]> git.ipfire.org Git - thirdparty/systemd.git/blob - src/resolve/resolved-dns-rr.c
Merge pull request #11772 from c0d3z3r0/master
[thirdparty/systemd.git] / src / resolve / resolved-dns-rr.c
1 /* SPDX-License-Identifier: LGPL-2.1+ */
2
3 #include <math.h>
4
5 #include "alloc-util.h"
6 #include "dns-domain.h"
7 #include "dns-type.h"
8 #include "escape.h"
9 #include "hexdecoct.h"
10 #include "resolved-dns-dnssec.h"
11 #include "resolved-dns-packet.h"
12 #include "resolved-dns-rr.h"
13 #include "string-table.h"
14 #include "string-util.h"
15 #include "strv.h"
16 #include "terminal-util.h"
17
18 DnsResourceKey* dns_resource_key_new(uint16_t class, uint16_t type, const char *name) {
19 DnsResourceKey *k;
20 size_t l;
21
22 assert(name);
23
24 l = strlen(name);
25 k = malloc0(sizeof(DnsResourceKey) + l + 1);
26 if (!k)
27 return NULL;
28
29 k->n_ref = 1;
30 k->class = class;
31 k->type = type;
32
33 strcpy((char*) k + sizeof(DnsResourceKey), name);
34
35 return k;
36 }
37
38 DnsResourceKey* dns_resource_key_new_redirect(const DnsResourceKey *key, const DnsResourceRecord *cname) {
39 int r;
40
41 assert(key);
42 assert(cname);
43
44 assert(IN_SET(cname->key->type, DNS_TYPE_CNAME, DNS_TYPE_DNAME));
45
46 if (cname->key->type == DNS_TYPE_CNAME)
47 return dns_resource_key_new(key->class, key->type, cname->cname.name);
48 else {
49 DnsResourceKey *k;
50 char *destination = NULL;
51
52 r = dns_name_change_suffix(dns_resource_key_name(key), dns_resource_key_name(cname->key), cname->dname.name, &destination);
53 if (r < 0)
54 return NULL;
55 if (r == 0)
56 return dns_resource_key_ref((DnsResourceKey*) key);
57
58 k = dns_resource_key_new_consume(key->class, key->type, destination);
59 if (!k)
60 return mfree(destination);
61
62 return k;
63 }
64 }
65
66 int dns_resource_key_new_append_suffix(DnsResourceKey **ret, DnsResourceKey *key, char *name) {
67 DnsResourceKey *new_key;
68 char *joined;
69 int r;
70
71 assert(ret);
72 assert(key);
73 assert(name);
74
75 if (dns_name_is_root(name)) {
76 *ret = dns_resource_key_ref(key);
77 return 0;
78 }
79
80 r = dns_name_concat(dns_resource_key_name(key), name, 0, &joined);
81 if (r < 0)
82 return r;
83
84 new_key = dns_resource_key_new_consume(key->class, key->type, joined);
85 if (!new_key) {
86 free(joined);
87 return -ENOMEM;
88 }
89
90 *ret = new_key;
91 return 0;
92 }
93
94 DnsResourceKey* dns_resource_key_new_consume(uint16_t class, uint16_t type, char *name) {
95 DnsResourceKey *k;
96
97 assert(name);
98
99 k = new0(DnsResourceKey, 1);
100 if (!k)
101 return NULL;
102
103 k->n_ref = 1;
104 k->class = class;
105 k->type = type;
106 k->_name = name;
107
108 return k;
109 }
110
111 DnsResourceKey* dns_resource_key_ref(DnsResourceKey *k) {
112
113 if (!k)
114 return NULL;
115
116 /* Static/const keys created with DNS_RESOURCE_KEY_CONST will
117 * set this to -1, they should not be reffed/unreffed */
118 assert(k->n_ref != (unsigned) -1);
119
120 assert(k->n_ref > 0);
121 k->n_ref++;
122
123 return k;
124 }
125
126 DnsResourceKey* dns_resource_key_unref(DnsResourceKey *k) {
127 if (!k)
128 return NULL;
129
130 assert(k->n_ref != (unsigned) -1);
131 assert(k->n_ref > 0);
132
133 if (k->n_ref == 1) {
134 free(k->_name);
135 free(k);
136 } else
137 k->n_ref--;
138
139 return NULL;
140 }
141
142 const char* dns_resource_key_name(const DnsResourceKey *key) {
143 const char *name;
144
145 if (!key)
146 return NULL;
147
148 if (key->_name)
149 name = key->_name;
150 else
151 name = (char*) key + sizeof(DnsResourceKey);
152
153 if (dns_name_is_root(name))
154 return ".";
155 else
156 return name;
157 }
158
159 bool dns_resource_key_is_address(const DnsResourceKey *key) {
160 assert(key);
161
162 /* Check if this is an A or AAAA resource key */
163
164 return key->class == DNS_CLASS_IN && IN_SET(key->type, DNS_TYPE_A, DNS_TYPE_AAAA);
165 }
166
167 bool dns_resource_key_is_dnssd_ptr(const DnsResourceKey *key) {
168 assert(key);
169
170 /* Check if this is a PTR resource key used in
171 Service Instance Enumeration as described in RFC6763 p4.1. */
172
173 if (key->type != DNS_TYPE_PTR)
174 return false;
175
176 return dns_name_endswith(dns_resource_key_name(key), "_tcp.local") ||
177 dns_name_endswith(dns_resource_key_name(key), "_udp.local");
178 }
179
180 int dns_resource_key_equal(const DnsResourceKey *a, const DnsResourceKey *b) {
181 int r;
182
183 if (a == b)
184 return 1;
185
186 r = dns_name_equal(dns_resource_key_name(a), dns_resource_key_name(b));
187 if (r <= 0)
188 return r;
189
190 if (a->class != b->class)
191 return 0;
192
193 if (a->type != b->type)
194 return 0;
195
196 return 1;
197 }
198
199 int dns_resource_key_match_rr(const DnsResourceKey *key, DnsResourceRecord *rr, const char *search_domain) {
200 int r;
201
202 assert(key);
203 assert(rr);
204
205 if (key == rr->key)
206 return 1;
207
208 /* Checks if an rr matches the specified key. If a search
209 * domain is specified, it will also be checked if the key
210 * with the search domain suffixed might match the RR. */
211
212 if (rr->key->class != key->class && key->class != DNS_CLASS_ANY)
213 return 0;
214
215 if (rr->key->type != key->type && key->type != DNS_TYPE_ANY)
216 return 0;
217
218 r = dns_name_equal(dns_resource_key_name(rr->key), dns_resource_key_name(key));
219 if (r != 0)
220 return r;
221
222 if (search_domain) {
223 _cleanup_free_ char *joined = NULL;
224
225 r = dns_name_concat(dns_resource_key_name(key), search_domain, 0, &joined);
226 if (r < 0)
227 return r;
228
229 return dns_name_equal(dns_resource_key_name(rr->key), joined);
230 }
231
232 return 0;
233 }
234
235 int dns_resource_key_match_cname_or_dname(const DnsResourceKey *key, const DnsResourceKey *cname, const char *search_domain) {
236 int r;
237
238 assert(key);
239 assert(cname);
240
241 if (cname->class != key->class && key->class != DNS_CLASS_ANY)
242 return 0;
243
244 if (cname->type == DNS_TYPE_CNAME)
245 r = dns_name_equal(dns_resource_key_name(key), dns_resource_key_name(cname));
246 else if (cname->type == DNS_TYPE_DNAME)
247 r = dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(cname));
248 else
249 return 0;
250
251 if (r != 0)
252 return r;
253
254 if (search_domain) {
255 _cleanup_free_ char *joined = NULL;
256
257 r = dns_name_concat(dns_resource_key_name(key), search_domain, 0, &joined);
258 if (r < 0)
259 return r;
260
261 if (cname->type == DNS_TYPE_CNAME)
262 return dns_name_equal(joined, dns_resource_key_name(cname));
263 else if (cname->type == DNS_TYPE_DNAME)
264 return dns_name_endswith(joined, dns_resource_key_name(cname));
265 }
266
267 return 0;
268 }
269
270 int dns_resource_key_match_soa(const DnsResourceKey *key, const DnsResourceKey *soa) {
271 assert(soa);
272 assert(key);
273
274 /* Checks whether 'soa' is a SOA record for the specified key. */
275
276 if (soa->class != key->class)
277 return 0;
278
279 if (soa->type != DNS_TYPE_SOA)
280 return 0;
281
282 return dns_name_endswith(dns_resource_key_name(key), dns_resource_key_name(soa));
283 }
284
285 static void dns_resource_key_hash_func(const DnsResourceKey *k, struct siphash *state) {
286 assert(k);
287
288 dns_name_hash_func(dns_resource_key_name(k), state);
289 siphash24_compress(&k->class, sizeof(k->class), state);
290 siphash24_compress(&k->type, sizeof(k->type), state);
291 }
292
293 static int dns_resource_key_compare_func(const DnsResourceKey *x, const DnsResourceKey *y) {
294 int ret;
295
296 ret = dns_name_compare_func(dns_resource_key_name(x), dns_resource_key_name(y));
297 if (ret != 0)
298 return ret;
299
300 ret = CMP(x->type, y->type);
301 if (ret != 0)
302 return ret;
303
304 ret = CMP(x->class, y->class);
305 if (ret != 0)
306 return ret;
307
308 return 0;
309 }
310
311 DEFINE_HASH_OPS(dns_resource_key_hash_ops, DnsResourceKey, dns_resource_key_hash_func, dns_resource_key_compare_func);
312
313 char* dns_resource_key_to_string(const DnsResourceKey *key, char *buf, size_t buf_size) {
314 const char *c, *t;
315 char *ans = buf;
316
317 /* If we cannot convert the CLASS/TYPE into a known string,
318 use the format recommended by RFC 3597, Section 5. */
319
320 c = dns_class_to_string(key->class);
321 t = dns_type_to_string(key->type);
322
323 snprintf(buf, buf_size, "%s %s%s%.0u %s%s%.0u",
324 dns_resource_key_name(key),
325 strempty(c), c ? "" : "CLASS", c ? 0 : key->class,
326 strempty(t), t ? "" : "TYPE", t ? 0 : key->type);
327
328 return ans;
329 }
330
331 bool dns_resource_key_reduce(DnsResourceKey **a, DnsResourceKey **b) {
332 assert(a);
333 assert(b);
334
335 /* Try to replace one RR key by another if they are identical, thus saving a bit of memory. Note that we do
336 * this only for RR keys, not for RRs themselves, as they carry a lot of additional metadata (where they come
337 * from, validity data, and suchlike), and cannot be replaced so easily by other RRs that have the same
338 * superficial data. */
339
340 if (!*a)
341 return false;
342 if (!*b)
343 return false;
344
345 /* We refuse merging const keys */
346 if ((*a)->n_ref == (unsigned) -1)
347 return false;
348 if ((*b)->n_ref == (unsigned) -1)
349 return false;
350
351 /* Already the same? */
352 if (*a == *b)
353 return true;
354
355 /* Are they really identical? */
356 if (dns_resource_key_equal(*a, *b) <= 0)
357 return false;
358
359 /* Keep the one which already has more references. */
360 if ((*a)->n_ref > (*b)->n_ref) {
361 dns_resource_key_unref(*b);
362 *b = dns_resource_key_ref(*a);
363 } else {
364 dns_resource_key_unref(*a);
365 *a = dns_resource_key_ref(*b);
366 }
367
368 return true;
369 }
370
371 DnsResourceRecord* dns_resource_record_new(DnsResourceKey *key) {
372 DnsResourceRecord *rr;
373
374 rr = new0(DnsResourceRecord, 1);
375 if (!rr)
376 return NULL;
377
378 rr->n_ref = 1;
379 rr->key = dns_resource_key_ref(key);
380 rr->expiry = USEC_INFINITY;
381 rr->n_skip_labels_signer = rr->n_skip_labels_source = (unsigned) -1;
382
383 return rr;
384 }
385
386 DnsResourceRecord* dns_resource_record_new_full(uint16_t class, uint16_t type, const char *name) {
387 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
388
389 key = dns_resource_key_new(class, type, name);
390 if (!key)
391 return NULL;
392
393 return dns_resource_record_new(key);
394 }
395
396 static DnsResourceRecord* dns_resource_record_free(DnsResourceRecord *rr) {
397 assert(rr);
398
399 if (rr->key) {
400 switch(rr->key->type) {
401
402 case DNS_TYPE_SRV:
403 free(rr->srv.name);
404 break;
405
406 case DNS_TYPE_PTR:
407 case DNS_TYPE_NS:
408 case DNS_TYPE_CNAME:
409 case DNS_TYPE_DNAME:
410 free(rr->ptr.name);
411 break;
412
413 case DNS_TYPE_HINFO:
414 free(rr->hinfo.cpu);
415 free(rr->hinfo.os);
416 break;
417
418 case DNS_TYPE_TXT:
419 case DNS_TYPE_SPF:
420 dns_txt_item_free_all(rr->txt.items);
421 break;
422
423 case DNS_TYPE_SOA:
424 free(rr->soa.mname);
425 free(rr->soa.rname);
426 break;
427
428 case DNS_TYPE_MX:
429 free(rr->mx.exchange);
430 break;
431
432 case DNS_TYPE_DS:
433 free(rr->ds.digest);
434 break;
435
436 case DNS_TYPE_SSHFP:
437 free(rr->sshfp.fingerprint);
438 break;
439
440 case DNS_TYPE_DNSKEY:
441 free(rr->dnskey.key);
442 break;
443
444 case DNS_TYPE_RRSIG:
445 free(rr->rrsig.signer);
446 free(rr->rrsig.signature);
447 break;
448
449 case DNS_TYPE_NSEC:
450 free(rr->nsec.next_domain_name);
451 bitmap_free(rr->nsec.types);
452 break;
453
454 case DNS_TYPE_NSEC3:
455 free(rr->nsec3.next_hashed_name);
456 free(rr->nsec3.salt);
457 bitmap_free(rr->nsec3.types);
458 break;
459
460 case DNS_TYPE_LOC:
461 case DNS_TYPE_A:
462 case DNS_TYPE_AAAA:
463 break;
464
465 case DNS_TYPE_TLSA:
466 free(rr->tlsa.data);
467 break;
468
469 case DNS_TYPE_CAA:
470 free(rr->caa.tag);
471 free(rr->caa.value);
472 break;
473
474 case DNS_TYPE_OPENPGPKEY:
475 default:
476 if (!rr->unparseable)
477 free(rr->generic.data);
478 }
479
480 if (rr->unparseable)
481 free(rr->generic.data);
482
483 free(rr->wire_format);
484 dns_resource_key_unref(rr->key);
485 }
486
487 free(rr->to_string);
488 return mfree(rr);
489 }
490
491 DEFINE_TRIVIAL_REF_UNREF_FUNC(DnsResourceRecord, dns_resource_record, dns_resource_record_free);
492
493 int dns_resource_record_new_reverse(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *hostname) {
494 _cleanup_(dns_resource_key_unrefp) DnsResourceKey *key = NULL;
495 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *rr = NULL;
496 _cleanup_free_ char *ptr = NULL;
497 int r;
498
499 assert(ret);
500 assert(address);
501 assert(hostname);
502
503 r = dns_name_reverse(family, address, &ptr);
504 if (r < 0)
505 return r;
506
507 key = dns_resource_key_new_consume(DNS_CLASS_IN, DNS_TYPE_PTR, ptr);
508 if (!key)
509 return -ENOMEM;
510
511 ptr = NULL;
512
513 rr = dns_resource_record_new(key);
514 if (!rr)
515 return -ENOMEM;
516
517 rr->ptr.name = strdup(hostname);
518 if (!rr->ptr.name)
519 return -ENOMEM;
520
521 *ret = TAKE_PTR(rr);
522
523 return 0;
524 }
525
526 int dns_resource_record_new_address(DnsResourceRecord **ret, int family, const union in_addr_union *address, const char *name) {
527 DnsResourceRecord *rr;
528
529 assert(ret);
530 assert(address);
531 assert(family);
532
533 if (family == AF_INET) {
534
535 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_A, name);
536 if (!rr)
537 return -ENOMEM;
538
539 rr->a.in_addr = address->in;
540
541 } else if (family == AF_INET6) {
542
543 rr = dns_resource_record_new_full(DNS_CLASS_IN, DNS_TYPE_AAAA, name);
544 if (!rr)
545 return -ENOMEM;
546
547 rr->aaaa.in6_addr = address->in6;
548 } else
549 return -EAFNOSUPPORT;
550
551 *ret = rr;
552
553 return 0;
554 }
555
556 #define FIELD_EQUAL(a, b, field) \
557 ((a).field ## _size == (b).field ## _size && \
558 memcmp((a).field, (b).field, (a).field ## _size) == 0)
559
560 int dns_resource_record_equal(const DnsResourceRecord *a, const DnsResourceRecord *b) {
561 int r;
562
563 assert(a);
564 assert(b);
565
566 if (a == b)
567 return 1;
568
569 r = dns_resource_key_equal(a->key, b->key);
570 if (r <= 0)
571 return r;
572
573 if (a->unparseable != b->unparseable)
574 return 0;
575
576 switch (a->unparseable ? _DNS_TYPE_INVALID : a->key->type) {
577
578 case DNS_TYPE_SRV:
579 r = dns_name_equal(a->srv.name, b->srv.name);
580 if (r <= 0)
581 return r;
582
583 return a->srv.priority == b->srv.priority &&
584 a->srv.weight == b->srv.weight &&
585 a->srv.port == b->srv.port;
586
587 case DNS_TYPE_PTR:
588 case DNS_TYPE_NS:
589 case DNS_TYPE_CNAME:
590 case DNS_TYPE_DNAME:
591 return dns_name_equal(a->ptr.name, b->ptr.name);
592
593 case DNS_TYPE_HINFO:
594 return strcaseeq(a->hinfo.cpu, b->hinfo.cpu) &&
595 strcaseeq(a->hinfo.os, b->hinfo.os);
596
597 case DNS_TYPE_SPF: /* exactly the same as TXT */
598 case DNS_TYPE_TXT:
599 return dns_txt_item_equal(a->txt.items, b->txt.items);
600
601 case DNS_TYPE_A:
602 return memcmp(&a->a.in_addr, &b->a.in_addr, sizeof(struct in_addr)) == 0;
603
604 case DNS_TYPE_AAAA:
605 return memcmp(&a->aaaa.in6_addr, &b->aaaa.in6_addr, sizeof(struct in6_addr)) == 0;
606
607 case DNS_TYPE_SOA:
608 r = dns_name_equal(a->soa.mname, b->soa.mname);
609 if (r <= 0)
610 return r;
611 r = dns_name_equal(a->soa.rname, b->soa.rname);
612 if (r <= 0)
613 return r;
614
615 return a->soa.serial == b->soa.serial &&
616 a->soa.refresh == b->soa.refresh &&
617 a->soa.retry == b->soa.retry &&
618 a->soa.expire == b->soa.expire &&
619 a->soa.minimum == b->soa.minimum;
620
621 case DNS_TYPE_MX:
622 if (a->mx.priority != b->mx.priority)
623 return 0;
624
625 return dns_name_equal(a->mx.exchange, b->mx.exchange);
626
627 case DNS_TYPE_LOC:
628 assert(a->loc.version == b->loc.version);
629
630 return a->loc.size == b->loc.size &&
631 a->loc.horiz_pre == b->loc.horiz_pre &&
632 a->loc.vert_pre == b->loc.vert_pre &&
633 a->loc.latitude == b->loc.latitude &&
634 a->loc.longitude == b->loc.longitude &&
635 a->loc.altitude == b->loc.altitude;
636
637 case DNS_TYPE_DS:
638 return a->ds.key_tag == b->ds.key_tag &&
639 a->ds.algorithm == b->ds.algorithm &&
640 a->ds.digest_type == b->ds.digest_type &&
641 FIELD_EQUAL(a->ds, b->ds, digest);
642
643 case DNS_TYPE_SSHFP:
644 return a->sshfp.algorithm == b->sshfp.algorithm &&
645 a->sshfp.fptype == b->sshfp.fptype &&
646 FIELD_EQUAL(a->sshfp, b->sshfp, fingerprint);
647
648 case DNS_TYPE_DNSKEY:
649 return a->dnskey.flags == b->dnskey.flags &&
650 a->dnskey.protocol == b->dnskey.protocol &&
651 a->dnskey.algorithm == b->dnskey.algorithm &&
652 FIELD_EQUAL(a->dnskey, b->dnskey, key);
653
654 case DNS_TYPE_RRSIG:
655 /* do the fast comparisons first */
656 return a->rrsig.type_covered == b->rrsig.type_covered &&
657 a->rrsig.algorithm == b->rrsig.algorithm &&
658 a->rrsig.labels == b->rrsig.labels &&
659 a->rrsig.original_ttl == b->rrsig.original_ttl &&
660 a->rrsig.expiration == b->rrsig.expiration &&
661 a->rrsig.inception == b->rrsig.inception &&
662 a->rrsig.key_tag == b->rrsig.key_tag &&
663 FIELD_EQUAL(a->rrsig, b->rrsig, signature) &&
664 dns_name_equal(a->rrsig.signer, b->rrsig.signer);
665
666 case DNS_TYPE_NSEC:
667 return dns_name_equal(a->nsec.next_domain_name, b->nsec.next_domain_name) &&
668 bitmap_equal(a->nsec.types, b->nsec.types);
669
670 case DNS_TYPE_NSEC3:
671 return a->nsec3.algorithm == b->nsec3.algorithm &&
672 a->nsec3.flags == b->nsec3.flags &&
673 a->nsec3.iterations == b->nsec3.iterations &&
674 FIELD_EQUAL(a->nsec3, b->nsec3, salt) &&
675 FIELD_EQUAL(a->nsec3, b->nsec3, next_hashed_name) &&
676 bitmap_equal(a->nsec3.types, b->nsec3.types);
677
678 case DNS_TYPE_TLSA:
679 return a->tlsa.cert_usage == b->tlsa.cert_usage &&
680 a->tlsa.selector == b->tlsa.selector &&
681 a->tlsa.matching_type == b->tlsa.matching_type &&
682 FIELD_EQUAL(a->tlsa, b->tlsa, data);
683
684 case DNS_TYPE_CAA:
685 return a->caa.flags == b->caa.flags &&
686 streq(a->caa.tag, b->caa.tag) &&
687 FIELD_EQUAL(a->caa, b->caa, value);
688
689 case DNS_TYPE_OPENPGPKEY:
690 default:
691 return FIELD_EQUAL(a->generic, b->generic, data);
692 }
693 }
694
695 static char* format_location(uint32_t latitude, uint32_t longitude, uint32_t altitude,
696 uint8_t size, uint8_t horiz_pre, uint8_t vert_pre) {
697 char *s;
698 char NS = latitude >= 1U<<31 ? 'N' : 'S';
699 char EW = longitude >= 1U<<31 ? 'E' : 'W';
700
701 int lat = latitude >= 1U<<31 ? (int) (latitude - (1U<<31)) : (int) ((1U<<31) - latitude);
702 int lon = longitude >= 1U<<31 ? (int) (longitude - (1U<<31)) : (int) ((1U<<31) - longitude);
703 double alt = altitude >= 10000000u ? altitude - 10000000u : -(double)(10000000u - altitude);
704 double siz = (size >> 4) * exp10((double) (size & 0xF));
705 double hor = (horiz_pre >> 4) * exp10((double) (horiz_pre & 0xF));
706 double ver = (vert_pre >> 4) * exp10((double) (vert_pre & 0xF));
707
708 if (asprintf(&s, "%d %d %.3f %c %d %d %.3f %c %.2fm %.2fm %.2fm %.2fm",
709 (lat / 60000 / 60),
710 (lat / 60000) % 60,
711 (lat % 60000) / 1000.,
712 NS,
713 (lon / 60000 / 60),
714 (lon / 60000) % 60,
715 (lon % 60000) / 1000.,
716 EW,
717 alt / 100.,
718 siz / 100.,
719 hor / 100.,
720 ver / 100.) < 0)
721 return NULL;
722
723 return s;
724 }
725
726 static int format_timestamp_dns(char *buf, size_t l, time_t sec) {
727 struct tm tm;
728
729 assert(buf);
730 assert(l > STRLEN("YYYYMMDDHHmmSS"));
731
732 if (!gmtime_r(&sec, &tm))
733 return -EINVAL;
734
735 if (strftime(buf, l, "%Y%m%d%H%M%S", &tm) <= 0)
736 return -EINVAL;
737
738 return 0;
739 }
740
741 static char *format_types(Bitmap *types) {
742 _cleanup_strv_free_ char **strv = NULL;
743 _cleanup_free_ char *str = NULL;
744 Iterator i;
745 unsigned type;
746 int r;
747
748 BITMAP_FOREACH(type, types, i) {
749 if (dns_type_to_string(type)) {
750 r = strv_extend(&strv, dns_type_to_string(type));
751 if (r < 0)
752 return NULL;
753 } else {
754 char *t;
755
756 r = asprintf(&t, "TYPE%u", type);
757 if (r < 0)
758 return NULL;
759
760 r = strv_consume(&strv, t);
761 if (r < 0)
762 return NULL;
763 }
764 }
765
766 str = strv_join(strv, " ");
767 if (!str)
768 return NULL;
769
770 return strjoin("( ", str, " )");
771 }
772
773 static char *format_txt(DnsTxtItem *first) {
774 DnsTxtItem *i;
775 size_t c = 1;
776 char *p, *s;
777
778 LIST_FOREACH(items, i, first)
779 c += i->length * 4 + 3;
780
781 p = s = new(char, c);
782 if (!s)
783 return NULL;
784
785 LIST_FOREACH(items, i, first) {
786 size_t j;
787
788 if (i != first)
789 *(p++) = ' ';
790
791 *(p++) = '"';
792
793 for (j = 0; j < i->length; j++) {
794 if (i->data[j] < ' ' || i->data[j] == '"' || i->data[j] >= 127) {
795 *(p++) = '\\';
796 *(p++) = '0' + (i->data[j] / 100);
797 *(p++) = '0' + ((i->data[j] / 10) % 10);
798 *(p++) = '0' + (i->data[j] % 10);
799 } else
800 *(p++) = i->data[j];
801 }
802
803 *(p++) = '"';
804 }
805
806 *p = 0;
807 return s;
808 }
809
810 const char *dns_resource_record_to_string(DnsResourceRecord *rr) {
811 _cleanup_free_ char *t = NULL;
812 char *s, k[DNS_RESOURCE_KEY_STRING_MAX];
813 int r;
814
815 assert(rr);
816
817 if (rr->to_string)
818 return rr->to_string;
819
820 dns_resource_key_to_string(rr->key, k, sizeof(k));
821
822 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
823
824 case DNS_TYPE_SRV:
825 r = asprintf(&s, "%s %u %u %u %s",
826 k,
827 rr->srv.priority,
828 rr->srv.weight,
829 rr->srv.port,
830 strna(rr->srv.name));
831 if (r < 0)
832 return NULL;
833 break;
834
835 case DNS_TYPE_PTR:
836 case DNS_TYPE_NS:
837 case DNS_TYPE_CNAME:
838 case DNS_TYPE_DNAME:
839 s = strjoin(k, " ", rr->ptr.name);
840 if (!s)
841 return NULL;
842
843 break;
844
845 case DNS_TYPE_HINFO:
846 s = strjoin(k, " ", rr->hinfo.cpu, " ", rr->hinfo.os);
847 if (!s)
848 return NULL;
849 break;
850
851 case DNS_TYPE_SPF: /* exactly the same as TXT */
852 case DNS_TYPE_TXT:
853 t = format_txt(rr->txt.items);
854 if (!t)
855 return NULL;
856
857 s = strjoin(k, " ", t);
858 if (!s)
859 return NULL;
860 break;
861
862 case DNS_TYPE_A: {
863 _cleanup_free_ char *x = NULL;
864
865 r = in_addr_to_string(AF_INET, (const union in_addr_union*) &rr->a.in_addr, &x);
866 if (r < 0)
867 return NULL;
868
869 s = strjoin(k, " ", x);
870 if (!s)
871 return NULL;
872 break;
873 }
874
875 case DNS_TYPE_AAAA:
876 r = in_addr_to_string(AF_INET6, (const union in_addr_union*) &rr->aaaa.in6_addr, &t);
877 if (r < 0)
878 return NULL;
879
880 s = strjoin(k, " ", t);
881 if (!s)
882 return NULL;
883 break;
884
885 case DNS_TYPE_SOA:
886 r = asprintf(&s, "%s %s %s %u %u %u %u %u",
887 k,
888 strna(rr->soa.mname),
889 strna(rr->soa.rname),
890 rr->soa.serial,
891 rr->soa.refresh,
892 rr->soa.retry,
893 rr->soa.expire,
894 rr->soa.minimum);
895 if (r < 0)
896 return NULL;
897 break;
898
899 case DNS_TYPE_MX:
900 r = asprintf(&s, "%s %u %s",
901 k,
902 rr->mx.priority,
903 rr->mx.exchange);
904 if (r < 0)
905 return NULL;
906 break;
907
908 case DNS_TYPE_LOC:
909 assert(rr->loc.version == 0);
910
911 t = format_location(rr->loc.latitude,
912 rr->loc.longitude,
913 rr->loc.altitude,
914 rr->loc.size,
915 rr->loc.horiz_pre,
916 rr->loc.vert_pre);
917 if (!t)
918 return NULL;
919
920 s = strjoin(k, " ", t);
921 if (!s)
922 return NULL;
923 break;
924
925 case DNS_TYPE_DS:
926 t = hexmem(rr->ds.digest, rr->ds.digest_size);
927 if (!t)
928 return NULL;
929
930 r = asprintf(&s, "%s %u %u %u %s",
931 k,
932 rr->ds.key_tag,
933 rr->ds.algorithm,
934 rr->ds.digest_type,
935 t);
936 if (r < 0)
937 return NULL;
938 break;
939
940 case DNS_TYPE_SSHFP:
941 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
942 if (!t)
943 return NULL;
944
945 r = asprintf(&s, "%s %u %u %s",
946 k,
947 rr->sshfp.algorithm,
948 rr->sshfp.fptype,
949 t);
950 if (r < 0)
951 return NULL;
952 break;
953
954 case DNS_TYPE_DNSKEY: {
955 _cleanup_free_ char *alg = NULL;
956 char *ss;
957 uint16_t key_tag;
958
959 key_tag = dnssec_keytag(rr, true);
960
961 r = dnssec_algorithm_to_string_alloc(rr->dnskey.algorithm, &alg);
962 if (r < 0)
963 return NULL;
964
965 r = asprintf(&s, "%s %u %u %s",
966 k,
967 rr->dnskey.flags,
968 rr->dnskey.protocol,
969 alg);
970 if (r < 0)
971 return NULL;
972
973 r = base64_append(&s, r,
974 rr->dnskey.key, rr->dnskey.key_size,
975 8, columns());
976 if (r < 0)
977 return NULL;
978
979 r = asprintf(&ss, "%s\n"
980 " -- Flags:%s%s%s\n"
981 " -- Key tag: %u",
982 s,
983 rr->dnskey.flags & DNSKEY_FLAG_SEP ? " SEP" : "",
984 rr->dnskey.flags & DNSKEY_FLAG_REVOKE ? " REVOKE" : "",
985 rr->dnskey.flags & DNSKEY_FLAG_ZONE_KEY ? " ZONE_KEY" : "",
986 key_tag);
987 if (r < 0)
988 return NULL;
989 free(s);
990 s = ss;
991
992 break;
993 }
994
995 case DNS_TYPE_RRSIG: {
996 _cleanup_free_ char *alg = NULL;
997 char expiration[STRLEN("YYYYMMDDHHmmSS") + 1], inception[STRLEN("YYYYMMDDHHmmSS") + 1];
998 const char *type;
999
1000 type = dns_type_to_string(rr->rrsig.type_covered);
1001
1002 r = dnssec_algorithm_to_string_alloc(rr->rrsig.algorithm, &alg);
1003 if (r < 0)
1004 return NULL;
1005
1006 r = format_timestamp_dns(expiration, sizeof(expiration), rr->rrsig.expiration);
1007 if (r < 0)
1008 return NULL;
1009
1010 r = format_timestamp_dns(inception, sizeof(inception), rr->rrsig.inception);
1011 if (r < 0)
1012 return NULL;
1013
1014 /* TYPE?? follows
1015 * http://tools.ietf.org/html/rfc3597#section-5 */
1016
1017 r = asprintf(&s, "%s %s%.*u %s %u %u %s %s %u %s",
1018 k,
1019 type ?: "TYPE",
1020 type ? 0 : 1, type ? 0u : (unsigned) rr->rrsig.type_covered,
1021 alg,
1022 rr->rrsig.labels,
1023 rr->rrsig.original_ttl,
1024 expiration,
1025 inception,
1026 rr->rrsig.key_tag,
1027 rr->rrsig.signer);
1028 if (r < 0)
1029 return NULL;
1030
1031 r = base64_append(&s, r,
1032 rr->rrsig.signature, rr->rrsig.signature_size,
1033 8, columns());
1034 if (r < 0)
1035 return NULL;
1036
1037 break;
1038 }
1039
1040 case DNS_TYPE_NSEC:
1041 t = format_types(rr->nsec.types);
1042 if (!t)
1043 return NULL;
1044
1045 r = asprintf(&s, "%s %s %s",
1046 k,
1047 rr->nsec.next_domain_name,
1048 t);
1049 if (r < 0)
1050 return NULL;
1051 break;
1052
1053 case DNS_TYPE_NSEC3: {
1054 _cleanup_free_ char *salt = NULL, *hash = NULL;
1055
1056 if (rr->nsec3.salt_size > 0) {
1057 salt = hexmem(rr->nsec3.salt, rr->nsec3.salt_size);
1058 if (!salt)
1059 return NULL;
1060 }
1061
1062 hash = base32hexmem(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, false);
1063 if (!hash)
1064 return NULL;
1065
1066 t = format_types(rr->nsec3.types);
1067 if (!t)
1068 return NULL;
1069
1070 r = asprintf(&s, "%s %"PRIu8" %"PRIu8" %"PRIu16" %s %s %s",
1071 k,
1072 rr->nsec3.algorithm,
1073 rr->nsec3.flags,
1074 rr->nsec3.iterations,
1075 rr->nsec3.salt_size > 0 ? salt : "-",
1076 hash,
1077 t);
1078 if (r < 0)
1079 return NULL;
1080
1081 break;
1082 }
1083
1084 case DNS_TYPE_TLSA: {
1085 const char *cert_usage, *selector, *matching_type;
1086
1087 cert_usage = tlsa_cert_usage_to_string(rr->tlsa.cert_usage);
1088 selector = tlsa_selector_to_string(rr->tlsa.selector);
1089 matching_type = tlsa_matching_type_to_string(rr->tlsa.matching_type);
1090
1091 t = hexmem(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1092 if (!t)
1093 return NULL;
1094
1095 r = asprintf(&s,
1096 "%s %u %u %u %s\n"
1097 " -- Cert. usage: %s\n"
1098 " -- Selector: %s\n"
1099 " -- Matching type: %s",
1100 k,
1101 rr->tlsa.cert_usage,
1102 rr->tlsa.selector,
1103 rr->tlsa.matching_type,
1104 t,
1105 cert_usage,
1106 selector,
1107 matching_type);
1108 if (r < 0)
1109 return NULL;
1110
1111 break;
1112 }
1113
1114 case DNS_TYPE_CAA: {
1115 _cleanup_free_ char *value;
1116
1117 value = octescape(rr->caa.value, rr->caa.value_size);
1118 if (!value)
1119 return NULL;
1120
1121 r = asprintf(&s, "%s %u %s \"%s\"%s%s%s%.0u",
1122 k,
1123 rr->caa.flags,
1124 rr->caa.tag,
1125 value,
1126 rr->caa.flags ? "\n -- Flags:" : "",
1127 rr->caa.flags & CAA_FLAG_CRITICAL ? " critical" : "",
1128 rr->caa.flags & ~CAA_FLAG_CRITICAL ? " " : "",
1129 rr->caa.flags & ~CAA_FLAG_CRITICAL);
1130 if (r < 0)
1131 return NULL;
1132
1133 break;
1134 }
1135
1136 case DNS_TYPE_OPENPGPKEY: {
1137 r = asprintf(&s, "%s", k);
1138 if (r < 0)
1139 return NULL;
1140
1141 r = base64_append(&s, r,
1142 rr->generic.data, rr->generic.data_size,
1143 8, columns());
1144 if (r < 0)
1145 return NULL;
1146 break;
1147 }
1148
1149 default:
1150 t = hexmem(rr->generic.data, rr->generic.data_size);
1151 if (!t)
1152 return NULL;
1153
1154 /* Format as documented in RFC 3597, Section 5 */
1155 r = asprintf(&s, "%s \\# %zu %s", k, rr->generic.data_size, t);
1156 if (r < 0)
1157 return NULL;
1158 break;
1159 }
1160
1161 rr->to_string = s;
1162 return s;
1163 }
1164
1165 ssize_t dns_resource_record_payload(DnsResourceRecord *rr, void **out) {
1166 assert(rr);
1167 assert(out);
1168
1169 switch(rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1170 case DNS_TYPE_SRV:
1171 case DNS_TYPE_PTR:
1172 case DNS_TYPE_NS:
1173 case DNS_TYPE_CNAME:
1174 case DNS_TYPE_DNAME:
1175 case DNS_TYPE_HINFO:
1176 case DNS_TYPE_SPF:
1177 case DNS_TYPE_TXT:
1178 case DNS_TYPE_A:
1179 case DNS_TYPE_AAAA:
1180 case DNS_TYPE_SOA:
1181 case DNS_TYPE_MX:
1182 case DNS_TYPE_LOC:
1183 case DNS_TYPE_DS:
1184 case DNS_TYPE_DNSKEY:
1185 case DNS_TYPE_RRSIG:
1186 case DNS_TYPE_NSEC:
1187 case DNS_TYPE_NSEC3:
1188 return -EINVAL;
1189
1190 case DNS_TYPE_SSHFP:
1191 *out = rr->sshfp.fingerprint;
1192 return rr->sshfp.fingerprint_size;
1193
1194 case DNS_TYPE_TLSA:
1195 *out = rr->tlsa.data;
1196 return rr->tlsa.data_size;
1197
1198 case DNS_TYPE_OPENPGPKEY:
1199 default:
1200 *out = rr->generic.data;
1201 return rr->generic.data_size;
1202 }
1203 }
1204
1205 int dns_resource_record_to_wire_format(DnsResourceRecord *rr, bool canonical) {
1206
1207 DnsPacket packet = {
1208 .n_ref = 1,
1209 .protocol = DNS_PROTOCOL_DNS,
1210 .on_stack = true,
1211 .refuse_compression = true,
1212 .canonical_form = canonical,
1213 };
1214
1215 size_t start, rds;
1216 int r;
1217
1218 assert(rr);
1219
1220 /* Generates the RR in wire-format, optionally in the
1221 * canonical form as discussed in the DNSSEC RFC 4034, Section
1222 * 6.2. We allocate a throw-away DnsPacket object on the stack
1223 * here, because we need some book-keeping for memory
1224 * management, and can reuse the DnsPacket serializer, that
1225 * can generate the canonical form, too, but also knows label
1226 * compression and suchlike. */
1227
1228 if (rr->wire_format && rr->wire_format_canonical == canonical)
1229 return 0;
1230
1231 r = dns_packet_append_rr(&packet, rr, 0, &start, &rds);
1232 if (r < 0)
1233 return r;
1234
1235 assert(start == 0);
1236 assert(packet._data);
1237
1238 free(rr->wire_format);
1239 rr->wire_format = packet._data;
1240 rr->wire_format_size = packet.size;
1241 rr->wire_format_rdata_offset = rds;
1242 rr->wire_format_canonical = canonical;
1243
1244 packet._data = NULL;
1245 dns_packet_unref(&packet);
1246
1247 return 0;
1248 }
1249
1250 int dns_resource_record_signer(DnsResourceRecord *rr, const char **ret) {
1251 const char *n;
1252 int r;
1253
1254 assert(rr);
1255 assert(ret);
1256
1257 /* Returns the RRset's signer, if it is known. */
1258
1259 if (rr->n_skip_labels_signer == (unsigned) -1)
1260 return -ENODATA;
1261
1262 n = dns_resource_key_name(rr->key);
1263 r = dns_name_skip(n, rr->n_skip_labels_signer, &n);
1264 if (r < 0)
1265 return r;
1266 if (r == 0)
1267 return -EINVAL;
1268
1269 *ret = n;
1270 return 0;
1271 }
1272
1273 int dns_resource_record_source(DnsResourceRecord *rr, const char **ret) {
1274 const char *n;
1275 int r;
1276
1277 assert(rr);
1278 assert(ret);
1279
1280 /* Returns the RRset's synthesizing source, if it is known. */
1281
1282 if (rr->n_skip_labels_source == (unsigned) -1)
1283 return -ENODATA;
1284
1285 n = dns_resource_key_name(rr->key);
1286 r = dns_name_skip(n, rr->n_skip_labels_source, &n);
1287 if (r < 0)
1288 return r;
1289 if (r == 0)
1290 return -EINVAL;
1291
1292 *ret = n;
1293 return 0;
1294 }
1295
1296 int dns_resource_record_is_signer(DnsResourceRecord *rr, const char *zone) {
1297 const char *signer;
1298 int r;
1299
1300 assert(rr);
1301
1302 r = dns_resource_record_signer(rr, &signer);
1303 if (r < 0)
1304 return r;
1305
1306 return dns_name_equal(zone, signer);
1307 }
1308
1309 int dns_resource_record_is_synthetic(DnsResourceRecord *rr) {
1310 int r;
1311
1312 assert(rr);
1313
1314 /* Returns > 0 if the RR is generated from a wildcard, and is not the asterisk name itself */
1315
1316 if (rr->n_skip_labels_source == (unsigned) -1)
1317 return -ENODATA;
1318
1319 if (rr->n_skip_labels_source == 0)
1320 return 0;
1321
1322 if (rr->n_skip_labels_source > 1)
1323 return 1;
1324
1325 r = dns_name_startswith(dns_resource_key_name(rr->key), "*");
1326 if (r < 0)
1327 return r;
1328
1329 return !r;
1330 }
1331
1332 void dns_resource_record_hash_func(const DnsResourceRecord *rr, struct siphash *state) {
1333 assert(rr);
1334
1335 dns_resource_key_hash_func(rr->key, state);
1336
1337 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1338
1339 case DNS_TYPE_SRV:
1340 siphash24_compress(&rr->srv.priority, sizeof(rr->srv.priority), state);
1341 siphash24_compress(&rr->srv.weight, sizeof(rr->srv.weight), state);
1342 siphash24_compress(&rr->srv.port, sizeof(rr->srv.port), state);
1343 dns_name_hash_func(rr->srv.name, state);
1344 break;
1345
1346 case DNS_TYPE_PTR:
1347 case DNS_TYPE_NS:
1348 case DNS_TYPE_CNAME:
1349 case DNS_TYPE_DNAME:
1350 dns_name_hash_func(rr->ptr.name, state);
1351 break;
1352
1353 case DNS_TYPE_HINFO:
1354 string_hash_func(rr->hinfo.cpu, state);
1355 string_hash_func(rr->hinfo.os, state);
1356 break;
1357
1358 case DNS_TYPE_TXT:
1359 case DNS_TYPE_SPF: {
1360 DnsTxtItem *j;
1361
1362 LIST_FOREACH(items, j, rr->txt.items) {
1363 siphash24_compress(j->data, j->length, state);
1364
1365 /* Add an extra NUL byte, so that "a" followed by "b" doesn't result in the same hash as "ab"
1366 * followed by "". */
1367 siphash24_compress_byte(0, state);
1368 }
1369 break;
1370 }
1371
1372 case DNS_TYPE_A:
1373 siphash24_compress(&rr->a.in_addr, sizeof(rr->a.in_addr), state);
1374 break;
1375
1376 case DNS_TYPE_AAAA:
1377 siphash24_compress(&rr->aaaa.in6_addr, sizeof(rr->aaaa.in6_addr), state);
1378 break;
1379
1380 case DNS_TYPE_SOA:
1381 dns_name_hash_func(rr->soa.mname, state);
1382 dns_name_hash_func(rr->soa.rname, state);
1383 siphash24_compress(&rr->soa.serial, sizeof(rr->soa.serial), state);
1384 siphash24_compress(&rr->soa.refresh, sizeof(rr->soa.refresh), state);
1385 siphash24_compress(&rr->soa.retry, sizeof(rr->soa.retry), state);
1386 siphash24_compress(&rr->soa.expire, sizeof(rr->soa.expire), state);
1387 siphash24_compress(&rr->soa.minimum, sizeof(rr->soa.minimum), state);
1388 break;
1389
1390 case DNS_TYPE_MX:
1391 siphash24_compress(&rr->mx.priority, sizeof(rr->mx.priority), state);
1392 dns_name_hash_func(rr->mx.exchange, state);
1393 break;
1394
1395 case DNS_TYPE_LOC:
1396 siphash24_compress(&rr->loc.version, sizeof(rr->loc.version), state);
1397 siphash24_compress(&rr->loc.size, sizeof(rr->loc.size), state);
1398 siphash24_compress(&rr->loc.horiz_pre, sizeof(rr->loc.horiz_pre), state);
1399 siphash24_compress(&rr->loc.vert_pre, sizeof(rr->loc.vert_pre), state);
1400 siphash24_compress(&rr->loc.latitude, sizeof(rr->loc.latitude), state);
1401 siphash24_compress(&rr->loc.longitude, sizeof(rr->loc.longitude), state);
1402 siphash24_compress(&rr->loc.altitude, sizeof(rr->loc.altitude), state);
1403 break;
1404
1405 case DNS_TYPE_SSHFP:
1406 siphash24_compress(&rr->sshfp.algorithm, sizeof(rr->sshfp.algorithm), state);
1407 siphash24_compress(&rr->sshfp.fptype, sizeof(rr->sshfp.fptype), state);
1408 siphash24_compress(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size, state);
1409 break;
1410
1411 case DNS_TYPE_DNSKEY:
1412 siphash24_compress(&rr->dnskey.flags, sizeof(rr->dnskey.flags), state);
1413 siphash24_compress(&rr->dnskey.protocol, sizeof(rr->dnskey.protocol), state);
1414 siphash24_compress(&rr->dnskey.algorithm, sizeof(rr->dnskey.algorithm), state);
1415 siphash24_compress(rr->dnskey.key, rr->dnskey.key_size, state);
1416 break;
1417
1418 case DNS_TYPE_RRSIG:
1419 siphash24_compress(&rr->rrsig.type_covered, sizeof(rr->rrsig.type_covered), state);
1420 siphash24_compress(&rr->rrsig.algorithm, sizeof(rr->rrsig.algorithm), state);
1421 siphash24_compress(&rr->rrsig.labels, sizeof(rr->rrsig.labels), state);
1422 siphash24_compress(&rr->rrsig.original_ttl, sizeof(rr->rrsig.original_ttl), state);
1423 siphash24_compress(&rr->rrsig.expiration, sizeof(rr->rrsig.expiration), state);
1424 siphash24_compress(&rr->rrsig.inception, sizeof(rr->rrsig.inception), state);
1425 siphash24_compress(&rr->rrsig.key_tag, sizeof(rr->rrsig.key_tag), state);
1426 dns_name_hash_func(rr->rrsig.signer, state);
1427 siphash24_compress(rr->rrsig.signature, rr->rrsig.signature_size, state);
1428 break;
1429
1430 case DNS_TYPE_NSEC:
1431 dns_name_hash_func(rr->nsec.next_domain_name, state);
1432 /* FIXME: we leave out the type bitmap here. Hash
1433 * would be better if we'd take it into account
1434 * too. */
1435 break;
1436
1437 case DNS_TYPE_DS:
1438 siphash24_compress(&rr->ds.key_tag, sizeof(rr->ds.key_tag), state);
1439 siphash24_compress(&rr->ds.algorithm, sizeof(rr->ds.algorithm), state);
1440 siphash24_compress(&rr->ds.digest_type, sizeof(rr->ds.digest_type), state);
1441 siphash24_compress(rr->ds.digest, rr->ds.digest_size, state);
1442 break;
1443
1444 case DNS_TYPE_NSEC3:
1445 siphash24_compress(&rr->nsec3.algorithm, sizeof(rr->nsec3.algorithm), state);
1446 siphash24_compress(&rr->nsec3.flags, sizeof(rr->nsec3.flags), state);
1447 siphash24_compress(&rr->nsec3.iterations, sizeof(rr->nsec3.iterations), state);
1448 siphash24_compress(rr->nsec3.salt, rr->nsec3.salt_size, state);
1449 siphash24_compress(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size, state);
1450 /* FIXME: We leave the bitmaps out */
1451 break;
1452
1453 case DNS_TYPE_TLSA:
1454 siphash24_compress(&rr->tlsa.cert_usage, sizeof(rr->tlsa.cert_usage), state);
1455 siphash24_compress(&rr->tlsa.selector, sizeof(rr->tlsa.selector), state);
1456 siphash24_compress(&rr->tlsa.matching_type, sizeof(rr->tlsa.matching_type), state);
1457 siphash24_compress(rr->tlsa.data, rr->tlsa.data_size, state);
1458 break;
1459
1460 case DNS_TYPE_CAA:
1461 siphash24_compress(&rr->caa.flags, sizeof(rr->caa.flags), state);
1462 string_hash_func(rr->caa.tag, state);
1463 siphash24_compress(rr->caa.value, rr->caa.value_size, state);
1464 break;
1465
1466 case DNS_TYPE_OPENPGPKEY:
1467 default:
1468 siphash24_compress(rr->generic.data, rr->generic.data_size, state);
1469 break;
1470 }
1471 }
1472
1473 static int dns_resource_record_compare_func(const DnsResourceRecord *x, const DnsResourceRecord *y) {
1474 int r;
1475
1476 r = dns_resource_key_compare_func(x->key, y->key);
1477 if (r != 0)
1478 return r;
1479
1480 if (dns_resource_record_equal(x, y))
1481 return 0;
1482
1483 /* We still use CMP() here, even though don't implement proper
1484 * ordering, since the hashtable doesn't need ordering anyway. */
1485 return CMP(x, y);
1486 }
1487
1488 DEFINE_HASH_OPS(dns_resource_record_hash_ops, DnsResourceRecord, dns_resource_record_hash_func, dns_resource_record_compare_func);
1489
1490 DnsResourceRecord *dns_resource_record_copy(DnsResourceRecord *rr) {
1491 _cleanup_(dns_resource_record_unrefp) DnsResourceRecord *copy = NULL;
1492 DnsResourceRecord *t;
1493
1494 assert(rr);
1495
1496 copy = dns_resource_record_new(rr->key);
1497 if (!copy)
1498 return NULL;
1499
1500 copy->ttl = rr->ttl;
1501 copy->expiry = rr->expiry;
1502 copy->n_skip_labels_signer = rr->n_skip_labels_signer;
1503 copy->n_skip_labels_source = rr->n_skip_labels_source;
1504 copy->unparseable = rr->unparseable;
1505
1506 switch (rr->unparseable ? _DNS_TYPE_INVALID : rr->key->type) {
1507
1508 case DNS_TYPE_SRV:
1509 copy->srv.priority = rr->srv.priority;
1510 copy->srv.weight = rr->srv.weight;
1511 copy->srv.port = rr->srv.port;
1512 copy->srv.name = strdup(rr->srv.name);
1513 if (!copy->srv.name)
1514 return NULL;
1515 break;
1516
1517 case DNS_TYPE_PTR:
1518 case DNS_TYPE_NS:
1519 case DNS_TYPE_CNAME:
1520 case DNS_TYPE_DNAME:
1521 copy->ptr.name = strdup(rr->ptr.name);
1522 if (!copy->ptr.name)
1523 return NULL;
1524 break;
1525
1526 case DNS_TYPE_HINFO:
1527 copy->hinfo.cpu = strdup(rr->hinfo.cpu);
1528 if (!copy->hinfo.cpu)
1529 return NULL;
1530
1531 copy->hinfo.os = strdup(rr->hinfo.os);
1532 if (!copy->hinfo.os)
1533 return NULL;
1534 break;
1535
1536 case DNS_TYPE_TXT:
1537 case DNS_TYPE_SPF:
1538 copy->txt.items = dns_txt_item_copy(rr->txt.items);
1539 if (!copy->txt.items)
1540 return NULL;
1541 break;
1542
1543 case DNS_TYPE_A:
1544 copy->a = rr->a;
1545 break;
1546
1547 case DNS_TYPE_AAAA:
1548 copy->aaaa = rr->aaaa;
1549 break;
1550
1551 case DNS_TYPE_SOA:
1552 copy->soa.mname = strdup(rr->soa.mname);
1553 if (!copy->soa.mname)
1554 return NULL;
1555 copy->soa.rname = strdup(rr->soa.rname);
1556 if (!copy->soa.rname)
1557 return NULL;
1558 copy->soa.serial = rr->soa.serial;
1559 copy->soa.refresh = rr->soa.refresh;
1560 copy->soa.retry = rr->soa.retry;
1561 copy->soa.expire = rr->soa.expire;
1562 copy->soa.minimum = rr->soa.minimum;
1563 break;
1564
1565 case DNS_TYPE_MX:
1566 copy->mx.priority = rr->mx.priority;
1567 copy->mx.exchange = strdup(rr->mx.exchange);
1568 if (!copy->mx.exchange)
1569 return NULL;
1570 break;
1571
1572 case DNS_TYPE_LOC:
1573 copy->loc = rr->loc;
1574 break;
1575
1576 case DNS_TYPE_SSHFP:
1577 copy->sshfp.algorithm = rr->sshfp.algorithm;
1578 copy->sshfp.fptype = rr->sshfp.fptype;
1579 copy->sshfp.fingerprint = memdup(rr->sshfp.fingerprint, rr->sshfp.fingerprint_size);
1580 if (!copy->sshfp.fingerprint)
1581 return NULL;
1582 copy->sshfp.fingerprint_size = rr->sshfp.fingerprint_size;
1583 break;
1584
1585 case DNS_TYPE_DNSKEY:
1586 copy->dnskey.flags = rr->dnskey.flags;
1587 copy->dnskey.protocol = rr->dnskey.protocol;
1588 copy->dnskey.algorithm = rr->dnskey.algorithm;
1589 copy->dnskey.key = memdup(rr->dnskey.key, rr->dnskey.key_size);
1590 if (!copy->dnskey.key)
1591 return NULL;
1592 copy->dnskey.key_size = rr->dnskey.key_size;
1593 break;
1594
1595 case DNS_TYPE_RRSIG:
1596 copy->rrsig.type_covered = rr->rrsig.type_covered;
1597 copy->rrsig.algorithm = rr->rrsig.algorithm;
1598 copy->rrsig.labels = rr->rrsig.labels;
1599 copy->rrsig.original_ttl = rr->rrsig.original_ttl;
1600 copy->rrsig.expiration = rr->rrsig.expiration;
1601 copy->rrsig.inception = rr->rrsig.inception;
1602 copy->rrsig.key_tag = rr->rrsig.key_tag;
1603 copy->rrsig.signer = strdup(rr->rrsig.signer);
1604 if (!copy->rrsig.signer)
1605 return NULL;
1606 copy->rrsig.signature = memdup(rr->rrsig.signature, rr->rrsig.signature_size);
1607 if (!copy->rrsig.signature)
1608 return NULL;
1609 copy->rrsig.signature_size = rr->rrsig.signature_size;
1610 break;
1611
1612 case DNS_TYPE_NSEC:
1613 copy->nsec.next_domain_name = strdup(rr->nsec.next_domain_name);
1614 if (!copy->nsec.next_domain_name)
1615 return NULL;
1616 copy->nsec.types = bitmap_copy(rr->nsec.types);
1617 if (!copy->nsec.types)
1618 return NULL;
1619 break;
1620
1621 case DNS_TYPE_DS:
1622 copy->ds.key_tag = rr->ds.key_tag;
1623 copy->ds.algorithm = rr->ds.algorithm;
1624 copy->ds.digest_type = rr->ds.digest_type;
1625 copy->ds.digest = memdup(rr->ds.digest, rr->ds.digest_size);
1626 if (!copy->ds.digest)
1627 return NULL;
1628 copy->ds.digest_size = rr->ds.digest_size;
1629 break;
1630
1631 case DNS_TYPE_NSEC3:
1632 copy->nsec3.algorithm = rr->nsec3.algorithm;
1633 copy->nsec3.flags = rr->nsec3.flags;
1634 copy->nsec3.iterations = rr->nsec3.iterations;
1635 copy->nsec3.salt = memdup(rr->nsec3.salt, rr->nsec3.salt_size);
1636 if (!copy->nsec3.salt)
1637 return NULL;
1638 copy->nsec3.salt_size = rr->nsec3.salt_size;
1639 copy->nsec3.next_hashed_name = memdup(rr->nsec3.next_hashed_name, rr->nsec3.next_hashed_name_size);
1640 if (!copy->nsec3.next_hashed_name_size)
1641 return NULL;
1642 copy->nsec3.next_hashed_name_size = rr->nsec3.next_hashed_name_size;
1643 copy->nsec3.types = bitmap_copy(rr->nsec3.types);
1644 if (!copy->nsec3.types)
1645 return NULL;
1646 break;
1647
1648 case DNS_TYPE_TLSA:
1649 copy->tlsa.cert_usage = rr->tlsa.cert_usage;
1650 copy->tlsa.selector = rr->tlsa.selector;
1651 copy->tlsa.matching_type = rr->tlsa.matching_type;
1652 copy->tlsa.data = memdup(rr->tlsa.data, rr->tlsa.data_size);
1653 if (!copy->tlsa.data)
1654 return NULL;
1655 copy->tlsa.data_size = rr->tlsa.data_size;
1656 break;
1657
1658 case DNS_TYPE_CAA:
1659 copy->caa.flags = rr->caa.flags;
1660 copy->caa.tag = strdup(rr->caa.tag);
1661 if (!copy->caa.tag)
1662 return NULL;
1663 copy->caa.value = memdup(rr->caa.value, rr->caa.value_size);
1664 if (!copy->caa.value)
1665 return NULL;
1666 copy->caa.value_size = rr->caa.value_size;
1667 break;
1668
1669 case DNS_TYPE_OPT:
1670 default:
1671 copy->generic.data = memdup(rr->generic.data, rr->generic.data_size);
1672 if (!copy->generic.data)
1673 return NULL;
1674 copy->generic.data_size = rr->generic.data_size;
1675 break;
1676 }
1677
1678 t = TAKE_PTR(copy);
1679
1680 return t;
1681 }
1682
1683 int dns_resource_record_clamp_ttl(DnsResourceRecord **rr, uint32_t max_ttl) {
1684 DnsResourceRecord *old_rr, *new_rr;
1685 uint32_t new_ttl;
1686
1687 assert(rr);
1688 old_rr = *rr;
1689
1690 if (old_rr->key->type == DNS_TYPE_OPT)
1691 return -EINVAL;
1692
1693 new_ttl = MIN(old_rr->ttl, max_ttl);
1694 if (new_ttl == old_rr->ttl)
1695 return 0;
1696
1697 if (old_rr->n_ref == 1) {
1698 /* Patch in place */
1699 old_rr->ttl = new_ttl;
1700 return 1;
1701 }
1702
1703 new_rr = dns_resource_record_copy(old_rr);
1704 if (!new_rr)
1705 return -ENOMEM;
1706
1707 new_rr->ttl = new_ttl;
1708
1709 dns_resource_record_unref(*rr);
1710 *rr = new_rr;
1711
1712 return 1;
1713 }
1714
1715 DnsTxtItem *dns_txt_item_free_all(DnsTxtItem *i) {
1716 DnsTxtItem *n;
1717
1718 if (!i)
1719 return NULL;
1720
1721 n = i->items_next;
1722
1723 free(i);
1724 return dns_txt_item_free_all(n);
1725 }
1726
1727 bool dns_txt_item_equal(DnsTxtItem *a, DnsTxtItem *b) {
1728
1729 if (a == b)
1730 return true;
1731
1732 if (!a != !b)
1733 return false;
1734
1735 if (!a)
1736 return true;
1737
1738 if (a->length != b->length)
1739 return false;
1740
1741 if (memcmp(a->data, b->data, a->length) != 0)
1742 return false;
1743
1744 return dns_txt_item_equal(a->items_next, b->items_next);
1745 }
1746
1747 DnsTxtItem *dns_txt_item_copy(DnsTxtItem *first) {
1748 DnsTxtItem *i, *copy = NULL, *end = NULL;
1749
1750 LIST_FOREACH(items, i, first) {
1751 DnsTxtItem *j;
1752
1753 j = memdup(i, offsetof(DnsTxtItem, data) + i->length + 1);
1754 if (!j) {
1755 dns_txt_item_free_all(copy);
1756 return NULL;
1757 }
1758
1759 LIST_INSERT_AFTER(items, copy, end, j);
1760 end = j;
1761 }
1762
1763 return copy;
1764 }
1765
1766 int dns_txt_item_new_empty(DnsTxtItem **ret) {
1767 DnsTxtItem *i;
1768
1769 /* RFC 6763, section 6.1 suggests to treat
1770 * empty TXT RRs as equivalent to a TXT record
1771 * with a single empty string. */
1772
1773 i = malloc0(offsetof(DnsTxtItem, data) + 1); /* for safety reasons we add an extra NUL byte */
1774 if (!i)
1775 return -ENOMEM;
1776
1777 *ret = i;
1778
1779 return 0;
1780 }
1781
1782 static const char* const dnssec_algorithm_table[_DNSSEC_ALGORITHM_MAX_DEFINED] = {
1783 /* Mnemonics as listed on https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml */
1784 [DNSSEC_ALGORITHM_RSAMD5] = "RSAMD5",
1785 [DNSSEC_ALGORITHM_DH] = "DH",
1786 [DNSSEC_ALGORITHM_DSA] = "DSA",
1787 [DNSSEC_ALGORITHM_ECC] = "ECC",
1788 [DNSSEC_ALGORITHM_RSASHA1] = "RSASHA1",
1789 [DNSSEC_ALGORITHM_DSA_NSEC3_SHA1] = "DSA-NSEC3-SHA1",
1790 [DNSSEC_ALGORITHM_RSASHA1_NSEC3_SHA1] = "RSASHA1-NSEC3-SHA1",
1791 [DNSSEC_ALGORITHM_RSASHA256] = "RSASHA256",
1792 [DNSSEC_ALGORITHM_RSASHA512] = "RSASHA512",
1793 [DNSSEC_ALGORITHM_ECC_GOST] = "ECC-GOST",
1794 [DNSSEC_ALGORITHM_ECDSAP256SHA256] = "ECDSAP256SHA256",
1795 [DNSSEC_ALGORITHM_ECDSAP384SHA384] = "ECDSAP384SHA384",
1796 [DNSSEC_ALGORITHM_ED25519] = "ED25519",
1797 [DNSSEC_ALGORITHM_ED448] = "ED448",
1798 [DNSSEC_ALGORITHM_INDIRECT] = "INDIRECT",
1799 [DNSSEC_ALGORITHM_PRIVATEDNS] = "PRIVATEDNS",
1800 [DNSSEC_ALGORITHM_PRIVATEOID] = "PRIVATEOID",
1801 };
1802 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_algorithm, int, 255);
1803
1804 static const char* const dnssec_digest_table[_DNSSEC_DIGEST_MAX_DEFINED] = {
1805 /* Names as listed on https://www.iana.org/assignments/ds-rr-types/ds-rr-types.xhtml */
1806 [DNSSEC_DIGEST_SHA1] = "SHA-1",
1807 [DNSSEC_DIGEST_SHA256] = "SHA-256",
1808 [DNSSEC_DIGEST_GOST_R_34_11_94] = "GOST_R_34.11-94",
1809 [DNSSEC_DIGEST_SHA384] = "SHA-384",
1810 };
1811 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(dnssec_digest, int, 255);