]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/resolve/resolved-dns-rr.c
tree-wide: drop 'This file is part of systemd' blurb
[thirdparty/systemd.git] / src / resolve / resolved-dns-rr.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2 /***
3 Copyright 2014 Lennart Poettering
4 ***/
5
6 #include <math.h>
7
8 #include "alloc-util.h"
9 #include "dns-domain.h"
10 #include "dns-type.h"
11 #include "escape.h"
12 #include "hexdecoct.h"
13 #include "resolved-dns-dnssec.h"
14 #include "resolved-dns-packet.h"
15 #include "resolved-dns-rr.h"
16 #include "string-table.h"
17 #include "string-util.h"
18 #include "strv.h"
19 #include "terminal-util.h"
20
21 DnsResourceKey* dns_resource_key_new(uint16_t class, uint16_t type, const char *name) {
22 DnsResourceKey *k;
23 size_t l;
24
25 assert(name);
26
27 l = strlen(name);
28 k = malloc0(sizeof(DnsResourceKey) + l + 1);
29 if (!k)
30 return NULL;
31
32 k->n_ref = 1;
33 k->class = class;
34 k->type = type;
35
36 strcpy((char*) k + sizeof(DnsResourceKey), name);
37
38 return k;
39 }
40
41 DnsResourceKey* dns_resource_key_new_redirect(const DnsResourceKey *key, const DnsResourceRecord *cname) {
42 int r;
43
44 assert(key);
45 assert(cname);
46
47 assert(IN_SET(cname->key->type, DNS_TYPE_CNAME, DNS_TYPE_DNAME));
48
49 if (cname->key->type == DNS_TYPE_CNAME)
50 return dns_resource_key_new(key->class, key->type, cname->cname.name);
51 else {
52 DnsResourceKey *k;
53 char *destination = NULL;
54
55 r = dns_name_change_suffix(dns_resource_key_name(key), dns_resource_key_name(cname->key), cname->dname.name, &destination);
56 if (r < 0)
57 return NULL;
58 if (r == 0)
59 return dns_resource_key_ref((DnsResourceKey*) key);
60
61 k = dns_resource_key_new_consume(key->class, key->type, destination);
62 if (!k)
63 return mfree(destination);
64
65 return k;
66 }
67 }
68
69 int dns_resource_key_new_append_suffix(DnsResourceKey **ret, DnsResourceKey *key, char *name) {
70 DnsResourceKey *new_key;
71 char *joined;
72 int r;
73
74 assert(ret);
75 assert(key);
76 assert(name);
77
78 if (dns_name_is_root(name)) {
79 *ret = dns_resource_key_ref(key);
80 return 0;
81 }
82
83 r = dns_name_concat(dns_resource_key_name(key), name, &joined);
84 if (r < 0)
85 return r;
86
87 new_key = dns_resource_key_new_consume(key->class, key->type, joined);
88 if (!new_key) {
89 free(joined);
90 return -ENOMEM;
91 }
92
93 *ret = new_key;
94 return 0;
95 }
96
97 DnsResourceKey* dns_resource_key_new_consume(uint16_t class, uint16_t type, char *name) {
98 DnsResourceKey *k;
99
100 assert(name);
101
102 k = new0(DnsResourceKey, 1);
103 if (!k)
104 return NULL;
105
106 k->n_ref = 1;
107 k->class = class;
108 k->type = type;
109 k->_name = name;
110
111 return k;
112 }
113
114 DnsResourceKey* dns_resource_key_ref(DnsResourceKey *k) {
115
116 if (!k)
117 return NULL;
118
119 /* Static/const keys created with DNS_RESOURCE_KEY_CONST will
120 * set this to -1, they should not be reffed/unreffed */
121 assert(k->n_ref != (unsigned) -1);
122
123 assert(k->n_ref > 0);
124 k->n_ref++;
125
126 return k;
127 }
128
129 DnsResourceKey* dns_resource_key_unref(DnsResourceKey *k) {
130 if (!k)
131 return NULL;
132
133 assert(k->n_ref != (unsigned) -1);
134 assert(k->n_ref > 0);
135
136 if (k->n_ref == 1) {
137 free(k->_name);
138 free(k);
139 } else
140 k->n_ref--;
141
142 return NULL;
143 }
144
145 const char* dns_resource_key_name(const DnsResourceKey *key) {
146 const char *name;
147
148 if (!key)
149 return NULL;
150
151 if (key->_name)
152 name = key->_name;
153 else
154 name = (char*) key + sizeof(DnsResourceKey);
155
156 if (dns_name_is_root(name))
157 return ".";
158 else
159 return name;
160 }
161
162 bool dns_resource_key_is_address(const DnsResourceKey *key) {
163 assert(key);
164
165 /* Check if this is an A or AAAA resource key */
166
167 return key->class == DNS_CLASS_IN && IN_SET(key->type, DNS_TYPE_A, DNS_TYPE_AAAA);
168 }
169
170 bool dns_resource_key_is_dnssd_ptr(const DnsResourceKey *key) {
171 assert(key);
172
173 /* Check if this is a PTR resource key used in
174 Service Instance Enumeration as described in RFC6763 p4.1. */
175
176 if (key->type != DNS_TYPE_PTR)
177 return false;
178
179 return dns_name_endswith(dns_resource_key_name(key), "_tcp.local") ||
180 dns_name_endswith(dns_resource_key_name(key), "_udp.local");
181 }
182
183 int dns_resource_key_equal(const DnsResourceKey *a, const DnsResourceKey *b) {
184 int r;
185
186 if (a == b)
187 return 1;
188
189 r = dns_name_equal(dns_resource_key_name(a), dns_resource_key_name(b));
190 if (r <= 0)
191 return r;
192
193 if (a->class != b->class)
194 return 0;
195
196 if (a->type != b->type)
197 return 0;
198
199 return 1;
200 }
201
202 int dns_resource_key_match_rr(const DnsResourceKey *key, DnsResourceRecord *rr, const char *search_domain) {
203 int r;
204
205 assert(key);
206 assert(rr);
207
208 if (key == rr->key)
209 return 1;
210
211 /* Checks if an rr matches the specified key. If a search
212 * domain is specified, it will also be checked if the key
213 * with the search domain suffixed might match the RR. */
214
215 if (rr->key->class != key->class && key->class != DNS_CLASS_ANY)
216 return 0;
217
218 if (rr->key->type != key->type && key->type != DNS_TYPE_ANY)
219 return 0;
220
221 r = dns_name_equal(dns_resource_key_name(rr->key), dns_resource_key_name(key));
222 if (r != 0)
223 return r;
224
225 if (search_domain) {
226 _cleanup_free_ char *joined = NULL;
227
228 r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
229 if (r < 0)
230 return r;
231
232 return dns_name_equal(dns_resource_key_name(rr->key), joined);
233 }
234
235 return 0;
236 }
237
238 int dns_resource_key_match_cname_or_dname(const DnsResourceKey *key, const DnsResourceKey *cname, const char *search_domain) {
239 int r;
240
241 assert(key);
242 assert(cname);
243
244 if (cname->class != key->class && key->class != DNS_CLASS_ANY)
245 return 0;
246
247 if (cname->type == DNS_TYPE_CNAME)
248 r = dns_name_equal(dns_resource_key_name(key), dns_resource_key_name(cname));
249 else if (cname->type == DNS_TYPE_DNAME)
250 r = dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(cname));
251 else
252 return 0;
253
254 if (r != 0)
255 return r;
256
257 if (search_domain) {
258 _cleanup_free_ char *joined = NULL;
259
260 r = dns_name_concat(dns_resource_key_name(key), search_domain, &joined);
261 if (r < 0)
262 return r;
263
264 if (cname->type == DNS_TYPE_CNAME)
265 return dns_name_equal(joined, dns_resource_key_name(cname));
266 else if (cname->type == DNS_TYPE_DNAME)
267 return dns_name_endswith(joined, dns_resource_key_name(cname));
268 }
269
270 return 0;
271 }
272
273 int dns_resource_key_match_soa(const DnsResourceKey *key, const DnsResourceKey *soa) {
274 assert(soa);
275 assert(key);
276
277 /* Checks whether 'soa' is a SOA record for the specified key. */
278
279 if (soa->class != key->class)
280 return 0;
281
282 if (soa->type != DNS_TYPE_SOA)
283 return 0;
284
285 return dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(soa));
286 }
287
288 static void dns_resource_key_hash_func(const void *i, struct siphash *state) {
289 const DnsResourceKey *k = i;
290
291 assert(k);
292
293 dns_name_hash_func(dns_resource_key_name(k), state);
294 siphash24_compress(&k->class, sizeof(k->class), state);
295 siphash24_compress(&k->type, sizeof(k->type), state);
296 }
297
298 static int dns_resource_key_compare_func(const void *a, const void *b) {
299 const DnsResourceKey *x = a, *y = b;
300 int ret;
301
302 ret = dns_name_compare_func(dns_resource_key_name(x), dns_resource_key_name(y));
303 if (ret != 0)
304 return ret;
305
306 if (x->type < y->type)
307 return -1;
308 if (x->type > y->type)
309 return 1;
310
311 if (x->class < y->class)
312 return -1;
313 if (x->class > y->class)
314 return 1;
315
316 return 0;
317 }
318
319 const struct hash_ops dns_resource_key_hash_ops = {
320 .hash = dns_resource_key_hash_func,
321 .compare = dns_resource_key_compare_func
322 };
323
324 char* dns_resource_key_to_string(const DnsResourceKey *key, char *buf, size_t buf_size) {
325 const char *c, *t;
326 char *ans = buf;
327
328 /* If we cannot convert the CLASS/TYPE into a known string,
329 use the format recommended by RFC 3597, Section 5. */
330
331 c = dns_class_to_string(key->class);
332 t = dns_type_to_string(key->type);
333
334 snprintf(buf, buf_size, "%s %s%s%.0u %s%s%.0u",
335 dns_resource_key_name(key),
336 strempty(c), c ? "" : "CLASS", c ? 0 : key->class,
337 strempty(t), t ? "" : "TYPE", t ? 0 : key->class);
338
339 return ans;
340 }
341
342 bool dns_resource_key_reduce(DnsResourceKey **a, DnsResourceKey **b) {
343 assert(a);
344 assert(b);
345
346 /* Try to replace one RR key by another if they are identical, thus saving a bit of memory. Note that we do
347 * this only for RR keys, not for RRs themselves, as they carry a lot of additional metadata (where they come
348 * from, validity data, and suchlike), and cannot be replaced so easily by other RRs that have the same
349 * superficial data. */
350
351 if (!*a)
352 return false;
353 if (!*b)
354 return false;
355
356 /* We refuse merging const keys */
357 if ((*a)->n_ref == (unsigned) -1)
358 return false;
359 if ((*b)->n_ref == (unsigned) -1)
360 return false;
361
362 /* Already the same? */
363 if (*a == *b)
364 return true;
365
366 /* Are they really identical? */
367 if (dns_resource_key_equal(*a, *b) <= 0)
368 return false;
369
370 /* Keep the one which already has more references. */
371 if ((*a)->n_ref > (*b)->n_ref) {
372 dns_resource_key_unref(*b);
373 *b = dns_resource_key_ref(*a);
374 } else {
375 dns_resource_key_unref(*a);
376 *a = dns_resource_key_ref(*b);
377 }
378
379 return true;
380 }
381
382 DnsResourceRecord* dns_resource_record_new(DnsResourceKey *key) {
383 DnsResourceRecord *rr;
384
385 rr = new0(DnsResourceRecord, 1);
386 if (!rr)
387 return NULL;
388
389 rr->n_ref = 1;
390 rr->key = dns_resource_key_ref(key);
391 rr->expiry = USEC_INFINITY;
392 rr->n_skip_labels_signer = rr->n_skip_labels_source = (unsigned) -1;
393
394 return rr;
395 }
396
397 DnsResourceRecord* dns_resource_record_new_full(uint16_t class, uint16_t type, const char *name) {
398 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
399
400 key = dns_resource_key_new(class, type, name);
401 if (!key)
402 return NULL;
403
404 return dns_resource_record_new(key);
405 }
406
407 DnsResourceRecord* dns_resource_record_ref(DnsResourceRecord *rr) {
408 if (!rr)
409 return NULL;
410
411 assert(rr->n_ref > 0);
412 rr->n_ref++;
413
414 return rr;
415 }
416
417 DnsResourceRecord* dns_resource_record_unref(DnsResourceRecord *rr) {
418 if (!rr)
419 return NULL;
420
421 assert(rr->n_ref > 0);
422
423 if (rr->n_ref > 1) {
424 rr->n_ref--;
425 return NULL;
426 }
427
428 if (rr->key) {
429 switch(rr->key->type) {
430
431 case DNS_TYPE_SRV:
432 free(rr->srv.name);
433 break;
434
435 case DNS_TYPE_PTR:
436 case DNS_TYPE_NS:
437 case DNS_TYPE_CNAME:
438 case DNS_TYPE_DNAME:
439 free(rr->ptr.name);
440 break;
441
442 case DNS_TYPE_HINFO:
443 free(rr->hinfo.cpu);
444 free(rr->hinfo.os);
445 break;
446
447 case DNS_TYPE_TXT:
448 case DNS_TYPE_SPF:
449 dns_txt_item_free_all(rr->txt.items);
450 break;
451
452 case DNS_TYPE_SOA:
453 free(rr->soa.mname);
454 free(rr->soa.rname);
455 break;
456
457 case DNS_TYPE_MX:
458 free(rr->mx.exchange);
459 break;
460
461 case DNS_TYPE_DS:
462 free(rr->ds.digest);
463 break;
464
465 case DNS_TYPE_SSHFP:
466 free(rr->sshfp.fingerprint);
467 break;
468
469 case DNS_TYPE_DNSKEY:
470 free(rr->dnskey.key);
471 break;
472
473 case DNS_TYPE_RRSIG:
474 free(rr->rrsig.signer);
475 free(rr->rrsig.signature);
476 break;
477
478 case DNS_TYPE_NSEC:
479 free(rr->nsec.next_domain_name);
480 bitmap_free(rr->nsec.types);
481 break;
482
483 case DNS_TYPE_NSEC3:
484 free(rr->nsec3.next_hashed_name);
485 free(rr->nsec3.salt);
486 bitmap_free(rr->nsec3.types);
487 break;
488
489 case DNS_TYPE_LOC:
490 case DNS_TYPE_A:
491 case DNS_TYPE_AAAA:
492 break;
493
494 case DNS_TYPE_TLSA:
495 free(rr->tlsa.data);
496 break;
497
498 case DNS_TYPE_CAA:
499 free(rr->caa.tag);
500 free(rr->caa.value);
501 break;
502
503 case DNS_TYPE_OPENPGPKEY:
504 default:
505 if (!rr->unparseable)
506 free(rr->generic.data);
507 }
508
509 if (rr->unparseable)
510 free(rr->generic.data);
511
512 free(rr->wire_format);
513 dns_resource_key_unref(rr->key);
514 }
515
516 free(rr->to_string);
517 return mfree(rr);
518 }
519
520 int dns_resource_record_new_reverse(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *hostname) {
521 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
522 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL;
523 _cleanup_free_ char *ptr = NULL;
524 int r;
525
526 assert(ret);
527 assert(address);
528 assert(hostname);
529
530 r = dns_name_reverse(family, address, &ptr);
531 if (r < 0)
532 return r;
533
534 key = dns_resource_key_new_consume(DNS_CLASS_IN, DNS_TYPE_PTR, ptr);
535 if (!key)
536 return -ENOMEM;
537
538 ptr = NULL;
539
540 rr = dns_resource_record_new(key);
541 if (!rr)
542 return -ENOMEM;
543
544 rr->ptr.name = strdup(hostname);
545 if (!rr->ptr.name)
546 return -ENOMEM;
547
548 *ret = TAKE_PTR(rr);
549
550 return 0;
551 }
552
553 int dns_resource_record_new_address(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *name) {
554 DnsResourceRecord *rr;
555
556 assert(ret);
557 assert(address);
558 assert(family);
559
560 if (family == AF_INET) {
561
562 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_A, name);
563 if (!rr)
564 return -ENOMEM;
565
566 rr->a.in_addr = address->in;
567
568 } else if (family == AF_INET6) {
569
570 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_AAAA, name);
571 if (!rr)
572 return -ENOMEM;
573
574 rr->aaaa.in6_addr = address->in6;
575 } else
576 return -EAFNOSUPPORT;
577
578 *ret = rr;
579
580 return 0;
581 }
582
583 #define FIELD_EQUAL(a, b, field) \
584 ((a).field ## _size == (b).field ## _size && \
585 memcmp((a).field, (b).field, (a).field ## _size) == 0)
586
587 int dns_resource_record_equal(const DnsResourceRecord *a, const DnsResourceRecord *b) {
588 int r;
589
590 assert(a);
591 assert(b);
592
593 if (a == b)
594 return 1;
595
596 r = dns_resource_key_equal(a->key, b->key);
597 if (r <= 0)
598 return r;
599
600 if (a->unparseable != b->unparseable)
601 return 0;
602
603 switch (a->unparseable ? _DNS_TYPE_INVALID : a->key->type) {
604
605 case DNS_TYPE_SRV:
606 r = dns_name_equal(a->srv.name, b->srv.name);
607 if (r <= 0)
608 return r;
609
610 return a->srv.priority == b->srv.priority &&
611 a->srv.weight == b->srv.weight &&
612 a->srv.port == b->srv.port;
613
614 case DNS_TYPE_PTR:
615 case DNS_TYPE_NS:
616 case DNS_TYPE_CNAME:
617 case DNS_TYPE_DNAME:
618 return dns_name_equal(a->ptr.name, b->ptr.name);
619
620 case DNS_TYPE_HINFO:
621 return strcaseeq(a->hinfo.cpu, b->hinfo.cpu) &&
622 strcaseeq(a->hinfo.os, b->hinfo.os);
623
624 case DNS_TYPE_SPF: /* exactly the same as TXT */
625 case DNS_TYPE_TXT:
626 return dns_txt_item_equal(a->txt.items, b->txt.items);
627
628 case DNS_TYPE_A:
629 return memcmp(&a->a.in_addr, &b->a.in_addr, sizeof(struct in_addr)) == 0;
630
631 case DNS_TYPE_AAAA:
632 return memcmp(&a->aaaa.in6_addr, &b->aaaa.in6_addr, sizeof(struct in6_addr)) == 0;
633
634 case DNS_TYPE_SOA:
635 r = dns_name_equal(a->soa.mname, b->soa.mname);
636 if (r <= 0)
637 return r;
638 r = dns_name_equal(a->soa.rname, b->soa.rname);
639 if (r <= 0)
640 return r;
641
642 return a->soa.serial == b->soa.serial &&
643 a->soa.refresh == b->soa.refresh &&
644 a->soa.retry == b->soa.retry &&
645 a->soa.expire == b->soa.expire &&
646 a->soa.minimum == b->soa.minimum;
647
648 case DNS_TYPE_MX:
649 if (a->mx.priority != b->mx.priority)
650 return 0;
651
652 return dns_name_equal(a->mx.exchange, b->mx.exchange);
653
654 case DNS_TYPE_LOC:
655 assert(a->loc.version == b->loc.version);
656
657 return a->loc.size == b->loc.size &&
658 a->loc.horiz_pre == b->loc.horiz_pre &&
659 a->loc.vert_pre == b->loc.vert_pre &&
660 a->loc.latitude == b->loc.latitude &&
661 a->loc.longitude == b->loc.longitude &&
662 a->loc.altitude == b->loc.altitude;
663
664 case DNS_TYPE_DS:
665 return a->ds.key_tag == b->ds.key_tag &&
666 a->ds.algorithm == b->ds.algorithm &&
667 a->ds.digest_type == b->ds.digest_type &&
668 FIELD_EQUAL(a->ds, b->ds, digest);
669
670 case DNS_TYPE_SSHFP:
671 return a->sshfp.algorithm == b->sshfp.algorithm &&
672 a->sshfp.fptype == b->sshfp.fptype &&
673 FIELD_EQUAL(a->sshfp, b->sshfp, fingerprint);
674
675 case DNS_TYPE_DNSKEY:
676 return a->dnskey.flags == b->dnskey.flags &&
677 a->dnskey.protocol == b->dnskey.protocol &&
678 a->dnskey.algorithm == b->dnskey.algorithm &&
679 FIELD_EQUAL(a->dnskey, b->dnskey, key);
680
681 case DNS_TYPE_RRSIG:
682 /* do the fast comparisons first */
683 return a->rrsig.type_covered == b->rrsig.type_covered &&
684 a->rrsig.algorithm == b->rrsig.algorithm &&
685 a->rrsig.labels == b->rrsig.labels &&
686 a->rrsig.original_ttl == b->rrsig.original_ttl &&
687 a->rrsig.expiration == b->rrsig.expiration &&
688 a->rrsig.inception == b->rrsig.inception &&
689 a->rrsig.key_tag == b->rrsig.key_tag &&
690 FIELD_EQUAL(a->rrsig, b->rrsig, signature) &&
691 dns_name_equal(a->rrsig.signer, b->rrsig.signer);
692
693 case DNS_TYPE_NSEC:
694 return dns_name_equal(a->nsec.next_domain_name, b->nsec.next_domain_name) &&
695 bitmap_equal(a->nsec.types, b->nsec.types);
696
697 case DNS_TYPE_NSEC3:
698 return a->nsec3.algorithm == b->nsec3.algorithm &&
699 a->nsec3.flags == b->nsec3.flags &&
700 a->nsec3.iterations == b->nsec3.iterations &&
701 FIELD_EQUAL(a->nsec3, b->nsec3, salt) &&
702 FIELD_EQUAL(a->nsec3, b->nsec3, next_hashed_name) &&
703 bitmap_equal(a->nsec3.types, b->nsec3.types);
704
705 case DNS_TYPE_TLSA:
706 return a->tlsa.cert_usage == b->tlsa.cert_usage &&
707 a->tlsa.selector == b->tlsa.selector &&
708 a->tlsa.matching_type == b->tlsa.matching_type &&
709 FIELD_EQUAL(a->tlsa, b->tlsa, data);
710
711 case DNS_TYPE_CAA:
712 return a->caa.flags == b->caa.flags &&
713 streq(a->caa.tag, b->caa.tag) &&
714 FIELD_EQUAL(a->caa, b->caa, value);
715
716 case DNS_TYPE_OPENPGPKEY:
717 default:
718 return FIELD_EQUAL(a->generic, b->generic, data);
719 }
720 }
721
722 static char* format_location(uint32_t latitude, uint32_t longitude, uint32_t altitude,
723 uint8_t size, uint8_t horiz_pre, uint8_t vert_pre) {
724 char *s;
725 char NS = latitude >= 1U<<31 ? 'N' : 'S';
726 char EW = longitude >= 1U<<31 ? 'E' : 'W';
727
728 int lat = latitude >= 1U<<31 ? (int) (latitude - (1U<<31)) : (int) ((1U<<31) - latitude);
729 int lon = longitude >= 1U<<31 ? (int) (longitude - (1U<<31)) : (int) ((1U<<31) - longitude);
730 double alt = altitude >= 10000000u ? altitude - 10000000u : -(double)(10000000u - altitude);
731 double siz = (size >> 4) * exp10((double) (size & 0xF));
732 double hor = (horiz_pre >> 4) * exp10((double) (horiz_pre & 0xF));
733 double ver = (vert_pre >> 4) * exp10((double) (vert_pre & 0xF));
734
735 if (asprintf(&s, "%d %d %.3f %c %d %d %.3f %c %.2fm %.2fm %.2fm %.2fm",
736 (lat / 60000 / 60),
737 (lat / 60000) % 60,
738 (lat % 60000) / 1000.,
739 NS,
740 (lon / 60000 / 60),
741 (lon / 60000) % 60,
742 (lon % 60000) / 1000.,
743 EW,
744 alt / 100.,
745 siz / 100.,
746 hor / 100.,
747 ver / 100.) < 0)
748 return NULL;
749
750 return s;
751 }
752
753 static int format_timestamp_dns(char *buf, size_t l, time_t sec) {
754 struct tm tm;
755
756 assert(buf);
757 assert(l > STRLEN("YYYYMMDDHHmmSS"));
758
759 if (!gmtime_r(&sec, &tm))
760 return -EINVAL;
761
762 if (strftime(buf, l, "%Y%m%d%H%M%S", &tm) <= 0)
763 return -EINVAL;
764
765 return 0;
766 }
767
768 static char *format_types(Bitmap *types) {
769 _cleanup_strv_free_ char **strv = NULL;
770 _cleanup_free_ char *str = NULL;
771 Iterator i;
772 unsigned type;
773 int r;
774
775 BITMAP_FOREACH(type, types, i) {
776 if (dns_type_to_string(type)) {
777 r = strv_extend(&strv, dns_type_to_string(type));
778 if (r < 0)
779 return NULL;
780 } else {
781 char *t;
782
783 r = asprintf(&t, "TYPE%u", type);
784 if (r < 0)
785 return NULL;
786
787 r = strv_consume(&strv, t);
788 if (r < 0)
789 return NULL;
790 }
791 }
792
793 str = strv_join(strv, " ");
794 if (!str)
795 return NULL;
796
797 return strjoin("( ", str, " )");
798 }
799
800 static char *format_txt(DnsTxtItem *first) {
801 DnsTxtItem *i;
802 size_t c = 1;
803 char *p, *s;
804
805 LIST_FOREACH(items, i, first)
806 c += i->length * 4 + 3;
807
808 p = s = new(char, c);
809 if (!s)
810 return NULL;
811
812 LIST_FOREACH(items, i, first) {
813 size_t j;
814
815 if (i != first)
816 *(p++) = ' ';
817
818 *(p++) = '"';
819
820 for (j = 0; j < i->length; j++) {
821 if (i->data[j] < ' ' || i->data[j] == '"' || i->data[j] >= 127) {
822 *(p++) = '\\';
823 *(p++) = '0' + (i->data[j] / 100);
824 *(p++) = '0' + ((i->data[j] / 10) % 10);
825 *(p++) = '0' + (i->data[j] % 10);
826 } else
827 *(p++) = i->data[j];
828 }
829
830 *(p++) = '"';
831 }
832
833 *p = 0;
834 return s;
835 }
836
837 const char *dns_resource_record_to_string(DnsResourceRecord *rr) {
838 _cleanup_free_ char *t = NULL;
839 char *s, k[DNS_RESOURCE_KEY_STRING_MAX];
840 int r;
841
842 assert(rr);
843
844 if (rr->to_string)
845 return rr->to_string;
846
847 dns_resource_key_to_string(rr->key, k, sizeof(k));
848
849 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
850
851 case DNS_TYPE_SRV:
852 r = asprintf(&s, "%s %u %u %u %s",
853 k,
854 rr->srv.priority,
855 rr->srv.weight,
856 rr->srv.port,
857 strna(rr->srv.name));
858 if (r < 0)
859 return NULL;
860 break;
861
862 case DNS_TYPE_PTR:
863 case DNS_TYPE_NS:
864 case DNS_TYPE_CNAME:
865 case DNS_TYPE_DNAME:
866 s = strjoin(k, " ", rr->ptr.name);
867 if (!s)
868 return NULL;
869
870 break;
871
872 case DNS_TYPE_HINFO:
873 s = strjoin(k, " ", rr->hinfo.cpu, " ", rr->hinfo.os);
874 if (!s)
875 return NULL;
876 break;
877
878 case DNS_TYPE_SPF: /* exactly the same as TXT */
879 case DNS_TYPE_TXT:
880 t = format_txt(rr->txt.items);
881 if (!t)
882 return NULL;
883
884 s = strjoin(k, " ", t);
885 if (!s)
886 return NULL;
887 break;
888
889 case DNS_TYPE_A: {
890 _cleanup_free_ char *x = NULL;
891
892 r = in_addr_to_string(AF_INET, (const union in_addr_union*) &rr->a.in_addr, &x);
893 if (r < 0)
894 return NULL;
895
896 s = strjoin(k, " ", x);
897 if (!s)
898 return NULL;
899 break;
900 }
901
902 case DNS_TYPE_AAAA:
903 r = in_addr_to_string(AF_INET6, (const union in_addr_union*) &rr->aaaa.in6_addr, &t);
904 if (r < 0)
905 return NULL;
906
907 s = strjoin(k, " ", t);
908 if (!s)
909 return NULL;
910 break;
911
912 case DNS_TYPE_SOA:
913 r = asprintf(&s, "%s %s %s %u %u %u %u %u",
914 k,
915 strna(rr->soa.mname),
916 strna(rr->soa.rname),
917 rr->soa.serial,
918 rr->soa.refresh,
919 rr->soa.retry,
920 rr->soa.expire,
921 rr->soa.minimum);
922 if (r < 0)
923 return NULL;
924 break;
925
926 case DNS_TYPE_MX:
927 r = asprintf(&s, "%s %u %s",
928 k,
929 rr->mx.priority,
930 rr->mx.exchange);
931 if (r < 0)
932 return NULL;
933 break;
934
935 case DNS_TYPE_LOC:
936 assert(rr->loc.version == 0);
937
938 t = format_location(rr->loc.latitude,
939 rr->loc.longitude,
940 rr->loc.altitude,
941 rr->loc.size,
942 rr->loc.horiz_pre,
943 rr->loc.vert_pre);
944 if (!t)
945 return NULL;
946
947 s = strjoin(k, " ", t);
948 if (!s)
949 return NULL;
950 break;
951
952 case DNS_TYPE_DS:
953 t = hexmem(rr->ds.digest, rr->ds.digest_size);
954 if (!t)
955 return NULL;
956
957 r = asprintf(&s, "%s %u %u %u %s",
958 k,
959 rr->ds.key_tag,
960 rr->ds.algorithm,
961 rr->ds.digest_type,
962 t);
963 if (r < 0)
964 return NULL;
965 break;
966
967 case DNS_TYPE_SSHFP:
968 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
969 if (!t)
970 return NULL;
971
972 r = asprintf(&s, "%s %u %u %s",
973 k,
974 rr->sshfp.algorithm,
975 rr->sshfp.fptype,
976 t);
977 if (r < 0)
978 return NULL;
979 break;
980
981 case DNS_TYPE_DNSKEY: {
982 _cleanup_free_ char *alg = NULL;
983 char *ss;
984 int n;
985 uint16_t key_tag;
986
987 key_tag = dnssec_keytag(rr, true);
988
989 r = dnssec_algorithm_to_string_alloc(rr->dnskey.algorithm, &alg);
990 if (r < 0)
991 return NULL;
992
993 r = asprintf(&s, "%s %u %u %s %n",
994 k,
995 rr->dnskey.flags,
996 rr->dnskey.protocol,
997 alg,
998 &n);
999 if (r < 0)
1000 return NULL;
1001
1002 r = base64_append(&s, n,
1003 rr->dnskey.key, rr->dnskey.key_size,
1004 8, columns());
1005 if (r < 0)
1006 return NULL;
1007
1008 r = asprintf(&ss, "%s\n"
1009 " -- Flags:%s%s%s\n"
1010 " -- Key tag: %u",
1011 s,
1012 rr->dnskey.flags & DNSKEY_FLAG_SEP ? " SEP" : "",
1013 rr->dnskey.flags & DNSKEY_FLAG_REVOKE ? " REVOKE" : "",
1014 rr->dnskey.flags & DNSKEY_FLAG_ZONE_KEY ? " ZONE_KEY" : "",
1015 key_tag);
1016 if (r < 0)
1017 return NULL;
1018 free(s);
1019 s = ss;
1020
1021 break;
1022 }
1023
1024 case DNS_TYPE_RRSIG: {
1025 _cleanup_free_ char *alg = NULL;
1026 char expiration[STRLEN("YYYYMMDDHHmmSS") + 1], inception[STRLEN("YYYYMMDDHHmmSS") + 1];
1027 const char *type;
1028 int n;
1029
1030 type = dns_type_to_string(rr->rrsig.type_covered);
1031
1032 r = dnssec_algorithm_to_string_alloc(rr->rrsig.algorithm, &alg);
1033 if (r < 0)
1034 return NULL;
1035
1036 r = format_timestamp_dns(expiration, sizeof(expiration), rr->rrsig.expiration);
1037 if (r < 0)
1038 return NULL;
1039
1040 r = format_timestamp_dns(inception, sizeof(inception), rr->rrsig.inception);
1041 if (r < 0)
1042 return NULL;
1043
1044 /* TYPE?? follows
1045 * http://tools.ietf.org/html/rfc3597#section-5 */
1046
1047 r = asprintf(&s, "%s %s%.*u %s %u %u %s %s %u %s %n",
1048 k,
1049 type ?: "TYPE",
1050 type ? 0 : 1, type ? 0u : (unsigned) rr->rrsig.type_covered,
1051 alg,
1052 rr->rrsig.labels,
1053 rr->rrsig.original_ttl,
1054 expiration,
1055 inception,
1056 rr->rrsig.key_tag,
1057 rr->rrsig.signer,
1058 &n);
1059 if (r < 0)
1060 return NULL;
1061
1062 r = base64_append(&s, n,
1063 rr->rrsig.signature, rr->rrsig.signature_size,
1064 8, columns());
1065 if (r < 0)
1066 return NULL;
1067
1068 break;
1069 }
1070
1071 case DNS_TYPE_NSEC:
1072 t = format_types(rr->nsec.types);
1073 if (!t)
1074 return NULL;
1075
1076 r = asprintf(&s, "%s %s %s",
1077 k,
1078 rr->nsec.next_domain_name,
1079 t);
1080 if (r < 0)
1081 return NULL;
1082 break;
1083
1084 case DNS_TYPE_NSEC3: {
1085 _cleanup_free_ char *salt = NULL, *hash = NULL;
1086
1087 if (rr->nsec3.salt_size > 0) {
1088 salt = hexmem(rr->nsec3.salt, rr->nsec3.salt_size);
1089 if (!salt)
1090 return NULL;
1091 }
1092
1093 hash = base32hexmem(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, false);
1094 if (!hash)
1095 return NULL;
1096
1097 t = format_types(rr->nsec3.types);
1098 if (!t)
1099 return NULL;
1100
1101 r = asprintf(&s, "%s %"PRIu8" %"PRIu8" %"PRIu16" %s %s %s",
1102 k,
1103 rr->nsec3.algorithm,
1104 rr->nsec3.flags,
1105 rr->nsec3.iterations,
1106 rr->nsec3.salt_size > 0 ? salt : "-",
1107 hash,
1108 t);
1109 if (r < 0)
1110 return NULL;
1111
1112 break;
1113 }
1114
1115 case DNS_TYPE_TLSA: {
1116 const char *cert_usage, *selector, *matching_type;
1117
1118 cert_usage = tlsa_cert_usage_to_string(rr->tlsa.cert_usage);
1119 selector = tlsa_selector_to_string(rr->tlsa.selector);
1120 matching_type = tlsa_matching_type_to_string(rr->tlsa.matching_type);
1121
1122 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1123 if (!t)
1124 return NULL;
1125
1126 r = asprintf(&s,
1127 "%s %u %u %u %s\n"
1128 " -- Cert. usage: %s\n"
1129 " -- Selector: %s\n"
1130 " -- Matching type: %s",
1131 k,
1132 rr->tlsa.cert_usage,
1133 rr->tlsa.selector,
1134 rr->tlsa.matching_type,
1135 t,
1136 cert_usage,
1137 selector,
1138 matching_type);
1139 if (r < 0)
1140 return NULL;
1141
1142 break;
1143 }
1144
1145 case DNS_TYPE_CAA: {
1146 _cleanup_free_ char *value;
1147
1148 value = octescape(rr->caa.value, rr->caa.value_size);
1149 if (!value)
1150 return NULL;
1151
1152 r = asprintf(&s, "%s %u %s \"%s\"%s%s%s%.0u",
1153 k,
1154 rr->caa.flags,
1155 rr->caa.tag,
1156 value,
1157 rr->caa.flags ? "\n -- Flags:" : "",
1158 rr->caa.flags & CAA_FLAG_CRITICAL ? " critical" : "",
1159 rr->caa.flags & ~CAA_FLAG_CRITICAL ? " " : "",
1160 rr->caa.flags & ~CAA_FLAG_CRITICAL);
1161 if (r < 0)
1162 return NULL;
1163
1164 break;
1165 }
1166
1167 case DNS_TYPE_OPENPGPKEY: {
1168 int n;
1169
1170 r = asprintf(&s, "%s %n",
1171 k,
1172 &n);
1173 if (r < 0)
1174 return NULL;
1175
1176 r = base64_append(&s, n,
1177 rr->generic.data, rr->generic.data_size,
1178 8, columns());
1179 if (r < 0)
1180 return NULL;
1181 break;
1182 }
1183
1184 default:
1185 t = hexmem(rr->generic.data, rr->generic.data_size);
1186 if (!t)
1187 return NULL;
1188
1189 /* Format as documented in RFC 3597, Section 5 */
1190 r = asprintf(&s, "%s \\# %zu %s", k, rr->generic.data_size, t);
1191 if (r < 0)
1192 return NULL;
1193 break;
1194 }
1195
1196 rr->to_string = s;
1197 return s;
1198 }
1199
1200 ssize_t dns_resource_record_payload(DnsResourceRecord *rr, void **out) {
1201 assert(rr);
1202 assert(out);
1203
1204 switch(rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1205 case DNS_TYPE_SRV:
1206 case DNS_TYPE_PTR:
1207 case DNS_TYPE_NS:
1208 case DNS_TYPE_CNAME:
1209 case DNS_TYPE_DNAME:
1210 case DNS_TYPE_HINFO:
1211 case DNS_TYPE_SPF:
1212 case DNS_TYPE_TXT:
1213 case DNS_TYPE_A:
1214 case DNS_TYPE_AAAA:
1215 case DNS_TYPE_SOA:
1216 case DNS_TYPE_MX:
1217 case DNS_TYPE_LOC:
1218 case DNS_TYPE_DS:
1219 case DNS_TYPE_DNSKEY:
1220 case DNS_TYPE_RRSIG:
1221 case DNS_TYPE_NSEC:
1222 case DNS_TYPE_NSEC3:
1223 return -EINVAL;
1224
1225 case DNS_TYPE_SSHFP:
1226 *out = rr->sshfp.fingerprint;
1227 return rr->sshfp.fingerprint_size;
1228
1229 case DNS_TYPE_TLSA:
1230 *out = rr->tlsa.data;
1231 return rr->tlsa.data_size;
1232
1233 case DNS_TYPE_OPENPGPKEY:
1234 default:
1235 *out = rr->generic.data;
1236 return rr->generic.data_size;
1237 }
1238 }
1239
1240 int dns_resource_record_to_wire_format(DnsResourceRecord *rr, bool canonical) {
1241
1242 DnsPacket packet = {
1243 .n_ref = 1,
1244 .protocol = DNS_PROTOCOL_DNS,
1245 .on_stack = true,
1246 .refuse_compression = true,
1247 .canonical_form = canonical,
1248 };
1249
1250 size_t start, rds;
1251 int r;
1252
1253 assert(rr);
1254
1255 /* Generates the RR in wire-format, optionally in the
1256 * canonical form as discussed in the DNSSEC RFC 4034, Section
1257 * 6.2. We allocate a throw-away DnsPacket object on the stack
1258 * here, because we need some book-keeping for memory
1259 * management, and can reuse the DnsPacket serializer, that
1260 * can generate the canonical form, too, but also knows label
1261 * compression and suchlike. */
1262
1263 if (rr->wire_format && rr->wire_format_canonical == canonical)
1264 return 0;
1265
1266 r = dns_packet_append_rr(&packet, rr, 0, &start, &rds);
1267 if (r < 0)
1268 return r;
1269
1270 assert(start == 0);
1271 assert(packet._data);
1272
1273 free(rr->wire_format);
1274 rr->wire_format = packet._data;
1275 rr->wire_format_size = packet.size;
1276 rr->wire_format_rdata_offset = rds;
1277 rr->wire_format_canonical = canonical;
1278
1279 packet._data = NULL;
1280 dns_packet_unref(&packet);
1281
1282 return 0;
1283 }
1284
1285 int dns_resource_record_signer(DnsResourceRecord *rr, const char **ret) {
1286 const char *n;
1287 int r;
1288
1289 assert(rr);
1290 assert(ret);
1291
1292 /* Returns the RRset's signer, if it is known. */
1293
1294 if (rr->n_skip_labels_signer == (unsigned) -1)
1295 return -ENODATA;
1296
1297 n = dns_resource_key_name(rr->key);
1298 r = dns_name_skip(n, rr->n_skip_labels_signer, &n);
1299 if (r < 0)
1300 return r;
1301 if (r == 0)
1302 return -EINVAL;
1303
1304 *ret = n;
1305 return 0;
1306 }
1307
1308 int dns_resource_record_source(DnsResourceRecord *rr, const char **ret) {
1309 const char *n;
1310 int r;
1311
1312 assert(rr);
1313 assert(ret);
1314
1315 /* Returns the RRset's synthesizing source, if it is known. */
1316
1317 if (rr->n_skip_labels_source == (unsigned) -1)
1318 return -ENODATA;
1319
1320 n = dns_resource_key_name(rr->key);
1321 r = dns_name_skip(n, rr->n_skip_labels_source, &n);
1322 if (r < 0)
1323 return r;
1324 if (r == 0)
1325 return -EINVAL;
1326
1327 *ret = n;
1328 return 0;
1329 }
1330
1331 int dns_resource_record_is_signer(DnsResourceRecord *rr, const char *zone) {
1332 const char *signer;
1333 int r;
1334
1335 assert(rr);
1336
1337 r = dns_resource_record_signer(rr, &signer);
1338 if (r < 0)
1339 return r;
1340
1341 return dns_name_equal(zone, signer);
1342 }
1343
1344 int dns_resource_record_is_synthetic(DnsResourceRecord *rr) {
1345 int r;
1346
1347 assert(rr);
1348
1349 /* Returns > 0 if the RR is generated from a wildcard, and is not the asterisk name itself */
1350
1351 if (rr->n_skip_labels_source == (unsigned) -1)
1352 return -ENODATA;
1353
1354 if (rr->n_skip_labels_source == 0)
1355 return 0;
1356
1357 if (rr->n_skip_labels_source > 1)
1358 return 1;
1359
1360 r = dns_name_startswith(dns_resource_key_name(rr->key), "*");
1361 if (r < 0)
1362 return r;
1363
1364 return !r;
1365 }
1366
1367 void dns_resource_record_hash_func(const void *i, struct siphash *state) {
1368 const DnsResourceRecord *rr = i;
1369
1370 assert(rr);
1371
1372 dns_resource_key_hash_func(rr->key, state);
1373
1374 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1375
1376 case DNS_TYPE_SRV:
1377 siphash24_compress(&rr->srv.priority, sizeof(rr->srv.priority), state);
1378 siphash24_compress(&rr->srv.weight, sizeof(rr->srv.weight), state);
1379 siphash24_compress(&rr->srv.port, sizeof(rr->srv.port), state);
1380 dns_name_hash_func(rr->srv.name, state);
1381 break;
1382
1383 case DNS_TYPE_PTR:
1384 case DNS_TYPE_NS:
1385 case DNS_TYPE_CNAME:
1386 case DNS_TYPE_DNAME:
1387 dns_name_hash_func(rr->ptr.name, state);
1388 break;
1389
1390 case DNS_TYPE_HINFO:
1391 string_hash_func(rr->hinfo.cpu, state);
1392 string_hash_func(rr->hinfo.os, state);
1393 break;
1394
1395 case DNS_TYPE_TXT:
1396 case DNS_TYPE_SPF: {
1397 DnsTxtItem *j;
1398
1399 LIST_FOREACH(items, j, rr->txt.items) {
1400 siphash24_compress(j->data, j->length, state);
1401
1402 /* Add an extra NUL byte, so that "a" followed by "b" doesn't result in the same hash as "ab"
1403 * followed by "". */
1404 siphash24_compress_byte(0, state);
1405 }
1406 break;
1407 }
1408
1409 case DNS_TYPE_A:
1410 siphash24_compress(&rr->a.in_addr, sizeof(rr->a.in_addr), state);
1411 break;
1412
1413 case DNS_TYPE_AAAA:
1414 siphash24_compress(&rr->aaaa.in6_addr, sizeof(rr->aaaa.in6_addr), state);
1415 break;
1416
1417 case DNS_TYPE_SOA:
1418 dns_name_hash_func(rr->soa.mname, state);
1419 dns_name_hash_func(rr->soa.rname, state);
1420 siphash24_compress(&rr->soa.serial, sizeof(rr->soa.serial), state);
1421 siphash24_compress(&rr->soa.refresh, sizeof(rr->soa.refresh), state);
1422 siphash24_compress(&rr->soa.retry, sizeof(rr->soa.retry), state);
1423 siphash24_compress(&rr->soa.expire, sizeof(rr->soa.expire), state);
1424 siphash24_compress(&rr->soa.minimum, sizeof(rr->soa.minimum), state);
1425 break;
1426
1427 case DNS_TYPE_MX:
1428 siphash24_compress(&rr->mx.priority, sizeof(rr->mx.priority), state);
1429 dns_name_hash_func(rr->mx.exchange, state);
1430 break;
1431
1432 case DNS_TYPE_LOC:
1433 siphash24_compress(&rr->loc.version, sizeof(rr->loc.version), state);
1434 siphash24_compress(&rr->loc.size, sizeof(rr->loc.size), state);
1435 siphash24_compress(&rr->loc.horiz_pre, sizeof(rr->loc.horiz_pre), state);
1436 siphash24_compress(&rr->loc.vert_pre, sizeof(rr->loc.vert_pre), state);
1437 siphash24_compress(&rr->loc.latitude, sizeof(rr->loc.latitude), state);
1438 siphash24_compress(&rr->loc.longitude, sizeof(rr->loc.longitude), state);
1439 siphash24_compress(&rr->loc.altitude, sizeof(rr->loc.altitude), state);
1440 break;
1441
1442 case DNS_TYPE_SSHFP:
1443 siphash24_compress(&rr->sshfp.algorithm, sizeof(rr->sshfp.algorithm), state);
1444 siphash24_compress(&rr->sshfp.fptype, sizeof(rr->sshfp.fptype), state);
1445 siphash24_compress(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size, state);
1446 break;
1447
1448 case DNS_TYPE_DNSKEY:
1449 siphash24_compress(&rr->dnskey.flags, sizeof(rr->dnskey.flags), state);
1450 siphash24_compress(&rr->dnskey.protocol, sizeof(rr->dnskey.protocol), state);
1451 siphash24_compress(&rr->dnskey.algorithm, sizeof(rr->dnskey.algorithm), state);
1452 siphash24_compress(rr->dnskey.key, rr->dnskey.key_size, state);
1453 break;
1454
1455 case DNS_TYPE_RRSIG:
1456 siphash24_compress(&rr->rrsig.type_covered, sizeof(rr->rrsig.type_covered), state);
1457 siphash24_compress(&rr->rrsig.algorithm, sizeof(rr->rrsig.algorithm), state);
1458 siphash24_compress(&rr->rrsig.labels, sizeof(rr->rrsig.labels), state);
1459 siphash24_compress(&rr->rrsig.original_ttl, sizeof(rr->rrsig.original_ttl), state);
1460 siphash24_compress(&rr->rrsig.expiration, sizeof(rr->rrsig.expiration), state);
1461 siphash24_compress(&rr->rrsig.inception, sizeof(rr->rrsig.inception), state);
1462 siphash24_compress(&rr->rrsig.key_tag, sizeof(rr->rrsig.key_tag), state);
1463 dns_name_hash_func(rr->rrsig.signer, state);
1464 siphash24_compress(rr->rrsig.signature, rr->rrsig.signature_size, state);
1465 break;
1466
1467 case DNS_TYPE_NSEC:
1468 dns_name_hash_func(rr->nsec.next_domain_name, state);
1469 /* FIXME: we leave out the type bitmap here. Hash
1470 * would be better if we'd take it into account
1471 * too. */
1472 break;
1473
1474 case DNS_TYPE_DS:
1475 siphash24_compress(&rr->ds.key_tag, sizeof(rr->ds.key_tag), state);
1476 siphash24_compress(&rr->ds.algorithm, sizeof(rr->ds.algorithm), state);
1477 siphash24_compress(&rr->ds.digest_type, sizeof(rr->ds.digest_type), state);
1478 siphash24_compress(rr->ds.digest, rr->ds.digest_size, state);
1479 break;
1480
1481 case DNS_TYPE_NSEC3:
1482 siphash24_compress(&rr->nsec3.algorithm, sizeof(rr->nsec3.algorithm), state);
1483 siphash24_compress(&rr->nsec3.flags, sizeof(rr->nsec3.flags), state);
1484 siphash24_compress(&rr->nsec3.iterations, sizeof(rr->nsec3.iterations), state);
1485 siphash24_compress(rr->nsec3.salt, rr->nsec3.salt_size, state);
1486 siphash24_compress(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, state);
1487 /* FIXME: We leave the bitmaps out */
1488 break;
1489
1490 case DNS_TYPE_TLSA:
1491 siphash24_compress(&rr->tlsa.cert_usage, sizeof(rr->tlsa.cert_usage), state);
1492 siphash24_compress(&rr->tlsa.selector, sizeof(rr->tlsa.selector), state);
1493 siphash24_compress(&rr->tlsa.matching_type, sizeof(rr->tlsa.matching_type), state);
1494 siphash24_compress(rr->tlsa.data, rr->tlsa.data_size, state);
1495 break;
1496
1497 case DNS_TYPE_CAA:
1498 siphash24_compress(&rr->caa.flags, sizeof(rr->caa.flags), state);
1499 string_hash_func(rr->caa.tag, state);
1500 siphash24_compress(rr->caa.value, rr->caa.value_size, state);
1501 break;
1502
1503 case DNS_TYPE_OPENPGPKEY:
1504 default:
1505 siphash24_compress(rr->generic.data, rr->generic.data_size, state);
1506 break;
1507 }
1508 }
1509
1510 static int dns_resource_record_compare_func(const void *a, const void *b) {
1511 const DnsResourceRecord *x = a, *y = b;
1512 int ret;
1513
1514 ret = dns_resource_key_compare_func(x->key, y->key);
1515 if (ret != 0)
1516 return ret;
1517
1518 if (dns_resource_record_equal(x, y))
1519 return 0;
1520
1521 /* This is a bit dirty, we don't implement proper ordering, but
1522 * the hashtable doesn't need ordering anyway, hence we don't
1523 * care. */
1524 return x < y ? -1 : 1;
1525 }
1526
1527 const struct hash_ops dns_resource_record_hash_ops = {
1528 .hash = dns_resource_record_hash_func,
1529 .compare = dns_resource_record_compare_func,
1530 };
1531
1532 DnsResourceRecord *dns_resource_record_copy(DnsResourceRecord *rr) {
1533 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *copy = NULL;
1534 DnsResourceRecord *t;
1535
1536 assert(rr);
1537
1538 copy = dns_resource_record_new(rr->key);
1539 if (!copy)
1540 return NULL;
1541
1542 copy->ttl = rr->ttl;
1543 copy->expiry = rr->expiry;
1544 copy->n_skip_labels_signer = rr->n_skip_labels_signer;
1545 copy->n_skip_labels_source = rr->n_skip_labels_source;
1546 copy->unparseable = rr->unparseable;
1547
1548 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1549
1550 case DNS_TYPE_SRV:
1551 copy->srv.priority = rr->srv.priority;
1552 copy->srv.weight = rr->srv.weight;
1553 copy->srv.port = rr->srv.port;
1554 copy->srv.name = strdup(rr->srv.name);
1555 if (!copy->srv.name)
1556 return NULL;
1557 break;
1558
1559 case DNS_TYPE_PTR:
1560 case DNS_TYPE_NS:
1561 case DNS_TYPE_CNAME:
1562 case DNS_TYPE_DNAME:
1563 copy->ptr.name = strdup(rr->ptr.name);
1564 if (!copy->ptr.name)
1565 return NULL;
1566 break;
1567
1568 case DNS_TYPE_HINFO:
1569 copy->hinfo.cpu = strdup(rr->hinfo.cpu);
1570 if (!copy->hinfo.cpu)
1571 return NULL;
1572
1573 copy->hinfo.os = strdup(rr->hinfo.os);
1574 if (!copy->hinfo.os)
1575 return NULL;
1576 break;
1577
1578 case DNS_TYPE_TXT:
1579 case DNS_TYPE_SPF:
1580 copy->txt.items = dns_txt_item_copy(rr->txt.items);
1581 if (!copy->txt.items)
1582 return NULL;
1583 break;
1584
1585 case DNS_TYPE_A:
1586 copy->a = rr->a;
1587 break;
1588
1589 case DNS_TYPE_AAAA:
1590 copy->aaaa = rr->aaaa;
1591 break;
1592
1593 case DNS_TYPE_SOA:
1594 copy->soa.mname = strdup(rr->soa.mname);
1595 if (!copy->soa.mname)
1596 return NULL;
1597 copy->soa.rname = strdup(rr->soa.rname);
1598 if (!copy->soa.rname)
1599 return NULL;
1600 copy->soa.serial = rr->soa.serial;
1601 copy->soa.refresh = rr->soa.refresh;
1602 copy->soa.retry = rr->soa.retry;
1603 copy->soa.expire = rr->soa.expire;
1604 copy->soa.minimum = rr->soa.minimum;
1605 break;
1606
1607 case DNS_TYPE_MX:
1608 copy->mx.priority = rr->mx.priority;
1609 copy->mx.exchange = strdup(rr->mx.exchange);
1610 if (!copy->mx.exchange)
1611 return NULL;
1612 break;
1613
1614 case DNS_TYPE_LOC:
1615 copy->loc = rr->loc;
1616 break;
1617
1618 case DNS_TYPE_SSHFP:
1619 copy->sshfp.algorithm = rr->sshfp.algorithm;
1620 copy->sshfp.fptype = rr->sshfp.fptype;
1621 copy->sshfp.fingerprint = memdup(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1622 if (!copy->sshfp.fingerprint)
1623 return NULL;
1624 copy->sshfp.fingerprint_size = rr->sshfp.fingerprint_size;
1625 break;
1626
1627 case DNS_TYPE_DNSKEY:
1628 copy->dnskey.flags = rr->dnskey.flags;
1629 copy->dnskey.protocol = rr->dnskey.protocol;
1630 copy->dnskey.algorithm = rr->dnskey.algorithm;
1631 copy->dnskey.key = memdup(rr->dnskey.key, rr->dnskey.key_size);
1632 if (!copy->dnskey.key)
1633 return NULL;
1634 copy->dnskey.key_size = rr->dnskey.key_size;
1635 break;
1636
1637 case DNS_TYPE_RRSIG:
1638 copy->rrsig.type_covered = rr->rrsig.type_covered;
1639 copy->rrsig.algorithm = rr->rrsig.algorithm;
1640 copy->rrsig.labels = rr->rrsig.labels;
1641 copy->rrsig.original_ttl = rr->rrsig.original_ttl;
1642 copy->rrsig.expiration = rr->rrsig.expiration;
1643 copy->rrsig.inception = rr->rrsig.inception;
1644 copy->rrsig.key_tag = rr->rrsig.key_tag;
1645 copy->rrsig.signer = strdup(rr->rrsig.signer);
1646 if (!copy->rrsig.signer)
1647 return NULL;
1648 copy->rrsig.signature = memdup(rr->rrsig.signature, rr->rrsig.signature_size);
1649 if (!copy->rrsig.signature)
1650 return NULL;
1651 copy->rrsig.signature_size = rr->rrsig.signature_size;
1652 break;
1653
1654 case DNS_TYPE_NSEC:
1655 copy->nsec.next_domain_name = strdup(rr->nsec.next_domain_name);
1656 if (!copy->nsec.next_domain_name)
1657 return NULL;
1658 copy->nsec.types = bitmap_copy(rr->nsec.types);
1659 if (!copy->nsec.types)
1660 return NULL;
1661 break;
1662
1663 case DNS_TYPE_DS:
1664 copy->ds.key_tag = rr->ds.key_tag;
1665 copy->ds.algorithm = rr->ds.algorithm;
1666 copy->ds.digest_type = rr->ds.digest_type;
1667 copy->ds.digest = memdup(rr->ds.digest, rr->ds.digest_size);
1668 if (!copy->ds.digest)
1669 return NULL;
1670 copy->ds.digest_size = rr->ds.digest_size;
1671 break;
1672
1673 case DNS_TYPE_NSEC3:
1674 copy->nsec3.algorithm = rr->nsec3.algorithm;
1675 copy->nsec3.flags = rr->nsec3.flags;
1676 copy->nsec3.iterations = rr->nsec3.iterations;
1677 copy->nsec3.salt = memdup(rr->nsec3.salt, rr->nsec3.salt_size);
1678 if (!copy->nsec3.salt)
1679 return NULL;
1680 copy->nsec3.salt_size = rr->nsec3.salt_size;
1681 copy->nsec3.next_hashed_name = memdup(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size);
1682 if (!copy->nsec3.next_hashed_name_size)
1683 return NULL;
1684 copy->nsec3.next_hashed_name_size = rr->nsec3.next_hashed_name_size;
1685 copy->nsec3.types = bitmap_copy(rr->nsec3.types);
1686 if (!copy->nsec3.types)
1687 return NULL;
1688 break;
1689
1690 case DNS_TYPE_TLSA:
1691 copy->tlsa.cert_usage = rr->tlsa.cert_usage;
1692 copy->tlsa.selector = rr->tlsa.selector;
1693 copy->tlsa.matching_type = rr->tlsa.matching_type;
1694 copy->tlsa.data = memdup(rr->tlsa.data, rr->tlsa.data_size);
1695 if (!copy->tlsa.data)
1696 return NULL;
1697 copy->tlsa.data_size = rr->tlsa.data_size;
1698 break;
1699
1700 case DNS_TYPE_CAA:
1701 copy->caa.flags = rr->caa.flags;
1702 copy->caa.tag = strdup(rr->caa.tag);
1703 if (!copy->caa.tag)
1704 return NULL;
1705 copy->caa.value = memdup(rr->caa.value, rr->caa.value_size);
1706 if (!copy->caa.value)
1707 return NULL;
1708 copy->caa.value_size = rr->caa.value_size;
1709 break;
1710
1711 case DNS_TYPE_OPT:
1712 default:
1713 copy->generic.data = memdup(rr->generic.data, rr->generic.data_size);
1714 if (!copy->generic.data)
1715 return NULL;
1716 copy->generic.data_size = rr->generic.data_size;
1717 break;
1718 }
1719
1720 t = TAKE_PTR(copy);
1721
1722 return t;
1723 }
1724
1725 int dns_resource_record_clamp_ttl(DnsResourceRecord **rr, uint32_t max_ttl) {
1726 DnsResourceRecord *old_rr, *new_rr;
1727 uint32_t new_ttl;
1728
1729 assert(rr);
1730 old_rr = *rr;
1731
1732 if (old_rr->key->type == DNS_TYPE_OPT)
1733 return -EINVAL;
1734
1735 new_ttl = MIN(old_rr->ttl, max_ttl);
1736 if (new_ttl == old_rr->ttl)
1737 return 0;
1738
1739 if (old_rr->n_ref == 1) {
1740 /* Patch in place */
1741 old_rr->ttl = new_ttl;
1742 return 1;
1743 }
1744
1745 new_rr = dns_resource_record_copy(old_rr);
1746 if (!new_rr)
1747 return -ENOMEM;
1748
1749 new_rr->ttl = new_ttl;
1750
1751 dns_resource_record_unref(*rr);
1752 *rr = new_rr;
1753
1754 return 1;
1755 }
1756
1757 DnsTxtItem *dns_txt_item_free_all(DnsTxtItem *i) {
1758 DnsTxtItem *n;
1759
1760 if (!i)
1761 return NULL;
1762
1763 n = i->items_next;
1764
1765 free(i);
1766 return dns_txt_item_free_all(n);
1767 }
1768
1769 bool dns_txt_item_equal(DnsTxtItem *a, DnsTxtItem *b) {
1770
1771 if (a == b)
1772 return true;
1773
1774 if (!a != !b)
1775 return false;
1776
1777 if (!a)
1778 return true;
1779
1780 if (a->length != b->length)
1781 return false;
1782
1783 if (memcmp(a->data, b->data, a->length) != 0)
1784 return false;
1785
1786 return dns_txt_item_equal(a->items_next, b->items_next);
1787 }
1788
1789 DnsTxtItem *dns_txt_item_copy(DnsTxtItem *first) {
1790 DnsTxtItem *i, *copy = NULL, *end = NULL;
1791
1792 LIST_FOREACH(items, i, first) {
1793 DnsTxtItem *j;
1794
1795 j = memdup(i, offsetof(DnsTxtItem, data) + i->length + 1);
1796 if (!j) {
1797 dns_txt_item_free_all(copy);
1798 return NULL;
1799 }
1800
1801 LIST_INSERT_AFTER(items, copy, end, j);
1802 end = j;
1803 }
1804
1805 return copy;
1806 }
1807
1808 int dns_txt_item_new_empty(DnsTxtItem **ret) {
1809 DnsTxtItem *i;
1810
1811 /* RFC 6763, section 6.1 suggests to treat
1812 * empty TXT RRs as equivalent to a TXT record
1813 * with a single empty string. */
1814
1815 i = malloc0(offsetof(DnsTxtItem, data) + 1); /* for safety reasons we add an extra NUL byte */
1816 if (!i)
1817 return -ENOMEM;
1818
1819 *ret = i;
1820
1821 return 0;
1822 }
1823
1824 static const char* const dnssec_algorithm_table[_DNSSEC_ALGORITHM_MAX_DEFINED] = {
1825 /* Mnemonics as listed on https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */
1826 [DNSSEC_ALGORITHM_RSAMD5] = "RSAMD5",
1827 [DNSSEC_ALGORITHM_DH] = "DH",
1828 [DNSSEC_ALGORITHM_DSA] = "DSA",
1829 [DNSSEC_ALGORITHM_ECC] = "ECC",
1830 [DNSSEC_ALGORITHM_RSASHA1] = "RSASHA1",
1831 [DNSSEC_ALGORITHM_DSA_NSEC3_SHA1] = "DSA-NSEC3-SHA1",
1832 [DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1] = "RSASHA1-NSEC3-SHA1",
1833 [DNSSEC_ALGORITHM_RSASHA256] = "RSASHA256",
1834 [DNSSEC_ALGORITHM_RSASHA512] = "RSASHA512",
1835 [DNSSEC_ALGORITHM_ECC_GOST] = "ECC-GOST",
1836 [DNSSEC_ALGORITHM_ECDSAP256SHA256] = "ECDSAP256SHA256",
1837 [DNSSEC_ALGORITHM_ECDSAP384SHA384] = "ECDSAP384SHA384",
1838 [DNSSEC_ALGORITHM_ED25519] = "ED25519",
1839 [DNSSEC_ALGORITHM_ED448] = "ED448",
1840 [DNSSEC_ALGORITHM_INDIRECT] = "INDIRECT",
1841 [DNSSEC_ALGORITHM_PRIVATEDNS] = "PRIVATEDNS",
1842 [DNSSEC_ALGORITHM_PRIVATEOID] = "PRIVATEOID",
1843 };
1844 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_algorithm, int, 255);
1845
1846 static const char* const dnssec_digest_table[_DNSSEC_DIGEST_MAX_DEFINED] = {
1847 /* Names as listed on https://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */
1848 [DNSSEC_DIGEST_SHA1] = "SHA-1",
1849 [DNSSEC_DIGEST_SHA256] = "SHA-256",
1850 [DNSSEC_DIGEST_GOST_R_34_11_94] = "GOST_R_34.11-94",
1851 [DNSSEC_DIGEST_SHA384] = "SHA-384",
1852 };
1853 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_digest, int, 255);