord *dns_resource_record_copy(DnsResourceRecord *rr) {
1511 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *copy = NULL;
1512 DnsResourceRecord *t;
1513
1514 assert(rr);
1515
1516 copy = dns_resource_record_new(rr->key);
1517 if (!copy)
1518 return NULL;
1519
1520 copy->ttl = rr->ttl;
1521 copy->expiry = rr->expiry;
1522 copy->n_skip_labels_signer = rr->n_skip_labels_signer;
1523 copy->n_skip_labels_source = rr->n_skip_labels_source;
1524 copy->unparseable = rr->unparseable;
1525
1526 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1527
1528 case DNS_TYPE_SRV:
1529 copy->srv.priority = rr->srv.priority;
1530 copy->srv.weight = rr->srv.weight;
1531 copy->srv.port = rr->srv.port;
1532 copy->srv.name = strdup(rr->srv.name);
1533 if (!copy->srv.name)
1534 return NULL;
1535 break;
1536
1537 case DNS_TYPE_PTR:
1538 case DNS_TYPE_NS:
1539 case DNS_TYPE_CNAME:
1540 case DNS_TYPE_DNAME:
1541 copy->ptr.name = strdup(rr->ptr.name);
1542 if (!copy->ptr.name)
1543 return NULL;
1544 break;
1545
1546 case DNS_TYPE_HINFO:
1547 copy->hinfo.cpu = strdup(rr->hinfo.cpu);
1548 if (!copy->hinfo.cpu)
1549 return NULL;
1550
1551 copy->hinfo.os = strdup(rr->hinfo.os);
1552 if (!copy->hinfo.os)
1553 return NULL;
1554 break;
1555
1556 case DNS_TYPE_TXT:
1557 case DNS_TYPE_SPF:
1558 copy->txt.items = dns_txt_item_copy(rr->txt.items);
1559 if (!copy->txt.items)
1560 return NULL;
1561 break;
1562
1563 case DNS_TYPE_A:
1564 copy->a = rr->a;
1565 break;
1566
1567 case DNS_TYPE_AAAA:
1568 copy->aaaa = rr->aaaa;
1569 break;
1570
1571 case DNS_TYPE_SOA:
1572 copy->soa.mname = strdup(rr->soa.mname);
1573 if (!copy->soa.mname)
1574 return NULL;
1575 copy->soa.rname = strdup(rr->soa.rname);
1576 if (!copy->soa.rname)
1577 return NULL;
1578 copy->soa.serial = rr->soa.serial;
1579 copy->soa.refresh = rr->soa.refresh;
1580 copy->soa.retry = rr->soa.retry;
1581 copy->soa.expire = rr->soa.expire;
1582 copy->soa.minimum = rr->soa.minimum;
1583 break;
1584
1585 case DNS_TYPE_MX:
1586 copy->mx.priority = rr->mx.priority;
1587 copy->mx.exchange = strdup(rr->mx.exchange);
1588 if (!copy->mx.exchange)
1589 return NULL;
1590 break;
1591
1592 case DNS_TYPE_LOC:
1593 copy->loc = rr->loc;
1594 break;
1595
1596 case DNS_TYPE_SSHFP:
1597 copy->sshfp.algorithm = rr->sshfp.algorithm;
1598 copy->sshfp.fptype = rr->sshfp.fptype;
1599 copy->sshfp.fingerprint = memdup(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1600 if (!copy->sshfp.fingerprint)
1601 return NULL;
1602 copy->sshfp.fingerprint_size = rr->sshfp.fingerprint_size;
1603 break;
1604
1605 case DNS_TYPE_DNSKEY:
1606 copy->dnskey.flags = rr->dnskey.flags;
1607 copy->dnskey.protocol = rr->dnskey.protocol;
1608 copy->dnskey.algorithm = rr->dnskey.algorithm;
1609 copy->dnskey.key = memdup(rr->dnskey.key, rr->dnskey.key_size);
1610 if (!copy->dnskey.key)
1611 return NULL;
1612 copy->dnskey.key_size = rr->dnskey.key_size;
1613 break;
1614
1615 case DNS_TYPE_RRSIG:
1616 copy->rrsig.type_covered = rr->rrsig.type_covered;
1617 copy->rrsig.algorithm = rr->rrsig.algorithm;
1618 copy->rrsig.labels = rr->rrsig.labels;
1619 copy->rrsig.original_ttl = rr->rrsig.original_ttl;
1620 copy->rrsig.expiration = rr->rrsig.expiration;
1621 copy->rrsig.inception = rr->rrsig.inception;
1622 copy->rrsig.key_tag = rr->rrsig.key_tag;
1623 copy->rrsig.signer = strdup(rr->rrsig.signer);
1624 if (!copy->rrsig.signer)
1625 return NULL;
1626 copy->rrsig.signature = memdup(rr->rrsig.signature, rr->rrsig.signature_size);
1627 if (!copy->rrsig.signature)
1628 return NULL;
1629 copy->rrsig.signature_size = rr->rrsig.signature_size;
1630 break;
1631
1632 case DNS_TYPE_NSEC:
1633 copy->nsec.next_domain_name = strdup(rr->nsec.next_domain_name);
1634 if (!copy->nsec.next_domain_name)
1635 return NULL;
1636 copy->nsec.types = bitmap_copy(rr->nsec.types);
1637 if (!copy->nsec.types)
1638 return NULL;
1639 break;
1640
1641 case DNS_TYPE_DS:
1642 copy->ds.key_tag = rr->ds.key_tag;
1643 copy->ds.algorithm = rr->ds.algorithm;
1644 copy->ds.digest_type = rr->ds.digest_type;
1645 copy->ds.digest = memdup(rr->ds.digest, rr->ds.digest_size);
1646 if (!copy->ds.digest)
1647 return NULL;
1648 copy->ds.digest_size = rr->ds.digest_size;
1649 break;
1650
1651 case DNS_TYPE_NSEC3:
1652 copy->nsec3.algorithm = rr->nsec3.algorithm;
1653 copy->nsec3.flags = rr->nsec3.flags;
1654 copy->nsec3.iterations = rr->nsec3.iterations;
1655 copy->nsec3.salt = memdup(rr->nsec3.salt, rr->nsec3.salt_size);
1656 if (!copy->nsec3.salt)
1657 return NULL;
1658 copy->nsec3.salt_size = rr->nsec3.salt_size;
1659 copy->nsec3.next_hashed_name = memdup(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size);
1660 if (!copy->nsec3.next_hashed_name_size)
1661 return NULL;
1662 copy->nsec3.next_hashed_name_size = rr->nsec3.next_hashed_name_size;
1663 copy->nsec3.types = bitmap_copy(rr->nsec3.types);
1664 if (!copy->nsec3.types)
1665 return NULL;
1666 break;
1667
1668 case DNS_TYPE_TLSA:
1669 copy->tlsa.cert_usage = rr->tlsa.cert_usage;
1670 copy->tlsa.selector = rr->tlsa.selector;
1671 copy->tlsa.matching_type = rr->tlsa.matching_type;
1672 copy->tlsa.data = memdup(rr->tlsa.data, rr->tlsa.data_size);
1673 if (!copy->tlsa.data)
1674 return NULL;
1675 copy->tlsa.data_size = rr->tlsa.data_size;
1676 break;
1677
1678 case DNS_TYPE_CAA:
1679 copy->caa.flags = rr->caa.flags;
1680 copy->caa.tag = strdup(rr->caa.tag);
1681 if (!copy->caa.tag)
1682 return NULL;
1683 copy->caa.value = memdup(rr->caa.value, rr->caa.value_size);
1684 if (!copy->caa.value)
1685 return NULL;
1686 copy->caa.value_size = rr->caa.value_size;
1687 break;
1688
1689 case DNS_TYPE_OPT:
1690 default:
1691 copy->generic.data = memdup(rr->generic.data, rr->generic.data_size);
1692 if (!copy->generic.data)
1693 return NULL;
1694 copy->generic.data_size = rr->generic.data_size;
1695 break;
1696 }
1697
1698 t = TAKE_PTR(copy);
1699
1700 return t;
1701 }
1702
1703 int dns_resource_record_clamp_ttl(DnsResourceRecord **rr, uint32_t max_ttl) {
1704 DnsResourceRecord *old_rr, *new_rr;
1705 uint32_t new_ttl;
1706
1707 assert(rr);
1708 old_rr = *rr;
1709
1710 if (old_rr->key->type == DNS_TYPE_OPT)
1711 return -EINVAL;
1712
1713 new_ttl = MIN(old_rr->ttl, max_ttl);
1714 if (new_ttl == old_rr->ttl)
1715 return 0;
1716
1717 if (old_rr->n_ref == 1) {
1718 /* Patch in place */
1719 old_rr->ttl = new_ttl;
1720 return 1;
1721 }
1722
1723 new_rr = dns_resource_record_copy(old_rr);
1724 if (!new_rr)
1725 return -ENOMEM;
1726
1727 new_rr->ttl = new_ttl;
1728
1729 dns_resource_record_unref(*rr);
1730 *rr = new_rr;
1731
1732 return 1;
1733 }
1734
1735 DnsTxtItem *dns_txt_item_free_all(DnsTxtItem *i) {
1736 DnsTxtItem *n;
1737
1738 if (!i)
1739 return NULL;
1740
1741 n = i->items_next;
1742
1743 free(i);
1744 return dns_txt_item_free_all(n);
1745 }
1746
1747 bool dns_txt_item_equal(DnsTxtItem *a, DnsTxtItem *b) {
1748
1749 if (a == b)
1750 return true;
1751
1752 if (!a != !b)
1753 return false;
1754
1755 if (!a)
1756 return true;
1757
1758 if (a->length != b->length)
1759 return false;
1760
1761 if (memcmp(a->data, b->data, a->length) != 0)
1762 return false;
1763
1764 return dns_txt_item_equal(a->items_next, b->items_next);
1765 }
1766
1767 DnsTxtItem *dns_txt_item_copy(DnsTxtItem *first) {
1768 DnsTxtItem *i, *copy = NULL, *end = NULL;
1769
1770 LIST_FOREACH(items, i, first) {
1771 DnsTxtItem *j;
1772
1773 j = memdup(i, offsetof(DnsTxtItem, data) + i->length + 1);
1774 if (!j) {
1775 dns_txt_item_free_all(copy);
1776 return NULL;
1777 }
1778
1779 LIST_INSERT_AFTER(items, copy, end, j);
1780 end = j;
1781 }
1782
1783 return copy;
1784 }
1785
1786 int dns_txt_item_new_empty(DnsTxtItem **ret) {
1787 DnsTxtItem *i;
1788
1789 /* RFC 6763, section 6.1 suggests to treat
1790 * empty TXT RRs as equivalent to a TXT record
1791 * with a single empty string. */
1792
1793 i = malloc0(offsetof(DnsTxtItem, data) + 1); /* for safety reasons we add an extra NUL byte */
1794 if (!i)
1795 return -ENOMEM;
1796
1797 *ret = i;
1798
1799 return 0;
1800 }
1801
1802 static const char* const dnssec_algorithm_table[_DNSSEC_ALGORITHM_MAX_DEFINED] = {
1803 /* Mnemonics as listed on https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */
1804 [DNSSEC_ALGORITHM_RSAMD5] = "RSAMD5",
1805 [DNSSEC_ALGORITHM_DH] = "DH",
1806 [DNSSEC_ALGORITHM_DSA] = "DSA",
1807 [DNSSEC_ALGORITHM_ECC] = "ECC",
1808 [DNSSEC_ALGORITHM_RSASHA1] = "RSASHA1",
1809 [DNSSEC_ALGORITHM_DSA_NSEC3_SHA1] = "DSA-NSEC3-SHA1",
1810 [DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1] = "RSASHA1-NSEC3-SHA1",
1811 [DNSSEC_ALGORITHM_RSASHA256] = "RSASHA256",
1812 [DNSSEC_ALGORITHM_RSASHA512] = "RSASHA512",
1813 [DNSSEC_ALGORITHM_ECC_GOST] = "ECC-GOST",
1814 [DNSSEC_ALGORITHM_ECDSAP256SHA256] = "ECDSAP256SHA256",
1815 [DNSSEC_ALGORITHM_ECDSAP384SHA384] = "ECDSAP384SHA384",
1816 [DNSSEC_ALGORITHM_ED25519] = "ED25519",
1817 [DNSSEC_ALGORITHM_ED448] = "ED448",
1818 [DNSSEC_ALGORITHM_INDIRECT] = "INDIRECT",
1819 [DNSSEC_ALGORITHM_PRIVATEDNS] = "PRIVATEDNS",
1820 [DNSSEC_ALGORITHM_PRIVATEOID] = "PRIVATEOID",
1821 };
1822 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_algorithm, int, 255);
1823
1824 static const char* const dnssec_digest_table[_DNSSEC_DIGEST_MAX_DEFINED] = {
1825 /* Names as listed on https://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */
1826 [DNSSEC_DIGEST_SHA1] = "SHA-1",
1827 [DNSSEC_DIGEST_SHA256] = "SHA-256",
1828 [DNSSEC_DIGEST_GOST_R_34_11_94] = "GOST_R_34.11-94",
1829 [DNSSEC_DIGEST_SHA384] = "SHA-384",
1830 };
1831 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_digest, int, 255);